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Abstract

I study a minimal departure from the standard model of preference maximization where

the decision-maker chooses in stages by sequentially maximizing two preferences that are

asymmetric and transitive. This simple model has a wide variety of applications to indi-

vidual decision-making – including multi-attribute choice, cognitive bias, and psychological

phenomena such as temptation – as well as several models of collective choice.

I provide a number of results on the choice-theoretical foundations of the model including:

(i) an axiomatic characterization; (ii) simple revealed preference definitions based on choice

from small menus; (iii) identification and uniqueness results; and, (iv) results regarding a

comparative static that permits meaningful comparisons among decision-makers.
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1 Introduction

This paper provides choice-theoretical foundations for a simple model of two-stage maximization.

Formally, this model of shortlisting may be understood as a minimal departure from the classical

theory of choice. Instead of maximizing a single preference, the decision-maker maximizes in stages

by applying a pair of asymmetric and transitive rationales (P1, P2). For any menu, the decision-

maker first eliminates those alternatives which are not maximal according to the first rationale

P1. From the remaining options, the decision-maker selects the alternative which maximizes the

second rationale P2.

The model has a wide variety of applications to individual decision-making – including multi-

attribute choice, cognitive bias, and psychological phenomena such as temptation and willpower

– as well as several models of collective choice.

Interpreted as a model of multi-attribute choice, for instance, the rationales reflect the rank-

ing of choice alternatives on two product dimensions (Manzini and Mariotti [2007]). Instead of

making trade-offs between the attributes, the decision-maker chooses by sequentially maximizing

her preference for each. While the two dimensions may reflect objective features (like those used

in the description of the product), they may also reflect aggregate measures of these features.

To illustrate, consider the choice among gambles (x, p) which provide a prize x with probability

p.1 Rather than evaluating the gambles holistically by using the expected utility p · u(x), recent

eye-tracking evidence suggests that decision-makers choose by comparing the features of gambles

directly (Arieli, Ben-Ami, and Rubinstein [2011]). One possible explanation is that the data is

consistent with a two-stage procedure where (i) the first rationale P1 captures the rough Pareto or-

dering of gambles that are unambiguously ranked on the prize and probability dimensions, and (ii)

the second rationale P2 reflects the pairwise ranking of gambles according to other considerations

(Manzini and Mariotti [2007], Rubinstein [1988]).

In a different vein, shortlisting can be interpreted as a model of constrained choice where the

first rationale captures a hidden budget restriction and the second rationale reflects the decision-

maker’s true preference.

One possibility is that the hidden constraint models a cognitive bias. Examples include bi-

ases such as limited attention and choice overload, which cause the decision-maker to focus on a

consideration set of the feasible alternatives (Masatlioglu, Nakajima, and Ozbay [2010]; Lleras,

Masatlioglu, Nakajima, and Ozbay [2011]), and the status quo bias, which causes the decision-

maker to focus on a particular alternative as an initial benchmark for comparison (Masatlioglu

and Ok [2005]; Apesteguia and Ballester [2010]).

Another possibility is that the hidden budget restriction models a psychological phenomenon,

1Similar comments apply to delayed rewards (x, t) (Rubinstein [2003]; Manzini, Mariotti, and Mittone [2010]).
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such as temptation (Strotz [1956]; Gul and Pesendorfer [2001]; Dekel and Lipman [2010a]), com-

promise (Chandrasekhar [2010]), or lack of willpower (Masatlioglu, Nakajima, and Ozdenoren

[2011]), which constrains the decision-maker. Interpreted as a model of overwhelming temptation,

for instance, shortlisting describes a decision-maker who lacks self-control and selects the most

preferred alternative among those which are tempting.

In terms of collective choice, the two rationales could reflect the competing objectives of Pareto

efficiency and equity (Houy and Tadenuma [2009]), the preferences of two sub-committees involved

in different stages of decision-making (Manzini and Mariotti [2006]), or the interplay between social

norms, such as politeness (Sen [1977]) or repugnance (Roth [2007]), and individual satisfaction.

Contribution: Shortlisting is a simple model of decision-making with a wide variety of applica-

tions. While it is not the most general way to model all of the choice phenomena discussed above,

there are compelling reasons to study this specialized model.

One important reason is the simplicity of the model itself. In the interest of developing parsi-

monious models of behavior, it is important to determine whether a minimal departure from the

standard model, like shortlisting, can accommodate systematic violations of preference maximiza-

tion. A succinct axiomatization of the model makes it easier to answer to this question.

A second reason to study a specialized model is to obtain sharper identification of behavior

(Dekel and Lipman [2010b]). While the models which generalize shortlisting (discussed at greater

length in the next section) accommodate a wider range of behavior, they suffer the drawback that

key parameters of interest, such as preferences, may be poorly identified from choice data.

Motivated by these concerns, I provide four results on the foundations of shortlisting behavior.

First, I show that shortlisting can be axiomatized with the help of a natural symmetry property

proposed by Manzini and Mariotti [2006] (see Horan [2010] for a related property in the context

of choice from a list).2 Intuitively, this property requires that alternatives which are similar in

terms of pairwise choice be treated symmetrically on larger menus. The approach differs from

the axiomatization of related models given in the literature (Masatlioglu, Nakajima, and Ozbay

[2010]; Lleras, Masatlioglu, Nakajima, and Ozbay [2011]; Au and Kawai [2011]; Yildiz [2011]). In

particular, it does not impose a condition – à la Strong Axiom of Revealed Preference (SARP) –

which explicitly requires the acyclicity of a revealed preference relation. Indeed, a basic goal of

the characterization is to establish that the acyclicity requirement imbedded in the model has a

straightforward interpretation in terms of behavior.

Second, I show that any feature of the representation with implications for behavior can be

determined from choice on menus of two and three alternatives. Similar to the classical result for

choice that satisfies the Weak Axiom of Revealed Preference (WARP) (see Mas-Collel, Whinston,

2Manzini and Mariotti show that this property is necessary but do not prove any results about sufficiency.
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and Green [1995], Proposition 1.D.2), this shows that relatively little data is required to construct

a representation of behavior consistent with the model. Practically, it suggests that the necessary

choice information may be easy to obtain in experiments as well as market settings. By way of

contrast, more general models can be significantly more data intensive.

Third, I show that it is possible to obtain a restricted form of uniqueness for conservative

representations of behavior. Given a representation (P1, P2), there exists a unique minimal ith

rationale that can be used to represent behavior with P−i. Intuitively, this rationale reflects the

most conservative estimate of the other rationale conditional on using P−i to represent behavior.

Moreover, there is a sharply defined range of conservative representations consisting of mutually

minimal rationales. Intuitively, these representations reflect the range of ways to attribute revealed

preference pairs which are not revealed to belong to either rationale.

Finally, I show that it is possible to draw meaningful comparisons between decision-makers

whose behavior is consistent with the model. In particular, I define a comparative static which

captures the notion that the second rationale of decision-maker A is more decisive than the second

rationale of decision-maker B. Decisiveness may be viewed as a natural generalization of two

comparative statics, namely preference for commitment (Gul and Pesendorfer [2001]) and willpower

(Masatlioglu, Nakajima, and Ozdenoren [2011]), first proposed in the context of temptation.

Organization: The remainder of the paper is structured as follows. After presenting the model

and discussing related models of choice in the next section, I provide an axiomatic characterization

of shortlisting in Section 3, followed by identification and uniqueness results in Section 4. I conclude

with a short discussion of comparative statics in Section 5.

2 Shortlisting and Related Models of Choice

A rationale is an asymmetric binary relation defined on a finite domain X. A shortlisting procedure

is a pair (P1, P2) of transitive rationales (i.e. quasi-transitive preferences) that determines a choice

function c(P1,P2) : 2X → X. For any menu A ⊆ X, the choice induced by (P1, P2) is given by

c(P1,P2)(A) ≡ max(max(A;P1);P2)

where max(B;P ) = {x ∈ B : no y ∈ B s.t. yPx} denotes the set of P -maximal alternatives in

B. Conversely, a choice function c : 2X → X can be represented in terms of shortlisting if there

exists a pair of transitive rationales (P1, P2) such that c(A) = c(P1,P2)(A) for any menu A ⊆ X.

Related Models: First proposed by Manzini and Mariotti [2006], shortlisting is closely related

to a variety of models studied in the theory literature. One natural departure is to impose less
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structure on the rationales. In related work, Manzini and Mariotti [2007] (see also Horan [2012]

for identification results) characterize a model of rational shortlist methods (RSM) that dispenses

with transitivity (so that P1 and P2 are asymmetric but may be intransitive). Since there exist

RSMs which cannot be represented with transitive rationales (as illustrated by Example 1 of the

Appendix), the RSM model strictly generalizes shortlisting.3

Conversely, one could impose additional structure on the rationales. Working separately, Au

and Kawai [2011] and Yildiz [2011] characterize the transitive RSM model where both rationales

are transitive and the second rationale is also complete.4 Compared with shortlisting, this model

imposes no additional restrictions on behavior. In particular, any shortlisting procedure (P1, P2)

can be represented by a transitive RSM where the second rationale is any linear order that com-

pletes P2 (see Remark 1 of the Appendix).

While the completeness of the second rationale has no implications for behavior, the transitive

RSM representation is nonetheless instructive because it clarifies the connection with two-stage

procedures (Γ,�) where the decision-maker filters the feasible alternatives using a choice corre-

spondence Γ : 2X → 2X before maximizing the linear order � on Γ(A).

In recent work, Masatlioglu, Nakajima, and Ozbay [2010] characterize a model of choice with

limited attention (CLA) where the filter satisfies a contraction property known as Bordes’ [1979]

strong superset property5 (SSP). In related work with Lleras [2011], they characterize a model of

choice with limited consideration (CLC) where the filter instead satisfies the standard contraction

axiom known as Sen’s [1971] property α. It is straightforward to see that shortlisting coincides with

the special case where the filter Γ is generated by a transitive rationale. By a standard result in

classical choice theory, this is equivalent to the filter Γ satisfying both Sen’s α and Bordes’ SSP, as

well as the standard expansion axiom known as Sen’s γ (see Moulin [1985]; Brandt and Harrenstein

[2011]). Since there are CLAs and CLCs that cannot be represented with transitive rationales (as

illustrated in Example 2 of the Appendix), these models strictly generalize shortlisting.

Finally, the model is related to the temptation literature – the main difference being that

shortlisting is concerned with the decision-maker’s ex post choice from menus (see Sandroni [2011]

for a different model of ex post choice related to temptation). In contrast, temptation models

generally examine the ex ante preference of a decision-maker who takes ex post temptations into

account when choosing among menus (see Lipman and Pesendorfer [2011] for a recent survey).

3In turn, the RSM model has been generalized to allow for: more than two rationales (Apesteguia and Ballester
[2010]; Manzini and Mariotti [2011]); and, less structure on the first-stage decision (Cherepanov, Feddersen, and
Sandroni [2010]; Spears [2011]) in a way that generalizes Lleras, Masatlioglu, Nakajima, and Ozbay [2011].

4Remark 5 of the Appendix corrects an error in Au and Kawai’s proof of the representation theorem.
5For convenience, SSP is stated in the Appendix. Unfortunately, there is little consensus on the name of this

property. Masatlioglu, Nakajima, and Ozbay [2010], for instance, call it the “attention filter” axiom. See Monjardet
[2008] for references to other names that have been used in the literature. I follow Bordes’ terminology since he
was the first to name (rather than number) the axiom.
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Since the decision-maker plans consistently, these models have implications for choice ex post.

In particular, shortlisting provides a link between ex ante preference and ex post choice for a

class of models that generalize the Strotz [1956] model of overwhelming temptation. In that model,

ex post choice is determined by a pair of weak orders (�v,�u). Overwhelmed, the decision-maker

maximizes the true preference �u by choosing from the subset of alternatives that maximize the

temptation preference �v. Provided that choice is single-valued, the ex post Strotz model is a

shortlisting procedure where the rationales have more structure (see Remark 3 of the Appendix).6

A key feature of the Strotz model (and a variety of other temptation models besides) is that

ex post choice cannot distinguish true preference from temptation. The problem is that the

behavior induced by (�v,�u) can be represented by a weak order (see Remark 2 of the Appendix).

To the extent that temptations are less structured however, features of the two preferences can

be determined from ex post choice. In a recent paper, Masatlioglu, Nakajima, and Ozdenoren

[2011] axiomatize an ex ante model of limited willpower that generalizes the Strotz model (see

Chandrasekhar [2010] for a related model of compromise in the face of temptation). In terms of ex

post choice, their model suggests choice behavior consistent with a shortlisting procedure where

the first rationale has more structure (i.e. it is either an interval order or a semiorder).7 The

characterization of shortlisting given here provides a way to determine whether ex post choice is

consistent with their model of ex ante preference.

3 Axiomatic Characterization

As discussed, shortlisting is a special case of the RSM model. In this section, I show that two

simple axioms characterize RSMs which can be represented in terms of shortlisting.

The first axiom, Choice Symmetry, was suggested by Manzini and Mariotti [2006].8 Informally,

it requires that alternatives which are similar in context be treated symmetrically in terms of

choice. Formally, a menu A ⊆ X is a context for x and y provided that it does not contain either

alternative (i.e. so that A ∩ {x, y} = ∅). Then, x and y are similar with respect to (w.r.t) the

context A whenever c(a, x) = x if and only if c(a, y) = y for all a ∈ A. Intuitively, alternatives

are similar in contexts where they play the same role in terms of pairwise preference. Using this

notion of similarity, the axiom can be stated as follows:

Choice Symmetry Suppose x and y are similar w.r.t. A. If c(A∪{x}) = x, then c(A∪{y}) = y.

This property captures a natural form of symmetry in choice. Given alternatives x and y which

6In particular, they are negatively transitive. A rationale P is negatively transitive if xPy ⇒ (xPz or zPy).
7An interval order is a rationale P such that (xPy and wPz)⇒ (xPz or wPy). A semiorder is an interval order

such that xPyPz ⇒ (xPw or wPz). A comprehensive reference is Aleskerov, Bouyssou, and Monjardet [2007].
8They use the name Weak Binariness. At the risk of creating confusion, I depart from their nomenclature.
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are similar with respect to A, one of two possibilities can arise: either both alternatives are chosen

in the context of A; or, both are discarded. The Independence of Irrelevant Alternatives (IIA),

which states that c(B) = x for any B such that {x} ⊂ B ⊂ A and c(A) = x, imposes the same

requirement. In addition, it imposes the further restriction that c(A ∪ {x}) = c(A ∪ {y}) when x

and y are discarded.

The second axiom, Difficult Choice, imposes a weaker form of choice consistency when similar

alternatives x and y are discarded. Intuitively, it states that the more preferred of the two

alternatives can be discarded from A ∪ {x, y} when there is another menu containing x and y

where the less preferred alternative gives rise to a difficult choice.

Formally, y gives rise to a difficult choice on B ⊃ {x, y} if c(B) 6= c(B \ {y}) and c(x, y) = x

for some x ∈ B \ {y}. Informally, a difficult choice arises when the addition of a less preferred

alternative y causes the decision-maker to reverse her choice on B \ {y}. This type of choice

reversal is ruled out by IIA. Intuitively, it suggests a particular kind of menu dependence where y

plays a special role (not captured by pairwise preference) in menus that contain x.

When x and y are similar with respect to A, they play duplicate roles on A ∪ {x, y} in terms

of pairwise preference. If y gives rise to a difficult choice on another menu B however, part of the

role played by y is not duplicated by x. Provided that x is not chosen from A ∪ {x, y}, Difficult

Choice states that x adds nothing beyond y. As such, it can be removed without affecting choice:

Difficult Choice Suppose x and y are similar w.r.t. A, c(x, y) = x, and c(A ∪ {x, y}) 6= x:

If c(B) 6= c(B \ {y}) for some B ⊃ {x, y}, then c(A ∪ {x, y}) = c(A ∪ {y}).

The representation theorem establishes that these two axioms are necessary and sufficient:

Theorem (Representation) An RSM can be represented in terms of shortlisting iff it satisfies

Choice Symmetry and Difficult Choice.

Manzini and Mariotti’s [2007] establish that c can be represented by an RSM iff it satisfies:

Expansion If c(A) = x = c(B), then c(A ∪B) = x.

WWARP If c(A) = x = c(x, y) for A ⊃ {x, y}, then c(B) 6= y for any B s.t. {x, y} ⊂ B ⊂ A.

Their characterization of RSMs gives an immediate corollary.9 In particular:

Corollary 1 (Representation) A choice function c can be represented in terms of shortlisting

iff it satisfies Choice Symmetry, Difficult Choice, Expansion, and WWARP.

9These properties are discussed at greater length in their paper. Briefly, Expansion is the analog of Sen’s γ for
choice functions. As its name suggests, WWARP has some of the flavor of WARP. For choice functions, WARP is
equivalent to IIA.
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The proof of the representation result is given in the Appendix. The technical part is to

show that the axioms ensure the acyclicity of the second rationale. Effectively, Choice Symmetry

ensures that the second rationale is triple-acyclic. Combined with Expansion, Difficult Choice

further precludes cycles of order 4 or 5. By an induction argument, it follows that the axioms rule

out higher-order preference cycles as well. The result then follows by showing that this rationale

can be extended into a transitive rationale in a way that is consistent with behavior.

The axiomatization differs in two important ways from existing characterizations of the model.

First, it does not impose an explicit acyclicity requirement on revealed preference. In a recent

paper, Au and Kawai [2011] show that an RSM can be represented with transitive rationales iff

a particular revealed preference that they define is acyclic. Similarly, Yildiz [2011] requires the

acyclicity of a slightly coarser revealed preference relation (see Remark 6 of the Appendix).

It is arguable that conditions of this kind provide little insight into the behavioral implications

of the model that cannot be inferred from the representation directly. In contrast, the axiomati-

zation given here shows that the choice acyclicity implicit in the model has a straightforward and

natural interpretation in terms of behavior.

As a related matter, the characterization does not rely on existential quantification as in Lleras,

Masatlioglu, Nakajima, and Ozbay [2011].10 In recent work, they establish that an RSM can be

represented with transitive rationales iff it satisfies LCA-WARP – a condition which requires the

existence of a special alternative a∗ ∈ A for every A ⊆ X.

Intuitively, axioms that rely on existential quantification, like LCA-WARP, impose consistency

requirements across very large collections of choice problems.11 In this sense, they make complex

statements about the model that can be difficult to interpret in terms of behavior (Beja [1989]). By

way of contrast, an axiom like IIA is relatively simple since it describes a straightforward behavioral

implication (of preference maximization) that only depends on choice from a menu A ⊆ X and

a sub-menu B ⊂ A. While more complex than IIA, Choice Symmetry and Difficult Choice are

considerably less complex than LCA-WARP (as formalized in Remark 4 of the Appendix).12 As

such, it can be argued that they provide greater insight into behavioral implications of the model.

4 Identification and Uniqueness

In this section, I address the issues of identification and uniqueness. I first show how menus of

two and three alternatives can be used to define revealed rationales that are contained in any

shortlisting representation of c. Next, I characterize the class of shortlisting representations which

10The issue of existential quantification also arises for acyclicity conditions since they implicitly require, for every
A ⊆ X, the existence of an a∗ ∈ A such that no other alternative in A is revealed preferred to a∗.

11See Chambers, Echenique, and Shmaya [2010] for work on the axiomatic structure of economic choice models.
12Choice Symmetry and Difficult Choice have complexity O(|X|) while LCA-WARP has complexity O(2|X|).
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use these revealed rationales. Finally, I show that a restricted form of uniqueness can be obtained

for conservative representations of behavior.

4.1 Identification

As a corollary of the representation theorem, it follows that shortlisting behavior is completely

determined by choice from small menus. Formally, let �c denote the usual (i.e. pairwise) revealed

preference defined by x �c y if c(x, y) = x. Given the revealed preference, an n-cycle is a sequence

of alternatives x0...xi...xn−1 such that xi−1 �c xi for all 1 ≤ i ≤ n− 1 and xn−1 �c x0. Then:

Corollary 2 Suppose c and c̃ can be represented in terms of shortlisting. Then c(A) = c̃(A) for

all A ⊆ X iff (i) c(x, y) = c̃(x, y) for any x 6= y, and (ii) c(x, y, z) = c̃(x, y, z) for any 3-cycle xyz.

For behavior consistent with shortlisting, this establishes that the features common to any

representation can be inferred from choice on pairs and 3-cycles. In turn, this suggests that the

model is amenable to a simple revealed preference exercise.

To fix ideas, suppose that (P1, P2) is a shortlisting representation of c. As a preliminary

observation, note that the two rationales taken together (i.e. P1 ∪ P2) must contain the revealed

preference pairs in �c. Otherwise, the choices induced by the pair (P1, P2) will not coincide with

c on some two-element set(s).

First, consider the task of attributing the revealed preference pairs from any 3-cycle xyz to

the rationales P1 and P2. It turns out that the choice from {x, y, z} uniquely determines how to

divide these pairs between the two rationales. If c(x, y, z) = z, it must be that xP1y while yP2z

and zP2x. Intuitively, xP1y and yP2z follow from the fact that x must eliminate y strictly before

y eliminates z. Otherwise, the behavior induced by (P1, P2) contradicts c(x, y, z) = z. In turn, the

fact that zP2x follows from the transitivity of P1. To see this, suppose zP1x. Then, xP1y implies

zP1y which, in turn, precludes c(y, z) = y.

Next, consider the task of attributing the revealed preference x �c y when wxz and wyz are

3-cycles such that c(w, x, z) = w and c(w, y, z) = z. From the discussion above, it follows that

yP2zP2wP2x. Moreover, it must be that xP1y. If xP2y, P2 contains a cycle which violates the fact

that it is asymmetric. Collecting these observations yields the following:

Definition 1 Let Rc
1 be defined by xRc

1y if:

(i) there exists a 3-cycle xyz s.t. c(x, y, z) = z; or,

(ii) c(x, y) = x and there exist 3-cycles wxz and wyz s.t. c(w, x, z) = w and c(w, y, z) = z.

Let Rc
2 be defined by xRc

2y if there exists a 3-cycle xyz such that c(x, y, z) 6= z.

Define the revealed i-rationale P c
i ≡ tc(Rc

i ) to be the transitive closure of Rc
i for i = 1, 2.13

13The transitive closure tc(R) of R is defined by x[tc(R)]y if there exists a sequence {zi}ni=1 s.t. xRz1R...RznRy.

9



Given a choice function c consistent with shortlisting, (P c
1 , P

c
2 ) need not represent c. Intuitively,

the problem is that P c
1 ∪ P c

2 may fail to contain all of the revealed preference pairs in �c. To

construct a representation using P c
1 as the first rationale, for instance, the second rationale P2

must, at a minimum, contain any revealed preference pair not in P c
1 . Formalizing this idea:

Definition 2 Given a binary relation P and a choice function c, the c-complement of P is the

transitive relation P ′ ≡ tc(�c \P ) that contains any revealed preference pair not in P .

To simplify notation, denote the c-complement of P c
1 by P c

2
and the c-complement of P c

2 by P c
1
.

Provided that c can be represented by some pair (P1, P
c
2 ), the c-complement P c

1
serves as a lower

bound for the first rationale in the sense that P1 must contain P c
1
. Similarly, P c

2
serves as a lower

bound for the second rationale in any representation which uses P c
1 . To state the identification

result, it is first necessary to define an analogous upper bound for P1.

To do so, observe that P1 must, at a minimum, be contained in �c for any shortlisting repre-

sentation (P1, P2) of c. Otherwise, the choices induced by (P1, P2) fail to coincide with c on some

two-element set(s).

First, consider the task of attributing the revealed preference x �c y when xyz is a 3-cycle

such that c(x, y, z) 6= z. If c(x, y, z) = x so that yP1z, it follows that P1 must exclude the revealed

preference x �c y. Otherwise, transitivity implies xP1z which, in turn, contradicts z �c x. By

similar reasoning, P1 must exclude the revealed preference x �c y when c(x, y, z) = y. Next,

consider the task of attributing the revealed preference x �c y when wxz and wyz are 3-cycles

such that c(w, x, z) = z and c(w, y, z) = w. Since wP1x and yP1z, P1 must exclude the revealed

preference x �c y. Otherwise, transitivity implies wP1z which, in turn, contradicts z �c w.

These observations are sufficient to define an upper bound for P1:

Definition 3 Let R
c

2 be the binary relation defined by xR
c

2y if: (i) xRc
2y; or, (ii) c(x, y) = x and

there exist 3-cycles wxz and wyz such that c(w, x, z) = z and c(w, y, z) = w. Define the upper

bound P c

1
≡ (�c \Rc

2) to be the revealed preferences in �c that are not in R
c

2.

To state the identification result:

Proposition 1 (Identification) Suppose that c can be represented in terms of shortlisting. Then:

(I) (a) P c
1 ⊆ P1 and P c

2 ⊆ P2 for any pair of transitive rationales (P1, P2) that represents c;

(b) the relations P c
1 , P c

2 , P c
1
, and P c

1
are transitive rationales, and P c

2
is a linear order;14

(II) (a) (P c
1 , P

c
2
) uniquely represents c when the first rationale is P c

1 ; and

(b) (P1, P
c
2 ) represents c for any transitive rationale P1 such that P c

1
⊆ P1 ⊆ P c

1
.

14Technically, P c
2

is a strict weak order. Since it is irreflexive, it is technically incomplete.
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Part (I) establishes that the revealed rationales capture the features common to any shortlisting

representation of behavior. If {(P i
1, P

i
2)}ni=1 denotes the collection of transitive pairs which repre-

sent c, it follows that P c
1 ⊆ ∩ni=1P

i
1 and P c

2 ⊆ ∩ni=1P
i
2. In turn, part (II) establishes that there exist

shortlisting representations of c which use the revealed rationales. Consequently, P c
1 = ∩ni=1P

i
1 and

P c
2 = ∩ni=1P

i
2. In other words, the revealed rationales capture exactly the features common to all

representations of behavior.

Part (II) identifies tight bounds for shortlisting representations using one of these rationales.

The lower bounds P c
1

and P c
2

reflect the fact that any pair representing c must contain the revealed

preference �c. Since P c
2

is a linear order by part (I), (P c
1 , P

c
2
) is the unique representation when the

first rationale is P c
1 . For any representation where the second rationale is P c

2 , the upper bound P c

1

reflects the fact that �c must contain P1. Together, the bounds establish the range P c
1
⊆ P1 ⊆ P c

1

of first rationales P1 such that (P1, P
c
2 ) represents c. Example 4 of the Appendix shows that this

range is generically non-degenerate (i.e. P c
1
6= P c

1
).

Comment: These results extends Theorem 2 of Au and Kawai [2011]. For one, the revealed

preference definitions given here simplify the definitions provided in their paper (see Remarks 6-8

of the Appendix). While they suggest how define the upper bound P c

1
in terms of choice from

menus of four or fewer alternatives (in Remark 1 of their paper), they provide no results on the

informational requirements of the revealed i-rationales or their c-complements. While Proposition

1 provides identification results similar to Theorem 2 of their paper, it does not impose the

additional requirement of completeness on the second rationale.

4.2 Uniqueness

Proposition 1 has mixed implications for uniqueness. On the one hand, it precludes the possibility

of a unique representation of behavior consistent with the model. In particular, it ensures that

the generically distinct pairs (P c
1 , P

c
2
) and (P c

1
, P c

2 ) represent c. On the other, it suggests that a

limited form of uniqueness can be obtained for conservative representations of behavior.

To get the basic idea, consider the task of analyzing choice data consistent with the model.

First, suppose the analyst is confident about P1 and wants to draw conservative inferences about

the second rationale. (One possible explanation is that the analyst was able to infer P1 from a

different source of choice data.) In that case, the analyst may hesitate to impose more structure on

P2 than is required to generate the choice data. The following definition formalizes this approach:

Definition 4 A rationale P2 is P1-minimal if (P1, P2) is a shortlisting representation of c and

there is no transitive rationale P̃2 ⊂ P2 s.t. (P1, P̃2) represents c – i.e. P̃2 6⊂ P2 for any represen-

tation (P1, P̃2). The notion of P2-minimality is defined analogously.

11



It is possible to extend this approach to the situation where the first rationale is unknown. In

particular, the analyst can focus on pairs of rationales that are mutually minimal. Formally:

Definition 5 A rationale pair (P1, P2) is minimal if P1 is P2-minimal and P2 is P1-minimal.

Given behavior consistent with shortlisting, Proposition 1 establishes that the c-complement

P c
i

of the revealed i-rationale P c
i is P c

i -minimal. Since the revealed rationales serve as lower

bounds for representing behavior consistent with the model, (P c
1 , P

c
2
) and (P c

1
, P c

2 ) are minimal

representations of c. Intuitively, these two representations reflect extreme but opposing views

about how to attribute the revealed preference pairs in �c that are not contained in either of the

revealed rationales (i.e. P c
1 or P c

2 ). Whereas (P c
1 , P

c
2
) attributes all of these pairs to the second

rationale, (P c
1
, P c

2 ) attributes all of these pairs to the first rationale.

The following proposition generalizes these observations. To state the result more succinctly,

let Pi(c) ≡ {P : P c
i ⊆ P ⊆ P c

i
} denote the collection of (not necessarily transitive) ith rationales

nested between the revealed i-rationale and the c-complement of the other revealed rationale.

Moreover, let P ′′i (c) ≡ {P ′′ : P ∈ Pi(c)} denote the collection of transitive ith rationales obtained

from Pi(c) by two applications of (element-wise) complementation.

Proposition 2 (Uniqueness) Suppose that (P1, P2) is a shortlisting representation of c. Then:

(i) For i = 1, 2, the c-complement P ′i ∈ P−i(c) is the unique Pi-minimal rationale; and,

(ii) (P1, P2) is minimal iff P1 ∈ P ′′1 (c) and P2 = P ′1 (or, equivalently, P2 ∈ P ′′2 (c) and P1 = P ′2).

Moreover, any distinct minimal representations (P1, P2), (P̃1, P̃2) are unranked: if (P̃1 \P1) 6= ∅ so

that P̃1 contains preference pairs not in P1, then (P2 \ P̃2) 6= ∅ so that P2 contains pairs not in P̃2.

For any rationale Pi that can be used to represent c, part (i) establishes that the c-complement

P ′i is the most conservative estimate of the other rationale. Using this result, part (ii) sharply

identifies the collection of minimal representations for behavior consistent with the model.

To get some intuition for part (ii), consider the special case where c can be represented by

the linear order �c. In that case, c has a variety of minimal shortlisting representations ranging

from (�c, ∅) to (∅,�c). Between these two extremes, there are different ways to attribute the

revealed preference pairs in �c. The same type of result holds when c cannot be represented by a

linear order. Between (P c
1
, P c

2 ), which places maximal weight on the first rationale, and (P c
1 , P

c
2
),

which places maximal weight on the second rationale, there is a range of representations reflecting

contrasting views about how to attribute the revealed preference pairs not contained in P c
1 or P c

2 .
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5 Comparative Statics

In this section, I define a comparative measure of choice behavior and provide a characterization

of this measure in terms of the representation of behavior.

Definition 6 Given choice functions cA and cB, A is more decisive than B if PA
1 ⊆ PB

1 .15

Informally, A is more decisive than B when the first-stage rationale plays a less significant role in

determining A’s choice. This generalizes the notion, discussed in the temptation literature, that

A has more willpower than B (Masatlioglu, Nakajima, and Ozdenoren [2011]) or, conversely, that

B has a greater preference for commitment than A (Gul and Pesendorfer [2001]).

Underlying these measures is the view that the second rationale reflects the decision-maker’s

true preference while the first rationale captures a psychological phenomenon (i.e. temptation)

that is orthogonal to preference. When shortlisting is viewed in terms of choice overload, limited

attention, or the status quo bias, decisiveness can be given a similar interpretation. In each case,

the first rationale captures a cognitive bias unrelated to second-stage preference.16

Decisiveness has a straightforward interpretation in terms of the representation. In particular,

it serves as a comparative measure of the conflict between the rationales of two representations.

Formally, the rationales of (P1, P2) conflict whenever xP1y and yP2x for some x, y ∈ X.

Proposition 3 (Comparative Static) If cA and cB can be represented in terms of shortlisting

by (PA
1 , P

A
2 ) and (PB

1 , P
B
2 ), A is more decisive than B iff, for all x, y ∈ X

xPA
1 y and y(PA

1 )′x⇒ xPB
1 y and y(PB

1 )′x.

Intuitively, this establishes that A is more decisive than B iff, from a conservative viewpoint, A

exhibits fewer conflicts. Instead of measuring the conflict between the rationales of (P1, P2) directly,

decisiveness measures the conflict between P1 and the minimal second rationale that can be used

to represent behavior along with P1 (i.e. the c-complement P ′1). Since Proposition 2 establishes

that P ′1 ⊆ P2, the conflict between P1 and P ′1 may be understood as a conservative estimate of the

conflict between P1 and P2. In particular, it shows that there is a direct correspondence between

such conflicts and the preference pairs belonging to P c
1 .

Decisiveness permits comparisons between shortlisting representations even when the second

stage rationales do not coincide. The next result relates to choice functions cA and cB that

are preference-equivalent in the sense that they admit shortlisting representations (PA
1 , P2) and

(PB
1 , P2) where the second rationales coincide. In that case, there is a close relationship between

15For the sake of notational convenience, I denote P cJ
i by P J

i for J = A,B and i = 1, 2.
16For other applications, like multi-criterial choice, the rationales have a different interpretation.
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decisiveness and the incidence of cycles in the revealed preference �c. To be more formal, say that

B is more cyclic than A if xyz is a 3-cycle on cB when xyz is a 3-cycle on cA. Then:

Proposition 4 Suppose that cA and cB are preference-equivalent choice functions. Then, A is

more decisive than B if: (i) B is more cyclic than A; and, (ii) cA(w, z) = w implies cB(w, z) = w

whenever there are A-cycles wxy and xyz s.t. cA(w, x, y) = y and cA(x, y, z) = x.

Au and Kawai [2011] provide an example of preference-equivalent choice functions with the same

3-cycles which are strictly ranked in terms of decisiveness (i.e. PA
1 ⊂ PB

1 ). Proposition 4 shows

that this kind of situation occurs when condition (ii) holds in one direction but not the other.

To be more precise, consider two 3-cycles wxy and xyz such that cA(w, x, y) = y = cB(w, x, z)

and cA(x, y, z) = x = cB(x, y, z). If choice on {w, z} is given by cA(w, z) = z and cB(w, z) = w:

cA(w, z) = w ⇒ cB(w, z) = w but cB(w, z) = w 6⇒ cA(w, z) = w.

By definition of the revealed 1-rationale, it is the case that wPB
1 z whereas wPA

1 z does not follow.

Intuitively, the basic idea is that the choices from the 3-cycles of A fit together more coherently

than the choices from the 3-cycles of B. Put somewhat differently, the revealed preference z �A w

is more consistent with the choices from xyz and wxy than z �B w. Consequently, A is more

decisive than B.

6 Conclusion

In this paper, I study a minimal departure from the standard model of preference maximization

where the decision-maker chooses in stages by sequentially maximizing two preferences that are

asymmetric and transitive. This simple model has a wide variety of applications to individual

decision-making and collective choice.

The paper provides choice-theoretical foundations for the model. First, I show that it can be

axiomatized using a natural symmetry property first proposed by Manzini and Mariotti [2006]. For

behavior consistent with the model, I next show that (i) the identifiable features of both rationales

can be determined from choice on small menus and, (ii) the range of minimal representations

consistent with behavior is sharply defined. I conclude by defining a comparative static that

permits meaningful comparisons between decision-makers.
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7 Appendix

7.1 Guide to the Appendix

Section 7.2 addresses several preliminary points made in Sections 2 and 3 of the text. Section

7.3 details the proof of the representation theorem in Section 3 while Section 7.4 establishes the

identification and uniqueness results in Section 4, and Section 7.5 proves the results in Section 5.

7.2 Preliminaries

For convenience, I restate the α, γ and SSP axioms mentioned in Sections 2 and 3. Given a finite

domain X, let C : 2X → 2X denote a choice correspondence such that C(A) ⊆ A for any A ⊆ X.

Sen’s α If x ∈ C(A) and x ∈ B ⊂ A, then x ∈ C(B).

Bordes’ SSP If C(A) ⊆ B ⊆ A, then C(A) = C(B).17

Sen’s γ If x ∈ C(A) and x ∈ C(B), then x ∈ C(A ∪B).

To see that there are RSMs that cannot be represented in terms of shortlisting:

Example 1 Consider a choice function c on {w, x, y, z} such that wxy and xyz are 3-cycles where

c(w, x, y) = w, c(x, y, z) = x, and c(w, x, y, z) = w.

While it is not required for the purpose of the example, c can be completed by setting c(w, y, z) =

y, choosing c(w, z) freely, and requiring c(w, x, z) = c(w, z). Since it does not satisfy Choice

Symmetry, c cannot be represented in terms of shortlisting. Intuitively, the problem is that

c(w, x, y) = w requires (x, y) ∈ P1 while c(x, y, z) = x requires (x, y) ∈ P2. Clearly, this is

impossible. However, c can be represented by an RSM (P1, P2) where P1 = {(x, y), (y, z)} and

P2 = {(w, x), (y, w), (z, x), (a, b)} s.t. (a, b) ≡ (w, z) if c(w, z) = w and (a, b) ≡ (z, w) otherwise.

To see that limited attention and limited consideration are more general than shortlisting:

Example 2 Consider a choice function c s.t. c(x, y) = c(x, z) = x, c(y, z) = y, and c(x, y, z) = y.

Since it does not satisfy Expansion, c cannot be represented in terms of shortlisting (or, more

generally, by an RSM). Intuitively, the problem is that c(x, y, z) = y requires (y, x) ∈ P1 (or

(z, x) ∈ P1) while c(x, y) = x (resp. c(x, z) = x) requires (y, x) /∈ P1 (resp. (z, x) /∈ P1). Clearly,

this is impossible. However, c can be represented in terms of choice with limited attention or

17Masatlioglu, Nakajima, and Ozbay [2010] state the condition as follows: if x /∈ C(A), then C(A) = C(A \ {x}).
It is easily seen that Bordes’ SSP implies their condition. To see the converse, take any C(A) ⊆ B ⊆ A, and remove
the alternatives in A \B one at a time using their condition. Since everything is finite, this delivers Bordes’ SSP.
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choice with limited consideration. To see this, first observe that �c is a linear order. Next, let

Γ(x, y, z) = {y, z} and Γ(a, b) = {a, b} for {a, b} ⊂ {x, y, z}. It is easy to check that Γ satisfies

Bordes’ SSP and Sen’s α and, moreover, that (Γ,�c) represents c.

To address several other remarks made in Section 2 of the text:

Remark 1 c can be represented by a transitive RSM iff it has a shortlisting representation.

Proof. (⇒) By definition, any transitive RSM defines a shortlisting procedure. (⇐) Suppose that

c can be represented by a shortlisting procedure (P1, P2). Since P2 is asymmetric and transitive,

the Szpilrajn extension theorem ensures that P2 can be completed into a linear order �2. By

construction, (P1,�2) is a transitive RSM. To establish the result, it suffices to show that (P1,�2)

represents c. To see this, consider any A ⊆ X and suppose c(P1,�2)(A) = x. To see c(P1,P2)(A) = x,

suppose max(A;P1) = B ⊆ A. Since max(B;�2) = x, ¬(b �2 x) for all b ∈ B \ {x}. By

definition of �2, ¬(bP2x) for all b ∈ B \ {x}. Since c is single-valued and (P1, P2) represents c,

there exists an item b′ ∈ B such that b′P2b for any b ∈ B \ {x}. Thus, max(B;P2) = x so that

c(P1,P2)(A) = max(B;P2) = x.

Remark 2 c has a Strotz representation iff it has a shortlisting representation with negatively

transitive rationales.

Proof. First, define B(A;R) = {a ∈ A : aRb for any b ∈ A}. A standard result states that a

rationale P is negatively transitive iff �P is a weak order where �P is defined by x �P y if ¬(yPx).

Moreover, max(A;P ) = B(A;�P ). Apply this equivalence (twice) to obtain the result.

Remark 3 C has a Strotz representation iff it can be represented by a weak order.

Proof. (⇒) Suppose C can be represented by a pair of weak orders (�v,�u). Define the lexico-

graphic composition� by x � y if (i) x �v y (where the strict preference x �v y denotes x �v y and

¬[y �v x]) or (ii) x ∼v y and x �u y (where the indifference x ∼v y denotes x �v y and y �v x). It

is easy to see that � is complete and transitive, and that, moreover C(A) = C(�v ,�u)(A) = B(A;�)

for any A ⊆ X. (⇐) Suppose C can be represented by �. Set �v=� and define �u to be total

indifference. Then, it follows that (�v,�u) is a Strotz representation.

For convenience, I state the following condition due to Lleras, Masatlioglu, Nakajima, and Ozbay:

LCA-WARP For any A ⊆ X, there exists an a∗ ∈ A such that, for any B ⊃ {a∗}, c(B) = a∗

whenever (i) c(B) ∈ A, and (ii) c(B′) 6= c(B′ \ {a∗}) for some B′ ⊃ B.
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The big-O notation used to measure time complexity in computer science can be defined as

follows. Given two functions f, g : X → R such that X ⊆ R, f(x) = O(g(x)) iff there exists a

positive real k ∈ R++ and a real y ∈ R such that |f(x)| ≤ k|g(x)| for all x > y.

Following Beja [1989], the complexity of an axiom is related to the largest collection of menus

W ⊆ 2X instantiated by the axiom. Let Wn ⊆ 22X denote the range of the axiom’s universal

quantifier for a domain X of size n. The apparent simultaneity of an axiom is then defined by

the function r : N → N where r(n) = maxW∈Wn |W |. Finally, the complexity of the axiom is

defined by O(r(n)). To get the basic intuition, consider the complexity of IIA. Since the axiom

only addresses choice on two menus (as discussed in the text), it follows that r(n) = 2 so that the

complexity of IIA is O(1). By similar reasoning, it follows that:

Remark 4 Choice Symmetry and Difficult Choice are O(|X|), and LCA-WARP is O(2|X|).

Proof. Choice Symmetry and Difficult Choice: Choice Symmetry invariably addresses choice on

two menus (i.e. A ∪ {y} and A ∪ {x}). Given a domain X of size n, the axiom may, in the

worst case, address choice on 2(n− 2) additional menus of two alternatives (which happens when

A = X \ {x, y}). Thus, r(n) = 2(n− 1) so that Choice Symmetry is O(n). It is easy to carry out

a similar accounting exercise for Difficult Choice.

LCA-WARP: Given a domain X of size n, the axiom applies to any A ⊆ X. For A = X, in

particular, condition (i) of LCA-WARP addresses choice on every subset of X. Clearly, this is the

worst case. Thus, r(n) = 2n − 1 so that LCA-WARP is O(2n).

7.3 Axiomatic Characterization

The proof relies on results due to Manzini and Mariotti (M&M) [2007] and Au and Kawai (A&K)

[2011]. For convenience, they are restated here. M&M give the following characterization of RSMs:

Theorem 1 (M&M) c can be represented by an RSM iff it satisfies WWARP and Expansion.

A&K characterize transitive RSMs with the help of the direct revealed preference �c
D – defined

by x �c
D y if c(x, y) = x but c(A) 6= c(A \ {y}) for some A ⊃ {x, y} – and following property:

No Binary Chain Cycles (NBCC) �c
D is acyclic.

To state their representation theorem:

Theorem 1 (A&K) An RSM c can be represented by a transitive RSM iff it satisfies NBCC.

As an intermediate step in their proof, A&K introduce the following property:

Reduction Suppose that c(A) = y and c(B) = x for {x, y} ⊆ B ⊂ A. Then, there exists a

z ∈ A \B such that xyz is a 3-cycle and c(x, y, z) = y.
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The proof of the theorem given here uses Reduction as well as the following properties:

Selective IIA If c(A) = y and c(x, y) = x, then c(A \ {x}) = y.

3-Acyclicity Given 3-cycles wxy and wyz, c(w, x, z) = x iff c(w, y, z) = y.

4/5-Acyclicity Suppose that axa′ and aya′ are 3-cycles s.t. c(x, a, a′) = a and c(y, a, a′) = a′.

If c(x, y) = x, then c(x, y, z) = z for any 3-cycle xyz.

The first property, Selective IIA, is a weakening of IIA which states that any alternative

that is pairwise chosen over c(A) can be discarded from A without affecting choice. The other

two properties, 3-Acyclicity and 4/5-Acyclicity, restrict Choice Symmetry and Difficult Choice,

respectively, to the case of 3-cycles.

Lemma 1 If c satisfies WWARP, Expansion, and 3-Acyclicity, then it satisfies Selective IIA.

Proof. Let c(A) = y and c(x, y) = x. By way of contradiction, suppose c(A \ {x}) = z 6= y.

The proof that this generates a contradiction is by induction on |A| = n ≥ 4. The case n = 2

follows from the fact that c is a choice function. For n = 3, suppose c(x, y, z) = y, c(x, y) = x,

and c(y, z) = z. If c(x, z) = x, Expansion implies c(x, y, z) = c({x, y} ∪ {x, z}) = x 6= y which is

a contradiction. If c(x, z) = z, Expansion implies c(x, y, z) = c({y, z} ∪ {x, z}) = z 6= y, another

contradiction.

As a preliminary observation, note that c(x, z) = x and c(y, z) = z. The first point follows by

Expansion. Otherwise, c(A) = c(A\{x}∪{x, z}) = z 6= y. The second point follows by WWARP.

Otherwise, c(A) = y = c(y, z), c(A \ {x}) = z, and {y, z} ⊂ A \ {x} ⊂ A.

Base case n = 4: By way of contradiction, suppose c(w, x, y, z) = y, c(x, y) = x, and c(w, y, z) =

z. Since c(x, z) = x, it follows that c(w, x) = w. Otherwise, Expansion delivers c(x, y, z) =

c({x, y} ∪ {x, z}) = x and, consequently, c(w, x, y, z) = c({x,w} ∪ {x, y, z}) = x 6= y. More-

over, c(y, w) = y. Otherwise, regardless of c(w, x, z), Expansion implies c(w, x, y, z) = c({a, y} ∪
{w, x, z}) = a 6= y where c(w, x, z) = a. Thus, wxy is a 3-cycle. This leaves two cases: (i)

c(w, z) = w; and, (ii) c(w, z) = z. I show that both lead to contradictions.

In case (i), wzy is a 3-cycle. Since c(w, y, z) = z, 3-Acyclicity implies c(w, x, y) = x. By

Expansion, it follows that c(w, x, y, z) = c({x, z} ∪ {w, x, y}) = x 6= y which is a contradiction.

In case (ii), wxz is a 3-cycle. Moreover, c(w, x, y) = y. If c(w, x, y) = x, then Expansion implies

c(w, x, y, z) = c({x, z} ∪ {w, x, y}) = x 6= y. If c(w, x, y) = w, then WWARP is violated since

c(w, x, y, z) = y = c(y, w) and {w, y} ⊂ {w, x, y} ⊂ {w, x, y, z}. By 3-Acyclicity, c(w, x, y) = y

implies c(w, x, z) = z. By Expansion, it follows that c({y, z} ∪ {w, x, z}) = c(w, x, y, z) = z 6= y

which is a contradiction.

Induction Step: Suppose Selective IIA holds for |A| = n. By way of contradiction, suppose

c(A) = y, c(x, y) = x, and c(A \ {x}) = z for |A| = n + 1. First, observe that there is some
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a ∈ A \ {y} such that c(A \ {a}) = y. Otherwise, the pigeonhole principle ensures that there

exists some b ∈ A \ {y} such that c(A \ {a′}) = b = c(A \ {a′′}) for distinct a′, a′′ ∈ A \ {b}. By

Expansion, this is a contradiction since c(A) = c([A \ {a′}] ∪ [A \ {a′′}]) = b 6= y.

Consider any such a ∈ A \ {y}. By the induction hypothesis, c(A \ {a}) = y implies c(A \
{x, a}) = y since |A \ {a}| = n and c(x, y) = x. It follows that a = z. Otherwise, c(A \ {x}) =

z = c(y, z), c(A \ {x, a}) = y, and {y, z} ⊂ A \ {a, x} ⊂ A \ {x} contradict WWARP. Moreover,

c(A \ {x′}) = y for any x′ ∈ A \ {x} such that c(x′, y) = x′. If c(A \ {x′}) = z′ 6= y, a similar

line of reasoning implies a = z′, which contradicts a = z unless z′ = z. By Expansion, z′ = z is a

contradiction since c(A) = c([A \ {x}] ∪ [A \ {x′}]) = z 6= y.

Finally, observe that c(x′, y) = y for any x′ ∈ A \ {x, y, z}. Otherwise, c(A \ {x′}) = y

implies c(A \ {x, x′}) = y by the induction hypothesis since |A \ {x′}| = n. By similar reasoning,

c(A\{z}) = y implies c(A\{x, z}) = y. By Expansion, it follows that c(A\{x}) = c([A\{x, x′}]∪
[A \ {x, z}]) = y 6= z which is a contradiction.

As such, for any x′ ∈ A \ {x, y, z}: either (i) c(x, x′) = x′ so that x′xy is a 3-cycle; or, (ii)

c(x, x′) = x. First, note that there must be a type-(i) item x′. Otherwise, c(x, x′) = x for all

x′ ∈ A \ {x} so that repeated application of Expansion on {x, y} gives c(A) = x 6= y. Next,

note that c(x, x′, y) = y for some x′ of type-(i). Otherwise, c(x, x′, y) = x for every x′ of type-(i).

[That c(x, x′, y) 6= x′ for any x′ of type-(i) follows by WWARP since c(A) = y = c(x′, y) and

{x′, y} ⊂ {x, x′, y} ⊂ A.] Then, repeated application of Expansion on {x, y} [using {x, x′, y} for

type-(i) x′ and {x, x′} for type-(ii) x′] gives c(A) = x 6= y.

Now, consider any x′xy such that c(x, x′, y) = y. There are two separate cases. If c(x′, z) = z,

x′xz is a 3-cycle. By 3-Acyclicity, c(x, x′, y) = y implies c(x, x′, z) = z. By Expansion, it follows

that c(A) = c([A \ {x}] ∪ {x, x′, z}) = z 6= y. If c(x′, z) = x′, x′zy is a 3-cycle. By 3-Acyclicity,

c(x, x′, y) = y implies c(x′, y, z) 6= z. But, this generates a contradiction. By WWARP, it follows

that: c(x′, y, z) 6= x′ since c(A) = y = c(x′, y) and {x′, y} ⊂ {x′, y, z} ⊂ A; and, c(x′, y, z) 6= y

since c(A \ {x}) = z = c(y, z) and {y, z} ⊂ {x′, y, z} ⊂ A \ {x}.
This establishes Selective IIA for |A| = n+ 1.

Lemma 2 If c satisfies WWARP, Expansion, and 3-Acyclicity, then it satisfies Reduction.

Proof. Suppose c(A) = y and c(B) = x for {x, y} ⊆ B ⊂ A. As a preliminary observation, note

that c(x, y) = x. Otherwise, WWARP is violated since c(A) = y, c(B) = x, and {x, y} ⊆ B ⊂ A.

First, consider any z ∈ A\B such that c(x, z) = x. By Expansion, it follows that c(B∪{x, z}) =

x. Repeating the same argument, it follows that c(B′) = x for B′ = B ∪{z ∈ A \B : c(x, z) = x}.
Next, consider any z ∈ A \ B′ such that xyz is a 3-cycle where c(x, y, z) = x. It follows that

c(A \ {z}) = y. If c(A \ {z}) = x, Expansion implies c(A) = c([A \ {z}] ∪ {x, y, z}) = x 6= y. If

c(A \ {z}) = z′ /∈ {x, y}, z′yz is a 3-cycle such that c(y, z, z′) = z′. Then, by Expansion, it follows

19



that c(A) = c([A \ {z}] ∪ {y, z, z′}) = z′ 6= y. To see that z′yz is a 3-cycle, first observe that

c(y, z′) = z′ by WWARP since c(A\{z}) = z′, c(A) = y, and {y, z′} ⊂ A\{z} ⊂ A. Next, observe

that c(z, z′) = z by Expansion. Otherwise, c(A) = c([A \ {z}] ∪ {z, z′}) = z′ 6= y. Then, z′yz is

a 3-cycle. Since c(x, y, z) = x, c(y, z, z′) = z′ follows by 3-Acyclicity. Repeating this argument,

c(A′) = y for A′ = A \ {z ∈ A \B′ : xyz is a 3-cycle s.t c(x, y, z) = x}.

To complete the proof, it suffices to show that there is some z ∈ A′ \B′ s.t. c(y, z) = y. Then,

xyz is a 3-cycle because c(x, z) = z and c(x, y) = x. Since {y, z} ⊂ {x, y, z} ⊂ A and c(A) = y =

c(y, z), c(x, y, z) = z violates WWARP. Since c(x, y, z) 6= x by construction, c(x, y, z) = y.

To see that there is some z ∈ A′\B′ such that c(y, z) = y, suppose otherwise. Then, c(y, z) = z

for any z ∈ A′ \ B′. By Lemma 1, the fact that c satisfies WWARP, Expansion, and 3-Acyclicity

implies that it satisfies Selective IIA. By Selective IIA, it follows that c(A′ \ {z}) = y for any

z ∈ A′ \B′. Repeating this argument, it follows that c(B′) = y 6= x which is a contradiction.

Remark 5 Lemma 2 corrects an error in A&K’s proof of Claim 5. Along the same lines as

Lemma 2, they establish that WWARP, Expansion, and NBCC imply c(B′) = x and c(A′) = y.

Then, by way of contradiction, they attempt to show that there is some z ∈ A′ \ B′ such that

c(y, z) = y. They claim that WWARP and Expansion imply c(B′ ∪ {z}) = x for some z ∈ A′ \B′

such that c(y, z) = z. Example 3 below provides a counter-example to this claim. By Lemma 3

below however, A&K’s Claim 5 is nonetheless correct by the argument given in Lemma 2.

Example 3 Consider the choice function c from Example 1 with c(w, z) = z.

By the discussion following Example 1, c satisfies WWARP and Expansion. However, it does

not satisfy the property claimed by Au and Kawai. To see this, note that c(w, x, z) = z and

c(y, z) = y but c(w, x, y, z) = w 6= z. Interestingly, c also fails to satisfy Selective IIA. To see this,

note that c(w, x, y, z) = w and c(w, y) = y but c(w, x, z) = z. Up to relabeling, this is this is one

of two choice functions on |X| = 4 that fails either property but nonetheless satisfies WWARP

and Expansion. The other possibility is identical to c except that x is chosen from {w, x, y, z}.

Lemma 3 If c satisfies WWARP, Expansion, and NBCC, it satisfies Selective IIA.

Proof. It suffices to show that NBCC imply 3-Acyclicity. By way of contradiction, suppose

c(x, y, z) = z and c(w, x, y) 6= w. Then, by definition of �c
D, y �c

D z �c
D x and x �c

D y. Since

x �c
D y �c

D z �c
D x forms a �c

D-cycle, this contradicts NBCC. Thus, c satisfies 3-Acyclicity. Since

also satisfies c satisfies WWARP and Expansion, the result then follows by Lemma 1.

Lemma 4 If c satisfies WWARP and Expansion, 3-Acyclicity is equivalent to Choice Symmetry.
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Proof. (⇐) Obvious. (⇒) Suppose that x, y are similar w.r.t A. First, note that c satisfies

Selective IIA by Lemma 1. The proof is by induction on |A|. The case |A| = 1 is trivial. The case

|A| = 2 holds by 3-Acyclicity if A ∪ {x} and A ∪ {y} are 3-cycles [and by Expansion otherwise].

So, suppose Choice Symmetry holds for |A| = n. By way of contradiction, suppose c(A∪{x}) =

x and c(A ∪ {y}) = a 6= y. First, suppose that c(a, x) = a. By Expansion, c(A ∪ {x, y}) =

c([A ∪ {y}] ∪ {x, a}) = a. But, this contradicts WWARP since c(a, x) = a, c(A ∪ {x}) = x, and

{a, x} ⊂ A ∪ {x} ⊂ A ∪ {x, y}.
Next, suppose that c(a, x) = x. If c([A \ {a}] ∪ {x}]) = x, the induction hypothesis implies

c([A \ {a}] ∪ {y}]) = y. By Expansion, c(A ∪ {y}) = c([[A \ {a}] ∪ {y}] ∪ {a, y}) = y 6= a. So,

c([A \ {a}] ∪ {x}) = a′ 6= x. By Expansion, it follows that c(a, a′) = a. Otherwise, c(A ∪ {x}) =

c([[A\{a}]∪{x}]∪{a, a′}) = a′ 6= x. Moreover, c(a′, x) = a′. Otherwise, c(A∪{x}) = x = c(a′, x),

c([A \ {a}] ∪ {x}) = a′, and {a′, x} ⊂ [A \ {a}] ∪ {x} ⊂ A ∪ {x} contradict WWARP.

Thus, xaa′ is a 3-cycle. Observe that c(a, a′, x) = x. If c(a, a′, x) = a′, Expansion implies

c(A ∪ {x}) = c([[A \ {a}] ∪ {x}] ∪ {a, a′, x}) = a′ 6= x. If c(a, a′, x) = a, c(A ∪ {x}) = x = c(a, x)

and {a, x} ⊂ {a, a′, x} ⊂ A ∪ {x} contradict WWARP. So, by Selective IIA, c(a′, x) = a′ and

c(A ∪ {x}) = x imply c([A \ {a′}] ∪ {x}) = x.

By the base case of the induction, c(a, a′, x) = x implies c(a, a′, y) = y since x, y are similar

w.r.t. {a, a′} ⊂ A. By the induction hypothesis, c([A\{a′}]∪{x}) = x implies c([A\{a′}]∪{y}) = y

since x, y are similar w.r.t. A \ {a′} ⊂ A and |A \ {a′}| = n. By Expansion, it follows that

c(A ∪ {y}) = c([[A \ {a′}] ∪ {y}] ∪ {a, a′, y}) = y 6= a which is a contradiction.

Lemma 5 Suppose c satisfies WWARP, Expansion, and 3-Acyclicity. Then x �c
D y iff xR

c

2y.

Proof. Recall that xR
c

2y iff (i) there exists a 3-cycle xyz such that c(x, y, z) 6= z or, (ii) c(x, y) = x

and there exist 3-cycles ww′x and ww′y s.t. c(w,w′, x) = w and c(w,w′, y) = w′ (Definition 3).

(⇐) First consider case (i). Since c(x, z) = z and c(x, y, z) 6= z, it follows by definition that

x �c
D y. Next, consider case (ii). Since c(w,w′, y) = w′ and c(w′, x) = w′, Expansion implies

c(w,w′, x, y) = c({w,w′, y} ∪ {w′, x}) = w′. Since c(w,w′, x) = w and c(x, y) = x, it follows by

definition that x �c
D y.

(⇒) Suppose x �c
D y and c(x, y, z) = z for any 3-cycle xyz. By definition of �c

D, there exists some

A ⊃ {x, y} such that c(A) 6= c(A \ {y}). First, observe that c satisfies Reduction by Lemma 2.

Next, observe that c(A) 6= x, y. First suppose c(A) = x. Since c(A \ {y}) = b 6= x, Reduction

implies bxy a 3-cycle s.t. c(b, x, y) = x. But this contradicts the assumption c(x, y, z) = z for any

3-cycle xyz. So, c(A) 6= x. Next suppose c(A) = y. Since c(x, y) = x, Reduction implies that

there exists a 3-cycle xyz with z ∈ A \ {x, y} such that c(x, y, z) = x. Again, this contradicts the

assumption c(x, y, z) = z for any 3-cycle xyz. So, c(A) 6= y.
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Thus, c(A) = a and c(A \ {y}) = b where a 6= x, y and b 6= x. Given that c(A) 6= x, y, this

is without loss of generality. If b = x, Expansion requires c(A) = c({x, y} ∪ (A \ {y})) = x 6= a.

Since {a, b, x, y} ⊂ A and each of the elements of {a, b, x, y} is distinct, it follows that |A| ≥ 4.

Finally, observe that: (I) bay is a 3-cycle s.t c(a, b, y) = a; and, (II) xbz is a 3-cycle s.t

c(b, x, z) = b for z ∈ A \ {b, x, y}. To establish (I), note that, by Reduction, c(A) = a and

c(A \ {y}) = b imply that bay is a 3-cycle s.t. c(a, b, y) = a. To establish (II):

Proof of (II): If c(b, x) = x, Reduction implies the desired result since c(A\y) = b and c(b, x) = x.

To see that c(b, x) = x, suppose otherwise. If c(b, x) = b, xyb is a 3-cycle. Since c(b, y) = y holds

by (I) and c(x, y) = x, c(b, x) = b hold by assumption, xyb is a 3-cycle. Then, by assumption,

c(b, x, y) = b. By Expansion, it follows that c(A) = c({b, x, y} ∪ [A \ {y}]) = b 6= a. This

contradiction establishes c(b, x) = x. �

To complete the proof, consider the following cases: (1) c(x, a) = x; (2) c(x, a) = a and c(y, z) = z;

and, (3) c(x, a) = a and c(y, z) = y. [Whether c(a, z) = a or c(a, z) = z is unimportant.] I show

that (1) and (2) deliver the implication (ii) and that (3) leads to a contradiction.

Case (1): Since c(a, b) = b and c(b, x) = x (by (I) and (II) above), bax is a 3-cycle. Moreover,

c(a, b, x) = b. To see this, note that c(a, b, x) = x contradicts WWARP since {a, x} ⊂ {a, b, x} ⊂ A

and c(a, x) = a = c(A). Similarly, c(a, b, x) = a contradicts WWARP since {a, b} ⊂ {a, b, x} ⊂
A \ {y} and c(a, b) = b = c(A \ {y}). Combined with (I), this delivers the desired implication (ii)

with b = w and a = w′. Note: If |A| = 4, A \ {b, x, y} = {a} so that z = a. Thus, case (1) holds

and (2)-(3) need not be considered.

Case (2): Since c(b, z) = b and c(b, y) = y (by (I) and (II) above), bzy is a 3-cycle. Since bay

is a 3-cycle s.t. c(a, b, y) = a (by (I) above), 3-Acyclicity implies c(b, y, z) = z. Combined with

(II), this delivers the desired implication (ii) with b = w and z = w′.

Case (3): Since c(x, y) = x and c(z, x) = z (by (II) above), xyz is a 3-cycle. Since xbz is a

3-cycle s.t. c(b, x, z) = b (by (II) above), 3-Acyclicity implies c(x, y, z) = y. But, this contradicts

the assumption c(x, y, z) = z for any 3-cycle xyz.

This establishes the desired implication (ii) when (i) does not hold. The result follows.

Remark 6 The previous lemma shows that R
c

2 ⊇ Rc
2 is equivalent to the revealed preference �c

D

defined by Au and Kawai [2011] (in the presence of WWARP, Expansion, and 3-Acyclicity). The

next lemma shows the equivalence between Rc
2 and the revealed preference defined by Yildiz [2011].

Lemma 6 Suppose c satisfies WWARP, Expansion, and 3-Acyclicity. Then xRc
2y iff:

(i) c(x, y) = x and c(A) = y for some A ⊃ {x, y}; or, (ii) c(B ∪ {y}) = x 6= c(B).
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Proof. (⇒) Suppose xRc
2y. By definition of Rc

2, there exists a 3-cycle xyz such that c(x, y, z) 6= z.

If c(x, y, z) = x, then (ii) is satisfied with B = {x, z}. If c(x, y, z) = y, then (i) is satisfied with

A = {x, y, z}. (⇐) First, suppose c(x, y) = x and c(A) = y for some A ⊃ {x, y}. By Reduction,

there exists a 3-cycle xyz such that c(x, y, z) = y. By definition of Rc
2, xR

c
2y. Next, suppose that

c(B ∪ {y}) = x 6= c(B) = b. By Reduction, bxy is a 3-cycle such that c(b, x, y) = x. By definition,

it follows that xRc
2y.

Lemma 7 Suppose that c satisfies WWARP, Expansion, and 3-Acyclicity. If c(A ∪ {x}) = a,

c(A ∪ {y}) = a′, and x, y are similar w.r.t. A, then c(x, y) = x and c(A ∪ {x, y}) 6= x, a′ imply

that axa′ and aya′ are 3-cycles such that c(a, a′, x) = a and c(a, a′, y) = a′.

Proof. Note that c satisfies Selective IIA, Reduction, and Choice Symmetry by Lemmas 1-4.

First, observe that a 6= x, a 6= a′, and a′ 6= y. If a = x, Expansion implies c(A ∪ {x, y}) =

c([A ∪ {x}] ∪ {x, y}) = x. So, a 6= x. By Choice Symmetry, a = a′ or a′ /∈ {a, y}. If a = a′,

Expansion implies c(A ∪ {x, y}) = c([A ∪ {x}] ∪ [A ∪ {y}]) = a′ = c(A ∪ {y}). So, a′ /∈ {a, y}.
Next, note that axa′ is a 3-cycle s.t. c(a, a′, x) = a. If c(a′, x) = a′, c(A ∪ {x, y}) = c([A ∪

{y}] ∪ {a′, x}) = a′ = c(A ∪ {y}) by Expansion. Thus, c(a′, x) = x. By symmetry, c(a′, y) = y.

Since c(A ∪ {y}) = a′, c(A) = a′ by Selective IIA. Since c(A ∪ {x}) = a and c(A) = a′, Reduction

implies that axa′ is a 3-cycle and c(a, a′, x) = a.

By 3-Acyclicity, aya′ is a 3-cycle such that c(a, a′, y) 6= y. Since {a, a′} ⊂ {a, a′, y} ⊂ A ∪ {y}
and c(a, a′) = a′ = c(A ∪ {y}), WWARP implies c(a, a′, y) 6= a. Thus, c(a, a′, y) = a′.

Lemma 8 Expansion and Difficult Choice together imply 4/5-Acyclicity.

Proof. Suppose axa′ and aya′ are 3-cycles such that c(a, a′, x) = a, c(a, a′, y) = a′, and c(x, y) = x.

As such, x, y are similar w.r.t. {a, a′}. Moreover, c(a, a′, x, y) = c({a, a′, x} ∪ {a, y}) = a by

Expansion. So, c(a, a′, x, y) 6= x. Since c(a, a′, x, y) = a′ 6= a = c(a, a′, y), Difficult Choice implies

c(B) = c(B \ {y}) for any B ⊃ {x, y}. Now consider any B = {x, y, z} such that xyz is a 3-cycle.

Since c(B \ {y}) = c(x, z) = z, it follows that c(B) = c(B \ {y}) only when c(x, y, z) = z. Thus,

c(x, y, z) = z for any 3-cycle xyz.

Lemma 9 If c satisfies WWARP, Expansion, 3-Acyclicity, and 4/5-Acyclicity, then Rc
2 is acyclic.

Proof. Consider any RSM c that satisfies 3-Acyclicity and 4/5-Acyclicity. Suppose that there

exists an Rc
2-cycle x0...xi...xn−1 (i.e. such that x0R

c
2...R

c
2xiR

c
2...R

c
2xn−1R

c
2x0). First, observe that

Rc
2 is asymmetric by definition. Thus, x0R

c
2x0 and x0R

c
2x1R

c
2x0 entails a contradiction. The proof

that there is a contradiction for n ≥ 3 follows by strong induction on the length of the Rc
2-cycle.

Base case n = 3: Note that x0x1x2 is a 3-cycle. Without loss of generality, suppose c(x0, x1, x2) =

x0. Then, x2R
c
2x0R

c
2x1 by definition of Rc

2. Since x1R
c
2x2, there exists an item a /∈ {x0, x1, x2} such
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that ax1x2 is a 3-cycle and c(a, x1, x2) 6= a. But, this is a contradiction. Since x0, a are similar

w.r.t. {x1, x2} and c(x0, x1, x2) = x0, 3-Acyclicity requires c(a, x1, x2) = a.

Induction step: Without loss of generality, suppose c(x0, ..., xn−1) = x0. In order to establish

the result, first observe that: (I) xi−1xixi+1 is a 3-cycle for i 6= 1, 2 [to be understood (mod n)

when i = 0, n− 1]; (II) there are no other 3-cycles xjxixk; and, (III) c(xi−1, xi, xi+1) = xi. These

observations follow from: (i) c(x0, x2) = x0; and, (ii) c(x1, x3) = x1.

Proof of (i): By way of contradiction, suppose c(x0, x2) = x2. Then, x0x1x2 is a 3-cycle. From

the base case of the induction, it follows that c(x0, x1, x2) = x1. Otherwise, x2R
c
2x0 so that x0x1x2

is an Rc
2-cycle of length 3. Since {x0, x1} ⊂ {x0, x1, x2} ⊂ {x0, ..., xn−1} and c(x0, x1) = x0 =

c(x0, ..., xn−1) however, c(x0, x1, x2) = x1 violates WWARP. This is the desired contradiction. �

To establish (ii), observe that, for n ≥ 5, (i) implies:

c(xi, xj) = xi for [i = 0 and 2 ≤ j ≤ n− 2] or [i ≥ 4 and 2 ≤ j ≤ i− 2] (1)

To see this, first note that c(x0, x2) = x0 implies c(x0, x3) = x0. Otherwise, x0x2x3 is a 3-cycle.

Regardless of c(x0, x2, x3), x0R
c
2x2 or x3R

c
2x0. Both contradict the induction hypothesis. In the

first case, x0x2...xn−1 is an Rc
2-cycle of length n − 1. In the second case, x0...x3 is an Rc

2-cycle of

length 4. By a simple induction argument that follows the same line of reasoning, c(x0, xj) = x0

for any j s.t. 2 ≤ j ≤ n− 2.

Next, observe that, by similar reasoning, c(x0, x2) = x0 implies c(xn−1, x2) = xn−1. Then, by

a simple induction argument, it follows that c(xi, x2) = xi for any i ≥ 4. Applying the same type

of induction argument to each i ≥ 4 gives c(xi, xj) = xi for any 2 ≤ j ≤ i− 2.

Proof of (ii): Suppose c(x1, x3) = x3. Consider the cases n = 4, n = 5, and n > 5 separately:

Case n = 4: Since c(x0, x2) = x0, x0x2x3 is a 3-cycle. From the base case of the induction,

it follows that c(x0, x2, x3) = x3. Otherwise, x0R
c
2x2 so that x0x2x3 is an Rc

2-cycle of length 3.

Since c(x1, x3) = x3, Expansion implies c(x0, x1, x2, x3) = c({x0, x2, x3}∪{x1, x3}) = x3. But, this

contradicts the assumption c(x0, x1, x2, x3) = x0. So, c(x1, x3) = x1.

To establish the result for n ≥ 5, first observe that xn−1x0x1 is a 3-cycle s.t. c(x0, x1, xn−1) = x0.

To see that c(x1, xn−1) = x1, suppose otherwise. Since c(xi, xn−1) = xn−1 for i 6= 1 [by observation

(1)] and c(x1, xn−1) = xn−1 [by assumption], repeated application of Expansion on {x1, xn−1}
implies c(x0, ..., xn−1) = xn−1. But, this contradicts the assumption that c(x0, ..., xn−1) = x0.

Thus, c(x1, xn−1) = x1 so that xn−1x0x1 is a 3-cycle. By the base case of the induction, it follows

that c(x0, x1, xn−1) = x0. Otherwise, x1R
c
2xn−1 so that xn−1x0x1 is an Rc

2-cycle of length 3.

Case n = 5: Since c(x4, x2) = x4 [by observation (1)], x2x3x4 is a 3-cycle. From the base case of

the induction, it follows that c(x2, x3, x4) = x3. Otherwise, x4R
c
2x2 so that x2x3x4 is an Rc

2-cycle
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of length 3. Since c(x1, x3) = x3 [by assumption], x1x2x3 is a 3-cycle. From the base case of the

induction, it follows that c(x1, x2, x3) = x2. Otherwise, x3R
c
2x1 so that x1x2x3 is an Rc

2-cycle of

length 3. Since c(x1, x2, x3) = x2, c(x2, x3, x4) = x3, c(x1, x4) = x1, and x4x0x1 is a 3-cycle, 4/5-

Acyclicity requires c(x0, x1, x4) 6= x0. But, this contradicts c(x0, x1, x4) = x0. So, c(x1, x3) = x1.

Case n > 5: Since c(x3, xn−1) = xn−1 for i 6= 1 [by observation (1)] and c(x1, x3) = x3 [by

assumption], x1xn−1x3 is a 3-cycle. Since x0x1xn−1 is a 3-cycle such that c(x0, x1, xn−1) = x0,

3-Acyclicity implies c(x1, x3, xn−1) = x3 so that x3R
c
2x1 and x1x2x3 is an Rc

2-cycle of length 3. But

this contradicts the base case of the induction. So, c(x1, x3) = x1. �

For n = 4, (i)-(ii) and the fact that c(xi, xi+1) = xi directly imply (I)-(III). For n ≥ 5,

observe that (ii) implies c(x1, xi) = x1 for any i 6= 0, 1. This follows by a simple induction

argument [along the same lines as observation (1)]. Together with observation (1) and the fact

that c(xi, xi+1) = xi, this establishes facts (I)-(III) for n ≥ 5. Since choice from all pairs {xi, xj}
are identified, facts (I) and (II) are immediate. Fact (III) then follows from the base case of the

induction. If c(xi−1, xi, xi+1) 6= xi, xi+1R
c
2xi−1 so that xi−1xixi+1 is an Rc

2-cycle of length 3.

One consequence of facts (I) and (II) is that there exists no 3-cycle x1x2xi. In order for x1R
c
2x2,

there must exist an item a /∈ {x0, ..., xn−1} such that ax1x2 is a 3-cycle and c(a, x1, x2) 6= a. Now,

suppose that such an item a exists. I consider the cases n = 4, n = 5, and n > 5, and show that

each entails a contradiction:

Case n = 4: By facts (I) and (III), x0x1x3 and x0x2x3 are 3-cycles such that c(x0, x1, x3) = x0

and c(x0, x2, x3) = x3. Since c(x1, x2) = x1 by fact (I), 4/5-Acyclicity requires c(b, x1, x2) = b for

any 3-cycle bx1x2. But, this contradicts c(a, x1, x2) 6= a.

Case n = 5: Since c(x1, x4) = x1 and c(x2, x4) = x4, ax1x4x2 is a 4-cycle. There are two cases:

(5-1) c(x4, a) = x4 so that ax1x4 is a 3-cycle; and, (5-2) c(x4, a) = a so that ax4x2 is a 3-cycle.

Sub-case (1): By 3-Acyclicity, it follows that c(a, x1, x4) = a. This follows from the fact that

x0x1x4 is a 3-cycle such that c(x0, x1, x4) = x0 [by facts (I) and (III)]. Since c(a, x1, x4) = a,

3-Acyclicity also implies c(a, x1, x2) 6= x2. Since c(a, x1, x2) 6= a, it follows that c(a, x1, x2) = x1.

Since ax1x2 and ax1x4 are 3-cycles such that c(a, x1, x4) = a, c(a, x1, x2) = x1, and x2x3x4 is a

3-cycle such that c(x2, x3, x4) = x3 [which follows from facts (I) and (III)], 4/5-Acyclicity requires

c(a, x1) = x1. But, this contradicts the fact that c(a, x1) = a.

Sub-case (2): The reasoning is similar to sub-case (5-1). First, 3-Acyclicity implies c(a, x2, x4) =

a [since x2x3x4 is a 3-cycle such that c(x2, x3, x4) = x3 by facts (I) and (III)]. Next, 3-Acyclicity

implies c(a, x1, x2) = x2. Since x0x1x4 is a 3-cycle such that c(x0, x1, x4) = x0 [by facts (I) and

(III)], 4/5-Acyclicity implies c(x1, x4) = x1. But, this contradicts the fact that c(x1, x4) = x4.

Case n > 5: First, observe that c(a, xn−1) = xn−1 and c(a, xn−2) = a.

To see c(a, xn−1) = xn−1, suppose otherwise. Then, axn−1x2 is a 3-cycle. By the induction
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hypothesis, it follows that c(a, x2, xn−1) = a. Otherwise xn−1R
c
2x2 so that x2...xn−1 is an Rc

2-

cycle of length n − 3. Since c(a, x2, xn−1) = a, it follows by definition of Rc
2 that x2R

c
2aR

c
2xn−1.

Thus, x0x1x2axn−1 is an Rc
2-cycle of length 5. But, this contradicts the induction hypothesis. So,

c(a, xn−1) = xn−1.

The reasoning for c(a, xn−2) = a is similar. First, suppose c(a, xn−2) = xn−2. Then, ax1xn−2 is

a 3-cycle. By the induction hypothesis, it follows that c(a, x1, xn−2) = a. Otherwise x1R
c
2xn−2 so

that xn−2...x1 is an Rc
2-cycle of length 4. Since c(a, x1, xn−2) = a, it follows that xn−2R

c
2aR

c
2x1 so

that x1...xn−2a is an Rc
2-cycle of length n− 1. But, this contradicts the induction hypothesis. So,

c(a, xn−2) = a.

Since c(a, xn−1) = xn−1 and c(a, xn−2) = a, it follows that ax1xn−1 and axn−2x2 are 3-cycles.

Since xn−1x0x1 is a 3-cycle such that c(xn−1, x0, x1) = x0 [by facts (I) and (III)], c(a, xn−1, x1) = a

follows by 3-Acyclicity. Consequently, c(a, x1, x2) 6= x2 by 3-Acyclicity. Since c(a, x1, x2) 6= a, it

follows that c(a, x1, x2) = x1. Thus, 3-Acyclicity implies c(a, x2, xn−2) = xn−2. By definition of

Rc
2, it follows that xn−2R

c
2x2 so that x2...xn−2 is an Rc

2-cycle of length n− 3. But this contradicts

the induction hypothesis.

Proof of Theorem. (⇒) Suppose c satisfies WWARP, Expansion, Choice Symmetry and Dif-

ficult Choice. Then, c satisfies 3-Acyclicity by Lemma 4 and 4/5-Acyclicity by Lemma 8. By

Lemma 9, Rc
2 is acyclic. Now, by way of contradiction, suppose there exists some �c

D-cycle given

by the sequence x0...xi...xn−1. Lemma 5 ensures that any link xi �c
D xi+1 in the sequence can be

replaced by a chain xiR
c
2...R

c
2xi+1 consisting of 1 or 3 links. It follows that Rc

2 contains a cycle

which contradicts the fact that Rc
2 is acyclic and establishes that �c

D is acyclic. In other words, c

satisfies NBCC. Since c satisfies WWARP and Expansion, Theorem 1 of A&K establishes that it

can be represented by a transitive RSM. Given Remark 1, this establishes that Choice Symmetry

and Difficult Choice are sufficient to represent an RSM in terms of shortlisting.

(⇐) Suppose that c is a shortlisting procedure represented by (P1, P2). Theorem 1 of M&M

establishes that c satisfies WWARP and Expansion. It suffices to show that c satisfies Choice

Symmetry and Difficult Choice:

Choice Symmetry:18 By Lemma 4, it suffices to show that c satisfies 3-Acyclicity. By way

of contradiction, suppose c(x, y, z) = z and c(w, x, y) 6= w for 3-cycles xyz and wxy. From

c(x, y, z) = z, it follows that xP1y. So, c(w, x, y) 6= y. Since c(w, x, y) 6= w, it follows that

c(w, x, y) = x. From c(w, x, y) = x, it follows that yP1w. By transitivity, xP1w which contradicts

the fact that c(x,w) = w.

Difficult Choice: By the argument just above, c satisfies 3-Acyclicity. By Lemmas 1 and 2,

c satisfies Selective IIA and Reduction. Now, suppose c(x, y) = x and c(A ∪ {y}) 6= c(A ∪
18Proposition 3 of Manzini and Mariotti [2006] provide an alternate proof of necessity.
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{x, y}) 6= x. By Lemma 7, axa′ and aya′ are 3-cycles such that c(a, a′, x) = a and c(a, a′, y) = a′.

From c(a, a′, x) = a, it follows that a′P2aP2x. Similarly, c(a, a′, y) = a′ implies yP2a
′P2a. Thus,

yP2a
′P2aP2x. By transitivity, yP2x.

It suffices to show c(B) = c(B\{y}) for any B ⊃ {x, y}. To see this, suppose c(B) 6= c(B\{y})
for some such B. Since c(x, y) = x, it follows that x �c

D y. By Lemma 5, there are two possibilities:

(i) there is a 3-cycle xyz such that c(x, y, z) 6= z; or, (ii) there are 3-cycles ww′x and ww′y such that

c(w,w′, x) = w and c(w,w′, y) = w′. In either case, xP2y: (i) c(x, y, z) 6= z implies xP2y directly;

and, (ii) c(w,w′, x) = w and c(w,w′, y) = w′ imply xP2wP2w
′P2y so that xP2y by transitivity.

Since yP2x, P2 fails to be asymmetric which establishes the desired contradiction.

Since the proof of sufficiency only relies on 3-Acyclicity and 4/5-Acyclicity (rather than the

more general axioms of Choice Symmetry and Difficult Choice), it follows that:

Corollary 3 An RSM has a shortlisting representation iff it satisfies 3-Acyclicity and 4/5-Acyclicity.

7.4 Identification and Uniqueness

7.4.1 Proof of Corollary 2

Remark 7 The proof of A&K establishes that any RSM which satisfies NBCC can be represented

by a pair of rationales (P
c

1,�c
2) where P

c

1 is defined by P
c

1 ≡ {(x, y) : c(A) = c(A \ y) for any A ⊃
{x, y}} and �c

2 is any linear order that completes the direct revealed preference �c
D. The next

Lemma establishes the equivalence between P
c

1 and P c

1
.

Lemma 10 If c can be represented by a transitive RSM, then xP
c

1y iff xP c

1
y.

Proof. As a preliminary observation, recall that xP c

1
y iff c(x, y) = x and ¬(xR

c

2y) (see Definition

3). By Lemma 9, it follows that xP c

1
y iff c(x, y) = x and ¬(x �c

D y). (⇒) If c(x, y) = y, then

¬[xP
c

1y] by definition of P
c

1. Next, suppose that x �c
D y. Then, by definition of �c

D, there exists

some A ⊃ {x, y} such that c(A) 6= c(A \ y). So, by definition, ¬[xP
c

1y]. (⇐) Suppose ¬[xP
c

1y]

so that there is some A ⊃ {x, y} s.t. c(A) 6= c(A \ y). One possibility is that A = {x, y} so

c(x, y) = y. If, instead, A ! {x, y}, then c(x, y) = x and x �c
D y follows by definition of �c

D.

In combination with Lemma 5, this implies an important corollary of the main theorem:

Proof of Corollary 2. (⇒) Trivial. (⇐) By the construction of A&K, (P
c

1,�c
2) is a transitive

RSM representation of c. By Lemma 5, �c
2 is determined (up to transitive closure of Rc

2) by choice

on pairs and 3-cycles. By Lemma 10, P
c

1 is also determined by choice on pairs and 3-cycles. Since

c and c̃ coincide on pairs and 3-cycles, (P
c

1,�c
2) is a transitive RSM representation of c̃. Thus,

c(A) = c(P c
1,�c

2)
(A) = c̃(A) for any A ⊆ X.
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Lemma 11 If c can be represented in terms of shortlisting, then xP c
1
y implies xP

c

1y.

Proof. Lemma 10 establishes P
c

1 = (�c \ �c
D). By Lemma 5, �c

D⊆ P c
2 which implies (�c \P c

2 ) ⊆
P

c

1. Consequently, P c
1

= tc(�c \P c
2 ) ⊆ tc(P

c

1) because transitive closure preserves set inclusion.

Since P
c

1 is asymmetric and transitive (as shown in the proof of A&K’s Theorem 1), tc(P
c

1) = P
c

1

so that P c
1
⊆ P

c

1.

The following example illustrates that this implication is strict in some cases:

Example 4 Consider a choice function c on X = {v, w, x, y, z} s.t. c(v, y) = y, and c(w, z) = z =

c(v, z). Next, suppose vwx, wxy, and xyz are the only 3-cycles so that vwxy and wxyz are the only

4-cycles and vwxyz is a 5-cycle. Finally, suppose c3 ≡ [c(v, w, x), c(w, x, y), c(x, y, z)] = [x, x, x].19

For c to be consistent with shortlisting, c(i, j, k) = i for any {i, j, k} ⊂ X such that i �c j �c k

and i �c k. Consistency with shortlisting also requires c(v, x, y, z) = c(v, w, x, y) = c(w, x, y, z) =

c(v, w, x, y, z) = x, c(v, w, y, z) = y, and c(v, w, x, z) = z. This specifies c for every subset of X.

Then, �c
D= Rc

2 = {(w, x), (x, v), (x, y), (z, x)} and P c
2 = Rc

2 ∪ {(w, y), (w, v), (z,v), (z, y)}.
Thus, P

c

1 ≡ (�c \ �c
D) = {(v, w), (y, v), (z, v), (y, w), (z, w), (y, z)} and P c

1
≡ tc(�c \P c

2 ) =

P
c

1 \ {(z, v)} so that P c
1
⊂ P

c

1. Since it is straightforward to check that (P
c

1, P
c
2 ) and (P c

1
, P c

2 ) both

represent c, this example shows that P c
1
6= P

c

1 for some shortlisting procedures.

7.4.2 Proof of Proposition 1

Lemma 12 If (P1, P2) is a shortlisting representation of c, then xP1y implies x �c y.

Proof. By way of contradiction, suppose xP1y and y �c x. Then, c(P1,P2)(x, y) 6= y = c(x, y).

Lemma 13 If (P1, P2) is a shortlisting representation of c, then P1 ⊇ P c
1 and P2 ⊇ P c

2 .

Proof. The inclusions Rc
1 ⊆ P1 and Rc

2 ⊆ P2 follow from the discussion in Section 3.1 of the text.

Since transitive closure preserves set inclusion, it follows that P c
1 ⊆ P1 and P c

2 ⊆ P2.

Lemma 14 If c can be represented in terms of shortlisting, xRc
1y implies yP c

2x and x(�c \P c
2 )y.

Proof. Suppose that xRc
1y. I establish each implication in turn:

– Proof that yP c
2x: There are two possibilities. Under the first branch of Rc

1, there exists a 3-

cycle xyz such that c(x, y, z) = z. By definition of Rc
2, it follows that yRc

2zR
c
2x so that yP c

2x.

Under the second branch of Rc
1, there exist 3-cycles w′xw and w′yw such that c(w,w′, x) = w′

19One could equally construct examples where c3 = [v, y, x] or c3 = [x,w, z].
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and c(w,w′, y) = w. By definition of Rc
2, it follows that yRc

2wR
c
2w
′Rc

2x so that yP c
2x. Thus, xRc

1y

implies yP c
2x.

– Proof that x(�c \P c
2 )y: Observe that x �c y follows by definition of xRc

1y. By way of con-

tradiction, suppose that ¬[x(�c \P c
2 )y]. Since x �c y and ¬[x(�c \P c

2 )y], it must be that xP c
2y.

In combination with yP c
2x [i.e. the first claim of the lemma], this contradicts the fact that Rc

2 is

acyclic by Lemma 9. Thus, xRc
1y implies x(�c \P c

2 )y.

Lemma 15 If c can be represented in terms of shortlisting, xRc
2y implies ¬[xP c

1
y] and x(�c \P c

1 )y.

Proof. Suppose that xRc
2y. I establish each implication in turn:

– Proof that ¬[xP c
1
y]: By way of contradiction, suppose xRc

2y and xP c
1
y. By definition, xRc

2y

implies that there exists a 3-cycle xyz such that c(x, y, z) 6= z. First, suppose c(x, y, z) = x. By

definition of Rc
2, it follows that zRc

2xR
c
2y. Since Rc

2 is acyclic by Lemma 9, it follows that ¬[yP c
2z].

Since y �c z and ¬[yP c
2z], it follows that y(�c \P c

2 )z so that yP c
1
z. Since xP c

1
y, transitivity implies

xP c
1
z. Since P

c

1 ⊆�c by Lemma 10 and P c
1
⊆ P

c

1 by Lemma 11, it follows that x �c z. But, this

contradicts the fact that z �c x. Next, suppose c(x, y, z) = y. By a similar argument, it follows

that z �c y which contradicts the fact that y �c z.

– Proof that x(�c \P c
1 )y: First, observe that (i) Rc

2 ⊆ (�c \P c
1
) and (ii) (�c \P c

1
) ⊆ (�c \P c

1 ).

(i) Since Rc
2 ⊆�c by definition of Rc

2 and P c
1
⊆�c by Lemmas 10 and 11, R2 ∪ P c

1
⊆�c. Since

Rc
2 ∩ P c

1
= ∅ [implied by the first claim of the lemma], it follows that Rc

2 ⊆ (�c \P c
1
). (ii) By

Lemma 14, P c
1 ⊆ P c

1
. Consequently, (�c \P c

1
) ⊆ (�c \P c

1 ). Combining (i) and (ii), it follows that

Rc
2 ⊆ (�c \P c

1 ).

Lemma 16 If c can be represented in terms of shortlisting, then xP c
1y iff c(x, y) = x and yP c

2x.

Proof. (⇒) Suppose that xP c
1y. By definition, there exists an Rc

1-chain z0...zn such that x = z0

and y = zn. By Lemma 14, it follows that zi+1P
c
2zi for any 0 ≤ i ≤ n. As such, yP c

2x. By Lemmas

12 and 13, it follows that P c
1 ⊆�c. Since xP c

1y, it follows that c(x, y) = x. This establishes the

desired implication.

(⇐) Suppose that c(x, y) = x and yP c
2x so that there exists an Rc

2-chain w0...wn+1 such that

y = w0 and x = wn+1. The cases n = 1 and n = 2 are straightforward.

If yRc
2w1R

c
2x, xyw1 is a 3-cycle. Moreover, c(w1, x, y) = w1. Otherwise, xRc

2y so xyw1 is an

Rc
2-cycle which contradicts that Rc

2 is acyclic by Lemma 9. So, xRc
1y under the first branch of Rc

1.

If yRc
2w1R

c
2w2R

c
2x, then xyw1w2 is a 4-cycle. If w1 �c x, then xyw1 is a 3-cycle. By reasoning

similar to the case n = 1, it follows that c(w1, x, y) = w1 so that xRc
1y. Similarly, xRc

1y if

y �c w2. So, it suffices to consider the sub-case where x �c w1 and w2 �c y so that xw1w2 and
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xw1w2 are 3-cycles. By reasoning similar to the case n = 1, it follows that c(w1, w2, x) = w2 and

c(w1, w2, y) = w1. Consequently, xRc
1y under the second branch of Rc

1.

For n ≥ 3, the proof that xP c
1y is by strong induction on n.

Base case n = 3: Suppose yRc
2w1R

c
2w2R

c
2w3R

c
2x. By reasoning similar to the case n = 1, the

two sub-cases w1 �c x (where w1xy is a 3-cycle) and y �c w3 (where w3xy is a 3-cycle) imply

xRc
1y. Next, consider the sub-case w2 �c x �c w1 (where w1w2x is a 3-cycle). If c(w1, w2, x) 6= w2,

it follows that xRc
2w1. Consequently, xw1w2w3 is an Rc

2-cycle which contradicts the fact that Rc
2

is acyclic by Lemma 9. Thus, c(w1, w2, x) = w2 so that w2R
c
2x. Since yRc

2w1R
c
2w2, this sub-case

reduces to the case n = 2, establishing that xRc
1y. A similar argument establishes that xRc

1y in the

sub-case w3 �c y �c w2 (where w2w3y is a 3-cycle). Finally, consider the sub-case x �c w2 �c y

(where w1w2y and w2w3x are 3-cycles). Similar reasoning to the case n = 1 establishes xRc
1w2R

c
1y.

Since xP c
1y in all sub-cases, the result follows.

Induction Step: Now, suppose xP c
1y if c(x, y) = x and yRc

2w1...wjR
c
2x for j ≤ n. To establish

the induction step, consider alternatives x and y such that c(x, y) = x and yRc
2w1...wn+1R

c
2x.

First, suppose that y �c wi �c x for some 1 ≤ i ≤ n+1 so that wixy is a 3-cycle. By reasoning

similar to the case n = 1, c(wi, x, y) = wi. Consequently, xRc
1y under the first branch of Rc

1.

Next, suppose that x �c wi �c y for some 2 ≤ i ≤ n. Since wi...wn+1x is an Rc
2-chain of length

n + 2 − i ≤ n and c(wi, x) = x, the induction hypothesis implies xP c
1wi. Similarly, the fact that

yw1...wi is an Rc
2-chain of length i ≤ n and c(wi, y) = y implies wiP

c
1y. Consequently, xP c

1wiP
c
1y

so that xP c
1y.

To complete the induction, it suffices to consider the case where (i) x, y �c wi or (ii) wi �c x, y

for any 1 ≤ i ≤ n+1. Observe that w1 is type-(i) while wn+1 is type-(ii). By finiteness, there exists

a largest 1 ≤ i∗ ≤ n such that wi∗ is of type-(i) and wi∗+1 is of type-(ii). Notice that wi∗wi∗+1x

and wi∗wi∗+1y are 3-cycles. By reasoning similar to the case n = 1, c(wi∗ , wi∗+1, x) = wi∗+1 and

c(wi∗ , wi∗+1, y) = wi∗ . Consequently, xRc
1y under the second branch of Rc

1.

Remark 8 Lemma 16 establishes that P c
1 is equivalent to the lower bound P c

1 in Au and Kawai

[2011]. Formally, they define P c
1 by xP c

1y iff xP
c

1y and y �c
D ... �c

D x. By Lemma 5, yP c
2x is

equivalent to y �c
D ... �c

D x. To see that xP
c

1y can be replaced by c(x, y) = x in their definition:

Proof. (⇒) Suppose xP
c

1y. By definition of P
c

1, c(x, y) = x. (⇐) Suppose that c(x, y) = x

and y �c
D ... �c

D x. To see that xP
c

1y, suppose otherwise. Then, c(x, y) = y (which contradicts

c(x, y) = x) or x �c
D y (which contradicts the acyclicity of �c

D). Thus, xP
c

1y as required.

Lemma 17 If c can be represented in terms of shortlisting, �c \P c
2 , Rc

1, and �c \P c
1 are acyclic.
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Proof. I establish the three results in turn.

– Acyclicity of �c \P c
2 :20 First, observe that R̃1 ≡ (�c \Rc

2) is acyclic. To see this, suppose

otherwise. Since X is finite, there exists an R̃1-cycle x0...xn−1 of minimal length. First, note

xi−1 �c xi+1. Otherwise, xi−1xixi+1 is a 3-cycle (i.e. on �c) which leads to a contradiction.

If c(xi−1, xi, xi+1) = xi, then xi−1R
c
2xiR

c
2xi+1 so that ¬(xi−1R̃1xi) and ¬(xiR̃1xi+1). Likewise,

c(xi−1, xi, xi+1) = xi−1 implies ¬(xi−1R̃1xi) and c(xi−1, xi, xi+1) = xi+1 implies ¬(xiR̃1xi+1). Thus,

xi−1 �c xi+1.

This observation also establishes that there is no R̃1-cycle of length n = 3 or n = 4. The

conclusion for n = 3 is immediate. For n = 4, the fact that x0 �c x2 (using i = 1) contradicts the

fact that x2 �c x0 (using i = 3). To establish the result for n ≥ 5, first note that the minimality of

x0...xn−1 implies that xi−1R
c
2xi+1. Otherwise, xi−1R̃1xi+1 so that xi+1...xn−1x0...xi−1 an R̃1-cycle

of length n− 1 < n. If n = 2m (so n is even), then x0x2...xn−4xn−2 is an Rc
2-cycle of length m+ 1.

But, this contradicts the fact that Rc
2 is acyclic by Lemma 5. If n = 2m + 1 (so n is odd), then

x0x2...xn−1x1...xn−4xn−2 is an Rc
2-cycle of length n. Again, this contradicts the fact that Rc

2 is

acyclic.

The result follows from the observation that x(�c \P c
2 )y implies xR̃1y. Since Rc

2 ⊆ tc(Rc
2) = P c

2 ,

it follows that (�c \P c
2 ) ⊆ (�c \Rc

2) = R̃1. Since R̃1 is acyclic, (�c \P c
2 ) is acyclic.

– Acyclicity of Rc
1:

21 Since Rc
1 ⊆ (�c \P c

2 ) by Lemma 14 and (�c \P c
2 ) is acyclic, Rc

1 is acyclic.

– Acyclicity of �c \P c
1 :22 Let Rc

2 ≡ (P c
2∩ �c), Rc

1
≡ (P c

1
\ P c

1 ), and define R̃2 ≡ (Rc
2 ∪ Rc

1
).

First, observe that R̃2 is acyclic. To see this, suppose otherwise. Since X is finite, there exists an

R̃2-cycle x0...xn−1 of minimal length. I show that this entails a contradiction by induction on n.

As a preliminary point, note that Rc
2 ⊆ P c

2 and Rc
1
⊆ P c

2
are asymmetric by Lemma 9 and

the result immediately above. Thus, any R̃2-cycle must contain links of both kinds. Accordingly,

there exists some i such that xi−1R
c
1
xi and xiR

c
2xi+1. Without loss of generality, relabel the indices

so that i = 1.

For the base case n = 3, suppose that x0R
c
1
x1R

c
2x2R̃2x0. There are two sub-cases to consider:

(i) x2R
c
1
x0; and, (ii) x2R

c
2x0. In sub-case (i), it follows that x2P

c
1
x0P

c
1
x1 so that x2P

c
1
x1. By Lemma

16, x2 �c x1 which contradicts the assumption that x1R
c
2x2 (i.e. that x1 �c x2). In sub-case (ii),

it follows that x1P
c
2x2P

c
2x0 so that x1P

c
2x0. Since x0 �c x1 by definition of R̃2, Lemma 16 implies

x0P
c
1x1. But, this contradicts the assumption that x0R

c
1
x1 (i.e. that ¬[x0P

c
1x1]).

Now suppose that there are no R̃2-cycles of length i ≤ n. By way of contradiction, suppose

that x0R
c
1
x1R

c
2x2R̃2...R̃2xnR̃2x0 is an R̃2-cycle of length n+ 1. There are three cases to consider:

(i) x2 �c x0; (ii) x0R̃2x2; and, (iii) x0P
c
1x2. In case (i), the fact that �c⊆ (P c

1
∪P c

2 ) implies x2P
c
1
x0

20Alternatively, the acyclicity of (�c \P c
2 ) follows from Lemma 11 and the fact that (P

c

1,�c
2) represents c.

21Alternatively, the acyclicity of Rc
1 follows from Lemma 13, or Lemmas 9 and 16.

22The proof parallels Au and Kawai’s [2011] proof of Theorem 2(ii.a).
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or x2P
c
2x0 without loss of generality. As a result, an argument similar to the base case n = 3

yields a contradiction. In case (ii), it follows that x0x2...xn+1 is a R̃2-cycle of length n. In case

(iii), Lemma 16 implies x2P
c
2x0. As a result, an argument similar to sub-case (ii) of the base case

n = 3 yields a contradiction.

The result follows from the fact that x(�c \P c
1 )y implies xR̃2y. As noted, �c⊆ (P c

1
∪ P c

2 ) so

that (P c
1
∪ Rc

2) =�c. As such, (�c \P c
1 ) = Rc

1
∪ [Rc

2 \ P c
1 ] ⊆ R̃2. Since R̃2 is acyclic, (�c \P c

1 ) is

acyclic.

Lemma 18 If c can be represented in terms of shortlisting, then P c
2

is a strict weak order.

Proof. By Lemma 17, P c
2

is asymmetric and transitive. It suffices to show completeness (for

distinct x, y ∈ X). Consider any alternatives x and y and suppose that x �c y. If ¬[xP c
1y], then

�c⊆ P c
1 ∪ P c

2
implies xP c

2
y. If xP c

1y, then Lemma 16 implies yP c
2x. Since P c

2 ⊆ P c
2

by Lemma

15, it follows that yP c
2
x. Thus, x �c y implies xP c

2
y or yP c

2
x. Since �c is complete (for distinct

x, y ∈ X), it follows that P c
2

is complete.

Proof of Proposition 1. Suppose that c can be represented by a shortlisting procedure.

(I.a) This is established in Lemma 13.

(I.b) Lemmas 9 and 17 establish that Rc
1, R

c
2, and (�c \P c

2 ) are acyclic. Consequently, P c
1 ,

P c
2 , and P c

1
are transitive rationales. Moreover, P c

1
is a transitive rationale (as shown in the proof

of A&K’s Theorem 1). Finally, P c
2

is a linear order by Lemma 18.

(II.a) Given (I.b), (P c
1 , P

c
2
) is a shortlisting procedure. Since P c

2
is complete, there is no

rationale P2 ⊇ P c
2

such that (P c
1 , P2) represents c. By Corollary 2, it suffices to show that (P c

1 , P
c
2
)

coincides with c on pairs and 3-cycles in order to establish that (P c
1 , P

c
2
) represents c.

First, suppose that c(x, y) = x. By Lemmas 12 and 13, it follows that P c
1 ⊆�c so that ¬[yP c

1x].

If xP c
1y, then c(P c

1 ,P
c
2
)(x, y) = x follows directly. If ¬[xP c

1y], then x �c y implies xP c
2
y by definition

of P c
2

[because �c⊆ (P c
1 ∪ P c

2
)]. Since P c

2
is asymmetric, it follows that c(P c

1 ,P
c
2
)(x, y) = x. Next,

consider some 3-cycle xyz and suppose that c(x, y, z) = x. By definition, yP c
1z and zP c

2xP
c
2y.

Since P c
2 ⊆ P c

2
by Lemma 15, zP c

2
xP c

2
y as well. Observe that P c

1 ∩ {x, y, z}2 = {(y, z)} because

P c
1 ⊆�c. Moreover, the fact that P c

2
is asymmetric implies P c

2
∩ {x, y, z}2 = {(z, x), (x, y), (z, y)}.

Thus, c(P c
1 ,P

c
2
)(x, y, z) = x.

(II.b) Given (I.b), (P c
1
, P c

2 ) and (P c

1
, P c

2 ) are shortlisting procedures. Recall that P c
1
⊆ P c

1

by Lemma 11. If (P c
1
, P c

2 ) and (P c

1
, P c

2 ) represent c, then (P1, P
c
2 ) represents c for any transitive

rationale P c
1
⊂ P1 ⊂ P c

1
. This follows from the fact that A = max(A;P c

1
) ⊆ max(A;P c

1 ) ⊆
max(A;P c

1
) = A and max(A;P c

2 ) = max(A;P c
2 ) for any A ⊆ X. By Corollary 2, it suffices to show

that (P c
1
, P c

2 ) and (P c

1
, P c

2 ) coincide with c on pairs and 3-cycles.
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First, suppose that c(x, y) = x. By definition of P c

1
, it follows that ¬[yP c

1
x]. By Lemmas 10

and 11, it follows that ¬[yP c
1
x]. By reasoning similar to (II.a), c(P c

1
,P c

2 )
(x, y) = c(P c

1
,P c

2 )
(x, y) = x.

Next, suppose that c(x, y, z) = x for some 3-cycle xyz. By definition, yP c
1z and zP c

2xP
c
2y. Since

P c
1 ⊆ P c

1
⊆ P c

1
, it follows that yP c

1
z and yP c

1
z as well. Then, by reasoning similar to (II.a),

c(P c
1
,P c

2 )
(x, y, z) = c(P c

1
,P c

2 )
(x, y, z) = x.

7.4.3 Proof of Proposition 2

Lemma 19 Given a choice function c and two rationales P and P̃ , P ⊆ P̃ implies P̃ ′ ⊆ P ′.

Proof. From P ⊆ P̃ , it follows that (�c \P̃ ) ⊆ (�c \P ), and, consequently, P̃ ′ ⊆ P ′.

Lemma 20 Suppose c can be represented in terms of shortlisting with ith rationale Pi. Then,

P ′i ∈ P−i(c) is the unique Pi-minimal rationale that represents c.

Proof. Suppose i = 1. [Except as indicated, the proof is similar for i = 2.] Suppose c is

represented by (P1, P2). I establish: (i) P ′1 ∈ P2(c); (ii) (P1, P
′
1) represents c; and, (iii) P ′1 ⊆ P2.

(i) By Proposition 1, P c
1 ⊆ P1. By Lemma 19, it follows that P ′1 ⊆ P c

2
. Next, observe that

Rc
2 ∩ P1 = ∅. Consequently, Rc

2 ⊆ (�c \P1). By transitive closure, P c
2 ⊆ P ′1 so that P ′1 ∈ P2(c).

To see that Rc
2 ∩P1 = ∅, suppose xRc

2y and xP1y.23 By definition, xRc
2y implies that there is a

3-cycle xyz such that c(x, y, z) 6= z. First, suppose c(x, y, z) = x so that yRc
1z by definition. Since

P c
1 ⊆ P1, it follows that yP1z. Given that xP1y, xP1z follows by transitivity of P1. Since (P1, P2)

represents c, c(x, z) 6= z. A similar contradiction arises if c(x, y, z) = y. So, Rc
2 ∩ P1 = ∅.

(ii) Observe that P ′1 is a transitive rationale. This follows from the fact that P ′1 ∈ Pc
2 by (i) above.

Thus, (P1, P
′
1) is a shortlisting procedure. By Corollary 2, the result follows by establishing that

(P1, P
′
1) coincides with c on pairs and 3-cycles.

First, suppose c(x, y) = x. Since (P1, P2) represents c, ¬[yP1x]. If xP1y, then c(P1,P ′1)
(x, y) = x

directly. Otherwise, ¬[xP1y] and x �c y imply xP ′1y. Since P ′1 is asymmetric, c(P1,P ′1)
(x, y) = x.24

Next, suppose xyz is a 3-cycle such that c(x, y, z) = x. Since (P1, P2) represents c, Proposition

1(I) implies P c
1 ⊆ P1. So, (y, z) ∈ P1. Since P1 is a transitive rationale and (P1, P2) represents

c, P1 ∩ {x, y, z}2 = {(y, z)}. By (i) above, P c
2 ⊆ P ′1 ⊆ P c

2
. By the argument given in the

23For i = 2, the proof that xRc
1y and xP2y generate a contradiction is different. By definition, xRc

1y implies
(i) that there exists a 3-cycle xyz such that c(x, y, z) = z or (ii) a pair of 3-cycles ww′x and ww′y such that
c(w,w′, x) = w′, c(w,w′, y) = w, and c(x, y) = x. In sub-case (i), yRc

2zR
c
2x by definition. Since P c

2 ⊆ P2, it follows
that yP2x which contradicts the fact that P2 is asymmetric. A similar contradiction arises in sub-case (ii).

24If i = 2, the argument is different. From P ′2 ⊆ P c
1

and P c
1
⊆�c, it follows that ¬[yP ′2x]. If xP ′2y, then

c(P ′
2,P2)(x, y) = x directly. Otherwise, ¬[xP ′2y] and x �c y imply xP2y by definition of P ′2. Since P c

2 is asymmetric,
c(P ′

2,P2)(x, y) = x.
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proof of Proposition 1(II), P c
2 ∩ {x, y, z}2 = {(z, x), (x, y), (z, y)} = P c

2
∩ {x, y, z}2. As such,

P ′1 ∩ {x, y, z}2 = {(z, x), (x, y), (z, y)}. It follows that c(P1,P ′1)
(x, y, z) = x.

(iii) Suppose xP ′1y. By definition, there exists a (�c \P1)-chain x0...xn such that x0 = x and

xn = y. Observe that xiP2xi+1 for any link in the chain. This follows from ¬[xiP1xi+1], xi �c xi+1,

and the fact that (P1, P2) represents c. Thus, xP2...P2y. By transitivity, xP2y.

Lemma 21 Given a choice function c and a rationale P , xP ′′y implies xPy.

Proof. Suppose xP ′′y. First, consider the case where x(�c \P ′)y. Then, ¬[xP ′y]. By definition

of P ′, it follows that ¬[x(tc(�c \P ))y]. Since x �c y, it must be that xPy. Now, consider the

general case where there is a (�c \P ′)-chain x0...xn with x0 = x and xn = y. From the first case,

xiPxi+1 for any link in the chain. As such, xPx1P...Pxn−1Py. Since P is transitive, xPy.

Lemma 22 Suppose (P1, P2) and (P̃1, P̃2) are two minimal representations s.t. (P1, P2) 6= (P̃1, P̃2).

Then, (P̃1 \ P1) 6= ∅ implies (P2 \ P̃2) 6= ∅.

Proof. By way of contradiction, suppose P̃1 \ P1 6= ∅ and P2 ⊆ P̃2. First, observe that (P1, P̃2)

represents c. Since (P̃1, P̃2) is a minimal representation of c, P̃1 is uniquely P̃2-minimal so that

P̃1 ⊆ P1. But, this contradicts the assumption that P̃1 \ P1 6= ∅.

Lemma 23 If c can be represented by (P1, P2), then (P ′′1 , P
′
1) and (P ′2, P

′′
2 ) are minimal.

Proof. I show that (P ′′1 , P
′
1) is minimal. The proof for (P ′2, P

′′
2 ) is similar.

By Lemma 20, (P1, P
′
1) represents c and P ′1 is P1-minimal. Similarly: (a) (P ′′1 , P

′
1) represents c

and P ′′1 is P ′1-minimal; and, (b) (P ′′1 , P
′′′
1 ) represents c and P ′′′1 is P ′′1 -minimal. Given (a), it suffices

to show that P ′1 is P ′′1 -minimal. By Lemma 21, P ′′1 ⊆ P1 (using P = P1) and P ′′′1 ⊆ P ′1 (using

P = P ′1). By Lemma 19, the first inclusion implies P ′1 ⊆ P ′′′1 . Since P ′′′1 ⊆ P ′1, it follows that

P ′′′1 = P ′1. Given (b), P ′1 is P ′′1 -minimal.

Proof of Proposition 2. Part (i) is established by Lemma 20. (ii) The second part of the

statement is established by Lemma 22. I show that (P1, P2) is minimal iff P1 ∈ P ′′1 (c) and P2 = P ′1.

The proof for P2 ∈ P ′′2 (c) and P1 = P ′2 is similar.

(⇒) Suppose that (P1, P2) is minimal. First observe that P2 = P ′1 by definition. Applying the

same reasoning, P1 = P ′2 = P ′′1 . Thus, P1 = P ′′1 ∈ P ′′1 (c). Moreover, P2 = P ′1 = P ′′′1 as required.

(⇐) Suppose that (P1, P2) represents c and P̃1 ∈ P1(c) is a rationale s.t. P1 = P̃ ′′1 and P2 = P̃ ′′′1 .

It suffices to show that (P1, P̃
′
1) represents c. By Lemma 23, it then follows that (P̃ ′′1 , P̃

′′′
1 ) = (P1, P2)

is minimal. To see that (P1, P̃
′
1) represents c, first observe that P1 ∈ P1(c) and P̃ ′1 ∈ P2(c) are

transitive rationales. So, (P1, P̃
′
1) is a shortlisting procedure. To see that it represents c, observe

that P2 = P̃ ′′′1 ⊆ P̃ ′1 by Lemma 21. Since P̃ ′1 ⊆ P c
2
, an argument along the lines of that given in

the proof of Proposition 1(II.b) establishes that (P1, P̃
′
1) represents c.
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7.5 Comparative Statics

Lemma 24 If c can be represented in terms of shortlisting, then P c
1 = (�c \P c

2
).

Proof. First observe that �c⊆ P c
1 ∪ (P c

2
∩ �c) by definition of P c

2
, and P c

1 ∪ (P c
2
∩ �c) ⊆�c since

P c
1 ⊆�c by Lemmas 12 and 13. So, P c

1 ∪ (P c
2
∩ �c) =�c. By way of contradiction, suppose that

xP c
1y and xP c

2
y. By Lemma 16, xP c

1y implies yP c
2x. Since P c

2 ⊆ P c
2

by Lemma 15, it follows

that yP c
2
x. Since (�c \P c

1 ) is acyclic by Lemma 17 however, this contradicts the fact that xP c
2
y.

Consequently, P c
1 ∩ P c

2
= ∅ which establishes the desired result.

Corollary 4 Suppose c can be represented by (P1, P2). Then, xP c
1y iff xP1y and yP ′1x.

Proof. By Lemma 16, xP c
1y iff [c(x, y) = x and yP c

2x]. By Lemma 24, it follows that xP c
1y iff

[c(x, y) = x and yP c
2
x]. To see this, first suppose that xP c

1y. By Lemma 16, c(x, y) = x and

yP c
2x. Since P c

2 ⊆ P c
2

(by Lemma 13), it follows that c(x, y) = x and yP c
2
x. Next, suppose that

c(x, y) = x and yP c
2
x. By Lemma 24, it follows that xP c

1y.

Since P c
2 ⊆ P ′1 ⊆ P c

2
by Proposition 2, xP c

1y iff [c(x, y) = x and yP ′1x]. Since (P1, P
′
1) represents

c by Proposition 2, it then follows that P ′1 is asymmetric, �c⊆ P1∪P ′1, and P1 ⊆�c. Consequently,

[c(x, y) = x and yP ′1x] iff [xP1y and yP ′1x].

Proof of Proposition 3. Fix choice functions cA, cB that can be represented by (PA
1 , P

A
2 ) and

(PB
1 , P

B
2 ). First, suppose that PA

1 ⊆ PB
1 . By Corollary 4, [xPA

1 y and y(PA
1 )′x] implies [xPB

1 y and

y(PB
1 )′x]. Next, suppose that, for any x, y ∈ X, [xPA

1 y and y(PA
1 )′x] implies [xPB

1 y and y(PB
1 )′x].

By Corollary 4, it follows that PA
1 ⊆ PB

1 .

Proof of Proposition 4. Suppose that cA and cB can be represented by (PA
1 , P

A
2 ) and (PB

1 , P
B
2 )

with PA
2 = P2 = PB

2 . As a preliminary point, observe that if stu is anA-cycle such that cA(s, t, u) =

s, then cB(s, t, u) = s. To see this, note that cA(s, t, u) = s implies uRA
2 sR

A
2 t so that uP2sP2t.

Since stu is a B-cycle by (i), it must be that cB(s, t, u) = s. If cB(s, t, u) = t, then tRB
2 u so that

tP2u. As such, P2 contains a cycle – which violates the assumption that P2 is asymmetric. Similar

reasoning establishes a contradiction if cB(s, t, u) = u. Consequently, cB(s, t, u) = s.

To establish the result, it suffices to show that RA
1 ⊆ RB

1 . By transitive closure, it follows that

PA
1 ⊆ PB

1 . To show that RA
1 ⊆ RB

1 , fix any pair xy such that xRA
1 y. By definition of RA

1 , there

are two possibilities: (a) there exists an alternative z s.t. xyz is an A-cycle and cA(x, y, z) = z;

or, (b) there exist z, w where wxz, wyz are A-cycles s.t. cA(w, x, z) = w, cA(w, y, z) = z, and

cA(x, y) = x. In case (a), (i) establishes that xyz is a B-cycle while the observation in the first

paragraph establishes that cB(x, y, z) = z. So, xRB
1 y by definition. In case (b), (i) establishes that

wxz, wyz are B-cycles while the observation in the first paragraph establishes that cB(w, x, z) = w

and cB(w, y, z) = z. Finally, (ii) ensures that cB(x, y) = x. So, xRB
1 y by definition.
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