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Abstract

This paper examines commitment in a two stage bargaining setting using global games

arguments. The object is to study the possibility of disagreement. Earlier work such as

Crawford(1982) assumed that the cost of revoking a commitment attempt was private infor-

mation and showed that not only can disagreement occur but when there is little probability

of a high revoking cost, any equilibrium must entail the possibility of disagreement. Here I

examine the symmetric information case where the revoking costs become publicly known

following incompatible demands. This is the natural environment when revoking costs are in

the form of audience costs in international negotiations or labor disputes. When the revok-

ing cost is drawn from a binary distribution that is either zero or larger than the size of the

pie, disagreement is an equilibrium outcome, even if both players face the same uncertain

cost. However, with continuous distributions and global game perturbations, disagreement

is possible only if the independent distributions of revoking costs fail to stochastically dom-

inate the uniform distribution. Both players facing the same uncertain cost never leads to

disagreement. The sharp contrast with the symmetric information disagreement results of

Ellingsen and Miettinen(2008) is shown to stem from deriving the success probability of a

commitment attempt from equilibrium behavior instead of assuming it to be exogenous.
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1 Introduction

Bargaining impasses entail significant costs. Whether they manifest as strikes, lockouts or

war, the bargaining parties end up at a highly inefficient outcome. One explanation for the

existence of such disagreement relies on the ability of rational bargaining agents to commit

themselves to aggressive demands. An agent who credibly commits herself to an aggressive

demand can force an uncommitted opponent to concede. The ability to commit arises from

a (revoking)cost which rational agents must pay to back down from their stated demand.

Uncertainty regarding the revoking cost results in uncertain commitment ability. Both

players may then attempt commitment to aggressive demands hoping that they themselves

face a high revoking cost while their opponent faces a low (or no) cost. Simultaneous

attempts to commit to aggressive demands yield disagreement. This leads to the question

that this paper formally addresses: When does the ability to attempt commitment to

aggressive demands lead to disagreement in bargaining between two rational agents, given

that the success of the commitment attempt is ex ante uncertain?

The above question has been answered in the asymmetric information environment by

Crawford(1982). This paper extends the basic model of Crawford(1982) to analyze the

symmetric information case. In particular, I study a two stage game with two players

bargaining over a pie of size 1. In stage 1 the two players announce their demands

simultaneously. If these demands are compatible (add up to no more than 1) then each

agent gets her own demand and half the remaining surplus, if any. If the demands are

incompatible a second stage simultaneous move game is played. Each player can either

stick to her demand or accept the other’s offer. If one player sticks to her demand while

the other player concedes (Accept), the former gets her first stage demand while the latter

only gets what was offered by the former. In addition, the conceding player must pay

his revoking cost. If both players concede then both get their opponents offer, pay their

respective revoking costs and split in half the excess of the surplus over the sum of their

offers. Both players sticking to their incompatible demands results in disagreement with a

resulting payoff of 0 to both. When making their demands the two players only know the

distribution of the revoking costs. These costs become commonly known only after the

demand stage but before the second stage game. This feature gives rise to the uncertain

commitment ability of players.

I study this basic model under two sets of informational assumptions. In the first, as

in Crawford(1982), I assume that the revoking costs can take values of either 0 or some

number greater than 1 (henceforth referred to as binary distributions). If the players
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face revoking costs which have independent and identical binary distributions then I find

that disagreement can always be supported in equilibrium, irrespective of the particular

probability of facing the high cost, q. Further, if facing a high cost is less probable,

0 < q < 1/2, any equilibrium must involve disagreement. Disagreement continues to

be supported in equilibrium even if the revoking cost distribution functions are identical

and perfectly positively correlated (the two players face an identical but uncertain cost).

These results are collected in Proposition 2, showing the pervasiveness of disagreement in

the presence of binary distributions.

In the second set of informational assumptions, players do not believe that interme-

diate revoking costs are impossible. In particular, the density functions for the revoking

costs are assumed to be strictly positive and continuous over an interval between and

including 0 and some value greater than 1.1 In addition it is assumed that before the

second stage game each player gets to know the realized values of the revoking costs but

with a small amount of noise. The equilibrium predictions of this model are analyzed for

the limit case when the amount of noise is made arbitrarily small. Proposition 3 shows

that if the revoking cost distribution functions are identical and perfectly positively cor-

related, disagreement cannot be supported in equilibrium, irrespective of the particular

distribution function considered. If the distribution functions are independent and First

Order Stochastically Dominate the uniform distribution then two results hold. First, the

efficient profile of each party demanding half the surplus can be supported in equilibrium.

Second, disagreement cannot be supported in equilibrium.

Symmetric Information: The study of symmetric information environments in this

paper is motivated by the observation that in bargaining settings where such commitment

tactics are available the revoking costs often end up becoming (almost) commonly known

before concession decisions are made. For example, in international or domestic political

disputes revoking costs take the form of “audience costs” as discussed in Fearon(1994).

The two leaders make public announcements of their demand while the domestic audiences

assess the performance of the leadership. Backing down may entail a revoking cost in the

form of a significantly lower chance of reelection. The particular cost is determined by

the relevance of a particular negotiation to the domestic audience’s assessment. While

uncertain when the demands are made, these costs can be easily ascertained by all parties

soon after.

A recent movement in India, for example, involved Anna Hazare and the Indian gov-

1Such density functions made the problem intractable in the asymmetric information setting of Craw-

ford(1982).
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ernment making incompatible demands regarding the contents of an anti corruption bill

to be passed in parliament. Given the unconstitutional nature of the Hazare demand on

the one hand and the ineffective past anti corruption role of the government on the other,

it was by no means certain which way public opinion would swing. The Hazare movement

ended up with an unprecedented level of public support. Hazare’s high realized revoking

cost consisted of losing credibility in front of such a large group of supporters. The Indian

Government garnered less sympathy and therefore stood to lose less by backing down.

News outlets, opinion polls and visible public rallies made the costs apparent to all soon

after the demands had been made public. Eventually the Indian Government backed

down.

Similar examples can be found in the the debt ceiling debates of the Obama and

Clinton administrations. In such instances lobbying groups are an important source of

revoking costs for elected leaders. Importantly, in all these cases, the uncertainty regarding

revoking costs when demands are made gets resolved almost entirely before the concession

decisions are made. Many more illuminating examples of such bargaining instances are

discussed in detail in Schelling(1960), Martin(1993) and Fearon(1994).

Ellingsen and Miettinen(2008)(henceforth EM) also analyze symmetric information

settings, but with findings that contrast sharply with this paper. EM show that the

presence of uncertain commitment always results in disagreement, with both parties de-

manding the entire surplus in equilibrium. In EM bargaining agents have access to inde-

pendent random commitment devices, using which, following incompatible demands, an

agent is forced to either back down or stick (achieve commitment) to her demand with

exogenously fixed probabilities. The key modeling difference in the present paper is that

achieving commitment is required to be the result of equilibrium behavior in the second

stage game, as in Crawford(1982). An agent must choose to play Stick in order to achieve

commitment. This modeling difference leads to very distinct implications. In particular,

in EM, the probability of a successful commitment attempt is independent of the demands

made. By contrast, in this paper, with continuous densities and noisy signals, equilibrium

play results in a systematic dependence of second stage concession behavior on first stage

demands. The particular dependence, so established, often eliminates the possibility of

disagreement. In such a setting, demanding the entire surplus can never be supported in

equilibrium.

Demands and Concession Behavior: The analysis of binary distributions in this

paper gives results that are similar to EM. In particular, disagreement is shown to always

be supportable in equilibrium. The reason for this lies in the existence of equilibria in
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these models in which the probability with which a player backs down in the second stage

does not depend upon the first stage demands. Notice that a player has no option but

to stick to her demand when her revoking cost is greater than 1. So, if one player faces a

cost of 0 and the other faces the high cost, the dominance solvable outcome involves the

latter playing Stick while the former plays Accept. The existence of multiple equilibria

in the second stage game, when both player face 0 costs, makes supporting disagreement

essentially a question of selecting an appropriate equilibrium. Making the particular

equilibrium selection independent of first stage demands makes supporting disagreement

in equilibrium possible. In other words, such equilibria behave as if the probability of a

successful commitment attempt were exogenous.

The analysis of continuous distributions with noisy signals, however, limits the possi-

bility of disagreement considerably. To understand the intuition behind these results it

will help to spell out the counteracting forces involved in the model. Disagreement arises

if both parties make high demands that are incompatible, since there is always a state of

the world where neither player can back down following such a demand profile. Player 1’s

incentive to make a higher demand is driven by the possibility that following incompatible

demands she will face a high revoking cost (and therefore achieve commitment), while

player 2 faces a low cost and is therefore better off conceding. The opposite scenario

works as a disincentive for making higher demands. A second disincentive arises from the

possibility that both face high costs and are unable to back down resulting in the loss of

the entire surplus.

These features are present in both the binary and continuous distribution models.

The continuous distribution models along with the global games information structure,

by making concession behavior dependent on first stage demands, gives rise to another

disincentive to making higher demands. A higher demand systematically makes it more

difficult for one’s opponent to concede thereby conferring a greater probability of success

to the latter’s commitment attempt. This in turn reduces the payoff an agent can hope

to get by making the higher demand. It is the addition of this disincentive that results in

the lack of disagreement in the continuous density models. Importantly, it is not merely

the use of continuous densities that yields the agreement results. The presence of noise

is critical for generating the global games argument. Section 4.2 gives an example of

disagreement with continuous, identical and perfectly correlated density functions in the

absence of noise.

The global games structure results in the risk dominant outcome of the second stage

being played as a result of iterated elimination of dominated strategies whenever there
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would otherwise be multiple equilibria. This argument is especially acute for the case

where both agents face the same (but uncertain) revoking cost. Given an incompatible

demand profile, in equilibrium, if one player makes a (sufficiently) higher demand than

the other, then in the second stage either both players stick to their demands (when the

cost is high enough) or the player with the higher demand backs down while the one with

the lower demand gets her way. So, in equilibrium, conditional on making incompatible

demands, each player would want to make the smaller demand. Consequently there is

always some player who wishes to deviate from an incompatible demand profile. When the

distributions are independent, the players weigh the benefits of making a higher demand

against the subsequent shrinking of the risk dominant region (of the state space) where

she actually gets her demand. This systematic relationship between the probability of a

successful commitment attempt and first stage demands makes the results of this analysis

different from those with binary distributions or exogenous commitment probabilities.

The paper proceeds as follows. Section 2 discusses the related literature. Section 3

presents the disagreement results in informational settings involving binary distributions.

Section 4 considers the continuous density case where both parties face an identical but

uncertain cost. Section 5 deals with the independent continuous density case. Section 6

concludes. Proofs are collected in the appendix.

2 Related Literature

Commitment and Reputation in Bargaining: The basic framework of the present

analysis is almost identical to that of a symmetric information version of Crawford(1982).

The only difference is the payoffs that result following incompatible demands if both

player’s choose to back down. In Crawford(1982) the payoff is given by an exogenously

set compromise payoff, while in the present model each player gets what the other offered

and half the remaining surplus. This assumption is also made in Kambe(1999), Abreu and

Gul(2000) and Compte and Jehiel(2002). To show that this difference preserves the argu-

ments leading to disagreement in the asymmetric information model in Crawford(1982),

the latter’s disagreement results are replicated using the present model in Section 3.1.

Given that the analysis gets rid of an additional parameter (the compromise solution),

the disagreement result of Crawford(1982) can in fact be seen in a simpler setting.

While specific arguments regarding the role of commitment tactics in bargaining can

be traced back to Schelling(1960), Crawford(1982) was the first to analyze this issue in

a formal game theoretic setting. A number of papers have extended the asymmetric
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information model of Crawford(1982) in a way closely related to the notion of reputation.

Kambe(1999) replaces the second stage one-shot game with an infinite horizon counterpart

where players may either stick to their demand or lower it, giving rise to a war of attrition

game. While focussing on binary distributions, the analysis rules out the possibility of

delay. Wolitzky(2011) considers the same model as Kambe(1999), but focusses on minmax

profiles and payoffs as opposed to sequential equilibria. The goal here is to characterize

the highest payoff a player can guarantee herself by announcing a bargaining posture,

with the only assumptions being that her opponent is rational and believes that she

will be committed to her posture (face the high cost) with some given probability. In

Myerson(1991), Abreu and Gul(2000) and Compte and Jehiel(2002), the irrational or

obstinate types are given exogenously, and rational players attempt to increase their shares

by mimicking these types. This is in contrast with the earlier papers where following the

choice of any demand, the player could become obstinate with a given probability(the

probability of facing the high revoking cost). Abreu and Gul(2000) show the possibility

of delay when with positive probability a player could be an obstinate type. Compte and

Jehiel(2002) show that the existence of outside options in this setting may cancel out the

effects of these obstinate types.

Relation to the Global Games Literature: A few comments regarding the global

games information structure, critical for the results in this paper, are in order. Firstly,

while the paper heavily uses the methods developed in Carlsson and Van Damme(1993)

(henceforth CvD), it is not possible to directly apply the results of CvD in the present

setting. In CvD it is shown that for a certain kind of perturbation to a fixed complete

information strategic game with multiple strict equilibria, as the perturbation is made

arbitrarily small, the unique rationalizable strategy profile corresponds to the risk domi-

nant profile. In the present paper multiplicity of equilibria is a potential problem in the

second stage game. However, the second stage game is itself generated endogenously by

the choice of demands in the first stage. In such a case it is by no means self evident that

for a sufficiently small amount of noise, in equilibrium only the risk dominant profiles

will be played in all second stage games. Indeed, the latter statement is false for any

positive amount of noise. The crucial part comprises in proving that the class of games

where the multiplicity is unresolved for a small enough amount of noise, has a sufficiently

negligible effect on the choices made in the first stage. The non trivial nature of such

an extension of the equilibrium selection argument to endogenously determined games

in the global games literature along with a general result in this regard can be found in

Chassang(2008). Unfortunately the particular game studied in this paper does not satisfy
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the required conditions of Chassang(2008) and must therefore be studied separately.

Secondly the equilibrium selection result implicit in this paper is not one involving the

perturbation of a perfect information game. The original game in this study is already

one of incomplete information. The equilibrium selection argument in this case applies to

subgame perfect strategy profiles of the incomplete information game. Consequently the

criticism of Weinstein and Yildiz(2007) does not apply in this case. The limit results in

this paper involve the amount of private noise becoming arbitrarily small. The common

uncertainty (public noise) regarding revoking costs shared by both players in the first

stage is held fixed since it is an intrinsic part of the strategic environment studied here

and not itself a perturbation of some complete information game. Any concern regarding

the generality of the class of perturbations considered here would then have to do with the

class of densities considered for private noise. The generality of this class can be assessed

by evaluating assumptions A2 and A3 in Section 4.1.

3 Binary distributions and pervasive disagreement

This section shows that if the revoking costs are drawn from binary distributions, either

0 or some value greater than the size of the entire pie, then there always exist equilibria

which result in a positive probability of disagreement. This is true irrespective of whether

the revoking costs become known privately(asymmetric case) or publicly(symmetric case),

following incompatible demands.

For the rest of the section the following basic model applies. Each subsection will add

a different set of assumptions to this framework. Two players, 1 and 2, play a two stage

game. In what follows, a generic player will be denoted as player i where i ∈ {1, 2}, with

j being the other player, j ∈ {1, 2}, j 6= i. In the first stage player i makes a demand

zi ∈ [0, 1]. If the demands are compatible, z1 + z2 ≤ 1, the game ends and the payoffs

are given by (y1, y2) where yi = zi − d with d = (z1 + z2 − 1)/2. If the demands are

incompatible, z1 + z2 > 1, the payoffs for the players are determined by the outcome of

the following game.

Accept Stick

Accept 1− z2 + d− k1, 1− z1 + d− k2 1− z2 − k1, z2

Stick z1, 1− z1 − k2 0, 0

Table 1: Payoffs following incompatible demands
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3.1 Asymmetric information case

The informational assumptions of this subsection are identical to that of Crawford(1982).

The only modeling difference lies in the payoff specification when both players simulta-

neously concede following incompatible demands. In Crawford(1982) these payoffs are

given exogenously, while it is endogenously determined here. The results below show that

the disagreement results of Crawford(1982) are not weakened by this change. Moreover,

in the absence of additional parameters representing exogenous compromise payoffs, the

disagreement results can be seen more transparently.

Add to the game defined above, the assumption that players in the first stage do not

know the value of ki. They only know that they are independent random variables with

Pr(ki > 1) = q and Pr(ki = 0) = 1 − q. Following incompatible demands and before

playing the second stage game, players get to know their own but not their opponent’s

revoking cost, ki. Given these assumptions the following results hold.

Proposition 1. (a) For any value of q ∈ (0, 1) there exists an equilibrium with a positive,

q2, probability of disagreement.

(b) If 0 < q < 1
2

then any equilibrium must entail a positive probability of disagreement.

Proposition 1(a) may seem like a stronger result than the disagreement result in Craw-

ford(1982). In the latter paper it was shown that disagreement can be supported in equilib-

rium if q is small. The possibility of disagreement with high values of q was indeterminate.

Proposition 1, on the other hand, shows that even if, ex ante, the probability of commit-

ment is arbitrarily high (close to 1), the players may still choose incompatible demands

and therefore lose the surplus with near certainty. However, Gori and Villanacci(2011)

have shown that disagreement can be supported in the Crawford(1982) model even when

q is large.

To understand the rationale behind Proposition 1(a), notice first that following in-

compatible demands if a player faces the high revoking cost her strictly dominant action

(irrespective of the demands made) is to play Stick. Suppose player i plays Accept when

her cost is 0. Then the two second stage choices available to j yield exactly the same pay-

off if both players made a demand of z = q+1
2

. Further if player i makes a demand higher

than z while still playing Accept when her cost is 0, player j must then optimally choose

Stick when her cost is 0. Following a demand profile (z, z) each player can therefore play

Stick with a high cost and Accept with a low cost in equilibrium. A higher demand by

player i can be dissuaded by player j playing Stick irrespective of the cost, forcing i to
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concede when the cost is 0, resulting in a payoff loss. The strategies for the second stage

Bayesian game with demands (z, z)) continue to be in equilibrium if one of the players

makes a lower but still incompatible demand, giving the latter a lower payoff.

Given such a second stage strategy profile and initial demands of z = q+1
2

each, no

player has an incentive to deviate. Such a demand profile, being incompatible, leads to

disagreement with probability q2. It may seem surprising that players would not want to

deviate to simply making a compatible demand, especially when q is very high. Notice,

though, that when q is really high, the share being offered by the other player is also

sufficiently low, 1−q
2

. This low offer makes it a strictly better alternative for a player to

make the higher incompatible demand and rely on the small probability with which she

gets her stated demand.

Proposition 1(b) is driven by the fact that when q < 1
2
, if some player deviates from

compatible demands to making a higher demand, the probability with which the entire

surplus is lost, q2, is less than the probability with which the deviating player gets her

demand q(1 − q). If the deviating player’s increase in demand is small enough, she can

ensure that there is still enough room for the other player to back down upon facing a 0

cost. Given a compatible demand profile, the deviating player would be the one with the

smaller of the two compatible demands.

3.2 Symmetric information case

Asymmetric information has been shown to give rise to inefficiency in numerous bargaining

models. In studying the role of commitment it is important to ascertain if the disagreement

results are an artifact of asymmetric information. Ellingsen and Miettinen(2008) have

shown that, even without asymmetric information, when the probability of a successful

commitment attempt is exogenous(and commonly known), disagreement is an immediate

outcome. This subsection studies the symmetric information scenario by making the

revoking costs publicly known following incompatible demands. However, the probability

of a successful commitment attempt is derived endogenously from equilibrium behavior in

the second stage game. The results below show that when the revoking costs are drawn

from binary distributions, there always exist equilibria that support disagreement. This

is true even if the players know for sure that they will face the same revoking cost in the

second stage but are unsure about its value when making their demands.

In this subsection, in addition to the basic model outlined earlier, it is assumed that

while the costs of backing down are uncertain to both players at the demand stage, they
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become common knowledge following incompatible demand profiles. In particular, in the

first stage it is common knowledge that player i faces cost ki which takes a value greater

than 1 with probability q while Pr(ki = 0) = 1− q.
Two settings are analyzed. In the first, the distribution functions for k1 and k2 are

assumed to be independent. In the second it is assumed that both players face identical

revoking costs, Pr(k1 = k2) = 1. Following incompatible demands the true values of

k1 and k2 are made common knowledge before the second stage game is played. The

departure from Section 3.1 lies in the elimination of asymmetric information in the second

stage game. In this symmetric information setup the following results hold.

Proposition 2. If the distribution functions for k1 and k2 are independent,

(a) For 0 < q < 1, the incompatible demand profile (1, 1) can be supported in equilibrium,

resulting in disagreement with probability q2.

(b) For 0 < q < 1/2, no efficient equilibrium exists.

If the players face the same revoking cost, Pr(k1 = k2) = 1,

(c) For 0 < q < 1 the incompatible demand profile (1, 1) can be supported in equilibrium,

resulting in disagreement with probability q2.

The disagreement results in Proposition 2 depend heavily on the multiplicity of Nash

Equilibria in the second stage games following incompatible demands. The multiplicity

allows for the construction of equilibria in which the probability with which a player backs

down in the second stage does not depend upon the particular demands made in the first

stage. It is this independence of second stage behavior from first stage demands that

makes disagreement supportable in equilibrium.

Consider the setting with independent revoking costs. Following incompatible de-

mands, three of the possible four second stage games are dominance solvable. If both

players face high costs the unique profile is (Stick, Stick). If player i faces the high cost

and j the low cost, the dominance solvable profile involves i playing Stick and j playing

Accept. If both players face 0 costs, however, there exist two strict pure strategy Nash

Equilibria. The disagreement result of Proposition 2(a) relies on the appropriate equi-

librium selection in these second stage games, following different incompatible demand

profiles. In the subgame perfect equilibrium constructed to support the profile (1, 1), the

choice of second stage Nash Equilibrium for the case of k1 = k2 = 0 is entirely independent

of the first stage incompatible demands. In particular, Player 1 plays Stick while Player

2 plays Accept following any incompatible profile when they both face a cost of 0. Player

2 cannot, for instance, force Player 1 to concede by making a lower demand since the
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second stage behavior is independent of the particular incompatible demand profile.

Proposition 2(c) further highlights the acuteness of the second stage multiplicity prob-

lem. In this case both players know that they will face identical revoking costs in the

second stage. So the incentive to making a higher demand that arises from the possibility

that one will find it too costly to back down while one’s opponent wont simply does not

exist. Disagreement is again supported by making appropriate equilibrium selection in

the second stage games, independent of the first stage demands. If player 1 never backs

down, irrespective of the revoking cost, then player 2 can do no worse by playing Accept

when the cost is 0. Further if both players demand the entire pie, making a compatible

offer does not help either. The rationale behind the non existence of efficient equilibria

when the probability of facing a high revoking cost is low, as established in Proposition

2(b), is very similar to that for Proposition 1(b). Deviating from a compatible profile

yields a gain with probability q(1− q) and a loss of the entire surplus with probability q2.

When q is small, deviating to a demand of 1 results in a gain that outweighs the loss.

Interestingly, both players demanding the entire pie cannot be supported in the asym-

metric information environment of Section 3.1. The second stage multiplicity in the sym-

metric information setting, in fact, makes it easier to support disagreement. As argued

earlier, disagreement is easy to support if the probability of a successful commitment at-

tempt can be made independent of the first stage demands. In the strategic environments

described in Sections 4 and 5, it is precisely this independence of second stage behav-

ior from first stage demands that collapses. Further, the particular dependence that is

established overturns the disagreement results of this section.

4 Identical revoking costs with continuous density

functions

This section studies the bargaining game in settings where the revoking cost can take

values from an interval containing the points 0 and 1. The idea captured in this assumption

is that players do not believe that intermediate values of revoking costs are impossible.

The probability attached to such values, however, can be arbitrarily small.

Two players, 1 and 2, play a two stage game. In what follows, a generic player will

be denoted as player i where i ∈ {1, 2}, with j being the other player, j ∈ {1, 2}, j 6= i.

In the first stage player i makes a demand zi ∈ [0, 1]. If the demands are compatible,

z1 + z2 ≤ 1, the game ends and the payoffs are given by (y1, y2) where yi = zi − d with
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d = (z1 + z2 − 1)/2. If the demands are incompatible, z1 + z2 > 1, the payoffs for the

players are determined by the outcome of the following game.

Accept Stick

Accept 1− z2 + d− k, 1− z1 + d− k 1− z2 − k, z2

Stick z1, 1− z1 − k 0, 0

Table 2: Payoffs following incompatible demands

4.1 Noisy signals and agreement

In the first stage, when choosing their demands, players’ prior regarding the cost of backing

down k is given by a random variable K which takes values in [0, k̄] where k̄ > 1. Having

announced their demands, each player i gets a noisy signal, kεi about k before playing

the simultaneous move game. In particular, player i observes a realization of the random

variable Kε
i that is defined by

Kε
i = K + εEi, i = 1, 2

where Ei is a random variable taking values in R and ε > 0 serves as the scale parameter

for the noise. A strategy for player i, comprises of a demand zi ∈ [0, 1] and a measurable

function si(z1, z2) for every incompatible demand profile, that gives the probability of

playing Accept as a function of the the observed cost of backing down kεi . So, si(z1, z2) :

[−ε, k̄ + ε]→ [0, 1]. Γε is used to denote this two stage game for a particular value of ε.

The following assumptions are made on the parameters of the model.

A1. K admits a density h that is continuously differentiable on (0, k̄), strictly positive,

continuous and bounded on [0, k̄].

A2. The vector (E1, E2) is independent of K and admits a density ϕ.

A3. The support of each Ei is contained in the interval [−1, 1] in R and ϕ is continuous

on [−1, 1]× [−1, 1].

As a result of these assumptions the model acquires the structure of a global game

as studied in CvD. I am interested in the perfect equilibrium prediction of Γε for small

values of ε. To this effect the following proposition holds.
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Proposition 3. Given A1, A2, A3, and for sufficiently small ε > 0, if players use pure

strategies for their first stage demands, there is never any disagreement in any perfect

equilibrium of the game Γε.

The impossibility of disagreement in this setting is in sharp contrast with Proposition

2(c) which showed that disagreement can be supported in equilibrium irrespective of the

revoking cost probability function. Notice that the assumptions for Proposition 3 allow

for density functions that can arbitrarily approximate the two point random variables

considered in Section 3.

Figure 1: Second stage equilibrium behavior: Common Cost

To get some intuition for Proposition 3 consider Figure 1. Suppose player 1 makes

the higher demand in an incompatible demand profile (z1, z2). The 0k̄ line represents the

state space for the revoking cost. In the absence of noise (ε = 0), the second stage game

following the incompatible profile (z1, z2) would be one of complete information and would

depend on the realized value (k) of the revoking cost, K. Now for all realizations of K in

the Bk̄ region the dominant strategy for both players would be to play Stick since backing

down would incur a cost strictly greater than the share received by playing Accept. The

unique NE in the second stage for such values of K would thus be (Stick, Stick). If K

takes a value in AB, then Player 2 has a strictly dominant action in Stick since it would

be too costly for her to back down. Conditional on Player 2 backing down, the optimal

choice for Player 1 is to play Accept, since the revoking cost is not higher than the share

she would get by conceding. The unique NE for all such k in AB is thus (Accept, Stick).

K taking a value in 0A, however results in multiplicity. Both (Accept, Stick) and (Stick,

Accept) are pure NE of the second stage game for such values of K. Since the revoking

cost is low enough relative to the amount received by both players upon concession, the

problem now becomes one of coordination. In the absence of noise, the choice of Nash

Equilibrium in this region can be entirely arbitrary.

It turns out, however, that for all values of K in the region 0B the unique risk dominant
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profile is (Accept, Stick). In the presence of a small amount of noise the setting becomes a

global game. Iterated elimination of strictly dominated strategies in the resulting Bayesian

games results in the players coordinating on the risk dominant profile for every realization

of K. This in turn implies that while (Stick, Stick) is played for all realizations in the

region Bk̄, (Accept, Stick) would be played for all realizations in the 0B region.

Player 1 receiving a noisy signal sufficiently in the interior of Bk̄ would know for

sure that the true state of the world is in fact in Bk̄ and would therefore play her strictly

dominant action Stick for such observations. Similarly player 2 would play Stick following

any observation sufficiently in the interior of Ak̄. Given that player 2 plays Stick for

observations in Ak̄, player 1 upon observing a value sufficiently in the interior of AB

would infer that player 2 must have observed a value greater than A. It would then

be conditionally dominant for Player 1 to play Accept for such observations. So there

emerges an interval where the profile (Accept, Stick) is played. The question now is what

is the left limit of this interval. In other words, what is the highest observed value of K

when one of these players choose to switch their actions from the (Accept, Stick) profile.

For a small enough value of ε it turns out that this left limit cannot be greater than 0,

resulting in the profile (Accept, Stick) being played for all values of K when earlier there

was multiplicity.

A crucial part of this argument is the existence of a sufficiently large (with respect to

ε) region AB. So if Player 1 makes a sufficiently larger demand than Player 2, given an

incompatible profile, whenever some player does back down it must be Player 1. Since

backing down always pays less than simply accepting the other parties offer, Player 1

would be better off making a compatible demand in the first stage. More importantly

this shows that conditional on an incompatible demand being made each party would

want to make the lower demand and force the other to concede. This applies to the case

when the region AB is not that large. In this case one of the players would have a strict

incentive to lower her demand marginally and force a concession from the other whenever

the cost is low. Such a deviation may not be possible if lowering ones demand essentially

leads to a compatible profile. However it is shown that for an incompatible demand profile

that makes deviation to compatible positions unprofitable, it must be that both players

are making sufficiently high demands. This in turn ensures the possibility of lowering

ones demand and still make it incompatible.

The result, therefore, relies on these two features of equilibrium strategies in this

game. Firstly for a given incompatible profile, if no player wants to simply deviate to

a compatible demand then the original demands must be sufficiently high. Secondly,
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conditional on making incompatible demands that are sufficiently high, each player has

a strict incentive to make a lower demand and force the other player to concede most of

the time. These two features make the existence of an incompatible demand profile and

consequently disagreement, in equilibrium, an impossibility.

It should be pointed out that the assumptions A1, A2, A3, are slightly weaker than

the corresponding assumptions made for the one-dimensional case in CvD. In particular

the noise density function is allowed to be discontinuous at the boundary points of its

support in the present study, while this is ruled out by the assumptions in CvD.2

The outline of the proof is as follows. Lemma 1 establishes a result that is crucial for

the global game arguments used for the result. In particular the distribution of player

1’s observation conditional on player 2’s observation is symmetric to the distribution

of player 2’s observation conditional on player 1’s observation, in the sense that they

add up arbitrarily close to 1. Lemma 2 establishes a continuity result. It shows that

for a given profile of measurable strategies,(si)i∈{1,2} , and for any incompatible demand

profile, the probability with which player i chooses Accept and the expected value of the

true revoking cost, k, conditional on player j making an observation,kj, is continuous in

player j’s observation. Lemma 3 shows how following an incompatible demand profile

if player i observes a cost sufficiently larger than 1 − zj her dominant action is to play

Stick. It is then argued in Lemma 4 that following incompatible demands (z1, z2) if zi

is sufficiently larger than zj, then there will always be observation values for which the

unique dominance solvable outcome would involve i backing down while j plays Stick.

Lemmas 5 - 7 then show that following such an incompatible demand profile, either for

all lower observations i will continue to back down with j playing Stick, or there will be

two observation values particularly close to each other where the two players will switch

their actions. Lemma 8, the critical part of the proof, then shows that if zi is sufficiently

larger than zj, such switch points cannot exist and therefore player i will continue to back

down with j playing Stick. This result is a consequence of the global games information

structure that appears in the model for small enough ε > 0. Lemma 8 relies heavily on

the properties of symmetry and continuity established in Lemmas 1 and 2. This result

allows for a complete characterization of equilibrium second stage strategies and payoffs

following incompatible demand profiles and is stated in Lemma 9.

2Indeed, the motivating example in CvD involves noise with a uniform density, and does not satisfy

the assumptions of their paper. However the discontinuity at the boundary points merely requires a little

more work as is done in Lemma 2, and does not endanger the equilibrium selection argument in CvD. I

thank Hans Carlsson for helping me with my doubts regarding this issue.
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I then consider the choice of first stage demands. It can be easily seen that demands

that add up to less than 1 always allow for deviations. Lemma 10, in addition, also shows

that incompatible profiles with one player making a sufficiently higher demand than the

other cannot be supported. This is a natural implication of Lemma 8 where the player

with the higher demand was shown to always be the one to concede. Making a compatible

demand would do strictly better than making such a high incompatible demand. Next,

Lemma 11 establishes a lower bound that the sum of the demands must satisfy to be an

incompatible profile from which neither player wants to deviate to a compatible profile.

Finally it is shown that if an incompatible profile of demands involves z1 and z2 that do not

differ much in value (no demand is sufficiently greater than the other as in Lemma 8 ) but

sum up to greater than the bound mentioned in Lemma 11, then there is always a player

i who could strictly improve her payoff by making a lower but still incompatible demand.

This lower demand by i forces j, in equilibrium, to always be the one backing down in

the second stage. These arguments together exhaust the possible set of incompatible

demand profiles. Consequently it is shown that equilibria involving pure strategies in the

first stage cannot involve incompatible demands, thereby eliminating the possibility of

disagreement.

First I define a few terms for the game Γε that allow the use of Lemma 4.1 in Carlsson

and van Damme(1993), henceforth (CvD). Let F ε
i (kj|ki) and f εi (kj|ki) be the distribution

and density functions, respectively, of Kε
j conditional on Kε

i = ki. Let ϕε be the joint

density of (εE1, εE2). Then,

f εi (kj|ki) =

∫
h(k)ϕε(k1 − k, k2 − k)dk∫ ∫
h(k)ϕε(k1 − k, k2 − k)dkjdk

(1)

The following lemma is the one dimensional version of Lemma 4.1 in CvD that applies

to the present model. This symmetry result is critical for the proof of Lemma 8.

Lemma 1 (CvD). Let k1, k2 ∈ [−ε, k̄ + ε]. Then there exists a constant κ > 0 such that

for sufficiently small ε > 0,

|F ε
1(k2|k1) + F ε

2(k1|k2)− 1| ≤ κε (2)

Next, it is shown that for a pair of measurable second stage strategies, player i’s

expectation regarding the true value of k and the probability with which j plays Accept,

conditional on observing kεi are continuous functions of kεi . Given j’s second stage strategy

sj, let the probability with which i, conditional on observing kεi , expects that j will play
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Accept be denoted by Pr(Aj|kεi , sj).3 So,

Pr(Aj|kεi , sj) =

∫
sj(kj)f

ε
i (kj|kεi )dkj (3)

Also, let i’s expectation of k given her observation kεi be denoted as Eε(k|kεi ).

Lemma 2. For a given incompatible demand profile (z1, z2) and strategies si, sj, Pr(Aj|kεi , sj)
and Eε(k|kεi ) are continuous in player i’s observation kεi .

Equilibrium behavior in the second stage game following an incompatible demand

profile is considered next. The payoffs specified in Table 2 make it evident that if the

observed cost is high enough the player would strictly prefer to play Stick. The following

lemma captures this immediate but useful implication of observing such high costs of

backing down.

Lemma 3. In equilibrium, following an incompatible demand profile (z1, z2), conditional

on observing kεi > 1− zj + ε, Stick is the strictly dominant action for player i.

Lemma 3 shows that for high enough observation values (i.e. greater than 1 −
min{z1, z2} + ε) the unique dominance solvable outcome in the second stage game is

(Stick, Stick).

The next lemma shows that if the higher of the two incompatible demands is suffi-

ciently larger than the lower demand, there will be an interval of observations that would

always lead to a unique dominance solvable outcome in the second stage game where

the player with the higher demand plays Accept while the other plays Stick. This is the

crucial dominance solvable region in CvD that has a remote influence on the rest of the

state space.

Lemma 4. For an incompatible demand profile (z1, z2) such that zi− zj > 4ε, the unique

dominance solvable outcome of the second stage game following both players making an

observation in (1− zi + 3ε, 1− zj − ε), involves i playing Accept and j playing Stick.

Given an equilibrium of Γε and a pair of incompatible demands (z1, z2) where zi−zj >
4ε, let kε∗i denote the highest observation value kεi below 1 − zi + 3ε for which i chooses

to play Stick. Similarly let kε∗j denote the highest observation value kεj below 1− zi + 3ε

for which j chooses to play Accept. It is assumed that if i following some observation

3The dependence of sj on the demand profile (z1, z2) is suppressed for notational convenience, but it

should be noted that the arguments are for a given pair of incompatible demands.

18



strictly greater than −ε is indifferent between her actions she chooses to play Stick while

when j is indifferent he plays Accept. The next lemma shows that kε∗i and kε∗j are well

defined. In other words, it is shown that unless the players continue to play the strategies

they used in the dominance solvable region of Lemma 4 for even lower values of K, there

must exist points (highest value of their respective observations) on the state space at

which the players switch the strategies. The continuity result of Lemma 2 is critical to

establishing this result.

Let Bε
i (z1, z2) denote the set of observations kεi > −ε such that kεi ≤ 1− zi + 3ε and i

plays Stick for such observations (i.e. si(k
ε
i ) = 0). Similarly let Bε

j(z1, z2) denote the set

of observations kεj > −ε such that kεj ≤ 1−zi+3ε and j plays Accept for such observations

(i.e. sj(k
ε
j) = 0).

Lemma 5. In any equilibrium of Γε following a pair of incompatible demands (z1, z2)

where zi − zj > 4ε, either Bε
i (z1, z2) is empty or kε∗i = max{x|x ∈ Bε

i (z1, z2)} is well

defined.

Similarly, either Bε
j(z1, z2) is empty or kε∗j = max{x|x ∈ Bε

j(z1, z2)} is well defined.

The following lemma shows that if one player does not switch her second stage action

at smaller values of observed cost from that used in the dominance solvable region of

Lemma 4, then the other player would not make a switch either.

Lemma 6. If Bε
i (z1, z2) or Bε

j(z1, z2) is empty then they are both empty.

The next lemma establishes a relation between kε∗i and kε∗j when they are well defined.

In particular it is shown that the switching points when they exist would be near each

other.

Lemma 7. In any equilibrium of Γε following a pair of incompatible demands (z1, z2)

where zi − zj > 4ε if the terms are well defined then, kε∗i < kε∗j + 2ε.

The next lemma contains the crucial argument that drives the result, since it shows

that for incompatible demands with the higher demand sufficiently larger than the smaller

one, the player with the higher demand always concedes whenever the observed cost is in

the range that generated multiplicity in the complete information game. The symmetry

of conditional beliefs guaranteed by Lemma 1 plays a significant role here.

Lemma 8. In any equilibrium of Γε following a pair of incompatible demands (z1, z2)

where zi − zj ≥ max{4ε, (κ+2)ε
d
}, the sets Bε

i (z1, z2) and Bε
j(z1, z2) are empty.
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Lemma 8 makes it immediate that following an incompatible demand profile (z1, z2),

where zi−zj ≥ max{4ε, (κ+2)ε
d
}, player j plays Stick irrespective of the observation kεj. On

the other hand player i plays Stick for kεi > 1−zj+ε while playing Accept for kεi < 1−zj−ε.
This allows for a characterization of the expected payoffs in the first stage, from making

such incompatible demands. Let yi(z1, z2) and yj(z1, z2) denote i and j’s expected payoff

in equilibrium from making demands zi and zj. The following lemma is delivered simply

by calculating payoffs given the characterization of equilibrium behavior in the second

stage discussed in Lemmas 3, 4 and 8.

Lemma 9. In any equilibrium of Γε following a pair of incompatible demands (z1, z2)

where zi − zj ≥ max{4ε, (κ+2)ε
d
}, it must be that

zjF
ε
i (1− zj − ε) ≤ yj ≤ zjF

ε
i (1− zj + ε) (4)

yi ≤
∫ 1−zj

0

(1− zj − w)h(w)dw (5)

The analysis can now turn to the choice of first stage demands. Let the set of demand

profiles that can be supported by equilibrium strategies in Γε be denoted by Eqε. Further

let φ(d) = max{4ε, (κ+2)ε
d
}. The following lemma shows how equilibrium demands could

never add up to less than 1. Also, it states the immediate implication of Lemma 8 that

incompatible demands with one player making a significantly higher demand than the

other cannot be supported in equilibrium.

Lemma 10. If (z1, z2) satisfies either of the following conditions,

a. z1 + z2 < 1

b. z1 + z2 > 1 and |z1 − z2| ≥ φ(d)

then, (z1, z2) 6∈ Eqε.

Let k̂ =
∫

min{k, 1}h(k)dk. The following lemma shows that for an incompatible

demand profile to be supported in equilibrium, the excess demand must be above a positive

lower bound. If this were not to be the case then at least one of the players would have

a strict incentive to deviate to making a compatible demand.

Lemma 11. If z1 + z2 > 1 and d < k̂/2 then (z1, z2) 6∈ Eqε.

Recall that φ(d) = max{4ε, (κ+2)ε
d
}. Let φ∗ = φ(k̂/8). The next lemma shows that

incompatible demands that are close to each other but result in an excess demand that
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exceeds the bound from Lemma 11 cannot be supported in equilibrium. Since the demand

profile satisfies the lower bound, the result relies on the existence of some player i who can

lower her demand enough to force the j to always do the conceding, thereby generating a

higher expected payoff for i.

Lemma 12. If z1 + z2 > 1, d ≥ k̂/2 and |z1 − z2| < φ(d) then (z1, z2) 6∈ Eqε for small

enough ε.

Proof of Proposition 3

Proof. Proposition 3 follows immediately from the observation that Lemmas 10, 11 and

12 exhaust the entire set of incompatible demand profiles.

4.2 Example of disagreement in the absence of noise

With revoking costs perfectly correlated and identical across players, Proposition 3 shows

that with continuous density functions there is no disagreement while Proposition 2 shows

that there can always be disagreement with binary distributions. The critical difference

that gives rise to the contrasting results, however, is the presence of noisy signals in the

continuous density case.4 This can be seen by observing that without the noise there

may be disagreement even in the continuous density case. An example of such a scenario

follows.

Consider the game outlined earlier in this section with the additional assumption that

ε = 0. In other words, both players, following incompatible demands get to know the

precise value of the revoking cost. Let the distribution function for the revoking cost

be given by F with the interval [0, k̄] as its support where k̄ > 1. It is assumed that

F (1/4) = 9/10 and F (q) = 2/5 where q ∈ (0, 1/4). As outlined earlier, the players choose

their demands in the first stage, with common knowledge regarding the distribution of

the revoking cost, k. Following the demand stage, both players get to know the realized

value of k and then decide simultaneously whether to stick to their demand or back down.

Consider the following subgame perfect strategy profile that leads to a positive proba-

bility of disagreement. The players demand identical amounts, namely z1 = z2 = 3/4. In

the second stage, if k ≥ 1/4, both players play Stick. If k ∈ (q, 1/4) then player 1 plays

Accept while player 2 plays Stick. If k ≤ q then player 1 plays Stick while player 2 plays

Accept. In the subgame following player i making a demand, z̃i > zi, player −i plays Stick

4Global game arguments require the state space to be a continuum and therefore has no analog in the

discrete case.
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irrespective of the realized value of k, while player i plays Accept if k ≤ 1/4 and Stick

otherwise. In the subgame following player i making a demand, z̃i < zi but z̃i > 1 − zi,
the following profile is played. If k ≥ 1 − z̃i both players play Stick. If k ∈ 1/4, (1 − z̃i)
then player i plays Stick and player −i plays Accept. Finally, if k ≤ 1/4 then player i

plays Accept while player −i plays Stick.

The expected payoff to player 1, y1, from the above strategy profile is given by,

y1 =
3

4
· 2

5
+

1

4
· 1

2
−
∫ 1/4

q

kf(k) dk

The expected payoff to player 2 is given by,

y2 =
3

4
· 1

2
+

1

4
· 2

5
−
∫ q

0

kf(k) dk

Clearly, y1 >
3
10

and y2 >
3
8
. It can be easily checked that the second stage strategies

are all Nash Equilibria of the subgames induced by the different values of k. To see that

no player can do better by changing the first stage demand, notice first that by making

a compatible demand a player would get, at best, 1/4 which is lower than both y1 and

y2. If a player deviates to making a higher demand than 3/4 then her expected payoff

would fall to strictly less than 1/4, rendering it a loss making deviation. If either player

makes a lower demand, then given the stated strategy profile her highest possible expected

payoff must still be strictly less than 3
4
· 1

10
, again less than both y1 and y2. The strategy

profile outlined above is therefore subgame perfect and results in a positive probability of

disagreement.

5 Independent revoking costs.

In this section I consider the opposite benchmark that involves the revoking costs being

independently distributed. The first stage game is exactly as outlined in Section 4. Further

the payoffs following incompatible demands are determined by the outcome of the game

outlined in Table 1. In the first stage the players’ common priors regarding the revoking

costs k1 and k2 are given by the random vector K that takes values in [0, k̄1]× [0, k̄2] with

k̄i > 1. Following incompatible demands both players observe the realized value of K

before taking their second stage actions.

In the following analysis, whenever there is multiplicity in the second stage game, the

risk dominant outcome will be selected. Instead of imposing it, this equilibrium selection

criterion can indeed be derived by perturbing the model above to give it a global game
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information structure as was done in Section 4. The limit equilibrium prediction of such

a perturbed model as the amount of noise is made arbitrarily small then delivers the

equilibrium selection rule of the risk dominant outcome being played. The proof for this

result, however, is largely of a technical nature and of marginal interest with respect to

the results in CvD and Section 4.1 and is therefore omitted.5 In particular, it requires

the extension of the two dimensional version of the global games argument in CvD to the

present game where the game itself is endogenously determined by the actions taken in

the first stage.

One difference between the global games argument involved in Section 4.1 and the

present section should be noted. In Section 4.1, when both players made equal demands

that were incompatible, the global games argument could not resolve the subsequent

second stage multiplicity. This is due to the lack of the required dominance solvable region.

In this section, on the other hand, due to the independent distributions assumption,

the required dominance solvable regions exist irrespective of the particular incompatible

demand profile. This allows the expected payoff following any demand profile to be pinned

down precisely.

Let Θ = [0, k̄1]× [0, k̄2]. While I do not explicitly solve the full global games model, the

following assumption on the fundamentals of the model is required for the global game

argument to work (with the addition of the noise parameters) and is therefore stated.

A1a. K admits a density h that is strictly positive, continuously differentiable, and

bounded and continuous on Θ.

Suppose (z1, z2) is an incompatible demand profile. Let D(z1, z2), D1(z1, z2) and

D2(z1, z2) denote the part of the state space where the dominance solvable outcome of the

second stage game are (Stick, Stick), (Stick, Accept) and (Accept, Stick), respectively.

Formally,

D(z1, z2) = {k ∈ Θ|k1 > 1− z2 and k2 > 1− z1} . (6)

Di(z1, z2) = {k ∈ Θ|ki > 1− zj and kj < 1− zi} (7)

Figure 2 depicts the second stage equilibrium behavior over the entire state space,

0k̄1Wk̄2, following an incompatible demand profile (z1, z2) where z1 > z2. The dominance

solvable regions D(z1, z2), D1(z1, z2) and D2(z1, z2) correspond to MQWR, MPk̄1Q and

MNk̄2R. 0NMP marks the region where both (Stick, Accept) and (Accept, Stick) are

strict Nash equilibria.

5The proof for this result is available upon request.

23



Figure 2: Second stage equilibrium behavior:Independent Costs

The equilibrium selection argument of risk dominance splits the state space (Θ) into

three regions, following any incompatible demand profile, in terms of the action profile

played in the second stage game. Let Ri(z1, z2) denote the region of the state space where

the risk dominant outcome in the second stage game following the incompatible demand

profile (z1, z2) involves Player i playing Stick and Player j playing Accept. From Table 1

these regions can be completely characterized. In particular,

Ri(z1, z2) =

{
k ∈ Θ|ki < 1− zj and kj < 1− zi and kj < ki

d+ 1− zi
d+ 1− zj

+
d(zj − zi)
d+ 1− zj

}
∪Di(z1, z2) (8)

In Figure 2, R1(z1, z2) and R2(z1, z2) correspond to LMQk̄1 and 0LMRk̄2. From (8) it

can be seen that the line LM passes through the origin only if the two demands are the

same.

Given this characterization it is possible to precisely pin down the payoffs following

incompatible demands. In particular, following incompatible demands (z1, z2), if k ∈
R1(z1, z2), Player 1 gets z1 while Player 2 gets 1 − z1 − k2. Similarly if k ∈ R2(z1, z2),

Player 1 gets 1− z2− k1 while Player 2 gets z2. Finally if k ∈ D(z1, z2) then both players

get 0. Notice that each player now faces a tradeoff between making a higher demand and

increasing her risk dominant region where she actually receives her demand.

Figure 3 shows the changes in second stage behavior when Player 1 lowers her demand

from z1 to a still incompatible z̄1. Player 1, therefore, receives the lower share z̄1 whenever
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Figure 3: Lower demand and larger risk dominant region

k takes a value in her risk dominant region. However, her risk dominant region itself has

now increased because of her lower demand, from LMQk̄1 to UTV k̄10. Her greatest gain

comes from converting the TV QM region which earlier resulted in the full surplus being

lost, to a region where she gets her exact demand. It is this tradeoff that prevents players

from making arbitrarily high demands and results in the agreement results below.

Proposition 4. If A1a is satisfied and K1 and K2 are independently distributed,with

distribution functions F1 and F2, then the efficient demand profile (1/2, 1/2) can be sup-

ported in equilibrium, for any pair of Fi that First Order Stochastically Dominate the

uniform distribution.

This efficiency argument is further strengthened by the non existence of equilibria

supporting disagreement for the same range of distribution functions. In particular, the

following result holds.

Proposition 5. If A1a is satisfied and K1 and K2 are independently distributed, with

distribution functions F1 and F2, then disagreement can not be supported in equilibrium

for any pair of Fi that First Order Stochastically Dominate the uniform distribution.

Example of Disagreement when FOSD Relation Fails: The following example

was numerically computed using a program that calculated expected payoffs following

incompatible demands exactly as outlined above, on Mathematica. Let K1 and K2 be

identically and independently distributed according to a Beta distribution, F (α, β), with
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α = 2 and β = 15. Observe that F does not FOSD the uniform distribution. Let the two

players make equal demands of z1 = z2 = 0.5985. Following any incompatible demand

profile (z1, z2) and observations of (k1, k2), the corresponding unique risk dominant profile

is played in the second stage. It can be checked that such a strategy profile satisfies

subgame perfection. Being incompatible, such a demand profile gives rise to disagreement

with positive probability.

6 Conclusion

The ability to attempt commitment to aggressive demands does not necessarily lead to

disagreement in bargaining between two rational agents, when the success of the commit-

ment attempt is ex ante uncertain. Firstly, it is important to specify the cause of such

commitment ability. If players have access to exogenous random commitment devices,

then disagreement would necessarily follow, as shown in EM. If the ability to commit

arises from the presence of uncertain revoking costs, then the possibility of disagreement

depends on the finer details of the players beliefs about such uncertainty. If the players

believe that revoking costs can only take values of 0 or some number greater than the

surplus, then disagreement can always be supported in equilibrium, even if they know that

their revoking costs are identical (though uncertain). However, if the players’ believe that

the revoking costs can take all possible intermediate values as well then the possibility of

disagreement is significantly limited. If the revoking costs are identical (but uncertain)

then disagreement cannot obtain, irrespective of the particular distribution chosen. Even

when the revoking costs are independent across players there cannot be any disagreement

if the distribution functions FOSD the uniform distribution. In a sense if the ex ante

probability of facing a high revoking cost is high enough, disagreement cannot occur.

Secondly, the key factor influencing the different results is the dependence of conces-

sion behavior on first stage demands. Binary distributions for revoking costs or the use of

exogenous commitment devices result in equilibria where the probability of a successful

commitment attempt does not depend on the demands made in the first stage. Con-

tinuous densities with noisy signals force equilibrium behavior in the game to establish

a systematic dependence of concession behavior on first stage demands. In particular

a higher demand always increases the success probability of the opponents commitment

attempt while reducing one’s own. Equilibria are therefore determined by the tradeoff

between making a larger demand and increasing the probability of actually getting one’s

own demand. Such incentives often rule out the possibility of disagreement.
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The analysis in this paper also highlights a particular feature of modeling behavioral

types. In particular, models of behavioral types tend to be discrete in the sense that

players are either fully rational or a specified type, due to the use of binary distributions.

Allowing for the density, instead, to be continuous in the cost that must be paid to

deviate from the actions of some type, necessarily makes the model a continuous one.

In the present analysis this distinction led to sharply contrasting results. Whether such

contrast applies more widely remains to be ascertained.

A Appendix

Proposition 1(a)

Proof. Fix q ∈ (0, 1). Let z = q+1
2

. Following an incompatible demand profile (z1, z2), in

the second stage Bayesian game, player i must always play the strictly dominant action

Stick when ki > 1. Equilibrium behavior when ki = 0 needs to be pinned down. In this

regard notice that playing Accept when ki = 0 for both i, would constitute a Bayesian

Nash Equilibrium if the following two inequalities hold.

q(1− z2) + (1− q)(1− z2 + d) ≥ (1− q)z1 (9)

q(1− z1) + (1− q)(1− z1 + d) ≥ (1− q)z2 (10)

The left hand (right hand) side of the inequalities gives the expected payoff to the player

with ki = 0 from playing Accept (Stick) when her opponent’s strategy involves playing

Accept when the cost is zero and Stick when it is greater than 1. (9) and (10) hold with

equality if z1 = z2 = z = q+1
2

.6 Clearly the demand profile (z, z) is incompatible.

Consider now the following strategies. Each player demands z. Following the demand

profile (z, z) player i plays Accept when ki = 0 and Stick when ki > 1. Following a

demand profile where zi = z but zj > z, player i plays Stick irrespective of ki while j

plays Accept when kj = 0 and Stick when kj > 1. Following an incompatible demand

profile where zi = z but zj < z, both players play Accept when their cost is 0 and Stick,

when it is high. The strategies also subscribe actions that constitute a BNE for any

subgame not considered above. It will be shown that such a strategy profile constitutes

a Perfect Bayesian Nash Equilibrium of the game.

Consider first, behavior in the second stage subgames. Only the behavior of the types

facing ki = 0 needs to be checked, since i must always play Stick when ki > 1 as it is

6Note that d(z, z) = q
2
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the strictly dominant action in that case. Following the profile (z, z) both players with 0

cost play Accept. It has been shown earlier that for this to be a BNE (9) and (10) must

be satisfied. Given the derivation of z, this is in fact the case. For incompatible demand

profiles where zi = z and zj > z, the strategies suggest that the low type of player i

should play Stick while player j with kj = 0 should play Accept. Given j’s strategy i’s

low type choice would be optimal if

q(1− zj) + (1− q)(1− zj + d) < (1− q)z (11)

Given that this relation holds with equality when zj = z and that the left hand side is

strictly decreasing in zj, it must be that for zj > z, (11) is indeed satisfied. Further given

that player i plays Stick always, player j does strictly better by playing Accept when

kj = 0. Finally for incompatible demand profiles with zi = z and zj < z, notice that the

inequalities (9) and (10) continue to be satisfied. As a result the strategies involving low

cost types playing Accept does induce a BNE in such subgames. As for the first stage

decisions, consider player 1. The expected payoff to 1 from demanding z when 2 demands

z is given by q(1−q)z+(1−q)[q(1−z)+(1−q)(1−z+(2z−1)/2)]. If 1 demands less than

z, (z1 < z) her expected payoff is q(1−q)z1 +(1−q)[q(1−z)+(1−q)(1−z+(z+z1−1)/2)]

which is clearly less than her payoff from not deviating. If 1 demands z1 > z then her

expected payoff is merely (1− q)(1− z), again strictly less than if she had not deviated.

It remains to be shown that no player would want to deviate from the profile (z, z) to

making the compatible demand 1 − z. Suppose this is a profitable deviation. Then it

must be that,

q(1− q)z + (1− q)[q(1− z) + (1− q)(1− z + d)] < 1− z

⇒q(1− q)z + (1− q)(1− z) + (1− q)2d < 1− z

⇒q(1− q)z − q(1− z) + (1− q)2 q

2
< 0

⇒z − zq − 1 + z +
(1− q)2

2
< 0

⇒2z − 1− zq +
(1− q)2

2
< 0

⇒q − q + 1

2
q +

(1− q)2

2
< 0

⇒2q − q2 − q + 1− 2q + q2 < 0

⇒q > 1 (12)

(12) contradicts the initial assumption of q ∈ (0, 1). As a result no player would want to

deviate to making a compatible offer, from the incompatible profile (z, z).
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Proposition 1(b)

Proof. Suppose not. Let the compatible demand profile supported in equilibrium be

(z1, z2) where z1 + z2 = 1. WLOG let z1 ≤ z2. Notice that substituting z1 and z2 into the

inequalities (9) and (10) makes the inequalities strict. Further d(z1, z2) = 0. In particular,

q(1− z2) + (1− q)(1− z2) > (1− q)z1. Consequently if player 1 makes a higher demand,

z1 + δ, the inequality will still be satisfied for small enough values of δ. Indeed, to satisfy

the inequality (9), δ should satisfy, q(1− z2) + (1− q)(1− z2 + (δ/2)) ≥ (1− q)(z1 + δ),

which in turn implies that,

δ ≤ 2qz1

1− q
(13)

To ensure that such a deviation maintains the second inequality it must be that, q(1 −
z1 − δ) + (1− q)(1− z1 − δ + (δ/2)) ≥ (1− q)z2. This in turn, simplifies to,

δ ≤ 2qz2

1 + q
(14)

So if δ satisfies both (13) and (14), then following such a deviation, the subgame involving

the incompatible demand profile, (z1 + δ, z2), would involve both players playing Stick

when the cost is high and Accept when it is 0. To see that no other BNE exists in the

second stage game, note that both low types playing Stick cannot occur in equilibrium.

Further given that the inequalities (13) and (14) are satisfied, if one of the low types plays

Accept then the low type of the other player must also play Accept. The expected payoff

to player 1 from such a profile would therefore be, q2(0) + q(1− q)(z1 + δ) + (1− q)[q(1−
z2) + (1− q)(1− z2 + (δ/2))]. For this deviation to be profitable it must be that,

[q(1− q) + (1− q)]z1 + q(1− q)δ + (1− q)2(δ/2) > z1

⇒q(1− q)δ + (1− q)2(δ/2) > z1q
2

⇒(1− q2)δ > 2z1q
2

⇒δ > 2z1q
2

1− q2
(15)

Let z1 > 0. Then for such a deviation to exist, it simply needs to be shown that there exists

δ > 0 that simultaneously satisfies (13), (14) and (15). Notice that 2z1q2

1−q2 <
2qz1
1−q ⇔

q
1+q

< 1,

and is satisfied for all q > 0. Further 2z1q2

1−q2 <
2qz2
1+q
⇔ z1q

1−q < z2. Given that z1 ≤ z2, this is

satisfied for all q < 1/2. Consequently, if z1 > 0 and 0 < q < 1/2, there always exists a

profitable deviation for player 1.

For the case where z1 = 0 and z2 = 1. If 1 deviates by demanding δ > 0 that satisfies

δ < 2q
1+q

, the inequality (9) would be reversed and hold strictly. In other words following
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the demand profile (δ, 1), if player 2 plays Accept when k2 = 0 and Stick otherwise, then

player 1 would play Stick always. Also, given that 1 plays Stick always, 2’s optimal

action when k2 = 0 is indeed to play Accept since it gives a payoff of 1 − δ as opposed

to the payoff of 0 if Stick is played. So these strategies constitute a BNE of the subgame

following (δ, 1). Both players playing Stick always is not a BNE of this subgame since the

low type of player 2 would strictly prefer to play Accept, as just described. The low types

of both players playing Accept cannot happen due to the strict reversal of the inequality

(9). So the only other potential BNE of this subgame involves player 2 playing Stick

always while the low type of player 1 plays Accept. This would require the low type of

player 2 to choose Stick, requiring, q(1 − δ) + (1 − q)(1 − δ + (δ/2)) ≤ (1 − q)(1). But,

this inequality is violated if δ < 2q
1+q

. The only BNE following a deviation to δ, therefore

involves player 1 always playing Stick with the low type for player 2 playing Accept. Since

this deviation gives a strictly positive payoff to player 1 it is a profitable deviation.

So it has been shown that given any compatible demand profile (z1, z2) with z1 ≤ z2

as long as 0 < q < 1/2, there always exists a profitable deviation for player 1. Clearly, a

symmetric argument applies for z2 ≤ z1. Consequently with 0 < q < 1/2 there cannot be

any equilibrium involving compatible demands.

Proposition 2(a)

Proof. Consider the following strategies. Both players demand 1 in the first stage. Fol-

lowing any incompatible demand profile (z1, z2), player i plays Stick when ki > 1. If

ki = 0 and kj > 1, then player i plays Accept. If k1 = k2 = 0, then player 1 plays Stick

while player 2 plays Accept.

Table 1 makes it clear that the strategies outlined above induce a Nash Equilibrium

in every subgame following incompatible demand profiles. Notice that these subgames

are dominance solvable except for the case where k1 = k2 = 0. In the latter case both

(Accept, Stick) and (Stick, Accept) are Nash Equilibria. The particular selection made

in this case is entirely arbitrary, but sufficient to support the incompatible profile as an

equilibrium outcome.

The expected payoff to player 1 from the strategies above is q(1−q)(1)+(1−q)(1−q)(1).

Deviating to any lower incompatible demand z1 gives an expected payoff, q(1− q)(z1) +

(1 − q)(1 − q)(z1), while making a compatible demand gives a payoff of 0. So player

1 has no incentive to deviate. Player 2’s expected payoff from the stated strategies is

q(1− q)(1). Deviating to a lower but still incompatible demand, z2, gives her q(1− q)z2.
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Finally deviating to a compatible demand gives her 0. As a result player 2 also has no

incentive to deviate.

Proposition 2(b)

Proof. Suppose not. Let (z1, z2) be supported in equilibrium, where z1 + z2 = 1. Suppose

player i deviates to demanding z̃i = 1. Player i’s expected payoff from such a deviation

must be no less than q2(0)+q(1−q)(1)+(1−q)q(1−zj)+(1−q)2(1−zj) = q(1−q)+(1−q)zi.
For such a deviation to not be profitable it must be that zi ≥ q(1− q) + (1 − q)zi. This

implies, zi ≥ 1−q. Given that q < 1/2 and z1 +z2 = 1, it must be that for some i ∈ {1, 2},
zi < 1− q holds. Such a player i would then do strictly better by deviating to a demand

of 1.

Proposition 2(c)

Proof. Let k1 = k2 = k. When k > 1, the unique Nash Equilibrium in the second

stage game involves both players playing Stick. k = 0, on the other hand, results in two

pure strategy NE, namely (Accept, Stick) and (Stick, Accept). Consider the following

strategies. Both players demand 1. Following any incompatible demand profile (z1, z2),

if k = 0, player 1 plays Stick while 2 plays Accept. Facing k > 1, both players play Stick.

As mentioned earlier, the subgame strategies constitute Nash Equilibria. Player 1 gets

an expected payoff of 1− q. By deviating to making any other demand z1, the expected

payoff would become strictly less, (1 − q)z1. Player 2, on the other hand, would always

get 0 irrespective of her first stage demand and therefore has no incentive to deviate.

Consequently the strategies support the demand (1, 1) in equilibrium. The subsequent

probability of disagreement is therefore q2.

Lemma 1(CvD)

Proof. Let l = maxk∈[0,k̄] |h′(k)|, where h′(k) is the derivative of the function h at k for

k ∈ (0, k̄) with h′(0) and h′(k̄) defined as limk→0 h
′(k) and limk→k̄ h

′(k), respectively.

Given A1, l is well defined with l ≥ 0. Let ν = mink∈[0,k̄] h(k). Given that h is continuous

and strictly positive on [0, k̄], ν is well defined with ν > 0. Let ε be such that lε < ν/2.

Then (1) leads to the following inequality for all ki, kj ∈ [0, k̄] ,

f εi (kj|ki) ≤
(h(ki) + lε)

∫
ϕε(k1 − k, k2 − k)dk

(h(ki)− lε)
∫ ∫

ϕε(k1 − k, k2 − k)dkjdk
=

(h(ki) + lε)ψε(k1 − k2)

h(ki)− lε
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ψε is the density function for εE1 − εE2 and is equal to the integral in the numerator of

the second term for given values of k1 and k2 . Note that the double integral in the de-

nominator of the second term above is equal to 1. Similarly, (h(ki)−lε)ψε(k1−k2)
h(ki)+lε

≤ f εi (kj|ki).
For ki ∈ [−ε, 0] the relevant inequality is (h(0)−lε)ψε(k1−k2)

h(0)+lε
≤ f εi (kj|ki) ≤

(h(0)+lε)ψε(k1−k2)
h(0)−lε .

If ki ∈ [k̄, k̄ + ε] then the inequality is (h(k̄)−lε)ψε(k1−k2)

h(k̄)+lε
≤ f εi (kj|ki) ≤

(h(k̄)+lε)ψε(k1−k2)

h(k̄)−lε .

Therefore,

(1− 2lε

h(ki) + lε
)ψε(k1 − k2) ≤ f εi (kj|ki) ≤ (1 +

2lε

h(ki)− lε
)ψε(k1 − k2)7

Further let κ = 8l
ν

. Now,

1 +
2lε

h(ki)− lε
≤ 1 +

2lε

ν − lε

≤ 1 +
2lε

ν/2

Also,

1− 2lε

h(ki) + lε
≥ 1− 2lε

h(ki)− lε

≥ 1− 2lε

ν − lε

≥ 1− 2lε

ν/2

Then,

ψε(k1 − k2)(1− (κε)/2) ≤ f εi (kj|ki) ≤ ψε(k1 − k2)(1 + (κε)/2) (16)

⇒
∫
y≤k2

ψε(k1 − y)dy − (κε)/2 ≤ F ε
1(k2|k1) ≤

∫
y≤k2

ψε(k1 − y)dy + (κε)/2

(17)

(16) also implies,∫
z≤k1

ψε(z − k2)dz − (κε)/2 ≤ F ε
2(k1|k2) ≤

∫
z≤k1

ψε(z − k2)dz + (κε)/2

⇒
∫
z≥k1

ψε(z − k2)dz + (κε)/2 ≥ 1− F ε
2(k1|k2) ≥

∫
z≥k1

ψε(z − k2)dz − (κε)/2

⇒
∫
y≤k2

ψε(k1 − y)dy + (κε)/2 ≥ 1− F ε
2(k1|k2) ≥

∫
y≤k2

ψε(k1 − y)dy − (κε)/2

(18)

Subtracting (18) from (17) gives the required inequality.

7For values of ki in [−ε, 0] and [k̄, k̄ + ε] replace h(ki) by h(0) and h(k̄), respectively.
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Lemma 2

Proof. The continuity of ϕε is implied by the continuity of ϕ assumed in A2. Consider

the numerator in the expression for f εi (kj|ki) as expressed in (1). WLOG take a sequence

kn1 that converges to k1, such that kn1 ∈ [−ε, k̄ + ε] for all n. Given the continuity of ϕε

it is immediate that holding k2 fixed, h(k)ϕε(kn1 − k, k2 − k) → h(k)ϕε(k1 − k, k2 − k),

almost everywhere in [0, k̄]. Further h(k)ϕε(kn1 −k, k2−k) ≤ h(k)ϕ̄ε for all n and k, where

ϕ̄ε is the maximum value taken by the function ϕ on [−1, 1] × [−1, 1]. Consequently by

the Dominated Convergence Theorem,
∫
h(k)ϕε(k1−k, k2−k)dk = limn→∞

∫
h(k)ϕε(kn1 −

k, k2 − k)dk. In other words,
∫
h(k)ϕε(k1 − k, k2 − k)dk is continuous in ki. For the

denominator in (1), consider first the marginal density. Fix k. Let k1 6∈ {k − ε, k + ε}.
Then for any sequence kn1 that converges to k1 it must be the case that ϕε(kn1 − k, k2 −
k) → ϕε(kn1 − k, k2 − k) for all values of k2, by A3. Again by the Bounded Convergence

Theorem, the marginal
∫
ϕε(kn1 − k, k2 − k)dk2 for a given value of k is found to be

continuous at all k1 other than potentially two points, k − ε and k + ε. Consequently

for any sequence kn1 that converges to k1, it is true that h(k)
∫
ϕε(kn1 − k, k2 − k)dk2 →

h(k)
∫
ϕε(k1 − k, k2 − k)dk2 for all values of k other than possibly k1 − ε and k1 + ε.

Further, h(k)
∫
ϕε(kn1 −k, k2−k)dk2 ≤ h(k)ϕ̄ε for all k, n. By the Dominated Convergence

Theorem, it must be that
∫
h(k)

∫
ϕε(kn1 − k, k2 − k)dk2dk, the denominator in (1), is

continuous in k1. Given A1 and the additive structure of the noise, the denominator

is also strictly positive for all k1 ∈ (−ε, k̄ + ε). Therefore for all k1, k2 ∈ [−ε, k̄ + ε],

f εi (kj|ki) is continuous in ki. f εi (kj|ki) is also continuous in kj, since kj does not affect

the denominator of (1), while its influence on the numerator is symmetric to that of ki.

So let f̄ε be the maximum value taken by f εi (kj|ki) for k1, k2 ∈ [−ε, k̄ + ε]. Then for any

measurable function sj, it must be that sj(kj)f
ε
i (kj|kni ) → sj(kj)f

ε
i (kj|ki) if kni → ki and

sj(kj)f
ε
i (kj|kni ) ≤ sjkj f̄ε, for all values of kj. Therefore by the Dominated Convergence

Theorem, Pr(Aj|kεi , sj) =
∫
sj(kj)f

ε
i (kj|kεi )dkj is continuous in kεi .

To show that Eε(k|kεi ) is continuous in kεi consider first the conditional density of the

true k given an observation ki.

f εi (k|ki) =

∫
h(k)ϕε(k1 − k, k2 − k)dkj∫ ∫
h(k)ϕε(k1 − k, k2 − k)dkjdk

(19)

Continuity of the denominator of (19) in ki has already been established before. The

numerator for a given k is the product of the strictly positive h(k) and the marginal

density of ki. It has been shown earlier that for a given k the marginal density of ki is

continuous at all ki other than possibly when ki ∈ {k − ε, k + ε}, the boundary points.
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As a result, for a given k, f εi (k|ki) is continuous for all ki other than the two boundary

points. Therefore for a sequence kni that converges to ki, kf
ε
i (k|kni )→ kf εi (k|ki) for all k

other than possibly when k ∈ {ki − ε, ki + ε}. Further since the denominator in (19) is

bounded below and the numerator bounded above, the Dominated Convergence Theorem

delivers the continuity of Eε(k|kεi ) =
∫
kf εi (k|kεi )dk in kεi .

Lemma 3

Proof. Given the payoffs in Table 2, it is clear that whenever j chooses Accept, i always

does strictly better by choosing Stick. Upon observing kεi > 1 − zj + ε player i knows

that for all the possible values that k can take she would get a strictly negative payoff

by playing Accept if j plays Stick. As a result i would still strictly prefer to play Stick

since it guarantees a payoff of 0 as opposed to the negative expected payoff from playing

Accept, when j plays Stick. Consequently, upon observing kεi > 1 − zj + ε, Stick is the

strictly dominant action for player i.

Lemma 4

Proof. From lemma 3 it is already known that j plays Stick for every observation kεj >

1− zi + ε. Player i making an observation kεi ∈ (1− zi + 3ε, 1− zj − ε) learns two things.

Firstly, she knows that j must have observed kεj > 1−zi+ε and must therefore be playing

the strictly dominant Stick. Secondly, she knows that the true state k must lie in the

interval (1 − zi + 2ε, 1 − zj). Conditional on j playing Stick for any such value of k,

playing Accept strictly dominates playing Stick for i. The dominance solvable outcome

following such an observation, therefore, involves i playing Accept while j plays Stick.

Lemma 5

Proof. Suppose the statement is false for player i, who makes the higher demand. This

means that Bε
i (z1, z2) is non empty but y = sup{x|x ∈ Bε

i (z1, z2)} 6∈ Bε
i (z1, z2). So there

exists a sequence of observations kni that converge to y, with i playing Stick for all n

but she plays Accept upon observing y. i’s expected payoff from playing Accept following

an observation ki is given by 1− zj − Eε(k|ki) + dPr(Aj|ki) while it is ziPr(Aj|ki) from

playing Stick. Given that i plays Stick for all observations in the sequence kni it must be

that ziPr(Aj|kni ) ≥ 1− zj −E(k|kni ) + dPr(Aj|kni ). By Lemma 2, Eε(k|ki) and Pr(Aj|ki)
are continuous in ki for all measurable strategies, sj. So if kni → y it must be that

ziPr(Aj|y) ≥ 1 − zj − E(k|y) + dPr(Aj|y). Given the tie break rule mentioned earlier
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this implies that i would play Stick upon observing y. This contradicts the earlier claim

and proves the lemma for i. A symmetric argument proves the lemma for player j.

Lemma 6

Proof. Let Bε
i (z1, z2) be empty. Then for all observations kεi ≤ 1− zi + 3ε player i chooses

to play Accept. In that case whenever player j receives a signal kεj ≤ 1 − zi + 3ε it is

conditionally dominant for him to play Stick. This would imply that Bε
j(z1, z2) is empty.

Now if Bε
j(z1, z2) is empty then for all observations kεj ≤ 1− zi + 3ε player j chooses to

play Stick. Player i following an observation kεi ≤ 1− zi + 3ε knows that the true value of

k is such that 1− zj − k > 0. Consequently conditional on j playing Stick, she is strictly

better off playing Accept. As a result Bε
i (z1, z2) is empty.

Lemma 7

Proof. Let kε∗j + 2ε ≤ kεi ≤ 1− zi + 3ε. Conditional on such an observation player i knows

that for all the possible values of k, 1 − zj − k > 0 and hence she would strictly prefer

to play Accept if j plays Stick. Further such an observation implies that j has observed

kεj > kε∗j implying that j would certainly play Stick. Consequently i’s conditionally

dominant action is to play Accept.

Lemma 8

Proof. Suppose not. Then, by Lemmas 5 and 6, kε∗i , k
ε∗
j > −ε are well defined. Let player

i’s payoff from playing Accept and Stick upon observing kε∗i be denoted as ui(Ai|kε∗i ) and

ui(Si|kε∗i ) respectively. Given the payoffs in Table 2, ui(Ai|kε∗i ) = 1 − zj − Eε(k|kε∗i ) +

dPr(Aj|kε∗i ). Also ui(Si|kε∗i ) = ziPr(Aj|kε∗i ). Given that i chooses Stick after such an

observation, it must be that ui(Si|kε∗i ) ≥ ui(Ai|kε∗i ). This in turn implies the following

inequality,

Pr(Aj|kε∗i ) ≥ 1− zj − Eε(k|kε∗i )

zi − d
(20)

Similarly, player j choosing Accept upon observing kε∗j implies that uj(Aj|kε∗j ) ≥
uj(Sj|kε∗j ). Writing out the payoffs, 1 − zi − Eε(k|kε∗j ) + dPr(Ai|kε∗j ) ≥ zjPr(Ai|kε∗j ).

This gives rise to the following inequality,

Pr(Ai|kε∗j ) ≤
1− zi − Eε(k|kε∗j )

zj − d
(21)

Now, player j plays Stick following any observation kεj > kε∗j . Therefore, it must be that,

Pr(Aj|kε∗i ) ≤ F ε
i (kε∗j |kε∗i ) (22)
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On the other hand, player i plays Accept for observations kεi > kε∗i as long as kεi < 1−zj−ε.
For values of kεi that are within 2ε of kε∗j it must be that kεi < 1−zj−ε since kε∗j ≤ 1−zi+ε
by Lemma 3 and 1−zi+ε < 1−zj−2ε by assumption. As a result the following inequality

holds.

Pr(Ai|kε∗j ) ≥ 1− F ε
j (kε∗i |kε∗j ) (23)

Subtracting (23) from (22) and using (2) from Lemma 1 gives the inequality,

Pr(Aj|kε∗i )− Pr(Ai|kε∗j ) ≤ κε (24)

Finally combining (20), (21) and (24) gives,

κε ≥ 1− zj − Eε(k|kε∗i )

zi − d
−

1− zi − Eε(k|kε∗j )

zj − d
(25)

≥ 1− zj − kε∗i − ε
zi − d

−
1− zi − kε∗j + ε

zj − d
(26)

>
1− zj − kε∗j − 3ε

zi − d
−

1− zi − kε∗j + ε

zj − d
(27)

(25) ⇒ (26) by the fact that Eε(k|kε∗i ) ≤ kε∗i + ε and Eε(k|kε∗j ) ≥ kε∗j − ε. While the

inequality from Lemma 7, namely kε∗i < kε∗j + 2ε, makes (26) ⇒ (27).

(27) ⇒

κε(zi − d)(zj − d) > (zj − zi)(1− kε∗j + d)− (z2
j − z2

i )− 3εzj − εzi + 4εd

⇒κε(1− (zi − zj)2) > (zj − zi)(1− kε∗j − (zi + zj) + d) + ε(zi − zj)− 2ε

⇒κε(1− (zi − zj)2) > (zi − zj)(kε∗j + d+ ε)− 2ε

⇒kε∗j + d+ ε <
κε(1− (zi − zj)2)

zi − zj
+

2ε

zi − zj

⇒kε∗j < −ε+
κε

zi − zj
+

2ε

zi − zj
− d− κε(zi + zj)

⇒kε∗j < −ε+
(κ+ 2)ε

zi − zj
− d (28)

Given that kε∗j must be a value strictly greater than −ε, (28) delivers a contradiction to

the initial claim if,

zi − zj ≥
(κ+ 2)ε

d
(29)

The premise in the lemma satisfies (29) and therefore it must be that Bε
j(z1, z2) is empty.

Lemma 6 then guarantees that Bε
i (z1, z2) is empty too.

Lemma 10
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Proof. (a) is immediate, since player i has an incentive to demand 1 − zj and strictly

increase her payoff by 1 − zj − zi > 0. Lemma 9 shows that following an incompatible

demand profile such as (b), the player with the higher demand, say i, has an expected

payoff yi ≤
∫ 1−zj

0
(1 − zj − w)h(w)dw < 1 − zj and could do strictly better by simply

making the compatible demand 1− zj.

Lemma 11

Proof. Following an incompatible demand profile, the payoffs are determined by outcomes

in the second stage game described in Table 2. Notice that following any possible real-

ization, k, the maximum total payoff would be max{1 − k, 0}. As a result the expected

payoffs from making incompatible demands must satisfy, y1 + y2 ≤ 1− k̂. Now for the in-

compatible profile (z1, z2) to be supported as an equilibrium in Γε, it must be that neither

player gains by making a compatible demand instead. This means, yi ≥ 1− zj. Summing

across the two players gives, y1 +y2 ≥ 2−z1−z2, which in turn implies, 2−z1−z2 ≤ 1− k̂.

Given that d = (z1 + z2 − 1)/2 it must be that d ≥ k̂/2.

Lemma 12

Proof. Equilibrium behavior in the second stage game involves a total payoff of 0 if both

parties play Stick or 1 − k if (Accept, Stick) or (Stick, Accept) is the outcome. Players

using mixed strategies results in the total payoff lying in the interval [0,max{0, 1 − k}].
Lemma 2 makes it clear that if k > 1 −min{z1, z2} + 2ε then the players would always

play (Stick, Stick). So it can be said for certain that following an incompatible demand

profile, the total expected payoff in equilibrium must be no more than (1 −
∫
kh(k|k ≤

1 − min{z1, z2} + 2ε)dk)H(1 − min{z1, z2} + 2ε). This in turn implies that following

incompatible demands there exists i with an expected payoff,

yi ≤
1

2
(1−

∫
kh(k|k ≤ 1−min{z1, z2}+ 2ε)dk)H(1−min{z1, z2}+ 2ε) (30)

d ≥ k̂/2 implies zi + zj − 1 ≥ k̂. Also by the definition of φ, it must be that φ(d) ≤ φ∗

since d ≥ k̂/2. So,

|zi − zj| < φ(d) ≤ φ∗

⇒2 min{z1, z2}+ φ∗ − 1 ≥ k̂

⇒min{z1, z2} ≥
1

2
+
k̂

2
− φ∗

2
(31)
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Let ε be small enough such that φ∗ < k̂
8
.

Then,

(31)⇒ min{z1, z2} >
1

2
+

7

16
k̂ (32)

Now consider what happens if player i, who receives the payoff mentioned in (30), deviates

to making a still incompatible demand of z̃i = 1/2. Note that zj − z̃i > 7
16
k̂ > φ∗. Further

d(z̃i, zj) >
7
32
k̂ which implies that φ(d) ≤ φ∗. Therefore zj − z̃i > φ(d(z̃i, zj)). As a result,

the new demand profile satisfies the condition of Lemma 9, which implies that player i

following such a deviation must expect a payoff ỹi,

ỹi ≥
1

2
F ε
i (

1

2
− ε) ≥ 1

2
H(

1

2
− 2ε) (33)

Player i’s initial payoff inequality described in (30) along with (32) implies,

yi <
1

2
H(

1

2
− 7

16
k̂ + 2ε) (34)

For small enough values of ε, it is clear that yi < ỹi. Given that such a profitable deviation

exists, (z1, z2) 6∈ Eqε.

Proposition 4

Proof. Consider the following strategies. Both players demand 1/2 in the first stage.

If player j makes a demand higher than 1/2 then in the second stage, in the event

of multiplicity, both players play actions in accordance to the risk dominant outcome

of the second stage game. Further if the state of the world (k1, k2) lies in the region

D(1/2, zj) then both players play Stick. Given these strategies it is easy to see that second

stage behavior satisfies equilibrium behavior since it either involves playing the unique

dominance solvable action profile or playing one of the Nash Equilibria; in particular, the

risk dominant action profile. However, it must be checked if any player has an incentive

to deviate in the first stage. Deviating to a smaller demand is obviously less profitable to

the deviator and hence ruled out.

Suppose Player 1 deviates to making a higher demand z1 > 1/2. By doing so, Player

1 would gain a higher payoff for every k that lies in her new risk dominant region,

R1(z1, 1/2). Denote this gain by G. From (8), it must be that,

G ≤ (z1 − 1/2)(1− F1(1/2))F2(1− z1) + 1/2(z1 − 1/2)F1(1/2)F2(1/2). (35)

On the other hand Player 1 ends up losing her share of 1/2 in the new disagreement

region, D(z1, 1/2), while also paying her revoking cost in her opponents risk dominant
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region R2(z1, 1/2). Denote this loss by L. From (8) and (6), it must be that,

L >
1

2
(1− F1(1/2))(1− F2(1− z1)) (36)

The proposition will be first proven for F1 and F2 being uniform. If F1 and F2 are uniform

then (35) can be rewritten as,

G ≤ (z1 − 1/2)

(
k̄1 − 1/2

k̄1

)(
1− z1

k̄2

)
+

1

2
(z1 − 1/2)

(
(1/2)2

k̄1k̄2

)
(37)

Similarly (36) implies,

L >
1

2

(
k̄1 − 1/2

k̄1

)(
k̄2 − 1/2

k̄2

)
+

1

2

(
k̄1 − 1/2

k̄1

)(
z1 − 1/2

k̄2

)
(38)

Note that z1 > 1/2 and k̄i > 1. Consequently, for such a deviation to be profitable it

must be that G > L. This in turn, from (37) and (38), implies that a profitable deviation

must involve,

1

2

(
k̄1 − 1/2

k̄1

)(
k̄2 − 1/2

k̄2

)
<

1

2
(z1 − 1/2)

(
(1/2)2

k̄1k̄2

)
⇒1 < z1 − 1/2 (39)

The impossibility of (39) rules out any profitable deviation for Player 1. A symmetric

argument rules out any profitable deviation for Player 2. Consequently the strategies

outlined above constitute a Subgame Perfect Equilibrium when the Fi are uniform distri-

butions. To see how the argument then extends to any pair of distributions that FOSD

the uniform distribution, notice that to arrive at the contradiction above, it was shown

that,(
z1 −

1

2

)(
1− F1

(
1

2

))
F2(1−z1)+

(
z1 −

1

2

)
F1

(
1

2

)
F2

(
1

2

)
<

1

2
(1−F1(1/2))(1−F2(1−z1)) (40)

when the Fi are uniform. It is easy to see that if the Fi FOSD the uniform distribution,

the right hand side of (40) would be even higher, while the left hand side even lower

than in the uniform case. Consequently the relationship L > G would hold for all such

distributions. The result follows.

Proposition 5

Proof. First, note that an incompatible demand profile with at least one player making

a demand of zi = 1 cannot be supported in equilibrium. Following such an incompatible

profile, player i either backs down in the second stage or the entire surplus is lost, since
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player j will never back down. In other words, Ri(zi = 1, zj) = ∅. Therefore player

i’s expected payoff must be strictly less than 1 − zj, which in turn makes the first stage

deviation to a compatible demand a profitable one if zj < 1. If, however, z1 = z2 = 1, then

each player is better off making a demand of 1/2 instead. The demand profile (1, 1) yields

a payoff of 0 to both players. If player 1 makes a demand of 1/2 instead her expected

payoff becomes, (1/2)F2(1/2) which is clearly payoff improving.

Having eliminated the possibility of a demand of 1 in equilibrium, the result shall first

be proven for the Fi being uniform distributions. It will then be shown that the argu-

ments generalize easily to any pair of distributions that each First Order Stochastically

Dominates the uniform distribution.

The statement is proved by contradiction. Suppose (z1, z2) is an incompatible demand

profile that is supported in equilibrium with Fi being a uniform distribution. It must be

true then that neither player can have her payoff strictly increases by making a compatible

demand in the first stage. Consider the options for Player 2. If she deviates to making a

compatible demand she gains 1 − z1 in the region D(z1, z2). She also gains the revoking

cost she would have had to pay following incompatible demands in the region R1(z1, z2).

The total expected gain from such a deviation is denoted by G where G ≥ (1 − z1)[1 −
F2(1− z1)][1− F1(1− z2)] +E(k2|k2 ≤ 1− z1)[1− F1(1− z2)]F2(1− z1). For the purpose

of this proof the inequality, G ≥ (1− z1)[1− F2(1− z1)][1− F1(1− z2)] will suffice. Such

a deviation, however, results in a loss of z2− (1− z1) in the region R2(z1, z2). Denote the

expected loss by L where L ≤ [z2 − (1− z1)]F1(1− z2).

Since the Fi are uniform distributions the relevant inequalities become,

G ≥ (1− z1)

(
k̄2 − (1− z1)

k̄2

)(
k̄1 − (1− z2)

k̄1

)
(41)

L ≤ (z2 − (1− z1))
1− z2

k̄1

(42)

Given that such a deviation is not profitable by assumption it must be that L ≥ G.

Since ki > 1, L ≥ G implies the following inequality,

(z1 + z2 − 1)(1− z2) ≥ (1− z1)z2z1 (43)

A symmetric argument shows that for Player 1 to not be strictly better of from deviating

to a compatible demand, the following inequality must hold.

(z1 + z2 − 1)(1− z1) ≥ (1− z2)z1z2 (44)

40



Now suppose z1 ≥ z2. Then to satisfy (44) it must be that z1 + z2 − 1 ≥ z1z2, which

in turn implies zi ≥ 1. On the other hand if z2 ≥ z1 then satisfying (43) would require

zi ≥ 1. Since the possibility of zi = 1 in equilibrium was ruled out earlier this delivers the

contradiction.

The uniform distribution case was proved by essentially showing that at least one of

the inequalities,

(1− zi)[1− Fj(1− zi)][1− Fi(1− zj)] > [zj − (1− zi)]Fi(1− zj) (45)

for i ∈ {1, 2}, holds if both players are not demanding 1 each. This made the deviation

to a compatible demand a profitable one for Player j. Notice that for any other pair

of distribution functions, F1 and F2 that FOSD the uniform distribution, this inequality

would continue to hold since it would simply decrease the right hand side of (45) while

increasing the left hand side. This would make the required inequality, G > L, hold for

all such distributions.
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