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1 Introduction

In democracies with two major political parties, when an election revolves
around a single issue, the task for the voters is straightforward: they simply
need to determine which party has the advantage on that issue. Even though
individual judgements may be occasionally erroneous, as long as they are
more likely to correct than wrong, the superior party is likely to be elected
with a high probability.
However, elections are rarely about a single issue. In a multi-issue elec-

tion, given limited attention spans, voters must decide which issues they
want to focus on, and their decisions may in�uence their votes. For example,
in the 2020 US presidential election, a voter�s support for the Republican
or Democratic candidate might hinge on whether they pay closer attention
to news about violent crimes or climate change. This raises the question of
whether an inferior party will get elected because voters focus on the wrong
issues.
We address this question in a model of two-party, two-issue election. In

our model, two parties with di¤erent positions on two issues compete for
the votes of a �nite number voters. The party receiving the most votes is
elected, and each voter receives a payo¤ equal to the sum of the winning
party�s policy payo¤s on the two issues. We assume that the issues di¤er
in terms of importance. Speci�cally, one issue is more important than the
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other in that the payo¤ di¤erence between the better and worse party for
that issue is larger than the di¤erence for the other issue. Hence, voters
prefer the better party on the more important issue even when it is inferior
on the other issue.
Before casting her vote, each voter can choose to acquire a free and inde-

pendent signal about one of the issues. The signal for the important issue is
less informative than the one for the other issue. Intuitively, the important
issue is more complex. As a result, it is harder for a voter to learn which
party is better on that issue. Voters, thus, face a choice between a weaker sig-
nal about a more important issue or a stronger signal about a less important
one.
We �nd that voters�information acquisition decisions are connected strate-

gically through an adverse cross-issue inference e¤ect. Ex ante, the issues are
uncorrelated, and each party is equally likely to have a superior policy on
each issue. However, conditional the vote being tied, it is likely that vot-
ers following di¤erent issues are supporting di¤erent parties. Hence, when a
voter learns that one party is likely to be better on one issue, she will infer
that, when her vote is pivotal, the other party is likely to be better on the
other issue. The negative inference will lower the value of both signals. But
importantly, it diminishes the value of the signal about the less important
issue to a greater extent, and the e¤ect is stronger when voters are closer to
equally spilt between the two issues.
As a result of this adverse inference e¤ect, there may be multiple equilib-

ria. In one equilibrium, a majority of the voters will focus on the important
issue. When the number of the voters becomes large, the equilibrium the
better party for the more important issue will be elected with near certainty.
In another equilibrium, all voters focus on the less important issue. When
the number of voters becomes large, the party with an advantage on the less
important issue will be elected almost certainly. Nevertheless, the equilib-
rium outcome is ine¢ cient as there is a �fty percent chance that the losing
party is better on the more important issue. Thus, our results show that in
a democracy, voters may sometimes focus on more concrete concerns while
ignoring issues that may hold greater long-term importance.
This paper is closely related to the literature on endogenous information

in collective decision making, eg. Persico (2004) and Martinelli (2006). How-
ever, we focus on what the voters learn about rather than how well the voters
learn.
This paper also contributes to the burgeoning literature on attention al-
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location. In an auction environment, Bobkova (2022) show that bidders�
attention allocation between a common-value component and an idiosyn-
cratic private-value component depends on the auction mechanism. They
show that, under second-price auction, it is an equilibrium for bidders to
focus on the idiosyncratic component, whereas under �rst-price auction, it is
an equilibrium for bidders to focus on the common-value component. Since
only the idiosyncratic component matters as to which allocation is e¢ cient,
they provide a rationale for the superioity of second-price auctions. In a
recent working paper, Bobkova (2023) consider how voting rule a¤ects each
committee member�s equilibrium attention allocation between a common-
value component and an idiosyncratic component. They show that there
is free-riding in learning about the common-value component, and that the
free-riding is minimized in equilibrium under simple majority rule.
This paper is closely related to the literature on how rational inattention

shapes political behavior. Perego and Yuksel (2022) show that �ercer compe-
tition among information providers leads to more specialization in the type
of information provided so as to soften the ensuing price competition. Since
there is no scope for specialization on common issues that everyone cares
the same way about, more competition leads to less information provided
on common-value issues and more information provided on private issues on
which the weight mixture voters disagree on. They assume that probability
the alternative is implemented is proportional to approval rate, and hence
voters vote as if they alone can change the outcome. Pivotal reasoning thus
plays no role. The driving force of their model is the competitive pressure for
information providers. In contrast, pivotal reasoning is the driving force in
our model. As voters can only choose between learning about the common-
value issue or the divisive issue, it is as if there are only two information
providers: one provides exclusive information on a unique issue.

2 Model Setup

There are 2n+1 risk-neutral voters who have to collectively choose between
candidate L and R. Voters have identical preference which depends on the
candidates�performances on two issues: A and B. For k 2 fA;Bg, denote by
�k 2 fL;Rg the candidate who is better on issue k. If candidate c 2 fL;Rg is
elected, every voter gets payo¤w1f�A=cg+1f�B=cg, where 1E is the indicateor
function which is equal to 1 if � 2 E and 0 otherwise. We assume that w � 1,

3



state �k
L R

signal sk l 1
2
+ �Lk

1
2
� �Rk

r 1
2
� �Lk 1

2
+ �Rk

Table 1: Information Structure

so issue A is weakly more important and receive a weakly higher weight. For
example, issue A can be global warming and issue B can be crime.
No one knows the state of the world � = (�A; �B). Everyone holds a

common prior that all states are equally likely. Every voter receives an
informative signal on exactly one issue of her choice. A voter learning about
issue k 2 fA;Bg receives signal sk 2 fl; rg, which is the voter�s private
information. Each voter�s signal is independently distributed according to the
conditional probability distribution Pr fskj�kg described in Table 1. De�ne
�k =

�Rk +�
L
k

2
, which measures the average precision of a signal on issue k. More

precisely, a signal on issue k matches the candidate with an advantage on
issue k with probability 1

2
+ �k ex ante.

All voters make their information choice simultaneously. Then each voter
receives a private signal on the issue they chose to learn about. All voters
then simultaneously cast their vote, either �L�or �R�. The candidate with
more votes wins the election.
Denote by �i a behavioral strategy of voter i. Then �i = (�i; �i) where the

attention strategy �i is the probability with which voter i learns about issue
A, and the voting strategy �i = (�iA; �

i
B) describes the probability �

i
k (sk) of

voting for candidate R after receiving signal sk 2 fl; rg on issue k 2 fA;Bg.
We say that voter i uses a pure attention strategy if she pays attention only
to one issue: �i 2 f0; 1g. We say that voter i votes for her signal on issue k
if she votes for candidate L after receiving sk = l and for candidate R after
receiving sk = r, i.e. if �ik = (�

i
k (l) ; �

i
k (r)) = (1; 0). We say that voter i votes

against her signal on issue k if she votes for candidate R after receiving sk = l
and for candidate L after receiving sk = r, i.e. if �ik = (�

i
k (l) ; �

i
k (r)) = (0; 1).

If voter i uses a pure responsive voting strategy on issue k, then she either
votes for signal on issue k or against signal on issue k. Denote by �i = (�i; �i)
the strategy of voter i. Denote by � the strategy pro�le of all voters.
The solution concept we use is Perfect Bayesian equilibrium.
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Better Candidate on Issue B (�B)
L R

on Issue A (�A) L � (w + 1) �w + 1
R w � 1 (w + 1)

Table 2: Payo¤ from the Alternative under Complete Information

3 Benchmark Models

3.1 Complete Information Benchmark

Suppose for this subsection only that the state (�A; �B) is common knowl-
edge. Table 2, shows the payo¤ gain from electing candidate R instead of
candidate L given every state pro�le (�A; �B). It is straightforward to see
that the optimal collective action is to elect the candidate better on the
more important issue.

3.2 Single-Voter Decision Problem

We next consider another benchmark where n = 0, i.e. the single-person
decision problem. We show that the single-decision-maker may optimally
pay attention to the less important issue.
Suppose the single decision-maker learns about issue k 2 fA;Bg. Con-

ditional on receiving signal sk = r, the ex post probability that candidate

R is better on issue k (�k = R) is
1
2(

1
2
+�Rk )

1
2(

1
2
+�Rk )+ 1

2(
1
2
��Lk )

=
1
2
+�Rk

1+�Rk ��Lk
> 1

2
, whereas

conditional on receiving signal sk = l, the expost probability that candidate

L is better on issue k (�k = L) is
1
2(

1
2
+�Lk )

1
2(

1
2
��Rk )+ 1

2(
1
2
+�Lk )

=
1
2
+�Lk

1�(�Rk ��Lk )
> 1

2
. So

the signle-decision-maker prefers the candidate for whom she has received
a favorable signal about. It is optimal for the single-decision-maker to vote
according to signal no matter which issue she pays attention to.
If she pays attention to issue k and then vote according signal on issue

k, with probability 1
2
+ �k, she will choose the candidate better on issue k.

Since the two issues are ex ante independent, and the distribution of the
signal on issue k is independent of �k, her signal on issue k says nothing
about ��k. So, regardless of which signal sk she receives, voter 0 believes
that each candidate has an advantage on issue �k with probability 1

2
. So
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voter 0�s expected payo¤ from paying attention to issue A is�
1

2
+ �A

�
w +

1

2
=
1 + w

2
+ w�A

and that from paying attention to issue B is

1

2
w +

�
1

2
+ �B

�
=
1 + w

2
+ �B,

where 1+w
2
is the ex ante expected payo¤ from any candidate.

So single-decision-maker rationally pays attention to the less important
issue B if

�B > w�A, (1)

i.e. if and only if information on issue B is su¢ ciently more precise than that
on issue A to compensate for lack of importance.

Proposition 1 Consider n = 0. If �B > w�A. the single voter pays at-
tention to issue B and then vote for signal in the unique equilibrium. If
�B < w�A, the single voter pays attention to issue B and then vote for signal
in the unique equilibrium. If �B = w�A, it is an equilibrium for the single
voter to randomize between issues in any way, and then vote for signal.

We will assume (1) throughout the proposal to focus on the tradeo¤
between importance and clarity of an issue.

4 Baseline Model

We �rst focus on the baseline model where information structure on each
issue is symmetric in the identity of the candidate better on that issue. That
is, we �rst present results under the following assumption:

Assumption (Symmetry Across Candidates) �RA = �
L
A = �A and �

R
B =

�LB = �B.
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4.1 Equilibrium Attention Allocation May Be Ine¢ -
cient: Single-Issue Equilibrium

We show that it is an equilibrium for all voters to focus on the less important
issue whenever it is optimal for a single-decision-maker to do so.

Proposition 2 Suppose it is an equilibrium for a single voter to pay atten-
tion to issue B. That is, assume �B � w�A. Then, there is an equilibrium
in which all voters pay attention to the less important issue, issue B. This
equilibrium is ine¢ cient for large enough electorate.

Let�s consider voter 0�s decision problem when the other 2n voters all pay
attention to issue B and then vote for signal. Then, when voter 0 is pivotal, n
voters must have received signal r on issue B, whereas the other n voters have
received signal l on issue B. When candidate �B is better on issue B, this
pivotal event happens with probability (Pr fsB = rj�Bg)n (Pr fsB = lj�Bg)n.
Therefore, conditional on being pivotal, the likelihood ratio that the better
candidate on issue B is candidate R over candidate L is then

(Pr fsB = rj�B = Rg)n (Pr fsB = lj�B = Rg)n

(Pr fsB = rj�B = Lg)n (Pr fsB = lj�B = Lg)n
=

�
1
2
+ �B

�n �1
2
� �B

�n�
1
2
� �B

�n �1
2
+ �B

�n = 1.
Because the information structure on issue B is independent of who is

better on issue B, equal number of favorable and unfavorable signals cancel
out with each other. Thus, when all others pay attention to issue B and vote
for signal, being pivotal reveals no information at all about who is better on
issue B. It reveals no information about issue A either, since signals on issue
B is independent of who is better on issue A.
Therefore, the decision problem facing voter 0 in an election with 2n other

voters all paying attention to issue B is exactly the same decision problem
facing voter 0 as a single decision maker. Since we assume that �B � w�A,
paying attention to issue B is optimal for a single voter, paying attention to
issue B and then vote for signal is thus optimal for voter 0 in an election with
2n other voters all paying attention to issue B. So, there is an equilibrium
for all voters to pay attention to issue B.
Note that, if the other 2n voters all pay attention to issue A and vote

for signal, the decision problem facing voter 0 is still the same as that facing
voter 0 as a single decision maker because the pivotal event still reveals no
information. So it is still optimal for voter 0 to pay attention to issue B.
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Therefore, there is NO equilibrium in which all voters pay attention to issue
A.
It is, however, not an equilibrium for all voters to pay attention to issue A.

This is because pivotal event conveys no additional information under simple
majority rule when everyone else pays attention to the same issue, and thus
what is optimal as a single decision-maker remains optimal conditional on
being pivotal in an election.
This single-issue equilibrium is ine¢ cient when the number of voters is

large enough. As the number of voters becomes large, the candidate better
on issue B will be elected with probability approaching 1. Because relative
performance on the two issues are independent, there is a �fty percent chance
that the losing candidate is better on issue A. Note that every voter prefers
the candidate better on issue A. On the other hand, if every voter pays atten-
tion to the more important issue, then as the number of voters becomes large,
the candidate better on issue A will be elected with probability approaching
1.

4.2 Multi-Issue Equilibria

We show that, when there are enough voters, there is another equilibria, in
which both issues garner attention from some voters, with the more impor-
tant issue getting the majority�s attention.

Proposition 3 Suppose �B > w�A, so a single decision-maker optimally
pays attention to the less important issue B. For a large enough electorate,
there is a pure strategy equilibrium in which a majority pay attention to
the more important issue A whereas a minority pay attention to the less
important issue B, and all voters vote for signal.

We �rst solve a voter�s decision problem given other voters�strategy pro-
�le. Given a voter�s interim belief about the state pro�le conditional on being
pivotal, in Section 4.2.1, we derive a voter�s best response: her optimal vot-
ing strategy and then her optimal attention choice. We show that a voter�s
best response depends crucially on the degree of negative correlation across
issues: the likelihood ratio that no candidate is better on both issues over
the event that ONE candidate is better on both issues. Section 4.2.2 gives a
numeric example of a multi-issue equilibrium. In Section 4.2.3, we show how
this negative correlation depends on the attention allocation among other
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voters. In Section 4.2.4, we show existence of a multi-issue equilibrium in
which the majority pay attention to issue A.

4.2.1 Voter Best Response

Fix a strategy pro�le �. Let Piv denote the event that voter 0 is pivotal.
Let q (�A�Bj��0) denote the interim probability of state (�A; �B) conditional
on voter 0 being pivotal if all voters other than voter 0 follow the strategy
pro�le �. With some abuse of notation, we write q (�A�Bj�) below.
Before we delve into the analysis, let�s consider some extreme cases. Sup-

pose the same candidate is better on both issues conditional on pivotal, i.e.
q (RRj�) + q (LLj�) = 1. Then it is optimal for voter 0 to pay attention to
issue B and then vote according to signal, as signal on issue B is more precise,
and the candidate better on issue B is better on both issues, and thus the
better candidate. On the other extreme, suppose di¤erent candidates are
better on di¤erent issues conditonal on pivotal, i.e. q (RLj�)+ q (LRj�) = 1.
Then it is optimal for voter 0 to pay attention to issue B but to vote against
signal, as signal on issue B is more precise and the candidate WORSE on
issue B is better on issue A and thus better overall.
De�ne cross-issue negative correlation ratio to be

% :=
q (LRj�) + q (RLj�)
q (RRj�) + q (LLj�) .

We will show that voter best response can be characterized by this ratio.

Optimal Voting Strategy Conditional on the pivotal event alone, the
payo¤ gain from candidate R over L is

V; (�) = (w + 1) (q (RRj�)� q (LLj�)) + (w � 1) (q (RLj�)� q (LRj�)) .

We �rst show that, V; (�) = 0, i.e. conditional on the pivotal event alone,
no candidate is better than the other. It is intuitive as both the information
structure and the voting rule are symmetric across candidates. It follows
from the following observation on symmetry across the identity of the better
candidate on each issue.

Lemma 4 Assume �Lk = �
R
k for k = A;B. Consider strategy pro�le � where

�ik (r) + �
i
k (l) = 1 for each issue k 2 fA;Bg and each voter i 6= 0. Then

q (RRj�) = q (LLj�), q (RLj�) = q (LRj�), % = q(LRj�)
q(RRj�) and V; (�) = 0.
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Suppose voter 0 has paid attention to issue A. Conditional on being piv-
otal and receiving signal sA = r on issue A, voter 0�s expected payo¤ gain
from candidate R instead of candidate L is Pr fsA = rjPivg�1 times

q (RRj�)
�
1

2
+ �A

�
(w + 1)� q (LLj�)

�
1

2
� �A

�
(w + 1)

+q (RLj�)
�
1

2
+ �A

�
(w � 1) + q (LRj�)

�
1

2
� �A

�
(1� w)

=
1

2
V; (�) + VA (�) (2)

where

VA (�) := �A [(w + 1) (q (RRj�) + q (LLj�)) + (w � 1) (q (RLj�) + q (LRj�))]

is the part of payo¤ gain from candidate R attributed to the informativeness
of signal sA = r. Note that VA (�) is always positive because w � 1.
Because there are only two signals, r and l, conditional on being pivotal

and receiving signal sA = l on issue A, voter 0�s expected payo¤ gain from
candidate R instead of candidate L is equal to Pr fsA = ljPiv0g�1 times

1

2
V; (�)� VA (�)

Given that V; (�) = 0 and VA (�) > 0 for all strategy pro�le �, it is always
optimal to vote according to signal on issue A.
Suppose voter 0 paid attention to issue B instead. Conditional on being

pivotal and reciving signal sB = r on issue B, voter 0�s expected payo¤ gain
from candidate R instead of L is Pr fsB = rjPivg�1 times

q (RRj�)
�
1

2
+ �B

�
(w + 1)� q (LLj�)

�
1

2
� �B

�
(w + 1)

+q (LRj�)
�
1

2
+ �B

�
(�w + 1) + q (RLj�)

�
1

2
� �B

�
(w � 1)

=
1

2
V; (�) + VB (�) (3)

where

VB (�) := �B [(w + 1) (q (RRj�) + q (LLj�))� (w � 1) (q (LRj�) + q (RLj�))]
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the part of payo¤ gain from candidate R attributed to the informativeness of
signal sB = r. Analogously, conditional on being pivotal and receiving signal
sB = l on issue B, voter 0�s expected payo¤ gain from candidate R instead
of candidate L is Pr fsB = ljPiv0g�1 times

1

2
V; (�)� VB (�) . (4)

If the cross-issue negative correlation ratio is su¢ ciently high: % > w+1
w�1 ,

the candidate better on issue B is su¢ ciently likely to be worse on issue A
and thus worse over all, voter 0 will optimally vote against signal on issue B.

Lemma 5 Assume �Rk = �Lk for k = A;B. Suppose all other voters either
vote according to or against their signals after their equilibrium attention
choice. Then after paying attention to issue A, voter 0�s optimal voting
strategy is to vote for signal, while after paying attention to issue B, voter
0�s optimal voting strategy is to vote according to signal if % < w+1

w�1 and to
vote against signal if % > w+1

w�1 .

Optimal Attention Strategy Suppose voter 0 is pivotal. If voter 0 ran-
domizes equally between the two candidates, her payo¤ is w+1

2
, as the better

candidate on each issue wins with probability 1
2
. If voter 0 follows issue A

and then optimally vote according to signal, her payo¤ would be

w + 1

2
+ VA (�) =

w + 1

2
+ �A [(q (RRj�) + q (LLj�)) (w + 1) + (q (RLj�) + q (LRj�)) (w � 1)]

=
w + 1

2
+ VA (�) ,

as her vote matches the better candidate on issue A with an additional prob-
ability of �A, and the payo¤ gain from the better candidate on issue A is
w+1 in state (R;R) and (L;L) and w�1 in state (R;L) and (L;R). If voter
0 follows issue B and then optimally afterwards, her payo¤ is

w + 1

2
+ j�B [(q (RRj�) + q (LLj�)) (w + 1)� (q (RLj�) + q (LRj�)) (w � 1)]j

=
w + 1

2
+ jVB (�)j
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Voter 0�s optimal attention choice also depends crucially on the cross-issue
negative correlation ratio %. De�ne

T2 : =
w + 1

w � 1
�B + �A
�B � �A

T1 : =
w + 1

w � 1
�B � �A
�B + �A

Lemma 6 Suppose �Rk = �Lk for k = A;B. Suppose all other voters either
vote according to or against their signals after their equilibrium attention
choice. Then voter 0�s best response is to8<:

follow issue B then vote against signal if % � T2
follow issue A then vote according to signal if T1 � % � T2
follow issue B then vote according to signal if % � T1

.

When cross-issue negative correlation ratio is low, it is su¢ ciently likely
that one candidate is better on both issues. In that case, whoever is better
on one issue is likely better on both issues, and hence the correct candidate.
It is thus optimal to pay attention to issue B since its information is more
precise and choose whoever the signal suggests is better on issue B. When
cross-issue negative correlation ratio is very high, it is much more likely that
whoever is better on one issue is worse on the other issue. In that case,
whoever is worse on issue B is very likely better on issue A, and thus the
correct candidate given that issue A is more important. It is thus optimal
to pay attention to issue B since its information is more precise and choose
whoever the signal suggests is worse on issue B. It is optimal to pay attention
to the more important issue when cross-issue negative correlation ratio is at
an intermediate level.

4.2.2 Multi-issue Equilibrium: Example

We give a numeric example of existence of a multi-issue equilibrium.

Example 7 Consider n = 5, w = 1:7, �A = 0:1 and �B = 0:2. Then the
two thresholds are T1 = 1:2857 and T2 = 11:5714. Consider the symmetric
pure strategy pro�le where, among all voters except voter 0, mA of them pay
attention to issue A and vote according to signal, while the remaining 2n�mA

pay attention to issue B and vote according to signal. Figure 1 plots the cross-
issue negative correlation ratio as a function of mA. For mA = 0; 1 or 9; 10,
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voter 0�s best response is to pay attention to issue B and vote according to
signal, whereas for all other values of mA, voter 0�s best response is to pay
attention to issue A and vote according to signal. It is an equilibrium for
all voters to pay attention to the less important issue B because when all
other voters do so, i.e. when mA = 0, voter 0�s best response is to pay
attention to issue B and vote according to signal as well. There is a multi-
issue equilibrium in which 9 voters pay attention to the more important issue
A and vote according to signal while the remaining 2 voters pay attention to
the less important issue B and vote according to signal. It is an equilibrium
because, for a voter who is supposed to pay attention to issue B, in total 9
other voters pay attention to issue A and by Figure 1, it is indeed this voter�s
best response to pay attention to issue B and vote according to signal; whereas
for a voter who is supposed to pay attention to issue A, in total only 8 other
voters pay attention to issue A, and by 1, it is this voter�s best response to
pay attention to issue A and vote according to signal.
Attention allocation is locally substitutes near the equilibrium allocation

because for mA near the equilibrium m�
A = 9, a voter has less incentive

to pay attention to issue A as more other voters pay attention to issue A.
However, attention allocation is complements globally. If almost no one else
pays attention to the more important issue, e.g. mA = 0 or 1, a voter has
no incentive to pay attention to it either. However, if enough people pay
attention to the more important issue, e.g. mA = 8, then a voter has an
incentive to pay attention to it too. Complementarity in attentional allocation
causes existence of equilibrium multiplicity.
Note that there is a unique pure multi-issue equilibrium.

4.2.3 Cross-Issue Negative Correlation Ratio

From voter 0�s perspective, voter i�s vote, denoted by Xi 2 f�1; 1g, is a
random variable where Xi = 1 denotes a vote for candidate R and Xi = �1
denotes a vote for candidate L. Let �i (�A�Bj�) denote the probability that
voter i votes for candidate R, i.e. Xi = 1, conditional on state (�A; �B) under
the strategy pro�le �. Then
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Figure 1: Cross-Issue Negative Correlation Ratio and Best Response

Pr fXi = xij�A�B; �g =

�
�i (�A�Bj�) if xi = 1

1� �i (�A�Bj�) if xi = �1

= �i (�A�Bj�)
1+xi
2
�
1� �i (�A�Bj�)

� 1�xi
2

=
p
�i (�A�Bj�) (1� �i (�A�Bj�))

�
�i (�A�Bj�)

1� �i (�A�Bj�)

�xi
2

.

Let mA denote the strategy pro�le among other voters where voter 1 to
mA pay attention to issue A, whereas the other 2n�mA voters pay attention
to issue B, and all vote according to signal they pay attention to. Then, for
voter i who is supposed to pay attention to issue k,

�i (�A�BjmA) =

�
1
2
+ �k if �k = R

1
2
� �k if �k = L

Let �k :=
1
2
+�k

1
2
��k

, which is the likelihood ratio that a signal on issue k matches

candidate better on issue k v.s. mismatches. By (??), we have

Pr
�
X i = xij�A�B; �

	
=

8<:
q�

1
2
+ �k

� �
1
2
� �k

�
(�k)

xi
2 if �k = Rq�

1
2
+ �k

� �
1
2
� �k

�
(�k)

�xi
2 if �k = L

(5)
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We show the extent to which Figure 1 is representative of how cross-issue
negative correlation ratio % changes with the number of other voters paying
attention to issue A.

Lemma 8 Assume that �Rk = �Lk for k = A;B. The cross-issue negative
correlation ratio % has the following properties:

1. % (mA) = 1 for mA = 0 or 2n.

2. % is symmetric around n, i.e. % (mA) = % (2n�mA)

3. % (n)!1 as n!1.

4. For mA � n � 1, % (mA) � % (mA+2), whereas for mA � n � 1,
% (mA) � % (mA+2).

The �rst property is easy to establish. Suppose no other voter pays
attention to issue A, i.e. mA = 0. Then � (R�Bj0) = � (L�Bj0), thus
Pr fX = xjR�Bg = Pr fX = xjL�Bg for any vote pro�le x. It follows that
q (L�Bj0) = q (R�Bj0) regardless of who is better on issue B. Lemma 4,
cross-issue negative correlation ratio % is equal to q(LRjmA)

q(RRjmA)
, the likelihood

ratio that candidate L v.s. R is better on issue A. Then % (0) = 1. The same
argument applies to mA = 2n.
The second property is a immediate from Lemma 4. The proofs of the

other two properties are in the Appendix.

4.2.4 Multi-issue Equilibria: Existence

It is an equilibrium where mA + 1 voters pay attention to issue A whereas
the other 2n�mA voters pay attention to issue B and all vote according to
signal if and only if % (mA) 2 [T1; T2] whereas % (mA+1) � T1. This follows
immediately from Lemma ?? because, when all voters follow such a strategy
pro�le, for a voter who is supposed to follow issue A (B), mA (mA+1) other
voters pay attention to issue A.
By Lemma 8, for n large enough, % (n) > T2 and % (2n) = 1. So, a multi-

issue equilibrium exists if, % (mA) decreases slow enoough so that it will not
jump from above T2 to below T1. That is, for all mA � n,

% (mA+1)

% (mA)
� T1
T2
. (6)

Lemma 9 gives an upper bound on rate of change of q(LRjmA)
q(RRjmA)

in mA.
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Lemma 9 For mA � n, %(mA+1)
%(mA)

> (�A)
�1.

Proof. See Appendix.
The upper bound on rate of change of q(LRjmA)

q(RRjmA)
derived in Lemma 9

gaurantees that inequality (6) holds because

T1
T2
=

�B��A
�B+�A
�B+�A
�B��A

=

�
�B � �A
�B + �A

�2
<

� 1
2
� �A

1
2
+ �A

�2
= (�A)

�2 < (�A)
�1

4.3 Symmetric Mixed-Attention Equilibria

We characterize the set of all symmetric equilibrium. We show that there are
exactly two symmetric mixed attention equilibria: equilibria in which each
voter randomizes strictly between paying attention to issue A and issue B.
Let � denote the strategy to follow issue A with probability � and then

vote according to signal, and follow issue B with probability 1� � and then
vote according to signal. As Section 4.2.1 derives voter best response given
general voting strategy pro�le, it su¢ ces to analyze how cross-issue negative
correlation ratio changes with �, the probability with which all the other
voters pay attention to issue A.

Lemma 10 Assume that �Rk = �Lk for k = A;B. The cross-issue negative
correlation ratio % has the following properties:

1. % (�) = 1 for � = 0 or 1,

2. for any � 2 (0; 1), % (�)!1 as n!1,

3. % (�) �rst increases with � and then decreases with �.

We �rst observe that � (RLj�) = �
�
1
2
+ �A

�
+ (1� �)

�
1
2
� �B

�
= 1

2
+

��A � (1� �) �B and � (LLj�) = 1
2
� ��A � (1� �) �B. .

So

% (�) =
q (RLj�)
q (LLj�) =

� (RLj�)n (1� � (RLj�))n

� (LLj�)n (1� � (LLj�))n

=

 
1
4
� (��A � (1� �) �B)2

1
4
� (��A + (1� �) �B)2

!n
.
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where the �rst equality holds by Lemma 4.
It follows that % (�) = 1 for � = 0 and 1. For any � 2 (0; 1), j��A � (1� �) �Bj�

j��A + (1� �) �Bj = �2min f��A; (1� �) �Bg < 0. So
1
4
�(��A�(1��)�B)2

1
4
�(��A+(1��)�B)2

< 1

and thus % (�) ! 1 as n ! 1. The proof for the last property is in the
Appendix.
For voter 0 to optimally randomize between two issues, she must be in-

di¤erent between them. So equilibrium �� must satisfy % (��) = T1. The
following characterization of the set of symmetric equilibria with �� 2 (0; 1)
follows immediately from Lemma 10.

Proposition 11 Assume �Rk = �Lk for k = A;B. There are exactly two
symmetric mixed-attention equilibria, one converges to � = 1 as n ! 1,
and one converges to � = 0 as n!1.

4.4 Exogenous Information Source

We emphasize that endogenous attention allocation is the source of potential
ine¢ ciency.
Suppose each voter exogenously receives a signal on issue A with proba-

bility � and a signal on issue B with probability 1� �. This setup is closest
to the classic voting model like Feddersen and Pesendorfer (1998).
We show that the unique symmetric equilibrium in this game is asymp-

totically e¢ cient. For large enough electorate, there exists an equilibrium in
which receiving a signal on the less important issue has zero informational
value to a voter, in the sense that the voter is indi¤erent between the two
candidates regardless of which signal she receives on the less important issue.
In this model, a voter�s strategy is represented by � = (�A; �B) where

�k (s) is the probability the voter votes for candidate R upon receiving signal
s on issue k. Write ��k = �k (r)� �k (l) and �k = �k(r)+�k(l)

2
.

Suppose every voter uses the same voting strategy �. So ik (�k) = k (�k)
for all i, where k (�k) is the expected probability a voter receiving a signal
on issue k votes for candidate R, and

k (Rj�) =
�
1

2
+ �Rk

�
�k (r) +

�
1

2
� �Rk

�
�k (l) = �k + �

R
k��k

and

k (Lj�) =
�
1

2
� �Lk

�
�k (r) +

�
1

2
+ �Lk

�
�k (l) = �k � �Lk��k
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In addition, every voter votes for candidate R with the same expected
probability � (�A�Bj�) = �A (�Aj�) + (1� �) B (�Bj�).
De�ne the cross-issue negative correlation when (�A; �B) = ((0; 1) ; (0; 1))

to be %0. Then

%0 =

"
1
4
�
�
���A + (1� �) �B

�2
1
4
�
�
��A + (1� �) �B

�2
#n
.

Proposition 12 Suppose �Rk = �Lk for k = A;B. If %0 � w+1
w�1 , then in the

unique symmetric equilibrium, each voter votes according to signal on each
signal. If %0 >

w+1
w�1 , in the unique symmetric equilibrium, a voter votes

according to signal if the signal is on issue A, whereas a voter is indi¤erent
between both candidates if his signal is on issue B. In addition, if n is large
enough, each voter is more likely to vote for the candidate better overall, and
thus equilibrium is asymptotically e¢ cient.

5 Appendix

5.1 Proofs for Section 4.2

Proof of Lemma 4. Consider (�A; �B) and (�
0
A; �

0
B) where �

0
A 6= �A and

�0B 6= �B. Given that �ik (r) + �
i
k (l) = 1 for all i and all k, �i (�A�Bj�) =

1 � �i (�0A�0B). So
�

�i(�A�B j�)
1��i(�A�B j�)

�xi
2
=

�
1��i(�0A�0B)
�i(�0A�0B)

�xi
2

=

�
�i(�0A�0B)
1��i(�0A�0B)

��xi
2

.

So the probability of vote pro�le X�0 = x�0 conditional on state (�A; �B)
is equal to the probability of vote pro�le X�0 = �x�0 conditional on state
(�0A; �

0
B). For every x 2 Piv0, we have �x 2 Piv0 because

P2n
i=1 (�xi) =

�
P2n

i=1 x
i = 0. It follows that Pr fPivj�A�B; �g = Pr fPivj�0A�0B; �g. So

q (�A�Bj�) = q (�0A�0Bj�).

5.1.1 Cross-Issue Negative Correlation Issue with Evenly Divided
Attention

We next show that when attention among other voters is evenly divided,
as the electorate becomes larger, conditional on being pivotal, it comes ex-
tremely likely that di¤erent candidates are better on di¤erent issues.
De�ne XA =

PmA

i=1Xi and XB =
P2n

i=mA+1
Xi. Then XA and XB are the

net number of votes for candidate R, i.e. the number of �R�votes minus
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the number of �L� votes, among voter i = 1; � � � ; 2n who follow A and B
respectively. LetmB = 2n�mA. Then, for k = A;B, Xk is a random variable
with support f�mk;�mk + 2; � � � ;mk � 2;mkg where mB = 2n �mA. The
event that voter 0 is pivotal, Piv, is exactly the event XA +XB = 0.
De�ne gmA

(xA) to be probability XA = xA conditional on voter 0 being
pivotal and (�A; �B) = (R;R). Since all voters are ex ante identical, we
can w.l.o.g. assume that voter i = 1; � � � ;mA follow issue A and voter i =
mA+1; � � � ; 2n follow issue B. Conditional on voter 0 being pivotal, XA = xA
if and only if the total number of �R�votes among voter i = 1; � � � ;mA is
mA+xA

2
and the total number of �R�votes among voter i = mA + 1; � � � ; 2n

is equal to 2n�mA�xA
2

. Then, for xA 2 f�m;�m+ 2; � � � ;m� 2;mg where
m = min fmA;mBg, we have

gmA
(xA)

=
Pr fXA = xA; XB = �xAjRRg

Pr fXA +XB = 0jRRg

=

P
x2Piv0:(

PmA
i=1 xi)=xA

�mA
i=1

q�
1
2
+ �A

� �
1
2
� �A

�
(�A)

xi
2 �2ni=mA+1

q�
1
2
+ �B

� �
1
2
� �B

�
(�B)

xi
2P

x2Piv0 �
mA
i=1

q�
1
2
+ �A

� �
1
2
� �A

�
(�A)

xi
2 �2ni=mA+1

q�
1
2
+ �B

� �
1
2
� �B

�
(�B)

xi
2

=

� mA
mA+xA

2

�� 2n�mA
2n�mA�xA

2

� ��
1
2
+ �A

� �
1
2
� �A

��mA
2 (�A)

xA
2
��

1
2
+ �B

� �
1
2
� �B

�� 2n�mA
2 (�B)

�xA
2

P
x0A2f�m;�m+2;��� ;m�2;mg

24 � mA
mA+x

0
A

2

�� 2n�mA
2n�mA�x0A

2

� ��
1
2
+ �A

� �
1
2
� �A

��mA
2 (�A)

x0A
2

�
��

1
2
+ �B

� �
1
2
� �B

�� 2n�mA
2 (�B)

�x0A
2

35

=

� mA
mA+xA

2

�� 2n�mA
2n�mA�xA

2

� � �A
�B

�xA
2

P
x0A2f�m;�m+2;��� ;m�2;mg

� mA
mA+x

0
A

2

�� 2n�mA
2n�mA�x0A

2

� � �A
�B

�x0
A
2

, (7)

where the second equality follows from (5) and the fourth equality follows by
dividing both the nominator and the denominator by��

1

2
+ �A

��
1

2
� �A

��mA
2
��

1

2
+ �B

��
1

2
� �B

��mB
2

Proof of Property 4 for Lemma 8. It su¢ cies to show that, for anyK 2
R+, Pr fXA � �KjRR;mA = ng ! 0 as n ! 1. We do so by establishing
the following claims:
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Claim 13 gn (x)! 0 as n!1 if x 2 [�K;�1].

Claim 14 For x = nmod 2 + 2k for k 2 N, gn(x)
gn(�nmod 2) <

�
�A
�B

�k
and thus

Pr fXA � �1jHH;mA = ng � gn(�nmod 2)
1� �A

�B

It then follows that Pr fXA � �KjRR;mA = ng � gn(�nmod 2)
1�
�
�A
�B

� +
P

x�K and x�nmod 2
2

2N gn (x)!
0 as n!1.
We now prove the two claims. We show that the density function gmA=n (x)

is single-peaked and that the peak, denoted by x�n, is roughly proportional
to �n in the sense that �x

�
n

n
converges to a positive constant.

We �rst note that

gmA
(x+ 2)

gmA
(x)

=

� mA
mA+x+2

2

��
2n�mA

2n�m�x�2
2

� � �A
�B

�x
2

� mA
mA+x

2

�� 2n�mA
2n�mA�x

2

� � �A
�B

�x�2
2

=
mA � mA+x

2
mA+x+2

2

2n�mA�x
2

2n�mA � 2n�mA�x�2
2

�A
�B

=

�
mA

2
� x

2

� �
2n�mA

2
� x

2

��
mA

2
+ x

2
+ 1
� �

2n�mA

2
+ x

2
+ 1
� �A
�B

So

gn (x+ 2) =gn (x) =

� n
2
� x

2
n
2
+ x

2
+ 1

�2
�A
�B

So gn (x) � gn (x+ 2) if and only if
�
1 + x

n
+ 2

n

�p
�B=�A � 1� x

n
, i.e. i¤

�x
n

�
1 +

q
�B
�A

�
�
�
1 + 2

n

�p
�B=�A � 1 i.e. i¤ �x=n �

(1+ 2
n)
p
�B=�A�1p

�B=�A+1
. So

gn (x) peaks at x�n = �nmod 2�2k� where k� =
��

n
2
+ 1
� q �B

�A
�1q

�B
�A
+1
� nmod 2

�
. So x�n=n! �

p
�B=�A�1p
�B=�A+1

2 (0; 1) as n!1
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For any given x,

gn (x)

gn (x�n)
=

gn (x
�
n + 2)

gn (x�n)
� � � gn (x)

gn (x� 2)

=

 
n
2
� x�n

2
n
2
+ x�n

2
+ 1

!2
�A
�B
� � �
� n
2
� x�2

2
n
2
+ x

2

�2
�A
�B

=

�
n
2
�x�n

2
n
2
+
x�n
2
+1

�2
� � �
�

n
2
�x�2

2
n
2
+x
2

�2
�

n
2
�x�n

2
n
2
+
x�n
2
+1

�2�x�x�n
2

�
 

n
2
� x�n

2
n
2
+ x�n

2
+ 1

!2�x�x�n
2

��
�A
�B

�x�x�n
2

= �
x�x�n
2

�1
k=0

0BB@
n
2
�x�n+2k

2
n
2
+
x�n+2k

2
+1

n
2
�x�n

2
n
2
+
x�n
2
+1

1CCA
20@ n

2
� x�n

2
n
2
+ x�n

2
+ 1

!2
�A
�B

1A
x�x�n
2

� �
x�x�n
2

�1
k=0

0BB@
n
2
�x�n+2k

2
n
2
�x�n

2

n
2
+
x�n+2k

2
+1

n
2
+
x�n
2
+1

1CCA
2

= �
x�x�n
2

�1
k=0

0@ 1� k
n
2
�x�n

2

1 + k
n
2
+
x�n
2
+1

1A2

=

0BB@ e

Px�x�n
2 �1

k=0 log

 
1� k

n
2�

x�n
2

!

e

Px�x�n
2 �1

k=0 log

 
1+ k

n
2 +

x�n
2 +1

!
1CCA
2

=

0@e 1

n
2�

x�n
2

Px�x�n
2 �1

k=0 log

 
1� k

n
2�

x�n
2

!1A2
�
n
2
�x�n

2

�

0@e 1

n
2 +

x�n
2 +1

Px�x�n
2 �1

k=0 log

 
1+ k

n
2 +

x�n
2 +1

!1A2
�
n
2
+
x�n
2
+1
�

�
 
e

R 1
�=1�x�x�n�2

n�x�n

log �d�
!n�x�n

=

 
e
R 1+x�x�n�2

n+x�n+2
�=1 log �d�

!n+x�n+2

=

0@ eR 1�=1�x�x�n�2
n�x�n

log �d�
!1�x�n=n 

e�
R 1+x�x�n�2

n+x�n+2
�=1 log �d�

!1+(x�n+2)=n1An

=

24 e(z log z�z)j11� (x�2)=n�x�n=n
1�x�n=n

!1�x�n=n 
e�(z log z�z)j

1+
(x�2)=n�x�n=n
1+x�n=n+2

1

!1+(x�n+2)=n35n(8)
! 0 as n!1 (9)
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because (x�2)=n�x�n=n
1�x�n=n

!
p
�B=�A�1

2
p
�B=�A

2 (0; 1), x=n�(x�n+2)=n
1+(x�n+2)=n

!
p
�B=�A�1
2

> 0,

1 � x�n
n
! 2

p
�B=�Ap

�B=�A+1
> 0 and 1 + (x�n + 2) =n ! 2p

�B=�A+1
> 0 and thus the

term inside [] converges to some number in (0; 1).
Since gn (x) is a probability mass function, gn (x�n) 2 (0; 1). Claim 13

then follows.
For x � �1 in the support of XA, gn (x+ 2) =gn (x) � �A

�B
because �x

2
��

x
2
+ 1
�
= �x � 1 � 0. Thus, for x = �nmod 2 + 2k for any k � 0,

gn(x)
gn(�nmod 2) =

gn(x)
gn(x�2) � � �

gn(�nmod 2+2)
gn(�nmod 2) �

�
�A
�B

�k
. Claim 14 holds because

Pr fX � �1g =

1X
k=0

gn (�nmod 2 + 2k)

=
1X
k=0

gn (�nmod 2 + 2k)
gn (�nmod 2)

gn (�nmod 2)

�
1X
k=0

�
�A
�B

�k
gn (�nmod 2)

=
gn (�nmod 2)
1� �A=�B

.
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5.1.2 How Fast Cross-Issue Negative Correlation Ratio Changes
with mA

Proof of Lemma 9. Recall that �A =
1
2
+�A

1
2
��A

and �B =
1
2
+�B

1
2
��B

. From (??),
we have

q (LRjmA)

q (RRjmA)

=

P
xA2f�(2n�mA);�(2n�mA)+2;��� ;(2n�mA)�2;2n�mAg

� mA
mA+xA

2

�� 2n�mA
2n�mA�xA

2

�
(�A�B)

�xA
2

P
xA2f�(2n�mA);�(2n�mA)+2;��� ;(2n�mA)�2;2n�mAg

� mA
mA+xA

2

�� 2n�mA
2n�mA�xA

2

� � �A
�B

�xA
2

=

P 2n�mA
2

y=� 2n�mA
2

�
mA

mA
2
�y

�� 2n�mA
2n�mA

2
+y

�
(�A�B)

y

P 2n�mA
2

y=� 2n�mA
2

�
mA

mA
2
�y

�� 2n�mA
2n�mA

2
+y

� ��B
�A

�y
=

2n�mA
2X

y=� 2n�mA
2

�
mA

mA
2
�y

�� 2n�mA
2n�mA

2
+y

� ��B
�A

�y
P 2n�mA

2

z=� 2n�mA
2

�
mA

mA
2
�z

�� 2n�mA
2n�mA

2
+z

� ��B
�A

�z (�A)2y
where the second equality holds by letting y = �xA

2
. The summation is over

y 2
�
�2n�mA

2
;�2n�mA

2
+ 1; � � � ; 2n�mA

2
� 1; 2n�mA

2

	
.

De�ne f (y) =
(

mA
mA
2 �y)(

2n�mA
2n�mA

2 +y
)
�
�B
�A

�y
P 2n�mA

2

z=� 2n�mA
2

(
mA

mA
2 �z)(

2n�mA
2n�mA

2 +z
)
�
�B
�A

�z for y 2 ��2n�mA

2
;�2n�mA

2
+ 1; � � � ; 2n�mA

2
� 1; 2n�mA

2

	
and 0 otherwise. Then

q (LRjmA)

q (RRjmA)
= EY�f

h
(�A)

2Y
i
.

Similarly,

q (LRjmA+1)

q (RRjmA+1)

=

P
xA2f�(2n�mA)+1;�(2n�mA)+3;��� ;(2n�mA)�3;2n�mA�1g

� mA+1
mA+1+xA

2

�� 2n�mA�1
2n�mA�1�xA

2

�
(�A�B)

�xA
2

P
xA2f�(2n�mA)+1;�(2n�mA)+3;��� ;(2n�mA)�3;2n�mA�1g

� mA+1
mA+1+xA

2

�� 2n�mA�1
2n�mA�1�xA

2

� � �A
�B

�xA
2

=

P
xA2f�(2n�mA)+1;�(2n�mA)+3;��� ;(2n�mA)�3;2n�mA�1g

� mA+1
mA+1�xA

2

�� 2n�mA�1
2n�mA�1+xA

2

�
(�A�B)

�xA
2

P
xA2f�(2n�mA)+1;�(2n�mA)+3;��� ;(2n�mA)�3;2n�mA�1g

� mA+1
mA+1�xA

2

�� 2n�mA�1
2n�mA�1+xA

2

� � �A
�B

�xA
2
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where the second equality holds because
� mA+1
mA+1+xA

2

�
=
� mA+1
mA+1�xA

2

�
and

� 2n�mA�1
2n�mA�1�xA

2

�
=� 2n�mA�1

2n�mA�1+xA
2

�
. Let y = �xA�1

2
, then we have

q (LRjmA+1)

q (RRjmA+1)

=

P 2n�mA
2

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

�
(�A�B)

y� 1
2

P 2n�mA
2

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

� � �A
�B

��y+ 1
2

=

P 2n�mA
2

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

�
(�A)

y�1 (�B)
y

P 2n�mA
2

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

� ��B
�A

�y
= (�A)

�1

2n�mA
2X

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

� ��B
�A

�y
P 2n�mA

2

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

� ��B
�A

�y (�A)2y .
De�ne

~f (y) =

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

� ��B
�A

�y
P 2n�mA

2

y=� 2n�mA
2

+1

�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

� ��B
�A

�y .
for y 2

�
�2n�mA

2
+ 1; � � � ; 2n�mA

2
� 1; 2n�mA

2

	
and 0 otherwise. Then

q (LRjmA+1)

q (RRjmA+1)
= (�A)

�1EY� ~f

h
(�A)

2Y
i
.

Note that for y = �2n�mA

2
,
~h(y)
h(y)

= 0. For y 2
�
�2n�mA

2
+ 1; � � � ; 2n�mA

2
� 1; 2n�mA

2

	
,

~h(y)
h(y)

is equal to a term independent of y times�
mA+1
mA
2
+y

��2n�mA�1
2n�mA

2
�y

�
�
mA

mA
2
+y

�� 2n�mA
2n�mA

2
�y

� = mA + 1
mA

2
+ 1� y

2n�mA

2
+ y

2n�mA

,

which is strictly positive and strictly increasing in y. So the distribution of
~h dominates that of h in the sense of MLRP, and thus

q (LRjmA+1)

q (RRjmA+1)
= (�A)

�1EY� ~f

h
(�A)

2Y
i
> (�A)

�1EY�f

h
(�A)

2Y
i
= (�A)

�1 q (LRjmA)

q (RRjmA)
.
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5.2 Proofs for Section 4.3

We now show that % (�) �rst increases with � and then decreases with �.

@ log % (�)

@�
=2n

=
1

2

@

@�
log

1
4
� (��A � (1� �) �B)2

1
4
� (��A + (1� �) �B)2

=
1

2

 
�2 (��A � (1� �) �B) (�A + �B)

1
4
� (��A � (1� �) �B)2

� �2 (��A + (1� �) �B) (�A � �B)
1
4
� (��A + (1� �) �B)2

!

=
(���A + (1� �) �B) (�A + �B)

1
4
� (��A � (1� �) �B)2

� (��A + (1� �) �B) (�B � �A)
1
4
� (��A + (1� �) �B)2

We �rst observe that @ log %(�)
@�

> 0 for � = 0 and @ log %(�)
@�

< 0 for � = 1.

We now show that
@2 log

q(RLj�)
q(LLj�)
@�2

< 0 whenever
@ log

q(RLj�)
q(LLj�)
@�

= 0.

Suppose
@ log

q(RLj�)
q(LLj�)
@�

= 0 at � = �̂. Then (�A + �B)
1
2
��(RLj�)

1
4
�(�(RLj�)� 1

2)
2 =
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(�B � �A)
1
2
��(LLj�)

1
4
�(�(LLj�)� 1

2)
2 . Then

@2 log q(RLj�)
q(LLj�)

@�2
=nj�=�̂

= (�A + �B)
1
4
+
�
1
2
� � (RLj�̂)

�2�
1
4
�
�
1
2
� � (RLj�)

�2�2 @
�
1
2
� � (RLj�̂)

�
@�̂

� (�B � �A)
1
4
+
�
1
2
� � (LLj�̂)

�2�
1
4
�
�
1
2
� � (LLj�̂)

�2�2 @
�
1
2
� � (LLj�̂)

�
@�̂

= (�A + �B)
1
4
+
�
1
2
� � (RLj�̂)

�2�
1
4
�
�
1
2
� � (RLj�̂)

�2�2 @ (���A + (1� �) �B)@�
j�=�̂ � (�B � �A)

1
4
+
�
1
2
� � (LLj�̂)

�2�
1
4
�
�
1
2
� � (LLj�̂)

�2�2 @ (��A + (1� �) �B)@�
j�=�̂

= � (�A + �B)
1
4
+
�
1
2
� � (RLj�̂)

�2�
1
4
�
�
1
2
� � (RLj�̂)

�2�2 (�A + �B)� (�B � �A) 1
4
+
�
1
2
� � (LLj�̂)

�2�
1
4
�
�
1
2
� � (LLj�̂)

�2�2 (�A � �B)
= �

 
(�A + �B)

1
2
� � (RLj�̂)

1
4
�
�
1
2
� � (RLj�̂)

�2
!2

1
4
+
�
1
2
� � (RLj�̂)

�2�
1
2
� � (RLj�̂)

�2 +

 
(�B � �A)

1
2
� � (LLj�̂)

1
4
�
�
1
2
� � (LLj�̂)

�2
!2

1
4
+
�
1
2
� � (LLj�̂)

�2�
1
2
� � (LLj�̂)

�2
= �

 
(�A + �B)

1
2
� � (RLj�̂)

1
4
�
�
1
2
� � (RLj�̂)

�2
!2 

1

4

�
1

2
� � (RLj�̂)

��2
+ 1�

 
1

4

�
1

2
� � (LLj�̂)

��2
+ 1

!!

= �1
4

 
(�A + �B)

1
2
� � (RLj�̂)

1
4
�
�
1
2
� � (RLj�̂)

�2
!2 �

(��̂�A + (1� �̂) �B)�2 + (�̂�A + (1� �̂) �B)�2
�

< 0

where the second-to-last equallity holds because
@ log

q(RLj�)
q(LLj�)
@�

= 0 at � = �̂

and thus (�A + �B)
1
2
��(RLj�̂)

1
4
�( 12��(RLj�̂))

2 = (�B � �A)
1
2
��(LLj�̂)

1
4
�( 12��(LLj�̂))

2 , and the in-

equality holds because ��̂�A + (1� �̂) �B > 0 given that
@ log

q(RLj�)
q(LLj�)
@�

< 0 if
1
2
� � (RLj�) = ���A + (1� �) �B < 0.

5.3 Analysis for Exogenous Information Source

Lemma 15 The following equations are equivalent:

Claim 16 1. q (RRj�) = q (LLj�);

2. q (RLj�) = q (LRj�);
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3. �(RRj�)+�(LLj�)
2

= 0.

Proof. From (??), q (�A�Bj�) = q (�0A�0Bj�) if and only if
��� (�A�Bj�)� 1

2

�� =��� (�0A�0Bj�)� 1
2

��. We observe that�
� (RRj�)� 1

2

�
�
�
1
2
� � (LLj�)

�
2

=
� (RRj�) + � (LLj�)

2
� 1
2

= �
A (Rj�) + A (Lj�)

2
+ (1� �) B (Rj�) + B (Lj�)

2
� 1
2

=
� (RLj�) + � (LRj�)

2
� 1
2

=

�
� (RLj�)� 1

2

�
�
�
1
2
� � (LRj�)

�
2

All claims then follow.
We can thus de�ne � (�) = �(RRj�)+�(LLj�)

2
. Then � (�) = �(RLj�)+�(LRj�)

2
.

It is useful to see that
� (RRj�) + � (LLj�)

2

= ��A + (1� �)�B + �
�RA � �LA
2

��A + (1� �)
�RB � �LB
2

��B,

We give an expression of the cross-issue negative correlation under exoge-
nous information source. We observe that

� (LRj�)
= �A (L) + (1� �) B (R)

= �
A (L) + A (R)

2
+ (1� �) B (L) + B (R)

2

��A (R)� A (L)
2

+ (1� �) B (R)� B (L)
2

=
� (RRj�) + � (LLj�)

2
� ��A��A + (1� �) �B��B :

Similarly, for any (�A; �B) 2 fL;Rg2,

� (�A�Bj�) =
� (RRj�) + � (LLj�)

2
(10)

+��A��A
�
1f�A=Rg � 1f�A=Lg

�
+ (1� �) �B��B

�
1f�B=Rg � 1f�B=Lg

�
.(11)
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In the case where �(RRj�)+�(LLj�)
2

= 1
2
, cross-issue negative correlation ratio

simpli�es to

% =
q (LRj�)
q (RRj�)

=

"
1
4
�
�
���A��A + (1� �) �B��B

�2
1
4
�
�
��A��A + (1� �) �B��B

�2
#n

(12)

De�ne a symmetric equilibrium to be an equilibrium in which every voter
uses the same voting strategy �� = (��A; �

�
B).

Lemma 17 ??j���Aj+ j���Bj > 0.

Proof. Suppose to the contrary that ���A = 0 = ��
�
B. Then q (RRj��) =

q (LLj��) = q (RLj��) = q (LRj��). Then V; (��) = 0 and VA (��) > 0. Thus
it is optimal for those receiving signals on issue A to vote according to signal,
contradiction.

Lemma 18 Either 0 = V; (�
�) =

�
� (��)� 1

2

�
or � (��) � 1

2
> 0 and

V; (�
�) < 0 or � (��)� 1

2
< 0 and V; (��) > 0.

Proof. Consider � (��)�1
2
= 0. Then q (RRj��) = q (LLj��) and q (RLj��) =

q (LRj��) by Lemma 15. So V; (��) = 0.
Consider � (��)� 1

2
> 0. We �rst observe that

1
4
�
�
��A j��Aj+ (1� �) �B j��Bj+ � (��)� 1

2

�2
1
4
�
�
���A j��Aj � (1� �) �B j��Bj+ � (��)� 1

2

�2
�

1
4
�
�����A j��Aj � (1� �) �B j��Bj��+ � (��)� 1

2

�2
1
4
�
�
�
����A��A � (1� �) �B j��Bj��+ � (��)� 1

2

�2 (13)

� 1. (14)
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because
1
4
�(x+c)2

1
4
�(�x+c)2 is strictly decreasing in x for c 2 (0; 1]. Note that

d

dx

1
4
� (x+ c)2

1
4
� (�x+ c)2

=
�2 (x+ c)

�
1
4
� (�x+ c)2

�
� (�2) (�x+ c) (�1)

�
1
4
� (x+ c)2

�
1
4
� (�x+ c)2

=
1
4
(�2 (x+ c)� 2 (�x+ c)) + 2 (x+ c) (�x+ c) [(�x+ c) + (x+ c)]

1
4
� (�x+ c)2

=
�4c

�
1
4
+ x2 � c2

�
1
4
� (�x+ c)2

has the same sign as �c if jcj � 1
2
. Moreover, either (13) or (14) holds with

strict inequality because ��A j��Aj + (1� �) �B j��Bj > 0 by Lemma ??.
In addition, (13) holds with strict inequality if ���B 6= 0.

Consider���B � 0. Then
q(RRj��)
q(LLj��) =

�
1
4
�(��Aj��Aj+(1��)�B j��B j+�(��)� 1

2)
2

1
4
�(���Aj��Aj�(1��)�B j��B j+�(��)� 1

2)
2

�n
<

1 since ���A � 0. If
q(RLj��)
q(LRj��) � 1, then V; (�

�) < 0 and we are done. Suppose

q(RLj��)
q(LRj��) > 1, then

q(LRj��)
q(RLj��) =

1
4
�(j��Aj��Aj�(1��)�B j��B jj+�(��)� 1

2)
2

1
4
�(�j��A��A�(1��)�B j��B jj+�(��)� 1

2)
2 because 1 �

1
4
�(j��Aj��Aj�(1��)�B j��B jj+�(��)� 1

2)
2

1
4
�(�j��A��A�(1��)�B j��B jj+�(��)� 1

2)
2 . Thus ��A��A�(1� �) �B��B < 0. So
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��B > 0 and
q(RRj��)
q(LLj��) <

q(LRj��)
q(RLj��) < 1. Then

V; (�
�)

= (w + 1) (q (RRj��)� q (LLj��)) + (w � 1) (q (RLj��)� q (LRj��))

= (w + 1)

q(RRj��)
q(LLj��) � 1

�RB
q(RRj��)
q(LLj��) + �

L
B

�
�RBq (RRj��) + �LBq (LLj��)

�
+(w � 1)

 
1� q(LRj��)

q(RLj��)

�LB + �
R
B
q(LRj��)
q(RLj��)

!�
�LBq (RLj��) + �RBq (LRj��)

�
< (w + 1)

q(LRj��)
q(RLj��) � 1

�RB
q(LRj��)
q(RLj��) + �

L
B

�
�RBq (RRj��) + �LBq (LLj��)

�
+(w � 1)

 
1� q(LRj��)

q(RLj��)

�LB + �
R
B
q(LRj��)
q(RLj��)

!�
�LBq (RLj��) + �RBq (LRj��)

�
=

1� q(LRj��)
q(RLj��)

�LB + �
R
B
q(LRj��)
q(RLj��)

�
� (w + 1)

�
�RBq (RRj��) + �LBq (LLj��)

�
+ (w � 1)

�
�LBq (RLj��) + �RBq (LRj��)

��
= �

1� q(LRj��)
q(RLj��)

1 + q(LRj��)
q(RLj��)

VB (�
�)

where the strict inequality holds because q(RRj��)
q(LLj��) <

q(LRj��)
q(RLj��) . Since ��

�
B > 0,

��B (r) > 0 and �
�
B (l) < 1. For �

�
B to be part of voter 0�s best response, we

must have V; (��) + VB (��) � 0 and V; (��)� VB (��) � 0. So VB (��) � 0.

Since q(LRj��)
q(RLj��) < 1, it follows that V; (�

�) < �1� q(LRj��)
q(RLj��)

1+
q(LRj��)
q(RLj��)

VB (�
�) � 0.

Consider ��B < 0. Then, the previous inequalities apply with q (�ARj��)
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and q (�ALj��) reversed. So q(RLj��)
q(LRj��) �

q(LLj��)
q(RRj��) < 1. Then,

V; (�
�)

= (w + 1) (q (RRj��)� q (LLj��)) + (w � 1) (q (RLj��)� q (LRj��))

= (w + 1)

q(RRj��)
q(LLj��) � 1

�RB
q(RRj��)
q(LLj��) + �

L
B

�
�RBq (RRj��) + �LBq (LLj��)

�
+(w � 1)

 
1� q(LRj��)

q(RLj��)

�LB + �
R
B
q(LRj��)
q(RLj��)

!�
�LBq (RLj��) + �RBq (LRj��)

�
< (w + 1)

q(LRj��)
q(RLj��) � 1

�RB
q(LRj��)
q(RLj��) + �

L
B

�
�RBq (RRj��) + �LBq (LLj��)

�
+(w � 1)

 
1� q(LRj��)

q(RLj��)

1 + q(LRj��)
q(RLj��)

!�
�LBq (RLj��) + �RBq (LRj��)

�
=

q(LRj��)
q(RLj��) � 1

�RB
q(LRj��)
q(RLj��) + �

L
B

�
(w + 1)

�
�RBq (RRj��) + �LBq (LLj��)

�
� (w � 1)

�
�LBq (RLj��) + �RBq (LRj��)

��
=

q(LRj��)
q(RLj��) � 1

�RB
q(LRj��)
q(RLj��) + �

L
B

VB (�
�) .

So V; (��) � VB (��) <
�
1�

q(LRj��)
q(RLj��)+1
q(LRj��)
q(RLj��)�1

�
V; (�

�) = � 2
q(LRj��)
q(RLj��)�1

V; (�
�). Since

���B < 0, we have �
�
B (r) < 1 and �

�
B (l) > 0. For �

�
B to be part of voter 0�s

best response, V; (��)+VB (��) � 0 and V; (��)�VB (��) � 0. So VB (p�) � 0.

Since q(LRj��)
q(RLj��) > 1, V; (�

�) <
q(LRj��)
q(RLj��)�1

�RB
q(LRj��)
q(RLj��)+�

L
B

VB (�
�) � 0.

The case where � (��)� 1
2
< 0 is analogous.

De�ne the cross-issue negative correlation when (�A; �B) = ((0; 1) ; (0; 1))
to be %0. Then

%0 =

"
1
4
�
�
���A + (1� �) �B

�2
1
4
�
�
��A + (1� �) �B

�2
#n
.

Proposition 19 Suppose �Rk = �Lk for k = A;B. If %0 � w+1
w�1 , then in the

unique symmetric equilibrium, each voter votes according to signal on each
signal. If %0 >

w+1
w�1 , in the unique symmetric equilibrium, a voter votes
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according to signal if the signal is on issue A, whereas a voter is indi¤erent
between both candidates if his signal is on issue B. In addition, if n is large
enough, each voter is more likely to vote for the candidate better overall, and
thus equilibrium is asymptotically e¢ cient.

Proof. We �rst show the necessary conditions of an equilibrium:

1. ��A (r) = 1 and �
�
A (l) = 0.

2. ��B =
1
2
and thus � (��) = 1

2
.

Suppose to the contrary that (��A (l) ; �
�
A (r)) 6= (0; 1). Then, by Lemma

??, either ��A (r) = 1 � ��A (l) > 0 or 1 > ��A (r) � ��A (l) = 0. It is w.l.o.g.
to just consider the former case. For ��A (l) > 0 to be voter 0�s best response,
voter 0 must weakly prefer candidate R after receiving signal sA = l on issue
A. So V; (��)�VA (��) � 0. Since VA (�) > 0 for any �, we have V; (��) > 0.
Then �B � 1

2
by Lemma 18. By hypothesis, �A > 1

2
. So 0 < �� 1

2
= � (��)� 1

2

where the equality holds by symmetry. Contradiction to Lemma 18.
So ��A =

1
2
. If ��B >

1
2
, then � > 1

2
. Then V; (��) < 0 by Lemma 18.

Suppose to the contrary that ��B 6= 1
2
. W.l.o.g. consider ��B > 1

2
. Since

��A >
1
2
, then � (��) = �� > 1

2
. Then V; (��) < 0 by Lemma 18. Then

min f��B (r) ; ��B (l)g = 0 by Lemma ??. So ��B < 1
2
. Contradiction to they

hypothesis that ��B >
1
2
. Analogously, we can obtain a contradiction for the

hypothesis that ��B <
1
2
. So ��B =

1
2
and thus � (��) = 1

2
. Then V; (��) = 0

by Lemma 18.
We now pin down ��B.
Since � (��) = 1

2
and by symmetry in information structure within an

issue, q (RLj��) = q (LRj��) and q (RRj��) = q (LLj��). So

%
1
n =

�
q (RLj��)
q (RRj��)

� 1
n

=
1
4
� (��A � (1� �) �B���B)

2

1
4
� (��A + (1� �) �B���B)

2 . (15)

We �rst argue that ���B > 0. Suppose to the contrary that ��
�
B � 0. Then

% � 1, but then VB (��) > 0 and thus voter 0�s best response must satisfy
��B (1) = 1 and �

�
B (0) = 0. So ��

�
B > 0, contradiction.

Since �A > 0 and �B > 0, the RHS of (15) increases stritly with ��B
and is equal to 1 for ��B = 0. So ���B > 0 because otherwise, % � 1
but then VB (��) > 0 and thus (��B (0) ; �

�
B (1)) = (0; 1) since V; (��) = 0.

Contradiction.

32



Consider the case where %0 � w+1
w�1 . Then the RHS of (15) is no bigger than�

w+1
w�1
� 1
n+1 for all ��B 2 [�1; 1], and voter 0�s best response to any symmetric

strategy pro�le must involve �B (r) = 1 and �B (l) = 0. So ��B (r) = 1 and
��B (l) = 0 in the unique equilibrium. Conversely, it is an equilibrium if every
voter uses �� where ��A (l) = 0; �

�
A (r) = 1; �

�
B (r) = 0 and �

�
B (l) = 1. Since

� (��) = �� = 1
2
, we have V; (��) = 0. Then ��A = (0; 1) is optimal for voter

0 after receiving a signal on issue A. Since % = %0 � w+1
w�1 , V

�
B � 0. Since

V; (�
�) = 0, ��B = (0; 1) is part of voter 0�s best response.
Consider the case where %0 >

w+1
w�1 . Then there exists a unique �

� 2 (0; 1)
such that (15)= w+1

w�1 at ��B = �
�. We show that ���B = �

�. If ���B > �
�,

then % > w+1
w�1 and thus VB (�

�) < 0. Since V; (��) = 0, for �� to be voter
0�s best response, we must have ��B (0) = 1 and ��B (1) = 0, contradiction.
If ���B < ��, then % < w+1

w�1 and thus VB (�
�) > 0. Since V; (��) = 0, for

�� to be voter 0�s best response, we must have ��B (0) = 0 and �
�
B (1) = 1,

contradiction.
So ���B = ��. Since ��B = 1

2
, we must have ��B (r) =

1
2
+ ��

2
and

��B (l) =
1
2
� ��

2
.

We now show that it is an equilibrium if every voter uses �� where ��A (l) =
0; ��A (r) = 1; �

�
B (r) =

1
2
+ ��

2
and ��B (l) =

1
2
� ��

2
. Since � (��) = �� = 1

2
,

we have V; (��) = 0. Then ��A = (0; 1) is optimal for voter 0 after receiving
a signal on issue A. Since ���B = ��, % = w+1

w�1 by construction. Thus
VB (�

�) = 0. So any �B 2 [0; 1]2 is part of voter 0�s best response. So ��B is
part of voter 0�s best response.

As n ! 1,
�
w+1
w�1
� 1
n ! 1+. Thus, for large enough n, %0 >

w+1
w�1 , and

�� ! 0+. So ���B ! 0+. So � (RLj��) = 1
2
+ ��A � (1� �) �B�� !

1
2
+ ��A >

1
2
and � (LRj��) = 1

2
� ��A + (1� �) �B�� ! 1

2
� ��A < 1

2
. It is

straightforward that � (RRj��)! 1
2
+��A >

1
2
and � (LLj��)! 1

2
���A < 1

2
.

So the equilibrium outcome is asymptotically e¢ cient.

Proposition 20 If
���RA � �LA�� < 1��

�
, then for n large enough, there exists an

equilibrium where (�A (l) ; �A (r)) = (0; 1) and a voter is indi¤erent between
candidate L and R upon receiving both sB = l and r. If this equilibrium is
played for all n large enough and if � > 0, then the probability the optimal
candidate is elected goes to 1 as n!1.

Proof. From (??) and (??), we can see that voter 0 is indi¤erent between
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candidate L and R upon receiving both sB = l and r if and only if

[(w + 1) (q (RRj�)� q (LLj�)) + (w � 1) (q (RLj�)� q (LRj�))] = 0(16)

(w + 1)
�
�RBq (RRj�) + �LBq (LLj�)

�
� (w � 1)

�
�LBq (RLj�) + �RBq (LRj�)

�
= 0.(17)

The following two equations are su¢ cient:(
q (RRj�) = q (LLj�)

q(LRj�)
q(RRj�) =

w+1
w�1

(18)

because (16) holds if q (RRj�) = q (LLj�) by Claim ?? and (17) hold if (18)
holds.
Suppose (�A (l) ; �A (r)) = (0; 1). By (12),

q (LRj�)
q (RRj�) =

"
1
4
�
�
��
2

�
�LA + �

R
A

�
+ 1��

2

�
�LB + �

R
B

�
(�B (r)� �B (l))

�2
1
4
�
�
�
2

�
�LA + �

R
A

�
+ 1��

2

�
�LB + �

R
B

�
(�B (r)� �B (l))

�2
#n

=

"
1
4
�
�
�
2

�
�LA + �

R
A

�
� 1��

2

�
�LB + �

R
B

�
(�B (r)� �B (l))

�2
1
4
�
�
�
2

�
�LA + �

R
A

�
+ 1��

2

�
�LB + �

R
B

�
(�B (r)� �B (l))

�2
#n
.

Note that
1
4
�(�2 (�

L
A+�

R
A)��)

2

1
4
�(�2 (�

L
A+�

R
A)+�)

2 is equal to 1 for � = 0, goes to 1 as � !�
1
2
� �

2

�
�LA + �

R
A

���
, and is continuous and strictly increasing in � for j�j <

1
2
� �

2

�
�LA + �

R
A

�
because

d log
1
4
�(�2 (�

L
A+�

R
A)��)

2

1
4
�(�2 (�

L
A+�

R
A)+�)

2

d�

=
2
�
�
2

�
�LA + �

R
A

�
��

�
1
4
�
�
�
2

�
�LA + �

R
A

�
��

�2 + 2
�
�
2

�
�LA + �

R
A

�
+�

�
1
4
�
�
�
2

�
�LA + �

R
A

�
+�

�2
= �

�
�LA + �

R
A

� 1
1
4
�
�
�
2

�
�LA + �

R
A

�
��

�2 + 1
1
4
�
�
�
2

�
�LA + �

R
A

�
+�

�2
!

+2�

 
� 1
1
4
�
�
�
2

�
�LA + �

R
A

�
��

�2 + 1
1
4
�
�
�
2

�
�LA + �

R
A

�
+�

�2
!

> 0
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where the inequality holds because�
1

4
�
��
2

�
�LA + �

R
A

�
��

�2�
�
�
1

4
�
��
2

�
�LA + �

R
A

�
+�

�2�
= �

�
�LA + �

R
A

�
� > 0

Therefore, there exists �� (n) > 0 such that

1
4
�
�
�
2

�
�LA + �

R
A

�
��� (n)

�2
1
4
�
�
�
2

�
�LA + �

R
A

�
+�� (n)

�2 = �w + 1w � 1

� 1
n

:

It follows that
q (LRj�)
q (RRj�) =

w + 1

w � 1
if (�A (l) ; �A (r)) = (0; 1) and

1� �
2

�
�LB + �

R
B

�
(�B (r)� �B (l)) = �� (n) : (19)

We now show that, for n large enough, there exists (�A; �B) where (�A (l) ; �A (r)) =
(0; 1) and (�B (l) ; �B (r)) 2 [0; 1]2 such that (18) holds. So, given that
(�A (l) ; �A (r)) = (0; 1) and �B satis�es (19), by Claim ??, q (RRj�) =
q (LLj�) i¤

0 = �
�
�RA � �LA

�
+ (1� �) (�B (r) + �B (l)� 1) + 2

�RB � �LB
�RB + �

L
B

�� (n) (20)

By assumption �
�
�RA � �LA

�
� (1� �) < 0 < �

�
�RA � �LA

�
+(1� �). So, for n

small enough,�� (n) is close enough to 0 and thus there exists (��B (l) ; �
�
B (r)) 2

[0; 1]2 that simultaneously satisfy (19) and (20).
Then, given (�A (l) ; �A (r)) = (0; 1) and �B = ��B, we have q (RRj�) =

q (LLj�) and q(LRj�)
q(RRj�) =

w+1
w�1 . Thus, given that all other voters vote accord-

ing to �, voter 0 is indi¤erent between candidate R and L upone receiving
any signal on issue B. Moreover, because q (RRj�) = q (LLj�) and hence
q (RLj�) = q (LRj�) by Claim ??, (??) and (??) are both equal to 0. Thus
it is optimal for voter 0 to vote according to signal on issue A given that all
other voters use strategy �.
We now show asymptotic e¢ ciency for � > 0. Since�� (n) > 0, � (RRj�) >

1
2
> � (LLj�). Since �� (n)! 0 as n!1, � (RLj�) > 1

2
> � (LRj�). Thus,

in every state, each voter votes for the candidate better overall with proba-
bility converging to 1

2
+ �

�RA+�
L
A

2
> 1

2
. Thus the candidate better overall wins

the election with probability converging to 1 as n!1.
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