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I derive novel upper bounds on the revenue loss from mechanism simplicity in two

related economic selling problems. First, in the Bulow and Roberts (1989) capacity-

constrained selling problem, I derive a tight upper bound on the revenue ratio between

the optimal mechanism and the best posted-price mechanism. This bound has value

2 − c, where c is the seller’s capacity. Second, I extend this result to give an upper

bound on the revenue ratio between the optimal auction and the best posted-price

mechanism in the (symmetric, potentially irregular) Myersonian multi-item auction.

This bound is tight in the large auction limit, where it has limiting value 2 −m/n,

for an m-item, n-bidder auction. My derivations make novel use of a concavifica-

tion procedure; the technique appears portable to other approximation questions in

economic theory.

1 Introduction

Simplicity is a desirable feature in economic design. Simpler mechanisms and policies are

easier for participants to play (Pathak and Sönmez (2008), Li (2017)), easier for design-

ers to statistically optimize (Kitagawa and Tetenov (2018)), and easier for institutions to

bureaucratically administer. Of course, simple mechanisms also carry performance costs,

relative to optimal mechanisms. To paint a full picture of the tradeoffs that come with

simplicity, we would like to quantify these performance costs.

In this paper, I perform such a quantification exercise, in two related settings which

have attracted attention in the economic theory literature. First, I study a capacity-

constrained selling problem, in which a seller sells a good to a single buyer, subject to an
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ex-ante capacity constraint. This problem was suggested by Bulow and Roberts (1989),

and studied more explicitly by Loertscher and Muir (2022). Loertscher and Muir (2022)

show that the revenue-maximizing selling mechanism may feature two prices: a high price,

which guarantees receipt of the good, and a low price with rationing.

Such a two-price mechanism is more complex than a posted-price mechanism; I therefore

ask how much revenue a seller could stand to lose, by using a posted-price mechanism

instead of the optimal mechanism. More precisely, I ask: what is the highest possible

revenue ratio (over all buyer valuation distributions) between the optimal mechanism and

the best posted-price mechanism? I give a sharp answer to this question: 2 − c, where

c is the seller’s capacity. My argument makes novel use of a geometrical concavification

procedure. I extend this argument to give a sharp bound in the case where the valuation

distribution’s support is known at the time the bound is assessed.

Second, I use this result to study a symmetric m-item, n-buyer Myersonian auction

setting. In this setting, a posted-price mechanism offers some price, p, to all buyers; any

who accept the price receive a good, with uniform rationing if more than m accept. As

in the capacity-constrained selling setting, I ask: what is the highest possible revenue

ratio (again over buyer valuation distributions) between the optimal auction and the best

posted-price mechanism?

Since an m+1st-price auction with reserve price p generates at least as much revenue as

a posted price of p, the answer to this question gives an upper-bound for a second interesting

question: what is the highest possible revenue ratio between the optimal auction and the

optimal m+ 1st-price auction with a reserve price? Or, more succinctly, since the optimal

auction is an m + 1st-price auction with a reserve price and ironing: how important is

ironing?

The key to my analysis here is to draw a parallel between the m-item, n-buyer setting,

and the capacity-constrained single-buyer setting with capacity m/n. Given this parallel,

one might expect the maximum revenue ratio in the auction setting to be 2 − m/n. I

establish this result, in a limiting sense, for large auctions; for small auctions, I show that

the maximum revenue ratio lies in the interval [2 −m/n, (2 −m/n)κ(m,n)], where κ is a

statistical object called the correlation gap, which satisfies κ(m,n) ∈ [1, 1.6], for all m,n.

My results contribute to the literature in two ways. First, relative to the literature on

approximation in mechanism design (see Hartline (2020)), I establish, to my knowledge, the

first non-uniform upper-bound on the worst-case revenue ratio between the optimal auction

and the best posted-price mechanism. Compared to the (tight) uniform upper-bound of 2

given by Chawla, Hartline, Malec, and Sivan (2010), my upper-bound is tighter for many

m,n, including for all large auctions. See Section 3.3 for further discussion.
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Second, the concavification argument I develop in the capacity-constrained selling set-

ting appears to be portable to other linear optimization problems in economic theory, and

could deliver similar tight approximation results there.1 Such linear models (whose “calling

card” is an optimal policy described by a small, finite menu) have proliferated in economic

theory in recent years, and are particularly relevant to the inequality-aware market design

literature, starting with Dworczak, Kominers, and Akbarpour (2021). In a recent article

surveying that literature, Dworczak (2024) writes:

In [a simplified version of the Dworczak et al. (2021) framework], the optimal

mechanism [...] involves at most two prices [...]. One can ask: what fraction

of the optimal welfare can the designer achieve by relying only on posted-price

mechanisms? [...] In more complex settings, the optimal mechanism can become

very complicated, and finding simpler mechanisms that achieve good welfare

guarantees is of first-order importance for practical purposes.

My analysis in Section 2 takes up that call.

2 A tight bound in the single-buyer model

The first model I analyze will feature an (ex-ante) capacity-constrained seller, selling opti-

mally to a single buyer. This model was originally suggested by Bulow and Roberts (1989),

and studied in detail by Loertscher and Muir (2022).

2.1 Model

A monopolist seller, who faces an ex-ante capacity constraint, sells a good to a single buyer.

The buyer’s private valuation, v, is drawn from a commonly-known distribution, F , which

has support lying in V := [0, 1].2 The buyer has quasi-linear utility in money, and receives

utility v whenever she gets the good (otherwise 0), and utility −t whenever she pays a

monetary transfer of t. All agents are risk-neutral. We will consider two different selling

mechanisms for the seller: the optimal mechanism, and the best posted-price mechanism.

1This is because this paper’s arguments essentially rely only on linearity, rather than on details specific
to the capacity-constrained selling problem.

2The substantive assumption we are making is that F has bounded support; once we have assumed this,
we can choose units for money so that the support of F lies in [0, 1]. I assume throughout that F does not
put unit mass on 0.
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Optimal mechanism. The seller seeks to maximize his expected revenue, and designs

an arbitrary extensive-form game (a mechanism) between himself and the buyer, each

outcome of which is a (possibly negative) monetary transfer from the buyer to the seller,

and a probability of the buyer getting the good. The mechanism must respect the buyer’s

ex-interim participation constraint, that each buyer type receive non-negative utility in

expectation. Further, the mechanism must transfer the good to the buyer with ex-ante

probability no greater than a given “capacity” for the seller, c ∈ (0, 1). This capacity could

represent, for example, the fraction of the total (relevant) population that a stadium or

concert venue could hold.3

By a standard application of the revelation principle, it is without loss for the seller to

use a direct mechanism, satisfying the capacity constraint, incentive compatibility (IC) and

individual rationality (IR). For our purposes, since the support of F may be a strict subset

of V (the unit interval), it will be more convenient to work with “semi-direct” mechanisms,

which are maps from V to outcomes. In particular, a semi-direct mechanism consists of

two functions, q : V → [0, 1] and t : V → R, which map a reported “type” (now in V ) to

an assignment probability and a transfer. One can prove a revelation principle for semi-

direct mechanisms, and show that, as expected, there exists an optimal mechanism which

is semi-direct, and solves optimization problems (1) and (3). This is a relatively standard

argument; I will not make it explicitly in this version of the paper.

Having put aside the distinction between direct and semi-direct mechanisms, let us state

the seller’s basic optimization problem, which is otherwise standard. The seller chooses q

and t to solve:

max
q,t

∫
t(v)dF (v) (1)

s.t. vq(v)− t(v) ≥ vq(v̂)− t(v̂) for all v, v̂ ∈ V (IC)

vq(v)− t(v) ≥ 0 for all v ∈ V (IR)∫
q(v)dF (v) ≤ c. (Cap)

That is, he chooses an IC and IR mechanism, which satisfies the ex-ante capacity constraint.

Next, the standard implementability result tells us that a pair of functions, (q, t), sat-

isfies (IC) and (IR) if and only if q is non-decreasing, and t satisfies the envelope formula,

t(v) = vq(v)−
∫ v

0

q(x)dx− k, for some k ≥ 0 and for all v ∈ V. (2)

3The model with a single buyer and an ex-ante capacity constraint should be thought of as a stand-in
for a model with a continuum of buyers and an ex-post capacity constraint (and a law of large numbers).
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Following Börgers (2015)’s presentation of Manelli and Vincent (2007), let F be the vector

space of bounded functions on [0, 1], with the L1 norm, and let A ⊂ F be the subset of

F consisting of non-decreasing functions from [0, 1] → [0, 1]. We will call any element of

A an allocation function. Since the seller should optimally set k = 0 in (2), the seller’s

problem reduces to choosing an allocation function, q, to solve:

max
q∈A

∫ [
vq(v)−

∫ v

0

q(x)dx

]
dF (v) (3)

s.t.

∫
q(v)dF (v) ≤ c. (Cap)

Denote the seller’s value from problem (3), against buyer valuation distribution F , by

rev1∗(F ; c).

Best posted-price mechanism. Now, the seller is constrained to sell the good via a

posted price. If he sets a low price, where the “demand,” 1−F−(p), exceeds the capacity, c,

the good is rationed so that it is sold with probability exactly c.4 Denote the seller’s value

from using a posted-price mechanism with price p, against buyer valuation distribution F ,

by:

rev1p(F ; c) := p×min{1− F−(p), c}.

Why should we be interested in posted-price mechanisms specifically? The perspective

this paper takes is that posted-price mechanims are simple, in the sense that they offer the

buyer a choice between a small number of options. To be precise, we can define the class

of finite menus with opt-out to be those mechanisms which offer the buyer a choice

between a finite number of menu items (consisting of an allocation probability, q, and a

transfer, t), one of which is opt-out (q = 0, t = 0). Let us then define the complexity of

such a mechanism to be the number of menu items it contains, aside from opt-out. Clearly,

posted-price mechanisms have complexity 1; it is also easy to show that the best posted-

price mechanism is optimal within the class of complexity 1 mechanisms. We will show

shortly that the optimal mechanism has complexity at most 2; thus, the comparison we

will make between the optimal mechanism and the best posted-price mechanism is in fact a

comparison between the optimal complexity-2 and the optimal complexity-1 mechanisms.

4We can think of the seller using the direct mechanism, (qp, tp), with

qp(v) :=

{
0 v < p

a v ≥ p
tp(v) :=

{
0 v < p

ap v ≥ p,

where a = max{1, c/(1− F−(p))}.
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2.2 The concavification bound

We will be interested in how large the ratio between the revenue of the optimal mechanism

and of the best posted-price mechanism can be. First, define the revenue ratio at some

valuation distribution, F , to be:

R(F ; c) :=
rev1∗(F ; c)

maxp rev1p(F ; c)
. (4)

Given an F , the revenue ratio measures the proportional gain from using the optimal

mechanism rather than the best posted-price mechanism. Notice that the maximum in the

denominator of (4) is well-defined, since rev1p is upper semi-continuous in p, and so attains

a maximum on [0, 1].

Then, define the concavification bound, B1(c), to be:

B1(c) := sup
F∈∆([0,1])

R(F ; c) = sup
F∈∆([0,1])

rev1∗(F ; c)

maxp rev1p(F ; c)
. (5)

The concavification bound gives the worst-case (i.e., largest possible) revenue ratio over all

distributions, F . It therefore measures the largest possible proportional gain from using

the optimal mechanism rather than the best posted-price mechanism. Since the supremum

in (5) is taken only over F , the concavification bound depends on the capacity, c. This

reflects the idea that the seller knows his capacity, but is (at the time the bound is assessed)

uncertain about the distribution of buyers he will face.

In this section, we will explicitly compute B1(c). Our argument will proceed in two

steps. First, we will compute the worst-case revenue ratio over a restricted set of valuation

distributions – namely, those which are supported on exactly two points. Second, we will

argue that this is without loss, so that the revenue ratio we have found this way is in fact

B1(c). To this end, define the two-point concavification bound, B̂1(c), to be:

B̂1(c) := sup
F∈∆([0,1]),| supp(F )|=2

R(F ; c) = sup
F∈∆([0,1]),| supp(F )|=2

rev1∗(F ; c)

maxp rev1p(F ; c)
; (6)

we will begin by computing B̂1(c).

Since we are, for the moment, focusing on two-point valuation distributions, F , it

will be convenient to use a different normalization of F going forward. We will assume

F = ((1− γ) ◦ 1, γ ◦ v), for some γ ∈ (0, 1), v > 1 – that is, the lower valuation is 1.5

5If the lower valuation is 0 and the higher valuation is v, then a posted-price mechanism with price v
is optimal, and so R(F ; c) = 1 for all c. Since R(F ; c) can never fall below 1, we need not consider these
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(a) The optimal mechanism, against a generic
two-point valuation distribution.

(b) The optimal mechanism, against the revenue-
ratio maximizing valuation distribution.

Figure 1: The concavification approach, in quantity-revenue space.

With this normalization, our problem lends itself to a geometrical analysis. Let us first

find the seller’s optimal mechanism, against some F of the aforementioned form. This

exercise is shown in Figure 1a, and is inspired by a similar analysis in Loertscher and Muir

(2022).

To begin, observe that, to assess a mechanism’s performance, only its quantity (meaning

ex-ante probability of trade) and revenue are relevant – quantity to assess feasibility, and

revenue since it is the seller’s objective. Examining problem (3), both of these objects are

linear in the allocation function, q. This motivates us to use an extreme point approach.

First, following Manelli and Vincent (2007), recall that the extreme points of the set,

A, of allocation functions, are the 0-1 step functions, which correspond to posted-price

mechanisms (now, without rationing). We will compute the quantity and revenue for each

of these extremal allocation functions, and plot them in quantity-revenue space. These are

the blue points and lines in Figure 1a. The blue circle at γ represents a posted price equal

to the high valuation; the blue line at γ represents posted prices between the low and the

high valuation. The blue triangle at 1 represents a posted price equal to the low valuation;

the blue line at 1 represents posted prices below the low valuation. The blue triangle at 0

represents posted prices above the high valuation.

Now, any allocation function, q, can be expressed as a convex combination of extremal

distributions when maximizing R(F ; c). If F is any other two-point distribution, say ((1− γ) ◦ v1, γ ◦ v2),
with v2 > v1, then ((1− γ) ◦ 1, γ ◦ v2/v1) is a two-point distribution whose lower point is 1, and which has
the same revenue ratio as F .
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allocation functions.6 Since both quantity and revenue are linear in q, this means that

the point representing q in quantity-revenue space is that same convex combination of

the points representing its component extremal allocation functions. Thus, any IC (and

hence non-decreasing) allocation function lies, in quantity-revenue space, in the convex hull

of the blue points and lines. Further, any feasible IC allocation function lies to the left

of the capacity constraint, c. Together, these facts select the red circle as the quantity

and revenue of the optimal mechanism. Notice that this approach is reminiscent of the

concavification technique used to study Bayesian persuasion, starting with Kamenica and

Gentzkow (2011).

We can also visualize the revenue of the best posted-price mechanism (now with ra-

tioning) in Figure 1a. The two candidate posted prices are the high posted price (the blue

circle at γ) and the low posted price, with rationing (the green circle at (c, c)). In this case,

the green circle is higher, and so the revenue ratio at F is the ratio between the revenue

of the red and the green circles. Finally, notice that if the arrangement of the blue points

were qualitatively different than in Figure 1a (i.e., if both were to the right of c, or if the

circle at γ were higher than the star at 1), then one of the posted-price mechanisms would

be optimal, and so the revenue ratio would be 1.

The quantitative implications of this discussion are recorded in Lemma 1, which is

proved in the appendix using an algebraic argument.

Lemma 1 (Concavification approach). Fix c ∈ (0, 1), and suppose F is the distribution

((1− γ) ◦ 1, γ ◦ r
γ
), with r

γ
> 1. Suppose further that 0 < γ < c, and that r < 1. Then, the

optimal mechanism gives revenue:

rev1∗(F ; c) = α + (1− α)r,

where α := c−γ
1−γ

; and the best posted-price mechanism gives revenue:

max
p

rev1p(F ; c) = max{c, r}.

Moreover, if γ ≥ c or r ≥ 1, then R(F ; c) = 1.

Understanding this concavification approach for finding the seller’s optimal mechanism

will guide our search for the revenue-ratio maximizing (worst-case) two-point valuation

distribution. Imagine that, by choosing the valuation distribution, F , we can arbitrarily

position the blue circle (the blue triangle is frozen at (1, 1) due to our normalization of F ).

6Or arbitrarily well approximated by such a convex combination – this is the Krein-Milman theorem in
our setting.
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Where should we place the blue circle, to maximize the ratio between the heights of the

red circle and the higher of the blue and the green circles?

The answer is intuitive. First, whatever the height of the blue circle, we can increase

the revenue ratio by sliding it all the way to the left. This raises the red circle, without

affecting the height of the blue or the green circles. Second, if the blue circle is below the

green circle, we should move it as high as the green circle: again, this raises the red circle,

without affecting the height of either the blue or green circles. Finally, a bit of algebra

shows that we should move the blue circle no higher than the green circle. Taking the

height of the blue circle to be r ≥ c, we have:

R(F ; c) =
c× 1 + (1− c)× r

r
=

c

r
+ (1− c),

which is evidently maximized for r as small as possible – i.e., r = c. The result of these

optimizations is shown in Figure 1b, and results in a worst-case revenue ratio, B̂1(c) =
c×1+(1−c)×c

c
= 2− c. This result is recorded in Lemma 2.

Lemma 2. The two-point concavification bound is given by B̂1(c) = 2− c.

To complete our argument for Lemma 2, we should show that there is, in fact, some

two-point valuation distribution (or sequence of such distributions), which achieves this

desired position for the blue circle. I show in the proof of Lemma 2 that the sequence of

distributions, indexed by H, given by FH = ((1 − 1
H
) ◦ 1, 1

H
◦ cH), achieves this revenue

ratio, as H → ∞. This is intuitive if we examine Figure 1b. The blue circle corresponds to

the high posted-price mechanism. It generates quantity 0 and revenue c, consistent with

mass 1/H of buyers having valuation cH, for large H.

Next, we will show that, given any valuation distribution F ∈ ∆([0, 1]), and any c ∈
[0, 1], we can find some two-point F̃ , such that R(F̃ ; c) ≥ R(F ; c). This will enable us to

conclude that it is without loss to take the worst-case over two-point distributions, and

hence that B1(F ; c) = B̂1(F ; c).

We will begin by stating a lemma which shows that, for any F and c, the seller’s optimal

mechanism is a finite menu with complexity no more than 2. This result is well-known, and

a version of it appears as Proposition 1 in Loertscher and Muir (2022). I prove a slightly

stronger version, which applies for arbitrary (non-smooth) valuation distributions, F . In

particular, some additional work is required to ensure that an upper semi-continuous q is

always optimal when F has mass points.

Lemma 3 (2-price mechanism). Given any F ∈ ∆([0, 1]), and any c ∈ (0, 1), there exists

a semi-direct mechanism, (q, t), which is optimal among all mechanisms, and such that
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either:

q(v) =

0 v < v1

a v ≥ v1,

for some v1 ∈ [0, 1] and a ∈ [0, 1], or:

q(v) =


0 v < v1

a v ∈ [v1, v2)

1 v ≥ v2,

for some v1, v2 ∈ [0, 1] with v1 ≤ v2, and a ∈ [0, 1].

Lemma 3 is again a consequence of an extreme-point approach. The seller’s problem,

(3), is to choose a non-decreasing allocation function, q, to maximize a linear objective,

subject to a single linear constraint. By Bauer’s maximum principle, a maximum will be

attained at some extreme point of the set of feasible allocation functions.

Two results are relevant. The first is the aforementioned result that the extreme points

of the set of allocation functions are simply the 0-1 step functions. The second is a result

by Winkler (1988), which relates the extreme points of a linearly constrained set to the

extreme points of the unconstrained set. It says that the extreme points of the constrained

set are convex combinations of at most n+1 extreme points of the unconstrained set, where

n is the number of linear constraints.7 In our case, n = 1, and so the extreme points of

the set of feasible allocation functions are convex combinations of at most two 0-1 step

functions; this is the form of the optimal q indicated in the Lemma.

Next, we will use Lemma 3 to prove our desired result, which allows us to consider only

two-point distributions in our worst-case analysis.

Lemma 4 (2-point distribution). Fix c ∈ (0, 1). Given any F ∈ ∆([0, 1]), there exists a

distribution F̃ ∈ ∆([0, 1]), such that | supp(F̃ )| = 2 and R(F̃ ; c) ≥ R(F ; c).

The proof of Lemma 4 proceeds in three steps. First, given some F ∈ ∆([0, 1]), we use

Lemma 3 to find an optimal assignment function, qF , which is piecewise constant, with

jumps at v1 and v2. We then construct the distribution F̃0 by shifting all the probability

mass F puts above v2 to v2; all the mass it puts between v1 and v2 to v1; and all the

mass it puts below v1 to 0. By construction, this shift does not affect the performance of

qF , and so can not hurt the optimal mechanism; however, since it is a FOSD downward

7Winkler’s result is a consequence of the well-known Caratheodory theorem.
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shift of valuations, it (weakly) hurts any posted-price mechanism. Therefore, we find that

R(F̃0; c) ≥ R(F ; c).

Second, we form F̃1 by proportionally redistributing the mass F̃0 places at 0 to the

other two points in its support. That is, if F̃0 = ((1 − α) ◦ 0,m1 ◦ v1,m2 ◦ v2), where

α := m1 +m2, then F̃1 = (m1/α ◦ v1,m2/α ◦ v2). I claim that R(F̃0; c) = R(F̃1; c/α).
8 The

reason is that the RHS effectively grows the relevant population, and expands the capacity,

both by factor 1/α. This (1) preserves the set of feasible allocation functions and (2) scales

the revenue of any feasible allocation function by 1/α. Thus, the optimal mechanism’s and

the best posted-price mechanism’s revenues both grow by factor 1/α, leaving the revenue

ratio unchanged.

Third, since F̃1 is a two-point distribution, we have that R(F̃1; c/α) ≤ B̂1(c/α) =

2 − c/α. But, since B̂1(c) = 2 − c ≥ 2 − c/α, there must be some two-point F̃ such that

R(F̃ ; c) ≥ 2− c/α. Putting these arguments together, we obtain:

R(F ; c) ≤ R(F̃0; c) = R(F̃1; c/α) ≤ 2− c/α ≤ R(F̃ ; c),

as desired.

Lemma 4 allows us to consider only two-point distributions when assessing the worst-

case revenue ratio; we therefore immediately conclude that B1(c) = B̂1(c) = 2− c, which

is this section’s main result.

Proposition 1. The concavification bound is given by B1(c) = 2− c.

2.3 Support restrictions

Now, we will extend the model by supposing that, at the time the concavification bound is

assessed, the seller has additional knowledge about the support of the valuation distribution.

Such additional knowledge seems realistic. For example, if the seller represents a venue

selling tickets, the venue may know that fans’ ticket valuations lie between $50 and $500, in
which case the worst-case distribution found in Section 2.2 would be impossible. Naturally,

such additional knowledge restricts the worst-case distribution, and hence decreases the

concavification bound. We will be able to build on the techniques introduced in Section

2.2, to again obtain a sharp value for the concavification bound in this case.

Model. The model remains unchanged, except that, now, the valuation distribution, F ,

must have support in [1, v̄], with v̄ > 1. (As before, this is a normalization; we would obtain

8Where the RHS is defined to be 1 for α ≤ c.

11



(a) The worst-case arrangement, in quantity-
revenue space.

(b) A geometrical proof that any other candidate
worst-case arrangement yields lower revenue ra-
tio than the arrangement in (a).

Figure 2: The concavification approach for the restricted-support problem.

the same results by working with support [v1, v2] as by working with support [1, v1/v2].)

We will define the restricted-support concavification bound, to be:

B1RS(c, v̄) := sup
F∈∆([1,v̄])

rev1∗(F ; c)

maxp rev1p(F ; c)
.

Analysis. We would again like to compute B1RS(c; v̄), and will take the same approach

as in Section 2.2: we will first compute the worst-case revenue ratio over two-point distri-

butions, and then argue that this was without loss. The second part of the argument will

be relegated to the appendix; it is similar to the argument in Section 2.2. In the main text,

we will take as given that it is without loss to consider two-point distributions.

To find the worst-case two-point distribution, as before, we would like to plot the revenue

and quantity of the candidate posted-price mechanisms and of the optimal mechanism,

against such a distribution. This is undertaken in Figure 2. Recall that our approach starts

by plotting blue points corresponding to posted-price mechanisms, ignoring the capacity

constraint. Now, however, the revenue and quantity that these blue points can generate

are restricted: since any buyer must have v ∈ [1, v̄], it must be that any posted-price

mechanism has rev ∈ [q, qv̄]. Thus, in Figure 2, the blue points must lie in the grey cone,

which consists of all points below the line of slope v̄ through the origin, and above the line

of slope 1 through the origin.

Therefore, our geometrical problem becomes: where, in the grey cone, should we place
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the two blue points to maximize the ratio between the height of the red circle (the optimal

mechanism’s revenue) and the higher of the blue and green circles (the best posted-price

mechanism’s revenue)? The same arguments used in Section 2.2 show that, wherever we

place the blue triangle (i.e., whatever the lower buyer valuation), the blue circle should be

(1) at the left edge of the grey cone and (2) the same height as the green circle. Let us call

a pair of blue points satisfying these conditions a candidate worst-case arrangement.

Since the height of the blue triangle fully determines the candidate worst-case arrange-

ment, it remains only to find the optimal value for this height. I claim that the blue triangle

should be as low as possible, at (1, 1), as shown in Figure 2a – call this pair of blue points

“arrangement 1.”

Figure 2b provides a geometrical proof of this claim. First, notice that the height of

the green circle in arrangement 1 is c. Next, consider some other candidate worst-case

arrangement, “arrangement 2,” in which the blue triangle has height v. It follows that the

green circle in arrangement 2 has height cv. Let r1 and r2 denote the heights of the red

circles in arrangements 1 and 2, respectively. Construct the purple circle, with height r̃2,

by intersecting the line between (c/v̄, cv) and (1, v) with the vertical line through c. We

have:

r1 = α + (1− α)c r̃2 = αv + (1− α)cv,

where α = c−c/v̄
1−c/v̄

. Thus, r̃2 = r1 × v. But, as Figure 2b shows, we have r2 < r̃2. Thus, we

have:
r2
cv

<
r̃2
cv

=
r1
c
,

so that the red-to-green ratio is higher under arrangement 1 than arrangement 2, as desired.

As before, we can read off the restricted-support concavification bound and the worst-

case distribution, from Figure 2a.

Proposition 2. The restricted-support concavification bound is given by:

B1RS(c, v̄) =
(2− c)v̄ − 1

v̄ − c
.

A worst-case distribution which attains this bound is:

FWC =
( c
v̄
◦ v̄, (1− c

v̄
) ◦ 1

)
.

The worst-case distribution is straightforward: the low posted price gives revenue 1, while

the high posted price gives probability of trade c/v̄ and expected revenue c. This is con-

sistent with the worst-case distribution given in Proposition 2. The expression for B1RS
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then follows algebraically. Notice that limv̄→∞B1RS(c, v̄) = 2 − c = B1(c), as one would

expect, since in this limit the valuation distribution becomes unrestricted.

2.4 General outperformance measures

Let us now generalize our analysis from Section 2.3 along a second dimension. We would

like to be able to discuss measures, besides the revenue ratio, which capture the degree to

which the optimal mechanism outperforms the best posted-price mechanism. For instance,

if the seller derives a fixed monetary benefit from using a simple mechanism, the revenue

difference between the optimal mechanism and the best posted-price mechanism may be

the economically appropriate outperformance measure.910

Model. The model remains unchanged, except that the valuation distribution, F , now

has support in [
¯
v, v̄], with 0 ≤

¯
v < v̄. (That is, the normalization in Section 2.3 is not valid

for general outperformance measures.)

Outperformance measures. Our new object of interest will be a general revenue com-

parison, of the following form.

Definition 1. An outperformance measure is a map M : R+ × R+ → R, which is

(weakly) increasing in the first argument, and (weakly) decreasing in the second argument.

We will apply outperformance measures by taking the first argument to be the optimal

mechanism’s revenue, and the second argument to be the best posted-price mechanism’s

revenue.

It turns out that the key property of an outperformance measure, which will determine

whether we can execute the arguments developed in Section 2.2, is its responsiveness to

scale.

Definition 2. An outperformance measure, M , is:

• Increasing in multiplicative scale (IMS) if M(αr1, αr2) ≥ M(r1, r2), for all

α ≥ 1 and r1 ≥ r2.

9If, instead, using a simple mechanism saves the seller from paying a variable cost of complexity – e.g., if
buyer aversion to complex mechanisms results in 5% less sales – then the revenue ratio may be appropriate.

10Notice that the revenue difference would not be sensible to discuss under the unrestricted-support
model in Section 2.2, since there we could scale the valuation distribution to make the revenue difference
arbitrarily large.
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• Decreasing in additive scale (DAS) if M(r1+ δ, r2+ δ) ≤ M(r1, r2), for all δ ≥ 0

and r1 ≥ r2.

• Intermediate scale responsive (ISR) if it is IMS and DAS.

Intuitively, IMS says that M is not too scale-hating, while DAS says that M is not too

scale-loving. Together, these conditions constitute ISR, which will be our main notion of

“appropriate” scale-responsiveness. ISR is satisfied by both the revenue ratio measure and

the revenue difference measure. In a sense, the revenue ratio is the most scale-hating ISR

measure (since it is only weakly IMS), while the revenue difference is the most scale-loving

ISR measure (since it is only weakly DAS).

As before, we will be interested in how the outperformance varies with the valuation

distribution. Let us define the M-outperformance, at valuation distribution F , to be:

RM(F ; c) := M(rev1∗(F ; c),max
p

rev1p(F ; c)).

Finally, define the M-worst-case outperformance to be:

B1M(c,
¯
v, v̄) := sup

F∈∆([
¯
v,v̄])

RM(F ; c).

Main result. We can now state this section’s main result, which is developed in more

detail in Appendix B.

Proposition 3. Suppose M is an ISR outperformance measure. Then, given any valuation

distribution, F ∈ ∆([
¯
v, v̄]), there exists some v ∈ [

¯
v, v̄], such that:

RM

(cv
v̄

◦ v̄, (1− cv

v̄
) ◦ v; c

)
≥ RM(F ; c).

Proposition 3 says that, as long as the outperformance measure is ISR, the worst-case

distribution will yield a candidate worst-case arrangement, in quantity-revenue space. In

other words, ISR is sufficient to make the arguments in Section 2.2, but not to make

the additional argument in Section 2.3. Indeed, the latter should not be possible – one

can visually see in Figure 2b that the alternative candidate worst-case arrangement we

considered yields higher revenue difference than the arrangement in Figure 2a.

Proposition 3 follows by recreating the arguments we made in Section 2.2. Many of these

involved modifying a valuation distribution to increase the optimal mechanism’s revenue,

without raising the best posted-price mechanism’s; these modifications continue to raise M ,

by monotonicity. In three instances, monotonicity will not suffice for our arguments, and
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we must make use of M ’s stipulated scale responsiveness. First, in the second step of our

proof of Lemma 4, we would like to redistribute the mass F̃0 places on
¯
v; this will weakly

raise M by IMS. Second, we would like to argue that, given some 2-point distribution,

F = ((1−α) ◦ v1, α ◦ v2), we must have RM((1−α) ◦ v̄
v2
v1, α ◦ v̄; c) ≥ RM(F ; c), so that, in

quantity-revenue space, the blue circle should be on the left edge of the grey cone. Again,

this is implied by IMS. Finally, we would like to show that the blue circle should be no

higher than the green circle; this is implied by DAS.

2.4.1 Example: The revenue difference

Given any ISR outperformance measure, Proposition 3 transforms our search for a worst-

case distribution into a single-parameter optimization problem (i.e., we must only find the

worst-case v). Let us demonstrate this approach by analyzing the worst-case outperfomance

under the revenue difference measure,

M−(r1, r2) := r1 − r2.

Fix some v ∈ [
¯
v, v̄]. Against the candidate binary distribution from Proposition 3,

F =
(cv
v̄

◦ v̄, (1− cv

v̄
) ◦ v

)
,

the optimal mechanism generates revenue α(v)v + (1− α(v))cv, where α(v) := cv̄−cv
v̄−cv

. The

best posted-price mechanism generates revenue cv. Thus, to obtain the worst-case revenue

difference, we should choose v to maximize the quantity:

optimal revenue︷ ︸︸ ︷
α(v)v + (1− α(v))cv−

best posted-price revenue︷︸︸︷
cv = α(v)v(1− c);

this is evidently done by maximizing α(v)v, or, equivalently, solving:

max
v∈[

¯
v,v̄]

v̄ − v

v̄ − cv
v. (7)

It can be shown that this objective is concave in v,11 and hence attains a maximum at the

critical point, v∗ = v̄
c
(1 −

√
1− c), or at

¯
v, if v∗ <

¯
v. (Note that v∗ < v̄ for c < 1.) We

11The objective’s second derivative is − 2v̄2(1−c)
(v̄−cv)3 , which is negative for v ∈ [

¯
v, v̄].
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therefore find that the worst-case distribution is given by:(cv
v̄

◦ v̄, (1− cv

v̄
) ◦ v

)
, where v = max{

¯
v, v∗},

and the corresponding worst-case outperformance by:

B1M−(c,
¯
v, v̄) =

 v̄
c
(
√
1− c− (1− c))2 v∗ ≥

¯
v

c(1−c)
¯
v(v̄−

¯
v)

v̄−c
¯
v

v∗ <
¯
v.

3 Myersonian auctions and the value of ironing

Let us now extend our results from the single-buyer model to a symmetric auction setting,

with n ex-ante identical buyers andm identical items, following the seminal work of Myerson

(1981). We will be interested in the maximum (over buyer valuation distributions) revenue

ratio between the optimal auction and the best posted-price mechanism – in which the

seller posts a price, and sells to as many buyers (up to m) as are willing to pay that price.

Roughly, the idea of our analysis will be to establish a connection between the single-buyer

setting with capacity constraint m/n and the auction setting.

Since the posted-price mechanism with price p has lower revenue than the m + 1st-

price auction with reserve price p, the revenue ratio we find will be an upper bound for

the revenue ratio between the optimal auction and the optimal m+ 1st-price auction with

reserve price.12 One might say that this “bounds the value of ironing,” since the optimal

auction differs from the optimalm+1st-price auction with reserve in that it features ironing.

3.1 Auction model

There are n ex-ante symmetric buyers, indexed by i. Each buyer has a private valuation,

vi, which is drawn iid from a distribution, F , with support V ⊆ [0, 1].13 Define, for any

k ≤ n, the k-joint CDF as F (k) : V k → R, F (k)(x1, . . . , xk) :=
∏k

i=1 F (xi). There is a

seller, who has m identical items to sell. Each buyer has unit demand: she receives payoff

vi if she gets an item and 0 otherwise. All agents are risk-neutral. We will consider two

different selling mechanisms for the seller: the optimal auction, and the best posted-price

mechanism.

12An m+ 1st-price auction with reserve price is optimal when F is Myerson regular.
13As in Section 2, the restriction that F ’s support lie in [0, 1] is a normalization.
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Optimal auction. The seller designs an incentive compatible (IC) and individually ra-

tional (IR) direct selling mechanism with transfers, described by an allocation function,

Q : V n → ∆, where ∆ := {x ∈ [0, 1]n :
∑

xi ≤ m}, and a transfer function, T : V n → Rn.

For each i, define the interim expected allocation and transfer functions, qi : V → [0, 1]

and ti : V → R by:

qi(vi) :=

∫
Qi(vi, v−i)dF

(n−1)(v−i)

ti(vi) :=

∫
Ti(vi, v−i)dF

(n−1)(v−i).

The seller’s mechanism, (Q, T ), must satisfy the IC and IR conditions,

viqi(vi)− ti(vi) ≥ viqi(v̂i)− ti(v̂i) for all vi, v̂i ∈ V (IC)

viqi(vi)− ti(vi) ≥ 0 for all vi ∈ V (IR).

Such a mechanism is without loss for the seller, by the revelation principle and the agents’

risk-neutrality. The seller maximizes his expected revenue; his problem is therefore given

by:

max
Q,T

∑
i

∫
Ti(v)dF

(n)(v) (8)

s.t. (IC), (IR).

Denote the seller’s value from problem (8), against buyer valuation distribution F , by

rev∗(F ;m,n).

Best posted-price mechanism. The seller now must choose some posted-price, p, and

use the direct mechanism (Qp, T p), where:

Qp
i (v) = γ(v)× 1{vi ≥ p}

T p
i (v) = γ(v)× p× 1{vi ≥ p},

where γ(v) is the uniform rationing function,

γ(v) :=
m

max{m,
∑

i 1{vi ≥ p}}
.
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Equivalently, the seller sets a price, p, and sells to as many buyers (up to m, with ties

broken randomly) as are willing to pay p. Denote the seller’s value from using posted price

p, against buyer valuation distribution F , by revp(F ;m,n).

As in Section 2, we will be interested in the maximum ratio, over distributions, F , between

the revenue of the optimal mechanism and of the best posted-price mechanism. Define the

ironing bound, B(m,n), to be:

B(m,n) := sup
F∈∆([0,1])

rev∗(F ;m,n)

maxp revp(F ;m,n)
. (9)

As before, notice that the maximum in the denominator of (9) is well-defined, since revp

is upper semi-continuous in p, and so attains a maximum on [0, 1].

3.2 Bounding the value of ironing

We will now work towards establishing an upper bound on B(m,n), which we will do by

connecting the auction problem to an ex-ante capacity-constrained selling problem, with

capacity m/n (“the ex-ante problem”). Accordingly, B(m,n) will be closely related to

B1(m/n).

The key ingredients in our argument will be Lemma 5 and Lemma 6. Given some buyer

valuation distribution, F , Lemma 5 upper-bounds the payoff from the optimal auction, in

terms of the payoff from the optimal mechanism in the ex-ante problem; while Lemma 6

lower-bounds the payoff from any posted-price mechanism, in terms of the payoff from that

posted-price mechanism in the ex-ante problem.

Lemma 5. For any buyer valuation distribution, F , and any m,n, we have:

rev∗(F ;m,n) ≤ n× rev1∗(F ;m/n).

Lemma 5 says that, against any F , the revenue from the optimal auction is no more

than n times the revenue of the ex-ante problem. This is true because, due to the symmetry

of the model, there exists some optimal auction which is ex-ante symmetric, and therefore

assigns an item to each buyer with ex-ante probability no more than m/n. Since each

agent’s ex-interim assignment function in such a mechanism is feasible for (1) with capacity

constraint c = m/n, it must generate lower revenue than rev1∗(F ;m/n). Thus, in total,

the optimal auction must generate lower revenue than n× rev1∗(F ;m/n).

To state Lemma 6, which lower-bounds the payoff from the posted-price mechanism, we
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will use a mathematical object called the correlation gap.14 The correlation gap, κ(m,n),

is defined by:

κ(m,n) :=
m∑m−1

i=1 i
(
n
i

) (
m
n

)i (
1− m

n

)n−i
+m

∑n
i=m

(
n
i

) (
m
n

)i (
1− m

n

)n−i .

One can think of the correlation gap as the ratio of expected winnings between two casino

games. In the “fair” game, we flip n coins, each of which comes up heads with probability

m/n; your winnings equal the number of heads (m on expectation). In the “capped” game,

we again flip n of these coins, but your winnings equal the minimum of the number of heads

and m. The correlation gap is the ratio between your expected winnings in the fair and

the capped game. As I show in Lemma 7, κ(m,n) ∈ [1, e
e−1

≈ 1.6], for all m,n.

Lemma 6. For any buyer valuation distribution, F , any m,n, and any price, p, we have:

revp(F ;m,n) ≥ 1

κ(m,n)
× n× rev1p(F ;m/n).

Given any distribution, F , and price, p, Lemma 6 gives a lower-bound on the payoff

from a posted price of p in the auction problem, in terms of the payoff from that same

posted price in the ex-ante problem. One might expect the former to be n times the latter:

in the auction problem, we have n times the buyers (n vs 1), and n times the items (m vs

capacity m/n), so that the auction problem resembles n copies of the ex-ante problem.

What this analysis misses is that the ex-ante problem is over-optimistic (relative to the

auction problem) about avoiding “collisions” between buyers. Consider, for example, a 2-

buyer, 1-item auction. The ex-ante problem is a single-buyer selling problem with capacity-

constraint 1/2. One feasible direct mechanism in that problem is to assign the item if the

buyer’s valuation exceeds the median buyer valuation, and not assign it otherwise (this

can be accomplished by setting a posted price equal to the median valuation). However,

in the auction setting, since both buyers sometimes have valuations exceeding the median,

this assignment is no longer feasible. The correlation gap captures the severity of this

“over-optimism” in the ex-ante analysis.

Combining Lemmas 5 and 6 gives this section’s main result, a novel upper-bound on

B(m,n). Proposition 4 combines this upper-bound with a known lower-bound on B(m,n)

(which appears as Example 1.1 of Roughgarden and Schrijvers (2016)).15

14The correlation gap I work with is a particular instance of a general class of objects called correlation
gaps, which were introduced by Agrawal, Ding, Saberi, and Ye (2012). Yan (2011) exposits the application
of the theory of correlation gaps to worst-case bounds in auction theory; my κ(m,n) is k/Φ(k, n) in his
notation – see his Lemmas 4.2 and 4.3.

15Specifically, Roughgarden and Schrijvers (2016) give the lower bound for a single-unit auction; Propo-
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Additionally, Proposition 4 gives analogous bounds for the maximum revenue ratio

between the optimal auction and the optimal m + 1st-price auction with reserve price.

Formally, let revSPp (F ;m,n) denote the seller’s expected revenue from using an m + 1st-

price auction with reserve price p,16 and define the m+ 1st-price ironing bound,

BSP (m,n) := sup
F∈∆([0,1])

rev∗(F ;m,n)

maxp revSPp (F ;m,n)
.

Notice that, for any p, we have revSPp (F ;m,n) ≥ revp(F ;m,n);17 therefore, we clearly have

BSP (m,n) ≤ B(m,n). In fact, Proposition 4 gives the same upper- and lower-bounds for

the two objects.

Proposition 4. The ironing bound, B(m,n), and them+1st-price ironing bound, BSP (m,n),

satisfy:

B(m,n), BSP (m,n) ∈ [2−m/n, (2−m/n)× κ(m,n)] .

In order to better understand the content of Proposition 4, we would like to have a

grasp on the behavior of κ. If κ(m,n) is very large, then we know little about the ironing

bound. If κ(m,n) is close to 1, then we know the ironing bound very precisely. Lemma 7,

which is based on Lemma 4.2 in Yan (2011), delivers such an understanding of κ.

Lemma 7 (Properties of κ). The following properties of κ(m,n) hold:

1. κ(m,n) is weakly increasing in n.

2. limn→∞ κ(m,n) = 1

1− mm

emm!

. This is strictly decreasing in m, and satisfies:

a. limn→∞ κ(1, n) = e
e−1

.

b. limm→∞ limn→∞ κ(m,n) = 1.

Lemma 7 implies two important facts. First, for all m and n, we have κ(m,n) ≤ e
e−1

≈
1.6. Second, in large auctions (meaning any auction with large m, even if n is much

larger), κ(m,n) → 1. Thus, the result in Proposition 4 is never looser than a factor of 1.6,

and is tight in large auctions. The large auction result, that B(m,n) = 2 −m/n, should

not be too surprising, since the single-agent model, where B1(m/n) = 2 − m/n, can be

thought of as the large-market limit of the auction model.

sition 4 extends that result to a multi-unit auction. Roughgarden and Schrijvers (2016) attribute the
single-unit lower-bound to Hartline (2020).

16Where buyers play the (weakly dominant) truthful bidding equilibrium.
17Since the m + 1st-price auction yields higher revenues whenever the m + 1 highest valuations exceed

p and equal revenues otherwise; recall that each buyer bids her true value in equilibrium.
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Figure 3: Upper bounds on B(m,n). Black: The CHMS bound. Blue, green, red: The
Proposition 4 bound for m/n ∈ {1

2
, 1
4
, 1
8
}.

3.3 Comparison with existing upper-bounds

To my knowledge, the best existing upper-bound on B(m,n) is due to Chawla, Hartline,

Malec, and Sivan (2010), henceforth CHMS, who use an argument based on prophet in-

equalities18 to give a (tight) uniform upper-bound of 2.

Result 1 (CHMS, Theorem 8; see also Daskalakis and Pierrakos (2011), Theorem 3). For

all m,n, we have B(m,n) ≤ 2.

In large auctions, the current paper’s result, B(m,n) = 2 −m/n, clearly tightens this

uniform bound. However, in small auctions, the upper bound given in Proposition 4 may

be looser than the CHMS bound, due to the imprecision introduced by the correlation gap

factor, κ(m,n).

I explore this relationship in Figure 3. The black line shows the CHMS bound. For an

m-item, n-buyer auction, call m/n that auction’s capacity. The blue, green and red series

show the upper-bounds from Proposition 4, in constant-capacity auctions, as a function of

m, for m/n ∈ {1/2, 1/4, 1/8}. (The dotted lines show these series’ large-auction limits.)

For capacity 1/2 (or higher), the Proposition 4 bound is tighter than the CHMS bound

for all m. For capacity 1/4, it is tighter for m ≥ 8; and for capacity 1/8, it is tighter for

m ≥ 36.

18See Samuel-Cahn (1984) for the seminal paper, Lucier (2017) for a survey on prophet inequalities in
economics, and Chapter 4 of Hartline (2020).
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4 Conclusion and future work

This paper established novel upper-bounds on the cost of simplicity in two economic selling

settings. First, in the capacity-constrained single-buyer selling model, with capacity c, it

proved a tight upper-bound of 2− c, on the revenue ratio between the optimal mechanism

and the best posted-price mechanism. Second, in the m-item, n-buyer Myersonian auction

model, it proved an upper bound of (2 − m/n)κ(m,n). In large auctions, this bound

converges to 2 −m/n, which is tight. This paper introduced a novel technique, based on

concavification, to prove the former bound; it then used an approach based on correlation

gaps to extend that bound to the auction setting.

Three avenues for future work seem particularly exciting. First, it may be possible

to tighten the gap in Proposition 4. Intuitively, the sorts of distributions that make the

single-buyer revenue ratio, R(F ; c), high, are different from the sorts of distributions that

realize the full correlation gap. In fact, I conjecture that the lower bound in Proposition 4

is tight:

Conjecture 1. The ironing bound is given by B(m,n) = 2−m/n.

It may be possible to prove this conjecture, or to tighten the gap in Proposition 4, by

combining prophet inequality arguments with the concavification bound in Proposition 1.

Second, it may be possible to extend the analysis in Section 2.3 to consider settings

where information on aspects of the distribution beyond its support – such as its mean or

variance – is available. The work of Kang, Pernice, and Vondrák (2022) on distribution-

informed bounds in the bilateral trade problem seems particularly relevant here.

Third, it would be interesting to apply the concavification arguments in Section 2 to

other linear optimization problems in economic theory – particularly ones with two or

more constraints. Preliminary evidence suggests that such an analysis could reveal rapidly

diminishing marginal returns from mechanism complexity. In particular, I have analyzed a

version of the capacity-constrained selling model, with an additional price constraint: no

transaction may occur at a price exceeding k (compared to the maximum possible buyer

valuation of 1). Proposition 1 shows that, when c = 0.75, the seller could gain as much as

25% by using the optimal mechanism (complexity 2) rather than a posted-price mechanism

(complexity 1). In contrast, in the two-constraint setting, I find that, when c = k = 0.75,

the seller could gain at most 2.6% by using the optimal mechanism (complexity 3) rather

than the best complexity 2 mechanism.

23



References

Agrawal, S., Y. Ding, A. Saberi, and Y. Ye (2012). Price of Correlations in Stochastic

Optimization. Operations Research 60 (1), 150–162.

Börgers, T. (2015). An Introduction to the Theory of Mechanism Design. Oxford University

Press, USA.

Bulow, J. and J. Roberts (1989). The Simple Economics of Optimal Auctions. Journal of

Political Economy 97 (5), 1060–1090.

Chawla, S., J. D. Hartline, D. L. Malec, and B. Sivan (2010). Multi-parameter Mecha-

nism Design and Sequential Posted Pricing. In Proceedings of the Forty-Second ACM

Symposium on Theory of Computing, pp. 311–320.

Daskalakis, C. and G. Pierrakos (2011). Simple, Optimal and Efficient Auctions. In In-

ternational Workshop on Internet and Network Economics, Volume 7090, pp. 109–121.

Springer.

Dworczak, P. (2024). Inequality and Market Design. ACM SIGecom Exchanges 22 (1),

83–92.

Dworczak, P., S. D. Kominers, and M. Akbarpour (2021). Redistribution Through Markets.

Econometrica 89 (4), 1665–1698.

Hartline, J. D. (2020). Mechanism Design and Approximation. Book draft. Available at

https://jasonhartline.com/MDnA/ .

Kamenica, E. and M. Gentzkow (2011). Bayesian Persuasion. American Economic Re-

view 101 (6), 2590–2615.
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A Proofs and auxiliary results

Lemma 1.

Proof. By the (standard) revelation principle, since there are two buyer types, we can, with-

out loss, focus on two-item menus ⟨(p1, t1), (p2, t2)⟩, where the low-valuation type selects

the first menu item and the high-valuation type selects the second menu item. (Through-

out, I will use angle-brace menus to denote allocation probabilities, and per-unit probability

prices. That is, menu item (p1, t1) allocates the item with probability p1 and at total price
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p1 × t1.) Then, standard zero surplus-at-the-bottom arguments imply that the menu must

optimally take the form:

⟨(p1, 1), (p2, t)⟩,

where t = r
γ
− p1

p2
( r
γ
− 1).

We will now argue that, optimally, p2 = 1. Let q denote the allocation function induced

by ⟨(p1, 1), (p2, t)⟩, and let q̃ denote the allocation function induced by ⟨(p̃1, 1), (1, t̃)⟩, where
p̃1 satisfies:

γ(1− p2) = (1− γ)(p1 − p̃1), (10)

and t̃ = r
γ
− p̃1(

r
γ
− 1). Notice that p̃1 ≥ 0 because, by assumption, γ < c. We will use

the quantity and revenue functions defined in the proof of Lemma 3. By construction,

quantity(q̃) = quantity(q). Further, revenue(q) = p1 + (p2 − p1)r, and revenue(q̃) =

p̃1 + (1− p̃1)r, so that:

revenue(q̃)− revenue(q) = r(1− p2)− (1− r)(p1 − p̃1). (11)

Comparing equations (10) and (11), and recalling that r > γ, we conclude that revenue(q̃) ≥
revenue(q), so that q̃ is a feasible improvement over q.

Thus, we will consider menus, q, of the form:

⟨(p, 1), (1, t)⟩,

where t = r
γ
− p( r

γ
− 1). We have:

revenue(q) = p+ (1− p)r quantity(q) = p(1− γ) + γ.

Since r < 1, revenue and quantity are both increasing in p, so the seller should optimally

set p as high as possible – namely, p = α = c−γ
1−γ

. This yields the desired expression for the

optimal mechanism’s revenue.

Next, it is clear that the only posted prices the seller should consider are a price of 1

(with rationing), and a price of r
γ
. These yield revenue c and r, respectively, so that the

best posted-price mechanism gives revenue max{c, r}.
Finally, we will show what happens when either of the inequalities is violated. By the

high-type IR constraint, any sale must have a price no higher than r
γ
. By the capacity

constraint, sale must occur with probability no more than c. Together, these imply an
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upper bound on any mechanism’s revenue,

rev1∗(F ; c) ≤ r

γ
c.

If γ ≥ c, then the high posted price (with rationing) achieves this upper bound.

Similarly, the revenue from the quantity-constrained problem can be no higher than the

seller’s revenue absent that constraint. By the classic Riley and Zeckhauser (1983) result,

the seller’s optimal mechanism absent the quantity constraint is a posted-price mechanism;

such a mechanism generates max{1, r} revenue, and so we have:

rev1∗(F ; c) ≤ max{1, r}.

If γ < c, but r ≥ 1, then this upper bound is r, which is achieved by the (feasi-

ble) high-posted-price mechanism in the quantity-constrained problem. In both cases,

maxp rev1p(F ; c) = rev1∗(F ; c), so R(F ; c) = 1.

Lemma 8. Fix c ∈ (0, 1), and let F := ((1 − γ) ◦ 1, γ ◦ r
γ
), for some γ, r satisfying the

conditions in Lemma 1. Then,

rev1∗(F ; c) ≤ c+ (1− c)r.

Proof. Define the function αc : [0, c) → R, αc(γ) =
c−γ
1−γ

.

Claim. The function αc is continuous and non-increasing in γ on [0, c).

Proof. Continuity is immediate. The function is non-increasing because αc is differen-

tiable on [0, c) and α′
c(γ) =

c−1
(1−γ)2

, which is negative for all γ ∈ [0, c).

By Lemma 1, rev1∗(F ; c) = α + (1− α)r, where α = c−γ
1−γ

. Then, by Claim,

α = αc(γ) ≤ αc(0) = c. (12)

(Notice that αc(γ) is well-defined, since γ < c.) Since r < 1 by assumption, (12) gives:

rev1∗(F ; c) = α + (1− α)r ≤ c+ (1− c)r,

as desired.

Lemma 2.

Proof. Upper bound: B̂1(c) ≤ 2− c.
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By Lemma 1 and the main text, it suffices to prove that R(F ; c) ≤ 2 − c for binary

distributions F = ((1− γ) ◦ 1, γ ◦ r
γ
), with r, γ satisfying the conditions in Lemma 1.

Case 1: r ≤ c.

By Lemma 8,

rev1∗(F ; c) ≤ c+ (1− c)r ≤ c+ (1− c)c, (13)

where the second inequality follows from the case assumption. Then, by Lemma 1,

max
p

rev1p(F ; c) = c; (14)

dividing inequality (13) by equation (14), we find:

R(F ; c) =
rev1∗(F ; c)

maxp rev1p(F ; c)
≤ 2− c,

as desired.

Case 2: r > c.

By Lemma 8,

rev1∗(F ; c) ≤ c+ (1− c)r ≤ r + (1− c)r, (15)

where the second inequality follows from the case assumption. Then, by Lemma 1,

max
p

rev1p(F ; c) = r; (16)

dividing inequality (15) by equation (16), we find:

R(F ; c) =
rev1∗(F ; c)

maxp rev1p(F ; c)
≤ 2− c,

as desired.

Lower bound: B̂1(c) ≥ 2− c.

We will propose a particular sequence of binary distributions, which achieves this lower

bound. Fixing c ∈ (0, 1), let FH be the distribution ((1 − 1
H
) ◦ 1, 1

H
◦ cH), where H is a

number which we will eventually make large. By Lemma 1, we have:

rev1∗(FH ; c) = αH + (1− αH)c, (17)
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where αH = c−1/H
1−1/H

, and:

max
p

rev1p(F ; c) = c. (18)

As we take H → ∞, we have αH → c, and so, dividing equation (17) by equation (18), we

find:

R(FH ; c) → 2− c.

SinceR(FH ; c) can be arbitrarily close to 2−c, and this holds for any c, the claim follows.

Lemma 3.

Proof. Following Chapter 2 of Börgers (2015), let F be the vector space of bounded func-

tions on [0, 1], with the L1 norm, and let A ⊂ F be the subset of F consisting of non-

decreasing functions from [0, 1] → [0, 1]. Finally, let A ⊂ A be the subset of A consisting

of functions q such that
∫
q(v)dF (v) ≤ c. We will be interested in the extreme points of A.

Börgers (2015) shows that the extreme points of A are the 0-1 step functions – that

is, functions q(v) where there exists some x ∈ [0, 1] such that q(v) = 0 for all v < x and

q(v) = 1 for all v > x. Proposition 2.1 of Winkler (1988) then implies that the extreme

points of A are contained within the set of convex combinations of two such extreme points

of A. This means that any extreme points, q, of A satisfy:

q(v) =


0 v < v1

a v ∈ (v1, v2)

1 v > v2,

for some v1, v2 ∈ [0, 1] with v1 ≤ v2. Notice that the behavior of q at v1 and v2 is left

unspecified. By the Bauer maximum principle, the seller’s problem, (3), is solved by some

q which takes that form.

To fill in the gap between this result and the upper semi-continuous form for q claimed

in the lemma, we will show that, if q(v1) < a or q(v2) < 1, we can find a feasible q̃ which

takes the form in the lemma, and which yields at least as much revenue as q. Define the

quantities:

revenue(q̂) :=

∫ [
vq̂(v)−

∫ v

0

q̂(x)dx

]
dF (v) quantity(q̂) :=

∫
q̂(v)dF (v).

First, notice that if F does not have a mass point at the cutoff point in question, then

it is trivial to “fix” q, by simply setting q̃(v1) = a or q̃(v2) = 1, and leaving q̃(v) = q(v)

at all other v. This leaves quantity(q̃) = quantity(q), so that q̃ remains feasible, and
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revenue(q̃) = revenue(q). We will therefore only show how to “fix” q when F has a mass

point at v1 or v2 (if it has a mass point at both, we will peform both “fixes”).

Suppose that q(v1) = e ≤ a, and q(v2) = f ≤ 1, and notice that the mechanism q can

be described as follows: The buyer chooses an item from the five-item menu,

⟨(0, 0), (e, v1), (a, v1), (f, t), (1, t)⟩,

where t = v2 − a(v2 − v1); (indifferent) type v1 buyers choose (e, v1) and (indifferent) type

v2 buyers choose (f, t). The first coordinate of each menu item indicates the allocation

probability, and the second indicates the per-unit-probability price (i.e., (e, v1) means that

the buyer receives the good with probability e and pays e× v1).

Possibility 1: e < a; µF (v1) = m > 0.

Our strategy will be to “merge” the menu items (e, v1) and (a, v1). This will not affect

the mechanism’s quantity, or the revenue from these low-price items. However, it will

increase the price, and hence revenue, from the high-price items.

Let m̂ := F−(v2)−F (v1) be the mass of buyers who select the (a, v1) item. Then, define

ã := am̂+em
m̂+m

, and let the mechanism q̃ be described by the alternative menu,

⟨(0, 0), (ã, v1), (f, t̃), (1, t̃)⟩,

where t̃ = v2 − ã(v2 − v1), with the tie-breaking rule where (indifferent) type v1 buyers

choose (ã, v1) (type v2 buyers still choose (f, t̃)). In words, q̃ merges the low-price menu

items, using the mean allocation probability. It then sets t̃ to preserve type v2 indifference.

Notice that q̃ is an upper semi-continuous mechanism, as indicated in the lemma statement.

By construction, q̃ does not change the mass of buyers who select either the low-price

or the high-price menu items, and so, in particular, we have quantity(q) = quantity(q̃).

Further, this maintains the revenue from low-price menu items. However, since ã < a, we

have t̃ > t, and so q̃ has higher revenue from high-price menu items. Thus, revenue(q̃) ≥
revenue(q), as desired.

Having performed this first “fix,” we are left with a menu of the form:

⟨(0, 0), (a, v1), (f, t), (1, t)⟩,

and the tie-breaking rule that type v1 buyers choose (a, v1) while type v2 buyers choose

(f, t). We will again improve this mechanism in the relevant case.

Possibility 2: f < 1; µF (v2) = m > 0.
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Our strategy will be to set f = 1, and then adjust other parts of the mechanism to

make sure the quantity constraint continues to hold. As before, let m̂ := F−(v2)− F−(v1)

be the mass of buyers who select the (a, v1) item.

Case 1: m(1− f) ≤ am̂.

In this case, let q̃ be described by the alternative menu,

⟨(0, 0), (ã, v1), (1, t̃)⟩,

where ã satisfies (1 − f)m = (a − ã)m̂, and t̃ = v2 − ã(v2 − v1); and the tie-breaking rule

that type v1 buyers choose (a, v1) and type v2 buyers choose (1, t̃). (The case assumption

guarantees that ã ≥ 0.) Notice again that q̃ is upper semi-continuous. By construction

of ã, we have that quantity(q̃) = quantity(q), so that q̃ remains feasible. Further, it is

straightforward to see that:

revenue(q̃)− revenue(q) =

reallocation to high-price buyers︷ ︸︸ ︷
−(a− ã)m̂v1 + (1− f)mt+

raising high price︷ ︸︸ ︷
(m+ (1− F (v2)))(t̃− t) .

The “reallocation” term is ≥ 0 by the definition of ã, and because t ≥ v1. The “raising

high price” term is ≥ 0 because, as before, t̃ ≥ t. Thus, revenue(q̃) ≥ revenue(q).

Case 2: m(1− f) > am̂.

In this case, let ˆ̃q be described by the alternative menu,

⟨(0, 0), ( ˆ̃f, v2), (1, v2)⟩,

where ˆ̃f satisfies ( ˆ̃f−f)m = am̂, and the tie-breaking rule that type v2 buyers choose (
ˆ̃f, v2).

(The case assumption guarantees that ˆ̃f < 1.) Notice that ˆ̃q is not upper semi-continuous.

By construction of ˆ̃f , we have that quantity(q̃) = quantity(q), so that ˆ̃q remains feasible.

Further, it is straightforward to see that:

revenue(ˆ̃q)− revenue(q) =

reallocation to high-price buyers︷ ︸︸ ︷
−am̂v1 + ( ˆ̃f − f)mv2 +

raising high price︷ ︸︸ ︷
(1− F (v2))(v2 − t).

The “reallocation” term is ≥ 0 by the definition of ˆ̃f , and because v2 ≥ v1. The “raising

high price” term is ≥ 0 because v2 ≥ t. Thus, revenue(ˆ̃q) ≥ revenue(q).

Finally, let q̃ be described by the menu ⟨(0, 0), (f̃, v2)⟩, where f̃ =
ˆ̃
fm+(1−F (v2))
m+(1−F (v2))

, and the

tie-breaking rule that type v2 buyers choose (f̃, v2). By construction, q̃ simply merges the

two top items in ˆ̃q, and so generates the same quantity and revenue. Further, q̃ is upper
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semi-continuous (it takes the first form given by the lemma).

Lemma 9. For any c ∈ (0, 1), F ∈ ∆([0, 1]) and α ∈ [0, 1], we have:

R((1− α)δ0 + αF ; c) = R(F ; c/α),

where δ0 is the distribution which puts unit mass on 0, and R(F ; ĉ) is defined to be 1 for

any ĉ ≥ 1.

Proof. Define F̂ := (1−α)δ0+αF . We will refer to (3), under F̂ and c, as the “F̂ problem”;

and, under F and c/α, as the “F problem.”

Case 1: c ≥ α.

Notice that any allocation function is feasible for the F̂ problem. Thus, by the Riley

and Zeckhauser (1983) result, there is an optimal mechanism for the F̂ problem which is a

posted-price mechanism. We therefore have R(F̂ ; c) = 1, as desired.

Case 2: c < α.

For any allocation function, q, we have that (1) q is feasible for the F̂ problem ⇔ q is

feasible for the F problem and (2) q generates α times as much revenue in the F̂ problem

as in the F problem. (Both claims follow from the linearity of quantity and revenue in F .)

It follows that any optimal mechanism in the F̂ problem remains optimal in the F

problem, and so rev1∗(F̂ ; c) = αrev1∗(F ; c/α). It further follows that, for any price p,

we have rev1p(F̂ ; c) = αrev1p(F ; c/α), and so maxp rev1p(F̂ ; c) = αmaxp rev1p(F ; c/α).

Thus, R(F̂ ; c) = R(F ; c/α).

Lemma 4.

Proof. We will introduce a bit more notation for this proof. Let

rev1(q, F ) :=

∫ [
vq(v)−

∫ v

0

q(x)dx

]
dF (v)

represent the seller’s revenue from using an IC semi-direct mechanism with assignment

function q, against distribution F .

Lemma 3 states that there is either a two-tiered or a three-tiered assignment function,

qF , which is optimal against F . Since a two-tiered assignment function is just a posted-

price mechanism, in that case we have R(F ; c) = 1, and so any two-point distribution, F̃ ,

trivially has R(F̃ ; c) ≥ R(F ; c).
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In the interesting three-tiered case, Lemma 3 tells us there exists an F -optimal assign-

ment function, qF , which can be written as:

qF (v) :=


0 v < v1

a v ∈ [v1, v2)

1 v ≥ v2,

for some a, v1, v2, with v1 ≤ v2. Now, define F̃0 := (m0 ◦ 0,m1 ◦ v1,m2 ◦ v2), where m0 :=

PX∼F (X < v1), m1 := PX∼F (v1 ≤ X < v2) and m2 := PX∼F (X ≥ v2). That is, F̃0

moves each unit of probability mass under F to the bottom of its qF “bin.” Notice that

rev1(qF , F̃0) = rev1(qF , F ) = rev1∗(F ), and so we must have:

rev1∗(F̃0) ≥ rev1∗(F ). (19)

On the other hand, since F ⪰FOSD F̃0, any fixed posted-price assignment function

performs weakly worse against F̃0 than against F (weakly less buyers pay the posted price

under F̃0). Thus,

max
p

rev1p(F̃0) ≤ max
p

rev1p(F ), (20)

and so, dividing inequality (19) by inequality (20), we find that R(F̃0; c) ≥ R(F ; c).

Now, if m0 = 0, the distribution F̃0 is a two-point distribution, and so we are done. If

not, define α := m1 + m2, observe that α < 1, and let F̃1 := (m1/α ◦ v1,m2/α ◦ v2). By

Lemma 9, we have R(F̃0; c) = R(F̃1; c/α). Now, if α ≤ c, again by Lemma 9, R(F̃0; c) = 1,

and so R(F ; c) = 1, and any two-point F̃ suffices to prove the lemma.

If instead α > c, then since F̃1 is a two-point distribution, we have, by Lemma 2, that

R(F̃1; c/α) ≤ 2 − c/α. But, again using Lemma 2, we can find a two-point distribution

F̃ with R(F̃ ; c) arbitrarily close to 2 − c, and, in particular, such that R(F̃ ; c) ≥ 2 − c/α.

Putting together these observations, we obtain:

R(F ; c) ≤ R(F̃0; c) = R(F̃1; c/α) ≤ 2− c/α ≤ R(F̃ ; c),

completing the proof.

Lemma 5.

Proof. Due to the symmetry of the problem, there exists an optimal mechanism, which

is ex-interim symmetric,19 and assigns the good to each agent with ex-ante probability at

19I.e., the interim expected allocation and transfer functions, qi and ti, are the same for each agent i.
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most m/n. (Given some, possibly asymmetric, optimal mechanism, M, we can construct

such a mechanism, M̃, by adding an ex-ante stage in which we choose a labeling of agents

uniformly at random from all permutations of agents, and then run M on that labeling of

agents. Clearly, M̃ remains optimal – it is still IC and IR, and generates the same expected

revenue as M. Since M̃ has equal ex-ante assignment probability for all agents, and always

assigns at most m items to n agents, it must have ex-ante assignment probability at most

m/n for each agent.)

Let (q, t) be the interim expected allocation and transfer functions of such an opti-

mal mechanism, and observe that, by construction, (q, t) is feasible for (1), with capacity

constraint c = m/n. Since rev1∗(F ;m/n) gives the optimal revenue for this problem, we

have:

rev∗(F ;m,n) = n×
∫

t(v)dF (v) ≤ n× rev1∗(F ;m/n),

as desired.

Lemma 10. Fix positive integers m,n with m ≤ n, and define the function κ0 : [0, 1] → R
as:

κ0(ϕ) :=
min{nϕ,m}∑m−1

i=1 i
(
n
i

)
ϕi (1− ϕ)n−i +m

∑n
i=m

(
n
i

)
ϕi (1− ϕ)n−i .

Then, κ0 is maximized at ϕ = m/n.

Proof. Notice that the denominator gives the expected number of ‘heads’ in the capped

game (where n weighted coins, which come up heads with probability ϕ, are flipped, and

the game is cut short once m have come up heads). Since this is clearly increasing in ϕ,20

while the numerator is constant in ϕ for ϕ ≥ m/n, we must have κ0(m/n) ≥ κ0(ϕ) for all

ϕ ≥ m/n.

Suppose now that ϕ < m/n, so that the numerator of κ0 is simply nϕ. Write the

denominator of κ0 as:

nϕ−
n∑

i=m+1

(i−m)

(
n

i

)
ϕi (1− ϕ)n−i ,

where the first term gives the expectation of the uncapped game, and the second gives the

20Consider ϕ, ϕ̂ with ϕ < ϕ̂, and choose sample spaces so that heads occurs in the ϕ game only when
heads occurs in the ϕ̂ game. Then, in any outcome where k heads were realized in the ϕ game, at least k
heads were realized in the ϕ̂ game.
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loss due to the cap. Then, we have:

n

κ0(ϕ)
= n−

n∑
i=m+1

(i−m)

(
n

i

)
ϕi−1 (1− ϕ)n−i

and so:

d

dϕ

(
n

κ0(ϕ)

)
=

n∑
i=m+1

(i−m)

(
n

i

)
ϕi−2(1− ϕ)n−i−1 [(n− i)ϕ− (i− 1)(1− ϕ)] .

I claim that the bracketed term is negative for all i. Notice that it is largest when i is as small

as possible (i = m+1); in this case, its value is (n−m−1)ϕ−(m)(1−ϕ) = (n−1)ϕ−m < 0,

where the final inequality follows because ϕ < m/n. Thus, κ0(ϕ) is increasing for ϕ < m/n,

and so is maximized at ϕ = m/n.

Lemma 6.

Proof. Let ϕ = 1− F−(p) be the probability that a buyer is willing to purchase at price p.

Then:

rev1p(F ;m/n) = p×min{ϕ,m/n}, (21)

and:

revp(F ;m,n) = p×

[
m−1∑
i=1

i

(
n

i

)
ϕi (1− ϕ)n−i +m

n∑
i=m

(
n

i

)
ϕi (1− ϕ)n−i

]
. (22)

Combining (21) and (22) gives:

revp(F ;m,n)

n× rev1p(F ;m/n)
=

1

κ0(ϕ)
≥ 1

κ0(m/n)
=

1

κ(m,n)
,

where κ0 is defined as in Lemma 10, and the second inequality is the content of Lemma 10.

This proves the result.

Proposition 4.

Proof. Since BSP (m,n) ≤ B(m,n), it will suffice to prove the upper-bound for B(m,n)

and the lower-bound for BSP (m,n).

Upper bound: B(m,n) ≤ (2−m/n)× κ(m,n).
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This follows immediately from Lemmas 5 and 6. Fix some distribution, F ∈ ∆([0, 1]).

Taking p∗ to be any maximizer of rev1p(F ;m/n) (such a p∗ exists since rev1p is upper

semi-continuous), Lemma 6 gives us:

max
p

revp(F ;m,n) ≥ revp∗(F ;m,n)

≥ 1

κ(m,n)
× n× rev1p∗(F ;m/n)

=
1

κ(m,n)
× n×max

p
rev1p(F ;m/n). (23)

Then, from Lemma 5, we have:

rev∗(F ;m,n) ≤ n× rev1∗(F ;m/n). (24)

Dividing inequality (24) by (23), we obtain:

rev∗(F ;m,n)

maxp revp(F ;m,n)
≤ κ(m,n)

rev1∗(F ;m/n)

maxp rev1p(F ;m/n)
. (25)

Then, since (25) holds for any F , we also have:

sup
F∈∆([0,1])

rev∗(F ;m,n)

maxp revp(F ;m,n)
≤ κ(m,n) sup

F∈∆([0,1])

rev1∗(F ;m/n)

maxp rev1p(F ;m/n)
,

which relates B(m,n) to B1(m/n). Our result then follows since, by Proposition ??,

B1(m/n) = 2−m/n.

Lower bound: BSP (m,n) ≥ 2−m/n.

We will propose a particular sequence of distributions, which achieves this lower bound.

Let FH be the distribution ( 1
H
◦m/n, (1− 1

H
) ◦ 1/H), where H is a number which we will

eventually make large.

Them+1st-price auction seller should only consider two candidate reserve prices against

FH : namely, m/n and 1/H. If he sets the high reserve price, m/n, then, since the expected

number of buyers who bid above the reserve price is n × 1
H
, and since sale will occur at

price m/n, his expected revenue is no greater than m/H.

If he sets the low reserve price, 1/H, then all buyers will bid at least the reserve. The

seller’s revenue is then m× 1/H, unless there are m+ 1 or more high-valuation buyers, in
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which case his revenue is m×m/n. Thus, his expected revenue is given by:

m× 1

H
+m×

(
m

n
− 1

H

)
×

n∑
i=m+1

(
n

i

)(
1

H

)i(
1− 1

H

)n−i

=
m

H
+O((1/H)m+1), (26)

which is optimal, since it exceeds m/H.

Now, let us consider a different auction format, the “l-h auction,” which we will use

to lower-bound the revenue from the optimal auction. In this auction, all buyers will be

constrained to report l (for low valuation) or h (for high valuation). All m goods will be

assigned to buyers, with all h buyers served before any l buyers. (Ties within buyer reports

will be broken randomly.) Any l buyer who receives a good will pay 1/H, while any h buyer

(whether or not she receives a good) will pay t, where t is chosen so that high-valuation

buyers are indifferent between reporting l and h, if all other high-valuation buyers report

h and all low-valuation buyers report l. By construction, it is an equilibrium for all buyers

to report truthfully; the mechanism will select this equilibrium.

In the l-h auction, consider the probability, ph, with which a buyer who reports h

receives a good. Clearly, a particular h buyer receives a good whenever all h buyers receive

a good, and so:

ph ≥ 1−
n∑

i=m+1

(
n

i

)(
1

H

)i (
1− 1

H

)n−i

= 1−O((1/H)m+1). (27)

On the other hand, let pl be the probability with which a buyer who reports l receives a

good. In the best case, all buyers report l, in which case an individual buyer receives a

good with probability m/n. We therefore have:

pl ≤ m/n. (28)

For a high-valutaion buyer to be indifferent between reporting l and h, we must have:(
ph ×

m

n

)
− t = pl ×

(
m

n
− 1

H

)
. (29)

Combining equation (29) with inequalities (27) and (28), we find:

t ≥ m

n
−

(m
n

)2

+
m

n

1

H
−O((1/H)m+1) =

m

n
−
(m
n

)2

+O(1/H). (30)

Then, since the l-h auction always assignsm goods, we must have n×
(

1
H
× ph + (1− 1

H
)× pl

)
=
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m. Since ph ≤ 1, we find:

pl ≥ m/n− 1

H
. (31)

Using inequalities (30) and (31), we find that the l-h auction generates expected revenue

revlh satisfying:

revlh = n×
(

1

H
× t+ pl ×

1

H

)
≥ 1

H
× n×

(
2
m

n
−
(m
n

)2
)
+O((1/H)2). (32)

Finally, since rev∗(FH ;m,n) ≥ revlh, dividing inequality (32) by equation (26), we have:

rev∗(FH ;m,n)

maxp revSPp (FH ;m,n)
≥ revlh

maxp revSPp (FH ;m,n)
≥ 2− m

n
+O(1/H).

Taking H → ∞ then establishes the result.

Lemma 7.

Proof. For Assertion 1, and the expression for limn→∞ κ(m,n), see Yan (2011), Lemma 4.2

(b) and (c), respectively.

To see that limn→∞ κ(m,n) is strictly decreasing in m, we will show that mm

emm!
is strictly

decreasing in m. We have:

(m+ 1)m+1

em+1(m+ 1)!
/
mm

emm!
=

1

e

(
1 +

1

m

)m

< 1,

where the inequality holds because (1 + 1/m)m is strictly increasing in m, with limit e as

m → ∞.

Finally, Assertion 2a is immediate, while Assertion 2b follows from the asymptotic

approximation, 1− mm

emmm ∼ 1− 1/
√
2πm, given by Yan (2011) in Lemma 4.2 (c).

B Support restrictions; general outperformance mea-

sures

In progress.
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