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Abstract

We present a model that investigates preference evolution with endogenous matching.

In the short-run, individuals’ subjective preferences influence partner selection and

behavior in social interactions, which affects their material payoffs. These payoffs, in

turn, affect how preferences evolve in the long-run. To properly model the “match-to-

interact” process, we combine stable matching and equilibrium concepts. Our analysis

shows that endogenous matching gives rise to the evolutionary stability of a class of

preferences that exhibit both homophily and efficiency. Such preferences stand out in

the evolutionary process because they are able to force positive assortative matching

and efficient play. Under incomplete information, a strong form of homophily, termed

parochialism, is necessary for a preference to prevail in evolution, because stronger

incentives are required to engage in self-sorting with information friction.

Key Words: Preference evolution, stable matching, evolutionary stability, matching

with incomplete information, homophily, parochialism.

1 Introduction

In contemporary economic analysis, decision makers’ preferences are commonly taken as

exogenously given and fixed. However, preferences themselves can be the products of a
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lengthy evolutionary process. An important question arises regarding why certain preferences

persist while others dissipate throughout human history. Güth and Yaari (1992) and Güth

(1995) introduce the “indirect evolutionary approach,” a useful theoretical framework for

understanding preference evolution: preferences dictate behavior, behavior determines fitness

success, and fitness success, in turn, regulates how preferences evolve. A preference type is

considered evolutionarily stable if, when predominant in a population, it can resist invasions

from alternative preference types. See recent surveys by Alger and Weibull (2019) and Alger

(2022).1 In most works that align with this approach, behavior refers to the choices made

in some two-player game by a population of individuals who are paired according to some

exogenous random matching process.2 Nevertheless, they neglect to consider a crucial aspect

of behavior: preferences not only shape individuals’ choices in the underlying game after

they are matched but also determine their matching patterns in the first place, i.e., how

people choose their partners and get paired with one another. Without acknowledging the

role of preferences in determining matching, and how matching in turn shapes preferences,

the indirect evolutionary approach remains incomplete.

The objective of this paper is to propose a model of preference evolution, which formally

incorporates endogenous matching given an arbitrary space of preference types, any underlying

two-player game with finite strategies, and any information available to the individuals in

the population. Our approach to model the match-to-play-game process follows the works

of Jackson and Watts (2010) and Garrido-Lucero and Laraki (2021) by integrating the non-

cooperative concept of equilibrium play and the cooperative notion of stable matching. On

one hand, equilibrium ensures that the play between two matched individuals is self-enforcing

once the matching is formed. On the other hand, stable matching captures the idea that

unsatisfied pairs of individuals can communicate and jointly deviate to form new pairs in

a credible manner. Alternatively, endogenous matching can be modeled in a completely

non-cooperative fashion; Nevertheless, this approach may result in a complex and intractable

extensive form that is difficult to analyze, and the solution can be sensitive to the assumed

protocol. Thus, we adopt the protocol-free cooperative approach, which is robust to the

details of the extensive form.3

We begin the paper with a complete information benchmark where preference types are

observable. To investigate the stability of matching outcomes in this context, we adapt the

1See also Robson and Samuelson (2011) for a critical assessment of the approach.
2A few papers consider multilateral games (Lehmann et al., 2015; Alger and Weibull, 2016; Alger et al.,

2020) or all individuals play “the field” (Lahkar, 2019; Bandhu and Lahkar, 2023). In the former case,
matching is also assumed to be exogenous, while in the latter case, matching plays no role.

3While stable matching can be viewed as a reduced-form limit of some frictionless dynamic processes of
partnership formation, the convergence of such dynamics is not guaranteed. More importantly, in reality,
frictions naturally arise during these processes. Therefore, using the concept of stable matching serves as an
initial step in modeling endogenous partner choice in the evolution of preferences.
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concept of Nash stability by Garrido-Lucero and Laraki (2021) to our setting. Specifically,

Nash stability requires that every matched pair of individuals plays a Nash equilibrium,

termed internal stability, and that no unmatched pair can coordinate on a Nash equilibrium

that benefits them both, termed external stability.

We identify a class of preference types that exhibit distinctive characteristics. First, these

preference types display a form of plasticity4 that we refer to as homophily.5 We distinguish

two different forms of homophily: weak homophily, where an individual derives additional

utility from interacting with another individual of the same type, and strong homophily,

where an individual exclusively derives utility from interacting with another individual of the

same type. We refer to the latter preference type as parochial because it reflects the state

of mind whereby such individuals narrowly focus on interactions among themselves rather

than considering the wider population that includes different types of agents.6 Note that

such individuals never remain matched with opponents of different types in a stable outcome

(assuming types are observable).

Second, these preference types must induce efficient play that maximizes the material

payoff of both players in the underlying game. There are two different ways to interpret the

preference for efficiency. On the one hand, it can be viewed as a “disinterested” preference,

where an individual is solely focused on the social objective of maximizing the total material

payoff. This perspective is in line with Utilitarianism, as the strategy chosen by an individual

with a preference for efficiency, conditional on her opponent’s behavior, is considered morally

right since it maximizes the welfare of the pair (Mill, 1863). On the other hand, the preference

for efficiency can also be seen as a form of altruism, where an individual places equal

importance on her own material payoff and that of her opponent. Starting from the seminal

works of Hamilton (1964a,b), it is generally understood in the theoretical biology literature

that the maintenance of altruism in evolution, whether the solutions are based on kinship,

reciprocity, or group selection, depends on assortative matching.

The rationales for these preferences to be evolutionarily stable are as follows: First,

homophily or parochialism fosters positive assortative matching, ensuring that all agents

carrying this preference type are matched with one another. Second, a preference for efficiency

shifts these agents’ incentives in the material game, making them play an efficient strategy

profile (e.g. cooperation in a prisoner’s dilemma) as a Nash equilibrium. Finally, playing the

4Plasticity refers to situations where an individual has preference over not only the strategy profiles in
the underlying game but also the opponent’s preference type. Works in preference evolution that consider
plasticity include Sethi and Somanathan (2001), Herold and Kuzmics (2009) and Alger and Lehmann (2023).

5In the network literature, it is common to assume that players have the homophilous preference (a direct
preference for associating with similar others). see Jackson (2014) for a survey.

6In the literature, various interpretations have been given to parochialism. For example, Bernhard et al.
(2006) define it as a preference for favoring one’s own group members. Choi and Bowles (2007) define it as
hostility toward other groups.
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efficient strategy profile among themselves guarantees a higher average fitness than any other

types that do not play efficiently.

Next, we turn our attention to the case of incomplete information in which individuals’

preference types are their private information. Following the recent literature on stable

matching with incomplete information (Liu et al., 2014; Liu, 2020; Chen and Hu, 2023;

Wang, 2022), we develop a stability concept called Bayes-Nash stability in our model. It

requires that each matched pair plays a Bayes-Nash equilibrium (internal stability), and

that there is no incomplete information blocking pair (external stability). Intuitively, an

incomplete information blocking pair exists when (1) two individuals agree on a rematching

proposal that specifies how each side is supposed to play in the deviation, and (2) both

sides strictly benefit from the deviation given that the proposal will be honored. Notice that

such blocking may be accompanied by information revelation, so the requirement of external

stability imposes restrictions on the form of incomplete information in a stable outcome.

This highlights that information is an endogenous variable in our setting. We show that

individuals with the stronger parochial efficient preference type are able to cooperate with

each other through rematching and force efficient play even in the presence of incomplete

information.7 Consequently, the parochial efficient preference type can ensure the highest

average fitness and thus resist invasion of any other type that does not always induce efficient

play. We also show through an example that the weaker homophilic efficient type may not

resist invasion (Example 5), and formally prove that it is indeed evolutionarily unstable for a

large class of material games. The intuition is as follows: Although the homophilic efficient

types prefer to play with their own type, their utility still depends on the behavior of the

opponent when matched with another type; therefore, they may be reluctant to block an

unfavorable matching outcome if they cannot distinguish an (unobservable) alien type that

tends to minimize total material payoffs.

Fundamentally, the mechanisms behind our model’s predictions are two-fold: type-

identification and commitment. Type-identification is achieved through the matching protocol

combined with parochialism. The opportunities (and incentives) to block the current matching

outcome enable the parochial efficient preference type to be partially revealed in a stable

matching outcome due to its specific nature. The commitment power is internalized for the

parochial efficient preference type (parochialism can be weakened to homophily under complete

information), with which agents of this type are dedicated to matching and cooperating

only with others of the same type. Frank (1987) was the first to highlight that commitment

7While our focus is on the stable outcome rather than explicitly modeling the dynamic matching process
converging to it, we can imagine that individuals with the parochial efficient preference type engage in
a self-sorting process that involves information unraveling. We demonstrate that whenever individuals
with unobservable types are not matched among themselves playing an efficient strategy pair, a profitable
rematching opportunity arises. Carrying out such deviations can reveal more information to the population.
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and the ability to identify committing agents serve as important driving forces of evolution.

Recent works by Akdeniz and van Veelen (2021, 2023), along with our model, can be seen as

a renaissance of Frank’s insight.

In traditional economic models, individuals are generally assumed to be self-interested

and strive to maximize their own material payoffs. Therefore, it is important to investigate

whether selfishness can be evolutionarily stable in the context of preference evolution. To

this end, we examine two types of selfish preferences that exhibit homophily: the weaker

homophilic selfish and the stronger parochial selfish types. Our findings indicate that with

complete information, for these types to be stable, additional conditions must be met for the

material game. In particular, an important subset of Nash equilibria, which we call the set of

loser-best Nash equilibria, must be efficient.

As previous works in the literature suggest, selfishness may be favored by natural selection

under incomplete information when the matching process is assumed to be exogenous (Ely

and Yilankaya, 2001; Ok and Vega-Redondo, 2001; Dekel et al., 2007). In contrast, our results

imply that with endogenous matching, a preference for efficiency still dominates selfishness,

even when incomplete information is present. In fact, incomplete information makes it even

more challenging for selfish types to be evolutionarily stable. Specifically, we show that all

Nash equilibria in the material game must be efficient to ensure the evolutionary stability of

the parochial selfish type, which is a more stringent condition than with complete information.

1.1 Related Literature

In what follows, we review the literature related to the current work. The idea of the indirect

evolutionary approach has already been proposed by several earlier papers including Becker

(1976), Hirshleifer (1977), Rubin and Paul (1979), and Frank (1987) before it is formally

named.8 Frank (1987) is perhaps the first paper that considers endogenous matching under

incomplete information. His model imposes an exogenous information structure that induces

positive assortative matching and the agents interact only once after they are matched. On

the contrary, we adopt the notion of stable matching as a reduced-form limit of a repeated

match-to interact process, which endogenizes the information structure.

The concern of how incomplete information affects preference evolution in a random

matching environment dates back to Güth and Kliemt (1998), who demonstrates that

conditioner cooperators cannot survive when preference types are unobservable because

8Additional subsequent works include Robson (1990), Ockenfels (1993), Ellingsen (1997), Bester and Güth
(1998), Güth and Kliemt (1998), Fershtman and Weiss (1998), Huck and Oechssler (1999) McNamara et al.
(1999), Bolle (2000), Koçkesen et al. (2000), Possajennikov (2000), Sethi and Somanathan (2001), Van Veelen
(2006), Heifetz et al. (2007a,b), Akçay et al. (2009), Alger (2010), Alger and Weibull (2010, 2012), Carvalho
et al. (2023), and Avataneo et al. (2025), among others.
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they cannot behave differently according to their opponents’ types. Dekel et al. (2007)

formalize the idea in a fairly general setting.They find that when preference is perfectly

observable, efficiency is the driving force behind the selection of behavior. When preference

types are completely unobservable, selfishness is instead evolutionarily stable. They also

consider the intermediate case that the individuals’ types are partially observable, where

the degree of observability is exogenously given. They find that efficiency force matters for

any positive degree of observability; only when preferences are completely unobservable does

this force disappear. Herold and Kuzmics (2009) extends Dekel et al. (2007) to allow for

plasticity in a random matching environment. They show that when plasticity is incorporated,

discriminating types are evolutionarily stable under (almost) complete information. In our

model, we do not impose any exogenous information structure. Instead, observability is

endogenized by the matching process. We show that efficiency force joint with parochialism,

as a form of discrimination, prevails regardless of the initial degree of observability before

matching because it induces information revelation and assortative matching.

Alger and Weibull (2013) consider a preference evolution model with incomplete infor-

mation and exogenous assortative matching. That is, individuals with the same preference

types are matched with higher probability than those with different preference types. They

establish that, contrary to previous findings, a preference type called homo-moralis, which

concerns both materialistic goals and moral values, is evolutionarily stable. In the most

extreme case where there is positive assortative matching, the Kantian preference type,

which aligns with the philosophy of Kant (1785), becomes evolutionarily stable. It is worth

noting that a Kantian individual’s dominant strategy corresponds to the symmetric efficient

strategy profile in the underlying game. Newton (2017) extends Alger and Weibull (2013)

by subjecting matching’s degree of assortativity to evolutionary pressure. He demonstrates

that the Kantian preference coupled with homophily defined on the matching level can

survive. In our model, homophily is rather defined on the more primitive preference level

and we further endogenize assortativity to an individual level by employing the concept of

stable matching. In addition, Wu (2019) correlates observability of preference types with

assortativity of matching exogenously. In contrast, our paper endogenizes such correlation.

Different ways of modeling match-to-play-game are proposed in the literature. Ely (2002)

and Mailath et al. (1997) consider models where the interaction structure is endogenized by

locational choices. Starting from Jackson and Watts (2002), a growing literature endogenizes

interaction structure via network formation (Goyal and Vega-Redondo, 2005; Hojman and

Szeidil, 2006; Staudigl and Weidenholzer, 2014; Bilancini and Boncinelli, 2018; Cui and Shi,

2021; Cui and Weidenholzer, 2021). Dynamic partner choice models have been considered

by Frank (1987), Wilson and Dugatkin (1997), McNamara et al. (2008), Fujiwara-Greve

and Okuno-Fujiwara (2009), Izquierdo et al. (2010, 2014, 2021), and Graser et al. (2024)
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The general takeaway from the above-described strands of literature is that when people

have enough freedom to choose both whom they interact with and action in the underlying

games, efficiency arises. The concepts of stable matching we develop in this paper implicitly

assume that the matching process is frictionless. In addition, Gintis et al. (2001) and Hopkins

(2014) among others, use the costly signaling theory to model endogenous matching under

incomplete information. Nax and Rigos (2016) and Wu (2017) consider models in which

matching’s degree of assortativity is determined through political processes.

2 Population, Strategies and Preference Types

Consider a continuum of agents constituting a population who are matched in pairs to engage

in symmetric two-person simultaneous game Γ with a common strategy set X. We assume X

is finite and allow the agents to choose from the set of mixed strategies denoted by X “ ∆pXq.

An agent playing pure strategy x P X against another agent playing pure strategy y P X

receives a material payoff (or fitness) πpx, yq, where π : X2 Ñ R. The payoff function π is

naturally extended to the domain of mixed strategy profiles X 2. Because all agents have to

be matched and play the material game in our model (i.e. there is no outside option), we

normalize the material payoff function so that πpx, yq ě 0 for all px, yq P X2 without loss of

generality.9

Write Θ for the set of preference types an agent can possess. Each preference type

θ P Θ defines a utility function (and its affine transformations) uθ : X2 ˆ Θ Ñ R, which
depends on the pure strategies played by the pair and the matched partner’s preference

type. For example, uθpx, y, tq denotes the utility of an agent with preference type θ playing

pure strategy x against another agent with preference type t playing pure strategy y. For

each θ P Θ, uθ is naturally extended to the domain X 2 ˆ Θ. Assume Θ is rich enough so

that any utility function is possessed by some preference type.10 Our specification of the

utility function is more general than those typically considered in the literature on preference

evolution, as we allow it to depend on the preference type of the matched partner. This

dependency potentially makes an individual less exploitable by others with different preference

types, a force that becomes even more crucial when partner choice is endogenous. When uθ

is non-constant on Θ, we say type θ has plastic preferences.

We make two remarks. First, we focus on material games with a finite common strategy

set X, as in Dekel et al. (2007). Although our analysis readily extends to games with a general

9Alternatively, we can consider an environment where individuals have the option to stay unmatched, but
if so, they receive a material payoff lower than the minimum payoff they could obtain by interacting with a
partner. In this case, all of our analysis and results still hold.

10For example, we can let Θ be the canonical type space constructed in Gul and Pesendorfer (2016); see
also Herold and Kuzmics (2009).
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topological strategy space once we impose suitable assumptions, the central insights of the

paper remain unchanged. Second, we impose no relation between uθ and the material payoff

function π. Special examples include the selfish type that only cares about the material

payoff, i.e. uθpx, y, tq “ πpx, yq, and the efficient type that cares about the total material

payoffs in a matched pair, i.e. uθpx, y, tq “ πpx, yq ` πpy, xq.

For our main analysis, we shall only consider a population with two different preference

types θ and τ , where θ, τ P Θ.11 A proportion 1 ´ ε of the agents carry θ and the remaining

agents carry τ , where ε P p0, 1q. We refer to the tuple pθ, τ, εq as a population state.

Departing slightly from the existing literature, we do not place any restrictions on the

magnitude of ε, allowing for a flexible interpretation of population states. When ε is close

to 1, we can view θ as the invading minority in a population dominated by another type.

Conversely, when ε is close to 0, θ can be seen as the incumbent type being invaded by a

mutant type.

3 Preference Evolution with Complete Information

In this section, we assume that each agent observes the preference types of all other agents.

Hence, when two agents are matched, they play Γ with complete information.

Fix a population state pθ, τ, εq. For each type t P tθ, τu, we let µt P ∆ptθ, τuq be a

probability distribution over types in the population that describes how type-t agents are

matched. A matching profile is a vector µ “ pµθ, µτ q that satisfies the following consistency

condition:

p1 ´ εqµθrτ s “ εµτ rθs.

The condition above requires that the total mass of type-θ agents matched with type-τ agents

is equal to that of type-τ agents matched with type-θ agents.12

Fixing a matching profile µ, for any t, t1 P tθ, τu, let st,t1 P ∆pX 2q describe the distribution

of strategy pairs played across matches between type-t and type-t1 agents, where the first

component in X 2 represents the strategy played by type t. An associated strategy profile

S “ pst,t1q is a vector of distributions of strategy pairs that satisfy the following exchangeability

condition: Let ρ : X 2 Ñ X 2 be a mapping that switches the order of strategies, i.e. ρpx, yq “

py, xq; then we have st,t1rEs “ st1,trρpEqs for any measurable set E Ď X 2. When this condition

is satisfied for t1 “ t, we say st,t is exchangeable.

11In Section 5, we discuss how our results extend to the more general case of polymorphic populations.
12Although we take a distributional approach in defining the matching profile, there is no randomness

in how agents are matched. Given that the population consists of finitely many types, one can explicitly
describe the matching pattern through a deterministic mapping that generates µ.
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We call the combination of a matching profile and an associated strategy profile pµ, Sq an

outcome.

Remark 1. In our model, when two agents of the same type are matched, they are allowed

to play different strategies.13 This is more general than the standard assumption in the

literature on preference evolution, where the strategy pair has to be symmetric when agents

of the same type are matched.14 Importantly, as shown in Example 1, for some underlying

games, there cannot be a stable outcome in which agents of the same type play the same

strategy. Hence, the possibility of asymmetry is critical for our analysis.

3.1 Stable Matching

Given a population state pθ, τ, εq, our next goal is to identify the outcomes pµ, Sq that can

be deemed stable. The requirement of stability has two layers. First, holding the matching

profile µ fixed, agents do not want to change their strategies as specified by S. In other

words, the strategy profile should constitute a Nash equilibrium. Second, given the utilities

agents derive in an outcome, there should not exist agents who want to form a pairwise

deviation and mutually benefit from rematching. To formalize this idea, we extend the notion

of Nash stability by Garrido-Lucero and Laraki (2021) to a continuous population; see also

Jackson and Watts (2010). We assume that agents cannot commit to a strategy via forces

such as binding contracts or the possibility of future punishment in repeated interactions.

This assumption restricts the set of pairwise deviations that are viable.

We now formally define these two layers of stability. A strategy profile S associated with µ

is a Nash equilibrium profile if it satisfies the following: For t, t1 P tθ, τu, if µtrt
1s ą 0 and

px˚, y˚q P supppst,t1q, we have x˚ P argmaxxPX utpx, y
˚, t1q and y˚ P argmaxyPX ut1py, x˚, tq.

That is, every matched pair is playing a Nash equilibrium under S.

Definition 1. Fix an outcome pµ, Sq. We say there is a blocking pair if there exist types

t, t1 P tθ, τu and a strategy pair ppx, pyq P X 2 such that for some types t̄, t̄1 and strategy pairs

px1, y1q, px2, y2q, we have

(i) µtrt̄s ą 0, µt1rt̄1s ą 0, px1, y1q P supppst,t̄q, and px2, y2q P supppst1,t̄1q;

(ii) px P argmaxxPX utpx, py, t
1q and py P argmaxyPX ut1py, px, tq;

13Note that st,t being exchangeable does not imply symmetric play. For example, if st,t is such that
st,trpx, yqs “ st,trpy, xqs “ 1

2 where x ‰ y, then type-t agents play an asymmetric strategy pair px, yq across
all same-type matches.

14The rationale for the standard assumption in the literature is as follows. Since the underlying two-person
game Γ is simultaneous and the matching process is exogenous, there is no opportunity for the agents to
condition their strategies on their matched partners’ strategies, but only their types. Therefore, given that Γ
is symmetric, if xθ,θ P X denotes the strategy chosen by a θ-type agent against another θ-type agent, then
for a pair of θ-type agents, they both necessarily play xθ,θ.

9



(iii) utppx, py, t
1q ą utpx

1, y1, t̄q and ut1ppy, px, tq ą ut1px2, y2, t̄1q.

This notion of blocking pair for aggregate matching is analogous to the one in Echenique

et al. (2013), which serves as a natural generalization of the blocking concept proposed by Gale

and Shapley (1962) to continuous populations. Condition (i) says the agents participating in

a blocking pair must have positive mass. Condition (ii) requires the deviating agents agree on

a Nash equilibrium so that their strategies are mutual best responses; that is, the deviation is

credible. Finally, condition (iii) means the deviating agents strictly prefer to rematch, which

means the proposed strategy pair is indeed profitable.

Definition 1 (iii) requires strict incentives to rematch for both parties. Alternatively, this

definition can be relaxed to allow only one side of the blocking pair to have a strict incentive.

However, this weaker definition may lead to non-existence of stable outcomes. Additionally,

our main results remain unchanged even if this alternative definition is adopted. See Online

Appendix O.1 for a thorough discussion.

As we argued above, for an outcome to be stable, the status quo should constitute a Nash

equilibrium for each pair of matched agents, and there should be no profitable blocking pair

under the outcome. Therefore, we have the following definition of Nash stability.

Definition 2. An outcome pµ, Sq is Nash stable if it satisfies:

(i) S is a Nash equilibrium profile (internal stability);

(ii) There is no blocking pair (external stability).

The notion of Nash stability describes the outcomes that, once reached, do not induce

further strategic or coalitional adjustments. As a direct generalization of pairwise stability,

agents are assumed to be shortsighted in the sense that they only compare one-shot utilities

in a pairwise deviation. Since there is no predetermined sides in our model, the matching

problem resembles a “roommate problem,” which does not guarantee a stable outcome with

finitely many agents (Gale and Shapley, 1962). However, Nash stable outcomes always exist

in our model with a continuum of agents, a result we prove in Proposition 8 for the more

general setting that allows for polymorphism. Next, we use an example to illustrate Definition

2.

Example 1. Consider a population state pθ, τ, εq. The utility functions of the two types are

described by the following three scenarios of strategic interactions:

When two type-θ agents are matched, there are three Nash equilibria: pA,Bq, pB,Aq,

and p1
2
A ` 1

2
B, 1

2
A ` 1

2
Bq. Since A is the dominant strategy for the type-τ agents, the only

Nash equilibrium between two type-τ agents is pA,Aq. When a type-θ agent is matched

with a type-τ agent, the only Nash equilibrium is pB,Aq. We now argue that any Nash

10



type θ
A B

type θ
A 0, 0 3, 3
B 3, 3 0, 0

type τ
A B

type θ
A 0, 4 3, 3
B 3, 3 0, 0

type τ
A B

type τ
A 4, 4 3, 3
B 3, 3 0, 0

stable outcome pµ, Sq must satisfy µθrθs “ µτ rτ s “ 1, sθ,θrpA,Bqs “ sθ,θrpB,Aqs “ 1
2
, and

sτ,τ rpA,Aqs “ 1.15 That is, type-θ agents are only matched with type-θ agents, while type-τ

agents are only matched with type-τ agents; each pair of type-θ agents play the strategy pair

pA,Bq, and each pair of type-τ agents play the strategy pair pA,Aq.

To see this, suppose the contrary. There are two cases to consider:

1) µθrτ s ą 0. In this case, any θ-τ pair must play the unique Nash equilibrium pB,Aq,

where the type-τ agent obtains a utility of 3. However, these type-τ agents who are

matched with type-θ agents can form a Nash blocking pair and benefit from playing

their dominant strategy equilibrium pA,Aq, violating external stability.

2) µθrθs “ µτ rτ s “ 1 but sθ,θrp
1
2
A ` 1

2
B, 1

2
A ` 1

2
Bqs ą 0. In this case, a positive mass of

type-θ agents derive a utility of 3
2
. However, they can form a blocking pair and play a

pure strategy Nash equilibrium pA,Bq, where both sides in the rematch obtain a utility

of 3 ą 3
2
.

Finally, we verify that pµ, Sq is indeed Nash stable. First note that each matched pair

is playing a Nash equilibrium. Thus, the outcome is internally Nash stable. For external

Nash stability, observe that all type-τ and type-θ agents already obtain their highest possible

utilities, which means they can never be made better off in a deviation. Therefore, no Nash

blocking pair exists.

♢

A few remarks are in order. First, in Example 1, a Nash stable outcome must be

asymmetric in the sense that half of the type-θ agents play strategy A, while the other

half play B. This demonstrates that coordination on asymmetric strategy pair is a possible

and natural outcome in our model. The driving force behind this is our consideration

of endogenous partner choice. In particular, agents can engage in communication while

negotiating a credible and profitable pairwise deviation and can maintain the asymmetric

15The Nash stable outcome is unique in a generic sense because sθ,τ and sτ,θ can be arbitrarily specified
for a set of pairs with measure zero, and they do not have implications on the Nash stability of pµ, Sq.
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play with a particular partner. This is in sharp contrast to the existing literature which

only considers symmetric equilibria. Moreover, observe that in Example 1, there are three

Nash equilibrium strategy pairs between type-θ agents, but only two of them, pA,Bq and

pB,Aq, are played in a Nash stable outcome. Therefore, stable matching has implications

for equilibrium selection in our setting. The following definition captures this equilibrium

selection effect.16

Definition 3. For t P Θ, let NE t Ď X 2 denote the set of Nash equilibria between two type-t

agents. Define the set of loser-best Nash equilibria between type-t agents as

NE lb
t “ argmax

px,yqPNE t

min tutpx, y, tq, utpy, x, tqu.

Note that the set NE lb
t is nonempty because utpx, y, tq is continuous in px, yq and the set

NE t is compact. We now make an immediate observation. All the proofs for the results

presented in this paper are relegated to the Appendix.

Lemma 1. In a population state pθ, τ, εq, suppose there exists a Nash stable outcome pµ, Sq

with µtrts ą 0 for t P tθ, τu. Then s1
t,t P S 1 for some Nash stable outcome pµ, S1q if and only

if s1
t,t is exchangeable and s1

t,trNE
lb
t s “ 1.

This lemma captures the equilibrium selection effect we observed in Example 1. In

particular, the mixed strategy Nash equilibrium between type-θ agents is not loser-best, and

thus it cannot be played in any Nash stable outcome.

3.2 Evolutionary Stability

Given a Nash stable outcome pµ, Sq in population state pθ, τ, εq, the average material payoffs

for type-θ and type-τ agents are given by

Gθpµ, Sq “
ÿ

tPtθ,τu

µθrts

ż

px,yqPX 2

πpx, yq dsθ,t,

Gτ pµ, Sq “
ÿ

tPtθ,τu

µτ rts

ż

px,yqPX 2

πpx, yq dsτ,t .

We now define the notion of evolutionary stability as follows.

16This effect shares a similar spirit with the one analyzed in Jackson and Watts (2010). In both our and
their settings, stability puts restrictions on the outcome and therefore refines the set of Nash equilibria that
can arise.
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Definition 4. A preference type θ P Θ is evolutionarily stable against another type τ P Θ

if for every ε P p0, 1q, in population state pθ, τ, εq, Gθpµ, Sq ě Gτ pµ, Sq for all Nash stable

outcomes pµ, Sq while the inequality is strict for some Nash stable outcome. A preference

type θ is evolutionarily unstable if there exists another type τ that is evolutionarily stable

against θ.

Remark 2. Our definition of evolutionary stability is neither stronger nor weaker than the

one in Alger and Weibull (2013). First, they require strict inequality for all Nash equilibria

under their exogenous matching process, while we only require it for some Nash stable

outcome. On the other hand, and more importantly, their notion of evolutionary stability is

defined in a local sense, while ours is a global one as the inequality should hold regardless

of the proportion ε of type τ . Accordingly, we require that the evolutionarily stable type θ

not only resists invasion when it is the incumbent type (i.e., ε is close to 0) but also has the

ability to invade the population when it is the mutant (i.e., ε is close to 1).

We only define evolutionary stability against a particular type τ because requiring the

condition to hold against all possible types would be too stringent given that Θ is rich:

For example, if another type τ never wants to match with θ and behave just like θ among

themselves, then the average material payoffs would be the same across the two types. Next,

we introduce a related notion called neutral stability:

Definition 5. A preference type θ P Θ is neutrally stable if for every τ P Θ and ε P p0, 1q,

in population state pθ, τ, εq, Gθpµ, Sq ě Gτ pµ, Sq for all Nash stable outcomes pµ, Sq.

While neutral stability only requires a weak inequality for all Nash stable outcomes, the

inequality should hold for all types τ P Θ. It is closer in spirit to the notion of stability

considered in Dekel et al. (2007) (except that they consider a local notion). By definition, if

a type evolutionarily unstable, it is not neutrally stable. Given the definitions of evolutionary

(un)stability, we now proceed with the analysis.

As a standard terminology, we say a strategy pair prx, ryq is efficient if17

prx, ryq P argmax
px,yqPX 2

πpx, yq ` πpy, xq,

and let M denote the total material payoff generated by an efficient strategy pair. A strategy

pair is inefficient if it is not efficient. Efficiency plays an important role in the subsequent

analysis because preference evolution is driven by material payoff success.

17Note that in previous literature, since agents of same type have to play the same strategy, the consideration
of efficiency is restricted to symmetric strategy profiles. See for example, Dekel et al. (2007).
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Definition 6. We say θ exhibits same-type inefficiency if there exists a loser-best Nash

equilibrium between type-θ agents that is inefficient.

Note that this definition also imposes an implicit but weak assumption on the material

game Γ: It must have an inefficient strategy pair. One main message of this paper is that

efficient play is the only possible outcome that can sustain in the long run. We next identify

two kinds of plastic preferences that can ensure efficient play with complete information.

Definition 7. For α ą 0, a preference type θ is called the α-homophilic efficient type if

the corresponding utility function takes the form

uθpx, y, tq “ πpx, yq ` πpy, xq ` α ¨ 1tt“θu. (1)

Any preference type in this class is called homophilic efficient.

In the network literature, the tendency of people to interact with similar people is referred

to as homophily (see Jackson (2014)). We model this tendency on a preference level: A

α-homophilic efficient agent has a natural inclination to interact with another α-homophilic

efficient agent because she can derive an extra utility of α.

Definition 8. A preference type θ is called the parochial efficient type if the corresponding

utility function takes the form

uθpx, y, tq “ rπpx, yq ` πpy, xqs ¨ 1tt“θu. (2)

A parochial efficient agent has a strong tendency to be associated with another parochial

efficient agent because it is the only possibility that she can derive a positive utility. Hence,

one can consider parochialism as a strong form of homophily. Newton (2017) also considers

parochialism in preference evolution. He defines parochialism on the matching level, meaning

that the parochial agents are only matched with one another. On the contrary, we define

parochialism on the preference level, and how parochial agents are matched is determined by

stable matching.

Our first result shows that a preference for efficiency with any level of homophily or with

parochialism is likely to be the type that prevails in the long run.

Proposition 1. The homophilic efficient and parochial efficient types are neutrally stable.

Moreover, they are evolutionarily stable against any type that exhibits same-type inefficiency.

Proposition 1 shows that efficiency is the driving force for evolutionary selection of

preferences under stable matching, which is similar to what Dekel et al. (2007) demonstrate

for preference evolution under random matching (although our definition of efficiency is
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more general and allows for asymmetry). However, our mechanism supporting efficiency is

grounded in endogenous assortative matching, in contrast to their reliance on the “secret

handshake” idea introduced by Robson (1990). In our model, the evolutionary stability relies

on two features of the behavior: efficient play and a preference for matching with the same

type. Take a homophilic preference type as an example. The homophilic component of the

utility function ensures that, although these agents aim to play efficiently with their matched

partners, they have a strict incentive to do so with others who have the same preference type.

Such a self-match incentive induces positive assortative matching in the population, which

ensures that the homophilic-efficient agents will not be taken advantage of by other type

agents and play efficiently among themselves exclusively.

Example 2. Consider a material game where each player has three pure strategies. The

material payoffs are given by the payoff matrix below.

A B C
A 0, 0 0, 0 2, 8
B 0, 0 3, 3 4, 0
C 8, 2 0, 4 0, 0

Let θ be a homophilic or parochial efficient type. In this game, pA,Cq and pC,Aq are the

only efficient strategy pairs. It is important to observe that they are indeed Nash equilibria

for two type-θ agents because, as long as the partner is playing C (or A), the strategy A (or

C, respectively) maximizes the total material payoff. Note that the strategy pair pB,Bq is

another Nash equilibrium for type-θ agents, but it is not loser-best. By Proposition 1, type θ

can prevail in evolution because it is able to ensure assortative matching and coordination on

the efficient strategy pairs pA,Cq and pC,Aq. ♢

Example 2 illustrates the stark difference between models based on random matching and

our model based on stable matching. Dekel et al. (2007) show that incumbents playing a

symmetrically efficient strategy pair (a symmetric strategy pair that maximizes the total

material payoff among all symmetric strategy pairs) is a necessary condition for evolutionary

stability, and symmetric efficiency together with strict Nash is a sufficient condition. In

Example 2, pB,Bq is symmetrically efficient and a strict Nash equilibrium (of the material

game). However, incumbents playing it cannot withstand the invasion of mutants who are

able to force positive assortative matching and play the more efficient asymmetric strategy

pairs pA,Cq and pC,Aq.

While we find that efficiency combined with homophily or parochialism is most natural

and serves as a sufficient condition for evolutionary stability, we do not claim that these are

the only preference types can be neutrally stable and evolutionarily stable against any other
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type that exhibits same-type inefficiency.18 We next argue that both efficient play and a

preference for matching with the same type are necessary for resistance against mutation.

Proposition 2. (i) If θ exhibits same-type inefficiency, then θ is evolutionarily unstable;

(ii) If πprx, ryq ‰ πpry, rxq for every efficient strategy pair prx, ryq, and uθpx, y, tq is constant in

t, then θ is evolutionarily unstable.

As an implication of this result, if θ is neutrally stable, then it cannot exhibit same-type

inefficiency; moreover, it cannot be indifferent about the opponent’s type when efficient

outcomes are asymmetric. Part (i) of Proposition 2 is a direct corollary of Proposition 1. The

intuition behind part (ii) is as follows. When type-θ agents do not have plastic preferences,

they may not be able to induce positive assortative matching, meaning that they have a

chance to be matched with other types in the population. Then, if type-τ agents play an

efficient strategy pair among themselves, and utilize the asymmetry of an efficient strategy

pair in the cross-type matches by committing to the advantageous strategy, they would obtain

a higher average material payoff than type-θ agents.19 The asymmetry of efficient outcomes

is inherent in a wide range of strategic interactions, as efficiency is typically enhanced by

specialization in behavior due to complementarity, which can, in turn, lead to unbalanced

material payoffs.

Part (ii) of Proposition 2 includes the rich set of preference types studied in the literature

of preference evolution that do not exhibit plasticity. Typical examples include preferences

that represent spite, selfishness, or altruism, i.e. uθpx, y, tq “ πpx, yq ` απpy, xq with α ă 0,

α “ 0, or α ą 0; and homo-moralis, i.e. uθpx, y, tq “ p1´αqπpx, yq `απpx, xq, with α P r0, 1s.

It demonstrates that, with endogenous partner choice, these non-plastic preference types

cannot prevail in games without symmetric efficient strategy pairs.

3.3 Selfishness and Nash Equilibria

Selfishness has been proven to be not favored by preference evolution under random matching

with complete information since the work of Güth and Yaari (1992) and Güth (1995), because

a population of selfish agents can be destabilized by “secret handshake” of the mutants.

Under stable matching, can selfishness be stable if combined with some form of plasticity?

18For instance, a preference type can prevail as long as playing an efficient strategy pair with others of
the same type yields the highest possible utility, while the remaining details of the utility function can be
specified arbitrarily.

19Commitment works in our model because we allow that an agent’s utility exhibits plasticity. For example,
assume that type τ ’s utility function is given by uτ px, y, τq “ πpx, yq ` πpy, xq and uτ px, y, θq “ α ¨ 1tx“x1u

for some α ą 0. In this case, type-τ agents would play an efficient strategy pair among themselves but are
“committed” to playing x1 against type-θ opponents.
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Definition 9. With α ą 0, a preference type θ is called the α-homophilic selfish type if

the corresponding utility function takes the form

uθpx, y, tq “ πpx, yq ` α ¨ 1tt“θu. (3)

Any preference type in this class is called homophilic selfish.

Definition 10. A preference type θ is called the parochial selfish type if the corresponding

utility function takes the form

uθpx, y, tq “ πpx, yq ¨ 1tt“θu. (4)

Write NEπ for the set of Nash equilibria in the material game and NE lb
π for the set of

loser-best Nash equilibria between selfish agents.

Proposition 3. Suppose all strategy pairs in NE lb
π are efficient.

(i) If α is sufficiently large, then the α-homophilic selfish type is neutrally stable and

evolutionarily stable against any type that exhibits same-type inefficiency;

(ii) The parochial selfish type is neutrally stable and evolutionarily stable against any type

that exhibits same-type inefficiency.

In general, if some strategy pair in NE lb
π is inefficient, then any homophilic selfish or

parochial selfish type exhibits same-type inefficiency, which means it is evolutionarily unstable

by Proposition 2.

Example 3 (Example 2 revisited). Consider again the material game in Example 2. Suppose

θ is a homophilic or parochial selfish type. The unique (loser-best) Nash equilibrium pB,Bq

between two type-θ agents is inefficient. Let τ be the parochial efficient type. For any

population state pθ, τ, εq, a Nash stable outcome must be perfectly assortative and satisfy

sθ,θrpB,Bqs “ 1. Because the parochial efficient type can coordinate on the efficient strategy

pairs pA,Cq and pC,Aq, type θ fares strictly worse than type τ in terms of average material

payoffs. In other words, type θ is evolutionarily unstable. ♢

Proposition 4 considers the special case that a symmetric strategy pair happens to be

both efficient and a Nash equilibrium, where selfish types become evolutionarily stable.

Proposition 4. Suppose there exists a symmetric strategy pair prx, rxq that is an efficient

Nash equilibrium of the material game. Then the homophilic selfish and parochial selfish types

are neutrally stable. Moreover, they are evolutionarily stable against any type that exhibits

same-type inefficiency.
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4 Preference Evolution with Incomplete Information

In this section, we turn our attention to the case of incomplete information. Suppose that in

the population, every agent knows her own preference type, but may not observe the types

of other agents.20 Fixing a population state pθ, τ, εq, we need to generalize the notion of

matching profile to encompass incomplete information.

A matching profile (with incomplete information) is a tuple pΛ, p, q, µq. The first

component Λ is a finite set of labels that are publicly observable. The population is further

described by a probability distribution with full support p P ∆pΛq over the set of labels.

Each label λ P Λ is associated with a probability distribution qλ P ∆ptθ, τuq over preference

types. We assume qλ ‰ qλ1 whenever λ ‰ λ1, reflecting that different labels convey distinct

information, and write q “ pqλqλPΛ. The pair pp, qq should satisfy the following marginal

condition:
ÿ

λPΛ

prλsqλrθs “ 1 ´ ε.

In words, the masses of type-θ agents with different labels should sum up to their total mass

in the population. In the following analysis, we will refer to a type-θ agent with label λ

simply as a type-θλ agent.21 Analogous to the case of complete information, for any λ P Λ,

we let µλ P ∆pΛq be a probability distribution over labels that describes how label-λ agents

are matched. The last component of a matching profile is then a vector µ “ pµλqλPΛ that

satisfies the consistency condition below

prλsµλrλ1
s “ prλ1

sµλ1rλs, for all λ, λ1
P Λ.

Given a matching profile pΛ, p, q, µq, for any λ, λ1 P Λ, we let sλ,λ1 P ∆pX 2q describe the

distribution of strategy pairs played across matches between label-λ and label-λ1 agents. An

associated strategy profile S “ psλ,λ1q is a vector of distributions of strategy pairs that

satisfy the exchangeability condition as in the case of complete information. Moreover, for any

λ P Λ, we assume the strategy distribution sλ,λ1 is independent of the informational content

of labels, qλ; that is, belief updating from qλ is constant across realizations of the strategy

pair from sλ,λ1 . This is because strategies are assumed to be observable, so all information

20Recall that our model allows plasticity, meaning an agent’s utility function can depend on the preference
type of her matched partner. One interpretation is that an agent may value certain characteristics of her
opponent, which are perfectly correlated with preferences. When these characteristics are readily observable
(e.g. physical appearance), a model with complete information suffices. However, if these characteristics
are intrinsically hidden (e.g. empathy or sense of responsibility), we must employ a model that accounts
for incomplete information. Relaxing the assumption of perfect correlation between characteristics and
preferences is conceptually straightforward but beyond the scope of this paper. See a discussion in the
concluding section.

21Note that “labels” are purely informational and do not affect utilities.
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inferred from these observations should be already encoded in the labels.

As before, the combination of a matching profile and an associated strategy profile

pΛ, p, q, µ, Sq is called an outcome (with incomplete information).

Remark 3. The informational component pΛ, p, qq is a part of the outcome, rendering infor-

mation endogenous, as is standard in the literature of matching with incomplete information

(Liu et al., 2014; Liu, 2020; Chen and Hu, 2023; Wang, 2022, etc.). In this paper, we make no

exogenous informational assumptions and consider the set of all outcomes with publicly ob-

served labels. Naturally, certain assumptions can be incorporated by, for instance, introducing

a commonly understood signal structure.22 All our results remain valid under such exogenous

informational assumptions, provided they do not fully disclose all information—that is, as

long as some level of incomplete information persists.

4.1 Stable Matching with Incomplete Information

To simplify notation, for t P tθ, τu and λ P Λ, we write

utpx, y, λq “ qλrθsutpx, y, θq ` qλrτ sutpx, y, τq,

which is the expected utility of a type-t agent when playing px, yq with a label-λ partner.

Fixing a population state pθ, τ, εq, a strategy profile S associated with pΛ, p, q, µq is a Bayes-

Nash equilibrium profile if the following condition is satisfied:23 For λ, λ1 P Λ, if µλrλ1s ą 0

and px˚, y˚q P supppsλ,λ1q, we have x˚ P argmaxxPX utpx, y
˚, λ1q for each t P supppqλq and

y˚ P argmaxyPX ut1py, x˚, λq for each t1 P supppqλ1q. In words, every agent playing against

a label-λ partner plays a best response with the belief that the partner is of type-θλ with

probability qλrθs and of type-τλ with the complementary probability. When incomplete

information is absent, i.e. there are only two labels each associated with a degenerate

distribution, the definition above reduces to the notion of Nash equilibrium profile defined in

Section 3.1.

Because agents can only recognize the labels but not the preference types of potential

partners, we need another definition to properly define pairwise deviations under incomplete

22To illustrate, consider a simple example. Suppose agents’ types in a population state pθ, τ, εq can be
revealed before matching via the following signal structure pξθ, ξτ q: For a type-t agent, t P tθ, τu, a signal that
perfectly reveals her preferences is generated and publicly observed with probability ξt ą 0, while no signal
is observed with complimentary probability 1 ´ ξt. Under this signal structure, the outcomes pΛ, p, q, µ, Sq

must satisfy the following conditions: There exist λ, λ1 P Λ such that qλrθs “ 1, qλ1 rτ s “ 1, prλs ě p1 ´ εqξθ,
and prλ1s ě εξτ . Intuitively, these conditions require that the any outcome is at least as informative as the
initial signal structure.

23In our setting, agents observe their partners’ behavior but do not infer additional information from these
observations. Therefore, our notion of Bayes-Nash equilibrium profile shares similarities with the rational
expectations equilibrium studied in Koh (2023).
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information.

Definition 11. A pair pDλ,xλq is a deviation plan for a label-λ agent if (i) Dλ is a

nonempty subset of supppqλq, and (ii) xλ : Dλ Ñ X .

In words, Dλ is the set of preference types that have label λ poised to participate in a

pairwise deviation, while xλ is a mapping that specifies a strategy played by each deviating

type.

Definition 12. Fix an outcome with incomplete information pΛ, p, q, µ, Sq. We say an

incomplete information blocking pair exists if there exist types t, t1 P tθ, τu and labels

λ, λ1 P Λ with qλrts ą 0 and qλ1rt1s ą 0 such that for some labels λ̄, λ̄1 and strategy pairs

px1, y1q and px2, y2q

(i) µλrλ̄s ą 0, µλ1rλ̄1s ą 0, px1, y1q P supppsλ,λ̄q, and px2, y2q P supppsλ1,λ̄1q;

Moreover, there exists a strategy pair ppx, pyq such that for any deviation plans pDλ,xλq and

pDλ1 ,yλ1q with t P Dλ, t
1 P Dλ1 , xλptq “ px, and yλ1pt1q “ py, we have

(ii) px P argmaxxPX Eqλ1 rutpx,yλ1p¨q, ¨q |Dλ1s and py P argmaxyPX Eqλrut1py,xλp¨q, ¨q |Dλs;

(iii) Eqλ1 rutppx,yλ1p¨q, ¨q |Dλ1s ą utpx
1, y1, λ̄q and Eqλrut1ppy,xλp¨q, ¨q |Dλs ą ut1px2, y2, λ̄1q.

In the definition above, for an agent of type t P tθ, τu, her strategy x P X , and a

deviation plan pDλ1 ,yλ1q of the deviating partner with label λ1, the conditional expected

utility Eqλ1 rutpx,yλ1p¨q, ¨q |Dλ1s is evaluated using the probability distribution qλ1 conditional

on the subset of types Dλ1 . If Dλ1 is a singleton, then the expectation is degenerate.

Definition 12 describes a situation in which a pair of agents, despite observing only each

other’s label, can still reach an agreement and carry out a mutually beneficial deviation. In

particular, the deviating agents are of types tλ and t1
λ1 , which we call the “targeted” types. As

long as the targeted type-t1
λ1 agents participate and play py, the deviating type-tλ agent will

play px as a best response which strictly improves her utility, regardless of whether and how

the non-targeted agents with label λ1 participate in the deviation. The same reasoning applies

to the deviating type-t1
λ1 agent. In other words, the incentives to deviate are conditional on

the participation of the targeted partners in the blocking pair. When the targeted types

are fully revealed by their labels, i.e. when both qλ and qλ1 are degenerate, the conditions in

Definition 12 reduce to those in Definition 1 under complete information.

Remark 4. In Definition 12, a deviating agent believes in rationality of her targeted partners

conditional on her own participation. One might further account for rationality of the

non-targeted types as well. However, we adopt a more conservative approach for several
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reasons. First, rational behavior in a deviation may reveal additional information,24 potentially

triggering the deviating partner to adjust her behavior from the original plan. Addressing this

requires us to take a stance on how agents anticipate and respond to such possibilities; see a

related discussion in Liu (2020). Our definition avoids this issue since the non-targeted agents’

responses do not influence the decision-making of the targeted agents. Second, adopting a

more stringent definition of blocking weakens the concept of stability, thereby strengthening

the positive result in Proposition 6. Meanwhile, the negative result in Proposition 5 does not

depend on any irrational behavior of the non-targeted type (see footnotes 28 and 31).

We use an example to illustrate the notion of incomplete information blocking pair.

Example 4. Consider the prisoners’ dilemma material game as follows:

A B
A 4, 4 0, 5
B 5, 0 3, 3

Suppose type-θ agents have efficient preferences uθpx, y, tq “ πpx, yq`πpy, xq, while type-τ

agents are selfish uτ px, y, tq “ πpx, yq. Consider a population state pθ, τ, εq and an outcome

pΛ, p, q, µ, Sq as follows. There is a half of each type in the population, i.e. ε “ 1
2
. The

matching profile pΛ, p, q, µq satisfies Λ “ tλu, prλs “ 1, qλrθs “ qλrτ s “ 1
2
, and µλrλs “ 1.

The strategy profile is S “ tsλ,λu with sλ,λrpB,Bqs “ 1. This outcome is depicted in Figure 1

below.

λ

τθ

pB,Bq

Figure 1: The matching profile in Example 4.

To see that an incomplete information blocking pair exists, consider two type-θλ agents

who target each other and propose the efficient strategy pair pA,Aq. By symmetry, we only

need to verify the following conditions: Facing any deviation plan pDλ,xλq of the partner

that satisfies θ P Dλ and xλpθq “ A, a type-θλ agent plays A as a best response which strictly

improves her utility. There are two cases to consider:

• τ R Dλ. Here, A is a best response against A, which yields 8 ą 6;

24This occurs, for example, when the deviation plan pDλ,xλq satisfies Dλ “ tθ, τu and xλpθq ‰ xλpτq.
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• τ P Dλ and xλpτq “ σA` p1´ σqB. In this case, A is still a best response for a type-θλ

agent because 1
2

¨ 8 ` 1
2
p8σ ` 5p1 ´ σqq ą 1

2
¨ 5 ` 1

2
p5σ ` 6p1 ´ σqq for all σ P r0, 1s.

Moreover, this makes her strictly better off, as 1
2

¨ 8 ` 1
2
p8σ ` 5p1 ´ σqq ą 6 for all

σ P r0, 1s.

In summary, conditional on the fact that a type-θλ partner will participate in the deviation

and play A, playing A is indeed a best response for a type-θλ agent and the deviation makes

her strictly better off. This is true even if the non-targeted type-τλ agents join the deviation

and play arbitrarily. ♢

We extend the notion of stable outcome to the case of incomplete information.

Definition 13. an outcome with incomplete information pΛ, p, q, µ, Sq is Bayes-Nash stable

if it satisfies:

(i) S is a Bayes-Nash equilibrium profile (internal stability);

(ii) There is no incomplete information blocking pair (external stability).

When Λ “ tλ, λ1u, prλs “ 1 ´ ε, prλ1s “ ε, and qλrθs “ qλ1rτ s “ 1, Bayes-Nash stability

reduces to Nash stability. Thus, the existence of a Bayes-Nash stable outcome is guaranteed.

This existence argument is analogous to the one in the recent literature of matching with

incomplete information (see, for example, Liu et al., 2014). Naturally, some Bayes-Nash

stable outcomes may fail to satisfy Nash stability if preferences were fully observable. Since

information is endogenous, the extend to which agents’ preferences are revealed in a Bayes-

Nash stable outcome depends on their preferences and behaviors in the game.

4.2 Evolutionary Stability with Incomplete Information

Given a Bayes-Nash stable outcome pΛ, p, q, µ, Sq in population state pθ, τ, εq, the average

material payoffs for agents of type θ and type τ are given by

GθpΛ, p, q, µ, Sq “
ÿ

λPΛ

pλqλrθs

1 ´ ε

#

ÿ

λ1PΛ

µλrλ1
s

ż

px,yqPX 2

πpx, yq dsλ,λ1

+

,

Gτ pΛ, p, q, µ, Sq “
ÿ

λPΛ

pλqλrτ s

ε

#

ÿ

λ1PΛ

µλrλ1
s

ż

px,yqPX 2

πpx, yq dsλ,λ1

+

.

Our notions of evolutionary stability and unstability can be naturally extended to incor-

porate incomplete information by replacing “Nash stable outcomes pµ, Sq” with the more

general “Bayes-Nash stable outcomes pΛ, p, q, µ, Sq” in Definitions 4 and 5.
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The reason that homophilic efficient types are evolutionarily stable under complete

information (Proposition 1) is that they can always induce assortative matching and efficient

play among themselves. The following example shows that the sorting mechanism no longer

works under incomplete information.

Example 5. Consider a material game where each player has two strategies. The material

payoffs are given in the following table:

A B
A 0, 0 1, 3
B 3, 1 0, 0

Let θ denote the α-homophilic efficient type with α ą 0. Consider a type τ that is selfish

when playing with her own type, but has a dominant strategy B otherwise:

uτ px, y, tq “

$

&

%

πpx, yq if t “ τ ,

4 ¨ 1tx“Bu if t ‰ τ .

Now consider a population state pθ, τ, εq and an outcome pΛ, p, q, µ, Sq as follows. The

proportion of type-τ agents satisfies ε ě 2`α
4`α

. The matching profile pΛ, p, q, µq satisfies

Λ “ tλ, λ1u, prλs “ prλ1s “ 1
2
, qλrθs “ 2p1 ´ εq ď 4

4`α
, qλ1rτ s “ 1, and µλrλ1s “ µλ1rλs “ 1.

The strategy profile is S “ tsλ,λ1u with sλ,λ1rpA,Bqs “ 1. This outcome is depicted in Figure

2.

λ1λ

τθ

pA,Bq

Figure 2: The matching profile in Example 5.

We verify that pΛ, p, q, µ, Sq is Bayes-Nash stable in Appendix A.2.1. Intuitively, while

type-θλ agents might attempt to target one another and propose the efficient strategy pair

pA,Bq, agents designated to play B are reluctant to carry out the deviation. This is because

the non-targeted type-τλ agents may also join the deviation and play B, resulting in a utility

strictly lower than the status quo for the type-θλ agents. Notably, although pA,Bq is efficient,

type θ fares strictly worse than type τ in terms of average material payoffs. ♢
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In Example 5, we constructed a Bayes-Nash stable outcome where the homophilic efficient

type, as the minority in the population, performs worse than another type. The following

proposition strengthens this observation by showing that any homophilic efficient type is

dominated in evolution under incomplete information, as long as all efficient outcomes

generate asymmetric material payoffs.25

Proposition 5. With incomplete information, if πprx, ryq ‰ πpry, rxq for every efficient strategy

pair prx, ryq, then any homophilic efficient type is evolutionarily unstable.

The proof of Proposition 5 amounts to generalizing the insights from Example 5. In

particular, we construct a preference type that can extricate itself from a disadvantageous

position when matched with the homophilic efficient type, and discourage the latter from

doing the same in a reversed situation. The first feature ensures that the constructed type

receives a weakly higher average material payoff than the homophilic efficient type does across

all Bayes-Nash stable outcomes, while the second feature guarantees that the inequality is

sometimes strict.

In contrast, the next proposition shows that the parochial efficient type stands out even

with incomplete information.

Proposition 6. With incomplete information, the parochial efficient type is neutrally stable.

Moreover, it is evolutionarily stable against any type that exhibits same-type inefficiency.

To gain a better understanding of the stark difference between Propositions 5 and 6, it is

helpful to examine the underlying logic of Example 5. In the example, the homophilic efficient

agents cannot avoid unfavorable outcomes by carrying out pairwise deviations because they

are concerned about the response of the type-τ agents, who may well join the deviation and

behave in a way that reduces their utilities. For the parochial efficient agents, however, the

behaviors of the type-τ agents do not matter, and matching with their own kind becomes the

first priority when contemplating deviations from the status quo. This gives the parochial

efficient type an incentive to break away from the disadvantageous position.

Example 6 (Example 5 revisited). Consider the population state and the outcome in

Example 5, with the only change that θ is now parochial efficient. The type-θλ agents derive a

utility of 0 in the status quo. Thus, two type-θλ agents can form a blocking pair by targeting

each other and proposing a strategy pair pA,Bq: For a type-θλ agent facing any deviation

plan pDλ,xλq such that θ P Dλ and xλpθq “ B (A, respectively), she plays A (B, respectively)

as a best response and receives at least a utility of 4qλrθs ą 0, regardless of the behavior of

25Proposition 11 in Online Appendix O.2 provides another condition under which the homophilic efficient
types are not neutrally stable, which further demonstrates that these preferences are not favored by evolutionary
forces.
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the type-τλ agents (i.e. whether they participate in the deviation, and if so, what strategies

they play). ♢

Finally, we consider the evolutionary stability of types that exhibit selfishness. In Online

Appendix O.4.3, we provide an example showing that the parochial selfish type may not be

neutrally stable under incomplete information even if all strategy pairs in NE lb
π are efficient.

However, by imposing a stronger condition on the material game—where all strategy pairs in

NEπ are efficient—the parochial selfish type can prevail in preference evolution.

Proposition 7. With incomplete information, if all strategy pairs in NEπ are efficient, then

the parochial selfish type is neutrally stable and evolutionarily stable against any type that

exhibits same-type inefficiency.

5 Discussions

5.1 Polymorphism

Thus far, we have focused on the stability of a monomorphic population. In this section, we

extend the framework to accommodate polymorphic populations, i.e. populations consisting

of multiple preference types. For simplicity, we assume complete information in this extension,

although considering incomplete information is conceptually straightforward.

Let ν P ∆pΘq denote a population distribution with finite support in Θ and write

Θν “ supppνq. For each type θ P Θν , the mass of type-θ agents in the population is denoted

by νrθs ą 0. The definition of an outcome pµ, Sq under a population distribution ν naturally

extends from the monomorphic case. Specifically, µ “ pµθq is now a vector of distributions

where µθ P ∆pΘνq specify how agents match for each type θ P Θν . These distributions satisfy

the consistency condition:

νrθsµθrθ
1
s “ νrθ1

sµθ1rθs, for all θ, θ1
P Θν .

The notions of blocking pairs and Nash stability for polymorphic populations are gener-

alized directly from Definitions 1 and 2, with the only adjustment of replacing tθ, τu with

Θν . We establish existence of Nash stable outcomes in this general setting, which utilizes an

existence result of stable matchings in large markets by Carmona and Laohakunakorn (2024).

Proposition 8. Under any population distribution ν, there exists a Nash stable outcome.

Given a Nash stable outcome pµ, Sq under a population distribution ν, for each θ P Θν ,
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the average material payoff for type-θ agents is given by

Gθpµ, Sq “
ÿ

tPΘν

µθrts

ż

px,yqPX 2

πpx, yq dsθ,t .

In this section, we follow Dekel et al. (2007) to examine neutral stability of a population

distribution against any other preference type. Assuming that mutations are rare, with the

population able to fully adjust before the next mutation occurs (Weibull, 1995), we focus on

a local notion of neutral stability and impose an upper bound on the mass of the mutant

type. In other words, the population distribution is always considered as the incumbent.

This restriction is purely for interpretational purposes, and relaxing this upper bound does

not affect our analysis mathematically.

Definition 14. A population distribution ν is locally neutrally stable if there exists an

ε̄ ą 0 such that for every τ P Θ, ε P p0, ε̄q, and Nash stable outcome prµ, rSq under the mixed

population distribution rν “ p1 ´ εqν ` εδτ , we have Gθprµ, rSq ě Gτ prµ, rSq for all θ P Θν .
26

The definition of a locally neutrally stable population distribution ν generalizes Definition

5. For any mutant type τ , all types in the support of ν must perform weakly better than τ

in all Nash stable outcomes under any mixture of ν and τ , given that the proportion of type

τ does not exceed a certain level. This ensures that no mutation has the ability to drive out

an incumbent type in the population distribution ν. We now provide necessary conditions

that describe crucial properties of population distributions that are locally neutrally stable.

Proposition 9. Suppose the population distribution ν is locally neutrally stable.

(i) For any Nash stable outcome pµ, Sq under ν, Gθpµ, Sq “ Gθ1pµ, Sq for all θ, θ1 P Θν.

(ii) For any Nash stable outcome pµ, Sq under ν such that µθrθ
1s ą 0 and px, yq P

supppsθ,θ1q, the strategy pair px, yq must be efficient. Moreover, either θ “ θ1 or πpx, yq “

πpy, xq.

(iii) If πprx, ryq ‰ πpry, rxq for every efficient strategy pair prx, ryq, then for each θ P Θν, θ

does not exhibit same-type inefficiency and uθpx, y, tq cannot be constant in t.

Part (i) of Proposition 9 means that a locally neutrally stable ν should itself be balanced. If

a population distribution is not balanced, some preference types will have higher fitness than

others, leading natural selection to alter the distribution even before considering mutations.

Dekel et al. (2007) assume balancedness when defining evolutionary stability of a polymorphic

population; here, we show that it is implied by our definition. Part (ii) demonstrates that

efficient play across all Nash stable outcomes is necessary for a locally neutrally stable ν. The

26We write δτ P ∆pΘq for the Dirac measure that assigns probability one to type τ .
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intuition is straightforward: Suppose the population with inefficient play is facing a parochial

efficient mutant type, then in the post-entry population, some incumbent type must earn a

lower average material payoff than the mutant type who separates itself from the incumbents

and plays efficiently. Moreover, part (ii) indicates that any Nash stable outcome must satisfy

a form of symmetry: Cross-type matches can arise only when two sides receive the same

material payoff. Finally, part (iii) says that, when efficient outcomes of the material game

are asymmetric, all types in a neutrally stable population distribution must play efficiently in

same-type matches and exhibit plasticity. It can be viewed as an extension of Proposition 2.

While the criteria for local neutral stability may appear difficult to meet, the following

result provides a sufficient condition.

Proposition 10. If Θν consists of homophilic or parochial efficient types (or both), then ν is

locally neutrally stable.

This positive result should be anticipated. If all types in the population are either

homophilic or parochial efficient, then a perfectly assortative matching occurs in any post-

entry population. Each type in Θν matches with its own kind and derives the same average

material payoff M
2
. Moreover, any mutant type τ will be excluded from interacting with the

types in Θν and thus can receive an average material payoff at most equal to M
2
.

It is natural to ask if a locally neutrally stable ν can contain types that are not homophilic

or parochial efficient. For example, one may wonder whether heterophilic types, i.e. distinct

types that prefer to interact with each other, can persist in evolution. Proposition 9 part (ii)

suggests that this can happen only when the material game admits an efficient strategy pair

that yields equal material payoffs. We illustrate this possibility in the example below.

Example 7. Consider again the prisoners’ dilemma material game in Example 4, which is

reproduced below:

A B
A 4, 4 0, 5
B 5, 0 3, 3

Let ν denote a population distribution that contains two types Θν “ tθ, θ1u and νrθs “

νrθ1s “ 1
2
. The utility functions of θ and θ1 are given by, respectively,

uθpx, y, tq “

$

&

%

10 ¨ 1tx“Au if t “ θ1,

πpx, yq if t ‰ θ1,
and uθ1px, y, tq “

$

&

%

10 ¨ 1tx“Au if t “ θ,

πpx, yq if t ‰ θ.

We now examine the local neutral stability of population distribution ν. Consider a
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mutant type τ , an ε ą 0 sufficiently small, and the post-entry population rν “ p1 ´ εqν ` εδτ .

There are two cases:

• If τ R Θν , then for any Nash stable outcome prµ, rSq under rν, we must have rµθrθ
1s “

rµθ1rθs “ 1 and rsθ,θ1rpA,Aqs “ 1. These imply that Gθprµ, rSq “ Gθ1prµ, rSq “ 4 ě Gτ prµ, rSq.

• If τ P Θν , suppose τ “ θ without loss. Then any Nash stable outcome prµ, rSq under

rν must satisfy: (i) rµθrθs “ 2ε
1`ε

, rµθrθ
1s “ 1´ε

1`ε
, and rµθ1rθs “ 1; (ii) rsθ,θrpB,Bqs “

rsθ,θ1rpA,Aqs “ 1. Therefore, we have Gθprµ, rSq ă 4 “ Gθ1prµ, rSq, which is consistent with

Definition 14. This means the relatively more abundant type θ will decrease in mass,

and the population will revert back to ν under evolutionary forces.

Therefore, the population distribution ν consisting of heterophilic types is locally neutrally

stable. It is interesting to note that both types θ and θ1 exhibit same-type inefficiency.

However, this mere fact does not render ν unstable, as these underlying types can secure the

highest average material payoff due to heterophily. ♢

5.2 Empirical Relevancy

In experimental studies, there is limited evidence supporting the notion that people have

a preference for efficiency. Charness and Rabin (2002) and Engelmann and Strobel (2004)

provide some support, but it is not conclusive. A common design feature of most experimental

studies is that subjects are paired or grouped exogenously and randomly, making them well-

suited for examining preferences that develop in environments with random matching. In

contrast, our study focuses on preferences that evolve under endogenous partner selection.

However, no established experimental design exists to effectively test such preferences.

A sizable experimental literature examines how subjects’ behavior in games is affected when

partner choice is allowed (Ehrhart and Keser, 1999; Hauk and Nagel, 2001; Gächter and Thöni,

2005; Page et al., 2005; Gunnthorsdottir et al., 2010; Ahn et al., 2009; Slonim and Garbarino,

2008; Grimm and Mengel, 2009; Brekke et al., 2011; Rand et al., 2011; Aimone et al., 2013;

Charness and Yang, 2014; Gürerk et al., 2014; Riedl et al., 2016; Guido et al., 2019, among

many others) Various protocols for partner choice, including migrations across groups (possibly

with different institutional arrangements or signaling values), unilateral/bilateral consent

to form pairs or links to neighbors on a network, free or restricted unilateral entry/exit,

voting to expel group members, voting to merge groups, matching algorithms based on

elicited preferences, have been implemented in games such as prisoner’s dilemmas, public

good games, trust games, dictator games, and weakest-link games. Most of these studies find

that partner choice is effective in promoting and sustaining cooperation or coordination on

the efficient equilibrium by allowing like-minded subjects to associate with each other and
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protect themselves from outsiders. In addition, in several experiments on social dilemmas

(Coricelli et al., 2004; Burlando and Guala, 2005; de Oliveira et al., 2015), subjects’ levels

of cooperativeness are first elicited and then they are grouped/paired assortatively by the

experimenters. These experiments show that exogenous sorting also substantially increases

cooperation.

The findings in the literature on partner choice and exogenous grouping/pairing according

to types are encouraging, as they indicate that sorting leads to higher levels of cooperation,

trust, and altruism. To test if our homophilic-efficient types are empirically relevant, we

can borrow elements from this literature. Eliciting subjects’ preference types ex-ante and

grouping/pairing them accordingly would not work for our purpose because homophilic-

efficient types would not necessarily play an efficient strategy profile with strangers. Therefore,

an endogenous partner choice paradigm should be used. We envision that mutual consent to

form pairs with the possibility for the subjects to communicate their intended play would

mimic blocking in our model. Such a partner choice protocol may be effective in sorting

subjects according to types. The underlying experimental game should be some social dilemma

game with a large set of strategies available and features a non-Nash efficient strategy profile.

The richness of the set of strategies would give room for information revelation and the

efficient strategy profile being non-Nash provides ground for efficient-preference types to

flourish. Once subjects have stabilized their groupings/pairings and behavior in the game,

we can then elicit their other-regarding preferences toward their own group members and

other groups. By doing this, we conjecture that a higher incidence of preference for efficiency

toward in-group members can be observed.

5.3 Philosophical Implications

In this section, we briefly explain the philosophical meanings of various preference types

identified in this paper and compare them with those in existing literature.

First, we argue that the combination of efficient play and homophily carries significant

moral significance. This assertion is substantiated by two primary reasons. First, the

preference for efficiency allows individuals to prioritize mutual benefits over individual

material gains. Second, the homophily manifested by our key preference types makes them

all possess a fixed-point feature, which involves infinite recursive reasoning about an agent’s

preferences towards the opponent’s preferences. For example, an agent has parochial efficient

preferences if she maximizes total material payoffs and derives a positive utility only when

matched with another agent, who maximizes total material payoffs and derives a positive

utility only when matched with another agent, who maximizes total material payoffs and

so on. Hence, a collective sentiment of “we” emerges. Our paper thus echoes the existing
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literature in evolutionary psychology and anthropology by highlighting the potential influence

of partner choice on the development of morality (see, for example, Baumard et al. (2013)

and Tomasello (2016)).

Second, we make a comparison between the preference for efficiency and Kantian preference

type, which has been discussed in Alger and Weibull (2013). The latter is evolutionary stable

provided that the exogenous matching process’s degree of assortativity is 1, i.e., positive

assortative matching. The preference for efficiency, akin to most of the distributional social

preferences explored in economics, is rooted in consequentialist motivations. Hypothetical

imperatives, preferences over strategies due to their consequences, characterize this preference.

In contrast, the Kantian preference is represented by the utility function upxq “ πpx, xq,

implying that an agent assesses different courses of action by considering their own material

payoff if the course of action were universalized to all other agents (Alger, 2022). It is

characterized by categorical imperatives, preferences over strategies irrespective of their

consequences, because a Kantian agent does not care about what other agents choose in the

underlying game.27 In games where a symmetric efficient strategy profile exists, it may not

be possible to distinguish the preference for efficiency from the Kantian preference based on

observable behavior. Nevertheless, when all the efficient strategy profiles are asymmetric,

two matched agents with a preference for efficiency would obtain a greater total material

payoff than two matched Kantian agents.

Finally, we make a comparison between the two variants of homophily in this paper. One

may be inclined to view the parochial variant as the limit case of the weaker homophilic

variant. However, this supposition is untenable not only mathematically (the parochial variant

is lexicographic while the weak variant is not), but also philosophically. The weak variant of

homophily is consequentialist, as the preference for matching with one’s own type depends

on the outcome of the underlying game. In contrast, the parochial variant is deontological,

preferring to interact with agents of the same type regardless of the game’s consequences.

6 Conclusion

In this paper, we consider preference evolution with endogenous matching by marrying the

concepts of stable matching and equilibrium play. We find that the primary forces driving

preference evolution are homophily and a preference for efficiency. Specifically, homophily

leads to positive assortative matching, while a preference for efficiency drives the efficient

play. Preferences that combine these two traits may have a fitness advantage over other

preferences. Our results hold under both complete and incomplete information, although

27Kant (1785) refers to this as deontological motivations (Chen and Schonger, 2022).
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only a strong form of homophily survives in the latter case.

There are numerous intriguing avenues for extending our work, some of which we briefly

discuss here. In this paper, we take a static approach and define stability as a reduced-form

outcome of an adjustment process. This, however, does not capture more intricate long-run

relationships. An alternative approach is to consider a dynamic model in which match-and-

play follows a history-dependent process. Ali and Liu (2025) develop a framework and solution

concept to study such repeated coalitional behaviors. They show that when coalition members

have perfectly aligned preferences, they collectively aim to attain the best possible outcome

according to their shared objectives. For two agents with efficient preferences, their interests

are indeed perfectly aligned, and the best outcome is to maximize their total material payoffs.

Based on this insight, we conjecture that homophilic and parochial efficient preferences

continue to prevail in a model that appropriately incorporates dynamic considerations.

Our model of incomplete information only allows for the identification of unobservable

types through strategic interactions in the matching-to-interact process. However, in real-life

situations, individuals may employ costly signals to reveal their types to others, which could

be either strategic or genetic. Despite the issue of mimicry and deception associated with

signaling, scholars have put forth the argument that certain emotions and physical states,

such as uncontrollable anger or blushing, can serve as sincere indications of one’s preferences

(Frank, 1987, 1988; Hirshleifer, 2001). See Alger and Weibull (2019) and Alger (2022) for

more discussions. Equipping individuals in the matching process with the ability to send and

detect signals (Hopkins, 2014; Heller and Mohlin, 2019) may alter the matching patterns and

consequently the evolution of preferences.

In order to comprehend how human preferences evolve over time, it is important to

acknowledge the role of institutions. These entities can have a significant impact on people’s

behavior during social interactions by modifying the material benefits of the game being

played and adjusting their motivations for matching through various policy instruments, such

as tax and subsidies (Hiller and Touré, 2021), the protection of property rights (Bisin and

Verdier, 2021), the establishment and maintenance of religious infrastructures (Bisin et al.,

2021), and plans for segregation and integration (Wu, 2017). Institutions are endogenous

because they are collectively determined by individuals, and as a result, preferences and

institutions naturally co-evolve. A potential avenue for future research is to incorporate the

approach suggested by Bisin and Verdier (2024) for modeling endogenous institutions into

models of preference evolution.
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A Omitted Proofs

A.1 Proofs for Section 3: Complete Information

A.1.1 Proof of Lemma 1

For the “only if” part, suppose s1
t,trNE

lb
t s ă 1. (If s1

t,t is not exchangeable, S
1 is not a strategy

profile by definition.) In other words, there exists some px, yq such that px, yq R NE lb
t and

px, yq P suppps1
t,tq. Since px, yq R NE lb

t , there exists px˚, y˚q P NE t such that

min tutpx
˚, y˚, tq, utpy

˚, x˚, tqu ą min tutpx, y, tq, utpy, x, tqu. (5)

Therefore, two type-θ agents who are “losers” (i.e. obtain less utility) in the same-type

matches can form a blocking pair and coordinate on the strategy pair px˚, y˚q. Formally,

letting utpx, y, tq ď utpy, x, tq without loss of generality, we have

(i) µtrts ą 0 and px, yq P supppst,tq;

(ii) x˚ P argmaxxPX utpx, y
˚, tq and y˚ P argmaxyPX utpy, x

˚, tq;

(iii) utpx
˚, y˚, tq ą utpx, y, tq and utpy

˚, x˚, tq ą utpx, y, tq.

Condition (i) comes from assumption; condition (ii) is a restatement of px˚, y˚q P NE t; and

condition (iii) is due to inequality (5). Thus, pµ, S1q fails external stability, so we have a

contradiction.

For the “if” part, suppose s1
t,t is exchangeable, s

1
t,trNE

lb
t s “ 1, and let S 1 be obtained by

substituting s1
t,t for st,t in S, i.e. S 1 “ ts1

t,t, st,t1 , st1,t, st1,t1u where t1 ‰ t. By contradiction,

suppose pµ, S1q is not Nash stable. If the blocking pair involves only type-t1 agents or type-t

agents in the cross-type matches, then the same blocking pair is viable in pµ, Sq because

the partners and strategy pairs are the same for those agents across two outcomes. If the

blocking pair involves any type-t agent who has a type-t partner, then there must exist a

blocking pair in pµ, Sq. This is because the deviating type-t agent in pµ, S1q obtains a weakly

higher utility than the “losers” in pµ, Sq as s1
t,trNE

lb
t s “ 1, and these “losers” in pµ, Sq have

positive mass since µtrts ą 0. Thus, the conditions for a blocking pair continue to hold. We

have a contradiction in either case.

A.1.2 Proof of Proposition 1

We consider the non-trivial case where total material payoffs are not constant across all

strategy pairs in the material game Γ. First observe that if θ is homophilic efficient or

parochial efficient, any efficient strategy pair prx, ryq constitutes a Nash equilibrium between

two type-θ agents, i.e. prx, ryq P NE θ. This is because any unilateral deviation from an efficient

32



strategy pair cannot improve the total material payoff. Moreover, the set of loser-best Nash

equilibria NE lb
θ is exactly the set of efficient strategy pairs. To see this, simply note that the

utility of a type-θ agent is equal to the total material payoff (or its monotone transformation),

so any inefficient strategy pair in NE θ leads to a strictly lower utility for both type-θ agents

in a match.

Consider an arbitrary type τ P Θ different from θ. For ε P p0, 1q, take any Nash

stable outcome pµ, Sq in state pθ, τ, εq. We next show that µ must be perfectly assortative,

i.e. µθrθs “ µτ rτ s “ 1. By contradiction, suppose µθrτ s ą 0. Then two type-θ agents in the

cross-type matches can form a blocking pair and benefit from playing any efficient strategy

pair prx, ryq since for any px, yq P supppsθ,τ q, we have πprx, ryq ` πpry, rxq ` α ą πpx, yq ` πpy, xq

for the α-homophilic efficient type and πprx, ryq ` πpry, rxq ą 0 for the parochial efficient type.

Since the efficient strategy pair prx, ryq is indeed a Nash equilibrium between two type-θ agents,

external stability is violated and pµ, Sq cannot be Nash stable.

We now argue that type θ receives a weakly higher average material payoff than type τ in

pµ, Sq. By Lemma 1, we must have sθ,θrNE
lb
θ s “ 1. Moreover, we have argued that NE lb

θ is

the set of efficient strategy pairs. Therefore,

Gθpµ, Sq “

ż

px,yqPX 2

πpx, yq dsθ,θ

“
1

2

ż

px,yqPX 2

rπpx, yq ` πpy, xqs dsθ,θ

ě
1

2

ż

px,yqPX 2

rπpx, yq ` πpy, xqs dsτ,τ

“

ż

px,yqPX 2

πpx, yq dsτ,τ

“ Gτ pµ, Sq,

where the second and the second-to-last equalities are due to the exchangeability of sθ,θ and

sτ,τ , and the inequality is because any strategy pair in the support of sθ,θ maximizes the total

material payoff. We can conclude that the preference type θ is neutrally stable.

Now assume that type τ exhibits same-type inefficiency. By definition, write ppx, pyq P NE lb
τ

for the inefficient strategy pair and let psτ,τ rppx, pyqs “ psτ,τ rppy, pxqs “ 1
2
. Then by Lemma 1,

pµ, pSq is also Nash stable, where pS is obtained by substituting psτ,τ for sτ,τ . Because ppx, pyq

is inefficient, the inequality is above is strict, i.e. Gθpµ, pSq ą Gτ pµ, pSq. Therefore, θ is

evolutionarily stable against τ .
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A.1.3 Proof of Proposition 2

(i) By Proposition 1, if θ exhibits same-type inefficiency, the parochial efficient type is

evolutionarily stable against θ. Thus, θ is evolutionarily unstable by definition.

(ii) Let θ be a type such that uθpx, y, tq “ fpx, yq. If θ exhibits same-type inefficiency,

then part (i) applies. Now suppose all strategy pairs in NE lb
θ are efficient. Consider a type τ

that has the following utility function (defined on X2 ˆ Θ and extended to X 2 ˆ Θ):

uτ px, y, tq “

$

&

%

πpx, yq ` πpy, xq if t “ τ ,

rπpx, yq ` πpy, xqs ¨ 1tπpx,yqěπpy,xqu if t ‰ τ .

When matched with her own kind, a type-τ agent cares about efficiency. When matched with

a type-θ agent, however, she derives utility only if she can earn a higher material payoff than

her partner. For ε P p0, 1q, take any Nash stable outcome pµ, Sq at state pθ, τ, εq. First, note

that the set NE lb
τ is exactly the set of efficient strategy pairs because the utility of type-τ

agents when matched with each other equals the total material payoff. Therefore, if µτ rτ s ą 0,

sτ,τ attaches probability one to efficient strategy pairs by Lemma 1; the same holds for sθ,θ if

µθrθs ą 0. If µτ rθs ą 0 and px, yq P supppsτ,θq, then it must be that px, yq P X 2 is efficient and

πpx, yq ě πpy, xq. For if not, two type-τ agents in cross-type matches can form a blocking pair

and benefit from playing any efficient strategy pair due to the form of their utility function.

Let M denote the maximum total material payoff, and thus πpx, yq ě 1
2
M ě πpy, xq for all

px, yq P supppsτ,θq. Therefore, by exchangeability, we have

ż

px,yqPX 2

πpx, yq dsτ,θ ě
1

2
M ě

ż

px,yqPX 2

πpy, xq dsτ,θ “

ż

px,yqPX 2

πpx, yq dsθ,τ ,

which further implies

Gτ pµ, Sq “ µτ rτ s

ż

px,yqPX 2

πpx, yq dsτ,τ `µτ rθs

ż

px,yqPX 2

πpx, yq dsτ,θ

ě
1

2
M

ě µθrθs

ż

px,yqPX 2

πpx, yq dsθ,θ `µθrτ s

ż

px,yqPX 2

πpx, yq dsθ,τ

“ Gθpµ, Sq.

We now argue that the inequality is strict for some Nash stable outcome pµ, rSq. This is

true when µτ rθs ą 0, rsθ,θrNE
lb
θ s “ rsτ,τ rNE lb

τ s “ 1, and rsτ,θrprx, ryqs “ 1, where prx, ryq P NE lb
θ

is efficient and πprx, ryq ą πpry, rxq. The existence of such an outcome is guaranteed by the
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assumption that all strategy pairs in NE lb
θ are efficient, and all efficient strategy pairs result

in unbalanced material payoffs. Internal stability is satisfied because type-τ agents do not

care about their partner’s type and prx, ryq P NE θ. To check external stability, first note that

all type-τ agents already obtain their highest possible utility, so they do not participate in

any blocking pair. If two type-θ agents form a blocking pair and coordinate on some Nash

equilibrium ppx, pyq P NE lb
θ , we must have

mintπppx, pyq, πppy, pxqu ą πpry, rxq “ mintπprx, ryq, πpry, rxqu,

contradicting the assumption that prx, ryq P NE lb
θ . Therefore, pµ, rSq is a Nash stable outcome

in which we have Gθpµ, pSq ą 1
2
M ą Gτ pµ, pSq. Hence, type θ is evolutionarily unstable.

A.1.4 Proof of Proposition 3

We consider the non-trivial case where total material payoffs are not constant across all

strategy pairs in the material game Γ. For part (i), write θ for the α-homophilic selfish

type and take α ą maxpx,yqPX 2 πpx, yq. Therefore, if some type-θ agents are matched with

type-τ ones (i.e. µθrτ s ą 0), they can always form a blocking pair and play any Nash

equilibrium between themselves. This means any Nash stable outcome pµ, Sq should be

perfectly assortative, µθrθs “ µτ rτ s “ 1. Neutral stability then follows from noting that all

strategy pairs in NE lb
θ “ NE lb

π are efficient by assumption and applying Lemma 1 to type

θ. In addition, evolutionary stability when τ exhibits same-type inefficiency follows from

applying Lemma 1 again to τ .

For part (ii), write θ for the parochial selfish type; therefore, NE lb
θ “ NE lb

π . A type-θ

agent derives zero utility when matched with a type-τ agent. Thus, if µθrτ s ą 0, type-θ

agents in cross-type matches can always form a blocking pair with each other and coordinate

on any Nash equilibrium strategy pair px, yq P NE lb
π which ensures positive utilities for both

agents. To see this, first note that πpx, yq ě 0 and πpy, xq ě 0 by assumption. At least one

of the inequalities is strict because px, yq is efficient. If both are strict, we are done; if only

one is strict, then there exists a symmetric mixed strategy Nash equilibrium where both

agents obtain strictly positive utility, contradicting the fact that px, yq P NE lb
π . Therefore, we

have µθrθs “ µτ rτ s “ 1 in any Nash stable outcome pµ, Sq. As in part (i), neutral stability

follows from noting that all strategy pairs in NE lb
π are efficient and applying Lemma 1 to

θ. In addition, evolutionary stability when τ exhibits same-type inefficiency follows from

applying Lemma 1 again to τ .
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A.1.5 Proof of Proposition 4

First consider the parochial selfish type. We argue that all strategy pairs in NE lb
π must be

efficient. To see this, take any px, yq P NE lb
π , we must have

πprx, rxq ` πprx, rxq ě πpx, yq ` πpy, xq ě πprx, rxq ` πprx, rxq.

The first inequality is because prx, rxq is efficient. For the second inequality, suppose instead

πpx, yq ` πpy, xq ă πprx, rxq ` πprx, rxq. This in turn means mintπpx, yq, πpy, xqu ă πprx, rxq.

Because prx, rxq is a Nash equilibrium by assumption, the inequality implies that px, yq cannot

be a loser-best Nash equilibrium, a contradiction. We can then invoke Proposition 3 and

conclude that the parochial selfish type is neutrally stable and evolutionarily stable against

any type that exhibits same-type inefficiency.

For the α-homophilic selfish type with any α ą 0, we first consider the case that

µθrτ s “ 0. Because all strategy pairs in NE lb
θ are efficient, applying Lemma 1 to θ ensures

that Gθpµ, Sq ě Gτ pµ, Sq for all Nash stable outcomes pµ, Sq. If µθrτ s ą 0 in a Nash stable

outcome pµ, Sq, take any px, yq P supppsθ,τ q, we must have

πpx, yq ą πprx, rxq ą πpy, xq.

To see why, observe that if the first inequality does not hold, two α-homophilic selfish

agents can form a blocking pair and coordinate on the Nash equilibrium prx, rxq; if the second

inequality does not hold, we have πpx, yq ` πpy, xq ą πprx, rxq ` πprx, rxq which contradicts the

assumption that prx, rxq is efficient. Therefore, since

ż

px,yqPX 2

πpx, yq dsθ,τ ą πprx, rxq ą

ż

px,yqPX 2

πpy, xq dsθ,τ “

ż

px,yqPX 2

πpx, yq dsτ,θ,

prx, rxq is efficient, and all strategy pairs in NE lb
θ are efficient, we have Gθpµ, Sq ą Gτ pµ, Sq.

Thus, θ is neutrally stable.

When τ exhibits same-type inefficiency, applying Lemma 1 again to τ guarantees the

existence of a Nash stable outcome pµ, pSq such that Gθpµ, pSq ą Gτ pµ, pSq even in the case

that µθrτ s “ 0. Hence, θ is evolutionarily stable against τ .

A.2 Proofs for Section 4: Incomplete Information

In this section, we first elaborate on Example 5. Next, we establish the positive results

under incomplete information, Propositions 6 and 7. Finally, we prove the negative result on

homophilic efficient preferences, Proposition 5. This order is chosen because the proofs of
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the positive results deliver more important economic insights, and the underlying blocking

mechanism also plays a role in proving Proposition 5.

A.2.1 More on Example 5

We formally verify that pΛ, p, q, µ, Sq is a Bayes-Nash equilibrium profile in Example 5.

• All type-θλ agents already obtain the highest possible utility when interacting with a

type-τ partner. Therefore, they cannot improve their utility by targeting type-τλ or

type-τλ1 agents in an incomplete information blocking pair.

• For type-τ agents with either label, the only possibility of deviation is to target another

type-τ agent and coordinate on a Nash equilibrium of the material game (since they are

selfish when interacting with their own kind). Let us consider the pure strategy Nash

equilibrium pA,Bq or pB,Aq. For the side that is positioned to play A, the utility in

the deviation is 1 if only targeted agents participate, which is no more than her current

utility. This means the proposed deviation does not increase the utility of one side of

the type-τ agents. The mixed strategy equilibrium can be ruled out in a similar way.

• Next, we check the case where two type-θλ agents target each other and propose the

efficient outcome pB,Aq or pA,Bq. Consider a type-θλ agent who is positioned to play

B facing a deviation plan pD,xq such that D “ tθ, τu, xpθq “ A, and xpτq “ B.28 In

this case, the type-θλ agent obtains p4 ` αqqλrθs by playing B, which is no more than

her utility 4 in the status quo since qλrθs ď 4
4`α

by construction.

• Finally, suppose two type-θλ agents target each other and propose the inefficient

equilibrium p1
2
A` 1

2
B, 1

2
A` 1

2
Bq. Consider a deviation plan pD,xq such that D “ tθ, τu,

xpθq “ 1
2
A ` 1

2
B, and xpτq “ B. Any side of type-θλ agents facing this deviation

plan will have a strict best response A, violating optimality of the proposed strategy
1
2
A ` 1

2
B.

Therefore, no viable incomplete information blocking pair exists.

A.2.2 Proof of Proposition 6

We consider the non-trivial case where total material payoffs are not constant across all

strategy pairs in the material game Γ. Write θ for the parochial efficient type. Consider an

arbitrary preference type τ P Θ. Take any Bayes-Nash stable outcome pΛ, p, q, µ, Sq. We

establish the result by a sequence of lemmas.

28Note that B is indeed a rational and profitable play of a type-τλ agent who faces a type-θλ partner.
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Lemma 2. If λ P Λ and qλrτ s “ 1, then µλrλs “ 1.

Proof. Suppose µλrλ1s ą 0 for some λ1 ‰ λ. There always exists an incomplete information

blocking pair between two type-θλ1 agents who target each other and propose to play an

efficient strategy pair denoted by prx, ryq. To see this, suppose px, yq P supppsλ,λ1q and let

us verify the incentives of a type-θλ1 agent who agrees to play rx. Take any deviation

plan pD1,yq for a label-λ1 agent such that θ P D1 and ypθq “ ry. If τ R D1, we have

Eqλ1 ruθpx,yp¨q, ¨q |D1s “ uθpx, ry, θq,

rx P argmax
xPX

uθpx, ry, θq, and

uθprx, ry, θq “ πprx, ryq ` πpry, rxq ą 0 “ uθpx, y, λq,

because prx, ryq is an efficient strategy pair. If τ P D1, we have

rx P argmax
xPX

uθpx, ry, θq “ argmax
xPX

Eqλ1 ruθpx,yp¨q, ¨q |D1
s, and

Eqλ1 ruθpx,yp¨q, ¨q |D1
s “ qλ1rθsuθprx, ry, θq ` qλ1rτ suθprx,ypτq, τq

“ qλ1rθs ¨ rπprx, ryq ` πpry, rxqs

ą 0 “ uθpx, y, λq

because uθp¨, ¨, τq “ 0 and qλ1rθs ą 0. Therefore, the type-θλ1 agent in question is willing

to participate in the deviation and play rx as a best response. The incentives of the other

side who agrees to participate and play ry can be verified similarly. Hence, there exists

an incomplete information blocking pair which contradicts the fact that pΛ, p, q, µ, Sq is

Bayes-Nash stable.

Lemma 3. If λ P Λ and qλrθs ą 0, then µλrλs “ 1 and any strategy pair px, yq P supppsλ,λq

is efficient.

Proof. By contradiction, suppose px, yq P supppsλ,λq is inefficient or µλrλ1s ą 0 for some

λ1 ‰ λ. In the latter case, assume qλrθs ą qλ1rθs without loss of generality. Then there exists

an incomplete information blocking pair formed by two type-θλ agents who agree to play an

efficient strategy pair denoted by prx, ryq. Formally, consider a type-θλ agent who agrees to

play rx and take any deviation plan pD1,yq for a label-λ agent such that θ P D1 and ypθq “ ry.

If τ R D1, we have Eqλruθpx,yp¨q, ¨q |D1s “ uθpx, ry, θq,

rx P argmax
xPX

uθpx, ry, θq, and

uθprx, ry, θq “ πprx, ryq ` πpry, rxq ą qλ1rθs ¨ rπpx, yq ` πpy, xqs “ uθpx, y, λq.
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The inequality is strict because either px, yq is inefficient or qλ1rθs ă 1. If τ P D1, we have

rx P argmax
xPX

uθpx, ry, θq “ argmax
xPX

Eqλruθpx,yp¨q, ¨q |D1
s, and

Eqλruθpx,yp¨q, ¨q |D1
s “ qλrθsuθprx, ry, θq ` qλrτ suθprx,ypτq, τq

“ qλrθs ¨ rπprx, ryq ` πpry, rxqs

ą qλ1rθs ¨ rπpx, yq ` πpy, xqs

“ uθpx, y, λq.

The inequality is strict because either px, yq is inefficient or qλrθs ą qλ1rθs. The incentives of

the other side who agrees to participate and play ry can be verified similarly. Hence, there

exists an incomplete information blocking pair which leads to a contradiction.

Letting λτ denote the label that fully reveals type τ , i.e. qλτ rτ s “ 1, the lemmas above

imply that

GθpΛ, p, q, µ, Sq “
ÿ

λPΛ

pλqλrθs

1 ´ ε
¨ µλrλs ¨

M

2
“

M

2
“ Gτ pΛ, p, q, µ, Sq if λτ R Λ,

and

GθpΛ, p, q, µ, Sq ě

´

1 ´
pλτ

ε

¯

¨
M

2
`

pλτ

ε
¨ µλτ rλτ s

ż

px,yqPX 2

πpx, yq dsλτ ,λτ

“ Gτ pΛ, p, q, µ, Sq if λτ P Λ.

We can conclude that type θ is neutrally stable under incomplete information.

Now suppose that type τ exhibits same-type inefficiency. Note that there always exists a

Bayes-Nash stable outcome pΛ, p, q, µ, Sq with λτ P Λ and pλτ ą 0 as a complete information

Nash stable outcome always exists and is a special case. Whenever pλτ ą 0, in the spirit of

Lemma 1, we can construct another Bayes-Nash stable outcome pΛ, p, q, µ, pSq such that px, yq

is inefficient for all px, yq P suppppsλτ ,λτ q where psλτ ,λτ P pS. This means the inequality above

must be strict, i.e. GθpΛ, p, q, µ, pSq ą Gτ pΛ, p, q, µ, pSq. Therefore, the parochial efficient type

θ is evolutionarily stable against τ .

A.2.3 Proof of Proposition 7

Most of the arguments below are similar to those in the proof of Proposition 6, so we omit

some details. Write θ for the parochial selfish type and and take any Bayes-Nash stable

outcome pΛ, p, q, µ, Sq. One can show that if λ P Λ and qλrτ s “ 1, then µλrλs “ 1. For if not,

39



i.e. µλrλ1s ą 0 for some λ1 ‰ λ, there exists an incomplete information blocking pair formed

by two type-θλ1 agents who target each other and propose to play any strategy pair in NE θ.

For agents of other labels, perfect assortativity may fail. However, whenever two different

labels are matched in a Bayes-Nash stable outcome, the label that contains more type-θ

agents must receive a strictly higher material payoff, as shown below.

Lemma 4. For λ P Λ, if qλrθs ą 0 and µλrλ1s ą 0, then for any strategy pair px, yq P

supppsλ,λ1q, we have (i) px, yq is efficient and (ii) πpx, yq ą πpy, xq if qλrθs ą qλ1rθs.

Proof. If qλrθs ą 0 and µλrλ1s ą 0, by the previous argument, we must have qλ1rθs ą 0. Then

internal stability implies that px, yq P NE θ “ NEπ due to the form of type θ’s utility function.

By assumption, px, yq is efficient.

By contradiction, assume that qλrθs ą qλ1rθs and πpx, yq ď πpy, xq. Then there exists an

incomplete information blocking pair formed by two type-θλ agents who target each other

and propose the strategy pair px, yq P NE θ. This is because both sides of the type-θλ agents

can secure a payoff of at least

qλrθs ¨ mintπpx, yq, πpy, xqu “ qλrθs ¨ πpx, yq ą qλ1rθs ¨ πpx, yq

conditional on their targeted partners’ participation.

Suppose there are two labels λ, λ1 P Λ such that λ ‰ λ1 and µλrλ1s ą 0. Without loss of

generality, we assume qλrθs ą qλ1rθs. By Lemma 4 and the fact that pλµλrλ1s “ pλ1µλ1rλs, the

average material payoff of type θ across λ-λ1 matches can be computed as

1

qλrθs ` qλ1rθs

"

qλrθs

ż

X 2

πpx, yq dsλ,λ1 `qλ1rθs

ż

X 2

πpx, yq dsλ1,λ

*

“
1

qλrθs ` qλ1rθs

"ˆ

qλrθs ` qλ1rθs

2
`

qλrθs ´ qλ1rθs

2

˙
ż

X 2

πpx, yq dsλ,λ1 `qλ1rθs

ż

X 2

πpx, yq dsλ1,λ

*

ą
1

qλrθs ` qλ1rθs

"

qλrθs ` qλ1rθs

2

ż

X 2

πpx, yq dsλ,λ1 `
qλrθs ´ qλ1rθs

2

ż

X 2

πpy, xq dsλ,λ1 `qλ1rθs

ż

X 2

πpx, yq dsλ1,λ

*

“
1

qλrθs ` qλ1rθs

"

qλrθs ` qλ1rθs

2

ż

X 2

πpx, yq dsλ,λ1 `
qλrθs ` qλ1rθs

2

ż

X 2

πpy, xq dsλ,λ1

*

“
1

2

ż

X 2

rπpx, yq ` πpy, xqs dsλ,λ1

“
1

2
M.

Therefore, the average material payoff of type θ in the population must satisfyGθpΛ, p, q, µ, Sq ě

M
2
, where the inequality is strict if there is a positive mass of cross-label matches. By a similar

argument for type τ , we have Gτ pΛ, p, q, µ, Sq ď M
2
. This implies that type θ is neutrally

stable under incomplete information.
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When τ exhibits same-type inefficiency, we can follow the argument in the proof of

Proposition 6 to show that θ is evolutionarily stable against τ .

A.2.4 Proof of Proposition 5

Fixing α ą 0, denote by θ the α-homophilic efficient type. Write E Ď X 2 for the set of

efficient strategy pairs and define two subsets of X as

X`
“ tx P X : πpx, yq ą πpy, xq for some px, yq P Eu, and

X´
“ tx P X : πpx, yq ă πpy, xq for some px, yq P Eu.

By assumption, we have X` X X´ “ H; for if not, there will be a mixed strategy pair that

is efficient and generates equal material payoffs. Pick x` P X`. Consider a preference type τ

that has the following utility function

uτ px, y, tq “

$

&

%

1tpx,yqPEu if t “ τ ,

2 ¨ 1tx“x`u if t ‰ τ .

Intuitively, type-τ agents care about efficiency when playing against themselves, but prefer to

play x` when matched with other types. We now show that τ is evolutionarily stable against

θ by establishing two lemmas.

Lemma 5. Gτ pΛ, p, q, µ, Sq ě GθpΛ, p, q, µ, Sq for all Bayes-Nash stable outcomes pΛ, p, q, µ, Sq.

Proof. Fix an arbitrary Bayes-Nash stable outcome pΛ, p, q, µ, Sq. We prove this lemma by

establishing the following claim: For λ P Λ, if qλrτ s ą 0 and µλrλ1s ą 0, then we have (i)

sλ,λ1rEs “ 1 and (ii) sλ,λ1rtpx, yq : x “ x`us “ 1 if qλrτ s ą qλ1rτ s.

For part (i), suppose µλrλ1s ą 0 and there is some inefficient strategy pair px, yq P

supppsλ,λ1q. Also suppose qλrτ s ě qλ1rτ s without loss. In this case, we cannot have x “ x`;

for if so, any best response y for type-θλ1 agents must satisfy px, yq P E, contradicting the

assumption that px, yq is inefficient. Moreover, for every px P supppxq, we have ppx, yq R E;

otherwise, px delivers higher utility to type-θλ agents than x, a contradiction. The utility of

these type-τλ agents then satisfies

2qλ1rθs ď uτ px, y, λ1
q ă qλ1rτ s,

where the first inequality comes from the fact that a type-τλ agent can secure at least 2qλ1rθs

by playing x`, and the second inequality is because x attaches positive probability to some
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pure strategy other than x`.29 Thus, there exists an incomplete information blocking pair

formed by two such type-τλ agents who propose to play px`, y´q P E. For the side that agrees

to play y´, strategy y´ is always a best response because, even if type-θλ agents join the

deviation, we have qλrτ s ě qλ1rτ s ą 2qλ1rθs ě 2qλrθs;30 moreover, the utility obtained from

the deviation is at least qλrτ s ě qλ1rτ s ą uτ px, y, λ1q. On the other hand, the side that agrees

to play x` will clearly participate, because when type-θλ agents join the deviation, playing

x` is still a best response and yields an even higher utility.

For part (ii), by contradiction, suppose qλrτ s ą qλ1rτ s and px, yq P supppsλ,λ1q where

px, yq P E and x ‰ x`. By internal stability, some pure strategy other than x` is a best

response for type-τλ agents, so

2qλ1rθs ď uτ px, y, λ1
q “ qλ1rτ s.

But then the two type-τλ agents can target each other and form an incomplete information

blocking pair by proposing px`, y´q P E. For the side that agrees to play y´, strategy

y´ is always a best response because, even if type-θλ agents join the deviation, we have

qλrτ s ą qλ1rτ s ě 2qλ1rθs ą 2qλrθs; moreover, the utility received from the deviation is at least

qλrτ s ą qλ1rτ s “ uτ px, y, λ1q. On the other hand, the side that agrees to play x` will honor

the promise for the same reason as in part (i).

One can then follow the argument in the proof of Proposition 7 to show thatGτ pΛ, p, q, µ, Sq ě

M
2

ě GθpΛ, p, q, µ, Sq, where the inequalities become strict if there is a positive mass of cross-

label matches. In the next lemma, we shall show that the case of cross-label matches is

indeed possible.

Lemma 6. Gτ pΛ, p, q, µ, Sq ą GθpΛ, p, q, µ, Sq for some Bayes-Nash stable outcome pΛ, p, q, µ, Sq.

Proof. Let Mp ă M denote the highest total material payoff delivered by an inefficient pure

strategy pair, i.e.

Mp
“ max

px,yqPX2zE
πpx, yq ` πpy, xq.

Moreover, let Mn be the highest total material payoff derived from an inefficient Nash

equilibrium between two type-θ agents (which always exists), i.e.

Mn
“ max

px,yqPNEθzE
πpx, yq ` πpy, xq.

29Let px ‰ x` denote this pure strategy. Then uτ px, y, λ1q “ uτ ppx, y, λ1q “ qλ1 rτ suτ ppx, y, τq ă qλ1 rτ s because
we have argued that ppx, yq R E.

30If type-θλ agents join the deviation, the type-τλ agent on this side obtains qλrτ s by playing y´, while the
best alternative is to play x` and obtain 2qλrθs because px`, x`q R E.

42



Since NE θ is a finite union of maximal Nash subsets (Jansen, 1981) and the total material

payoff is constant on each subset due to θ’s utility function, Mn ă M is well-defined.

Fix a population state pθ, τ, εq and consider an outcome pΛ, p, q, µ, Sq as follows. There

are three labels Λ “ tλθ, λ, λτu, and the latter two have equal masses pλ “ pλτ . Labels with a

subscript perfectly reveal underlying types, i.e. qλθ
rθs “ qλτ rτ s “ 1. The proportion of type-θ

agents among those with label λ satisfies

qλrθs ď min

"

M ´ Mn

α
,

M ´ Mp

M ´ Mp ` α

*

.

Assume all label-λ agents are matched with label-λτ , that is, µλrλτ s “ µλτ rλs “ 1. Finally,

let px`, y´q P E and the strategy profile S is such that sλθ,λθ
rEs “ 1 and sλ,λτ rpy´, x`qs “

sλτ ,λrpx`, y´qs “ 1. Note that a matching profile pΛ, p, q, µq satisfying the conditions above

is always feasible for any ε ą 0. Figure 3 below illustrates such an outcome.

λτλθ λ

τθ

py´, x`qefficient

Figure 3: The matching profile for the proof of part (ii).

We argue that this outcome is Bayes-Nash stable. First, type-θλθ
agents have no incentive

to participate in a blocking pair, as they already obtain their maximum utility. Because

the play between labels λ and λτ is already efficient, no type-θλ agent has an incentive to

target a type-τ agent (with label λ or λτ ) in a blocking pair. Moreover, no type-τ agent

(with label λ or λτ ) has an incentive to target another type-τ agent since her utility is no less

than 1 in the status quo. Therefore, it is only left to consider blocking pairs consisting of

two type-θλ agents who target each other. Let px, yq be the strategy pair two label-uθ agents

agree upon in a pairwise deviation. By the definition of an incomplete information blocking

pair, px, yq P NE θ. We split into two cases:

• Suppose px, yq is inefficient. Consider the type-θλ agent who agrees to play x facing

a deviation plan pD,xq such that D “ tθ, τu, xpθq “ y, and xpτq “ x`.31 Because

px, yq P NE θ, we have πpx, x`q ` πpx`, xq ď Mn. In this case, the utility of the type-θλ

31Note that x` P X is indeed a rational and profitable play of a type-τλ agent facing a type-θλ partner in
the deviation.
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agent in the deviation is no more than

qλrθspMn
` αq ` p1 ´ qλrθsqMn

“ Mn
` qλrθsα

ď Mn
`

M ´ Mn

α
α

“ M.

Therefore, the agent in question does not benefit from playing x in the pairwise deviation

against pD,xq.

• Suppose px, yq is efficient and supppxq Ď X` without loss. Consider the type-θλ agent

who agrees to play x facing a deviation plan pD,xq such that D “ tθ, τu, xpθq “ y,

and xpτq “ x`. In this case, the utility of the type-θλ agent in the deviation is no more

than

qλrθspM ` αq ` p1 ´ qλrθsqMp
“ qλrθspM ´ Mp

` αq ` Mp

ď
M ´ Mp

M ´ Mp ` α
pM ´ Mp

` αq ` Mp

“ M.

Again, the agent in question does not benefit from playing x in the pairwise deviation

against pD,xq.

Hence, the outcome pΛ, p, q, µ, Sq is Bayes-Nash stable. It is left to verify thatGτ pΛ, p, q, µ, Sq ą

M
2

ą GθpΛ, p, q, µ, Sq. To see this, simply note that more than a half of type-τ agents play

the advantageous strategy x` against y´, while the opposite is true for type-θ agents.

A.3 Proofs for Section 5.1: Polymorphism

A.3.1 Proof of Proposition 8

In this section, we first reformulate our model as a large roommate market in the language of

Carmona and Laohakunakorn (2024). Next, we illustrate how a stable roommate matching

in their setting can be transformed into a Nash stable outcome in our framework. Finally, we

present their existence result and show that the conditions for existence are satisfied in the

reformulated model.

Given the primitives of our model, define a roommate market E “ pΘν , ν, C,C, pątqtPΘν q

as follows. There is a finite set of types Θν and a type distribution ν P ∆pΘνq. Let H be a

dummy type used to describe an unmatched agent, and write sΘν “ Θν Y tHu. There is a set
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of contracts C “ X 2 and a contract correspondence C : Θν ˆ sΘν Ñ C such that

Cpt, t1
q “

$

&

%

NE t,t1 if t1 ‰ H,

C if t1 “ H,

where NE t,t1 is the set of Nash equilibria between agents of types t and t1. Because Θν is finite,

we can fix an arbitrary order ě on types and require that NE t,t1 specifies the strategy played

by the bigger type as the first component. With this normalization, we have Cpt, t1q “ Cpt1, tq

for all t, t1 P Θν , satisfying the symmetry condition in Carmona and Laohakunakorn (2024).

For each type t P Θν , let ąt be a binary relation on sΘν ˆ C induced by the following utility

function:

uą
t pt1, x, yq “

$

&

%

utpx, y, t
1q if t1 P Θν ,

u if t1 “ H,

where u ă mint,t1,x,y utpx, y, t
1q.

A roommate matching is a measure φ P MpΘν ˆ sΘν ˆ Cq such that supppφq Ď

graphpCq and νM ` νU ` νW “ ν, where for each type t P Θν , νM rts “ φrttu ˆ Θν ˆ Cs,

νW rts “ φrΘν ˆttuˆCs, and νU rts “ φrttuˆtHuˆCs.32 To define stability, we first describe

the set of type-contract pairs that a particular type t can attract in a deviation, which we

call type t’s targets:

Ttpφq “
␣

pt˚, x, yq P Θν ˆ C : px, yq P Cpt, t˚
q and Dpt1, x1, y1

q P sΘν ˆ C s.t.

supppφq X tpt˚, t1, x1, y1
q, pt1, t˚, x1, y1

qu ‰ H and pt, x, yq ąt˚ pt1, x1, y1
q
(

.

Moreover, let TU
t pφq “ tHu ˆ C and sTtpφq “ Ttpφq Y TU

t pφq. For a matching to be stable,

no type-t agent can benefit from accepting some type-contract pair in sTtpφq. Thus, we write

Spφq for the set of pt, t1, x, yq P Θν ˆ sΘν ˆ C such that

(i) There does not exist ppt, px, pyq P sTtpφq such that ppt, px, pyq ąt pt1, x, yq;

(ii) If t1 ‰ H, there does not exist ppt, px, pyq P sTt1pφq such that ppt, px, pyq ąt1 pt, x, yq.

A roommate matching φ is stable if supppφq Ď Spφq.

The following lemma shows that we can always obtain a Nash stable outcome pµ, Sq from

a stable roommate matching φ. In fact, the two definitions are equivalent, but only one

direction is important for our existence result.

Lemma 7. Suppose there exists a stable roommate matching in the roommate market E.
Then there exists a Nash stable outcome under population distribution ν.

32For a metric space Z, MpZq is the set of finite Borel measures on Z.
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Proof. Let φ be the stable roommate matching. We first show that pΘνˆtHuˆCqXsupppφq “

H; that is, by construction, no agent is unmatched in φ. Towards a contradiction, suppose

there exists a tuple pt,H, x, yq P pΘν ˆ tHu ˆ Cq X supppφq. Fixing an arbitrary ppx, pyq P

Cpt, tq ‰ H, we have pt, px, pyq ąt pH, x, yq by the definition of ąt. This means pt, px, pyq P Ttpφq.

On the other hand, note that pt, px, pyq ąt pH, x, yq also implies pt,H, x, yq R Spφq. Thus,

supppφq Ę Spφq, contradicting the assumption that φ is a stable roommate matching.

Next, we construct an outcome pµ, Sq in our setting from φ. For each type t P Θν , let

µtrt
1
s “

1

νrts
pφrttu ˆ tt1

u ˆ Cs ` φrtt1
u ˆ ttu ˆ Csq for all t1

P Θν .

Since φrttu ˆ Θν ˆ Cs ` φrΘν ˆ ttu ˆ Cs ` φrttu ˆ H ˆ Cs “ νrts and φrΘν ˆ H ˆ Cs “ 0,

we have
ř

t1PΘν
µtrt

1s “ 1, meaning that µt P ∆pΘνq is a well-defined probability distribution.

The consistency condition νrtsµtrt
1s “ νrt1sµt1rts is apparent from the definition. For each

pair t, t1 P Θν such that t ě t1 and µtrt
1s ą 0, let

st,t1rEs “
1

νrtsµtrt1s
pφf rttu ˆ tt1

u ˆ Es ` φf rtt1
u ˆ ttu ˆ Esq , and

st1,trEs “ st,t1rρpEqs for all E Ď X 2.

If µtrt
1s “ 0, then st,t1 P ∆f pX 2q can be defined arbitrarily. The strategy profile S is a vector

that contains all st,t1 .

Finally, we show that pµ, Sq is Nash stable. Internal stability is implied by the fact that

supppφq Ď graphpCq and Cpt, t1q “ NE t,t1 for every t, t1 P Θν . To verify external stability,

suppose by contradiction that a blocking pair exists. That is, there exist types t, t1, t̄, t̄1 P Θν

and strategy pairs ppx, pyq, px1, y1q, px2, y2q P X 2 such that

(i) µtrt̄s ą 0, µt1rt̄1s ą 0, px1, y1q P supppst,t̄q, and px2, y2q P supppst1,t̄1q;

(ii) px P argmaxxPX utpx, py, t
1q and py P argmaxyPX ut1py, px, tq;

(iii) utppx, py, t
1q ą utpx

1, y1, t̄q and ut1ppy, px, tq ą ut1px2, y2, t̄1q.

µt1rt̄1s ą 0, px2, y2q P supppst1,t̄1q, condition (ii), and ut1ppy, px, tq ą ut1px2, y2, t̄1q together

imply that pt1, px, pyq P Ttpφq. Since utppx, py, t
1q ą utpx

1, y1, t̄q, we have pt, t̄, x1, y1q R Spφf q.

However, µtrt̄s ą 0 and px1, y1q P supppst,t̄q imply that pt, t̄, x1, y1q P supppφq, which means

supppφq Ę Spφq. This contradicts the assumption that φ is stable. Therefore, pµ, Sq is a

Nash stable outcome.

We say that the roommate market E is acyclic if ąt is acyclic for each t P Θν .
33 Moreover,

33A relation ą on a set Z is acyclic if there is no finite sequence tz1, z2, . . . , znu such that z1 ą z2 ą ¨ ¨ ¨ ą

zn ą z1.
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E is continuous if tpt, c, t1, c1, t˚q P psΘν ˆCq2ˆΘνu : pt, cq ąt˚ pt1, c1qu is open, C is continuous

with nonempty and compact values, and Θν ˆ C is closed. We now state the existence result

of Carmona and Laohakunakorn (2024).

Lemma 8. If E is an acyclic and continuous roommate market, then E has a stable roommate

matching.

It remains to check that the roommate market E we defined is indeed acyclic and

continuous. Because ąt is induced by a utility function uą
t pt1, x, yq, ąt is acyclic and

tpt, c, t1, c1, t˚q P psΘν ˆCq2 ˆΘνu : pt, cq ąt˚ pt1, c1qu is open. Since Θν is finite, C is continuous

and ΘνˆC is closed. For any t, t1 P Θν , the set of Nash equilibria NE t,t1 is nonempty and closed

(and therefore compact). Hence, C has nonempty and compact values. Applying Lemmas 8

and 7 establishes the existence of a Nash stable outcome under population distribution ν.

A.3.2 Proof of Proposition 9

For part (i), suppose pµ, Sq is Nash stable under ν and Gθpµ, Sq ą Gθ1pµ, Sq for some

θ, θ1 P Θν . Then we must have G
pθpµ, Sq ă M

2
for some pθ P Θν ; for if not, all types obtain

an average material payoff weakly higher than M
2
while Gθpµ, Sq ą M

2
, which is impossible.

Now suppose τ is parochial efficient and let rν “ p1 ´ εqν ` εδτ for some ε P p0, ε̄q. Define an

outcome prµ, rSq under rν as follows. The matching profile rµ “ prµtq is such that rµt “ µt for

t P Θνztτu and rµτ rτ s “ 1. Moreover, the strategy profile rS “ prst,t1q is such that rst,t1 “ st,t1

for t, t1 P Θνztτu, rsτ,τ assigns probability one to efficient strategy pairs, and all other strategy

distributions are arbitrary. It is easy to verify that prµ, rSq is a Nash stable outcome under

rν. Moreover, we have Gτ prµ, rSq ą G
pθprµ,

rSq, contradicting the assumption that ν is locally

neutrally stable.

For part (ii), suppose µθrθ
1s ą 0, px, yq P supppsθ,θ1q, and px, yq is inefficient. This means

ř

tPΘν
νrθsGθpµ, Sq ă M

2
, which implies that G

pθpµ, Sq ă M
2
for some pθ P Θν . We can then

follow the argument above and reach a contradiction. Note that this means Gθpµ, Sq “ M
2

for all types θ P Θν if pµ, Sq is Nash stable.

Now suppose px, yq is efficient, but θ ‰ θ1 and πpx, yq ą πpy, xq. This means we must

have πpx1, y1q ą πpy1, x1q for all px1, y1q P supppsθ,θ1q. For if not, i.e. πpx1, y1q ď πpy1, x1q

for some px1, y1q P supppsθ,θ1q, we can redefine a strategy profile S 1 from S by replacing

sθ,θ1 with s1
θ,θ1 such that s1

θ,θ1rpx1, y1qs “ 1; the outcome pµ, S1q is also Nash stable but

we have Gθpµ, S
1q ă Gθpµ, Sq “ M

2
, a contradiction. In order to ensure Gθ1pµ, Sq “ M

2
,

there must exist another θ2 P Θν such that µθ1rθ2s ą 0 and πpx, yq ą πpy, xq for all

px, yq P supppsθ1,θ2q. Because Θν is finite, we can repeat this argument and identify a set

of types Θ˝
ν “ tθ1, θ2, . . . , θku Ď Θν such that the following holds: For each 1 ď i ď k,
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µθirθi`1s ą 0 and πpx, yq ą πpy, xq for all px, yq P supppsθi,θi`1
q, with the interpretation that

k ` 1 “ 1. We now split into two cases:

• If k is even, then for ζ ą 0 sufficiently small, we can redefine µ1 from µ as follows:

µ1
θi

rθi`1s “ µθirθi`1s `
ζ

νrθis
, µ1

θi
rθi´1s “ µθirθi´1s ´

ζ

νrθis
for each odd i, and

µ1
θi

rθi`1s “ µθirθi`1s ´
ζ

νrθis
, µ1

θi
rθi´1s “ µθirθi´1s `

ζ

νrθis
for each even i.

Other than these key components, all remaining parts are the same as in µ. It is

easy to verify that µ1 is a well-defined matching profile and pµ1, Sq is also Nash stable.

However, the constructed outcome must satisfy Gθipµ
1, Sq ą Gθi`1

pµ1, Sq for all odd i,

a contradiction.

• If k is odd, then consider the invasion of a type τ “ θ1. Let ε ą 0 be sufficiently small

and consider the population distribution rν “ p1 ´ εqν ` εδτ . Define a matching profile

µ1 under rν as follows:

µ1
θ1

rθ2s “
p1 ´ εqνrθ1sµθ1rθ2s ` ε

2

rνrθ1s
, µ1

θ1
rθks “

p1 ´ εqνrθ1sµθ1rθks ` ε
2

rνrθ1s
,

µ1
θi

rθi`1s “ µθirθi`1s ´
ε

2rνrθis
, µ1

θi
rθi´1s “ µθirθi´1s `

ε

2rνrθis
for each even i, and

µ1
θi

rθi`1s “ µθirθi`1s `
ε

2rνrθis
, µ1

θi
rθi´1s “ µθirθi´1s ´

ε

2rνrθis
for each odd i ‰ 1.

For all remaining components of µ1 not specified above, let µ1
θr¨s “

p1´εqνrθsµθr¨s

rνrθs
.34 Again,

one can verify that µ1 is a well-defined matching profile and pµ1, Sq is a Nash stable

outcome under the post-entry rν. However, we have Gθ1pµ1, Sq ą Gθipµ
1, Sq for all even

i, contradicting the assumption that ν is locally neutrally stable.

Finally, for part (iii), suppose πprx, ryq ‰ πpry, rxq for all efficient strategy pairs prx, ryq. Then

by part (ii), there cannot be a positive mass of cross-type matches, i.e. for every Nash

stable outcome pµ, Sq under ν, we have µθrθs “ 1 for all θ P Θν . If θ exhibits same-type

inefficiency, we can apply Lemma 1 and construct another Nash stable outcome pµ, S1q such

that Gθpµ, S
1q ă M

2
, which contradicts the conclusion in part (ii). If uθpx, y, tq is constant

in t, we can instead follow the proof of Proposition 2 and construct a mutant type τ that

dominates θ in the post-entry population. Therefore, ν cannot be locally neutrally stable, a

contradiction.

34Note that rνrθ1s “ p1 ´ εqνrθ1s ` ε and rνrθs “ p1 ´ εqνrθs for all θ ‰ θ1.
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A.3.3 Proof of Proposition 10

The proof is a straightforward extension of that of Proposition 1. Suppose Θν consists of

homophilic and/or parochial efficient types, and consider any mutant type τ P Θ and ε P p0, 1q.

For any Nash stable outcome prµ, rSq under the post-entry population rν “ p1 ´ εqν ` εδτ ,

we must have rµθrθs “ 1 for all θ P Θν . For if not, two type-θ agents who are matched

with another type can form a blocking pair by coordinating on the efficient strategy pair

with each other. This also implies that rµτ rτ s “ 1. Now in the spirit of Lemma 1, the

strategy distribution sθ,θ must attach probability one to efficient strategy pairs, meaning that

Gθprµ, rSq ě Gτ prµ, rSq for all θ P Θν . Therefore, ν is locally neutrally stable.
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Baumard, Nicolas, Jean-Baptiste André, and Dan Sperber (2013): “A mutualistic

approach to morality: The evolution of fairness by partner choice,” Behavioral and Brain

Sciences, 36, 59–122.

Becker, Gary S. (1976): “Altruism, Egoism, and Genetic Fitness,” Journal of Economic

Literature, 14, 817–826.

Bernhard, H., U. Fischbacher, and E. Fehr (2006): “Parochial altruism in humans,”

Nature, 442, 912–915.
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O Online Appendix for “Preference Evolution under

Stable Matching”

O.1 Weak Blocking

Consider an underlying game where the material payoffs are given by the following table ,

A B
A 0, 0 2, 3
B 3, 2 0, 0

We first assume all agents in the population are selfish. That is, their utility function

coincides with the material payoffs in the table. According to our definition of blocking and

stable outcomee, an outcome where all agents are matched to play pA,Bq or pB,Aq in each

pair constitutes a (unique) stable outcome. Those agents receiving a payoff of 2 are the

“losers” of the game, and they might seek to rematch. Therefore, if weak improvement is

allowed for blocking, the outcome described above would no longer be considered stable.

However, adopting this weaker definition of blocking presents a problem: the existence

of a stable outcome is no longer guaranteed (Jackson and Watts (2010) make a similar

observation). To see this, first note that in a stable outcome, there cannot be a positive

mass of matched agents playing the asymmetric equilibrium pA,Bq. For if so, there must

be a positive mass of “losers” receiving a utility of 2; then any pair of such agents can

form a pairwise deviation to the equilibrium pA,Bq, making one of them strictly better off.

Therefore, the only possible stable outcome is one in which all agents are matched to play

the symmetric equilibrium. However, in this scenario, any two agents can form a blocking

pair and play the equilibrium pA,Bq which makes both strictly better off. As a result, no

stable outcome exists under the weaker definition of blocking. In contrast, if we require both

inequalities to be strict in the definition of blocking, a stable outcome always exists, as we

show in Proposition 8 in Appendix A.3.1.

type-θ
A B

type-θ
A 0, 0 5, 5
B 5, 5 0, 0

type-τ
A B

A 0,´ 0,´

B 0,´ 0,´

Nevertheless, even if we allow weak improvement for a blocking pair, the main implications

of our paper remain unchanged. We continue to use the material game in the table provided

at the beginning of this appendix for illustration. When type-θ agents are parochial efficient,

the stable outcome must exhibit perfectly assortative matching and efficient play between
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type-θ agents, which lead to the evolutionary stability of parochial efficient preferences. The

main rationales are two-fold:

• When two θ-agents are matched, they must play the asymmetric equilibrium pA,Bq or

pB,Aq. Moreover, neither agent is a “loser” because both of them derive a utility of

3 ` 2 “ 5 (see the left table in the above set of tables);

• Parochialism ensures that type-θ agents have no incentive, not even a weak one, to

match with agents of other preferences (see the right table in above set of tables).

Therefore, regardless of how the type-τ agents behave (these agents may never settle

due to the non-existence issue explained above), the type-θ agents obtain weakly higher

average material payoffs than them.

O.2 Homophilic Efficient Types are Not Neutrally Stable under

Incomplete Information

In this section, we provide a condition on the material game under which the homophilic

efficient types are not neutrally stable in the case of incomplete information. This condition

covers a wide class of games (e.g. the ones in Examples 2 and 4) and is different from the

condition in Proposition 5. It therefore strengthens our conclusion that the homophilic

efficient preferences are not favored by evolutionary forces.

Proposition 11. If some inefficient strategy pair is a strict Nash equilibrium between two

agents with efficient preferences, then any homophilic efficient type is not neutrally stable.

Proof. Fixing α ą 0, denote by θ the α-homophilic efficient type. Suppose prx, ryq is inefficient

and is a strict Nash equilibrium in NE θ. Write E for the set of efficient strategy pairs and S

for the efficient total material payoffs,

S “ max
px,yqPX2

πpx, yq ` πpy, xq.

Moreover, let rS be the total material payoffs when prx, ryq is played and pS be the second

highest total material payoffs that result in pure strategies when one agent plays rx, i.e.

rS “ πprx, ryq ` πpry, rxq and pS “ max
yPXztryu

πprx, yq ` πpy, rxq.

By assumptions, we have S ą rS ą pS.

Our goal is to construct a population state pθ, τ, εq and a Bayes-Nash stable outcome

pp, µ, Sq such that Gτ pp, µ, Sq ą Gθpp, µ, Sq. To this end, suppose 1 ´ ε ă
rS´pS

S´pS
and consider
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a preference type τ whose utility function is given by

uτ px, y, tq “

$

&

%

πpx, yq ` πpy, xq if t “ τ ,

S
1´ε

¨ 1txPtrx,ryuu otherwise.

Now consider a matching profile pp, µq that satisfies pθ “ 0, pu, pτ ą 0, quθ P

´

1 ´ ε,
rS´pS

S´pS

ı

,

and µu,u “ µτ,τ “ 1. The strategy profile is given by S “ tprx, ryqu,u, px˚, y˚qτ,τu where px˚, y˚q

is an arbitrary efficient strategy pair. This outcome is depicted in Figure 4 below.

τu

ε1 ´ ε

prx, ryqu,u px˚, y˚qτ,τ

Figure 4: The matching profile for the proof of part (i).

We argue that pp, µ, Sq is a Bayes-Nash stable outcome. First, because a type-τ agent

always plays rx or ry against a type-θ agent, no label-uθ agent has an incentive to rematch

with (or target) a type-τ agent. Second, because S
1´ε

¨ quθ ą S, no label-uτ agent has an

incentive to rematch with (or target) a type-τ agent. Moreover, the strategy pair is efficient

between label-uτ agents, so there is no blocking pair among them. Therefore, it is only left

to consider blocking pairs consisting of two label-uθ agents who target each other. Let pqx, qyq

be the strategy pair two label-uθ agents agree upon in a pairwise deviation. By the definition

of an incomplete information blocking pair, pqx, qyq P NE θ. Consider the label-uθ agent who

agrees to play qy facing a deviation plan pD,xq such that D “ tθ, τu, xpθq “ qx, and xpτq “ rx.

There are two cases to check:

• qy attaches positive probability to ry, which implies πpqx, qyq ` πpqy, qxq “ πpqx, ryq ` πpry, qxq

because type θ maximizes total material payoffs. Because prx, ryq P NE θ, we must have

πpqx, ryq ` πpry, qxq ď rS. These two together imply that πpqx, qyq ` πpqy, qxq ď rS. Since

prx, ryq P NE θ, we also have πpqy, rxq ` πprx, qyq ď rS. The deviation then yields no more

than

quθprS ` αq ` p1 ´ quθqrS “ rS ` quθα,

which is the utility of a label-uθ agent in the status quo.

• qy does not attach positive probability to ry. The deviation then yields no more than

quθpS ` αq ` p1 ´ quθqpS “ quθpS ´ pSq ` quθα ` pS
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ď
rS ´ pS

S ´ pS
pS ´ pSq ` quθα ` pS

“ rS ` quθα.

Therefore, the label-uθ agent in question does not benefit from playing qy in the pairwise

deviation against pD,xq.

Hence, the outcome pp, µ, Sq is Bayes-Nash stable. Observe that Gτ pp, µ, Sq ą Gθpp, µ, Sq

because prx, ryq is an inefficient strategy pair. We can conclude that the α-homophilic efficient

type is not neutrally stable.

In the construction of the population state and the outcome above, the lower bound on

the proportion of type τ is crucial. Therefore, the proposition should be interpreted with

caution: Any homophilic efficient type is unable to break from an inefficient outcome as the

invading minority in a population, which leads to an average material payoff strictly lower

than that of the incumbent. Therefore, the homophilic efficient types are not neutrally stable.

O.3 An Extension of Proposition 2 under Incomplete Information

Proposition 12. With the presence of incomplete information,

(i) If θ exhibits same-type inefficiency, then θ is evolutionarily unstable;

(ii) If πprx, ryq ‰ πpry, rxq for any efficient strategy pair prx, ryq and uθpx, y, tq “ fpx, yq, then θ

is evolutionarily unstable.

Proof. (i) By Proposition 6, if θ exhibits same-type inefficiency, then the parochial efficient

type is evolutionarily stable against θ. Thus, θ is evolutionarily unstable by definition.

(ii) Let θ be a type such that uθpx, y, tq “ fpx, yq. If θ exhibits same-type inefficiency,

then part (i) applies. Thus, we suppose all strategy pairs in NE lb
θ are efficient. Now consider

another type τ that has the following utility function:

uτ px, y, tq “

$

&

%

πpx, yq ` πpy, xq if t “ τ ,

rπpx, yq ` πpy, xqs ¨ 1tπpx,yqěπpy,xqu ¨ 1tpx,yq is efficientu if t “ θ.

We now show that τ is evolutionarily stable against θ.

First, we argue that Gτ pp, µ, Sq ě Gθpp, µ, Sq for all Bayes-Nash stable outcomes. This

is because by construction of type τ ’s utility function, the following properties hold for any

Bayes-Nash stable outcome:

• If pτ ą 0 and px˚, y˚qτ,τ P S, then px˚, y˚q is efficient;
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• If pτ , pθ ą 0 and px˚, y˚qτ,θ P S, then px˚, y˚q is efficient and πpx˚, y˚q ě πpy˚, x˚q;

• If puµu,τ ą 0 and px˚, y˚qu,τ P S, then px˚, y˚q is efficient and πpy˚, x˚q ě πpx˚, y˚q;

• If puµu,u ą 0 and px˚, y˚qu,u P S, then px˚, y˚q is efficient;

• If puµu,θ ą 0 and px˚, y˚qu,θ P S, then px˚, y˚q is efficient and πpx˚, y˚q ě πpy˚, x˚q.

When the first three properties do not hold, two label-τ agents can form a blocking pair

and coordinate on any efficient strategy pair. When the last two properties are violated,

two label-uτ agents can form a blocking pair with strong incentives. The argument for the

validity of blocking pairs is similar to that in the proof of Proposition 6 and thus omitted.

Write prx, ryq for an arbitrary efficient strategy pair. We then have

Gτ pp, µ, Sq ě
1

2
πprx, ryq `

1

2
pry, rxq ě Gθpp, µ, Sq.

because type-τ agents perform, on average, weakly better than type-θ agents in all possible

matches. (In particular, if puµu,θ ą 0, some type-θ agents (label-uθ agents) are playing an

advantageous strategy, but the average payoff of type θ is lower than 1
2
πprx, ryq ` 1

2
pry, rxq.)

It remains to show that the inequality is strict for some (a large set of) Bayes-Nash stable

outcomes. Recall that we assume πprx, ryq ‰ πpry, rxq for all efficient strategy pairs prx, ryq, so we

have the following three possibilities

(i) pτ , pθ ą 0, prx, ryqτ,θ P S, prx, ryq P NE lb
θ , and πprx, ryq ą πpry, rxq;

(ii) puµu,τ ą 0, pry, rxqu,τ P S, pry, rxq P NE lb
θ , and πprx, ryq ą πpry, rxq;

(iii) puµu,θ ą 0, prx, ryqu,θ P S, prx, ryq P NE lb
θ , and πprx, ryq ą πpry, rxq.

To check that possibilities (i)–(iii) do not give rise to any incomplete information blocking

pairs, simply note that all label-uτ and label-τ agents obtain their highest possible utility;

label-uθ and label-θ agents do not care about the type of their opponents and thus cannot

further improve on their utilities through deviations from NE lb
θ . For all these Bayes-Nash

stable outcomes, we have

Gτ pp, µ, Sq ą
1

2
πprx, ryq `

1

2
pry, rxq ą Gθpp, µ, Sq.

Hence, we have found a preference type τ that is evolutionarily stable against θ. This means

θ is evolutionarily unstable.
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O.4 Examples

O.4.1 Assumption on α is Not Redundant in Proposition 3(i)

Consider a material game where each player has three pure strategies. The material payoffs

are given as follows

A B C
A 0, 0 3, 5 2, 8
B 5, 3 0, 0 0, 0
C 8, 2 0, 0 0, 0

The strategy pair pA,Cq is the unique efficient Nash equilibrium in the material game. It

is also a loser-best Nash equilibrium in the material game, i.e. pA,Cq P NE lb
π . Let θ denote

the α-homophilic selfish type with α ď 1. Let τ be a mutant type that only derives utility

from playing pA,Cq with its own kind and from playing B against the incumbent type. For

example,

uτ px, y, tq “

$

’

’

’

&

’

’

’

%

1 if px, yq P tpA,Cq, pC,Aqu and t “ τ ,

1 if x “ B and t “ θ,

0 otherwise.

For any ε P p0, 1q, at state pθ, τ, εq, take a Nash stable outcome pµ, Sq. We have two

possibilities. (i) If µθ,θ “ µτ,τ “ 1, then S “ tpA,Cqθ,θ, pA,Cqτ,τu. In this case, Gθpµ, Sq “

Gτ pµ, Sq. (ii) If µθ,τ ą 0, we must have pA,Bqθ,τ P S due to the construction of uτ px, y, tq.

Note that this outcome is Nash stable because type-τ agents already obtain their highest

possible utility, and two type-θ agents do not want to deviate since 2 ` α ď 3. In this

case, Gθpµ, Sq ă 5 “ Gτ pµ, Sq. Therefore, when α ď 1, the α-homophilic selfish type is

evolutionarily unstable.

This example shows that for selfishness to be stable, sufficiently strong homophily is

required. Otherwise, when homophilic selfish incumbents are matched with the mutants, they

may not have strong enough incentives to rematch and escape a disadvantageous outcome.

O.4.2 (IIIb) Does Not Imply (IIIa) in Definition 12

We now provide an example to show that case (IIIb) in Definition 12 is not redundant.

Consider the following material game, and let θ be the parochial efficient type.

A B
A 3, 3 0, 0
B 0, 0 0, 0

63



Suppose τ is a type that has different preferences against different opponents. The utility

function uτ px, y, tq is given by the two matrices in the following tables:

against τ
A B

A 0, 0 ´6, 6
B 6,´6 1, 1

against θ
A B

A 2, 2 0, 0
B 0, 0 1, 1

Now consider a population state pθ, τ, ε “ 1
2
q and an outcome pp, µ, Sq that satisfies:

pu “ 1, µu,u “ 1, and S “ tpB,Bqu,uu. That is, all agents have unobservable types, and they

are matched to play the strategy pair pB,Bq. In the status quo, label-uθ agents obtain 0 and

label-uτ agents obtain 1. Internal stability is obviously satisfied.

We first argue that there exists no incomplete information blocking pair with conditional

incentives (i.e. in the sense of case (IIIa) in Definition 12). For either label-uθ or label-uτ

agents, they are willing to deviate only if they face label-uθ agents with positive probability.

Thus, we have three scenarios to consider:

• D “ D1 “ tθu and xpθq “ ypθq “ A. Then label-uτ agents want to join either side and

play A and get 2 which is higher than 1 in the status quo.

• D “ tθ, τu, D1 “ tθu, and xpθq “ ypθq “ A. We have xpτq “ A as it must be

a best response. But then label-uτ agents want to join D1 and play B because
1
2

¨ 0 ` 1
2

¨ 6 ą 1
2

¨ 0 ` 1
2

¨ 2.

• D “ D1 “ tθ, τu and xpθq “ ypθq “ A. It is easy to check that label-uτ agents have

a dominant strategy B, which means xpτq “ ypτq “ B. Then label-uτ agents receive

only 1
2

¨ 1 ` 1
2

¨ 0 “ 1
2
which is less than 1 in the status quo.

Case (IIIb) in Definition 12, i.e. blocking with strong incentives, now has a bite: label-uθ

agents strictly benefit from coordinating on the strategy pair pA,Aq regardless of whether label-

uτ agents will join and what strategies they will play. Therefore, an incomplete information

blocking pair with strong incentives does not imply one with conditional incentives. The

challenge with conditional incentives arises from the fact that, despite the parochial efficient

agents having a significant motivation to sort themselves out, it is not possible to formulate

deviation plans that are compatible with label-uτ agents’ deviating incentives.

O.4.3 Parochial Selfish Type is Not Neutrally Stable

In this section, we construct a material game where the parochial selfish type is not neutrally

stable even though all strategy pairs in NE lb
π are efficient. Consider a material game where

each player has three strategies. The material payoffs are as follows:
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A B C
A 0, 0 8, 10 7, 10
B 10, 8 0, 0 0, 0
C 10, 7 0, 0 0, 0

First observe that for this game, NE lb
π “ tpA,Bq, pB,Aqu, and both strategy pairs in

NE lb
π are efficient. However, there are other Nash equilibria among selfish agents that are

inefficient, e.g. pC,Aq. Now write θ for the parochial selfish type. Consider a type τ that is

an “anti-parochial” efficient type who likes to play the game with θ:

uτ px, y, tq “

$

&

%

πpx, yq ` πpy, xq if t “ τ ,

πpx, yq ` πpy, xq ` 1 if t “ θ.

Now consider a population state pθ, τ, ε “ 1
2
q and an outcome pp, µ, Sq as follows. The

matching profile pp, µq satisfies: (i) pθ “ pu “ 5
18

and pτ “ 4
9
; (ii) µθ,θ “ µu,u “ µτ,u “ µθ,τ “ 0

and µθ,u “ µτ,τ “ 1. That is, all label-θ agents are matched with label-u agents, and label-

τ agents are matched among themselves. Note that quθ “ 4
5
. The strategy profile is

S “ tpC,Aqθ,u, pB,Aqτ,τu. This outcome is depicted in Figure 5.

τθ u

ε “ 1
2

1 ´ ε “ 1
2

pC,Aqθ,u pB,Aqτ,τ
1
18

Figure 5: The matching profile pp, µq.

It is easy to verify that S is a Bayes-Nash equilibrium profile. We now argue that there

does not exist an incomplete information blocking pair under pp, µ, Sq. First, a label-τ agent

can never attract label-θ or label-uθ agent to rematch, and she already obtains the highest

possible utility when matched with her own kind, so she never participates in a blocking pair.

Next, consider the following three cases:

• The best proposal two label-θ agents can make to each other is to coordinate on the

loser-best outcome pA,Bq (or pB,Aq). However, this inevitably creates a “loser” in

each pairwise deviation. The loser obtains a utility of 8, which is equal to what label-θ

agents can derive in the status quo, 10 ˆ 4
5

“ 8. Thus, the blocking pair is not viable.

• Now consider a label-θ agent and a label-uθ agent. The label-θ agent never benefits
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from putting positive probability on strategy A regardless of what the opponent will

play, so she could only promise to play B, C, or a mixture. If she promises to play a

pure strategy C, a label-uθ agent will not participate in the deviation. However, if she

puts positive probability on strategy B, a label-uτ would find it profitable to join the

pairwise deviation and play the best response A, so the expected utility of the label-θ

agent is the same as in the status quo. Therefore, no such incomplete information

blocking pair exists.

• Consider two label-u agents contemplating a pairwise deviation. Since uτ pA,C, θq “

17 ` 1 “ 18, label-uτ agents participate only if they face label-uθ opponents with a

positive probability. Therefore, we have four scenarios to consider according to cases

(IIIa) and (IIIb) in Definition 12:

First, conditional incentives with D “ D1 “ tθu. By the utility functions of type θ,

pxpθq,ypθqq must be a Nash equilibrium of the material game. The best symmetric

mixed strategy Nash equilibrium they can coordinate on is p4
9
A ` 5

9
B, 4

9
A ` 5

9
Bq, but

they can only derive a utility of 40
9

ă 7, even if label-uτ agents do not participate.

Now consider all asymmetric Nash equilibria at once pA,αB ` p1 ´ αqCq and suppose

xpθq “ A. Then the incentive compatibility of D1 is not satisfied because label-uτ

agents also want to participate by playing B and obtain 19 ą 18.

Second, conditional incentives with D “ tθ, τu and D1 “ tθu. If ypθq “ A, the highest

utility θ P D1 can obtain is 8 ¨ 4
5

ă 7, which is worse than in the status quo. If

ypθq “ αB ` p1 ´ αqC, then xpθq “ xpτq “ A, which means τ also wants to join D1

because 4
5

¨ 19 ` 1
5

¨ 18 ą 18, a contradiction.

Third, conditional incentives with D “ D1 “ tθ, τu. Then we must have either

xpθq “ xpτq “ A or ypθq “ ypτq “ A. Suppose xpθq “ xpτq “ A without loss, then

the utility of θ P D is at most 4
5

¨ 8 ă 7, which means it does not benefit from the

deviation.

Finally, strong incentives for two label-uθ agents. Similar to the first scenario, we only

need to consider asymmetric Nash equilibria pA,αB ` p1 ´ αqCq in a deviation. The

label-uθ agents who will play A obtain at most 4
5

¨ 8 ă 7 if label-uτ opponents join and

play B, so they are reluctant to carry out the deviation.

We conclude that pp, µ, Sq is a Bayes-Nash stable outcome. The average material payoffs

of the two types are computed as

Gθpp, µ, Sq “
5

9
¨ 10 `

4

9
¨ 7 “

78

9
,
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Gτ pp, µ, Sq “
1

9
¨ 7 `

8

9
¨ 9 “

79

9
.

Therefore, Gθpp, µ, Sq ă Gτ pp, µ, Sq, and thus the parochial selfish type is not neutrally stable

in this example.

O.4.4 Heterophilic Matching in Polymorphic Population is Not Robust

Suppose the material payoffs of the underlying game is given as follows:

A B
A 0, 0 5, 1
B 1, 5 0, 0

Consider a population distribution ν with νpτq “ νpτ 1q “ 0.5. Suppose uτ px, yq “

πpx, yq ` πpy, xq ` 1tt‰τu and uτ 1px, yq “ πpx, yq ` πpy, xq ` 21tt‰τ 1u. So both types have a

preference for efficiency and they are heterophilic in the sense that they derive an extra utility

from interacting with agents that are different from them. Consider an outcome µτ,τ 1 “ 1 (the

matching is perfectly heterophilic), and a strategy profile S “ tpA,Bqτ,τ 1u. The matching

profile pµpνq, Sq is uniquely Nash stable. However, The two types do not earn the same

material payoffs because the efficient strategy pair pA,Bq is asymmetric. Hence, the condition

on the material game for ν to be balanced (the first criterion for evolutionary stability) is

not satisfied.

Suppose we relax the assumption that the strategies played in an outcome are pairwise-

homogeneous. That is, the strategy pair played by two matched agents only depends on the

types of those agents. Instead, we allow exactly half of the τ -τ 1 pairs play pA,Bq and the rest

play pB,Aq. In this case, both types get an average material payoff of 3, so the population is

balanced. However, we will show that the population is susceptible to mutations.

Consider a mutant type τ 2 whose utility function exhibits plasticity and is given as follows:

type τ 2

A B

type τ 2 A 0,´ 0,´

B 1,´ 1,´

non-type τ 2

A B
A 1,´ 1,´

B 0,´ 0,´

A τ 2-type agent has a dominant strategy of playing B against another τ 2-type agent (so

the τ 2-type exhibits same-type inefficiency because they play pB,Bq and earn a material payoff

of 0 when matched among themselves), and has a dominant strategy of playing A against

any agent that is not type τ 2. Consider a post-entry population state rν “ p1 ´ εqν ` ετ 2, a

matching profile µprνq in which all the τ 2-type agents are matched with the τ 1-type agents
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(in total ε pairs), the rest of the τ 1-type agents are matched with the τ -type agents (in total

p1 ´ εq{2 ´ ε pairs) and the leftover τ -type agents are matched among themselves (in total

ε{2 pairs); and a strategy profile S in which all the τ -τ pairs play pA,Bq, half of the τ ´ τ 1

pairs play pA,Bq, while the rest τ -τ 1 pairs play pB,Aq, and all the τ 1 ´ τ 2 pairs play pB,Aq.

The outcome pµprνq, Sq is Nash stable because 1) all the τ -type and τ 1-type agents are playing

an efficient strategy profile with their opponents and the τ 2-type agents are playing their

dominant strategies; 2) all the τ 1-type agents get a utility of 8 and all the τ 2-type agents get

a utility of 1, so they are not willing to form a blocking pair with those τ -type agents in the

τ ´ τ matches.

Given this Nash stable outcome for the post-entry population state, Gτ 1pµprνq, Sq “

3 ˚ p1 ´ 3εq{p1 ´ εq ` 1 ˚ 2ε{p1 ´ εq ă 3 “ Gτ2pµprν, Sq. Hence, ν is not evolutionarily stable

against τ 2, and it is evolutionarily unstable. The rationale for ν being evolutionarily unstable

is that in the above described Nash stable outcome, some τ 1-type agents are matched with

τ 2-type agent whose dominant strategy is A, the more advantageous strategy in the efficient

strategy pair pA,Bq. Hence, these τ 1-type agents would best respond by choosing B because

of their preference for efficiency, which gives them a low material payoff of 1.

Note that if all efficient strategy pairs in the underlying material game are symmetric,

then the population distribution ν that contains equal proportions of the two heterophilic

preference types τ and τ 1 is evolutionarily stable against any mutant that exhibits same-type

inefficiency because the efficiency strategy pairs being symmetric prevents the incumbents

from being taken advantage of by the mutants, and there always exists a Nash stable outcome

for the post-entry population such that every τ is matched with another τ 1 to play efficiently,

while the mutant type agents are matched among themselves playing inefficiently.

In sum, it is difficult for a polymorphic population distribution that consists of heterophilic

preference types and features heterophilic matching to satisfy the balance condition. Even it

does, it can be invaded. The only scenario in which it can be evolutionarily stable against

any mutant type that exhibits same-type efficiency requires all efficient strategy pair to be

symmetric in the underlying material game.

Of course, a polymorphic population consisting of various homophilic and parochial efficient

type agents can be evolutionarily stable. Nevertheless, in such a population, matching is

assortative instead of heterophilic. In sum, by allowing polymorphism, heterophilic preferences

and heterophilic matching are not as robust as homophilic preferences and assortative matching

under evolutionary selection pressure.
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