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Abstract

We consider the problem of optimal contest design in an environment where contestants
choose not only their effort, but also the distribution of shocks affecting their output.
The presence of such strategic risk taking has a stark effect on contest design: The
winner-take-all contest, whereby the entire prize budget is allocated to the top performer,
maximises the expected effort (or output) of the agents for a wide variety of cost functions,
including those with fixed costs or scale effects. The results also extend to settings where
the designer values greater variability in output.

JEL Classification Codes: C72, C73
Keywords: contest; strategic risk taking; effort; prize allocation

∗Kim: Department of Economics, Emory University (email: kyungmin.kim@emory.edu); Krishna:
Department of Economics, Florida State University (email: rvk3570@gmail.com); Ryvkin: School of
Economics, Finance and Marketing, RMIT University (email: d.ryvkin@gmail.com).

1

mailto:kyungmin.kim@emory.edu
mailto:rvk3570@gmail.com
mailto:d.ryvkin@gmail.com


1. Introduction

Contests—allocation mechanisms based on ordinal performance comparisons—are
used extensively to motivate agents in organisations and other settings.1 A central
question in the theoretical literature on contests has been that of optimal contest design:
How should a fixed budget be distributed across performance ranks? In particular, how
does increasing prize inequality affect agents’ effort? As elaborated later, the literature
provides a number of insightful results. However, existing studies typically consider
a restricted setting where players’ activities are summarised by a scalar value (effort
or output), and they invariably produce nuanced results that depend on the fine details
of the model. In particular, the winner-take-all contest could maximise or minimise
agents’ efforts depending on the structure of effort costs (Moldovanu and Sela, 2001;
Fang, Noe, and Strack, 2020) or exogenous noise (Drugov and Ryvkin, 2020).

In this paper, we address the contest design problem in a novel environment where
players not only exert effort, but also engage in strategic risk taking by “choosing their
own luck.” Specifically, as in the standard all-pay contest with complete information,
each player selects his effort xi at cost cpxiq. Concurrently, he also chooses an arbitrary
unbiased random noise εi, so that the final (realised) output is a non-negative random
variable Yi “ xi ` εi ě 0. This latter element of the model is our main addition to
the standard all-pay contest. Of course, the literature has considered pure risk-taking
contests where each player chooses a distribution with a fixed mean (eg, Myerson, 1993;
Ray and Robson, 2012; Fang and Noe, 2022; Fang et al., 2024). Our contribution in
modelling is, therefore, to bring together two distinct contest models and study how
strategic risk taking influences agents’ effort choices, and vice versa, and their joint
effect on the design of optimal contests.2

We interpret “luck” as the randomness that is inherent in innovative endeavours
and problem-solving more generally. This interpretation applies not only when xi and
Yi correspond to monetary values, but also when they represent physical values of a
good: xi captures the vertical or intrinsic quality of the good, while εi represents the
horizontal or design aspect of the good. To wit, in 1829, the Liverpool and Manchester
railway instituted a contest, the Rainhill Trials, for the best design for a locomotive
engine that could pull trains between the two cities. A £500 reward awaited the winner
(see Taylor, 1995). Within the broad parameters of the trials, contestants offered a wide

1Examples include promotions and bonuses (Bognanno, 2001; Baker, Jensen, and Murphy, 1988),
sales contests (Lim, Ahearne, and Ham, 2009), forced ranking systems (Bretz Jr., Milkovich, and Read,
1992), and R&D competition (Terwiesch and Ulrich, 2009).

2A model in which each player chooses both effort and risk has been studied by Hvide (2002), Kräkel
and Sliwka (2004), Gilpatric (2009), and Kim (2018). However, unlike us, they make use of structural
assumptions on risk taking, restricting the set of possible distributions of Yi (ie, the set of possible joint
distributions of pxi, εiq).
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variety of locomotive designs.3 More recently, the Biomedical Advanced Research
and Development Authority (BARDA) announced the Patch Forward Prize, a $50
million competition to advance microneedle patch-based RNA vaccines for COVID-19,
seasonal influenza, and pandemic influenza.4 Such research contests require contestants
to take calculated risks in their designs, because the quality or level of output is not
guaranteed. The contestants face trade-offs similar to those of financial investors, as
more innovative designs have a higher potential upside but are also more likely to fail,
while tested designs perform more consistently. Crucially, the degree and the exact
“shape” of risk is endogenously chosen by the contestants as part of their innovation
process, in addition to effort.

Organisations often benefit from the ideas and innovations of “customer-facing”
employees. To maximise this knowledge, firms like PwC have instituted in-house
platforms (akin to an “app store”) where employees provide solutions to common
problems that might be useful to others in the firm (see Salvador and Sting, 2022).
Incentives for PwC employees to innovate, in the form of monetary compensation as
well as performance appraisals, depend on download rates and user evaluations. Here,
too, employees come up with design ideas whose uptake is uncertain and depends on
the competing ideas of coworkers.5

Yet another interpretation of endogenous risk taking is signal jamming. Indeed,
as in a standard moral hazard environment, agents may be interested in obfuscating
their true effort with nonproductive activities such as self-promotion, engaging in a
form of (reverse) Bayesian persuasion. The assumption that noise is mean-preserving
then serves as a disciplining constraint similar to the one used in the information design
literature.

Our main result is that in contests with effort and strategic risk taking, the winner-
take-all contest maximises agents’ efforts for all “regular” cost functions (with at
most one inflexion point). This is in stark contrast to the existing result for the model
without risk taking, namely, that the winner-take-all contest is effort-minimizing (effort-
maximising) if the cost function is convex (concave). In other words, in our environment
with strategic risk taking, the winner-take-all contest maximisies expected effort regard-
less of the shape of the cost function.

A key observation for our analysis is that strategic risk taking reduces players’
effort costs to produce a stochastic output Yi in a way that their virtual (effective) cost
function of output, ξ˚, is concave, regardless of the shape of the underlying effort

3The steam powered locomotives included various arrangements of water and fuel which resulted in
a different combinations of speed, reliability, and load pulling capacity.

4Winners were announced in the spring of 2025.
5Gibbs, Neckermann, and Siemroth (2017) find that stronger incentives and rewards foster greater

innovation and result in ideas of a higher quality.
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cost function c. To see this, suppose a player wishes to produce output y1 or y2 with
equal probability. If c is concave then randomising over efforts—exerting effort xi “ y1

and xi “ y2 each with probability 1{2—is more economical than deterministically
choosing effort xi “ py1 ` y2q{2 and then randomising over outputs by choosing
εi “ ˘|y2 ´ y1|{2 with equal probability. In this case, strategic risk taking is irrelevant,
and ξ˚ “ c. Conversely, if c is convex then randomising over outputs is more economical
than randomising over effort, so the player chooses a deterministic effort xi and then
randomises over outputs. In this case, the resulting virtual cost ξ˚ is linear because at
the risk-taking stage, the player faces the mean constraint that ErYis “ xi and ξ˚ reflects
the corresponding shadow cost. This basic idea applies to the entire relevant region of
c and also irrespective of the structure of c. Therefore, the virtual cost of output ξ˚ is
always concave.

To analyze how an increase in prize inequality affects agents’ output choices, it is
useful to decompose the overall effect into the following two components: The prize
effect measures the change in output in response to a change in the prize structure,
keeping the virtual cost of output fixed, while the virtual cost effect represents the
additional impact on output from the equilibrium adjustment of the virtual cost function
keeping the prize schedule fixed.

The prize effect rasises effort (in a stochastic sense) as well as its variability. This
result directly follows from the existing result on the case of concave costs and the
concavity of ξ˚. It then follows that if the virtual cost ξ˚ is independent of the prize
structure then the optimality of WTA contests is immediate. This is indeed the case
when c is concave or convex: If c is concave then ξ˚ always coincides with c. If c is
convex then ξ˚ is an affine function that is independent of the prize schedule.

Beyond the simplest concave or convex cost cases, the virtual cost ξ˚ does depend
on the prize schedule, in which case one must examine whether the virtual cost effect
works in the same direction as the prize effect. Unfortunately, the virtual cost effect is
technically challenging to analyze in general, because it is an equilibrium object that
can be determined only simultaneously with the equilibrium distribution of output. The
resulting complexity prevents us from considering all possible cost functions and also
forces us to employ different approaches for different structures. Still, we manage to
demonstrate the optimality of WTA contests for the two representative cases, with c
(i) initially convex and then concave and (ii) initially concave and then convex. The
existing literature has restricted attention to the case where c is either globally concave or
globally convex, not only because of their tractability but also because they are sufficient
for a nuanced result—namely, that the optimal contest depends on the structure of c.
Yet, cost structures (i) and (ii) are relevant for many applications, and the approach we
develop in this paper allows us to consider them in a unified manner.

We focus on maximising players’ expected effort (equivalently, output). However,
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our results suggest that the WTA contest is likely to be optimal for a class of objectives
that include maximising expected output and the highest output as special cases. This
is because we establish a general stochastic order result for the cases where c is con-
cave, convex, or convex-concave: for those three cases, we show that the equilibrium
distribution of output from the WTA contest dominates that from any other contest in
the increasing convex order. For the concave-convex case, we cannot obtain a similar
stochastic order result, because the virtual cost effect opposes the prize effect for certain
objectives. Nevertheless, due to the difference in equilibrium expected effort, the WTA
contest often remains optimal even if c is concave-convex and the principal’s objective
is to maximise the highest expected output.

More generally, our results suggest that to the extent real world contests are not
WTA, it is because the contest designer cares about distributional aspects of output or
effort. For instance, a designer may not like a large variability in output which forces the
designer to trade off output and variability. Importantly, these tradeoffs for the designer
do not depend on the shape of the contestants’ cost functions.

Related literature. Finding the effort-maximising prize allocation is a classical prob-
lem in the contest literature. The latest and most comprehensive treatments (using three
different contest models) are by Moldovanu and Sela (2001) for incomplete-information
contests with private types; by Fang, Noe, and Strack (2020) for complete-information
contests without noise; and by Drugov and Ryvkin (2020) for complete-information
contests with exogenous noise à la Lazear and Rosen (1981). In all these models, effort
is the only choice variable for contestants. Moreover, the aforementioned studies arrive
at nuanced results, where the WTA contest is optimal in some cases, but prize sharing
is optimal in others, depending on details such as the shape of the cost function (in the
first two) or the distribution of noise (in the last, where costs are always assumed to be
convex).

The two most closely related papers to ours are those on the effects of prize
allocation on flexible risk taking in the absence of effort (ie, with an exogenous mean
output). Fang and Noe (2022) consider a principal facing a selection problem: het-
erogeneous contestants compete for promotion by flexibly selecting stochastic output
as a mean-preserving spread of their ability. The authors show that less competitive
promotion policies—effectively, more equitable prize schedules—reduce risk taking
and lead to improved selection in equilibrium. These results are echoed by Fang et al.
(2024) who show, both theoretically and experimentally, that increasing prize inequality
leads to more dispersion in output.

Methodologically, we leverage the technical results by Dworczak and Martini
(2019). As illustrated in Section 4, the problem of finding the cost-minimising effort
distribution for a given distribution of output is an instance of the Bayesian persuasion
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problem with a continuous state space studied by Dworczak and Martini (2019). We
use their results to determine the structure of the virtual cost function ξ˚, which in turn
allows us to recover the equilibrium distribution of effort.

The rest of the paper is structured as follows. The model is formally set up in
Section 2. In Section 3, we reproduce, for completeness, the arguments from Fang, Noe,
and Strack (2020) underlying the results for contests without risk taking and establish
our main result for two tractable cases (c either globally concave or globally convex)
with elementary methods. In Section 4, we provide the key reformulation of the model
via the virtual cost and use this formulation to characterise the equilibrium for four
representative cost structures—concave, convex, convex-concave, and concave-convex.
Finally, Section 5 contains our comparative statics results with respect to prize inequality
and the optimality of winner-take-all. We discuss some extensions in Section 6 and
conclude in Section 7.

2. The Model

We build upon the standard complete information all-pay contest. There are n pě 2q

players, each choosing effort xi P R` at a cost according to the common cost function
c P R

R`
` . We assume that c is twice differentiable, strictly increasing (with c1pxq ą 0 for

x ą 0), has a finite number of inflexion points, and satisfies cp0q “ 0 and c´1p1q ă 8.
The last condition says that there is a finite level of effort whose cost equals the maximum
possible benefit from the contest (normalised to one). Reflecting the possibility of
mixing, we represent each player i’s choice of effort as a non-negative random variable
Xi. The associated expected cost of effort is given by ErcpXiqs.

Strategic risk taking is modelled as follows: Concurrently with effort Xi, each
player i chooses a random variable εi leading to output Yi “ Xi ` εi, subject to two
constraints: (i) Erεi | Xis “ 0, and (ii) Yi ě 0 almost surely. In other words, each player
can add any unbiased noise to Xi, as long as the resulting output Yi is non-negative. By
definition, Yi is feasible from Xi if, and only if, Yi is a non-negative mean-preserving
spread of Xi. Such a pair pXi, Yiq is said to be admissible. As usual, we use X´i and
Y´i to denote strategy profiles excluding player i.

A contest is defined by a vector v “ pv1, ..., vnq P Rn
`, where vk represents the

prize to the player who produces the k-th highest output. We assume that prizes are
monotonically decreasing in rank, and the total prize budget is normalised to one. In
addition, because setting vn ą 0 (ie, giving surplus to the worst performer) is always
detrimental to players’ incentives, we restrict attention to the prize vectors such that
vn “ 0. Let V :“ tv P Rn

` : v1 ě . . . ě vn “ 0,
řn
k“1 vk “ 1u denote the set of all

prize vectors (contests) that satisfy these restrictions. The usual winner take all (WTA)
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contest corresponds to vWTA “ p1, 0, ..., 0q, while the “punish the bottom” (PTB) contest
has vPTB “ p 1

n´1
, . . . , 1

n´1
, 0q.

Given v P V, a player’s payoff is

uipXi, Yi, X´i, Y´iq “
n
ÿ

k“1

vk ¨ PrYi is ranked k-ths ´ ErcpXiqs.

For notational simplicity, we ignore ties, which will arise with zero probability in
equilibrium.

As usual, a Nash equilibrium is a profile of admissible effort-output combinations,
pX˚

i , Y
˚
i q

n
i“1, such that uipX˚

i , Y
˚
i , X

˚
´i, Y

˚
´iq ě uipXi, Yi, X

˚
´i, Y

˚
´iq for all i and for all

admissible pXi, Yiq
n
i“1. Following the literature, we focus on symmetric equilibria and

use pX˚, Y ˚q to denote a symmetric equilibrium strategy, with marginal distributions
pF ˚, G˚q. The next proposition, whose proof is in Appendix E, records existence.

Proposition 2.1. For each prize schedule v P V, the contest has a symmetric equilib-
rium pX˚, Y ˚q.

As in a few recent studies (Vojnović, 2015; Fang, Noe, and Strack, 2020; Drugov
and Ryvkin, 2020), we adopt the majorisation order over V to compare prize schedules
in terms of the level of inequality.6 For v,w P V,wmajorises v—or,w ismore unequal
than v—if

řk
i“1pwi ´ viq ě 0 for all k “ 1, . . . , n. Clearly, vWTA majorises all v P V,

while vPTB is majorised by any v P V. Therefore, vWTA is the most unequal contest,
while vPTB is the most equal contest, in V.

An elementary way to reduce inequality is via a Pigou-Dalton (PD) transfer,
which reduces the prize to the i-th place and raises the prize to the j-th place by the
same amount for i ă j. Formally, if w,v P Vare such that vi “ wi ´ δ and vj “ wj ` δ

for some i ă j, with vk “ wk for all other k ‰ i, j, then w is more unequal than v,
and v is obtained from w via a PD transfer. Importantly, if w majorises v, then v can
be obtained from w via a finite sequence of such PD transfers. Therefore, in many
instances, in order to prove a comparative static result for the majorisation order it is
sufficient to prove it only for an arbitrary PD (or reverse PD) transfer.

3. First Pass: Prior Results and Elementary Analyses

We begin by reproducing prior benchmark results (in particular, those by Fang, Noe, and
Strack, 2020) in the standard setting without strategic risk taking. We then establish our

6For a comprehensive discussion of the majorisation order and its applications, see, eg, Marshall,
Olkin, and Arnold (2011).
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contest design results for the simplest cases of concave or convex costs via elementary
analyses.

3.1. Contests without Risk Taking

Fix a v P Vand consider the standard complete information all-pay contest in which
each player’s output is given by his effort, ie, Yi “ Xi. As is well known, this contest
has a unique symmetric (mixed strategy) equilibrium in which the distribution of effort
Fi “ F is continuous and supported on r0, c´1pv1qs, and all players earn zero rents (cf.
Barut and Kovenock, 1998). To characterize the equilibrium, suppose a player exerts
effort x, while all other players randomise according to F . The indicative player’s payoff
is then given by ΦpF pxq;vq ´ cpxq, where ΦpF pxq;vq represents the player’s expected
winnings from the contest.

The (benefit) function Φp¨;vq : r0, 1s Ñ R` can be written explicitly as

Φpq;vq “
n
ÿ

k“1

ˆ

n´ 1

k ´ 1

˙

qn´kp1´ qqk´1vk.[3.1]

To understand the structure of Φpq;vq, suppose a player outperforms every other con-
testant with probability q (which corresponds to F pxq). In order to be ranked k-th and
receive prize vk, the player must be above n´ k players while also being below k ´ 1

players. For a given set of other players’ identities, the probability of this event is
qn´kp1´ qqk´1, and the binomial coefficient

`

n´k
k´1

˘

in [3.1] counts the number of ways
the other players’ identities can be selected. For any v P V, q ÞÑ Φpq;vq P r0, v1s is
a continuous and strictly increasing function; thus, Φ´1pt;vq is also a continuous and
strictly increasing function of t over r0, v1s.

Because players earn zero rent in equilibrium, it must be that ΦpF pxq;vq “ cpxq

for all x P supppF q, which implies that the symmetric equilibrium distribution of effort
F is given by

F pxq “

#

Φ´1pcpxq;vq, cpxq ď v1

1, cpxq ą v1.
[3.2]

In equilibrium, each player’s expected winnings are 1{n. The zero-rent condition now
implies that each individual contestant’s expected cost is also equal to 1{n, that is,

1

n
“

ż

ΦpF pxq;vq dF pxq “

ż

cpxq dF pxq for all v P V.[3.3]

For a given v P V, let Xpvq denote the random variable corresponding to the
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equilibrium effort and F px;vq denote the corresponding distribution, as derived in [3.2].
The following comparative statics then hold as shown by Fang, Noe, and Strack (2020),
whose argument we reproduce here for completeness.7

Lemma 3.1. Consider prize schedules v,w P V such that w is more unequal than v.
(a) If cpxq is concave then Xpwq dominates Xpvq in the increasing convex order.
(b) If cpxq is convex then Xpvq dominates Xpwq in the increasing concave order.
(c) If cpxq is linear then Xpwq dominates Xpvq in the convex order.

Proof. It is sufficient to consider v and w such that w is obtained by a reverse PD
transfer from v. Using [3.1], it can be shown that Φpq;wq crosses Φpq;vq once from
below. Together with [3.2], this implies that F px;wq crosses F px;vq once from above.

Suppose c is concave and ErXpvqs ą ErXpwqs. Then, the fact that F p¨;wq crosses
F p¨;vq once from above implies that Xpvq dominates Xpwq in the increasing con-
cave order (see, eg, Theorem 4.A.22 of Shaked and Shanthikumar, 2007). But then
ErcpXpvqqs ą ErcpXpwqqs “ 1{n, which contradicts [3.3], where the strict inequality is
because c is strictly increasing. This establishes part (a). Part (b) for the convex case
can be analogously proven, while the result for the linear case in part (c) follows from
parts (a) and (b).

Intuitively, greater inequality hurts low performers but helps high performers.
Thus, more unequal prizes given players an incentive to “swing for the fences” because
higher values of effort—those more likely to result in top prizes—become relatively
more profitable. When c is concave, this additional dispersion lowers the expected
cost of effort. However, in equilibrium the expected cost of effort stays fixed (cf. the
zero-rent condition [3.3]); hence, players exert more effort. By contrast, if c is convex
then additional dispersion raises overall effort costs, in which case the expected effort
decreases.

Lemma 3.1 highlights the sensitivity of the optimal contest to the structure of
the cost function in the absence of risk taking. If costs are concave then more prize
inequality raises expected effort; therefore, the WTA contest maximises expected effort,
while the PTB contest minimises it. If costs are convex then the effect of prize inequality
on expected effort gets reversed, so the WTA contest minimises expected effort, while
the PTB contest maximises expected effort.

7For random variablesX1 andX2,X2 first order stochastically dominatesX1 if ErupX2qs ě ErupX1qs

for any increasing function u P RR; similarly, X2 dominates X1 in the (increasing) convex order if
ErupX2qs ě ErupX1qs for any (increasing) convex function u P RR. The (increasing) concave order is
defined similarly. Dominance in the convex order represents a mean-preserving spread, while dominance
in the increasing convex order means that X2 is both larger and more variable than X1, in a stochastic
sense.
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3.2. Strategic Risk Taking for Concave or Convex Costs

Next, consider our model in which each player chooses effort Xi and noise εi, so his
output is given by Yi “ Xi ` εi with Erεi | Xis “ 0 and Yi ě 0 a.s.

Concave costs. Suppose c is strictly concave. Then, by Jensen’s inequality, ErcpXiqs ě

ErcpYiqs whenever Yi is a mean-preserving spread of Xi. This implies that no player
has an incentive to engage in strategic risk taking; that is, it is optimal to set Xi “ Yi—
instead of choosing Xi ‰ Yi and then adding noise εi—and thus, the (indirect) cost
of choosing Yi is equal to ErcpYiqs. It follows that the result for the contest without
strategic risk taking continues to apply; in particular, the WTA contest delivers the
greatest expected effort.8

Suppose c is strictly concave, and player iwill choose output Yi. If Yi “ Xi`εi but
Xi ‰ Yi then, by Jensen’s inequality, ErcpXiqs ą ErcpYiqs. This implies that it is optimal
for player i to eschew strategic risk taking and directly produce Yi (ie, setting Xi “ Yi).
With equilibrium therefore devoid of risk taking, the result for the contest without risk
taking continues to apply (cf, Lemma 3.1(a)); in particular, the WTA contest delivers
the greatest expected effort .

Convex costs. An appeal to Jensen again shows that if c is strictly convex then a
deterministic effort (ie, a degenerateXi) is always optimal for each player. Let xd denote
the symmetric deterministic equilibrium effort. Given xd, the game reduces to a pure
risk-taking contest where each player chooses Yi ě 0 subject to ErYis “ xd. For a
fixed level of effort xd, Myerson (1993) provides a general characterization for the pure
risk-taking game, establishing that the unique symmetric equilibrium distribution G (of
Y ) satisfies

ΦpGpyq;vq “ min

"

y

nxd

, v1

*

.[3.4]

As with F , we indicate the dependence of the equilibrium G on v only as needed.
To identify the equilibrium effort xd, suppose all other players select xd and the

distribution G in [3.4]. Then, player i’s problem is

max
xi,Gi

ż

ΦpGpyq;vq dGipyq ´ cpxiq s.t. xi “

ż

y dGipyq.[3.5]

8If costs are only weakly concave, then there may exist equilibria with risk taking. However, all
those are outcome(output)-equivalent to those without risk taking. For example, if c is linear then there
exist both an equilibrium with no risk taking and an equilibrium with no effort randomisation; in fact,
all mixtures between them, yielding the same output distribution, are also equilibria. The same caveat
applies in the weakly convex case.
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As is clear from [3.4], ΦpGpyq;vq is globally concave in y, and so, given xi, it is (weakly)
optimal for player i to eschew strategic risk altogether. Thus, one (but not the only)
solution to his problem in [3.5] is to take a degenerate distribution at xi. This reduces
the problem of finding the optimal effort level to

max
xi

„

min

"

xi
nxd

, v1

*

´ cpxiq



.

From here, it is straightforward that the symmetric equilibrium effort xd is such that
xdc

1pxdq “ 1{n.9
Note that the equilibrium effort xd is independent of v. This means that contest

design does not affect players’ effort choices, so the WTA contest produces the same
expected effort (or output) as any other contest in V. Notice that this neutrality result is
in stark contrast with Lemma 3.1(b), namely, that for convex c, greater prize inequality
disincentivises effort, and so the WTA contest minimises expected effort.

Let Y pvq denote the equilibrium output in contest v P V. We summarize the
findings so far in the following result.10

Proposition 3.2. Consider our model of strategic risk taking, and suppose w is more
unequal than v.
(a) If cpxq is concave then Y pwq dominates Y pvq in the increasing convex order.
(b) If cpxq is convex then Y pwq dominates Y pvq in the convex order.

4. Equilibrium Characterisation

We provide herein a general characterisation of equilibrium in contests with risk taking.
In particular, we find necessary and sufficient conditions for pF ˚, G˚q to constitute an
equilibrium, which can be used to identify the equilibrium distributions.

4.1. Necessary Conditions

Fix a contest v P V, and let MPSpF q denote the set of non-negative mean-preserving
spreads of F . Clearly, pF ˚, G˚q is an equilibrium if and only if it solves the following

9There exists a unique value of x that satisfies xc1pxq “ 1{n—and so a unique symmetric equilibrium—
because the strict monotonicity and convexity of c imply that (i) xc1pxq is strictly increasing and (ii)
xc1pxq ą cpxq ą 1{n for all sufficiently large x. Moreover, xd is in the interior of supppGq “ r0, nv1xds.

10Part (b) of the proposition follows from part (c) of Lemma 3.1 by noting that [3.4] is equivalent to
[3.2] with a linear cost of effort.
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problem:

max
F,GP∆pR`q

„
ż

ΦpG˚pyq;vq dGpyq ´

ż

cpxq dF pxq



s.t. G PMPSpF q.[4.1]

In other words, pF ˚, G˚q should be each player’s best response when the other players
employ pF ˚, G˚q.

Strategic risk taking. A necessary condition for pF ˚, G˚q to be an equilibrium is
that, given F ˚, the distribution of output G˚ solves the following problem:

max
GP∆pR`q

ż

ΦpG˚pyq;vq dGpyq s.t. G PMPSpF ˚q.[4.2]

In other words, G˚ should be a player’s optimal mean-preserving spread of F ˚ when all
other players chooseG˚. This means thatG˚ is a symmetric equilibrium in a generalised
pure risk-taking contest in which the players compete by choosing a mean-preserving
spread of F ˚. Myerson (1993) considers a special case of this contest when F ˚ is both
exogenous and degenerate. In our model, as shown in Section 3.2, a degenerate F ˚

arises endogenously when the cost of effort is convex; in general, the (endogenous)
equilibrium F ˚ can be non-degenerate.

In the generalised risk-taking contest, the equilibrium G˚ cannot have an interior
mass point: If G˚ has a mass point at an interior y, then a contestant can make a discrete
jump in his expected payoff by splitting the mass at y, eg, between y`δ and 0. Moreover,
ΦpG˚;vq must be globally concave: If ΦpG˚;vq is not concave on some interval ry1, y2s

then a contestant has a profitable deviation whereby all the mass in the interval is moved
to the end points y1 and y2 while preserving the mean. We record these observations
next.

Lemma 4.1. In any equilibrium, ΦpG˚pyq;vq is concave over R`.

We now relate the optimal distribution of output G˚ (and a fortiori, the optimal
level of risk taking) to the equilibrium effort level F ˚. If ΦpG˚;vq is strictly concave
(locally) at some y,11 then it must be that G˚pyq “ F ˚pyq. Intuitively, local strict risk
aversion leads a contestant to forgo further risk taking. Thus, for any interval over which
ΦpG˚;vq is strictly concave, F ˚ “ G˚. Together with the fact that G˚ P MPSpF ˚q,
this result also implies that in any maximal interval where ΦpG˚;vq is affine, F ˚ and
G˚ must coincide at the extreme points and, therefore, share the same mean. This
is because intervals of strict concavity and affinity alternate, and there can only be
countably many such intervals. Finally, a related argument can be used to show that both

11A function u : R Ñ R is strictly concave at y if upyq ą 1
2upy ` δq ` 1

2upy ´ δq for all δ ą 0
sufficiently small; it is locally affine at y if there exists a δ ą 0 such that u is affine on py ´ δ, y ` δq.
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equilibrium distributions have bounded support.12 The following result summarises
these observations.

Lemma 4.2. In any equilibrium pF ˚, G˚q, the following hold:
(a) If ΦpG˚;vq is strictly concave on ry1, y2s, then F ˚pyq “ G˚pyq for all y P ry1, y2s.
(b) If py1, y2q is a maximal open interval over which ΦpG˚;vq is affine, then F ˚pyiq “

G˚pyiq for i “ 1, 2, and
şy2
y1
y dpF ˚ ´G˚q “ 0.

(c) supppG˚q (and hence supppF ˚q) is bounded.

Thus far, we have presented some necessary properties of equilibrium pF ˚, G˚q.
However, Lemmas 4.1 and 4.2 do not describe how to relate pF ˚, G˚q to the players’ cost
of effort c. We illustrate next the role of the cost function c in determining equilibrium
effort and output.

Cost minimisation. Given the equilibrium distribution of output G˚, the equilibrium
distribution of effort F ˚ in [4.1] must solve

max
FP∆pR`q

ż

r´cpxqs dF pxq s.t. F PMPCpG˚q,[4.3]

where MPCpGq denotes the set of mean-preserving contractions of G. Intuitively, each
contestant should produce the target output distribution G˚ in the most cost-effective
way. Therefore, F ˚ should be the least costly mean-preserving contraction of G˚. In
other words, [4.3] is a cost-minimisation condition that is necessary for each player’s
profit maximisation.

The problem in [4.3] is far from trivial because of the mean-preserving contraction
constraint.13 Fortuitously, this problem is studied by Dworczak and Martini (2019).14
The key difference is that in Dworczak and Martini (2019) the distribution G˚ is exoge-
nous, whereas G˚ is endogenously determined in our setting. Nevertheless, Dworczak
and Martini’s results imply the following for our cost minimisation problem.

12It is clear that no contestant would ever choose an effort level x such that cpxq ą 1, so supppF˚q Ď
r0, c´1p1qs. The necessary argument for G˚ is more subtle and can be found in Appendix A. The main
idea is that, if supppG˚q extends to a region beyond supppF˚q then, from Lemma 4.2(b), ΦpG˚pyq;vq is
affine in that region; however, Φp¨;vq is bounded by v1, and hence the region has to be bounded.

13The constraint F P MPCpG˚q can be rewritten as
şy

0
rF ptq ´G˚ptqsdt ď 0 for all y P supppG˚q “

r0, ȳs, with equality at y “ ȳ. This set of inequalities, one for each y P r0, ȳq, is a linear constraint in the
space of cumulative distribution functions; moreover, the objective is linear in F . This renders [4.3] an
infinite dimensional linear programming problem; see Dentcheva and Ruszczyński (2003) for a general
treatment of optimisation with stochastic order constraints.

14Dworczak andMartini (2019) consider a Bayesian persuasion problem inwhich the state is distributed
over an interval according to G˚, and the sender’s payoff is some function up¨q that depends only on the
mean of the induced posterior. Since the set of feasible distributions of posterior means coincides with
MPCpG˚q, the sender’s problem can be written as [4.3] with u “ ´c.

13



Lemma 4.3. Let pF ˚, G˚q be a symmetric equilibrium, so that F ˚ solves [4.3]. Then,
there exists a solution ξ˚ to the problem

max
ξPRR`

ż

ξpyq dG˚pyq s.t. ξ ď c, ξ concave over supppG˚q.[4.4]

Moreover, supppF ˚q Ď ty : ξ˚pyq “ cpyqu and
ż

c dF ˚ “

ż

ξ˚ dF ˚ “

ż

ξ˚ dG˚.[4.5]

This result allows us to shift our attention from the direct expected cost of effort,
ş

c dF ˚, to the indirect cost of output,
ş

ξ˚ dG˚. This offers two significant advantages.
First, given ξ˚, the objective function in [4.1] depends only, and linearly, on G˚. Second,
certain structural properties of ξ˚ can be immediately deduced from [4.4]. We will
shortly illustrate how these advantages can be exploited to characterise the equilibrium
distributions.

To understand [4.5], observe that the following (weak duality) always holds:
ż

c dF ˚ ě

ż

ξ˚ dF ˚ ě

ż

ξ˚ dG˚.

The first inequality follows from the constraint c ě ξ˚, and the second one holds because
ξ˚ is concave andG˚ PMPSpF ˚q. Dworczak andMartini (2019) note that [4.3] is a linear
programming problem and [4.4] is its dual. Because their regularity conditions are met
in our model (in particular, c is Lipschitz and G˚ has a compact support), Theorem 2 of
Dworczak and Martini (2019) implies that strong duality holds, ie,

ş

ξ˚ dG˚ “
ş

c dF ˚.

4.2. Virtual Costs and the Equilibrium

Given ξ˚, we can use strong duality in [4.5] to write the player’s problem [4.1] as

max
GP∆pR`q

ż

rΦpG˚pyq;vq ´ ξ˚pyqs dGpyq.[4.6]

This is an unconstrained linear programming problem, and Lemma 4.1 implies 0 P

supppG˚q; moreover,G˚p0q “ 0.15 Hence, it must be that ΦpG˚pyq;vq´ ξ˚pyq “ ´ξ˚p0q

for all y P supppG˚q. Recall from Section 3.1 that in the all-pay contest without risk
taking, the equilibrium distribution of effort F satisfies ΦpF pxq;vq “ mintcpxq, v1u.

15The argument is similar to the standard one for all-pay contests without risk taking (see, eg, Hillman
and Riley, 1989). If other contestants use a G˚ with a mass point at 0, a player can achieve a discrete
jump in winnings at an infinitesimal cost by shifting his G˚ (and F˚) downward.
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Thus, the above result shows that the equilibrium output in our contest coincides with
the equilibrium effort (and output) in an all-pay contest without risk taking where the
cost of effort is given by ξ˚pyq ´ ξ˚p0q. The following proposition, which is our main
characterisation result of this section, formalises this discussion.

Proposition 4.4. Suppose pF ˚, G˚q is a symmetric equilibrium, and let ξ˚ denote a
solution to [4.4]. Then, ΦpG˚pyq;vq “ mintξ˚pyq ´ ξ˚p0q, v1u.

In what follows, we refer to the function ξ˚ as the virtual cost function. As shown
in Lemma 4.1, ΦpG˚pyq;vq is concave because G˚ is an equilibrium in the generalised
pure risk-taking contest, for a given F ˚. At the same time, ξ˚ is concave because F ˚

solves the cost minimisation problem [4.3], for a given G˚. The equilibrium brings these
two pieces of the player’s problem together, and the two concave functions are matched,
up to an additive constant. This constant, as seen from [4.6], is the players’ equilibrium
rent ´ξ˚p0q ě 0.

We now illustrate how the results so far can be used to identify equilibria for the
four leading cases of cost functions with at most one inflextion point.

Concave Costs. If c is concave then, as shown in panel (a) of Figure 1, ξ˚ “ c is
the solution to the dual problem [4.4]. This means that the expected cost of producing
(stochastic) output Yi is equal to Erξ˚pYiqs “ ErcpYiqs, which is consistent with our
characterisation in Section 3.2, namely, that it is optimal for a player to not engage in risk
taking and produce Yi directly—by randomizing over effort levels—when c is concave.
Given this, G˚ can be obtained from Proposition 4.4 using ΦpG˚pyq;vq “ mintcpyq, v1u,
and F ˚ “ G˚ solves [4.3].

ConvexCosts. For expositional ease, we consider the case where c is strictly convex.16
Then, as depicted in panel (b) of Figure 1, ξ˚ is affine and tangent to c at some m˚ ą 0,
that is, ξ˚pyq “ ξ˚p0q`c1pm˚qy. Given this structure, pF ˚, G˚q can be found by applying
Lemma 4.2 and Proposition 4.4. In particular, since supppF ˚q Ď ty : ξ˚pyq “ cpyqu, any
equilibrium necessarily entails a deterministic effort, that is, F ˚ is degenerate at m˚.
Finally, the equilibrium output is distributed according to G˚ such that ΦpG˚pyq;vq “

mintc1pm˚qy, v1u and m˚ “
ş

y dG˚pyq “ 1{rnc1pm˚qs, as in Section 3.2.

Convex-Concave Costs. Now, suppose c is initially convex and then concave, as
depicted in panel (c) of Figure 1. For simplicity, we assume that c is strictly convex
below the inflexion point xι and strictly concave above xι and refer to such cost functions

16The subsequent analysis can be extended to accommodate weakly convex functions with affine
regions, but it renders the resulting exposition substantially cumbersome without providing any new
insights. For example, if c is (only) weakly convex then ξ˚ may coincide with c over an interval. In
this case, similar to the weakly concave case explained in fn. 8, there still exists a deterministic-effort
equilibrium (which is the unique equilibrium if c is strictly convex), but there may exist other equilibria
in which the players randomise over the interval such that ξ˚ “ c.
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(b) Convex
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(c) Convex-concave

Figure 1 – Cost functions (black, solid) and virtual cost functions (red, translucent).

as convex-concave. In this case, as shown in Figure 1(c), the virtual cost function ξ˚
has an affine-concave structure. Formally, for each m ď xι, let bpmqpě xιq denote the
value such that17

cpbpmqq ´ cpmq “ c1pmqrbpmq ´ms,

and define ξxvp¨;mq as the affine-concave function such that

ξxvpy;mq :“

#

c1pmqpy ´mq ` cpmq if y ă bpmq

cpyq if y ě bpmq .
[4.7]

In other words, ξxvp¨;mq is initially affine and tangent to c at m and follows c once it
meets c again at bpmq. The equilibrium virtual cost function ξ˚ belongs to this family
tξxvp¨;mq : m ď xιu of affine-concave functions parametrized by m. We use m˚ to
denote the value such that ξ˚ coincides with ξxvp¨;m˚q. By Proposition 4.4, G˚ is such
that ΦpG˚;vq has the same affine-concave structure as ξ˚. In addition, F ˚ is a non-
degenerate distribution, assigning positive probability to m˚ and coinciding with G˚

above bpm˚q.

17If bpmq is not well-defined, we simply set bpmq “ 8 and interpret ξxv as a globally affine function.
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Concave-Convex Costs. Finally, consider the case where c is initially concave and
then convex, as depicted in panel (d) of Figure 1. Similarly to the convex-concave case,
we assume that c is strictly concave below the inflexion point xι and strictly convex
above xι. Then, as shown in Figure 1(d), the virtual cost function ξ˚ typically has a
concave-affine structure.18 For each m ě xι, let apmq denote the value such that

cpmq ´ cpapmqq “ c1pmqrm´ apmqs,

and define ξvxp¨;mq as the concave-affine function such that

ξvxpy;mq “

#

cpyq if y ď apmq

c1pmqpy ´mq ` cpmq if y ą apmq.
[4.8]

The virtual cost function ξ˚ belongs to this one-parameter family of affine-concave
functions, tξvxp¨;mq : m ě xιu, and we letm˚ denote the value such that ξ˚ “ ξvxp¨;m

˚q.
From here, it follows that ΦpG˚;vq has the same concave-affine structure as ξ˚, and F ˚

now coincides with G˚ until apm˚q and assigns all remaining probability to m˚.

4.3. Sufficient Conditions

As illustrated above, the necessary conditions can be used to characterise the equilib-
rium distributions pF ˚, G˚q. Of course, this approach is valid only when the necessary
conditions are also sufficient for a symmetric equilibrium, which is our final result of
this section.

Proposition 4.5. Suppose there exist distributions F ˚, G˚ P ∆pR`q such that F ˚ P
MPCpG˚q and ΦpG˚pyq;vq “ mintξ˚pyq ´ ξ˚p0q, v1u for all y, where ξ˚ P RR` solves
[4.4]. Then pF ˚, G˚q is a symmetric equilibrium.

Proof. Let V pF,Gq denote the player’s expected utility from the objective in [4.1] for
some F,G P ∆pR`q, with F PMPCpGq. Then we have

V pF,Gq “

ż

ΦpG˚;vq dG´

ż

c dF ď

ż

rξ˚ ´ ξ˚p0qs dG´

ż

c dF

ď ´ξ˚p0q `

ż

ξ˚ dF ´

ż

c dF ď ´ξ˚p0q “ V pF ˚, G˚q.

18The concave-convex cost function can be effectively concave (if the inflexion point xι is sufficiently
large) or effectively convex (if xι is sufficiently small). For those cases, the previous analyses of the
concave and convex cases apply effectively unchanged. In what follows, we focus on the case where c is
neither effectively concave nor effectively convex. Formally, we assume that cpxιq ă v1 and cpx̂q ą 1{n
where x̂ denotes the value that minimises average costs cpxq{x (ie, such that c1px̂q “ cpx̂q{x̂).
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The first inequality holds because ΦpG˚;vq “ mintξ˚ ´ ξ˚p0q, v1u ď ξ˚ ´ ξ˚p0q; the
second inequality holds because ξ˚ is concave and F P MPCpGq; and the third one
holds due to the constraint ξ˚ ď c in [4.4].

5. Comparison of Contests and Optimality of Winner-Take-All

This section analyses the effects of increasing prize inequality on the equilibrium
distribution of output. To be specific, let Y ˚pvq denote an equilibrium output in contest
v P V. We then ask: What happens to Y ˚pvq if v becomes more unequal? In particular,
how does Y ˚pvWTAq compare to Y ˚pvq for any v P V?

5.1. Decomposition

Recall that the equilibrium output Y ˚pvq is fully determined by the prize schedule
v P Vand the virtual cost function ξ˚ (Proposition 4.4), where ξ˚ itself varies with v.
For what follows, it is convenient to define the function

Γpt;vq “

#

Φ´1pt;vq, t ď v1

1, t ą v1.

Let ξ̃˚py;vq :“ ξ˚py;vq ´ ξ˚p0;vq denote the virtual cost net of the equilibrium rent.19
Then, using Proposition 4.4, we can write the equilibrium distribution of output as

G˚py;vq “ Γ
`

ξ̃˚py;vq;v
˘

.[5.1]

Equation [5.1] shows explicitly that v affects the equilibrium distribution of output
in two distinct ways: (i) by determining the function Γp¨;vq (equivalently, the benefit
function Φp¨;vq) and (ii) by influencing the virtual cost function ξ̃˚py;vq.

Consider two prize schedules v,w P V. The change in the distribution of output
from G˚p¨;vq to G˚p¨;wq can be decomposed as follows:

G˚py;wq ´G˚py;vq “ Γpξ̃˚py;wq;wq ´ Γpξ̃˚py;wq;vq

prize effect

` Γpξ̃˚py;wq;vq ´ Γpξ̃˚py;vq;vq

virtual cost effect

[5.2]

where Γpξ̃˚py;wq;vq denotes the distribution of output in the contest with prize schedule

19Unless confusion arises, we will refer to both ξ˚ and ξ̃˚ as “virtual cost”, understanding that they
differ by a constant.
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v and the cost of output ξ̃˚py;wq. In [5.2], the prize effect captures the change in output
in response to a change in the prize structure (from Γp¨;vq to Γp¨;wq), keeping the
virtual cost fixed; while the virtual cost effect measures the additional impact on output
from the equilibrium adjustment in the virtual cost function (from ξ̃˚p¨;vq to ξ̃˚p¨;wq),
keeping the benefit function fixed.

The prize effect is familiar from the model without risk taking, and its properties
directly follow from Lemma 3.1 and the fact that the virtual cost function is always
concave.

Proposition 5.1. For any v,w P Vsuch that w is more unequal than v, Γpξ̃˚py;wq;wq

dominates Γpξ̃˚py;wq;vq in the increasing convex order. Moreover, Γpξ̃˚py;wq;wq

dominates Γpξ̃˚py;wq;vq in the convex order if and only if ξ˚py;wq is affine over the
support of G˚py;wq.

Thus, in any contest with risk taking, the prize effect is the force that moves the
distribution of output upwards in the increasing convex order (or, in a special case, the
convex order). As we shall see below, the virtual cost effect is more subtle and depends
on the structure of c. As observed in Section 4.2, the shape of the cost c determines the
players’ equilibrium rent ´ξ˚p0q. Intuitively, when this rent is positive, players respond
to increased prize inequality by sacrificing a portion of their rent, which allows them
to increase both effort as well as risk-taking (in a stochastic sense). However, if the
equilibrium rent is fixed at 0 for some cost function, effort can no longer (stochastically)
rise when prizes become more unequal because the expected cost must remain at 1{n. In
such a situation, players face more delicate tradeoffs for optimally combining effort and
risk taking. Consequently, the virtual cost effect can only be characterised in expectation.
In the sequel, we study the virtual cost effect for the four representative classes of cost
functions discussed in Section 4.2.

5.2. Concave or Convex Costs

We first illustrate how the decomposition in [5.2] can be combined with Proposition 5.1
to recover Proposition 3.2.

If c is concave then, as illustrated by panel (a) of Figure 1, ξ˚ “ c is the solution
to the dual problem. This means that the equilibrium virtual cost is independent of
v, and hence the virtual cost effect in [5.2] is zero. Part (a) of Proposition 3.2—if c is
concave then Y pwq dominates Y pvq in the increasing convex order—is then implied by
Proposition 5.1.

Next, consider the case where c is convex. Then, as depicted in panel (b) of
Figure 1, ξ˚ is affine and tangent to c; that is, ξ˚pyq “ ξ˚p0q` c1pm˚qy for somem˚pą 0q.
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By Proposition 4.4, the equilibrium output distribution G˚ is such that ΦpG˚pyq;vq “

mintξ̃˚pyq, v1u “ mintc1pm˚qy; v1u. The value of m˚ can now be determined from the
following:

1

n
“

ż

ΦpG˚pyq;vq dG˚pyq “ c1pm˚
q

ż

y dG˚pyq “ c1pm˚
qm˚,

where the first equality is because each contestant’s expected winnings should be 1{n,
the second from Proposition 4.4 and because ξ̃˚pyq “ c1pm˚qy, and the last because G˚

has mean m˚, as noted in Section 4.2.
A crucial observation is that m˚—and hence, ξ˚—is independent of v, which

implies that the virtual cost effect is again zero. Then, part (b) of Proposition 3.2—if c
is convex then Y pwq dominates Y pvq in the convex order—also directly follows from
Proposition 5.1.

5.3. Convex-Concave Costs

We now examine the case where c is convex-concave. In this case, the virtual cost ξ˚

varies with v, and thus the virtual cost effect is not zero.
Characterising the virtual cost effect is technically challenging because ξ˚ is

determined globally, and simultaneously with the equilibrium output distribution G˚.
This limits the generality of our comparative statics result; in particular, we can no
longer accommodate arbitrary changes in prize inequality. However, the optimality of
WTA still holds as strongly as in the concave case, as formally stated in the following
result.

Proposition 5.2. If c is strictly convex-concave then the unique equilibrium output in
the WTA contest dominates the largest equilibrium output from any other contest in
the increasing convex order.

Notice that Proposition 5.2 takes into account potential equilibrium multiplicity
of the convex-concave case. In Appendix C, we present an example in which there are
multiple equilibria (Example C.1) but demonstrate that the WTA contest necessarily
has a unique equilibrium (Proposition C.3). Finally, we show that multiple equilibria are
always clearly ranked by the location of the mass point m˚; in particular, the lower m˚

is, the larger the equilibrium output distribution is in the sense of first order stochastic
dominance (Lemma C.2). This implies that for the purposes of Proposition 5.2, it
suffices to focus on the equilibrium with the lowest value of m˚ for each v. In what
follows, unless otherwise noted, we refer to the equilibrium with the lowest m˚ as the
equilibrium under v P Vand use m˚pvq to denote this value of m˚.
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Figure 2 – How the virtual cost functions vary according to m in the convex-concave case
(left) and in the concave-convex case (right).

To understand Proposition 5.2, recall from Section 4.2 that in the convex-concave
case, the virtual cost function ξ̃˚ is fully determined by m˚, as in [4.7]. Therefore, the
virtual cost effect, which characterises how a change in prize inequality affects the
output distribution via the virtual cost function, can be identified by knowing (i) how the
change in prizes affects m˚ and (ii) how a change in m˚ affects the output distribution.
The following result provides a clear answer for part (ii).

Lemma 5.3. Suppose c is convex-concave, and let ξ̃xvp¨;mq :“ ξxvp¨;mq ´ ξxvp0;mq,
where ξxvp¨;mq is defined in [4.8]. Then, an increase of m lowers the distribution
Γpξ̃xvp¨;mq;vq in the sense of first-order stochastic dominance.

Proof. Observe from [4.8] that ξ̃xv has the following structure:

ξ̃xvpy;mq “

#

c1pmqy if y ă bpmq

cpyq ` c1pmqm´ cpmq if y ě bpmq .

The result follows becausem lies in the convex region of c, so both c1pmq and c1pmqm´
cpmq rise in m, and Γpt;vq is increasing in t.

The left panel of Figure 2 illustrates Lemma 5.3. An increase ofm rotates ξxvp¨;mq
aroundm counterclockwise (from the solid red curve to the solid blue curve). However,
ξ̃xvp¨;mq “ ξxvp¨;mq´ ξxvp0;mq uniformly rises because ξxvp¨;mq falls faster at 0 than at
any other value; see the dashed curves. This means that if m increases then the players
face unambiguously higher (virtual) costs and, therefore, necessarily produce a lower
output.

It remains to study part (i), namely, how m˚pvq depends on v. Intuition suggests
that m˚pvq falls as v becomes more unequal: As illustrated in Section 3.1, given ξ˚,
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increasing prize inequality rotates the equilibrium distribution clockwise, making output
more dispersed, i.e., assigning more probability to relatively low or high values. Because
m˚ is the only low effort level chosen, this tends to push the value of m˚ down. We
establish this result formally for a restricted class of reverse PD transfers such that the
last positive prize is reduced in favor of another prize. We refer to such transfers as
bottom-reducing.

Lemma 5.4. If w is obtained from v via a bottom-reducing transfer then m˚pwq ď

m˚pvq.

Note that the restriction to bottom-reducing transfers in Lemma 5.4 is sufficient,
but not necessary. The special property of bottom-reducing transfers that enables us to
obtain the result is that, by construction, such transfers have the largest discouraging
impact on the low end of the effort distribution; that is, they especially reduce the
incentive to choose low levels of effort/output.

We conclude this subsection by describing how the results so far can be used to
prove Proposition 5.2. Lemmas 5.3 and 5.4 together imply that the virtual cost effect
induced by any bottom-reducing transfer raises the output distribution in the sense of
first-order stochastic dominance (ie, in the increasing order). Recall that the prize effect
always increases the output distribution in the increasing convex order (Proposition 5.1).
Because first-order stochastic dominance implies dominance in the increasing convex
order and the latter is transitive, it follows that G˚p¨;wq “ Γpξ̃˚p¨;wq;wq dominates
G˚p¨;vq “ Γpξ̃˚p¨;vq;vq in the increasing convex order. Proposition 5.2 ensues because
from any v P V, vWTA can be obtained via a finite sequence of bottom-reducing
transfers.20

5.4. Concave-Convex Costs

Finally, we consider the case where c is concave-convex, as defined in Section 4.2. In
this case, as in the convex-concave case, the virtual cost ξ˚ depends on v, so it is crucial
to characterise the virtual cost effect. One immediate observation, however, is that we
can no longer obtain a stochastic order result. This is because the virtual cost effect
is not uniform, as illustrated in the right panel of Figure 2. If m˚ increases then the
virtual cost function ξ˚ rotates counterclockwise around m˚ (from the red curve to the
blue curve), as in the convex-concave case. But now ξ˚p0q “ 0; therefore, unlike in the
convex-concave case, ξ̃˚ “ ξ˚ rotates as well: It falls if y ă m˚ but rises otherwise.

20Clearly, the same conclusion holds whenever w can be obtained from v via a sequence of bottom-
reducing transfers, even if w ‰ vWTA. This suggests that Proposition 5.2 can be generalised somewhat.
However, there may exist multiple equilibria, so the comparison can be made only between the largest
equilibrium outputs under w and v, not between any pair of equilibrium outputs.
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Importantly, the virtual cost increases for high levels of output; therefore, this rotation
acts counter to the prize effect which calls for a more dispersed output distribution.
Nevertheless, we can still obtain the following general comparative statics result, which
implies the optimality of WTA contests in terms of expected output.

Proposition 5.5. If c is concave-convex then the equilibrium expected output ErY ˚pvqs
increases as v becomes more unequal.21

We prove this result by showing that the expected virtual cost effect is zero, which,
given Proposition 5.1, is sufficient for Proposition 5.5. Recall that the virtual cost
function ξ̃˚ “ ξ˚ coincides with ξvxp¨;m

˚q for some m˚ ą xι, where ξvxp¨;mq is defined
by [4.8]. As in the convex-concave case, the virtual cost effect can be determined by
understanding (i) how m˚pvq is affected by prize inequality and (ii) how m˚ affects the
output distribution.

For part (ii), consider the expectation
ş

y dΓpξvxpy;m˚q;vq as a function ofm˚. As
discussed above, if m˚ increases then ξvxpy;m˚q, and hence also Γpξvxpy;m˚q;vq, falls
if y ă m˚ and rises otherwise. However, the key observation is that in equilibrium these
opposing effects exactly cancel each other out, so the expected output stays constant.
To see this formally, observe that the players’ equilibrium payoff is zero and thus, as in
the case of concave costs, each player’s expected virtual cost should equal his expected
winnings:

ż

ξvxpy;m˚
pvqq dΓpξvxpy;m˚

pvqq;vq “
1

n
.

The strictly concave region of ξvxpy;m˚q between 0 and apm˚q is unaffected by a
marginal change inm˚; therefore, the change in

ş

y dΓpξvxpy;m˚q;vq is fully determined
by the integral over the affine part of ξvx. But the equality above implies that the integral
over the affine part remains constant as well.

For Proposition 5.5, it is not necessary to characterize part (i) (ie, how m˚pvq

depends on v), which is why Proposition 5.5 accommodates arbitrary changes in
prize inequality, unlike Proposition 5.2. While it is challenging to characterise the
behaviour ofm˚pvq for an arbitrary PD transfer, we establish, similar to Proposition 5.2,
a clear comparative static for a restricted set of transfers. Specifically, we show that

21In the concave-convex case, there always exists a unique equilibrium, so the equilibrium expected
output is well-defined for any v P V. This result can be obtained as follows: From Lemma 4.2(b), m˚
should be the expected output over the affine region of ξ˚, ie, it must satisfy Hpm˚q “ 0, where

Hpmq :“

ż 8

apmq

py ´mqdΓpξvxpy;mq;vq.

It can be shown that H crosses 0 once because H 1pmq ă 0 whenever Hpmq “ 0.
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m˚pwq ě m˚pvq for top-improving transfers that raise v1 while lowering some vj , j ą 1,
by the same amount (Lemma D.1 in Appendix D).

5.5. Implications for Contest Design

Focusing on the performance of the WTA contest as compared to any v P V, the results
in this section thus far can be summarised as follows:
• If c is concave or convex-concave then Y ˚pvWTAq dominates Y ˚pvq in the increasing
convex order.

• If c is convex then Y ˚pvWTAq dominates Y ˚pvq in the convex order.
• If c is concave-convex then ErY ˚pvWTAqs ě ErY ˚pvqs.

Clearly, the above results imply that if the principal’s objective is to maximise
expected output (or effort) then the WTA contest is optimal, regardless of the structure
of the cost function, in our model of strategic risk taking. As illustrated before, this is in
stark contrast to the results for the all-pay contest without risk taking, namely, that the
WTA contest is effort-maximising if c is concave but effort-minimising if c is convex.
Note also that in the model without risk taking, the effort-maximising contest depends
on the fine structure of c if c is convex-concave or concave-convex.

In fact, our results suggest that the WTA contest is likely to be optimal for a more
general class of performance measures. To see this formally, let Yp1q ě . . . ě Ypnq denote
the order statistics from n iid draws of the random variable Y , and let a P Rn

` be a
vector of weakly declining weights. Then, one can consider the problem of comparing
the weighted sum of order statistics Ya :“

řn
i“1 aiYpiq for different prize structures. This

formulation includes both the highest output (when a “ p1, 0, . . . , 0q) and the expected
output (when a1 “ ... “ an “ 1{n) as special cases, but also allows for all intermediate
cases where the principal assigns weakly higher weights to higher order statistics (such
as considering both expected output and highest output, or selecting a few best ones).
Importantly, the random variable Ya has the following property.

Proposition 5.6. Let v and w be two prize schedules such that the equilibrium output
distribution Y pwq dominates Y pvq in the increasing convex order. Then, the following
hold:
(a) Yp1qpwq dominates Yp1qpvq in the increasing convex order;
(b) ErYapwqs ě ErYapvqs.

Combined with our earlier results, part (a) implies that the distribution of the
highest output is higher in the increasing convex order if the cost function c is concave,
convex, or convex-concave. For the same cost functions, part (b) implies that the WTA
contest maximises ErY ˚a pvqs for any vector of declining weights a P Rn

`. If c is concave-
convex then the result still holds for a broad class of cost functions and objectives
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(because of the expected output result in Proposition 5.5), but we have not established
it in general. The main obstacle is illustrated in Proposition D.3 in Appendix D, where
we show that in the case of the highest output with concave-convex costs, the expected
prize effect and the expected virtual cost effect always oppose each other.

Finally, while our main focus so far has been on output, it is also of interest to con-
sider the impact of contest design on the equilibrium effort,X˚pvq. The characterisation
in Section 3.2 implies that (i) X˚pvWTAq dominates X˚pvq in the increasing convex
order for any v P V if costs are strictly concave, and (ii) X˚pvq “ x d is independent of
v when costs are strictly convex. For concave-convex costs, we can establish the same
result by showing that F ˚p¨;wq crosses F ˚p¨;vq once from above if w is obtained from
v by a top-improving transfer whereby the top prize increases and one of the lower
prizes is decreased by the same amount (see Proposition D.2). For convex-concave costs,
the single-crossing argument no longer works. However, adopting the same strategy
as in Section 5.3, we can show that the unique equilibrium distribution from vWTA

dominates any other equilibrium from any other contest in the increasing convex order:
we construct an effort distribution that corresponds to Γpξ̃p¨;wq;vq and show that it
is dominated by F ˚p¨;wq, but dominates F ˚p¨;vq, in the increasing convex order (see
Proposition C.5).

6. Discussion

This section discusses two generalizations of our model.

Costly risk taking/reduction. In our model, a player’s choice of effort (Xi) is costly,
but his choice of risk (εi) is not.22 This latter assumption is in line with the literature
on risk-taking contests (eg Myerson, 1993; Hvide, 2002; Ray and Robson, 2012).23 In
fact, it is not even clear which should be costly between increasing risk (dispersing εi)
and decreasing risk (contracting εi): If risk is associated with creativity or gambling,
then it is conceivable that choosing a more dispersed distribution is more costly. In the

22The choice of risk is costless only conditional on Xi, and the mean-preserving constraint limits how
much risk a player can take; in other words, risk taking has an indirect cost because a player should exert
more effort to take more risk. Note also that this does not imply that a player’s indirect cost of choosing
an output random variable Yi, denoted by CpYiq, is determined by its mean ErYis. As explained above, if
c is convex then a degenerate Xi is always optimal, in which case CpYiq “ c pErYisq. In general, however,
δErYis PMPCpGiq and so

CpYiq “ min
FPMPCpGiq

ż

cpxqdF pxq ď c pErYisq .

23One exception is Gilpatric (2009), who studies a model in which each contestant can pay to control
the variance of the output. His main model assumes that increasing the variance (beyond the natural
level) is costly; but he also illustrates how his results change if lowering the variance is costly.
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context of production and supply management, however, a key objective is to reduce
errors, implying that a less dispersed distribution is harder to obtain.

It is beyond the scope of this paper to fully incorporate the cost of risk taking
(or reduction) into our model. However, at least conceptually, it is straightforward to
accommodate a “small” cost of risk taking/reduction into our main comparative statics
result. As shown above, unless c is fully convex over the relevant region, the optimality
of vWTA is strict and so unlikely to be affected by a small cost of risk. If c is fully
convex, however, vWTA performs just as well as any other contest in V in terms of
expected output, in which case its optimality depends on the nature of risk costs. If risk
taking (increasing risk) is costly then, as in Fang, Noe, and Strack (2020), vWTA would
perform worse than any other contest, and vPTB would be effort-maximizing. This is a
consequence of the fact that in our model with convex costs, the equilibrium output
distribution under vWTA (respectively, vPTB) is a mean-preserving spread (respectively,
contraction) of—and so more (respectively, less) costly than—that from any other
contest in V (see Proposition 3.2). Conversely, if risk reduction (decreasing risk) is
costly then the optimality of vWTA would strengthen: Reversing the previous logic, vWTA

would yield a strictly higher effort than other contests even when c is convex.

More general effort cost structures. It is natural to ask whether our results can be
extended to a broader class of cost functions permitting multiple inflexion points in
the relevant region.24 The main difficulty lies in the equilibrium characterisation of the
virtual cost function ξ˚. When there is at most one inflexion point, the entire family of
potential virtual costs has a simple structure with a one-dimensional parameterisation
(say, by the location of the point of tangency between the affine segment of ξ˚ and c).
This allows us to provide a comprehensive characterisation for the set of equilibria and
obtain clear comparative statics results.

When c has multiple inflexion points, the structure of ξ˚ becomes more complex,
with possibly multiple affine segments, either adjacent or alternating with strictly
concave segments. Importantly, because ξ˚ is determined globally, and simultaneously
with the equilibrium output distribution G˚, the number of its affine segments is not
fixed and can change with v. That is, ξ˚ can “jump” discontinuously with v, at which
point G˚ also jumps, and we can no longer make use of “local” methods as in Section 5
to analyse global comparative statics. Moreover, our techniques do not allow us to
establish equilibrium uniqueness nor rank (possible) multiple equilibria by expected
output.

Nevertheless, we can conduct local comparative statics when ξ˚ is regular, in
the following sense. Suppose c has finitely many inflexion points and ξ˚ consists of

24Having more inflexion points beyond the support of G˚ has no impact on our equilibrium analysis
and comparative statics.
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some number of alternating affine and strictly concave segments such that each strictly
concave segment is an interval of positive length. In that case, due to the optimality of
ξ˚ in the dual problem [4.4], the objective

ş

ξ dG˚ is stationary at ξ˚ in each of its affine
segments independently. That is, small variations in the points of tangency between ξ˚

and c do not change the structure of ξ˚, and local methods similar to those in Section 5
can be used to show that a (particular type of) small increase in prize inequality raises
equilibrium expected output. As mentioned above, these local results do not translate
into global ones because of the possibility of multiple equilibria and discontinuous
changes in the structure of ξ˚.

That said, we are unable to find a counterexample where the optimality of WTA
contests for expected output does not hold. We, therefore, conjecture that this result
holds in general. Proving it likely requires other methods and is left for future research.

7. Conclusion

We conclude by discussing broader implications of our results and a few potential
extensions.

Our model produces an unusually clear and robust prediction, namely, that the
winner-take-all contest is optimal for a large class of cost functions and principal
objectives. This implies that our model can be more easily falsified than other models.
Specifically, the observation that some other contest induces more efforts than the WTA
contest immediately falsifies our model. However, it does not falsify Moldovanu and
Sela, 2001 or Fang, Noe, and Strack (2020) because the phenomenon does arise under
convex costs in these models. It also does not falsify Drugov and Ryvkin (2020) because
the same happens (under convex costs) if the (exogenous) shocks are heavy-tailed.

Our analysis is particularly relevant for contest environments where agents are
engaged in complex and creative tasks with uncertain outcomes, such as research
and innovation contests, architectural design contests, or competition for promotion
or bonuses in suitable types of organisations. Therefore, our results suggest that the
winner-take-all contest is more likely to be prevalent in those than in other environments
where an agent’s output mostly depends on his own effort or an agent cannot control
noise to his output.

In many cases (eg, when costs are convex), a risk-averse principal who cares about
aggregate, or average, output, will also face a trade-off between risk and aggregate
efficiency and may prefer to use prize sharing to reduce the variance of effort. For
example, for a public research funding agency whose main mission is to support basic
research and grow a wide research ecosystem (such as the NSF in the US or the ARC
in Australia), it would make sense to fund many projects. The same applies to private
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foundations focusing on broad agendas, such as the Russel Sage Foundation or the Bill
andMelinda Gates Foundation. A similar trade-off is faced by managers in organisations
where stakeholders expect stable revenue streams.

A natural extension of our approach is to consider agents with private heteroge-
neous abilities. In addition to the usual contest design problem, an important application
of such a setting is selection contests where the principal’s objective is to reward (eg,
promote) more able agents. Our techniques allow for a generalisation of Fang and Noe
(2022) to continuous distributions of prior abilities. Another application we can gener-
alise is to political competition, similar to Myerson (1993) where we can endogenise
politicians’ aggregate investments, ie, the “budgets” that politicians have to cultivate
minorities. The introduction of endogenous risk taking can also help us contribute to
better understanding the moral hazard problem, especially in the context of innovation
contests. For instance, in the model of Che and Gale (2003), agents compete in a contest
by first making costly investments to determine (private) output and then by partici-
pating in a mechanism chosen by the principal. A central assumption in Che and Gale
(2003) is that the private research investments completely determine research output.
A natural extension of our approach would be to consider such research contests, but
where the agents can choose effort as well as strategic risk. This clearly changes the
incentives for effort and may provide a more robust comparison of different mechanisms
and research contest formats.
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A. Proofs for Section 4

Proof of Lemma 4.1. By definition, G˚ should be a solution to

max
G

ż

ΦpG˚pyq;vq dGpyq s.t. G PMPSpF ˚q.[A.1]

To avoid triviality, assume that F ˚ is not a degenerate distribution at 0. Suppose
ΦpG˚pyq;vq is not concave over R`. Then, there exist y1 and y2 such that 0 ď y1 ă y2

and

ΦpG˚py2q;vq ´ ΦpG˚py1q;vq

y2 ´ y1

py ´ y1q ` ΦpG˚py1q;vq ą ΦpG˚pyq;vq[A.2]

for all y P py1, y2q.
Consider an alternative distribution Ĝ that coincides with G˚ outside of ry1, y2s

and assigns the remaining probability G˚py2q ´G
˚py1q to y1 and y2 so that the mean of

G˚ is preserved. Formally,

Ĝpyq :“

$

’

’

&

’

’

%

G˚pyq y ă y1

G˚py1q ` p1´ βqrG
˚py2q ´Gpy1qs y P ry1, y2q

G˚pyq y ě y2

where β :“
şy2
y1

y´y1
y2´y1

dG˚pyq. Notice that p1´ βqy1` βy2 “
şy2
y1
y dG˚pyq, which ensures
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ş

y dĜpyq “
ş

y dG˚pyq. By construction, Ĝ is a mean-preserving spread of G˚, so
Ĝ PMPSpG˚q ĎMPSpF ˚q.

Restricting attention to the interval ry1, y2s (on which Ĝ differs from G˚), we have
ż y2

y1

ΦpG˚pyq;vq dĜpyq

“ p1´ βqΦpG˚py1q;vq ` βΦpG˚py2q;vq

“ ΦpG˚py1q;vq

ż y2

y1

y2 ´ y

y2 ´ y1

dG˚pyq ` ΦpG˚py2q;vq

ż y2

y1

y ´ y1

y2 ´ y1

dG˚pyq

“

ż y2

y1

„

ΦpG˚py2q;vq ´ ΦpG˚py1q;vq

y2 ´ y1

py ´ y1q ` ΦpG˚py1q;vq



dG˚pyq

ą

ż y2

y1

ΦpG˚pyq;vq dG˚pyq

where the inequality is due to [A.2]. This implies that
ż

ΦpG˚pyq;vq dĜpyq ´

ż

ΦpG˚pyq;vq dG˚pyq ą 0,

which contradicts the requirement that G˚ solves [A.1].

Proof of Lemma 4.2. Given that other players play G˚, a player who has chosen effort
x P R` faces the following problem:

V px;G˚q :“ max
G

ż

ΦpG˚pyq;vq dGpyq s.t.
ż

y dGpyq “ x.[A.3]

Since ΦpG˚;vq is globally concave (Lemma 4.1),
ş

ΦpG˚;vq dG̃ ě
ş

ΦpG˚;vq dG when-
ever G P MPSpG̃q. This implies that δx (the degenerate distribution at x) is always a
solution to the above problem, that is, V px;G˚q “ ΦpG˚pxq;vq for all x P R`.

Suppose ΦpG˚;vq is strictly concave at x1 (see Footnote 11). Together with the
global concavity of ΦpG˚;vq, this implies that there exists an affine function ` such that
`pyq ě ΦpG˚pyq;vq, with equality holding only when y “ x1. Then, for any distribution
G such that

ş

y dGpyq “ x1 and supppGq ‰ tx1u, we have
ż

ΦpG˚;vq dG ă

ż

` dG “ `pxq “ ΦpG˚px1q;vq.

This suggests that if ΦpG˚;vq is strictly concave at x1 then δx1 is uniquely optimal for
an individual player.

Next, suppose ΦpG˚;vq is affine on ry1, y2s that contains x1. Without loss, assume
that ry1, y2s is a maximal interval over which ΦpG˚;vq is affine. Let ` denote the affine
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function that coincides with ΦpG˚;vq on ry1, y2s. Since ΦpG˚;vq is globally concave,
we have `pyq ě ΦpG˚pyq;vq, with equality holding only on ry1, y2s. Consider any
distribution G whose mean is x1. If supppGq Ď ry1, y2s then

ż

ΦpG˚;vq dG “

ż

` dG “ `px1q “ ΦpG˚;vq “ V px1;G˚q.

Otherwise,
ż

ΦpG˚;vq dG ă

ż

` dG “ V px1;G˚q.

Therefore, any solution G to [A.3] has supppGq Ď ry1, y2s.
Suppose ΦpG˚;vq is strictly concave at x. Then, the above results imply that a

player with x1 ă x will never choose a distribution G such that the upper bound of
supppGq exceeds x: If ΦpG˚;vq is strictly concave around x1 then the player would
simply choose x1. If ΦpG˚;vq is affine around x1 then the player may induce y ą x1 but
will never go beyond x. Similarly, a player with x1 ą x will never choose a distribution
G such that the lower bound of supppGq falls short of x. These together imply that
G˚pxq “ F ˚pxq, establishing part (a).

Part (b) trivially holds if ΦpG˚;vq is globally affine over its support. Suppose not.
Then, part (a) implies that F ˚pyiq “ G˚pyiq for i “ 1, 2 whenever ry1, y2s is a maximal
interval over which ΦpG˚;vq is affine. Combining this with F ˚ P MPSpG˚q, it also
follows that

şy2
y1
y dF ˚ “

şy2
y1
y dG˚.

It remains to prove that the upper bound of supppG˚q is bounded. Let y ď 8

denote the upper bound. Lemma 4.1 and parts (a) and (b) imply that supppG˚q is
an interval starting from 0 that can be partitioned so that over each ry1, y2s in the
partition, either ΦpG˚;vq is strictly concave and G˚ “ F ˚, or ΦpG˚;vq is affine and
şy2
y1
y dG˚pyq “

şy2
y1
y dF ˚pyq. Let xF pď c´1p1qq denote the upper bound of supppF ˚q.

If G˚pxF q “ F ˚pxF q “ 1 then y “ xF . Otherwise, ΦpG˚pyq;vq must be affine for all
y P supppG˚q X pxF ,8q. Thus, ΦpG˚pyq;vq has a positive slope for y ą xF , and hence
there exists a finite ŷ such that ΦpG˚pŷq;vq “ v1, and y ď ŷ.

Proof of Lemma 4.3. Our maintained assumptions on c ensure that the conditions of
regularity in Dworczak and Martini (2019) hold. In addition, by Lemmas 4.1 and 4.2,
supppG˚q “ r0, ys for some y. The desired result is then immediate from Theorem 2
and Proposition 1 of Dworczak and Martini (2019), when ´c and ´ξ˚ are mapped to u
and p, respectively, in their problem.
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B. Proofs for Section 5

Proof of Lemma 5.4. Fix v P V, and let vδ denote the prize vector obtained from v via
a bottom-reducing transfer of size δ from j “ maxti : vi ą 0u to some i ă j. We show
that m˚pδq :“ m˚pvδq is strictly decreasing. Recall that we focus on the smallest value
of m˚ such that Hpm˚, δq “ 0, where

Hpm, δq :“

ż bpmq

0

py ´mq dΓpξ̃xvpy;mq;vδq.

For such m˚, we have Hmpm
˚, δq ď 0. Since Hpm˚pδq, δq “ 0 holds for any δ, the

desired result holds if Hδpm
˚p0q, 0q ă 0. We now prove this inequality.

We first make a few useful observations. For all y ă bpmq, ξ̃xvpy;mq “ c1pmqy,
and hence ΦpΓpc1pmqy;vδq;vδq “ c1pmqy. Differentiating both sides with respect to δ
and evaluating them at δ “ 0, we have

φijpΓpc
1
pmqy;vqq ` Φ1pΓpc1pmqy;vq;vqγpy;m,vq “ 0[B.1]

where

φijpqq :“

ˆ

n´ 1

i´ 1

˙

qn´ip1´ qqi´1
´

ˆ

n´ 1

j ´ 1

˙

qn´jp1´ qqj´1[B.2]

and
γpy;m,vq :“

B

Bδ
Γpc1pmqy;vδq

ˇ

ˇ

ˇ

ˇ

δ“0

.

Let q0 be the unique interior point at which φijpq0q “ 0. Then, φijpqq ă 0 if q P p0, q0q,
while φijpqq ą 0 if q P pq0, 1q. Combined with [B.1], this implies that γpy;m,vq ą 0 if
q P p0, q0q, while γpy;m,vq ă 0 if q P pq0, 1q.

Integrating by parts, we obtain

Hpm, δq “ pbpmq ´mqΓpc1pmqbpmq;vδq ´

ż bpmq

0

Γpc1pmqy;vδq dy.

Differentiating Hpm, δq with respect to δ and evaluating the derivative at pm, δq “
pm˚, 0q, we obtain

Hδpm
˚, 0q “ pbpm˚

q ´m˚
qγpbpm˚

q;m˚,vq ´

ż bpm˚q

0

γpy;m˚,vq dy.

Combining [B.1] with the fact that Φ1pΓpc1pmqy;vq;vq dΓpc1pmqy;vq “ c1pmq dy for
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y ă bpm˚q yields

´

ż bpm˚q

0

γpy;m˚,vq dy “
1

c1pm˚q

ż Γpc1pm˚qbpm˚q;vq

0

φijpqq dq

ă
1

c1pm˚q

ż 1

0

φijpqq dq “ 0

where the inequality holds because φijpqq ą 0 for q P pq0, 1q. There are the following
two cases to consider: (i) γpbpm˚q;m˚,vq ď 0 and (ii) γpbpm˚q;m˚,vq ą 0. The result
(Hδpm

˚, 0q ă 0) is straightforward in the former case.
Consider the case where γpbpm˚q;m˚,vq ą 0, which, by the result above, is

equivalent toΓpc1pm˚qbpm˚q;vq ă q0; we use the properties of bottom-reducing transfers
for this part of the proof. Using the condition Hpm˚, 0q “ 0, Hδpm

˚, 0q can be rewritten
as

Hδpm
˚, 0q “

γpbpm˚q;m˚,vq

Γpc1pm˚qbpm˚q;vq

ż bpm˚q

0

Γpc1pm˚
qy;vq dy ´

ż bpm˚q

0

γpy;m˚,vq dy

“
γpbpm˚q;m˚,vq

Γpc1pm˚qbpm˚q;vq

ż bpm˚q

0

γpy;m˚,vq

„

Γpc1pm˚qy;vq

γpy;m˚,vq
´

Γpc1pm˚qbpm˚q;vq

γpbpm˚q;m˚,vq



dy.

For Hδpm
˚, 0q ă 0, it is sufficient for Γpc1pm˚qy;vq{γpy;m˚,vq to be increasing in

y—as it implies that the bracketed term is negative for any y ď bpm˚q—or equivalently,
that Rpq;vq :“ ´qΦ1pq;vq{φijpqq is increasing in q for q ă q0, where we have used [B.1]
and set q “ Γpc1pm˚qy;vq. Using the definitions of Φ and φij , it can be shown that

qΦ1pq;vq “ pn´ 1qqn´jp1´ qqj´1
j
ÿ

k“1

ˆ

n´ 2

k ´ 1

˙

zj´k∆vk[B.3]

and

φijpqq “

ˆ

n´ 1

i´ 1

˙

qn´jp1´ qqj´1
pzj´i ´ zj´i0 q

where z “ q{p1´ qq, z0 “ q0{p1´ q0q, and ∆vk “ vk ´ vk`1 ě 0. Now, Rpq;vq can be
written as

Rpq;vq “ ´
qΦ1pq;vq

φijpqq
“
pn´ 1q

řj
k“1

`

n´2
k´1

˘

zj´k∆vk
`

n´1
i´1

˘

pzj´i0 ´ zj´iq
.

Clearly, the numerator is increasing in z and the denominator is decreasing in z; therefore,
Rpq;vq is increasing in z, and hence in q, as required.
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Proof of Proposition 5.5. It suffices to show that at m “ m˚pvq

d

dm

ż

y dΓpξvxpy;mq;vq

ˇ

ˇ

ˇ

ˇ

m“m˚
“

d

dm

ż

p1´ Γpξvxpy;mq;vqq dy

ˇ

ˇ

ˇ

ˇ

m“m˚

“ ´

ż

d

dm
Γpξvxpy;mq;vq dy

ˇ

ˇ

ˇ

ˇ

m“m˚

“ ´

ż

Γ1pξvxpy;m˚
q;vq

dξvxpy;m˚q

dm
dy “ 0

where the first equality is via integration by parts. Given the concave-affine structure
[4.8] of ξvx, we have

ξ1vxpy;mq “

#

c1pyq if y ă apmq

c1pmq if y ą apmq.

and

dξvxpy;mq

dm
“

#

0 if y ă apmq

c2pmqpy ´mq if y ą apmq.

In addition, because G˚py;vq “ Γpξvxpy;m˚q;vq for any y P supppG˚p¨;vqq, we have

dG˚py;vq

dy
“ Γ1pξvxpy;m˚

q;vqξ1py;m˚
q.

Combining all these leads to

d

dm

ż

y dΓpξvxpy;mq;vq

ˇ

ˇ

ˇ

ˇ

m“m˚
“ ´

c2pm˚q

c1pm˚q

ż 8

apm˚q

py ´m˚
q dG˚py;vq “ 0,

where the second equality follows from the fact that F ˚ P MPCpG˚q, and so m˚ “

ErY ˚pvq | Y ˚pvq ě apm˚qs.

Proof of Proposition 5.6. We make use of the following result, which is an extension
of Theorem 1 in Chew, Karni, and Safra (1987).

LemmaB.1. Let V : ∆pr0, dsq Ñ R` be a functional defined as V pHq :“
ş

vpyq dpϕpHpyqq,25
where v is increasing, convex, and continuously differentiable, and ϕ P r0, 1sr0,1s is
strictly increasing, onto, convex, Lipszhitz, and twice continuously differentiable. If G1

dominates G2 in the increasing convex order, then V pG1q ě V pG2q.

25The functional V represents preferences in the rank-dependent utility model of decision making
under risk.
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Proof. We first show that V is concave. For each α P r0, 1s, let Gα :“ αG1 ` p1´ αqG2.
Notice that V pGq “ vpdq ´

ş

φpGpyqq dvpyq via integration by parts. Then, we have

V pGαq “ vpdq ´

ż

φpGαq dy

ě α

„

vpdq ´

ż

φpG1
q dy



` p1´ αq

„

vpdq ´

ż

φpG2
q dy



“ αV pG1
q ` p1´ αqV pG2

q

where the inequality follows from the convexity of φ.
Next, we show that V 1pGαq :“ d

dα
V pGαq ě 0. Observe that

V 1pGαq “
d

dα

„

vpdq ´

ż

φpαG1
pyq ` p1´ αqG2

pyqq dvpyq



“ ´

ż

d

dα

“

φpαG1
pyq ` p1´ αqG2

pyqq
‰

dvpyq

“ ´

ż

φ1pGαpyqqrG
1
pyq ´G2

pyqs dvpyq

“

ż
„
ż y

0

φ1pGαpzqq dvpzq



dpG1
pyq ´G2

pyqq

where the last equality is via integration by parts. The integrand in the final expression,
şy

0
φ1pGαpzqq dvpzq, is increasing and convex in y, because

d

dy

ż y

0

φ1pGαpzqq dvpzq “ φ1pGαpyqqv
1
pyq

and both φ and v are non-negative, increasing and convex. Then, V 1pGαq ě 0 follows
from the fact that G1 ěicx G

2.
For the final result V pG1q ě V pG2q, notice that, since V is concave, the funda-

mental theorem of calculus applies, so

V pG1
q ´ V pG2

q “

ż 1

0

V 1pGαq dα.

Since V 1pGαq ě 0 for all α, V pG1q ´ V pG2q ě 0.

Recall that our goal is to show that if Y 1 ěicx Y
2 then ErY 1

a s ě ErY 2
a s. Let G

denote the distribution for a random variable Y and Gpiq denote the distribution of Ypiq
(the i-th order statistic from n i.i.d. draws of Y , where Yp1q ě . . . ě Ypnq). The latter is
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given by Gpiqpyq “ ϕipGpyqq where

ϕipqq “
n
ÿ

j“n`1´i

ˆ

n

j

˙

qjp1´ qqn´j

for all q P r0, 1s. Note that

ErYas “
n
ÿ

i“1

ai ErYpiqs “
n
ÿ

i“1

ai

ż

y dGpiqpyq “

ż

y d
n
ÿ

i“1

aiϕipGpyqq.

Define

ϕpqq :“
n
ÿ

i“1

aiϕipqq “
n
ÿ

i“1

ai

n
ÿ

j“n`1´i

ˆ

n

j

˙

qjp1´ qqn´j “
n
ÿ

j“1

Aj

ˆ

n

j

˙

qjp1´ qqn´j,

with Aj :“
řn
i“n`1´j ai. Differentiating ϕpqq, we obtain

ϕ1pqq “
n
ÿ

j“1

Aj

ˆ

n

j

˙

qj´1
p1´ qqn´1´j

rjp1´ qq ´ pn´ jqqs

“

n
ÿ

j“1

Aj
n!

pn´ jq!pj ´ 1q!
qj´1

p1´ qqn´j ´
n
ÿ

j“1

Aj
n!

pn´ 1´ jq!j!
qjp1´ qqn´1´j

“ n
n´1
ÿ

j“0

pAj`1 ´ Ajq

ˆ

n´ 1

j

˙

qjp1´ qqn´1´j
“ n

n´1
ÿ

j“0

an´j

ˆ

n´ 1

j

˙

qjp1´ qqn´1´j.

Differentiating once again leads to

ϕ2pqq “ npn´ 1q
n´2
ÿ

j“0

pan´j´1 ´ an´jq

ˆ

n´ 2

j

˙

qjp1´ qqn´2´j.

For a1 “ 0, the result is trivial. If a1 ą 0, we can assume without loss that
řn
i“1 ai “ 1,

and then the above implies that ϕ P r0, 1sr0,1s is strictly increasing, convex, and onto,
and the result follows from Lemma B.1.

C. Further Results for the Convex-Concave Case

This appendix provides further characterization results for the convex-concave case.
We begin with an example with multiple equilibria.
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m˚ bpm˚qµ

t

c,ξ˚,ξ̃˚

0

ξ˚p0q

m˚pv1q

m˚pv3q

m˚pv2q

m

H

0

Figure 3 – This figure depicts Example C.1. The left panel shows the cost function c (black,
solid) and virtual cost functions ξ˚ (red, solid) and ξ̃˚ (blue, dashed). The right panel shows
Hpm,vq for prize schedules v1 “ 1

4p1.01, 1, 0.99, 0q (black), v2 “ 1
4p1.025, 1, 0.975, 0q

(red) and v3 “ 1
4p1.05, 1, 0.95, 0q (blue). Parameter values: µ “ 0.465, α “ 0.1, n “ 4.

Example C.1. For some µ ą 0 and α ą 0, consider the following cost function:

cpxq “

#

x2 if x P r0, µs
µ2 ` αpx´ µq if x ą µ.

As depicted in the left panel of Figure 3, this function is strictly convex below µ and
affine above µ. It is easy to see that the non-differentiability of c at µ does not affect the
analysis, because it must be that ξ˚pµq ă cpµq, so µ R supppF ˚q. In addition, the affine
portion can be approximated by strictly concave curves.

Proposition C.3 below identifies two sufficient conditions for the equilibrium
uniqueness in the convex-concave case: The first one requires that the marginal cost
be sufficiently large in the concave region, and the second one requires that the prize
schedule be such that the benefit function Φpq;vq is convex. Therefore, to construct
an example with multiple equilibria, we choose parameters so as to maximally violate
these conditions, by choosing a low value of α and prize schedules close to the punish-
the-bottom contest vPTB, for which Φpq;vq is globally concave.

Specifically, we consider contests with n “ 4 players and three prize schedules,
v1, v2 and v3, that differ by bottom-reducing transfers see the caption to Figure 3).
Similar to Footnote 21, define the following function:

Hpm,vq :“

ż bpmq

0

py ´mq dΓpξxvpy;mq;vq.

Following the same logic as in Footnote 21, Hpm˚,vq “ 0 is necessary and sufficient
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for m˚ to yield an equilibrium. As shown in the right panel of Figure 3, Hp¨;vq crosses
0 and, therefore, the equilibrium is unique in contests v1 and v3. However, in contest
v2, Hp¨;vq crosses 0 three times, and thus there are three equilibria.

Note that, consistent with the proof of Proposition 5.2, the lowest equilibrium
m˚ shifts to the left. In addition, if we change v continuously from v1 to v2 via a
bottom-reducing transfer, the lowest equilibrium m˚ will jump discontinuously from
m˚pv1q to a lower point. With inequality rising further, three equilibria will exist until
the local maximum of Hpm,vq falls below zero, at which point there is again a unique
equilibrium similar to contest v3.

The following result shows that when there are multiple equilibria, they can be
clearly ranked in terms of output.

Lemma C.2. In the convex-concave case, as m˚ increases, the equilibrium output
distribution G˚ falls in the sense of first-order stochastic dominance, while the players’
equilibrium expected payoff rises.

Proof. Since the equilibriumm˚ necessarily lies in the convex region of c, the function
ξ̃˚pyq “ c1pm˚qy for y ď bpm˚q and ξ̃˚pyq “ cpyq ` c1pm˚qm˚ ´ cpm˚q for y ą bpm˚q

(uniformly) increases in m˚. Combined with the fact that Γp¨;vq is strictly increasing,
this implies that G˚pyq “ Γpξ̃˚pyq;vq rises in m˚. Since this result holds for any y ě 0,
G˚ stochastically decreases. The players’ equilibrium payoff is equal to ´ξ̃˚p0q “
c1pm˚qm˚ ´ cpm˚q. This is increasing in m˚, because ´ dξ̃˚p0q{ dm˚ “ c2pm˚qm˚ and
m˚ always lies in the convex region of c.

We conclude this appendix by providing two sufficient conditions for equilibrium
uniqueness in the convex-concave case.

Proposition C.3. In the convex-concave case, there is a unique equilibrium whenever
any of the following conditions holds:
(a) c1pbpmqqbpmq ě c1pmqm for all m P p0, xιs;
(b) Φpq;vq is convex in q.

Proof. It is convenient to define a modified version of the function H:

H̃pmq “ c1pmq

ż bpmq

0

py ´mq dΓpξxvpy;mq;vq.

Showing that H̃ is single-crossing from positive to negative inm is, of course, equivalent
to showing the same for H. It is also convenient to let B :“ Γpξxvpbpmq;mq;vq and
M :“ Γpξxvpm;mq;vq.
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SinceΦpΓpξxvpy;mq;vq;vq “ c1pmqy for y P r0,mintbpmq, ypm,vquswhere ypm,vq
is the smallest value such that Γpξxvpypm,vq;mq;vq “ 1, we have

H̃pmq “

ż bpmq

0

c1pmqy dΓpξxvpy;mq;vq ´ c1pmqmB

“

ż B

0

Φpq;vq dq ´ c1pmqmB,

[C.1]

where the second equality follows by changing the variable of integration to q “
Γpξxvpy;mq;vq. The derivative of H̃ is

H̃ 1
pmq “ rΦpB;vq ´ c1pmqms

dB

dm
´ rc2pmqm` c1pmqsB.

Note that, since m is in the convex region of c, c2pmqm` c1pmq ą 0 always holds.
If bpmq ą ypm,vq then B “ 1 and so dB{ dm “ 0, in which case H̃ 1pmq ă 0.

From now on, we consider only the case where bpmq ď ypm,vq. Note that in that case,
ΦpB;vq “ c1pmqbpmq, so

dB

dm
“

1

Φ1pB;vq
rc2pmqbpmq ` c1pmqb1pmqs.[C.2]

Part (a): A sufficient condition for H̃ 1pmq ă 0 is dB{ dm ď 0, which is equivalent to
c2pmqbpmq ` c1pmqb1pmq ď 0. We show that the condition in (a) ensures this inequality.
Since cpbpmqq ´ cpmq “ c1pmqpbpmq ´mq, we have

c1pbpmqqb1pmq ´ c1pmqb1pmq “ c2pmqpbpmq ´mq.[C.3]

It then follows that

c2pmqbpmq ` c1pmqb1pmq “ c2pmqbpmq ` c1pmq
c2pmqpbpmq ´mq

c1pbpmqq ´ c1pmq

“
c2pmq

c1pbpmqq ´ c1pmq
rc1pbpmqqbpmq ´ c1pmqms.

The final expression is negative because c1pbpmqqbpmq ´ c1pmqm ě 0 by the given
condition and c1pbpmqq ´ c1pmq ă 0 due to the convex-concave structure of c and the
definition of bpmq.
Part (b): From [C.3] and the fact that b1pmq ď 0, we have

c2pmqbpmq ` c1pmqb1pmq “ c2pmqm` c1pbpmqqb1pmq ď c2pmqm,[C.4]
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implying

dB

dm
ď
c2pmqm

Φ1pB;vq
.

Note also that ΦpM ;vq “ ΦpΓpξxvpy;mq;vq;vq “ c1pmqm. It then follows that

H̃ 1
pmq “ rΦpB;vq ´ c1pmqms

dB

dm
´ rc2pmqm` c1pmqsB

ă rΦpB;vq ´ ΦpM ;vqs
c2pmqm

Φ1pB;vq
´ c2pmqmB

ď
c2pmqm

Φ1pB;vq
rΦpB;vq ´ ΦpM ;vq ´ Φ1pB;vqBs ă 0,

where the last inequality follows from the convexity of Φpq;vq in q.

The following corollary of Proposition C.3 is important for our main contest
design result, as the WTA contest satisfies the required condition and so necessarily
has a unique equilibrium.

Corollary C.4. If vi ´ vi`1 is decreasing in i then there exists a unique equilibrium in
the convex-concave case.

Proof. Differentiating Φpq;vq with respect to q and arranging the terms, we arrive at

Φ1pq;vq “
n´1
ÿ

k“1

ˆ

n´ 1

k

˙

kqn´1´k
p1´ qqk´1

pvk ´ vk`1q.

Differentiating this again,

Φ2pq;vq “
n´2
ÿ

k“1

ˆ

n´ 1

k ` 1

˙

kpk ` 1qqn´2´k
p1´ qqk´1

rpvk ´ vk`1q ´ pvk`1 ´ vk`2qs .

This expression is necessarily positive for all q if vk ´ vk`1 ě vk`1 ´ vk`2 for all
k “ 1, ..., n´ 2.

We conclude this section by proving that the increasing convex order result in
Proposition 5.2 holds for the equilibrium effort distributions as well.

Proposition C.5. If c is strictly convex-concave then the unique equilibrium effort in
the WTA contest domintes any equilibrium effort in any other contest in the increasing
convex order.

Proof. As in Section 5.3, it suffices to consider v,w P V such that w is obtained
from v via a bottom-reducing transfer. Note that, by Lemma 5.4, m˚pwq ď m˚pvq. Let
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F ˚p¨;wq and F ˚p¨;vq represent the equilibrium distributions corresponding to w and v,
respectively.

Define a distribution Fv,wp¨q as follows: It has a mass point at m˚pwq and follows
Γpξ̃˚p¨;wq;vq for x ě b̂, where b̂ is chosen such that Fv,wp¨q and Γpξ̃˚p¨;wq;vq have the
same mean, that is,

ż b̂

0

m˚
pwq dΓpξ̃˚px;wq;vq `

ż 8

b̂

x dΓpξ̃˚px;wq;vq “

ż

x dΓpξ̃˚px;wq;vq,

which can be rewritten as
ż b̂

0

pm˚
pwq ´ xq dΓpξ̃˚px;wq;vq “ 0.

The value of b̂ is well defined because the left-hand side is positive if b̂ “ m˚pwq,
decreasing in b̂pě m˚pwqq, and negative if b̂ is sufficiently large; this last result holds
because Γpξ̃˚p¨;wq;vq first-order stochastically dominates Γpξ̃˚p¨;vq;vq, so

m˚
pwq ď m˚

pvq ď

ż

x dΓpξ̃˚px;vq;vq ď

ż

x dΓpξ̃˚px;wq;vq.

Similar to [5.2], F ˚px;wq ´ F ˚px;vq can be decomposed as follows:

F ˚px;wq ´ F ˚px;vq “ F ˚px;wq ´ Fv,wpxq

prize effect

`Fv,wpxq ´ F
˚
px;vq

virtual cost effect

.

We establish the result by showing that both the prize effect and the virtual cost effect
raise the effort distribution in the increasing convex order; then, by transitivity, F ˚p¨;wq
dominates F ˚p¨;vq in the increasing convex order.

For the virtual cost effect, recall that ξ̃˚p¨;wq stays uniformly below ξ̃˚p¨;vq, and
thus Γpξ̃˚p¨;wq;vq first-order stochastically dominates G˚p¨;vq “ Γpξ̃˚p¨;vq;vq. By
construction, Fv,w coincides with Γpξ̃˚p¨;wq;vq above b̂ and is a step function below b̂.
Combining this with the fact thatm˚pwq ď m˚pvq, it follows that Fv,w crosses F ˚px;vq

once from above, whether b̂ ě bpm˚pvqq or not. The desired result follows because
ż

x dFv,wpxq “

ż

y dΓpξ̃˚py;wq;vq ě

ż

y dΓpξ̃˚py;vq;vq “

ż

x dF ˚px;vq.

For the prize effect, recall that G˚p¨;wq “ Γpξ̃˚p¨;wq;wq crosses Γpξ̃˚p¨;wq;vq

once from above (Proposition 5.1). Let y: denote the interior crossing point between
the two output distributions. First, consider the case where b̂ ď bpm˚pwqq. If b̂ ď y:

or G˚pbpm˚pwqq;wq ą Γpξ̃˚pb̂;wq;vq then F ˚p¨;wq necessarily crosses Fv,w once from
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above. Since F ˚p¨;wq has a higher mean than Fv,w, the former dominates the latter
in the increasing convex order. If b̂ ą y: and G˚pbpm˚pwqq;wq ď Γpξ̃˚pb̂;wq;vq then
F ˚p¨;wq stays uniformly below Fv,w and, therefore, the former first-order stochastically
dominates the latter.

Second, consider the case where b̂ ą bpm˚pwqq. If bpm˚pwqq ě y: then F ˚p¨;wq
always stays below Fv,w, establishing first-order stochastic dominance. If bpm˚pwqq ă y:

and G˚pbpm˚pwqq;wq ě Γpξ̃˚pb̂;wq;vq then F ˚p¨;wq crosses Fv,w once from above,
leading to dominance in the increasing convex order as before. We complete the proof
by showing that if b̂ ą bpm˚pwqq then G˚pbpm˚pwqq;wq ě Γpξ̃˚pb̂;wq;vq. Toward a
contradiction, suppose G˚pbpm˚pwqq;wq ă Γpξ̃˚pb̂;wq;vq. Recall that the mass point
m˚pwq is such that

m˚
pwq “

ż bpm˚pwqq

0

t dG˚pt;wq

G˚pbpm˚pwqq;wq
“

ż b̂

0

t dΓpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
.

Integrating by parts, we obtain

bpm˚
pwqq ´

ż bpm˚pwqq

0

G˚pt;wq

G˚pbpm˚pwqq;wq
dt “ b̂´

ż b̂

0

Γpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
dt.

Then, we arrive at the following contradiction:

bpm˚
pwqq ´ b̂ “

ż bpm˚pwqq

0

G˚pt;wq

G˚pbpm˚pwqq;wq
dt´

ż b̂

0

Γpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
dt

ě

ż bpm˚pwqq

0

Γpξ̃˚pt;wq;vq

G˚pbpm˚pwqq;wq
dt´

ż b̂

0

Γpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
dt

ě

ż bpm˚pwqq

0

Γpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
dt´

ż b̂

0

Γpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
dt

“

ż bpm˚pwqq

b̂

Γpξ̃˚pt;wq;vq

Γpξ̃˚pb̂;wq;vq
dt ą bpm˚

pwqq ´ b̂.

Here, the first inequality is due to the fact that G˚p¨;wq dominates Γpξ̃˚p¨;wq;vq in the
increasing convex order; the second inequality follows from the assumption; and the last
inequality holds because the integrand is strictly below one for all t P rbpm˚pwqq, b̂q.

D. Further Comparative Statics Results for the Concave-Convex Case

The following result shows that in the concave-convex case, any top-improving transfer—
raising the prize to the top performer—increases the tangency point m˚.
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Lemma D.1. Suppose c is concave-convex. Ifw is obtained from v via a top-improving
transfer then m˚pwq ě m˚pvq.

Proof. Fix v P V and j ą 1 such that vj ą vj`1. For each small and positive δ, let
vδ denote the contest in V such that vδ is obtained from v0 by reducing vj, while
raising v1 by δ, so that vδ “ v0` δp1, . . . ,´1, 0, . . . , 0q where the ´1 entry is in the j-th
coordinate.

Extending the function H in Footnote 21, define H as follows:

Hpm, δq :“

ż ypm,δq

apmq

py ´mq dΓpξvxpy;mq;vδq

where ypm, δq denotes the smallest value such that Γpξvxpypm, δq;mq;v
δq “ 1. For

each δ ě 0, by definition, Hpm˚pvδq, δq “ 0. In addition, as shown in Footnote 21,
Hmpm

˚pvδq, δq ă 0. By the implicit function theorem,

dm˚pv0q

dδ
“ ´

Hδpm
˚pv0q, 0q

Hmpm˚pv0q, 0q
.

Therefore, for the desired result, it suffices to show that Hδpm
˚pv0q, 0q ě 0.

Integrating Hpm, δq by parts,

Hpm, δq “ ´pm´ apmqqp1´ Γpξvxpapmq;mq;v
δ
qq `

ż ypm,δq

apmq

p1´ Γpξvxpy;mq;vδqq dy.

For brevity, let a˚ “ apm˚q and

γpy;m,vq :“
B

Bδ
Γpξvxpy;mq;vδq

ˇ

ˇ

ˇ

δ“0
.

Then,

Hδpm
˚, 0q “ pm˚

´ a˚qΓδpξvxpa
˚;m˚

q;vq ´

ż ypm˚,0q

a˚
γpy;m˚,vq dy.[D.1]

Consider y P pa˚, ypm˚, 0qs. By the definition of Γ, we have

ΦpΓpξvxpy;m˚
q;vδq;vδq “ ξvxpy;m˚

q “ cpm˚
q ` c1pm˚

qpy ´m˚
q.

Since the right-hand side is independent of δ, we have

φijpΓpξvxpy;m˚
q;vq;vq ` Φ1pΓpξvxpy;m˚

q;vq;vqγpy;m˚,vq “ 0
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where φ1j is defined in [B.2]. Meanwhile, we also have

Φ1pΓpξvxpy;m˚
q;vδq;vδq dΓpξvxpy;m˚

q;vδq “ c1pm˚
q dy.

Combining these two equations leads to

´

ż ypm˚,0q

a˚
γpy;m˚,vq dy “

ż ypm˚,0q

a˚

φijpΓpξvxpy;m˚q;vq;vq

c1pm˚q
dΓpξvxpy;m˚

q;vq

“
1

c1pm˚q

ż 1

Γpξvxpa˚;m˚q;vq

φijpqq dq ą 0.

The inequality holds because φ1jpqq is a single-crossing function of q, first negative,
then positive, and integrates to zero on r0, 1s. Let q0 denote the crossing point. In
order to sign [D.1], there are two cases to consider: (i) γpy;m˚,vq ě 0 or, equiva-
lently, Γpξvxpa

˚;m˚q;vq ď q0, in which case the result follows immediately; and (ii)
γpy;m˚,vq ă 0 or, equivalently, Γpξvxpa

˚;m˚q;vq ą q0, in which case the first term in
[D.1] is negative and additional steps are needed.

We now consider case (ii). Recall that

Hpm, δq “ ´pm´ apmqqp1´ Γpξvxpapmq;mq;v
δ
qq `

ż ypm,δq

apmq

p1´ Γpξvxpy;mq;vδqq dy.

The condition Hpm˚, 0q “ 0 implies

m˚
´ a˚ “

1

1´ Γpξvxpa˚;m˚q;vq

ż ypm˚,0q

a˚
p1´ Γpξvxpy;m˚

q;vqq dy

which allows us to rewrite [D.1] as

Hδpm
˚, 0q

“
γpa˚;m˚,vq

1´ Γpξvxpa˚;m˚q;vq

ż ypm˚,0q

a˚
p1´ Γpξvxpy;m˚

q;vqq dy ´

ż ypm˚,0q

a˚
γpy;m˚,vq dy

“

ż ypm˚,0q

a˚
p1´ Γpξvxpy;m˚

q;vqq

„

γpa˚;m˚,vq

1´ Γpξvxpa˚;m˚q;vq
´

γpy;m˚,vq

1´ Γpξvxpy;m˚q;vq



dy.

Therefore, forHδpm
˚, 0q ě 0, it suffices to show that γpy;m˚,vq{p1´Γpξvxpy;m˚q;vqq is

decreasing in y forΓpξvxpy;m˚q;vq ą q0 or, equivalently,Rpq;vq :“ φijpqq{ rΦ
1pq;vqp1´ qqs

is increasing in q for q ą q0.
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Similar to [B.3], we have

Φ1pq;vq “ pn´ 1q
n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

qn´i´1
p1´ qqi´1∆vi.[D.2]

Furthermore, from [B.2] for a transfer p1, jq we have

φ1jpqq “ qn´1
´

ˆ

n´ 1

j ´ 1

˙

qn´jp1´ qqj´1
“ qn´1

´

ˆ

q0

1´ q0

˙j´1

qn´jp1´ qqj´1.[D.3]

Letting z “ q{p1´ qq and z0 “ q0{p1´ q0q, Rpq;vq can be written as

Rpq;vq “
φ1jpqq

Φ1pq;vqp1´ qq
“

qn´1 ´ zj´1
0 qn´jp1´ qqj´1

pn´ 1q
řn´1
i“1

`

n´2
i´1

˘

qn´i´1p1´ qqi∆vi

“
zn´1 ´ zj´1

0 zn´j

pn´ 1q
řn´1
i“1

`

n´2
i´1

˘

zn´i´1∆vi
.

The derivative of Rpq;vq with respect to z is, up to a positive multiplier,

dRpq;vq

dz
9 rpn´ 1qzn´2

´ pn´ jqzj´1
0 zn´j´1

s

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆vi

´ pzn´1
´ zj´1

0 zn´jq
n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

pn´ i´ 1qzn´i´2∆vi

“

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆viz
2n´i´j´2

“

pn´ 1qzj´1
´ pn´ jqzj´1

0

´ pn´ i´ 1qpzj´1
´ zj´1

0 q
‰

“

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆viz
2n´i´j´2

rizj´1
` pj ´ i´ 1qzj´1

0 s

ą

n´1
ÿ

i“1

ˆ

n´ 2

i´ 1

˙

zn´i´1∆viz
2n´i´j´2

pj ´ 1qzj´1
0 ą 0,

where the first inequality is because z ą z0. Thus, Rpq;vq is increasing in z for z ą z0

and hence it is also increasing in q for q ą q0.

Lemma D.1 describes the equilibrium adjustment in the virtual cost function
ξ˚vxpy;vq in response to a top-improving transfer. It is easy to see that if the mass point
shifts up, m˚pwq ą m˚pvq, then F ˚p¨;wq crosses F ˚p¨;vq once from above. Since we
already know from Proposition 5.5 that the expected effort goes up as well, Theorem
4.A.22 from Shaked and Shanthikumar (2007) implies the following result.
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Proposition D.2. Suppose c is concave-convex and prize schedules v,w P Vare such
that w is obtained from v via a sequence of top-improving transfers. Then X˚pwq

dominates X˚pvq in the increasing convex order.

We proceed to show that for top-improving transfers, the virtual cost effect lowers
the expected highest output. Recall that the virtual cost effect is concerned with the
change from Γpξ˚vxpy;vq;vq to Γpξ˚vxpy;wq;vq ([5.2]) and ξ˚vx has the following concave-
affine structure in the concave-convex case:

ξvxpy;m˚
q “

#

cpyq if y ď apm˚q

c1pm˚qpy ´m˚q ` cpm˚q if y ą apm˚q.

Given Lemma D.1, the following result suffices for our result.

Proposition D.3. If c is concave-convex then for any n ą 1,

d

dm˚

ż

y dΓpξvxpy;m˚
pvqq;vqn ď 0.

Proof. Applying integration by parts,

Hpm˚
q :“

ż

y dΓpξvxpy;m˚
q;vqn “

ż

p1´ Γpξvxpy;m˚
q;vqnq dy.

Therefore,

H
1
pm˚

q “ ´n

ż

Γpξvxpy;m˚
q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy.

Recall that dΓpξvxpy;m˚q;vq{ dm˚ ă 0 if y P papm˚q,m˚q, while dΓpξvxpy;m˚q;vq{ dm˚ ą

0 if y ą m˚ (see the right panel of Figure 2). In addition,
ş dΓpξvxpy;m˚q;vq

dm˚
dy “ 0

(see the proof of Proposition 5.5 in Appendix B). Combining these with the fact that
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Γpξvxpy;m˚q;vqn´1 is increasing, it follows that
ż

Γpξvxpy;m˚
q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy

“

ż 8

apm˚q

Γpξvxpy;m˚
q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy

“

ż m˚

apm˚q

Γpξvxpy;m˚
q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy

`

ż 8

m˚
Γpξvxpy;m˚

q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy

ě

ż m˚

apm˚q

Γpξvxpm
˚;m˚

q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy

`

ż 8

m˚
Γpξvxpm

˚;m˚
q;vqn´1 dΓpξvxpy;m˚q;vq

dm˚
dy

“ Γpξvxpm
˚;m˚

q;vqn´1

ż

dΓpξvxpy;m˚q;vq

dm˚
dy “ 0,

which is equivalent to H 1
pm˚q ď 0.

E. Equilibrium Existence

The analysis in Section 3 establishes equilibrium existence for the case where there is
no inflexion point (ie, c is either globally concave or globally convex). In addition, the
argument in Lemma 3.1 can be used to obtain equilibrium existence for the convex-
concave and concave-concave cases. In this appendix, we focus on the case where there
are at least two inflexion points. Let K denote the number of inflexion points and use
xι1 (xιK) to denote the first (last) inflexion point. We define r :“ infxPrxι1,xιK s c

1pxq ą 0.

LemmaE.1. Let y denote the upper bound of supppG˚q. Then, y ď ym :“ maxtc´1p1q`
1
r
, nxdu.

Proof. It suffices to consider the case where supppG˚q extends beyond c´1p1q. We
know that the support of F ˚ cannot extend beyond c´1p1q; therefore, ξ˚pyq is affine
for y ě c´1p1q. This last affine part of ξ˚ is tangent to c at some m ď c´1p1q, which is
the last mass point of F ˚ (for, if not, then ξ˚ can be improved in [4.4]). Now, there are
several possibilities.
(i) The last mass point is also the first, and only, mass point of F ˚. In this case, we
either have the deterministic effort equilibrium and y “ nxd, or m ą xι1. In the latter
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case, there are two possibilities: (a)m ă xιK , which implies c1pmq ě r; and (b)m ą xιK ,
which implies c1pmq ě r as well because in this case cpxq is convex for x ě xιK .
(ii) There is more than one mass point. In this case, m ą xι1 and either (a) or (b) holds
as above, and hence c1pmq ě r again holds.

We know that in the symmetric equilibrium ΦpG˚pyq;vq “ mintξ̃˚pyq, v1u; there-
fore, ξ̃˚pyq “ v1. This equation takes the form

cpmq ` c1pmqpy ´mq ´ ξ˚p0q “ v1,

which gives

y “ m`
v1 ` ξ

˚p0q ´ cpmq

c1pmq
ă c´1

p1q `
1

r
.

We conclude that y is bounded above by ym “ maxtc´1p1q ` 1
r
, nxdu.

We make use of the following result:

Theorem E.1. Suppose that a game is compact, convex, quasi-symmetric, and diag-
onally quasiconcave. If the game has the local better-reply property on the diagonal,
then it has a symmetric pure strategy Nash equilibrium.

This is Theorem 1 in Baye, Tan, and Zhou (1993), reported as Theorem 4 in Reny
(2020, p 453); we use the terminology from the latter. For a cdf G with support in R`,
define a cost function

CpGq :“ min
FPMPCpGq

ż

c dF.

We consider a game where each player i chooses a cdf of output Gi P Si “ tG P r0, 1s
R :

G is a cdf with Gp0´q “ 0 and Gpymq “ 1u, where ym is defined in Lemma E.1.26 The
set Si is a metric space with the L1 metric, which metrises the topology of weak
convergence (ie, the topology of convergence in distribution) on Si (cf Machina, 1982).
We observe that with this metric, (i) Si is a compact metric space (cf Aliprantis and
Border, 1999, Theorem 14.11, p. 482), and (ii) MPCpGq is a compact subset of Si for
any G P Si (see Kleiner, Moldovanu, and Strack, 2021). The latter fact is immediate
because MPCpGq is defined by linear inequalities, and hence is a closed subset of Si. It
is straightforward to see that Si is also convex.

The payoffs in this game are

πipGi,G´iq “

ż

ΨpG´ipyq;vq dGipyq ´ CpGiq.

26Since Lemma E.1 shows that supppG˚q is bounded by ym in any symmetric equilibrium, restricting
the strategy spaces to Si is without loss.
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Here, G´i denotes the vector of other players’ strategies; and ΨpG´ipyq;vq is the
expected winnings of player i conditional on player i’s output being y. With G´i “

pĜ, . . . , Ĝq, the “symmetrised” payoffs in our game are given by

ΠpG, Ĝq :“

ż

ΦpĜpyq;vq dGpyq ´ CpGq.[E.1]

Following Reny (2020, Theorem 4, p453), our contest is compact because the
strategy spaces Si are compact; it is convex because the strategy spaces Si are convex
(and locally convex) sets; it is quasi-symmetric because our contest is symmetric, as
evinced from [E.1]; it is diagonally quasiconcave because the mapping G ÞÑ ΠpG, Ĝq

is concave (see Lemma E.2). Our contest has the local better-reply property on the
diagonal if for any Ḡ that is not a symmetric Nash equilibrium, there exists a δ ą 0 and
a G: such that ∥∥∥Ĝ´ Ḡ∥∥∥

1
ă δ implies ΠpG:, Ĝq ą ΠpĜ, Ĝq.

Theorem E.2. The game above has a pure strategy symmetric Nash equilibrium.

Proof. By definition, our game is symmetric, and hence is quasi-symmetric. The strat-
egy space is compact and convex, and the game is diagonally quasiconcave (Lemma E.2).
Finally, it has the local better-reply on the diagonal property (Lemma E.6). Thus, all
the conditions of Theorem E.1 above are met, and the existence of a pure strategy
symmetric Nash equilibrium is established.

The proofs establishing the various properties of the payoff functions described
above are in Appendix E.1, with some auxiliary results relegated to Appendix E.2.

E.1. Lemmas Supporting Theorem E.2

Lemma E.2. The function ΠpG, Ĝq defined in [E.1] is concave in G.

Proof. It suffices to show that CpGq is convex in G. Towards this end, let F t denote a
solution to min

ş

c dF s.t. F PMPCptG1 ` p1´ tqG0q for all t P r0, 1s. Then,

CptG1
` p1´ tqG0

q “

ż

c dF t

ď

ż

c dptF 1
` p1´ tqF 0

q “ t

ż

c dF 1
` p1´ tq

ż

c dF 0

“ tCpG1
q ` p1´ tqCpG0

q.
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The inequality holds because F 1 P MPCpG1q and F 0 P MPCpG0q implies tF 1 ` p1 ´

tqF 0 PMPCptG1 ` p1´ tqG0q.

Lemma E.3. The function ΠpG,Gq “
ş

ΦpGpyq;vq dGpyq ´ CpGq is continuous in G.
In particular, the mapping G ÞÑ CpGq is continuous.

Proof. Note that ΠpG,Gq “ 1
n
´CpGq, and hence it is sufficient to establish that CpGq is

continuous. Consider subsetS0 :“ tG P S : Gp0q “ 0 and G has full support on r0, ymsu.
Then, S0 is dense in S.

For any G P S0, Theorem 2 of Dworczak and Martini (2019) implies that

CpGq “ min
FPMPCpGq

ż

c dF “ max
ξďc, ξ concave

ż

ξ dG

We claim that any optimal ξ is Lipschitz, with Lippξq ď Lippcq. To see this, notice that
by Proposition 2 of Dworczak and Martini (2019), the interval r0, yms can be partitioned
into a finite number of subintervals in which ξ is either affine and supports c or strictly
concave and coincides with c. If ξp0q “ cp0q “ 0, it must be that ξ1p0q ď c1p0q because
otherwise the constraint ξ ď c would be violated at some ε ą 0. If ξp0q ă 0 then the
initial segment of ξ is affine and ξpyq ă cpyq for y P r0, bq, where b “ minty : ξpyq “

cpyqu is the point where ξ and c first meet (if there is no such point, there is a feasible
improvement of ξ). In this case it must be that ξ1p0q “ c1pbq. Indeed, if ξ1p0q ă c1pbq

then the constraint ξ ď c would be violated at some b´ ε; if ξ1p0q ą c1pbq then a strict
improvement obtains by increasing ξp0q while keeping ξpbq fixed. (In particular, raise
ξp0q until the affine segment connecting p0, ξp0qq and pb, ξpbqq is tangent to the graph of
c or ξp0q “ 0, whichever happens first.) Clearly, ξ1p0q ď Lippcq holds in all cases, and
hence Lippξq ď Lippcq due to the concavity of ξ.

Recall also that in any symmetric equilibrium´ξp0q is the players’ rent, and hence
we cannot have ξp0q ă ´1. Define the set Ξc :“ tξ P Rr0,yms : ´1 ď ξ ď c, Lippξq ď

Lippcq, ξ concave, increasingu. It is clear from the above discussion that for all G P S0,

CpGq “ max
ξďc, ξ concave

ż

ξ dG “ max
ξPΞc

ż

ξ dG

For any G1, G2 P S0 and ξ P Ξc, observe that
ş

ξ dpG1´G2q “
ş

pG2´G1q dξ. Following
the proof of Theorem 2 in Milgrom and Segal (2002), we note that |CpG1q ´ CpG2q| ď
maxξPΞc

∣∣şpG1 ´G2q dξ
∣∣ ď Lippcq ‖G1 ´G2‖1. That is, C is Lipschitz on S0.

By the Continuous Extension Theorem (Carothers, 2000, Theorem 8.16, p. 119)
it follows that C has a unique uniformly continuous extension to S, which establishes
the claim.
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Lemma E.4. Let G: be continuous. Then, the mapping G ÞÑ ΠpG:, Gq is continuous
in G.

Proof. We have ΠpG:, Gq “
şym
0

ΦpGpyq,vq dG:pyq ´ CpG:q; thus, it is sufficient to
show that

şym
0

ΦpGpyq,vq dG:pyq is continuous in G. Integrating by parts, we see that
şym
0

ΦpGpyq,vq dG:pyq “ ΦpGpymq,vq¨1´
şym
0
G:pyq dΦpGpyq,vq. Consider the mapping

T : S Ñ S, where TGpyq :“ ΦpGpyq,vq. We claim that the mapping T is Lipschitz. To
see this, recall that q ÞÑ Φpq,vq is Lipschitz of some rank A. Thus,∥∥∥TG´ TG̃∥∥∥

1
“

ż ym

0

∣∣∣TGpyq ´ TG̃pyq∣∣∣ dy

“

ż ym

0

∣∣∣ΦpGpyq,vq ´ ΦpG̃pyq,vq
∣∣∣ dy

ď

ż ym

0

A
∣∣∣Gpyq ´ G̃pyq∣∣∣ dy

ď A ¨
∥∥∥G´ G̃∥∥∥

1
¨ ym

which proves the claim.
Let pGnq be a sequence in S that converges to G (in the L1 metric), which implies

that TGn Ñ TG in the L1 metric (because T is Lipschitz). Because each G P S is the
cdf of a measure µG on r0, yms, it follows that µTGn Ñ µTG in the topology of weak
convergence (recall that µGn Ñw˚ µG if and only if Gn Ñ G in the L1 metric). Thus,∣∣∣∣ż G:pyqrdΦpGnpyq,vq ´ dΦpGpyq,vqs

∣∣∣∣ “ ∣∣∣∣ż G:pyqrdµTGnpyq ´ dµTGpyqs

∣∣∣∣
Ñ 0

because G: is continuous and µTGn Ñw˚ µTG.

Lemma E.5. Suppose Ḡ is not a symmetric Nash equilibrium. Then, there exists a
continuous G: P S such that ΠpG:, Ḡq ą ΠpḠ, Ḡq.

Proof. Let ψpGq :“ ΠpG, Ḡq. Suppose Ḡ is not a symmetric Nash equilibrium. Then
there exists a G P S such that ψpGq ´ ψpḠq “ 4ε ą 0. By Lemma E.8, there exists
a G0 P S that does not have any points of discontinuity in common with Ḡ such
that ψpG0q ´ ψpGq ą ´ε. Lemma E.9 ensures the existence of a G1 P S such that
ψpG1q ´ ψpG0q ą ´2ε. Putting these together, we find that ψpG1q ´ ψpḠq “ rψpG1q ´

ψpG0qs ` rψpG0q ´ ψpGqs ` rψpGq ´ ψpḠqs ą ε. Setting G: “ G1 establishes the
claim.

Lemma E.6. Our contest has the local better-reply property on the diagonal.

53



Proof. Suppose Ḡ is not a symmetric Nash equilibrium. Then, from Lemma E.5 there
exists a continuous G: and an ε ą 0 such that

ΠpG:, Ḡq ´ ΠpḠ, Ḡq “ 2ε ą 0[E.2]

Define the functions ϕpGq :“ ΠpG,Gq and ψpGq :“ ΠpG:, Gq. The continuity of ϕ is
established in Lemma E.3, and the continuity of ψ is shown in Lemma E.4. Moreover,
ψpḠq ´ ϕpḠq “ 3ε ą 0. The continuity of ϕ implies that there exists δϕ such that∥∥G´ Ḡ∥∥

1
ă δϕ implies

∣∣ϕpGq ´ ϕpḠq∣∣ ă ε. Similarly, the continuity of ψ ensures
the existence of δψ such that

∥∥G´ Ḡ∥∥
1
ă δψ implies

∣∣ψpGq ´ ψpḠq∣∣ ă ε. Let δ “
mintδψ, δϕu.

Then, for any G such that
∥∥G´ Ḡ∥∥ ă δ, we have ψpGq ą ψpḠq´ ε “ ϕpḠq` ε ą

ϕpGq, where the second inequality is because ψpḠq ´ ϕpḠq “ 2ε. In other words,
ΠpG:, Gq ą ΠpG,Gq for any G such that

∥∥G´ Ḡ∥∥ ă δ, as required.

E.2. Results on Approximating Functions

Lemma E.7. Let µ be a regular finite measure on r0, yms, and G an increasing function.
For any δ, ε ą 0, there exists H P Rr0,yms that is continuous, increasing, and satisfies (i)
‖G´H‖1 ă δ and (ii)

şym
0

|Hpyq ´Gpyq| dµpyq ă ε.

Proof. 27 Given ε, δ ą 0, there exists a finite partition pAjqnj“1 of r0, yms such that (i)
LebpAjq ă δ and µpintAjq ă ε for all j ď n (where LebpAq is the Lebesgue measure of
A and intAj “ pxj, xj`1q is the interior of the interval Aj), and (ii) Aj “ rxj, xj`1q for
all j ă n and An “ rxn, xn`1 “ yms. In what follows, BAj “ txj, xj`1u will represent
the boundary of the set of Aj . Notice that all mass points of µ with mass greater than ε
(of which there are only finitely many) must necessarily be at the boundary of some Aj .

Define the function H piecewise: for x P Aj, let Hpxq “ Gpxjq ` rGpxj`1q ´

Gpxjqspx´xjq{pxj`1´xjq. Because G is increasing, it follows thatH is also increasing.
Moreover, H is continuous and Hpxjq “ Gpxjq for all j “ 1, . . . , n ` 1. Notice also
that (a) for all x P Aj, |Hpxq ´Gpxq| ď |Gpxj`1q ´Gpxjq|, and (b) Hpxq “ Gpxq for

27This argument is based on a proof by PhilippeC posted on StackExchange.
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x P BAj for all j. This gives us the bound
ż

|Hpxq ´Gpxq| dµpxq

“

n
ÿ

j“1

«

ż

intAj
|Hpxq ´Gpxq| dµpxq `

“0
ż

BAj

|Hpxq ´Gpxq| dµpxq

ff

ď

n
ÿ

j“1

rGpxj`1q ´GpxjqsµpintAjq ă ε

because
řn
j“1rGpxj`1q ´Gpxjqs “ 1. Replacing the measure µ with Lebesgue measure,

and recalling that LebpAjq ă δ for all j “ 1, . . . , n, it follows that ‖H ´G‖1 ă δ, as
claimed.

Lemma E.8. Let Ḡ, G P S and ε ą 0. Then, there exist δ ą 0 and G0 P S with finite
support such that ‖G´G0‖1 ă δ and ΠpG0, Ḡq ´ ΠpG, Ḡq ą ´ε.

Proof. Notice that the mapping G ÞÑ CpGq is uniformly continuous, so there exists a
δ (independent of G) such that ‖G0 ´G‖1 ă δ implies |CpGq ´ CpG0q| ă ε. That G
can be approximated from below by a simple distribution G0 is shown, for example,
by Aliprantis and Border (1999, Lemma 11.13, p. 403) or Pollard (2002, Lemma 11,
p. 25). In particular, this G0 can be chosen such that ‖G0 ´G‖1 ă δ. Moreover, by
construction, we have G0 ď G. Thus, we find that

ΠpG0, Ḡq ´ ΠpG, Ḡq “

ż

ΦpḠpyq,vqrdG0 ´ dGs

ě0

´
`

CpG0q ´ CpGq
˘

ăε

ą ´ε

where the integral inequality is because G0 first-order stochastically dominates G, and
we have used the continuity of C and the fact that ‖G0 ´G‖1 ă δ.

Lemma E.9. Let Ḡ, G0 P S and ε ą 0 such that Ḡ and G0 have no common points of
discontinuity. Then, there exists δ ą 0 and a continuous G1 P S such that ‖G1 ´G0‖1 ă

δ and ΠpG1, Ḡq ´ ΠpG0, Ḡq ą ´2ε.

Proof. The mapping G ÞÑ CpGq being uniformly continuous, there exists a δ (indepen-
dent of G0) such that

∥∥∥G0 ´ Ĝ
∥∥∥

1
ă δ implies

∣∣∣CpĜ´ CpG0q

∣∣∣ ă ε for any Ĝ P S. By
Lemma E.7, there exists aG1 P S such that ‖G0 ´G1‖1 ă δ and

ş

|G1 ´G0| dΦpḠ,vq ă

ε. Because G0 and Ḡ do not have any common points of discontinuity, we may integrate
by parts (Billingsley, 2012, Theorem 18.4, p251) to obtain

ş

ΦpḠ,vq drG1 ´ G0s “
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´
ş

rG1 ´G0s dΦpḠ,vq. Thus,

ΠpG1, Ḡq ´ ΠpG0, Ḡq “

ż

ΦpḠpyq,vq drG1 ´G0s ´
`

CpG1q ´ CpG0q
˘

“

ż

rG0 ´G1s dΦpḠpyq,vq

ą´ε

´
`

CpG1q ´ CpG0q
˘

ăε

ą ´2ε

as claimed.
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