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Abstract

The paper considers a monopoly uncertain about its costs, and studies the impact
of cost-related information on the total surplus, de�ned as a weighted sum of consumer
and producer surpluses. The e¤ect of this information can be positive or negative,
depending on the properties of the market demand. We provide the necessary and
su¢ cient conditions on the demand under which: optimal information takes a form of
lower censorship regardless of the prior distribution of costs and the weights in the
total surplus; and full disclosure is optimal. Finally, we fully characterize the demand
functions such that the total surplus is linear in cost, meaning that information about
cost has no impact on the total surplus.

JEL classi�cation: D4, D42, D82, D83
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1 Introduction

The main objective of this paper is to investigate the e¤ect of imperfect information of
the monopolistic seller about his own costs on the total surplus, i.e., the sum of consumer
and producer surpluses with arbitrary weights. The positive e¤ect of sellers� information
on the e¢ ciency of competitive markets has been established and investigated a long time
ago. By de�nition, a market is perfectly competitive and maximizes social welfare only
if all participants have perfect decision-relevant information. Speci�cally, this implies that
sellers have perfect knowledge of their own costs. While this assumption is necessary in
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perfectly competitive markets, it also has been widely employed in imperfectly competitive
markets, selling mechanisms, and auctions. Beginning with seminal works by Akerlof (1972)
on selling products with asymmetric information about their quality, Myerson (1981) on
optimal mechanism design, and Baron and Myerson (1982) on regulation of the monopolist
with private costs, subsequent microeconomic literature has relied on the assumption that
each seller perfectly knows his cost of producing the product.
In practice, however, sellers often have only limited information about their costs.

For example, a market entrant can learn over time how to minimize costs by using the
learning-by-doing process (Lucas, 1988; Yang and Borland, 1991). Similarly, releasing a new
or updated product might involve a priori unknown cost. Also, production processes often
depend on uncertain or volatile factors, such as weather, natural disasters, labor strikes,
political turmoils, changes in the suppliers�networks, or �uctuations in input prices. At the
same time, contractual obligations often require the sellers to produce and sell the product
at the predetermined price before they infer the production costs.1 In addition, the sellers�
practice of rarely updating their prices� called the price rigidity� has been a well-known
phenomenon in macroeconomics. In fact, one of the possible explanations for price rigidity is
sticky information, that is, the tendency of sellers to behave on the basis of old information
that does not take into account recent events.2 Furthermore, recent empirical studies on
algorithmic pricing provide the evidence that algorithm adoption allows �rms to set prices
more e¢ ciently and responsively to changing market conditions compared to traditional price
setting by managers.3 This suggests that �rm managers do not e¤ectively use all available
information when determine prices. Finally, pricing decisions of publicly traded companies
can be a¤ected by activist investors, who generally do not have access to inside information
about companies�costs.
This discrepancy between the microeconomic paradigm on one side and the

macroeconomic perspective and the empirical evidence on the other side about the precision
of sellers� information about their costs and its use for price-setting raises several natural
questions. First, what is the e¤ect of the sellers�uncertainty about their costs on market
e¢ ciency? Second, how does this e¤ect depend on market demand? Third, if the market
regulators have cost-related information, should they provide this information to the sellers?
If so, then what is the socially optimal information-disclosure policy?
In addressing the above questions, this paper revisits the role of sellers� perfect

information regarding their own costs as a driving force of market e¢ ciency. Speci�cally,
it shows that in the standard monopolistic market with privately informed buyers, the social
value of the seller�s cost-related information can be negative: a less informed seller� and even
completely uninformed sometimes� generates higher total gains from trade than the better
informed seller would do. Perhaps surprisingly, the total surplus in markets with certain
demand functions is maximized if the seller is completely uninformed about his costs, i.e.,
providing any cost-related information to the seller reduces the total surplus. Furthermore,
even an insigni�cant update in the seller�s information about costs can signi�cantly reduce

1For example, Taylor (1980) proposes that �rms are prevented from adjusting their prices until a
pre-speci�ed contract period expires.

2The theory of sticky information was introduced by Fischer (1977) and then intensively developed in the
subsequent literature. A notable reference on the relationship between price rigidity and sticky information
is Mankiw and Reis (2002).

3See, for instance, Calder-Wang and Kim (2023).
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the total surplus. In markets with other demand functions, however, it is socially optimal to
provide full information to sellers. Finally, sometimes it might be optimal to provide sellers
with only partial information. The relationship between market demand, the seller�s prior
information about his cost, and optimal� from the total surplus�s perspective� disclosure
policies forms the central question of this paper.
In this light, our paper o¤ers a novel tool for market regulation in addition to common

regulatory policies� price caps, output quotas, or monetary transfers (e.g., industry-speci�c
taxes or subsidies).4 Speci�cally, it is the disclosure of cost-related information or controlling
the seller�s access to this information by a third party. As we show, control over this
information might be a powerful tool that impacts the outcome and the total surplus
generated by a market. Moreover, under the regularity conditions, the optimal information
has a simple cuto¤ form� called lower censorship� meaning no disclosure below some cost
threshold and full disclosure above it.
One example of the third party that can provide cost-related information is various

government agencies that determine taxes, minimum wage rates, and other input prices
(e.g., the electricity or natural gas rates), and, hence, have the information about upcoming
changes in their values. In many countries, regional government regulators set the rates of
the energy sources and provide information about them. For instance, �The Ontario Energy
Board is the provincial regulator of natural gas and electricity utilities in Ontario, Canada.
This includes setting rates and licensing all participants in the electricity sector... The Board
also provides a broad range of information to energy consumers about electricity and natural
gas in Ontario.�5 In addition, local authorities might have more expertise about some factors
of production, say, the quality or quantity of natural resources used by the seller. At the
same time, knowing this information by �rms determines their current decisions regarding
the technology, R&D investments, and non-�exible factors of production such as capital
stock and land. Thus, the information a¤ects their production costs and the prices.
An alternative example is the data provision by large online market platforms such as

Amazon or eBay. These platforms collect a substantial amount of information not only about
buyers�preferences, i.e., product valuations, but also about their habits and behavior, for
instance, how often buyers return the product, �ood sellers with questions about using,
maintaining, or repairing the product, and write product reviews. These habits determine
the �nal cost of providing the product, and knowing the information about buyers�habits
might impact the seller�s pricing decisions. At the same time, the platform�s pro�ts depend
on the value of transaction fees that it collects from market participants, which stem from
the total surplus generated by a market, i.e., the consumer and producer surpluses with some
weights. Thus, disclosure of information about buyers�habits a¤ects the platform�s pro�t
and, hence, the total surplus.
As a basic setup, we consider a standard model with a monopolistic seller and a continuum

of buyers that are privately informed about their valuations of the product. The novelty of
our model is the assumption that the seller is imperfectly informed not only about buyers�
private valuations, but also about his own costs. Given available information, he updates
the posterior mean value of the unit cost by Bayes rule, which is su¢ cient information

4The literature on regulating the monopolist with privately known costs started with a work by Baron
and Myerson (1982) and was substantially developed since then. Other notable works include Baron and
Besanko (1984), La¤ont and Tirole (1986), Alonso and Matouschek (2008), and Amador and Bagwell (2013).

5https://en.wikipedia.org/wiki/Ontario_Energy_Board
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for price-setting, and selects the optimal price. (Because the posterior mean of a cost is
equivalent to the cost equal to this mean, we call it a posterior cost hereafter.) Also, there is
an information designer, for instance, the market regulator, who has additional cost-related
information and can costlessly disclose it to the seller. The goal of the information designer
is to maximize the ex-ante total surplus by selecting any disclosure policy.
Before providing the main results, we brie�y explain our approach. First, the classical

approach in the economic literature considers the demand function represented by the
distribution of valuations as a primitive.6 At the same time, recent studies demonstrate
that using other functions associated with demand can provide additional insights about
the market outcome, structure, properties, and welfare.7 Following the latter approach, the
role of the primitive in our paper is played by the inverse hazard rate of the distribution
of valuations, which has a clear economic meaning. Speci�cally, it represents the marginal
decrease in the revenue, which is caused by a decrease in price in the case of producing an
extra unit, and is expressed as a function of price. At the optimal price, it is equal to the
pro�t margin (or the markup) of the monopoly and thus is directly related to the marginal
revenue and the demand elasticity. As we demonstrate, the convex properties of the consumer
and total surpluses are driven by shape of the inverse hazard rate. Noteworthy, deriving the
underlying demand function from the inverse hazard rate is a simple task, since there is a
simple one-to-one relationship between these functions.
The �rst set of results establishes the relationship between the market characteristics and

the curvature of the posterior surpluses as functions of the posterior cost. (By the curvature
of a function we imply the value of its second derivative, which determines the concavity
or the convexity of the function.) The shape of the posterior surpluses determines what
disclosure policy is locally optimal, since the convexity or the concavity of the posterior total
surplus at some cost implies that the optimal disclosure policy is either full information or no
information, respectively, regardless of the prior distribution of costs, as long as its support
is in the neighborhood of the original cost. In this light, we �rst provide the necessary and
su¢ cient conditions for the local convexity and concavity of the posterior consumer surplus.
We express these conditions in terms of various market characteristics and provide three
equivalent� but di¤erent from the economic perspective� characterizations. The �rst one
employs only the properties of the optimal price as a function of the posterior cost. This
interpretation is especially convenient for small costs: in this case it allows to relate the
curvature of the posterior consumer surplus to the log-convexity of the optimal price in cost.
The second characterization is based on the properties of the inverse hazard rate and the
value of the optimal price. We use this characterization to provide several simple conditions,
which guarantee that the posterior consumer surplus and, thus, the total posterior surplus
is strictly convex if costs are su¢ ciently high. Intuitively, it is the case if the upper tail of

6Because the approach based on the direct analysis of demand starts with Adam Smith, a comprehensive
list of papers that employ it would be excessively long. However, some seminal papers are Johnson and Myatt
(2006), who use the rotations of the demand function to analyze the e¤ects of advertising, mass-market and
niche-market supply, and product design; and Aguirre et al. (2010), who show that the e¤ects of third-degree
price discrimination on welfare and output depend on the curvature of the demand.

7A notable work is Weyl and Fabinger (2013), who show that many results about the welfare e¤ects of
taxes can be obtained by analyzing the pass-through rate derived from the demand curve. Similarly, Mrázová
and Neary (2017) establish that substituting the demand function with its �demand manifold�, i.e., a curve
that relates the elasticity and convexity of demand, opens the doors to numerous results on comparative
statics questions, leads to new families of demand functions, and links demand structure to �rm performance.
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the distribution of consumers�valuations is thin or smooth enough. We also show how to
�concavify�the posterior consumer surplus around some cost by locally varying the shape of
the inverse hazard rate at the optimal price for this cost. Finally, the third characterization
utilizes the seller�s market power and the concavity of the marginal revenue expressed as
a function of price. According to this characterization, the posterior consumer surplus is
concave in cost if and only if the monopoly has a su¢ ciently large market power and its
marginal revenue is su¢ ciently concave in price.8

Next, we identify the necessary and su¢ cient conditions on the inverse hazard rate under
which: (i) optimal disclosure takes a simple form of lower censorship; and (ii) full disclosure
is optimal. (As a special case, we provide such conditions for the consumer posterior surplus
only, which are less restrictive and easier to verify.) The �rst result says that it is optimal to
provide full information above some cuto¤ cost and not provide any information otherwise.
It is independent of the prior distribution of costs and the weights in the total surplus. The
second result establishes when the cuto¤ is equal to the lowest cost, so that full disclosure
is optimal. While it is also independent of the prior distribution of costs, it depends on the
weights in the total surplus. This is because the posterior consumer surplus is concave in cost
and its weight in the total surplus increases, then� which is another result we establish� it
is optimal to provide less information to the seller.
Finally, we derive all benchmark demand functions, under which the posterior total

surplus is linear in cost for any given weight of the producer surplus. This problem is quite
involved and requires solving the non-linear second-order di¤erential equation with respect
to the inverse hazard rate under the regularity condition stemming from the uniqueness of
the monopoly�s optimal price. In order to solve this problem, we introduce a novel parametric
representation, which has several economic interpretations. The derived solution establishes
a new family of three-parameter distributions. We derive their properties and show that they
are similar to those of other common distributions used to model personal and household
incomes, such as Dagum and Burr ones, or returns for securities or assets, such as Lévy and
inverse-gamma ones.9 All these distributions are heavy-tailed, have the unimodal density,
and the convex inverse hazard rate. At the same time, the inverse hazard rate is generally
not decreasing as commonly assumed in the mechanism design literature (Myerson, 1981)
and, hence, its density is not log-concave as typically imposed in the di¤erentiated product
markets (Ivanov, 2013). In addition, the distribution violates the Marshall�s Second Law of
Demand, i.e., the inverse relationship between the demand price elasticity and the price,
which is commonly used in monopolistic competition (Kokovin et al., 2024). Finally, we
provide the closed-form expressions for all major market characteristics� the optimal price
and quantity produced, the price elasticity, the pro�t margin, the pass-through and the
marginal pass-through rates, and the producer surplus� as functions of cost.
The linearity of the posterior total surplus in cost has two main implications: the

information design and the policy ones. The �rst implication is that the ex-ante total surplus
is invariant to the seller�s information about cost. In other words, there are no social bene�ts
or costs from disclosing the cost-related information to the seller. The second implication is
the policy one. Consider the case of a gradual increase in unit cost caused, for example, by

8We use the standard measures of the market power: the pro�t margin and the Lerner index. The concavity
of the marginal revenue is measured by Arrow-Pratt coe¢ cients of absolute and relative risk-aversion.

9Kleiber and Kotz (2003) provide a comprehensive study of these distributions and their applications in
economics and actuarial science.

5



an increase in the minimum wage rate.10 If the unit cost increases over several periods, then
the marginal impact of each wage increase by $1 on the total surplus remains constant in all
periods. In other words, the marginal e¤ect of cost on the total surplus does not depend on
the market outcome.

Literature. As a result of recent developments in information design, numerous works
have investigated the role of imperfect and endogenously determined information in various
models of markets and selling mechanisms. Most of this literature, however, focuses on the
impact of information about buyers�valuations rather than sellers�costs on the consumer
surplus, producer surplus, and social welfare. For example, Bergemann and Pesendorfer
(2007) characterize the seller-optimal structure of buyers�information in selling mechanisms,
while Bergemann et al. (2023) consider the same problem from the buyers� perspective.
In the monopolist�s model, Roesler and Szentes (2019) derive the buyer-optimal structure
of the buyer�s information. Bergemann et al. (2015) establish the relationship between
buyer�s information and the buyer�s and seller�s surpluses in the case of third-degree price
discrimination by the monopolist. Lewis and Sappington (1994) and Johnson and Myatt
(2006) study disclosure of product-relevant information to consumers by the monopolist.
Ivanov (2013) and Hwang et al. (2019) investigate the same question in competitive markets
with di¤erentiated products, while Armstrong and Zhou (2021) study the optimal structure
of buyers�information from the perspectives of sellers, buyers, and social welfare.
Notably, the e¤ects of buyers� and seller�s information on the total surplus in the

monopolistic market are qualitatively di¤erent. The buyers� information impacts the
distribution of their posterior valuations, which forms the market demand function. The
demand, in turn, determines the seller�s optimal outcome and the total surplus. In contrast,
there is no supply function for the monopoly. Instead, the cost-related information induces
the distribution over posterior costs. These costs determine the seller�s optimal prices and,
as a result, the distribution over market outcomes and the resulting posterior total surpluses.
Thus, the impact of the seller�s information on the ex-ante total surplus is determined by
the shape of the posterior total surplus as a function of posterior cost. In turn, posterior
costs have a dual e¤ect on the shape of the posterior total surplus. First, they directly
enter the seller�s pro�t function and, hence, a¤ect the posterior producer surplus. Second,
they determine the seller�s optimal prices, which impact both the posterior producer and
consumer surpluses.11

However, the amount of literature that considers the imperfect information of sellers
about their costs is rather limited. Baron and Besanko (1984) study a two-period model in
which a regulator faces a monopolist with a privately known marginal cost in the �rst period
but an unknown (to both parties) second-period cost. La¤ont and Tirole (1986) consider
the problem of regulating a monopolist who is better (but imperfectly) informed about his
costs than the regulator. Similarly, Riordan and Sappington (1987) study the problem of
awarding a franchise to producers with privately but imperfectly known marginal costs.
Christen (2005) focus on the role of competition in acquisition of information about costs
by sellers. Routledge and Edwards (2020) consider �rms�pricing decisions in competitive
markets with unknown costs and market demand. These works, however, do not investigate

10In Ontario, Canada, for example, the minimum hourly wage changed from $14 to $16.55 between 2018
and 2024 as a result of several increases.
11The second e¤ect disappears if the weights of the consumer and producer surpluses in the total surplus

are equal, since the price only redistributes the welfare. However, the e¤ect is non-zero for other weights.
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the socially optimal level of sellers� uncertainty about their costs and its relationship
to the demand function. Recently, Kartik and Zhong (2024) consider the bilateral trade
model in which the trade is always e¢ cient ex-post, the buyer�s and seller�s values are
functionally dependent, imperfectly known to the players, and endogenously determined by
the information designer.12 They characterize the set of players�payo¤ vectors across all
their information structures.13 Our model and the main economic questions are conceptually
di¤erent. Speci�cally, we consider the model in which the seller is imperfectly informed about
his costs and the buyers�valuations, buyers perfectly know their valuations, the distribution
of the buyers�valuations is exogenous, costs and valuations are independent, and there are no
limitations on the e¢ ciency of ex-post trade. In this setup, we are interested in deriving the
optimal� from the total surplus perspective� information structure of the seller about his
costs only, and its relationship to the buyer�s exogenous demand function. Finally, the two
papers are methodologically distinct. The main results of Kartik and Zhong (2024) are based
on the designer�s full �exibility over buyer�s information, which allows for demand functions
with multiple optimal prices. As a result, seller�s randomization over these prices (and the
buyer�s randomization over purchase decisions) play a key role in their characterization. In
contrast, our model precludes such demand functions, and, thus, randomizing over prices.
Similarly, buyers�randomization over purchase decisions does not play any role in our model.
Due to these di¤erences, the analysis and the construction of Kartik and Zhong (2024) are
not applicable to our model.
The rest of the paper is organized as follows. Section 2 introduces the general framework.

Section 3 provides an illustrative example. Section 4 derives the convex properties of
posterior surpluses. Section 5 provides the main results on the characterization of the optimal
disclosure policies. Section 6 derives the demand functions under which the total surplus is
linear in costs. Finally, Section 7 concludes the paper.

2 Model

We consider the model with the monopolistic seller (he), the unit mass of buyers, and the
information designer. The buyers�valuations are distributed according to a cdf F (x) with
the density f (x) on the support X = [x; �x], where �x > �1 and x < �x � 1. Similarly, the
seller�s unit cost c is drawn from a continuous cdf H (c) with the support C = [c; �c], where
c > 0. Buyers�valuations and seller�s cost are distributed independently.
Denote the inverse hazard rate

� (x) =
1

� (x)
=
1� F (x)

f (x)
(1)

the reciprocal of the hazard rate � (x) = f(x)
1�F (x) . We treat � (x) as a primitive for the most

of the paper. Speci�cally, we assume that � (x) > 0 for x 2 (x; �x) ; lim
t#x

tR
x

1
�(x)

dx = 0, and

12They relax �rst two assumptions through the paper, however.
13Also, Bergemann et al. (2024) consider the variant of the model by Kartik and Zhong (2024) with

competing sellers, but without interdependent values. They investigate how the relationship between the
consumer and total surpluses is shaped by the sellers�and buyers�information about costs and valuations,
respectively.
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lim
t"�x

�xR
t

1
�(x)

dx = 1. These conditions guarantee that F (x) is atomless on X, and � (�x) = 0

for �x <1.14 If �x =1, then lim
x!1

� (x) can be 0, �nite, in�nite, or do not exist. Under these

conditions, � (x) generates the cdf F (x) and the density f (x) > 0 for x 2 (x; �x) as follows:

F (x) = 1� exp

0@� xZ
x

1

� (t)
dt

1A and f (x) =
1

� (x)
exp

0@� xZ
x

1

� (t)
dt

1A ; (2)

We also assume that � (x) is twice continuously di¤erentiable and its second derivative
�00 (x) is bounded if �x = 1. This condition is not purely technical and can qualitatively
a¤ect the results as demonstrated below. Next, we assume that

� (x) � x� c and � (�x) � �x� �c: (3)

These conditions imply that for any c 2 C, there is pc 2 (c; �x], such that

� (pc) = pc � c: (4)

Given a subset S � C, denote

PS = fpj� (p) = p� c for c 2 Sg (5)

the set of solutions to (4) induced by costs in S. We also require that

�0 (p) < 1 for p 2 PC; (6)

which means that pc is unique for all c 2 C, since the function p � � (p) � c is strictly
pseudo-monotone in p for c 2 C, i.e., it intersects the p-axis only once from below.15

Information. Buyers privately know their valuations, while the seller knows only the
cdfs F and H. Also, the seller receives a signal s about c whose precision is selected by
the information designer. By relabeling signals we can put s = E [cjs], i.e., s is the seller�s
posterior cost induced by a signal s. Denote G (x) = Pr [s � x] the cdf of posterior costs
with the support S � C. Then G is dominated by H by the convex order (Shaked and
Shanthikumar, 2007) or, equivalently, G is a mean-preserving contraction of H:

G �
cx
H ,

xZ
c

G (s) ds �
xZ
c

H (s) ds for all x 2 C, and
�cZ
c

G (s) ds =

�cZ
c

H (s) ds: (7)

Surpluses. Given the pair (p; c), the seller�s ex-post pro�t is

� (p; c) = Pr [X � p] (p� c) = (1� F (p)) (p� c) = Q (p) (p� c) = R (p)� cQ (p) ;

14Otherwise, if � (�x) > 0, then
�xR
x

1
�(x)dx <1, which contradicts limt"�x

tR
x

1
�(x)dx =1.

15A function u : X! R, where X � R is convex, is pseudo-monotone if for any x; y 2 X, u (x) (y � x) > 0
implies u (y) (y � x) > 0. A function u (:) is strictly pseudo-monotone if for any x; y 2 X;y 6= x,
u (x) (y � x) � 0 implies u (y) (y � x) > 0; or equivalently, if u (x) � 0 implies u (y) > 0 for all y > x.
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where
Q (p) = 1� F (p) (8)

is the quantity demanded, and

R (p) = Q (p) p = (1� F (p)) p

is the revenue at price p. Since � (p; c) is linear in c, the seller�s pro�t for posterior cost s
and price p is equal to

� (p; s) = E [� (p; c) js] = Q (p) (p� s) = R (p)� sQ (p) : (9)

Thus, the posterior cost s contains all decision-relevant information about c for the seller.
Furthermore, s = E [cjs] implies that posterior cost s is equivalent to the actual cost c = s
from the seller�s perspective. Due to this equivalence, we often call s simply a cost hereafter
to shorten the notation whenever the nature of cost is clear from the context.
The seller�s problem given a posterior cost s is to select the optimal price ps that yields

the maximal posterior pro�t, which re�ects the producer surplus in the monopolistic market,

PSs = max
p�0

� (p; s) = � (ps; s) = Q (ps) (ps � s) : (10)

The optimal price exists, unique, and is equal to ps given by (4). This is because ps satis�es
the �rst-order condition

�0p (ps; s) = 1� F (ps)� f (ps) (ps � s) = f (ps) (� (ps)� (ps � s)) = 0;

where f (ps) > 0. It also satis�es the second-order condition due to (6) and is an interior
point of X due to (3). Hence, PS de�ned by (5) determines the set of optimal prices induced
by posterior costs in S.
The posterior consumer surplus is

CSs = CS (ps) =

�xZ
ps

x� psdF (x) = �R�x +

�xZ
ps

Q (x) dx =

�xZ
ps

Q (x) dx; (11)

where
R�x = lim

p!�x
R (p) = lim

p!�x
Q (p) p = lim

p!�x
Q (p) (p� s) ; (12)

is the limit of the seller�s revenue R (p) = Q (p) p as the price converges to �x.16 It is well
known that EF [X] <1 implies R�x = 0 (Feller, 1966). Then, the last equality in (11) holds,
because CSs <1 if and only if EF [X] <1 and, hence, only if R�x = 0.17

The posterior total surplus is de�ned as a linear combination of the posterior consumer

16Since lim
p!�x

Q (p) = 0, then the limits of the seller�s revenue R (p) and pro�t � (p; s) are the same as p! �x.

17Because CSs =
�xR
ps

x � psdF (x) =
�xR
ps

xdF (x) � Q (ps) ps = EF [X] �
psR
x

xdF (x) � Q (ps) ps, where the

last two terms are �nite, then CSs <1 if and only if EF [X] <1.
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and producer surpluses:

Ws = CSs + �PSs =

�xZ
ps

x� psdF (x) + � (1� F (ps)) (ps � s) ;

where � � 0 is the relative weight of PSs. Thus, Ws for � = 0;1, and 1 correspond to
CSs;PSs, and SWs, respectively, where SWs is the standard social welfare:18

SWs = CSs +PSs =

�xZ
ps

x� sdF (x) :

Then the ex-ante surpluses are given by the averages of the posterior surpluses over G:

PS = E [PSs] =

Z
S

Q (ps) (ps � s) dG (s) ;

CS = E[CSs] =

Z
S

�xZ
ps

x� psdF (x) dG (s) =

Z
S

�xZ
ps

Q (x) dxdG (s) , and

W = E[Ws] = CS+ �PS:

The goal of the information designer is to maximize W over G (x) subject to the
constraint (7), that is, G (x) is a mean-preserving contraction of H (x):

max
G�
cx
H
W:

3 Example 1

Now we provide a simple stylized example, which shows that disclosing any information
about cost to the uninformed seller can drastically reduce the total surplus for any � � 0.
Consider a distribution of costs H (c) with the mean value ce = E [c]. The distribution

of buyers valuations is

F (x) =

8<:
0 if x < x

1� x�ce
x�ce if x � x < �x

1 if x � �x;
where 0 < ce < x < �x < 1. That is, F (x) is a Pareto distribution on the interval [x; �x) with
the mass x�ce

�x�ce at �x.
19 It is depicted on the left panel of Fig. 1.

First, consider the case of the uninformed seller. For the expected cost ce, the seller�s

18We are interested only in thoseWs that put a positive weight on CSs; i.e., � <1 across the paper.
19The mass at �x does not play any role and is selected for convenience only.
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Figure 1: The distribution of buyers�valuations and the seller�s pro�t for di¤erent costs

pro�t is represented by the blue curve on the right panel of Fig. 1 and given by

� (p; ce) =

8<:
p� ce if p < x
x� ce if x � p � �x
0 if p � �x;

Thus, any price p 2 [x; �x] is optimal and yields the producer surplus PSce = x � ce. The
ex-ante consumer surplus at price p is given by

CSp =

�xZ
p

(x� p) dF (x) + (1� F (�x)) (�x� p) :

Setting the lowest optimal price pce = x results in the ex-ante consumer surplus

CSx =

�xZ
x

(x� ce)
x� x

(x� ce)2
dx+

x� ce

�x� ce
(�x� x) = (x� ce) ln

�x� ce

x� ce
;

and the social welfare

Wx = CSx +PSce =

�xZ
x

x� cedF (x) + (1� F (�x)) (�x� ce) = (x� ce)

�
ln
�x� ce

x� ce
+ 1

�
:

In this equilibrium, the seller�s price is the lowest optimal one for analytical convenience
only. Introducing a small decline in the pro�t function of the uninformed seller for prices
above x resolves his indi¤erence between prices without a¤ecting any results.20

20It can be done by using F (x) = 1� x�ce+"
x�ce+" for x 2 [x; �x), where " # 0.
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Now, consider the case of the informed seller. Given the pair (p; s), his pro�t is

� (p; s) = (1� F (p)) (p� s) =

8<:
p� s if p < x
(x� ce) p�s

p�ce if x � p � �x
0 if p > �x:

The right side of Fig. 1 depicts � (p; s) for three values of s: ce (the blue curve), sl < ce (the
red curve), and sh > ce (the green curve). Since x > ce, then

(x� ce)
p� s

p� ce
= (x� ce)

�
1� s� ce

p� ce

�
is strictly increasing in p for p > ce if s > ce and strictly decreasing in p if s < ce. Thus, the
optimal posterior price as a function of cost s is given by

ps =

8<:
x if s < ce;
[x; �x] if s = ce;
�x if s > ce:

Despite a substantial di¤erence �x� x in the optimal prices for s above and below ce, the
e¤ect of s on PSs is insigni�cant due to the continuity of the pro�t function � (p; s) in s:

PSs = � (ps; s) =

�
x� s if s < ce
x�ce
�x�ce (�x� s) if s > ce;

so that lim
s"ce

PSs = lim
s#ce

PSs = x� ce.

In contrast, the e¤ect of the price change on CSs caused by a small variation in s
is signi�cant. In particular, if s < ce, then the optimal price and the posterior consumer
surplus remain the same, those for the uninformed seller, ps = x and CSs = CSx. However,
if s > ce, then the optimal price increases to ps = �x, and CSs falls to 0:

CSs =

�
CSx > 0 if s < ce

CS�x = 0 if s > ce:

Suppose that the distribution of posterior costs is binary with the support fsl; shg =
fce � "; ce + "g and equal probabilities of sl and sh, where " # 0. The table below illustrates
the posterior surpluses and the social welfare for x = 0:3; �x = 0:7; ce = 0:1, and " = 0:01:

s PSs CSs SWs

ce = 0:1 0.2 0.22 0.42
sl = 0:09 0.21 0.22 0.43
sh = 0:11 0.197 0 0.197

Similarly, the table below represents the ex-ante surpluses and the social welfare of the
informed and the uninformed seller:

Seller PS CS SW
Uninformed 0.2 0.22 0.42
Informed 0.204 0.11 0.314

12



That is, the ex-ante social welfare decreases by more that 25% in the case of the informed
seller. Furthermore, as the probability of the higher cost sh converges to 1, the ex-ante
consumer surplus CS converges to 0 (since consumers receive the surplus CSsh almost
surely). As a result, the social welfare becomes entirely determined by the producer surplus
and decreases by 53% compared to that with the uninformed seller. Also, the negative e¤ect
of seller�s information holds in the case of replacing the the social welfare with ex-ante total
surplus with any weight �.
Intuitively, since providing information to the seller decomposes the prior cost ce into a

distribution over posterior costs with the mean E [s] = ce, there must be a mass of costs
s > ce. These costs result in prices ps substantially above the one with the uninformed seller,
pce = x. As a result, the higher posterior costs transform the mass market, that is, the one
in which the product is purchased at a relatively low price by a large fraction of consumers,
into the niche market, in which the product is purchased at high price by a small fraction
of consumers with high valuations. This transformation reduces the posterior social welfare
and, as a consequence, the ex-ante social welfare.

4 Market characteristics

In this section we characterize the relationships between the inverse hazard rate and several
key market characteristics, such as the optimal price, the pro�t margin, the marginal revenue,
the demand elasticity, and the pass-through rate. Then we use these relationships in order
to establish the convex properties of posterior surpluses.
We start the subsection by relating � (p) to the market demand and the marginal revenue.

First, consider the inverse demand function

P (q) = F�1 (1� q) ; (13)

which expresses the price as a function of the quantity demanded q. Then � (p) is related to
P (q) as follows:

� (p) = �P 0 (q) qjq=Q(p) = �
Q (p)

Q0 (p)
:

Thus, � (p) represents the marginal decrease in the revenue R (q) = P (q) q, which is caused
by an increase in quantity q and expressed as a function of price p.
Next, we relate � (p) to other characteristics of the demand function. One of them is the

demand elasticity

" (p) =
Q0 (p) p

Q (p)
=

P (q)

P 0 (q) q
jq=Q(p) = �

p

� (p)
: (14)

Another characteristics of the demand is the virtual value function

 (p) = p� � (p) ; (15)

that represents the marginal revenue at price p.21 The economic meaning of the relationship
between � (p) ; " (p), and  (p) is clear. Given a price p, the more elastic demand " (p) implies
the lower value of � (p), i.e., the smaller decrease in the marginal revenue  (p) jp=1�F (q)
21This is because MR (q) jq=Q(p) = P (q) + qP 0 (q) jq=Q(p) = p� 1�F (p)

f(p) = p� � (p) =  (p).
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stemming from an increase in quantity q. This is because the more elastic demand means
the smaller impact of the relative quantity dq

q
on the relative price change dp

p
and, hence, the

marginal revenue  (p).
Also, the value of � (ps) at the optimal price ps determines the pro�t margin, or simply

the margin ps � s. Because s > 0, then � (ps) = ps � s < ps yields the classical result
" (ps) = � ps

�(ps)
< �1, i.e., the demand must be elastic at ps. Next, using (4) and (15) gives

 (ps) = ps � � (ps) = s, or (16)

ps =  �1 (s) :

Furthermore, using the Implicit Function Theorem provides the relationship between
� (x) and the pass-through rate p0s:

p0s =
1

1� �0 (ps)
=

1

 0 (ps)
; (17)

where p0s > 0 due to (6).
22 Intuitively, (17) has the standard meaning as the ratio of the slope

of the demand function to the slope of the marginal revenue, which are, however, expressed
via the price rather than the quantity.23 Also, because (15) implies

 0 (x) = 1� �0 (x) ;

then the condition �0 (x) < 1 is equivalent to  0 (x) > 0. That is, (6) is equivalent to the
strict concavity of the revenue R (q) in q.24 Finally, taking the derivative of p0s with respect
to s gives the marginal pass-through rate:

p00s = �00 (ps) (p
0
s)
3
=

�00 (ps)

(1� �0 (ps))
3 = �

 00 (ps)

( 0 (ps))
3 : (18)

As we show below, all these market characteristics� the optimal price ps, the pro�t
margin � (ps), the pass-through rate p0s, and the marginal pass-through p

00
s� determine the

convex properties of posterior surpluses in cost s.

5 Surplus curvature

Before establishing the main results, we characterize the driving forces behind the curvatures
of the posterior surpluses and relate them to the inverse hazard rate and market
characteristics. For notational simplicity, by the curvature of a function we imply the value
of its second derivative, which thus determines the local concavity or the convexity of the

22The pass-through rate plays an important role in the welfare e¤ects of taxes in imperfectly competitive
markets (Weyl and Fabinger, 2013).
23Speci�cally, p0s =

P 0(q)
MR0(q) jq=Q(ps) =

dp
dq

d
dq (P (q)q)

jq=Q(ps) = 1
d
dp (pQ(p))

jp=ps = 1
d
dp (p��(p))

jp=ps = 1
1��0(ps) .

24Since  (p) =MR (Q (p)), then  0 (p) = �@2R(q)
@q2 jq=Q(p)f (p) > 0 is equivalent to @2R(q)

@q2 < 0.
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Figure 2: Demand functions with convex (left graph) and concave (right graph) CSs.

function. Taking the derivatives of (10) and (11) with respect to s results in

CS0s = �Q (ps) p0s = �
Q (ps)

1� �0 (ps)
; (19)

PS0s = �Q (ps) = � (1� F (ps)) , and

W0
s = CS

0
s + �PS0s = �Q (ps) (p0s + �) = �Q (ps)

�
1

1� �0 (ps)
+ �

�
: (20)

As can be seen from the �rst equality in (19), the e¤ect of s on CS0s is dual. First, a $1
increase in cost increases the price by the value of the pass-through rate p0s. This reduces
the ex-post consumer surplus x � ps of a consumer with valuation x who purchased the
product, by p0s. Because the mass of consumers served is Q (ps), the overall e¤ect is given
by �Q (ps) p0s. The second equality in (19) employs the dependence (17) of the pass-through
rate p0s on the marginal inverse hazard �

0 (ps). This allows us to express the relationship
between CS0s and the value of the optimal price ps only, which we use below.
Taking the second derivatives of CSs and PSs with respect to s yields

CS00s
f (ps)

= (p0s)
2 � Q (ps)

f (ps)
p00s = (p

0
s)
2 � � (ps) p

00
s = (p

0
s)
2 � (ps � s) p00s ; (21)

PS00s
f (ps)

= p0s, and

W00
s

f (ps)
=
CS00s
f (ps)

+ �
PS00s
f (ps)

= (p0s)
2 � p00s� (ps) + �p0s: (22)

Note thatWs is concave only if CSs is concave and � is su¢ ciently low. This is because
PS00s = f (ps) p

0
s > 0 implies thatPSs is always strictly convex.

25 In this light, we focus mostly
on the curvature of CSs hereafter. Figure 2 depicts markets with the convex and concave
CSs. In this picture, the areas of trapezoids �dCSs and �dCSs+ds re�ect the absolute values
25It also stems from the Blackwell su¢ ciency, since additional information in the monopolist decision

problem can only increase his maximal ex-ante pro�t.
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Figure 3: Marginal e¤ect of cost on CS0s via optimal prices

of the incremental decreases in CSs as posterior cost increases from s to s + ds, and then
from s+ds to s+2ds. Hence, �dCSs+ds < (>)�dCSs implies a smaller (larger) incremental
decrease in CSs for higher costs, which corresponds to the convex (concave) CSs.

5.1 Surplus curvature via optimal prices

We start the analysis of CSs andWs by noting that its curvatures can be entirely expressed
in terms of the characteristics of the optimal price: its value ps, the pass-through rate p0s,
and the marginal pass-through rate p00s :

CS00s � (�) 0, (p0s)
2 � p00s� (ps) = (p

0
s)
2 � p00s (ps � s) � (�) 0, and (23)

W00
s � (�) 0, (p0s)

2 � p00s� (ps) + �p0s � (�) 0:

The intuition behind (21) and (23) can be explained by considering the marginal impacts
of s on ps; p0s; qs = Q (ps), and, as a consequence, on CS0s. They are depicted on Figure 3. As
cost increases from s to s+ ds, the price ps changes by p0sds, the quantity qs changes by dqs,
and the posterior surplus CSs changes by dCSs, such that

dCSs = �
qs+ds + qs

2
p0sds:

Similarly, as cost increases from s+ds to s+2ds, the price ps+ds changes by p0sds+p
00
sds

2,
the quantity qs+ds changes by qs+2ds � qs+ds, and CSs changes by dCSs+ds, such that26

dCSs+ds = �
qs+ds + qs+2ds

2

�
p0sds+ p00sds

2
�
:

In turn, the second-order di¤erential d2CSs is given by the di¤erence dCSs+2s � dCSs+ds,

26Speci�cally, �dCSs is equal to the area of the trapezoid with vertices (0; ps) ; (0; ps+ds) ; (qs+ds; ps+ds),
and (qs; ps). Similarly, �dCSs+ds is equal to the area of the trapezoid with vertices
(0; ps+ds) ; (0; ps+2ds) ; (qs+2ds; ps+2ds).

16



which is represented by the di¤erence between the areas of the pink and blue rectangles:27

d2CSs = dCSs+ds � dCSs = (�dqs) p0sds� qs+2dsp
00
sds

2:

Because dqs = dQ (ps) = �f (ps) p0sds and qs+2ds = Q (ps) +O (ds), we obtain

d2CSs = f (ps) (p
0
s)
2
ds2 �Q (ps) p

00
sds

2 + o
�
ds2
�
= f (ps)

�
(p0s)

2 � � (ps) p
00
s

�
ds2 + o

�
ds2
�
:

As ds # 0, this leads to

CS00s
f (ps)

= (p0s)
2 � � (ps) p

00
s = (p

0
s)
2 � (ps � s) p00s :

Intuitively, the convexity of CSs is driven by the trade-o¤ between two factors: the
marginal demand e¤ect and the marginal pass-through e¤ect. The �rst e¤ect is caused by
the reduction in the quantity demanded as the price increases in response to the higher
cost. It is proportional to �p0sq0s = (p0s)

2 f (ps), which is represented by the area of the
pink rectangle and always positive. The second e¤ect is caused by the impact of cost on
the pass-through rate p0s. It is proportional to Q (ps) p

00
s , which is represented by the area

of the cyan rectangle and can be positive or negative depending on the convexity or the
concavity of ps in s. That is, the relative magnitude of the second e¤ect is proportional to
Q(ps)
f(ps)

= � (ps) = ps � s. Normalizing both e¤ects by f (ps) gives (21).
Furthermore, the convexity of CSs can be related to the log-convexity of ps. In order to

see this relationship, we can rewrite (21) as

CS00s
f (ps) (ps)

2 =
(p0s)

2 � p00s (ps � s)

p2s
=
(p0s)

2 � p00sps
p2s

+
p00ss

p2s
= � (ln (ps))00 +

p00ss

p2s
;

which gives

CS00s � (�) 0, (ln (ps))
00 � (�) p

00
ss

p2s
: (24)

This inequality provides two important insights about the relationship between the
posterior consumer surplus and the optimal price. First, if s = 0, then (24) is equivalent
to the log-convexity (log-concavity) of the optimal price in cost. Hence, this property can
be used to establish a simple su¢ cient condition of the concavity (or the convexity) of the
posterior consumer surplus for su¢ ciently small costs.

Remark 1 If ps is strictly log-convex (strictly log-concave) in s at s = 0, then CSs is strictly
concave (strictly convex) in the neighborhood of s = 0.

Second, (23) implies that CSs can be concave only if p00s > (p0s)
2

�(ps)
> 0. That is, the

right-hand side of the inequality (24) must be positive. This implies that the optimal
price must be su¢ ciently log-convex, and thus increase in cost faster than exponentially.28

27Up to terms of order o
�
ds2
�
resulting from the non-linearity of the demand Q (p) and the area of the

yellow triangle.
28Otherwise, if ps is log-linear, i.e., ps = aebs, where a; b > 0, then (ln (ps))

00
= 0 <

p00s s

(ps)
2 =

b2

a se
�bs, which

results in CS00s > 0.

17



5.2 Surplus curvature via inverse hazard rate

Now, we characterize the convexity of the posterior surpluses in terms of the inverse hazard
rate. By using (17) and (18), CS00s andW

00
s can be also expressed via � (x) as follows:

CS00s
f (ps)

= (p0s)
2 � � (ps) p

00
s = (p

0
s)
2 � � (ps)�

00 (ps) (p
0
s)
3
= (p0s)

2
(1� � (ps)�

00 (ps) p
0
s) (25)

=
1

(1� �0 (ps))
2

�
1� � (ps)�

00 (ps)

1� �0 (ps)

�
=

1� � (ps)

(1� �0 (ps))
2 ;

PS00s
f (ps)

= p0s =
1

1� �0 (ps)
, and (26)

W00
s

f (ps)
= (p0s)

2 � � (ps) p
00
s + �p0s =

1� � (ps) + � (1� �0 (ps))

(1� �0 (ps))
2 ; (27)

where � : PC ! R is

� (x) =
� (x)�00 (x)

1� �0 (x)
:

It is well de�ned due to �0 (x) < 1, and is continuous in x 2 PC, since � (x) is twice
continuously di¤erentiable. Then, the convexity of CSs andWs can be expressed via � (ps)
only:

CS00s � (�) 0, � (ps) =
� (ps)�

00 (ps)

1� �0 (ps)
� (�) 1, and (28)

W00
s � (�) 0, 1� � (ps) + � (1� �0 (ps)) � (�) 0, � (ps) + ��0 (ps) � 1 + �: (29)

In this light, the curvatures of CSs and Ws are driven by an interplay between three
characteristics of � (x) at the optimal price ps� it value, and the �rst and the second
derivatives. Speci�cally, ceteris paribus an increase in the curvature of � (x) at x = ps is
su¢ cient to concavifyCSs. However, an increase in the slope of � (x) is su¢ cient to concavify
CSs only if �00 (ps) > 0. Finally, it is impossible to isolate the e¤ect of an increase in the
pro�t margin � (x) at x = ps on the curvature of the posterior surpluses. This is because
any shift in � (x) results in the change of ps as follows from (4), which in turn a¤ects the
values of �0 (ps) and �00 (ps). In other words, while one can manipulate the values of �0 (x)
and �00 (x) and, hence the curvatures of CSs andWs at ps without a¤ecting it, any change
in the value of � (x) will change the optimal price ps.

5.3 Surplus curvature via market power and marginal revenue

We now provide the economic interpretation of the above results in terms of two market
characteristics: the pro�t margin and the marginal revenue. Denote A (p) and r (p) the
Arrow�Pratt measures of absolute and relative risk aversion of the marginal revenue  (p)
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at price p, respectively:

A (p) = �
 00 (p)

 0 (p)
= � 

00 (p)

 0 (p)
=

�00 (ps)

1� �0 (ps)
=

p00s
(p0s)

2 , and

r (p) = pA (p) = �
p 00 (p)

 0 (p)
:

Also, denote

L� (s) =
� (ps)

ps
=
ps � s

ps

the price-cost margin (also called Lerner index) in the market with the demand induced by
� (x) and cost s, which is commonly used as a measure of a �rm�s market power. Employing
the relationship (15) between the inverse hazard rate and the virtual value functions gives

 0 (x) = 1� �0 (x) and  00 (x) = ��00 (x) :

Hence, � (x) is related to  (x) as

� (x) =
� (x)�00 (x)

1� �0 (x)
= � (x�  (x))

 00 (x)

 0 (x)
;

and the value of � (ps) can be expressed as

� (ps) = � (ps �  (ps))
 00 (ps)

 0 (ps)
= (ps � s)A (ps) = L� (s) r (ps) ; (30)

where the last equality holds by dividing and multiplying � (ps) by ps. Using this expression,
(28) and (29) have the following interpretation.

Remark 2 CSs is concave (convex) at s if and only if

� (ps) = (ps � s)A (ps) = L� (s) r (ps) � (�) 1, and

Ws is concave (convex) at s for � > 0 if and only if

1� � (ps) + � 0 (ps) � (�) 0:

Therefore, the convex properties of CSs are driven by a combination of two factors
resulting from the demand function: the monopoly�s market power and the concavity of
its marginal revenue in price. Notably, it is not essential whether the magnitudes of these
factors are measured in absolute terms, that is, by using the pro�t margin and the absolute
risk-aversion; or relative terms, i.e., using the price-cost margin and the relative risk-aversion.
Speci�cally, the posterior surplus is concave if and only if both factors are strong enough.
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5.4 Strict convexity of surpluses

By combining the above characterizations of the curvature of CSs, we can derive simple
criteria for the strict convexity of CSs and, thus,Ws. Speci�cally, it follows that

� (ps) ? 0, �00 (ps) ? 0,  00 (ps) 7 0, p00s ? 0:

This yields the following simple but useful result.

Remark 3 If any of the following equivalent conditions hold for s 2 C:
i) � (x) is weakly concave in x at ps;
ii) the marginal revenue  (p) is weakly convex in p at ps;
iii) the optimal price ps is weakly concave in s,
then CSs is strictly convex in s, and so isWs for any � � 0.

However, while the above characterizations of the convex properties of CSs have clear
economic meanings, they are expressed in terms of the optimal price ps, which is de�ned
endogenously. In this regard, it is more useful to derive the conditions on the primitive � (x)
that determine the shape of posterior surpluses without deriving the properties of ps. The
following lemma complements the previous results by providing the su¢ cient conditions on
� (x) under which CSs and, hence,Ws are strictly convex if costs are su¢ ciently high.

Lemma 1 If any of the following conditions holds:
(i) �x <1;
(ii) �x =1; lim

x!1
� (x) = 0, and �0 (x) is bounded away from 1;

(iii) �x =1; � (x) is bounded, �0 (x) is bounded away from 1, and lim
x!1

�00 (x) = 0;

then CSs and, hence,Ws are strictly convex in s for s! �x and any � � 0.

The main implication of the Lemma is that if the lower bound on costs c is su¢ ciently
high and � (x) satis�es the speci�ed conditions, then it is uniquely optimal to fully disclose
information about costs. Technically, the conditions in the lemma guarantee that the value
of � (ps) converges to 0 as s ! �x. This leads to CS00s > 0, so that both CSs and Ws are
convex in s. However, the key properties of the market demand, which lead to the convexity
of the posterior consumer surplus, are di¤erent. Speci�cally, the conditions in parts (i) and
(ii) of the Lemma hold if the tail of the distribution is light, speci�cally, vanishes faster than
that of the exponential distribution, which has the constant inverse hazard rate. For such
distributions, the proportion of buyers with high valuations rapidly decreases as the price
goes up in response to a higher cost. The conditions in part (iii) hold if the tail is smooth
enough. The intuition behind the �rst factor� the light-tailedness of the distribution� is
straightforward and most easily explained in the case of the bounded support of valuations,
i.e., �x < 1. As the cost s increases and eventually converges to �x, then ps converges to
�x as well, and CSs converges to 0. Due to the vanishing CSs, it cannot shrink for high
costs at the same pace in response to a change in cost� regardless of the convexity of the
price� as that for low costs. In other words, the marginal demand e¤ect dominates the
marginal pass-through e¤ect, which results in the convex CSs. (See the left graph in Figure
2.) The same argument holds if �x = 1, but the upper tail of the distribution is thin. In
this case, even though the consumer surplus is positive for all costs, it rapidly vanishes as s
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increases. Therefore, the marginal demand e¤ect still dominates the marginal pass-through
e¤ect that leads to the convex CSs.
The intuition behind the e¤ect of the vanishing convexity of the inverse hazard rate

on CSs is di¤erent. As noted above, CSs is concave if its incremental decrease due to a
marginal increase in posterior cost, increases in the cost value. However, because the demand
is shrinking in response to the higher price induced by a higher cost, then the price has to
raise at the increasing rate in order to induce a su¢ ciently large incremental decrease in
CSs.29 This logic is re�ected in the impact of the marginal pass-through rate p00s on CSs in
(21), or equivalently, the impact of the concavity of the marginal revenue  (p) �measured
by A (ps) and r (ps)� on � (ps) in (30). However, if �00 (x) vanishes as s increases, then
so does �00 (ps), and, hence, p00s ; A (ps), and r (ps). In this case, the price increase �ps is
insu¢ cient to compensate a decrease in the demand. Hence, an incremental change in CSs
decreases with s, which is equivalent to the convexity of CSs.
Also, two comments about the convexity of � (x) for unbounded valuations, i.e., �x =1,

are important here. First, if �00 (x) converges to a limit as x ! 1, then the limit can be
only zero. By contradiction, if �00 (x) converges to a positive limit or diverges, then � (x)
must be bounded from below by a quadratic function for su¢ ciently large x. This implies,
however, that � (x) violates the uniqueness of ps as it would intersect the horizontal axis from
above at some point.30 Also, if �00 (x) converges to a negative limit, that is, the curvature
of � (x) converges to that of the quadratic function, then � (x) becomes strictly decreasing
for su¢ ciently high x. As a result, it must intersect the horizontal axis, which violates the
condition � (x) > 0. In this regard, the requirement of vanishing �00 (x) in part (iii) of the
Lemma is not substantially restrictive.
On the other hand parts (i) and (ii) of the Lemma rely on the boundedness of �00 (x). This

is because in general �00 (x) might not have a limit as x ! 1. For instance, it can oscillate
around, have irregular peaks and troughs, and frequently change its behavior as x increases
unboundedly. Moreover, �00 (x) can oscillate with an unboundedly increasing magnitude, even
though � (x) converges to 0, and �0 (x) is bounded away from 1. In this case, � (ps) crosses
1 an in�nite number of times as s increases, and CSs switches from convex to concave an
in�nite number of times as the cost increases. The example below illustrates this e¤ect.

Example 2. Let X = C = [1;1), and consider

� (x) = a
cos (bx�)

x
+

d

x1=2
;

where a; d > 0 and � 2
�
3
2
; 2
�
. The left graph on Fig. 4 depicts � (x) for a = 4

7
; b = 3

2
; d = 3,

29See the Figure 3. If the parallel sides of the trapezoid �CSs� re�ecting the quantities demanded for
prices induced by the original and new costs� shrink as the cost increases, these changes must be compensated
by at least proportional increase in the height of the trapezoid �ps, in order to preserve the area �CSs.
Hence, �ps must increase in s, which implies the convexity of ps.
30In addition, it will result in

1R
x

1
�(x)dx <1 that violates the conditions on � (x).
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Figure 4: Non-convexity of CSs due to an oscillating unbounded �00 (x).

and � = 9
5
. Then

�0 (x) = � a

x2
(�bx� sin (bx�) + cos (bx�))� d

2
x�3=2, and

�00 (x) =
a

x3
�
�b (3� �)x� sin (bx�) +

�
2� �2b2x2�

�
cos (bx�)

�
+
3d

4
x�5=2:

We can select a small enough so that � (x) > 0 and �0 (x) < 1 for x 2 X. Also, the choice of
� guarantees that �0 (x) vanishes while �00 (x) oscillates unboundedly as x!1. The overall
e¤ect, however, is that � (x) also oscillates with a large magnitude� substantially bigger than
1� and, hence, crosses 1 an in�nite number of times. As a result, the consumer surplus CSs
changes periodically from convex to concave an in�nite number of times as s ! 1. (See
the right graph on Fig. 4.) It is worth noting that bounding the set of valuations by some
�x <1 would still preserve the oscillating behavior of CSs as long as the sets X and C are
large enough relative to 1=b.

In addition, if valuations are unbounded, and � (x) and �00 (x) do not vanish at in�nity,
then the convexity of CSs for high s can be violated due to the oscillating behavior of �0 (x)
and, thus, the pass-through rate p0s. The following example demonstrates this e¤ect.

Example 3. Let X = C = [0;1), and consider the triangle-wave function

� (x) = d+ a� 2a
�
arccos (cos (2�bx)) ;

where a; b; d > 0; d > a
2
, and 4ab < 1.31 The second condition guarantees that � (x) > 0.

As x increases, �0 (x) switches periodically between 4ab and �4ab, whereas �00 (x) = 0
almost everywhere.32 Taking (a; b) such that 2ab

�
is close to 1 from below, results in the

oscillation of term 1
1��0(x) and, hence, the periodic non-convexity of CSs as s ! 1. Even

though CSs is convex on each segment with the linear � (x), it is not globally convex. (The

31The parameters a and 1=b represents the amplitude and the period of � (x), respectively.
32Formally, � (x) is not twice di¤erentiable at peaks and troughs, however, a smooth approximation around

these points would work. In this case, �00 (x) is bounded at these points and does not vanish as x!1.
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Figure 5: Non-convexity of CSs due to an oscillating �0 (x).

left graph on Figure 5 depicts � (x) for a = 3
8
; b = 2

�
, and d = 5

2
.) In fact, � (x) in this

example is a periodic analogue of Example 1, since in both cases the non-convexity of CSs
stems from a rapid change in �0 (x), and, hence, the pass-through rate p0s.

Examples above demonstrate that the global behavior ofWs might be rather complex in
general. This implies that the derivation of optimal signals and their structure can be quite
complicated without imposing additional conditions on the demand function, especially if the
set of possible costs is large enough. The following section addresses this issue by providing
the conditions, which that substantially simplify the structure of optimal signals.

6 Lower censorship as optimal information disclosure

In this section, we establish the necessary and su¢ cient conditions on � (x) under which
optimal signals have a simple form of lower censorship regardless of the prior distribution
of costs H (c) and the weight � in the total surplus. That is, it is optimal to pool all costs
below some cuto¤ and fully disclose them above it. Under these conditions, we also provide
simple necessary and su¢ cient conditions for the optimality of full disclosure.
Before providing these conditions and the main results, we introduce some notations. A

functionWs is called inverted (strictly) S-shaped on [c; �c] � R if there exists ŝ 2 C such that
Ws is (strictly) concave on [c; ŝ] and (strictly) convex on [ŝ; �c]. IfWs is twice di¤erentiable,
then it is (strictly) inverted S-shaped if and only ifW0

s is (strictly) quasi-convex on [c; �c], or
equivalently,W00

s is (strictly) quasi-monotone on [c; �c]. Given an inverted (strictly) S-shaped
Ws with the weight �, denote s� the optimal cuto¤ for the lower censorship disclosure policy.
Speci�cally, s0 corresponds to the optimal cuto¤ for CSs. Also, s1 = c, since s1 corresponds
to the optimal cuto¤ for PSs, which is strictly convex in s. Therefore, it is optimal to disclose
all information about costs. In order to determine the value of s� in general, denote ms the
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expected value of c given that it is below s:

ms = E [cjc � s] =
1

H (s)

sZ
c

cdH (c) , and

m0
s =

h (s)

H (s)
(s�ms) : (31)

The ex-ante total surplus under lower censorship with cuto¤ s is

EWs =

sZ
c

WmsdH (t) +

�cZ
s

WtdH (t) = H (s)Wms +

�cZ
s

Wth (t) dt:

Taking the derivative of EWs results in

EW0
s = H (s)W0

ms
m0
s + h (s) (Wms �Ws) = h (s)

�
W0

ms
(s�ms) +Wms �Ws

�
= h (s) (s�ms)

�
W0

ms
�Ws �Wms

s�ms

�
= h (s)W0

ms

0@s�ms �
sZ

ms

W0
z

W0
ms

dz

1A ; (32)

where the second equality follows from (31), and the last one holds by the fundamental
theorem of calculus.
IfWs is inverted S-shaped, then EW0

s is quasi-monotone, i.e., it intersects the horizontal
axis at most once from above. Speci�cally, if s� 2 (c; �c), i.e., it is an interior point, then
EW0

s�
= 0, or equivalent,W0

ms�
=

Ws�
�Wms�

s��ms�
. That is, the tangent line toWs at s = ms�

coincides with the line that connects points
�
ms� ;Wms�

�
and

�
s�;Ws�

�
. Using m�c = ce =

E [c], if EW0
�c � 0, or equivalently, W0

ce � W�c�Wce

�c�ce , then s� = �c, that is, no disclosure is
optimal.33 As noted by Kolotilin et al. (2022), no disclosure can be optimal even though
ŝ 2 (c; �c), i.e., the in�ection point ŝ of Ws is an interior point of C. In other words, Ws

must not be globally concave on PC in order to pool all information about costs.34 It is the
case if the portion of C on which the inverted S-shapedWs is convex in s, is small enough,
and H (c) is concentrated at low values.
We start the characterization of optimal signals with the case of � = 0, i.e.,Ws = CSs.

Proposition 1 Lower censorship is a (uniquely) optimal for CSs with any H (c) supported
on C if and only if 1� � (x) is (strictly) quasi-monotone in x 2 PC. If 1� � (x) is (strictly)
quasi-monotone in x 2 PC, then full disclosure is (uniquely) optimal for CSs if � (pc) < 1
and suboptimal if � (pc) > 1.35

The intuition behind the Proposition is straightforward. First, (25) implies that the
quasi-monotonicity of 1 � � (x) is equivalent to that of CS00s , which is equivalent to the

33If �c = �x, thenW�c = 0, andW0
ce � W�c�Wce

�c�ce can be simpli�ed further toW0
ce � �Wce

�c�ce .
34See Figure 1(b) in their paper.
35If �

�
pc
�
= 1, then full disclosure is (uniquely) optimal if 1 � � (x) is (strictly) pseudo-monotone in

x 2 PC, which is a slightly stronger condition that quasi-monotonicity.
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inverted S-shapedness of CSs. By Theorem 1 in Kolotilin et al. (2022), the lower censorship
is an optimal signal structure for CSs with any distribution of costs H (c) if and only if CSs
is inverted S-shaped. Second, if 1� � (x) is quasi-monotone on PC and � (pc) < 1, then CSs
is convex for all s 2 C. Therefore, it is optimal to fully disclose information about costs.
Finally, the last part holds because � (pc) > 1 implies the strict concavity of Ws in the
neighborhood of c. Using this property and the fact that ms converges to s as s converges
to c leads to W0

ms
> Ws�Wms

s�ms
for costs near c. By (32), it means that the marginal gains

in the ex-ante total surplus from pooling low costs in some neighborhood of c are positive,
EW0

c > 0. Combining these results yields the simple necessary and su¢ cient condition for
the optimality of full disclosure given that
For � > 0, however, the quasi-monotonicity of 1 � � (x) alone does not guarantee that

Ws takes the inverted S-shaped form. This is because a sum of S-shaped functions is not
S-shaped in general. It is easy to see this by employing their second derivatives, and noting a
sum of quasi-monotone functions is not necessarily quasi-monotone. Also, the strict convexity
of PSs does not imply thatWs is inverted S-shaped.
The next result addresses this issue and completely characterizes scenarios in which the

optimal signal structure takes a form of lower censorship regardless of the distribution of
costs H (c) and the weight �.

Theorem 1 Suppose 1� � (x) is (strictly) quasi-monotone in x 2 PC. Then:
(i) lower censorship is (uniquely) optimal forWs with any � > 0 and H (c) supported on C
if and only if 1��(x)

1��0(x) is (strictly) increasing in x 2 fPCj� (x) > 1g; and
(ii) if 1��(x)

1��0(x) is (strictly) increasing in x 2 fPCj� (x) > 1g, then full disclosure is (uniquely)
optimal forWs if � (pc) + ��0 (pc) < 1 + � and suboptimal if � (pc) + ��0 (pc) > 1 + �.36

The proof of the theorem consists of several parts. For the �if� part of (i), we apply
the aggregation theorem by Quah and Strulovici (2012) and their signed-ratio monotonicity
condition to functions 1�� (x) and 1��0 (x) in order to guarantee that a linear combination
of these functions is quasi-monotone in x.37 As a result, the second derivative W00

s of
the posterior surplus Ws is pseudo-monotone and, hence, quasi-monotone, in cost s,
which implies that it is inverted S-shaped. Second, we apply the result by Kolotilin et al.
(2022) who show that lower censorship is a (uniquely) optimal signal structure for Ws

with any distribution of costs H (c) if and only if Ws is (strictly) inverted S-shaped.38

For the �only-if� of (i), we marginally extend the result of Quah and Strulovici (2012).
Speci�cally, if their signed-ratio monotonicity condition is violated, then a linear combination
of pseudo-monotone functions is generally not only not pseudo-monotone, but also not
quasi-monotone. The part (ii) of the Theorem relies on the same arguments as those used
in Proposition 1.

36If �
�
pc
�
+ ��0

�
pc
�
= 1 + �, then full disclosure is (uniquely) optimal if 1 � � (x) is (strictly)

pseudo-monotone in x 2 PC.
37Formally, Quah and Strulovici (2012) state their proposition for pseudo-monotone functions, which is a

subset of quasi-monotone functions. However, Choi and Smith (2017) note that the �if�part of the result by
Quah and Strulovici (2012) can be also applied to aggregate quasi-monotone functions if these functions do
not common �at regions at which they are equal to 0.
38Kolotilin et al. (2022) show the optimality of upper censorship for an S-shaped function. It is equivalent

to the optimality of lower censorship for an inverted S-shaped function.
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In order to explain the economic intuition behind the Theorem, we need to delve into the
meaning of functions 1� � (x) and 1��0 (x) and the signed-ratio monotonicity condition on
them. First, as follows from (25) and (26), the normalized values of these functions at price ps
re�ect the curvatures of the posterior consumer and producer surpluses, respectively, at cost
s. Second, the signed-ratio monotonicity condition on 1 � � (x) and 1 � �0 (x) is equivalent
to the ranking of the growth rates of the functions.39 That is, the rate of a change in the
convexity of the posterior producer surplus PSs, must always exceed the rate of a change
in the concavity of the posterior consumer surplus CSs. Altogether, this implies that the
curvature of the posterior total surplusWSs must change monotonically� from concave to
convex� at any in�ection point ŝ, i.e., such thatWS00ŝ = 0. This means that there can be at
most one in�ection point, andWSs cannot contain two disjoint intervals of costs on which
it is either convex or concave. The example below illustrates Theorem 1.

Example 4. LetX = [0;1) and consider the Burr distribution of consumer valuations.40
It has two parameters, and its density, cdf, and the inverse hazard rate are

f (x) =
abxa�1

(1 + xa)b+1
; F (x) = 1� (1 + xa)�b , and � (x) = xa + 1

abxa�1
;

where a; b > 0. Speci�cally, put a > 1 and b = 1.41 Then lim
x!0

� (x) = 1; � (x) ! x
a
< x as

x!1, and
�0 (x) =

xa � (a� 1)
axa

=
1

a
� a� 1

axa
<
1

a
< 1 for all x > 0;

imply that for any s 2 [0;1) there is the unique optimal price ps. Also, the function � (x) is

� (x) =
1

xa
:

Clearly, 1� � (x) is strictly increasing, that is, strictly quasi-monotone in x, and � (x) ? 1 if
and only if x 7 1.
Altogether, we obtain

1� � (x)

1� �0 (x)
=

a

a� 1 �
2a

(a� 1) (xa + 1) =
a

a� 1

�
1� 2

xa + 1

�
;

which is strictly increasing in x for all x > 0. That is, � (x) satis�es all conditions of Theorem
1, so that lower censorship is uniquely optimal forWs with any � > 0 and H (c) supported
on C � [0;1). Fig. 6 depicts � (x) and CSs for a = 7.
39Consider two di¤erentiable functions ' (x) and g (x), such that ' (x) < 0 < g (x). The signed ratio

monotonicity condition, which says that '(x)
g(x) must be increasing, is equivalent to the ranking of the rates,

g0(x)
g(x) �

'0(x)
'(x) . It guarantees that for any point x̂, such that ' (x̂) + �g (x̂) = 0, that is, � = �'(x̂)

g(x̂) > 0, we

have '0 (x̂) + �g0 (x̂) = '0 (x̂) � '(x̂)
g(x̂) g

0 (x̂) = �' (x̂)
�
g0(x̂)
g(x̂) �

'0(x̂)
'(x̂)

�
� 0. That is, a linear combination of

functions, ' (x) + �g (x), can intersect the x-axis only from below.
40This distribution includes other families as special cases, e.g., log-logistic and Lomax distributions. It is

also known as Singh�Maddala distribution and often used to model household income (Singh and Maddala,
1976).
41The choice of b = 1 is for analytical and notational simplicity only. The results can be easily extended

to the general case.
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Figure 6: An inverted S-shaped CSs for Burr distribution of valuations

For part (ii) of the Theorem, suppose C = [0;1). Because c = 0, the lowest optimal
price is p0 = 1

(a�1)
1
a
. Then

� (pc) + ��0 (pc) = a (1� �) + 2� � 1 < 1 + �;

and, hence, full disclosure is optimal if and only if

� > �� =
a� 2
a� 1 = 1�

1

a� 1 :

Thus, if a � 2, then full disclosure is optimal for any � � 0. As a increases unboundedly, ��
converges to 1; i.e., pooling information about low costs is optimal even for high values of �.
Conversely, for a given a, it is optimal to disclose all information as � becomes high enough.
The following result generalizes this observation and shows that it is optimal to disclose

more information if the weight of the producer surplus increases.

Proposition 2 Suppose 1�� (x) is strictly quasi-monotone and 1��(x)
1��0(x) is strictly increasing

whenever � (x) > 1 for x 2 PC. Then s�� is decreasing in �.

The proof follows from Theorem 2 in Curello and Sinander (2024). Because PSs is convex
in s, then putting a higher weight on it implies that the total surplusWs becomes �coarsely�
more convex.42 As a result, the optimal signal structure(s) become more dispersed. In terms
of lower censorship, this implies that the cuto¤ s�� is decreasing in �.

7 Linear surpluses

In this section, we present another main result of the paper. Speci�cally, for any given weight
� � 0 we provide the full characterization of the set of demand functions under which the
posterior total surplusWs is linear in cost s. In other words, the concavity of the posterior

42Following Curello and Sinander (2024), a function V : C ! R is coarsely more convex than a function
U : C! R if the convexity of U on any interval [x; y] � C implies the convexity of V on [x; y].
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consumer surplus perfectly counterbalances the convexity of the producer surplus at any
cost. Using our characterization, we explicitly derive the main market characteristics as
functions of cost: the quantity demanded, the marginal revenue, the demand elasticity, the
optimal price, the pro�t margin, the pass-through rate, the marginal pass-through rate, and
the producer surplus.
The linearity of the posterior total surplus in cost has two main implications, one from

the information design perspective and the other one from the policy perspective. First, the
linearity of Ws implies the invariance of the ex-ante surplus W to the seller�s information
about cost. That is, there are no bene�ts or losses of controlling the seller�s information. The
second implication is the policy one. Consider the case of a gradual increase in an input price
due to, for instance, the minimum wage rate, which is spread across several periods. If it
gradually increases over several periods, then the marginal impact of each wage increase by
$1 on the ex-ante total surplus remains constant in all periods. Thus, the marginal impact
of the minimum wage on this surplus does not depend on the current market outcome. Also,
by deriving and analyzing the demand functions that induce the linear total surplus, we
can gain insight into the key properties of the market demand that induce the convex and
concave total surplus without employing the resulting market characteristics.
Another application of our results is analytical. Speci�cally, even employing the

characterization above, it is not easy to obtain the demand functions such for which the
posterior total surplus is always concave in cost for an arbitrary bounded interval. Our
results below allow to solve this issue easily. For that purpose, it is su¢ cient to derive a
single demand function for some benchmark weight �� > 0. Then the total surplusWs with
the weight � is always strictly concave in s if � < �� and strictly convex if � > ��.
The problem of deriving the demand functions can be approached from several ways,

however, their e¤ectiveness and complexity are di¤erent. One way is to use the relationship
(20) between the negative constantW0

s, the quantity demanded Q (ps), and the pass-through
rate p0s. Alternatively, one can employ the relationship (22) betweenW

00
s , the pass-through

rate p0s, the marginal pass-though rate p
00
s , and the inverse hazard rate � (ps). The main

di¢ culty with these approaches is that the corresponding di¤erential equations are de�ned
in terms of the demand function Q (x) and the optimal price ps, which is itself determined
by Q (x). This �double-endogeneity�issue substantially complicates the analysis.
We resolve this issue by employing (27) and using the monotone transformation x = ps.43

In this case, the problem is de�ned in terms of the inverse hazard rate � (x) only. Speci�cally,
given the weight � � 0 and the set of costs C = [c; �c], it is required to �nd the optimal prices
pc and p�c for the cost bounds, and the function � : [pc; p�c]! R++, such that pc and p�c satisfy
(4) for � (x), and � (x) is a solution to the autonomous second-order di¤erential equation44

1� �00 (x)� (x)

1� �0 (x)
+ � (1� �0 (x)) = 0; (33)

for x 2 [pc; p�c], such that �0 (x) < 1 as required by (6).
We start the analysis by transforming (33) into the �rst-order di¤erential equation.

43If p0s = 0 for s 2 C, then CSs is also linear as follows from (25). It corresponds to the case of the
degenerated F (x) such that all valuations are equal to x0. Then ps = x0 if s � x0. As a result, p0s =
0; �0 (ps) = �0 (x0) = �1, and CSs = 0 for s � x0. I am thankful to Greg Pavlov for providing this example.
44If �c =1, then p�c =1:
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Lemma 2 The equation (33) such that �0 (x) < 1 is equivalent to

C� (x) =

8<: (1+����0(x))1+
1
�

1��0(x) if � > 0
e1��

0(x)

1��0(x) if � = 0:
(34)

Solving (34) requires some technicalities. First, it can be expressed as

C� (x) = y� (z) ; (35)

where

y� (z) =

(
(1+�z)

1+ 1
�

z
if � > 0

ez

z
if � = 0, and

(36)

z = 1� �0 (x) : (37)

Hence, �0 (x) < 1 if and only if z > 0. Also, denote H� (t) = y�1� (t) the inverse function of
y� (:). Thus, the solutions to (35) with respect to z are given by

z = H� (C� (x)) (38)

For example, for � = 0 that corresponds to the linear consumer surplus,Ws = CSs, we have

H0 (t) = �W
�
�1
t

�
;

whereW (:) is Lambert W function (also called product logarithm). Similarly, for � = 1 that
corresponds to the linear social welfare,Ws = CSs +PSs, we have

H1 (t) =
t� 2�

p
t2 � 4t

2
:

Combining (37) and (38) allows us to transform (34) into the ordinary 1st-order
autonomous di¤erential equation:

1� �0� (x) = H� (C� (x)) , or

�0� (x) = 1�H� (C� (x)) : (39)

Next, y� (z) is strictly quasi-convex in z, achieves the minimum

y
�
=

�
(1 + �)1+

1
� if � > 0;

e if � = 0;

at z� = 1, and increases unboundedly as z goes to 0 and 1. This implies that for any
� � 0, (35) has no solutions if C� (x) < y

�
, one solution z� = 1 if C� (x) = y

�
, and

two solutions, z0;� and z�1;�, such that 0 < z0;� < 1 < z�1;� if C� (x) > y
�
. Equivalently,

H� (t) is de�ned for t � y
�
only, and has two branches, H0;� (t) and H�1;� (t), such that

H0;�

�
y
�

�
= H�1;�

�
y
�

�
= 1, and 0 < H0;� (t) < 1 < H�1;� (t) for t > y

�
. (Here, we use
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the notation similar to Lambert W function.) Also, H0;� (t) and H�1;� (t) are continuously
di¤erentiable in t for t > y

�
and thus Lipschitz continuous. By Picard�Lindelöf theorem,

for any � � 0 and (C; x0; �0), such that C > 0 and �0 >
y
�

C
, the equation (39) with the

boundary condition � (x0) = �0 has the unique solution in a neighborhood of (x0; �0).
The �nal remark is that the solutions are parameterized by two constants, C > 0 and

x� 2 R, where C is the scale parameter, and x� is the location parameter and the unique
minimizer of � (x). Given these preliminaries, we now characterize all inverse hazard rates
�� (x), such that �0� (x) < 1 on PC, and the total surplusWs is linear in s for a given � � 0.

Theorem 2 Given � � 0 and �1 < c < �c < 1, Ws is linear in s on [c; �c] subject to
�0 (x) < 1 for x 2 [pc;�; p�c;�] if and only if45

�� (x) =
y�
�
��1� (x)

�
C

; (40)

for all x 2 [pc;�; p�c;�], where y� : R++ ! R++ is given by (36), �� : R++ ! R is

�� (z) =

8>><>>:
1
C

1R
z

(1+�u)
1
�

u2
du+ x� if � > 0;

1
C

1R
z

eu

u2
du+ x� if � = 0;

(41)

C > 0; x� 2 R, and ps;� exists, unique, and satis�es (4) for �� (x) and s 2 [c; �c].

It is worth noting that �� (z) can be expressed via special functions:

�� (z) =

(
�
C

�
�B1+�z

�
1
�
+ 1;�1

�
+ B1+�

�
1
�
+ 1;�1

��
+ x� if � > 0;

1
C

�
�Ei (z) + ez

z
� e+ Ei (1)

�
+ x� if � = 0;

where Bx (a; b) is the incomplete beta function, and Ei (x) is the exponential integral.
The key element of the Theorem is the variable z > 0, which has several economic

interpretations and properties. First, it follows from (17) that z is the reciprocal of the
pass-through rate p0s, i.e., z =

1
p0s
. Second, z is related to the inverse hazard � (x) as

z = 1� �0� (x) = H� (C� (x)) :

Third, expressing both the independent variable x = �� (z) and the dependent variable
� = y� (z) as functions of z provides the parametric representation of the inverse hazard rate
via (36) and (41). As we show below, this representation substantially simpli�es the analysis
and allows us to determine the market outcome and its major characteristics.
Theorem 2 raises natural questions about the market structure: the form of the

distribution of consumer valuations F� (x) or equivalently, the demand function Q� (x), its
support supp(F�), and the properties of the density f� (x), the inverse hazard rate �� (x),
and the price elasticity "� (p). The following result addresses these questions.

45The results hold for �c =1 as well. However, in this caseWs = CSs =1 as we show below.
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Theorem 3 Consider �� (x) given by (40). Then:
(i) The domain of �� is X� = (��;1), where

�
�
= � 1

C

1Z
1

(1 + �u)
1
�

u2
du+ x� =

�
�1 if � 2 [0; 1] ;
> �1 if � > 1;

(ii) �� (x) � �� (x
�) =

y
�

C
; lim
x!�

�

�� (x) = lim
x!1

�� (x) = 1; lim
x!�

�

�0� (x) = �1, and

lim
x!1

�0� (x) = 1;

(iii) For a given x = inf supp(F�) > �
�
and x � x;

Q� (x) = 1� F� (x) =

1
��1� (x)

+ �

1
��1� (x)

+ �
for � � 0; (42)

f� (x) =

8><>:
C

�
1

��1� (x)
+ �

�
(��1� (x))

2

(1+���1� (x))
2+ 1

�
if � > 0;

C
��10 (x)

�
��10 (x)

�2
e��

�1
0 (x) if � = 0:

:

(iv) EF� [x] = CSs;� =1 for any � � 0;
(v) f� (x) > 0 is strictly pseudo-concave with the maximizer x��� = max fx; �� (2)g �
max fx; x�g; and
(vi) "� (p) is strictly pseudo-convex in p with the minimizer p̂� <1.

The Theorem provides several important insights about the market properties. First, the
convexity of the inverse hazard rate along with the condition s � x imply that the market
is the mass market, in which the optimal price is relatively low compared to valuations of
most of consumers.46 Hence, the product is sold to a relatively large portion of consumers,
including uninformed consumers whose decisions are based on the prior information only.
In our market, in addition, the demand function converges to the unit-elasticity demand.
This is because (ii) implies that the inverse hazard rate of a distribution F� (x) converges
to the identity function� regardless of �� as x increases unboundedly. This means that the
distribution is heavy-tailed or, equivalently, a large mass of consumers have high valuations.
In fact, its tail is so heavy that the mean value EF� [X] and the posterior consumer surplus
are unbounded.47 In this light, the market with the globally linearWs can be viewed as the
extreme mass one, i.e., the limit of the market in which the product valuation by an average
consumer EF [x] converges to in�nity while the monopoly price ps remains �nite.
Also, the distribution of valuations exhibits several properties similar to those of common

distributions with semi-in�nite support, for example, Dagum, Burr (Singh�Maddala), Lévy,

46We use the de�nition of a market as a mass and niche one based on the ranking of the mean of consumer
valuations EF [x] and the optimal monopoly price ps (see, for example, Ivanov, 2009). According to this
de�nition, the market is mass if EF [x] > ps, and niche otherwise.
47In fact, EF� [X] = 1 can be proved by applying solely economic arguments. If Ws is linear in s, has

the negative slope and is positive everywhere, it can be the case only if it is in�nitely large. As noted
above, however, CSs is �nite if and only if the mean value EF� [X] is �nite. Because PSs is �nite, then
CSs = EF� [X] =1.

31



and inverse-gamma ones. First, all these distributions have strictly convex inverse hazard
rates, which are bounded away from 0. Second, the inverse hazard rates of these distributions
converge to a linear function as x increases unboundedly, and for some parameter values,
to the identity function as �� (x) does. That is, all these distributions have heavy tails
or, equivalently, the mass of consumers with high valuations is su¢ ciently large. Finally,
their densities are everywhere positive and strictly pseudo-concave and, hence, unimodal.
This property implies that F� (x) is S-shaped, that is, it is convex if x < x�� and concave if
x > x��. Hence, the demand Q� (p) = 1�F� (p) is concave if p < x�� and convex otherwise.48

At the same time, the distribution violates a few properties commonly used in various
models of markets and mechanisms. First, since � (x) achieves the minimum at x�, it is not
decreasing as commonly assumed in the mechanism design literature. In turn, this implies
that the density f� (x) is not log-concave as typically imposed in di¤erentiated product
markets.49 Finally, the distribution violates the Marshall�s Second Law of Demand, which
requires the price elasticity of demand be decreasing in price and is often used in models
of monopolistic competition. Because the price elasticity "� (p) is strictly pseudo-convex in
p and achieves the minimum at p̂� < 1, it is either non-monotonic (if p̂� > x) or strictly
increasing in p (if p̂� = x), i.e., behaves in the opposite way to the Marshall�s Law. In other
words, the models of markets and mechanisms with these conditions rule out at least a subset
of the support of the demand functions under which the total surplus is linear in cost.
Notably, the lowest consumer valuation x can be arbitrarily small if � is small enough

(i.e., � � 1), but is bounded from below otherwise. Intuitively, if � is high, this requires
CSs be su¢ ciently concave in order to compensate for the convexity of the heavy-weighted
PSs. For small costs, however, the optimal price ps;� and, thus, the pro�t margin �� (ps;�)
are limited. In addition, the value of the derivative �0� (x) is highly negative for small x as
follows from part (ii), that is, 1� �0 (ps) is substantially above 1. Thus, the only factor that
can concavify CSs is the curvature �00� (x). In this case, however, it has to be so high that
� (x) accelerates unboundedly for �nitely small values of x.
In addition, Theorem 3 establishes another property of the variable z. Speci�cally, the

quantity demanded is proportional to z
1+�z

= 1
1
z
+�
. Hence, for � = 0 the demand is linear in

z. This is because using (42) and z = ��1� (x) results in

q = Q� (z) = Q� (�� (z)) = 1� F� (�� (z)) =

1
�z�
+ �

1
z
+ �

; (43)

where �z� = ��1� (x) is the value of z at highest demand �q = 1. The relationship (43) can be
also obtained from (20) by recalling that z = 1

p0s
is the reciprocal of the pass-through rate,

and noting that the marginal posterior total surplus

W0
s = �Q (ps) (p0s + �) = �q

�
1

z
+ �

�
;

must be constant for the linearWs.
Finally, (43) can be used to derive the inverse demand function (13) and the standard

48In the case of �� (2) < x, f� (x) is strictly decreasing, that is, F� (x) is concave, and Q� (p) is convex.
49Bagnoli and Bergstrom (2005) show that the increasing hazard rate, or equivalently, the decreasing

inverse hazard rate, is the necessary condition of the log-concavity of the density.
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Figure 7: Inverse hazard rates for various � and demand for the linear CSs (� = 0)

marginal revenue. Because the quantity q induces the value of z as

z� (q) =
q

1
�z�
+ � (1� q)

;

this results in
p = P� (q) = �� (z� (q)) ;

and gives the standard marginal revenue

MR� (q) = P� (q) + P 0� (q) q = �� (z� (q)) + �
0
� (z� (q)) z

0
� (q) q:

Fig. 7 depicts the inverse hazard rates �� (x) for � = 0; 1, and 2 (the left panel); and the
demand function Q0 (p) and the marginal revenue MR0 (q) (the right panel) for C = 4 and
x� = 5. It also shows that for � = 0, CSs shrinks at the same pace as cost s increases by the
increment of 2 from 0 to 2, and from 2 to 4: the pink area is equal to the blue one.
Furthermore, the parametrization via z allows us to derive the market outcome and all

major resulting market characteristics as explicit functions of cost s. In order to do so,
however, we need to rewrite the virtual value function (15) as a function of z:

v� (z) =  � (�� (z)) = �� (z)�
y� (z)

C
=

8>><>>:
1
C

1R
z

(1+�u)
1
�

u
du� �� (x

�) + x� if � > 0

1
C

1R
z

eu

u
du� �� (x

�) + x� if � = 0:
(44)

As special cases, the function v� (z) for � = 0 and 1 takes the form:

v0 (z) =
�Ei (z) + Ei (1)� e

C
+ x�, and v1 (z) = �

ln z + z + 3

C
+ x�:

Employing this function provides the following result.
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Theorem 4 Suppose �� (x) is given by (40) for x 2 [pc; p�c] � X, where pc and p�c satisfy
(4). Then for all s 2 [c; �c], the following hold:

zs;� = v�1� (s) ; (45)

ps;� = �� (zs;�) = s+
y� (zs;�)

C
and �� (ps) =

y� (zs;�)

C
; (46)

p0s;� =
1

zs;�
and p00s;� =

C

y� (zs;�)

 
1

z2s;�
+

�

zs;�

!
;

qs;� =M�

1
zc;�

+ �

1
zs;�

+ �
and "� (ps;�) = �C

�� (zs)

y� (zs)
= �1� C

v� (zs;�)

y� (zs;�)
;

W0
s = �M�

�
1

zc;�
+ �

�
, and

PSs =

(
M�

C

�
1
zc;�

+ �
�
(1 + �zs;�)

1
� if � > 0;

M0

Czc;�
ezs;0 if � = 0;

where M� = exp

0@� pc;�Z
x

1
��(t)

dt

1A and zc;� = ��1� (pc;�).

Technically, the Theorem relies on two components. The �rst one is the relationship
(45) between the variable z and the cost s. In fact, it is the standard optimality condition
(16) in which the marginal revenue is represented by a function v� (z). Solving the equation
v� (z) = s provides the expression (45) for zs;� as a function of s and �. The second component
is expressing all necessary market characteristics as functions of z. Then combining the two
components allows us to derive these market characteristics as explicit functions of s.
We complete the analysis by considering the case of bounded costs, i.e., �c < 1. In this

caseWs, which is linear on C, can be constructed as follows. Given � and c, one can take
C > 0 and x�, and derive pc;� and p�c;� from (46). Then take any x � pc and �x > p�c. This
results in x � pc < p�c < �x. Finally, consider ~�� (x) de�ned as follows:

~�� (x) =

8<:
�L (x) if x � x < pc;�;
�� (x) if pc;� � x � p�c;�;
�H (x) if p�c;� � x � �x;

where �� (x) is given by (40), �L (x) > max fx� c; 0g ; 0 < �H (x) < x � �c for x < �x, and

lim
t"�x

tR
x

1
�(x)

dx =1. The conditions on �� (x) ; �L (x), and �H (x) guarantee the uniqueness of

ps;� for s 2 C. Also, because ~�� (x) satis�es (33) for x 2 [pc;�; p�c;�], thenWs is linear on C.
Finally, the last two conditions imply that ~F� (x) induced by ~�� (x) is supported on [x; �x].
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8 Conclusion

This paper establishes that the social value of cost-related information in monopolistic
markets can be both positive and negative, depending on the properties of market demand.
It derives these properties and expresses them in terms of the inverse hazard rate function,
the optimal price, the market power, and the concavity of the revenue in the classical
model of the monopolist. The paper also provides the necessary and su¢ cient conditions on
market demand under which the optimal disclosure policy takes the form of lower censorship
regardless of the prior distribution of costs and the weights in the total surplus. It also
establishes the conditions for the optimality of full disclosure. Finally, the paper also provides
a complete characterization of demand functions and the major market characteristics, such
that the posterior total surplus is linear in marginal (posterior) costs.

Appendix

Proof of Lemma 1 (i) Let �x <1, so that � (�x) = 0. Because � (x) is twice di¤erentiable,
then � (x) and �0 (x) are continuous. The continuity of � (x) and ps 2 (s; �x) imply lim

s!�x
� (ps) =

� (�x) = 0. Because �0 (ps) < 1 for s 2 C;�0 (ps) is continuous, and C is compact, then
1

1��0(ps) is bounded away from 0 for s 2 C. Finally, since �00 (x) is bounded, this leads to
lim
s!�x

� (ps) = lim
s!�x

�00(ps)�(ps)
1��0(ps) = 0.

(ii) If �x = 1, then ps > s and lim
x!1

� (x) = 0 imply lim
s!1

� (ps) = 0. Because �0 (x) is

bounded away from 1, and �00 (x) is bounded, this leads to lim
s!1

� (ps) = lim
s!1

�00(ps)�(ps)
1��0(ps) = 0.

(iii) If �x =1, � (x) is bounded, �0 (x) is bounded away from 1, and lim
x!1

�00 (x) = 0, then

ps > s implies lim
s!1

� (ps) = lim
s!1

�00(ps)�(ps)
1��0(ps) = 0.

In either case, lim
s!�x

� (ps) = 0 and f (x) > 0 result in the pointwise convergence of CS00s
andW00

s to

CS00s !
s!�x

f (ps)

(1� �0 (ps))
2 > 0, and

W00
s !
s!�x

f (ps)

(1� �0 (ps))
2 (1 + � (1� �0 (ps))) > 0;

for any � � 0. That is, CSs and, hence,Ws, are strictly convex in s as s! �x.

Proof of Proposition 1 Using (25), p0s > 0, and �
0 (x) < 1 for x 2 PC, it follows that

CSs is (strictly) quasi-monotone in s if and only if 1 � � (x) is (strictly) quasi-monotone
in x on PC. Because CS00s is (strictly) quasi-monotone if and only if CS

0
s is (strictly)

quasi-convex (see, for example, Theorem 9.1 in Hadjisavvas et al., 2005), then the (strict)
quasi-monotonicity of 1 � � (x) on PC is equivalent to the (strict) inverted S-shapedness
of CSs on C. Next, by Theorem 1 in Kolotilin et al. (2022), lower censorship is (uniquely)
optimal for any distribution H (c) if only if CSs is (strictly) inverted S-shaped on C.
Now, suppose 1� � (x) is (strictly) quasi-monotone in x on PC. Then 1� � (pc) > 0 and

35



p0s > 0 imply 1� � (ps) � (>) 0 for (almost) all s 2 C.50 This result, (25), and f (ps) > 0 and
�0 (ps) < 1 for s 2 C imply CS00s � (>) 0 for (almost) all s 2 C. Because CSs is di¤erentiable
and, thus, continuous in s, then it is (strictly) convex. Hence, full disclosure is the (uniquely)
optimal signal structure for CSs.
Finally, let � (pc) > 1. Because there is a neighborhood of pc, such that � (x) > 1 for all

x in the neighborhood, and ps is continuous in s, then � (ps) > 1 and, hence, CS00s < 0 for s
in some neighborhood of c. Thus, for any c1 and c2 > c1 in this neighborhood, we get

CS0c1 >
CSc2 �CSc1

c2 � c1
.

As s # c, then ms # c as well. Since ms < s for s > c, and h (s) > 0, (32) for � = 0 yields

ECSs = h (s) (s�ms)

�
CS0ms

� CSs �CSms

s�ms

�
> 0;

which implies s0 > c; that is, full disclosure is suboptimal.

Proof of Theorem 1 (i-If) Denote � (x; �) the linear combination of 1� � (x) and 1�
�0 (x):

� (x; �) = 1� � (x) + � (1� �0 (x)) = 1 + � � � (x)� ��0 (x) ;

where � > 0 and x 2 PC. Because f (x) > 0 and p0s > 0, i.e., ps is strictly increasing in s,
then

W00
s =

f (ps)� (ps; �)

(1� �0 (ps))
2

is (strictly) quasi-monotone in s for s 2 C if and only if � (x; �) is (strictly) quasi-monotone
in x for x 2 PC.
Next, we use Proposition 1 in Quah and Strulovici (2012), which states that a linear

combination of two (strictly) pseudo-monotone functions 1�� (x) and 1��0 (x) is a (strictly)
pseudo-monotone function for all � > 0 if and only if the ratio 1��(x)

1��0(x) is (strictly) increasing
in x for all x 2 PC , such that 1� � (x) < 0, i.e., x 2 fPC j� (x) > 1g. Also, Choi and Smith
(2017, p.5) note that the �if�part of Proposition 1 by Quah and Strulovici (2012) can be
extended to quasi-monotone functions if both 1� � (x) and 1� �0 (x) do not have common
�at regions of x at which they are equal to 0. Since 1� �0 (x) > 0 implies that this function
does not have such regions, 1 � � (x) is (strictly) quasi-monotone, and 1��(x)

1��0(x) is (strictly)
increasing in x for all x 2 fPC j� (x) > 1g, then � (x; �) is (strictly) quasi-monotone in x on
PC for all � > 0. Thus,W00

s is (strictly) quasi-monotone in s on C, which is equivalent to the
(strict) quasi-convexity of W0

s (see, for example, Theorem 9.1 in Hadjisavvas et al., 2005).
In turn, it is equivalent to the (strict) inverted S-shapedness ofWs. Finally, by Theorem 1
in Kolotilin et al. (2022), lower censorship is (uniquely) optimal for each distribution H (c)
if only ifWs is (strictly) inverted S-shaped on C.
(i-Only if) Suppose 1��(x2)

1��0(x2) <
1��(x1)
1��0(x1) for some pc � x1 < x2 � p�c, such that 1�� (x1) <

50If 1� � (x) is (strictly) pseudo-monotone in x on PC, then 1� �
�
pc
�
� 0 implies 1� � (ps) � (>) 0 for

all s 2 C.
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0. Take �0 > 0, such that

� (x1; �0) = 1� � (x1) + �0 (1� �0 (x1)) = 0, or

1� � (x1)

1� �0 (x1)
= ��0:

It follows then that

1� � (x2)

1� �0 (x2)
<
1� � (x1)

1� �0 (x1)
= ��0, or

1� � (x2) + �0 (1� �0 (x2)) < 0:

Next, because 1� � (x1) < 0 < 1� �0 (x1), then taking ~� = �0 + �, where � # 0 implies

h
�
x1; ~�

�
= 1� � (x1) + ~� (1� �0 (x1)) > 0, and

h
�
x2; ~�

�
= 1� � (x2) + ~� (1� �0 (x2)) < 0;

that is, �
�
x; ~�

�
is not quasi-monotone in x for ~�. Thus, �

�
ps; ~�

�
is not quasi-monotone

in s, which meansW00
s is not quasi-monotone in s, so thatW

0
s is not quasi-convex in s for

~�. This implies that Ws is not inverted S-shaped on C. By Theorem 1 in Kolotilin et al.
(2022), there exists a distribution ~H (c) such that lower censorship is not optimal.
(ii-If) Suppose 1��(x)

1��0(x) is (strictly) increasing in x 2 fPCj� (x) > 1g, and � (pc) +

��0 (pc) < 1+�, or equivalently, � (pc; �) > 0. By part (i), � (x; �) is (strictly) quasi-monotone
in x on PC for all � > 0. This implies � (ps; �) � (>) 0 for (almost) all s 2 C.51 This result,
(27), and f (ps) > 0 and �0 (ps) < 1 for s 2 C imply W00

s � (>) 0 for (almost) all s 2 C.
BecauseWs is continuous in s, then it is (strictly) convex. Hence, full disclosure is (uniquely)
optimal forWs.
(ii-Only if) Finally, let � (pc) + ��0 (pc) > 1 + �, or equivalently, � (pc; �) < 0. Because

� (x; �) is continuous in x and ps is continuous in s, then � (ps; �) is continuous in s 2 C.
Therefore, � (ps; �) < 0 and, thus,W00

s < 0 for s in some neighborhood of c. This means that
for any c1 and c2 > c1 in this neighborhood, we have

W0
c1
>
Wc2 �Wc1

c2 � c1
.

As s # c, then ms # c as well. Since ms < s for s > c, and h (s) > 0, then (32) yields

EW0
s = h (s) (s�ms)

�
W0

ms
�Ws �Wms

s�ms

�
> 0;

which implies s� > c; that is, full disclosure is suboptimal.

Proof of Proposition 2 Following Curello and Sinander (2024), a function U : C! R
51If 1 � � (x) is (strictly) pseudo-monotone in x on PC, then �

�
pc; �

�
� 0 implies � (ps; �) � (>) 0 for

all s 2 C.
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is regular if it is di¤erentiable and C can be partitioned into �nitely many intervals, on each
of which U is either a¢ ne, strictly convex, or strictly concave. Then a regular function U
satis�es the crater property if for any x < y < z < w in C, such that U is concave on [x; y]
and [z; w] and strictly convex on [y; z], the tangents to U at x and at w cross at coordinates
(X; Y ) 2 C�R satisfying y � X � z and Y � u (X). Next, a function V : C! R is coarsely
more convex than a function U if the convexity of U on [x; y] � C implies the convexity of
V on [x; y]. That is, for any x < y in C such that

U (�x+ (1� �) y) � �U (x) + (1� �)U (y)

holds for all � 2 (0; 1), it follows that

V (�x+ (1� �) y) � �V (x) + (1� �)V (y)

holds for all � 2 (0; 1).
By Theorem 2 in Curello and Sinander (2024), if U is regular and satis�es the crater

property, and V is regular and coarsely more convex than U , then for any atomless
distribution H (x) with convex-support C, we have

argmax
G�
cx
H

Z
U (s) dG (s) is lower than argmax

G�
cx
H

Z
V (s) dG (s) ; (47)

where �lower than�implies the weak set order of optimal distributions.
By the conditions of the Proposition, since 1 � � (x) is quasi-monotone and 1��(x)

1��0(x) is
increasing in x whenever � (x) > 1 for x 2 PC, then Ws is inverted S-shaped as shown in
the proof of Theorem 1. This implies that: i)Ws is regular and satis�es the crater property;
and ii) lower censorship is an optimal signal structure. Consider optimal signal structures of
the lower censorship form and put U and V equal toWs for �1 � 0 and �2 > �1, respectively.
Then (47) is equivalent to s��2 � s��1 ifWs is coarsely more convex for �2 than for �1. This,
however, follows from observing that

W�2
s = CSs + �2PSs = CSs + �1PSs + (�2 � �1)PSs =W

�1
s + (�2 � �1)PSs;

and using the fact that (�2 � �1)PSs is convex in s. By Corollary 1 in Curello and Sinander
(2024),W�2

s is coarsely more convex thanW�1
s , which completes the proof.

Proof of Lemma 2 Treating � = � (x) as an independent variable and putting # (�) =
�0 (x) yields

�00 (x) =
d#

d�

d�

dx
=
d#

d�
�0 (x) =

d#

d�
# (�) :
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This allows to transform (33) in the equation, which is separable in � and #:

1� # (�)� d#

d�
# (�)�+ � (1� # (�))2 = 0;

d#

d�
=
1� # (�) + � (1� # (�))2

# (�)�
, and

# (�)

1� # (�) + � (1� # (�))2
d#

d�
=
1

�
:

Because

#

1� #+ � (1� #)2
=

#

1� #+ � � 2�#+ �#2
=

#

(1� #) (1 + � � �#)

= � � + 1

1 + � � �#
+

1

1� #
;

we obtain �
� � + 1

1 + � � �#
+

1

1� #

�
d#

d�
=
1

�

Integrating both sides of this equation yieldsZ
� � + 1

1 + � � �#
+

1

1� #
d# =

� + 1

�
ln (1 + � � �#)� ln (1� #)

= ln
(1 + � � �#)

�+1
�

1� #
=

Z
d�

�
= ln�+ lnC = ln (C�) ;

for any C > 0. This gives

(1 + � � �#)1+
1
�

1� #
=
(1 + � � ��0 (x))1+

1
�

1� �0 (x)
= C� (x) :

Finally, lim
�#0
(1 + �z)1+

1
� = ez implies lim

�#0
(1+����0(x))1+

1
�

1��0(x) = e1��
0(x)

1��0(x) .

Proof of Theorem 2 We split the proof of the theorem in several steps.
Step 1: derivation of � (x). (i) First, consider � > 0. It is shown above that Ws is

linear in s for �0 (x) < 1 if and only if it is a solution to (39), which can be written as

�0 (x)

1�H� (C� (x))
= 1:

The inde�nite integration of this equation results inZ
1

1�H� (C� (x))
d� (x) = x+ �: (48)
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Next, replacing the variable z = 1� �0 (x) = H� (C� (x)) gives

1

1�H� (C� (x))
=

1

1� z
:

Employing (35) and (36) yields

�0 (x) =
d

dx
� (x) =

1

C
y0� (z)

dz

dx
=
1

C

 
(1 + �z)

1
�

z

!0
dz

dx

=
� (1 + �z)1+

1
� + (1 + �) z (1 + �z)

1
�

Cz2
dz

dx

=
(1 + �z)

1
�

Cz2
(�1� �z + z + �z)

dz

dx
= �(1 + �z)

1
�

Cz2
(1� z)

dz

dx
:

This allows us to integrate the left part of (48) by substitution:Z
1

1�H� (C� (x))
d� (x) =

Z
1

1� z

1

C
y0� (z) dz = �

1

C

Z
(1 + �z)

1
�

z2 (1� z)
(1� z) dz

= � 1
C

Z
(1 + �z)

1
�

z2
dz = � �

C

Z
u
1
� (1� u)�2 du;

where u = 1 + �z. Using the normalization z0 = z� = 1 and �� (1) = x�, we obtain

x = �� (z) = �
1

C

zZ
1

(1 + �u)
1
�

u2
du+ x� =

1

C

1Z
z

(1 + �u)
1
�

u2
du+ x�

=
�

C

�
�B1+�z

�
1

�
+ 1;�1

�
+ B1+�

�
1

�
+ 1;�1

��
+ x�:

(ii) Let � = 0. By following the same steps as above, we obtain

H� (C� (x)) = �W
�
� 1

C� (x)

�
;Z

1

1 +W
�
� 1
C�(x)

�d� (x) = Z 1

1� z

ez (z � 1)
Cz2

dz = � 1
C

Z
ez

z2
dz

=
1

C

Z
ez (z � 1)

z2
dz � 1

C

Z
ez

z
dz =

1

C

ez

z
� Ei (z)

C
, and

x = �0 (z) = �
1

C

zZ
1

eu

u2
du+ x� =

1

C

1Z
z

eu

u2
du+ x� =

1

C

�
�Ei (z) + ez

z
� e+ Ei (1)

�
+ x�:
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Using these relationships, �� (x) can be expressed as

C�� (�� (z)) = y� (z) =
(1 + �z)

1
�
+1

z
, and

�� (x) =
y�
�
��1� (x)

�
C

=

8><>:
(1+���1� (x))

1+ 1
�

C��1� (x)
if � > 0

e�
�1
0 (x)

C��10 (x)
if � = 0;

;

where ��1� (x) is well-de�ned for all � � 0 as we show below.
Step 2: properties of �� (z) ; y� (z), and �� (x). First, consider the limits

lim
z!1

y� (z) = lim
z!1

(1 + �z)
1
�
+1

z
� lim

z!1

(�z)
1
�
+1

z
= lim

z!1
�
1
�
+1z

1
� =1 if � > 0;

lim
z!1

y0 (z) = lim
z!1

ez

z
=1 if � = 0, and

lim
z!0

y� (z) = lim
z!1

1

z
=1 if � � 0:

Similarly, consider the limits of �� (z) as z ! 0 and z !1. Because eu � 1 and (1 + �u)
1
� �

1 for u � 0, then

�� (z) =

8>><>>:
1
C

1R
z

(1+�u)
1
�

u2
du+ x� if � > 0

1
C

1R
z

eu

u2
du+ x� if � = 0;

� 1

C

1Z
z

1

u2
du+ x� =

1

C

�
1

z
� 1
�
+ x�:

This leads to

lim
z#0
�� (z) � lim

z#0

1

C

�
1

z
� 1
�
+ x� =1:

Next, we obtain

�
�
= lim

z!1
�� (z) = � lim

z!1

1

C

zZ
1

(1 + �u)
1
�

u2
du+ x� =

�
�1 if � 2 (0; 1]
> �1 if � > 1;
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where the last relation holds because

lim
z!1

�� (z)� x� = � lim
z!1

1

C

zZ
1

(1 + �u)
1
�

u2
du � � lim

z!1

1

C

zZ
1

1 + �u

u2
du

= � lim
z!1

1

C

zZ
1

1 + �u

u2
du � � lim

z!1

�

C

zZ
1

1

u
du = �1 if � 2 (0; 1], and

lim
z!1

�� (z)� x� = lim
z!1

� 1

C

zZ
1

(1 + �u)
1
�

u2
du > lim

z!1
� 1

C

zZ
1

(�u+ �u)
1
�

u2
du

= � (2�)
1
� lim
z!1

1

C

zZ
1

1

u2�
1
�

du > �1 if � > 1:

Next, consider �0� (z) and y
0
� (z):

y0� (z) =

(
� (1+�z)

1
�

Cz2
(1� z) if � > 0

� ez(1�z)
Cz2

if � = 0;
, and (49)

�0� (z) =

(
� (1+�z)

1
�

Cz2
if � > 0

� ez

Cz2
if � = 0;

< 0: (50)

These properties imply that the function �� : R++ ! R has the image

X� = f�� (z) 2 Rjz > 0g =
�
�
�
;1
�
;

and �� (z) is strictly decreasing in z due to (50). Therefore, the inverse function ��1� : X� !
(0; 1) is well de�ned, has the image R++, and ��1� (x) is strictly decreasing in x. These

properties imply that �� (x) =
y�(��1� (x))

C
has the domain X�.

Taking the limits

lim
x!1

�� (x) = lim
x!1

y�
�
��1� (x)

�
C

= lim
��(z)!1

y� (z)

C
= lim

z#0

y� (z)

C
=1 for all � � 0, and

lim
x!�

�

�� (x) = lim
x!�

�

y�
�
��1� (x)

�
C

= lim
��(z)!�

�

y� (z)

C
= lim

z!1

y� (z)

C
=1 for all � � 0;

and using �� (x) =
y�(��1� (x))

C
� �� (x

�) =
y
�

C
> 0 for x 2 X� means that the image of �� (x)

is
�
y
�

C
;1
�
� R++.

Also, using (49)�(50) and taking the derivatives of functions de�ned parametrically at
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x = �� (z) yields

�0� (x) jx=��(z) =
y0� (z)

�0� (z)
= 1� z, and (51)

�00� (x) jx=��(z) =
d
dz
�0� (x) jx=��(z)
�0� (z)

=
�1
�0� (z)

=

(
Cz2

(1+�z)
1
�
if � > 0

Cz2

ez
if � = 0:

(52)

Then (51) results in

lim
x!1

�0 (x) = lim
z!0

(1� z) = 1 and lim
x!�

�

�0 (x) = lim
z!1

(1� z) = �1:

Also, (52) implies �00 (x) > 0 for all x 2 X�, i.e., � (x) is strictly convex. Finally, we use (51)
and (52) to verify that (40) satis�es (33) for all x 2 X�:

1�
�00� (x)�� (x)

1� �0� (x)
jx=��(z) � �

�
1� �0� (x) jx=��(z)

�
= 1� Cz2

(1 + �z)
1
�

(1 + �z)
1
�
+1

Cz

1

z
� �z

= 1� (1 + �z)� �z = 0 if � > 0, and

1�
�00� (x)�� (x)

1� �0� (x)
jx=��(z) = 1�

Cz2

ez
ez

Cz

1

z
= 0 if � = 0:

Step 3: existence and uniqueness of ps;�. The �nal step is to show that for any
� � 0; �� (x) given by (40), and s 2 [c; �c], there is unique ps;� that satis�es (4).
As shown above, ��1� : X� ! (0; 1) is strictly decreasing in x and ��1 (x�) = 1. Therefore,

for any x and �x, such that inf X� � x < x� = �� (1) < �x, there exist unique zx;� = ��1� (x)
and z�x;� = ��1 (�x), such that zx;� > z� = 1 > z�x;� > 0; �� (zx;�) = x, and �� (z�x;�) = �x.
Fix � � 0 and s � c. For x = s, we have

x� s� �� (x) jx=s = ��� (s) � ��� (x�) = �
y
�

C
< 0:

Now, consider  � (x) expressed as a function of z:

v� (z) =  � (x) jx=��(z) = x� �� (x) jx=��(z) = �� (z)�
y� (z)

C
:

If � > 0, then

v� (z)� x� =
1

C

0@ 1Z
z

(1 + �u)
1
�

u2
du� y� (z)

1A =
1

C

0@ 1Z
z

(1 + �u)
1
�

u2
du� (1 + �z)

1
�
+1

z

1A :

By the fundamental theorem of calculus and (49), we obtain

y� (z) = �
1Z
z

y0� (u) du+ y� (1) =

1Z
z

(1 + �u)
1
�

u2
(1� u) du+ y

�
:
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This results in

1Z
z

(1 + �u)
1
�

u2
du� (1 + �z)

1
�
+1

z
=

1Z
z

(1 + �u)
1
�

u2
� (1 + �u)

1
�
+1 (1� u)

u
du� y

�

=

1Z
z

(1 + �u)
1
�

u
du� y

�
;

so that

v� (z) =
1

C

1Z
z

(1 + �u)
1
�

u
du� �� (x

�) + x�, and

 � (x) = v�
�
��1� (x)

�
=
1

C

1Z
��1� (x)

(1 + �u)
1
�

u
du� �� (x

�) + x�:

Since

lim
z#0

1Z
z

(1 + �u)
1
�

u
du � lim

z#0

1Z
z

1

u
du = �lim

z#0
ln (z) =1;

then
lim
x!1

 � (x) = lim
x!1

v�
�
��1� (x)

�
= lim

��(z)!1
v� (z) = lim

z#0
v� (z) =1;

that is, x� �� (x)� s =  � (x)� s > 0 for a su¢ ciently large x = �� (z).
Similarly, if � = 0, then

v0 (z) =
1

C

1Z
z

eu

u
du� �0 (x

�) + x� =
�Ei (z) + Ei (1)

C
� �0 (x

�) + x�;

and

 0 (x) =
�Ei

�
��10 (x)

�
+ Ei (1)

C
� �0 (x

�) + x�:

Because lim
z!0

Ei (z) = �1, then lim
x!1

 0 (x) = lim
z!0

v0 (z) = 1, that is, x � s � �0 (x) =

 0 (x)� s > 0 for a su¢ ciently large x. Therefore, for any � � 0 there is ps;�, such that

� (ps;�)� (ps;� � s) = 0:

Finally, since z > 0 yields �0� (x) = 1� z < 1 for all x 2 X�, then ps;� is unique.

Proof of Theorem 3 (i)�(ii) were proved in Step 2 in the proof of Theorem 2.
(iii) Let � > 0, and consider x > �

�
. By using (40) and the integration by substitution
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z = ��1� (t), we get

xZ
x

1

�� (t)
dt =

xZ
x

C

y�
�
��1� (t)

�dt = C

xZ
x

��1� (t)�
1 + ���1� (t)

�1+ 1
�

dt = C

��1� (x)Z
��1� (x)

z

(1 + �z)1+
1
�

�0� (z) dz

= �C

��1� (x)Z
��1� (x)

z

(1 + �z)1+
1
�

(1 + �z)
1
�

Cz2
dz = �

��1� (x)Z
��1� (x)

1

z (1 + �z)
dz

= �
 
ln

 
��1� (x)

1 + ���1� (x)

1 + ���1� (x)

��1� (x)

!!
= � ln

0@ 1
��1� (x)

+ �

1
��1� (x)

+ �

1A ;

where �0� (z) = �
(1+�z)

1
�

Cz2
by (50). Then employing (2) leads to

Q� (x) = 1� F� (x) = exp

0@� xZ
x

1

�� (t)
dt

1A = exp

0@ln
0@ 1

��1� (x)
+ �

1
��1� (x)

+ �

1A1A =

1
��1� (x)

+ �

1
��1� (x)

+ �
:

Similarly, if � = 0, then using �00 (z) = � 1
C
ez

z2
yields

xZ
x

1

�0 (t)
dt =

xZ
x

1

y0
�
��10 (t)

�dt = xZ
x

C��10 (t) e�
�1
0 (t)dt =

��10 (x)Z
��10 (x)

Cze�z�00 (z) dz

= �
��10 (x)Z
��10 (x)

Cze�z
1

C

ez

z2
dz = �

��10 (x)Z
��10 (x)

1

z
dz = � ln

�
��10 (x)

��10 (x)

�
, and

Q0 (x) = 1� F0 (x) = exp

0@� xZ
x

1

�0 (t)
dt

1A = exp

�
ln

�
��10 (x)

��10 (x)

��
=
��10 (x)

��10 (x)
:

Taking the derivative of F� (x) and using (50) gives

f� (x) = �

0@ 1
��1� (x)

+ �

1
��1� (x)

+ �

1A0

=

 
1

��1� (x)
+ �

!
1�

1 + ���1� (x)
�2 C

�
��1� (x)

�2�
1 + ���1� (x)

� 1
�

= C

 
1

��1� (x)
+ �

! �
��1� (x)

�2�
1 + ���1� (x)

�2+ 1
�

if � > 0, and

f0 (x) = �
�
��10 (x)

��10 (x)

�0
= � 1

��10 (x)

1

�00
�
��10 (x)

� = C

��10 (x)

�
��10 (x)

�2
e��

�1
0 (x):
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(iv) Fix s � x > inf supp(F�) and express CSs;� as follows:

CSs;� =

1Z
ps;�

(x� ps;�) dF� (x) = �
1Z

ps;�

(x� ps;�) d (1� F� (x))

= � (1� F� (x)) (x� ps;�) j1ps;� +
1Z

ps;�

1� F� (x) dx = �R1;� +

1Z
ps;�

1� F� (x) dx;

where ps;� and R1;� are given by (4) and (12), respectively. Note that

R1;� = lim
x!1

(1� F� (x)) (x� ps;�) = lim
x!1

(1� F� (x))x;

and EF� [x] is given by

EF� [x] =

1Z
x

xdF� (x) = x�R1;� +

1Z
x

1� F� (x) dx:

Altogether, these arguments imply

EF� [x]� x = �R1;� +

1Z
ps;�

1� F� (x) dx+

ps;�Z
x

1� F� (x) dx = CSs;� +Ds;�;

where Ds;� =

ps;�Z
x

1� F� (x) dx. Next, Ds;� > 0 due to ps;� > s � x. This leads to

EF� [x]� x = CSs;� +Ds;� > CSs;�:

Finally, note that Ws;� = CSs;� + PSs;� = �� + ��s, where �� < 0, and Ws;� > 0 for all
s > 0. It can be the case if and only if �� = 1. Because PSs;� < 1 for any s and �, then
CSs;� = EF� [x] =1.
(v) Using (2) and �� (x) � �� (x

�) =
y
�

C
> 0 for all x � x, we obtain

f� (x) =
1

�� (x)
exp

0@� xZ
x

1

�� (t)
dt

1A � 1

�� (x)
exp

0@� xZ
x

y
�

C
dt

1A =
exp

�
�
y
�

C
(x� x)

�
�� (x)

> 0:

Finally, we show that f� (x) is strictly pseudo-concave, i.e., f 0� (x) ? 0 if and only if
x 7 x��� = max fx; �� (2)g. This will imply that f� (x) is unimodal with the mode x��� .
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Suppose �rst that x � �� (2). Using (1), we obtain

f 0� (x) = �
1 + �0� (x)

�2� (x)
exp

0@� xZ
x

1

�� (t)
dt

1A :

Thus, f 0� (x) ? 0 if and only if �0� (x) 7 �1. Because �0� (x) = 1� z = 1� ��1� (x), we get

f 0� (x) ? 0, 1� ��1� (x) 7 �1, z = ��1� (x) ? 2:

Because ��1� (x) is strictly decreasing in x, then f 0� (x) ? 0 if and only if x 7 x��� = �� (2),
where �� (2) < �� (1) = x�. If x > �� (2), then f� (x) is strictly decreasing for all x � x,
that is, x�� = x.
(vi) The demand elasticity is "� (p) = � p

��(p)
, or � 1

"�(p)
=

��(p)

p
. Because �� (p) �

y
�

C
> 0

and lim
p!1

�0� (p) = 1 for all � � 0, then lim
p!1

��(p)

p
= lim

p!1
�0� (p) = 1 by L�Hôpital�s rule. Thus,

there is "� < �1, such that
��(p)

p
= � 1

"�(p)
� � 1

"�
or, equivalently, "� (p) � "� = "� (p̂�) for all

p > 0. ("� < �1 follows from �� (ps;�) = ps;� � s < ps;� for all s > 0. Hence,
ps;�

��(ps;�)
> 1, or

"� � "� (ps;�) = � ps;�

�s;�(ps;�)
< �1.) Also, since ��(p)

p
< 1 as p!1, and lim

p!1
�0� (p) = 1, then

p̂� <1. (Otherwise, if p̂� =1, then lim
p!1

��(p)

p
= 1 results in the contradiction "� = �1.)

Taking the derivative of "� (p) yields

"0� (p) = �
�� (p)� p�0� (p)

�2� (p)
= � p

�2� (p)

�
�� (p)

p
� �0� (p)

�
;

so that "0� (p̂�) = 0 implies
�� (p̂�)

p̂�
= �0� (p̂�) :

Also, since �� (x) is strictly convex in x for all � � 0, then "� (x) = � x
��(x)

is strictly
pseudo-convex for x > 0. To show this, note that �� (x) is twice di¤erentiable, and

"00� (x) =

�
� x

�� (x)

�00
=
�00� (x)�� (x)x+ 2�

0
� (x)

�
�� (x)� x�0� (x)

�
�3� (x)

:

Then at any x̂, such that "0� (x̂) = 0, we have �� (x̂) = x̂�0� (x̂), and "
00
� (x̂) =

�00�(x̂)x̂

�2�(x̂)
> 0. That

is, the derivative function "0� (x) can intersect the horizontal line x � 0 only once and from
below. That is, "� (x) is strictly pseudo-convex, which implies that p̂� 2 [x;1) is unique.

Proof of Theorem 4 Suppose �� (x) is given by (40) for x � x, and the boundary
conditions (3) hold. By Theorem 2, for any s 2 C there is unique ps that satis�es (4) .
Next, using (16) and (44), we get

s =  � (ps;�) = v� (zs;�) and zs;� = v�1� (s) ;
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where v�1� (s) is well de�ned, since v� (z) is strictly decreasing in z:

v0� (z) =

(
� 1
C
(1+�z)

1
�

z
if � > 0

� ez

Cz
if � = 0;

that is, v0� (z) < 0 for z > 0. Next, we have

�� (ps;�) =
y� (zs;�)

C
=
y�
�
v�1� (s)

�
C

;

ps;� = s+ �� (ps;�) = s+
y�
�
v�1� (s)

�
C

= �� (zs;�) = ��
�
v�1� (s)

�
;

p0s;� =
1

zs;�
=

1

v�1� (s)
, and

"� (ps;�) = �
ps;�

�� (ps;�)
= ��� (zs)

y�(zs)

C

= �C�� (zs)
y� (zs)

= �1� C
v� (zs;�)

y� (zs;�)
:

Also, usingW00
s = 0 results in

(p0s)
2 � � (ps) p

00
s + �p0s = 0;

p00s =
(p0s)

2 + �p0s
� (ps)

=
C

y� (zs;�)

 
1

z2s;�
+

�

zs;�

!
=

C

y�
�
v�1� (s)

�  1

v�1� (s)2
+

�

v�1� (s)

!
:

Now, consider Q� (x). By using (42) for �� (x) on [pc;�; p�c;�], we obtain52

Q� (x) = 1� F� (x) = exp

0B@� pc;�Z
x

1

�� (t)
dt�

xZ
pc;�

1

�� (t)
dt

1CA
=M�

1 + ���1� (pc;�)

��1� (pc;�)

��1� (x)

1 + ���1� (x)
=M�

1

��1� (pc;�)
+ �

1
��1� (x)

+ �
;

for x 2 [pc;�; p�c;�], where M� = exp

0@� pc;�Z
x

1
��(t)

dt

1A, and
Q� (z) = Q� (�� (z)) =M�

1
zc;�

+ �

1
z
+ �

;

where zc;� = ��1� (pc;�). This gives

qs;� = Q� (ps) = Q� (zs) =M�

1
zc;�

+ �

1
zs;�

+ �
=M�

1
v�1� (c)

+ �

1
v�1� (s)

+ �
:

52That is, �� (x) may not satisfy (40) for x 2 [x; pc;�).
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Next, using (20) leads to

W0
s = �Q (ps) (p0s + �) = �qs;�

�
1

zs;�
+ �

�
=M�

�
1

zc;�
+ �

�
:

Finally, we have PSs;0 = M0

Czc;0
ezs;0 and

PSs;� = qs;��� (ps;�) =M�

1
zc;�

+ �

1
zs;�

+ �

y� (zs;�)

C
=
M�

C

�
1

zc;�
+ �

�
zs;�

1 + �zs;�

(1 + �zs;�)
1
�
+1

zz:�

=
M�

C

�
1

zc;�
+ �

�
(1 + �zs;�)

1
� if � > 0:
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