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Abstract

A principal seeks to screen an agent based on his demonstrable knowledge of a subject
matter, modeled as a binary state. The agent learns about the state through two kinds of
opposing verifiable signals, each kind providing evidence in favor of one of the states. A good
quality agent has an evidence structure which is more informative than a bad quality one. In
a symmetric setting, we show that under the optimal test, regardless of whether the agent can
predict the state correctly, he is failed if the amount of evidence he is able to show is below a
threshold. Conditional on providing evidence above this threshold, the agent is passed based on
a simple True-False test – i.e., if and only if he gives the correct answer. We see this result as
rationalizing a common test structure where test-takers are given credit for giving the correct
answer only if they show a minimal amount of data, arguments, or steps, in support of their
answer. We prove the results by identifying a connection to the optimal transport problem and
leveraging it to show the existence of an appropriate virtual value function.
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benefited tremendously from conversations with Emir Kamenica, , Phil Reny, Daniel Rappaport, Alex Frankel,
Andreas Kleiner, Sarah Auster, Francesc Dilme and seminar participants at the University of Chicago and the
University of Bonn. All errors are our own.



1 Introduction

Individuals are evaluated on their knowledge or expertise in a myriad of settings. Students take
exams, job candidates are interviewed on their domain knowledge, consultants help firms make
decisions and are often rewarded based on the ex-post accuracy of their advice, and so on. In
many such knowledge-based evaluation schemes, accuracy of one’s answers is not enough to earn
rewards. For that, one must justify one’s answers. Many exams give True-False or multiple choice
tests to students, but specify that their answers must be justified in order for them to earn points.
Similarly, it is typically not enough for a consultant assisting a firm in making a decision, to simply
recommend a decision, even if it turns out to be correct in hindsight. He must provide exhaustive
data and analysis to back up any recommendations he makes.

In this paper, we model the above testing setting as a problem of mechanism design with evidence.
Specifically, the model is as follows. There is a binary state, unobserved by a test-taker/agent (he).
He learns about it only through verifiable evidence. His evidence type is a vector with two real
components – each component indicating the amount of evidence in favor of one of the states. The
principal/test-designer (she) wants to design a pass/fail test. She observes the true state ex-post.
She values both accuracy – how close the agent’s belief is to the true state – and the amount of
supporting evidence he possesses. We capture these features by imposing assumptions of, what
we call, accuracy monotonicity and evidence monotonicity, on the principal’s reduced form payoff
function over the evidence space. This is her payoff from passing the agent. That from failing him
is normalized to zero for both the principal and the agent.

We focus on the principal’s optimal tests. Specifically, she can commit to a “test” – without loss,
a pair of passing probabilities for each state, contingent on the agent’s reported evidence. The
objective is to maximize her ex-ante payoff, subject to the agent’s incentive constraint which requires
that it should be optimal for the agent to reveal all his evidence. The twist in the incentive
constraints in our setting, vis-Ã -vis standard mechanism design settings is that, ours are “one-
sided”: The agent can hide evidence, but cannot manufacture it. Therefore, any evidence type can
deviate only to its South-West, i.e., misreport any amount of evidence which is component-wise
weakly lower. The set of possible misreports of a given evidence type is shown in Fig. 1.1

1The nature of allowed deviations is similar to Dziuda (2011), though our problem has commitment, unlike hers,
and the setting is entirely different.
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Figure 1: The shaded area depicts the set of misreports the evidence type (r, l) can make. Red
arrows show a few examples of possible deviations.

The role of hard evidence in shaping incentive forces is as follows. Due to our assumption that
each type of evidence favors one of the states, the agent’s belief about any state is increasing in the
favorable type of evidence and decreasing in the other one. This leads to positively sloped isobelief
curves – curves along which the agent’s belief remains the same. We show that, although each type
has uncountably many directions of deviations available, it is sufficient to only consider deviations
which are (1) horizontal (i.e., hiding only l), (2) vertical (i.e., hiding only r), or (3) “diagonal”,2

i.e., along an isobelief curve (hiding some of both l and r, while truthfully reporting one’s belief).
The relevant deviations are schematically represented by the red arrows in Fig. 1. The diagonal
incentive constraints are our evidence constraints, in the language of the literature3 – this is the set
of constraints for which the restrictions on the directions of deviation, matter, in the following sense.
Our analysis shows that if each type was allowed to deviate along its isobelief line in both directions,
but restricted to only leftward and downwards deviations horizontally and vertically respectively,
we would effectively be back in a standard mechanism design setting where information is “soft”.4

In other words, the unidirectionality of only the diagonal incentive constraints have a bite in our
setting, not the horizontal and vertical ones.

Unidirectionality of incentive constraints has bit in our setting, precisely because of a novel trade-off
in the knowledge screening setting we identify, which we call the evidence/accuracy trade-off. This
is a trade-off the agent faces, due to the interaction of two forces in our model: the principal’s
preference for both accuracy and evidence, and verifiability of all of the agent’s private information.
On the one hand, the principal’s taste for evidence pushes him towards showing all his evidence.
But on the other, her taste for accuracy might make him want to exaggerate his knowledge (i.e.,

2We just call it diagonal for simplicity of terminology. Isobelief curves can have any positive slope and therefore
a deviation along one of them can be in any South-West direction, not necessarily the 45◦ one.

3E.g., Vaidya (2023).
4That would be Dasgupta (2024)’s setting, who considers also considers the problem of screening knowledge, but

allows for only belief-based – as opposed to evidence-based – screening.
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the precision of his belief), which he cannot do without hiding some of his evidence. We call this
the agent’s evidence/accuracy trade-off. This trade-off leads to “unidirectionality” of our incentive
constraints having bite in our setting, unlike many related settings of mechanism design with evi-
dence (Celik, 2006; KrÃ€hmer and Strausz, 2024). Clearly, this is the force which also rules out
unraveling – i.e., the agent’s optimal strategy being revealing all his evidence, always.

We now describe our main characterization of optimal mechanisms. We first consider the case when
the principal’s relative preference for accuracy vis-a-vis evidence is strong enough so that there is
no evidence type she ideally wants to accept in both states. In this case, in a symmetric setting, we
show that the optimal test is simple True-False with an evidence threshold. This can be considered a
natural generalization of the simple True-False test (which has been shown to be generically optimal
for a large class of problems in Dasgupta (2024)), and is ubiquitous in the real world. In particular,
the optimal test asks the agent to predict the state and passes him if and only if he is correct, as
long as he provides a minimum level of supporting evidence. Examples of such tests are shown in
Fig. 2 below. We see this result as providing a rationalization for the common test format where
test-takers are rewarded based on the correctness of their answers, but only if they provide at least
some amount of justification or reasoning for their answers, show a minimum number of steps – in
case of mathematical or logical problems – or provide data in favor of their recommendations, in
case of knowledge workers, and so on.

e

e

45◦

l

r

e

e
45◦

l

r

Accepted in state L; aL(r, l) = 1 Accepted in state R; aR(r, l) = 1

Figure 2: The state is ω ∈ {R,L}. r (respectively, l) denotes the amount of evidence in favor of state
R (respectively, L), shown by the agent. We assume the evidence space is {(r, l) ≥ (0, 0) : r+l ≤ 1}.
The figures show examples of mechanisms within our proposed optimal class, which are of the form
aR(r, l) = 1(r ≥ max{e, l}, aL(r, l) = 1(l ≥ max{e, r}.

In an extension we relax the assumption of the principal not wanting to pass any evidence type
in both states. In this case, under a regularity condition, we show that the optimal test takes a
form which can be considered a further, natural generalization of the simple True-False test. In
particular, the optimal test passes (respectively, fails) the test-taker regardless of his answer, if the
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amount of evidence provided is sufficiently high (respectively, sufficiently low), and passes if and
only if his answer is correct, when the amount of evidence provided is intermediate.

Taken together, these results provide rationalization for commonly observed test structures, where
students, job interview candidates etc. are rewarded for the correctness of their answers, only if they
provide a minimum amount of reasoning/justifications for their answers, and conversely, sometimes
they are also rewarded if they show enough reasoning, but are unable to arrive precisely at the
correct answer.

1.1 Our Methodology

The standard mechanism design toolkit does not apply in our setting due to two issues – the multi-
dimensionality of evidence types and the one-sidedness of the incentive constraints. Consequently,
we use a duality approach, certifying the optimality of the proposed optimal mechanism via di-
rectly constructing the multipliers on the incentive constraints. We do this by identifying a novel
connection of our problem to the optimal transport problem.

We observe that the multipliers on the incentive constraints serve as a transport plan that shifts
the principal’s virtual values along the binding constraints. Our proposed optimal mechanism is
deterministic. So, to certify the optimality of such a mechanism, we have to construct multipliers so
that the virtual values are positive for evidence types that are always passed by the mechanism and
negative for those always failed. This involves “transporting” the virtual values through multipliers
to create the correct signs. The existence problem of such multipliers is then converted into the
existence problem of certain transport plan. This transport plan must satisfy a directional constraint
that says virtual values can only be shifted in the North-East directions, as a result of the one-sided
incentive constraints. We then apply a classic result from the statistics literature – Strassen (1965)’s
theorem – to show that such a transport plan exists. In this regard, our methods share a connection
with those of Haghpanah and Hartline (2021), though their results do not apply to our setting.

1.2 Related Literature

We provide an overview of the related literature here, relegating a more detailed discussion to
Appendix A.

This paper mainly contributes to three distinct strands of literature – screening knowledge, mech-
anism design with evidence, and multi-dimensional mechanism design. Less directly, it also con-
tributes to the literature on mechanism design with verificaiton and that on test design. Within the
literature on screening knowledge, the closest to our paper are (Dasgupta, 2024) and Deb, Pai and
Said (2023). Within that on mechanism design with evidence, our work relates most closely to Sher
and Vohra (2015), Celik (2006), KrÃ€hmer and Strausz (2024), Dasgupta, Krasikov and Lamba
(2022) and Vaidya (2023). Finally, within the multi-dimensional mechanism design literature, our
work is closest to Haghpanah and Hartline (2021), which in turn builds on Carroll (2017) and Cai,
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Devanur and Weinberg (2019).

2 Model

The model features a principal (she) who is a test-designer and an agent (he) who is a test taker.
The principal tests the agent on his knowledge of some binary state to decide whether to pass or
fail him. There are no monetary transfers.

Our main model is in a reduced form. We provide a microfoundation for our model and its features
in Section 5.

Evidence and Learning There is a (binary) unknown state ω ∈ {R,L} with a common prior
that R and L are equally likely. The principal does not know about the state when she designs the
test. She learns the state ex post, and can condition the pass-fail decision on the state.

All learning is verifiable. The agent learns about the state only through verifiable evidence.
There are two kinds of evidence, each favoring one of the states – in a sense to be made precisely
shortly. Let r, l ≥ 0 denote the respective amount of evidence favoring each state. The pair (r, l) is
the agent’s evidence type – his only private information.

Interpretation. The structure fits several applications. For example, a consultant or election
forecaster trying to learn about a state – the right decision for the client, or the election outcome
– may be able to collect data both for and against each possibility under consideration. A student
may be able to come up with several arguments both for and against a given statement in an exam,
without knowing if it is True or False. He may also be able to derive a few steps of a mathematical
problem without knowing the correct answer. These are all examples of an agent learning the state
partially through contradictory sets of evidence.

Resource constraint. The set of all possible evidence types is

E := {(r, l) ≥ 0 : ϕ(r, l) ≤ 1}

where ϕ : R2 → R is a function which is symmetric, convex, and strictly increasing in each ar-
gument.5 ϕ(r, l) ≤ 1 is the aggregate resource constraint of evidence generation. For example, a
student has time constraints in an exam which puts a cap on the number of steps he can derive or
the arguments he can give in favor of either of the possible answers; a consultant may have time
and other resource constraints on the amount of data he can collect in favor of either of the options
he recommends.

5By symmetric we mean, ϕ(r, l) = ϕ(l, r), ∀(r, l).
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Evidence distribution. The evidence types are distributed over E according to some CDF
F (r, l | ω) in state ω with continuous and positive density f(r, l | ω). We assume this distribu-
tion is symmetric, that is, f(r, l | R) = f(l, r | L),∀(r, l) ∈ E. Let f(r, l) := f(r, l | R) = f(l, r | L)
going forward.

Contradictory nature of evidence. We capture the contradictory nature of the two kinds of
evidence, in the following way. Knowing the evidence distribution, the agent forms posterior beliefs
using Bayes rule. Let p(r, l) := Pr(R | r, l) = f(r,l)

f(r,l)+f(l,r) denote his posterior belief that the state
is R. We want to capture the fact that r favors state R and l favors state L, by assuming that p
increases in r and decreases in l. This is equivalent to the following assumption on the distribution
of evidence.

Assumption 1. The likelihood ratio γ(r, l) := f(r,l)
f(l,r) strictly increases in r and strictly decreases in

l.

Preferences We normalize the principal’s utility of failing the agent to zero, and let u(r, l | ω)
be that from passing an agent of type (r, l), when the state is ω. Assume that u(r, l | ω) is
again symmetric, that is, u(r, l | R) = u(l, r | L),∀(r, l) ∈ E. Going forward we use the notation
u(r, l) := u(r, l | R) = u(l, r | L).

Principal values evidence and accuracy. We assume our principal exhibits a preference for
both accuracy and evidence. We state this in terms of her derived payoff function ũ, over the agent’s
belief (capturing accuracy) and supporting evidence.

Let ũ(p, e|ω) denote the principal’s payoff in any state ω, as a function of the agent’s belief p that
the state is ω, and supporting evidence he shows in favor of ω, i.e. if ω = R, e = r and if ω = L,
e = l. Clearly,

ũ(p0, e|R) = u(e, p−1(p0; r)), ∀ p0 ∈
[
min

(r,l)∈E
p(r, l), max

(r,l)∈E
p(r, l)

]
, r ∈ [0, 1]

By assumption 1, the above is well defined. We can see that by symmetry of u, ũ does not depend
on ω. So we drop it from its arguments, going forward.

We capture the feature that the principal prefers more accurate beliefs and more evidence, by
assuming that in each state, for a fixed level of supporting evidence shown, she prefers a higher
belief, and similarly, for a fixed belief, she prefers higher amounts of supporting evidence being
shown. Mathematically,

Assumption 2. 1. (Accuracy Monotonicity) For any p′ > p, e, ũ(p′, e) ≥ ũ(p, e).

2. (Evidence Monotonicity) For any p, e′ > e, ũ(p, e′) ≥ ũ(p, e).
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It is easy to show, that Assumptions 2.1-2 on ũ, taken together, are equivalent to Assumptions 3.1-2
below, on u, taken together. We show this formally in Appx. B.1.

Assumption 3. 1. (Accuracy Monotonicity′) For any l′ < l and r′ > r, u(r′, l) > u(r, l) and
u(r, l′) > u(r, l).

2. (Evidence Monotonicity′) For any (r′, l′) ≥ (r, l) with p(r′, l′) = p(r, l), u(r′, l′) > u(r, l).

For simplicity, in the main body of the paper we also assume that the principal’s preferences are
such that there is no type she wants to accept in both states. We partially relax this in the Extension
section 6, and show how the class of optimal mechanisms changes in that case. Formally:

Assumption 4. For all r, l ∈ E, u(r, l) ≤ 0, or u(l, r) ≤ 0, or both.

Agent’s preferences. The agent always wants to pass. Consequently, we normalize his payoff
from passing to 1 and that from failing to 0. Both the principal and the agent are expected utility
maximizers.

In Section 5, we provide a micro-foundation for the above reduced form model, where the agent is
of either good or bad quality, and the principal wants to pass only the good quality agent.

Mechanisms Next, we describe our universe of mechanisms, and our notion of incentive compat-
ibility, which is “one-sided”, due to verifiability of evidence.

By a revelation principle by Bull and Watson (2007b), it suffices to consider direct mechanisms that
incentivize full disclosure of the agent’s evidence.6 Hence we can, without loss, define our universe
of mechanisms as follows.

Definition 1 (Mechanism). A mechanism is a pair of functions (aR, aL) : E → [0, 1]2 that maps
the agent’s reported evidence to the probabilities of passing when the state is R and L respectively.

The principal chooses a mechanism that is incentive compatible in the following sense, to maximize
her expected payoff.

Definition 2 (Incentive compatibility). A mechanism is incentive compatible (IC) if it is optimal
for the agent to fully disclose his evidence, that is,

aR(r, l)p(r, l) + aL(r, l)(1− p(r, l)) ≥ aR
(
r′, l′

)
p(r, l) + aL

(
r′, l′

)
(1− p(r, l)),

∀(r, l),
(
r′, l′

)
∈ E,

(
r′, l′

)
≤ (r, l).

(1)

The above IC constraints are “one-sided” – the agent can only misreport an evidence type that is
6To be precise, the revelation principle in Bull and Watson (2007b) says that it is without loss to consider direct

mechanisms that incentivize truthful reporting of the agent’s belief and full disclosure of evidence. Since the agent
learns about the state only through evidence, it suffices to incentivize full disclosure of evidence.
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component-wise weakly lower than the evidence he possesses. In other words, he can hide evidence
he already has, but he cannot manufacture it.

Timing Nature draws ω. The principal chooses a mechanism (aR, aL) without observing ω. The
agent’s evidence type (r, l) given ω is then realized according to F (r, l | ω) and privately observed
by the agent. He then decides what evidence (r′, l′) ≤ (r, l) to reveal.7 The state ω is then publicly
revealed. The mechanism then passes or fails the agent based on the reported evidence and the
realized state.

3 An Example

In this section we present an example to illustrate the role of incentive issues and hard evidence in
this screening problem.

Setting A firm (she) – the principal – wants to design a process (a mechanism) to decide on
retaining or not a consultant (he) – an agent – based on his advice. He advises her on whether to
invest in a certain project. Hence, our unknown binary state is whether, in hindsight, investing was
the right decision (say, state R) or not (say, state L). Ex-ante, both decisions are equally likely to
be correct, i.e., the prior over the state is one half.

The consultant’s quality can be G(ood) or B(ad) with equal probability. We assume the firm’s
payoff from retaining a consultant of G(good) quality is 1, and that from retaining one of B(ad)

quality is −uB, where we assume uB ≥ 1. Her payoff from not retaining him is normalized to zero.
Quality and the state are independent. We assume quality is unobserved by both the firm and the
consultant.

Agent’s learning The consultant learns about the state by collecting data – stakeholder feedback,
financial and other internal reports of the firm etc. Some of this data offers support to investing
being the right decision (evidence type r, in the language of our model), and some supports not
investing (evidence type l). We assume the state is publicly revealed ex-post – ex post, it becomes
clear to all parties if investing was the right decision.

We would model his data gathering process as a sequence of m i.i.d. experiments on the state,
each producing one of three outcomes – a unit of r, a unit of l, or no evidence at all (∅). Going
forward, with a slight abuse of notation, we use r and l to refer to the number of each type of
evidence collected. We refer to the tuple (r, l) as evidence. With this experiment, the set of possible
evidences – the evidence space – is:

7The agent’s participation constraint is automatically satisfied, since not participating in the mechanism (i.e., not
taking the test) guarantees a payoff of zero.
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E := {(r, l) ∈ (0 ∪ N)2 : r + l ≤ m}

Let βq be the probability of the consultant of quality q ∈ {G,B} generating any evidence from
any such experiment, and let ηq be that of getting the “right” kind of evidence, conditional on
generating any. The experiment is described by the table below, where rows represent outcomes,
columns represent states and cell entries represent the conditional probability of each outcome,
given each state.

R L

r βqηq βq (1− ηq)

l βq (1− ηq) βqηq

∅ 1− βq 1− βq

Table 1: Evidence distribution of each i.i.d. experiment. Rows represent outcomes, columns repre-
sent states and cell entries represent the conditional probability of each outcome, given each state.

With the above experiment, the evidence collected by each type follows the multinomial distribution,
the probability mass function of which is given by:

fq(r, l|R) =
m!

r!l!(m− r − l)!
× (ηe)

r (1− ηe)
l βl+r

e (1− βe)
m−(r+l) (Multinomial)

By symmetry, fq(r, l|L) = fq(l, r|R), and we use fq(r, l) to denote fq(r, l|R) going forward.

We assume the G(ood) type is both more likely to generate evidence and more likely to generate
the correct kind of evidence, than the B(ad) type. This is formalized as follows.

Assumption 5. We assume ηG ≥ ηB and βG ≥ βB.

Interim quality The firm wants to design a mechanism aR, aL : E → [0, 1]2 to maximize the
ex ante expected quality of the retained consultant. His ex ante quality is the expectation of his
interim quality – his expected quality given his evidence and the state. Algebra shows that is given
by, using our notation from the model section:

u(r, l) = u(r, l|R) = fG(r, l)− uBfB(r, l)

f(r, l)
(u(r, l))

Note that the consultant does not observe his own quality, so the distribution of evidence, un-
conditional on quality, is given by the simple average of fG and fB, which we denote by f , i.e.,
f := 1

2fG + 1
2fB. Let its CDF be denoted by F .

First Best We first describe the firm’s optimal test if she could observe the consultant’s evidence
but not his quality – which we call her first best – and describe its incentive violations.
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(a) First best is implementable
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u(r, ℓ|R) = 0
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(b) First best violates incentive constraints

Figure 3: The blue and red regions depict set of accepted types under the first best, in states R
and L respectively. In case (a), the first best is implementable – i.e., incentive constraints do not
bind – but not in case (b). In case (b), the red arrows show possible deviations, if the first best
mechanism is offered.

The first best test is clearly given by afbω (r, l) := 1(u(r, l|ω) ≥ 0), ω ∈ {R,L}, where afbω (r, l) denotes
the passing probability of evidence (r, l) under this mechanism, when the true state is ω.

By equation (u(r, l)), the u(r, l) = 0 curve – above which all evidence types are retained, in state R
– is given by the following straight line:

fG(r, l)

fB(r, l)
= uB, after taking log on both sides and some algebra,

r

(
ln

(
βG

1−βG

βB
1−βB

)
+ ln

(
ηG
ηB

))
+ l

(
ln

(
βG

1−βG

βB
1−βB

)
− ln

(
1− ηB
1− ηG

))
−m ln

(
1− βB
1− βG

)
= lnuB

(FB-line)

Clearly, exchanging r and l in the above equation gives the curve to the right of which all evidence
types are retained in state L. It is a mirror image of the above straight line, reflected across the
45◦ line.

Examples of first-best acceptance regions of the evidence space are shown in Fig. 3. They are
shaded in red and blue in states R and L respectively.

Unraveling Now we would see that “unraveling” happens in this setting – i.e., the consultant of
every evidence type has the incentive to show all his evidence – if and only if the Good and Bad
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quality consultants differ more in terms their evidence generation capability, than on the accuracy
of that evidence.

Clearly, under our assumption 5, (FB-line) is strictly positively sloped if and only if:

βG
1−βG

βB
1−βB

<
1− ηB
1− ηG

(nontriviality)

When this condition is not met, they are negatively sloped, and we get the case depicted in Fig. 3a.
Note that under the mechanism {afbω }ω∈{R,L}, no evidence type (r, l) strictly prefers an allocation
in its south west quadrant, i.e., in {(r′, l′) : r′ ≤ r, l′ ≤ l}. Hence, if the condition (nontriviality) is
violated, the first-best is implementable.

Intuitively, (nontriviality) means that, in a sense, the “difference” of accuracy between the Good
and Bad types (captured by ηG and ηB) is more than that of their capacity to generate evidence
(captured by βG and βB). Violation of this condition would, therefore, lead to the quantity of
evidence acting as a stronger signal of better quality, than its accuracy. The only reason the agent
might have to conceal any of his evidence, in our model, is a desire to come across as having a more
accurate belief than he really does. If quantity of evidence is a better indicatory of quality to the
principal, than its accuracy, this force is not present. In that case, the agent has no imperative to
hide any of his evidence. Therefore unraveling occurs, which means, the first-best is implementable.

Role of incentives When (nontriviality) is satisfied, the u(r, l|ω) = 0 lines are positively sloped.
The first best, in this case, is depicted in Fig. 4b. Note that if this mechanism is offered, the
deviations depicted by arrows occur. This implements the mechanism shown in Fig. 4a. The
evidence types in the little square at the bottom are never retained, but due to the verifiable nature
of evidence, they can’t deviate to a strictly better allocation, as all such allocations require strictly
more of either l or r, which they can’t provide.

True-False with an evidence threshold. By the above reasoning, offering the first-best mech-
anism, is equivalent to offering the mechanism shown in Fig. 4a. But note that generically, the firm
can do better than this mechanism – by choosing e optimally, given this mechanism, i.e.:

e ∈ argmax
e

∫
r≥max{e,l}

u(r, l)F (dr, dl)

Examples of this are shown in Figures 4b and 4c. In the main body of the paper we show that
this is, in fact, the best the principal can do, in a general class of environments, even though she
can choose from a rich universe of mechanisms, including ones employing randomization. Under
this mechanism, the agent is accepted if and only if he predicts the state correctly, conditional on
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(a) The implemented allocation
when under first best
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u(r, ℓ|R) = 0
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(b) Optimal mechanism

45◦
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(c) Optimal mechanism

45◦
u(r, ℓ|R) = 0

u(r, ℓ|L) = 0

l

r

(d) Optimal mechanism without
hard evidence

Figure 4: The class of optimal mechanisms with and without verifiability

12



producing supporting evidence (i.e. r if he predicts R, etc.) of at least e. Due to this structure, we
call our optimal class of mechanisms, True-False with an evidence threshold.

Role of hard evidence. Note that, if we did not have verifiability, offering the first best mecha-
nism would not have resulted in the implementation of the mechanism shown in Fig. 4a but the one
in Fig. 4d – the familiar simple True-False – rationalized as optimal in a large class of settings by
Dasgupta (2024), in the absence of hard evidence. Clearly, the our proposed optimal mechanisms
of Figures 4b and 4c would not be implementable without verifiability, and offering either of those
would lead to the mechanism in Fig. 4d being implemented.

4 Main results

In this section, we provide our main characterization of optimal mechanisms as ones that reward
test-takers if and only if they give the correct answer, conditional on providing a minimum level of
supporting evidence. Before that, we highlight the novel evidence/accuracy trade-off that arises in
our setting, and the role of verifiability.

4.1 Unraveling and the evidence/accuracy trade-off

In this subsection we explain the central evidence/accuracy trade-off faced by the agent in our
problem and use it to show why unraveling – revealing of all evidence – does not occur in our
model. We also provide alternative natural conditions for unraveling to occur in this setting.

A natural question to ask may be, that since more evidence is preferred by the principal, why doesn’t
the agent simply reveal all his evidence, i.e. why doesn’t unraveling always happen? The answer
lies in the interaction of two forces in our model: (1) the principal’s preference for both accuracy
and evidence, and (2) the absence of any “soft” – i.e., unverifiable – information. In particular, the
agent wants to come across as both precisely informed and possessing as much evidence as he can
possibly show. But because he possesses only verifiable information, if he wants to pretend to have
a more precise belief than he actually has, there is no way for him to do that other than showing
less of his evidence than he actually has. We call this the agent’s evidence/accuracy trade-off.

The aforementioned trade-off leads to the fundamental difference between our question, and related
mechanism-design-with-evidence questions asked in the literature so far8: the directions of devia-
tions in our model are both type-dependent and non-obvious. Modeling of partial verifiability of
private types as a restriction on the directions of deviations is not new. However, in many standard
mechanism design problems such as selling (Celik, 2006; KrÃ€hmer and Strausz, 2024), or pro-
curement (KrÃ€hmer and Strausz, 2024), the direction in which the agent would want to deviate,
regardless of his type, is obvious – a buyer always wants to understate his willingness to pay, a
producer applying for a tender wants to exaggerate his costs, etc. Consequently, a restriction on

8To the best of our knowledge.
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the direction of deviations often fails to have a bite, at least in reasonably “regular” environments –
leading to the same optimal mechanisms as with no such restrictions (Celik, 2006; KrÃ€hmer and
Strausz, 2024). In contrast, in our model, it is not clear how the agent resolves the evidence/accuracy
trade-off, even given his evidence type, because which type of deviation would benefit him, if any,
depends on the principal’s relative preference for evidence vs accuracy.

A particular instance of that relative preference is when the principal has an “extreme” preference
for evidence over accuracy, which – unsurprisingly – leads to unraveling. We formalize this below.

Definition 3 (Unraveling). We say unraveling occurs, when there is an optimal solution to the
principal’s problem in which no incentive constraint binds.

Proposition 1 (Unraveling). Unraveling occurs under either of the following alternative settings.

• Modify Assumption 2 so that ũ remains strictly increasing in e but does not depend on p.
This is equivalent to u remaining strictly increasing in r, but not depending on l. In this case
unraveling occurs.

• If instead, u is increasing in both r and l, then also unraveling occurs.

The first bullet point above is obvious – if the principal cares only about evidence, our problem is
trivial: first best is always implementable. Combined with the second point, the above observation
gives a sense of how strong we need the principal’s relative preference for accuracy vis-a-vis evidence
to be, for the evidence/accuracy trade-off to have any bite and therefore the problem to be non-
trivial. In particular, we need her payoff to be either strictly decreasing or non-monotonic, in the
wrong kind of evidence (recall that u(·, ·) is her payoff in state R, so l is the wrong kind of evidence).
If this relative preference is mild enough so that her payoff weakly increases, not only in the correct
but also the wrong kind of evidence, we must have unraveling.

The proof is simple and follows from the u(r, l) = 0 curve becoming weakly negatively sloped, under
the assumptions of Observation 1. It is omitted for brevity.

4.2 Simplifying incentive constraints

In this subsection we highlight the fact that, although each evidence type has uncountably many
directions of deviations available, it is sufficient to only consider deviations which are (1) horizontal
(i.e., hiding only l), (2) vertical (i.e., hiding only r), or (3) “diagonal”, i.e., along an isobelief curve
(hiding some of both l and r, while truthfully reporting one’s belief). This simplification of incentive
constraints is instructive, as it provides an intuitive decomposition of such constraints on deviating
across beliefs, which are “soft”, or bidirectional, and those on deviating across amounts of evidence
– while truthfully reporting the belief – which are “hard”, or unidirectional.

In particular, we show that an IC (r, l) → (r′, l′) binds, as shown in Figures 8 below, if and only
if corresponding diagonal and horizontal ((r, l) → (r′, l′′) and (r′, l′′) → (r′, l′) ), or diagonal and
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vertical ((r, l) → (r′, l′′) and (r′, l′′) → (r′, l′) ), as the case may be, pairs of IC’s also bind (See
Figure. 8). The details are relegated to Appendix B.1, Lemma 5.
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Figure 5: It is sufficient to consider only horizontal, vertical and diagonal (along the isobelief curve)
deviations. The blue curves depict potential isobelief curves. Red arrows are deviations.

The above result allows us to disentangle the effects of misreporting (1) one’s payoff type – i.e.,
belief – and (2) the amount of evidence, as detailed below.

The traditional mechanism design with evidence literature mostly focuses on the case where (1)
the agent is privately fully informed of their payoff type, and (2) evidence is not payoff-relevant
to either player but plays a role only in restricting deviations (Green and Laffont (1986), Forges
and Koessler (2005), Bull and Watson (2007a), Deneckere and Severinov (2008), Ben-Porath and
Lipman (2012), Kartik and Tercieux (2012), Sher and Vohra (2015), Celik (2006), KrÃ€hmer and
Strausz (2024), Dasgupta, Krasikov and Lamba (2022),Vaidya (2023)).9 A well-known idea in
this literature, is that incentive constraints can be decomposed into two components: (1) a “soft”
constraint, which prevents misreporting one’s payoff type, with no directional restrictions, and (2),
a “hard”, disclosure constraint, with the directional restriction, that one is allowed to disclose only
a subset of one’s evidence (Deneckere and Severinov, 2008; Bull and Watson, 2007b; Vaidya, 2023).
The idea behind this principle is the following. By the revelation principle appropriate to settings
of mechanism design with evidence (Bull and Watson, 2007b; Deneckere and Severinov, 2008), in
these settings, the design problem decomposes into a family of standard mechanism design problems
(i.e., without verifiability), each conditional on an evidence level, and linked together by a disclosure
constraint which says that each type must find it optimal to disclose all its evidence, conditional on
reporting the payoff type truthfully.10

In contrast, all private information in our model is hard. The “decomposition” result described
above shows that, in spite of that, our incentive constraints can be decomposed into “soft” and

9An exception is Dasgupta, Krasikov and Lamba (2022), where the agent learns purely from hard evidence, as in
our setting.

10E.g., see Vaidya (2023) for a clear application of this principle to the setting of monopolistic selling with regulation.
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“hard” components, exactly in the same way as in the more traditional setting described above. The
diagonal incentive constraints are our disclosure constraints, in the language of the literature – this is
the set of constraints for which the restrictions on the directions of deviation, matter, in the following
sense. If each type was allowed to deviate along its isobelief line in both directions, but restricted to
only leftward and downwards deviations horizontally and vertically respectively, we would effectively
be back in Dasgupta (2024)’s setting, who considers essentially the same problem, but allows for
only belief-based – as opposed to evidence-based – screening. In other words, the unidirectionality
of only the diagonal incentive constraints have a bite in our setting, not the horizontal and vertical
ones. In that sense, the horizontal and vertical constraints can be considered “soft”.

4.3 Characterization of optimal mechanisms

We formally state the principal’s problem. Let vR(r, l) := u(r, l)f(r, l) and vL(r, l) := u(l, r)f(l, r).
The principal solves

max
aR,aL∈[0,1]E

∫
E
[vR(r, l)aR(r, l) + vL(r, l)aL(r, l)] drdl (2)

subject to the IC constraints (1).

The optimal mechanism turns out to be a True-False test with an evidence requirement, as sum-
marized in the following theorem.

Theorem 1. There exists an optimal mechanism of the following form,

aR(r, l) = 1(r ≥ max{e, l}),

aL(r, l) = 1(l ≥ max{e, r}),
(3)

where e is optimally chosen by

e ∈ argmax
e

∫
r≥max{e,l}

u(r, l)F (dr, dl). (4)

Theorem 1 says that the optimal mechanism passes the agent if and only if he gets the correct
answer and presents enough evidence, as illustrated in Fig. 2. e is the threshold amount of evidence
required for the agent to be passed in any state. The principal’s problem is then converted into
a one-dimensional problem of choosing the optimal e. Examples, for a general resource constraint
ϕ(r, l) ≤ 1 and general preferences of the principal, satisfying Assumption 2, are depicted in the
Figure below.

There are three features of the optimal mechanism. First, the optimal mechanism always passes
some evidence types, provided that some evidence types are passed under the first best. This is
due to the presence of verifiable evidence. Whenever some evidence types are passed under the first
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Figure 6: Optimal mechanisms for a general (i.e., potentially non-linear) ϕ and u(r, l) = 0 frontiers

best, assumption 3 implies that types with the maximum amount of correct evidence must have a
positive value to the principal. The principal can pass only these types by setting a high enough
threshold for correct evidence. If the agent’s private information were unverifiable, it can be optimal
to fail every type if the benefits from passing the good types do not justify the information rents to
induce truth-telling.

Second, the threshold evidence for passing in each state depends only on the amount of evidence
supporting this state. Intuitively, this is because of both the verifiability of evidence and the
principal’s preference for accuracy. Focus on state R and types with r ≥ l. Suppose ψ(l) is the
threshold on r for passing if the agent has an amount l of evidence favoring L. ψ(l) cannot slope
upwards due to the verifiability of evidence. This is because if the principal passes some (r, l), then
any (r′, l′) > (r, l) should also be passed. Next, any downward sloping ψ(l) cannot be optimal due
to Assumption 3. This is because the principal can improve by turning some part of ψ(l) into a
horizontal line. To see this, first observe that for any r0 < ψ(0) there must exist some l0 ≤ r0 with
r0 ≥ ψ(l0) and vR(r0, l0) > 0. Otherwise, vR(r, l) < 0 for any l ≤ r < r0 due to Assumption 3,
and the principal can improve by failing all types below r0. We now change the threshold ψ(l) to
be ψ′(l) := min{r0, ψ(l)} so that the principal now passes (r, l) with r > min{r0, ψ(l)}. The newly
passed types all have vR(r, l) > 0 again due to Assumption 3. Therefore, the optimal threshold ψ(l)
must not depend on l.

Third, an agent is passed only in the state where he has more supporting evidence. That is, type
(r, l) with r ≥ l is never passed in state L, and vice versa for l ≥ r. This is due to self-selection.
Suppose instead (r, l) with r ≥ l is passed in state L but not R. He prefers to be passed only in
state R because he believes that R is more likely. Since r ≥ l and the environment is symmetric, he
must be able to conceal some l evidence to be passed in state R. Therefore, the optimal mechanism
should pass types with r ≥ l only in state R and types with l ≥ r only in state L to incentivize full
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disclosure of evidence.

4.4 Proof Sketch

We briefly sketch the proof idea here. The complete proof is available in Appendix B. We use a
duality approach to certify the optimality of (3) which may be of independent interest. At the core
of the argument, we view the construction of dual multipliers as a transport problem, and apply
Strassen (1965)’s theorem to prove the existence of such multipliers.

We illustrate the multiplier construction with a two-type example. Suppose there are only two types
with an amount r of evidence favoring state R. Let them be (r, l) and (r, l′) with l′ > l. Consider
the case where r > e.11 In this case, the mechanism in (3) passes both types in state R. Focus on
the interesting case where vR(r, l) > 0, vR(r, l

′) < 0.12 Without IC constraints, the principal only
wants to pass (r, l) in state R. She has to pass both types due to the IC constraint from (r, l′) to
(r, l) which requires

aR(r, l
′)γ(r, l′) + aL(r, l

′) ≥ aR(r, l)γ(r, l
′) + aL(r, l).

We want to construct a multiplier λ on this IC constraint to certify the optimality of (3). To do that,
λ has to make the virtual values positive for evidence types passed by the proposed mechanism,
and negative for those failed,

v̂R(r, l
′) = vR(r, l

′) + γ(r, l′)λ ≥ 0, (5)

v̂L(r, l
′) = vL(r, l

′) + λ ≤ 0, (6)

v̂R(r, l) = vR(r, l)− γ(r, l′)λ ≥ 0, (7)

v̂L(r, l) = vL(r, l)− λ ≤ 0. (8)

The multiplier λ serves as a transport plan that specifies how virtual values are redistributed across
evidence types. 13 It specifies how values of vR and vL are simultaneously transported from (r, l) to
(r, l′). A transport plan must be measure-preserving in the sense that it only redistributes virtual
values but does not create or destroy them. This is indeed the case according to (5)-(8). λ decreases
the value of vR(r, l) (respectively, vL(r, l)) and increases the value of vR(r, l′) (respectively, vL(r, l′))
by the same amount.

11The case of r < e is similar.
12If vR(r, l) ≥ 0 and vR(r, l

′) ≥ 0, there is no need to construct any multiplier as the principal wants to pass them
in state R. vR(r, l) < 0 and vR(r, l

′) < 0 cannot happen at the same time because otherwise the principal can raise e
above r to fail both types in state R and obtain a strictly higher payoff, contradicting the optimality of e. vR(r, l) > 0
and vR(r, l

′) < 0 cannot happen at the same time because this contradicts Assumption 3.1 that the principal prefers
types with more correct evidence.

13Formally, a transport plan is a measure on the product space of the source and target domains that satisfies the
given marginal constraints. In this example, the source is (r, l) and the target is (r, l′). The marginal constraints
require that the values transported out of (r, l) must equal to the values transported into (r, l′).
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We now show that λ = −vR(r,l′)
γ(r,l′) satisfies all the above inequalities. The value of λ is picked so that

(5) binds. (6) is satisfied because Assumption 3 implies that vR(r, l) − γ(r, l)vL(r, l) ≥ 0 for any
(r, l).14 (7) holds due to vR(r, l) + vR(r, l

′) ≥ 0, which comes from the optimality of e. To see this,
if vR(r, l) + vR(r, l

′) < 0, the principal can raise e above r to fail both types and obtain a strictly
higher payoff. (8) holds because vL(r, l) ≤ 0.

More generally, we can always construct multipliers to certify the optimality of (3) for r ≥ e if
vR(r, l), viewed as a measure, has enough positive mass to be shifted to the northeast to fill up its
negative mass. Strassen’s theorem makes this point formal. It says that a sufficient condition for
such multipliers to exist is that v+R(r, l) := max{vR(r, l), 0} is first order stochastically dominated
by v−R(r, l) := max{−vR(r, l), 0}. This sufficient condition is always satisfied due to the optimality
of e given by (4). The proof for r ≤ e is similar and the details are provided in Appendix B.

5 Microfounded Model

In this section we present a microfounded model which leads to the reduced form with our de-
sired features, discussed in the main model section. The microfounded model allows us to run
some comparative statics on the previously introduced evidence threshold e of our optimal class of
mechanisms.

Recall the setting of the example from Section 3. Essentially, in this section we generalize it. First,
we do not require uB ≥ 1. Second, we allow for general prior distributions over the Good and Bad
types in the population – let the prior proportion of the Good type be g. Finally, we generalize the
joint distribution among the state, quality and evidence, as follows. There is a distribution over
evidence in each state for each quality-type of agent, which is assumed to have full support on the
evidence space E and a density. Like before, let fq(r, l) denote the density of evidence type (r, l) in
state R for quality-type q ∈ {G,B}, which means, by symmetry, fq(l, r) is that in state L.

We impose the following assumptions on fB and fG:

Assumption 6. 1. Each of fG and fB is strictly increasing in r and strictly decreasing in l.

2.
∂fG(r,l)

∂r
fG(r,l) ⩾

∂fB(r,l)

∂r
fB(r,l) ,

∣∣∣ ∂fG(r,l)

∂l

∣∣∣
fG(r,l) ⩾

∣∣∣ ∂fB(r,l)

∂l

∣∣∣
fB(r,l)

3.
∂fG(r,l)

∂r
∂fB(r,l)

∂r

⩾

∣∣∣ ∂fG(r,l)

∂l

∣∣∣∣∣∣ ∂fB(r,l)

∂l

∣∣∣
The second assumption essentially captures the feature that the Good type’s evidence distribution
is more sensitive to both the correct and wrong evidence. Recall that fG(r, l) and fB(r, l) are the
densities in state R, so r is the correct evidence. Keeping that in mind, the third assumption tells
us that the relative sensitivity of the good vis-a-vis the bad quality, to the correct evidence is higher
than that for the wrong evidence.

14See Lemma 4 in Appendix B.
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In the appendix we show that Assumptions 6 are sufficient for Assumptions 3.

u(r, l), as defined in our model section is the expected utility of the principal from accepting the
evidence type (r, l) in state R. Here, it is the interim expected quality of the agent. Using Bayes
rule, some algebra gives us:

u(r, l) =
fG(r, l)− αfB(r, l)

fG(r, l) + ξfB(r, l)
(microfoundation - u(r, l))

where α := uB
1−g
g and ξ := 1−g

g .

5.1 Comparative Statics

In this subsection we show that the evidence threshold e of the optimal mechanism is monotonically
increasing with the principal’s quality sensitivity.

In particular, we show it monotonically increases with α, defined above. α the single parameter
which captures all relevant aspects of the principal’s preference primitives, in our microfounded
model. It captures her quality sensitivity – clearly, it increases both as (1) the principal’s loss from
accepting the bad quality agent in increases, and (2) as Good quality agents become increasingly
rare in the population. In the next subsection we show that the evidence threshold e of the optimal
mechanism is monotonic with α.

Proposition 2. e is monotonically increasing in the principal’s quality sensitivity α.

In particular, with reference to figures 6, the u(r, l|R) = 0 and u(r, l|L) = 0 curves shift outwards
as α increases. This is because, recall from equation (microfoundation - u(r, l)), that,

u(r, l) = 0 ⇔ fG(r, l)

fB(r, l)
= α

Consequently, so does the optimal choice of e.

Intuitively, a higher quality sensitivity on the part of the principal – her higher relative loss from
passing the bad quality agent (a high uB), or good quality agents being hard to find in the population
(a high g) – both push her to make the test “harder”, increasing the evidence threshold.

6 An extension

We now explore how the optimal mechanisms change if the principal may prefer to pass some types
in both states. That is, drop Assumption 4 from the baseline model. It turns out that, under a
regularity condition, the optimal mechanism now features two evidence threshold, namely, e and
ē. Similar to Theorem 1, the optimal mechanism fails the agent with certainty if he has too little
evidence (less than e). The agent is given a True-False test and passed if he gives the correct answer
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if he possesses an intermediate level of evidence (at least e for any state). The optimal mechanism
now includes an additional case. The agent is passed regardless of his answer if he presents enough
evidence for both states (at least ē for both states).

First, we present and interpret the regularlity condition we need. We state it in terms of state R.
By symmetry, it also implies its version when r and l are interchanged and R is changed to L.

Assumption 7. The positive part of the principal’s (probability-weighted) expected payoff from ac-
cepting all evidence types in {min{r, l} ≥ ẽ, r ≥ l} in state L, is quasiconcave in ẽ. Mathematically,

 ∫
min{r,l}≥ẽ,r≥l

u(l, r)dF (l, r)


+

is quasiconcave in ẽ.

The interpretation of the above assumption is as follows. The passing rule {min{r, l} ≥ ẽ, r ≥ l}
captures passing specifically those who have a high enough evidence of both kinds (min{r, l} ≥ ẽ),
but hold the wrong belief (r ≥ l =⇒ these types wrongly believe that state R is more likely, but
the actual state is L), i.e., score low on accuracy. Therefore under this passing rule, there is an
evidence/accuracy trade-off on the part of the principal, i.e. this function is non monotonic. Here,
we assume it is single-peaked.

Clearly, the above assumption is trivially satisfied under our original assumption in the main model,

Assumption 4, because

( ∫
min{r,l}≥ẽ,r≥l

u(l, r)dF (l, r)

)+

= 0 in that case.

Now we are ready to state our main result, under this assumption. Fig. 7 visualizes the optimal
mechanism under Assumption 7.
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Theorem 2. Under Assumption 3 and the regularity condition 7, there exists an optimal mechanism
of the following form,

aR(r, l) = 1(r ≥ min{max{e, l}, ē}),

aL(r, l) = 1(l ≥ min{max{e, r}, ē}),
(9)

where e and ē are optimally chosen by

e, ē ∈ argmax
e1,e2

∫
max{e1,l}≤r≤e2

u(r, l)F (dr, dl). (10)

Relating this to Assumption 7, e is the optimal ẽ for

( ∫
min{r,l}≥ẽ,r≥l

u(l, r)dF (l, r)

)+

.

The significance of Theorem 2 is that it shows that the acceptance decision is purely on the basis
of evidence whenever there is either too little (max{r, l} < e) or too much (min{r, l} > e). For
intermediate levels of evidence, the agent is accepted if and only if they give the correct answer.
This matches with evaluation schemes we observe in reality where students are sometimes rewarded
if they show enough working, or make enough arguments, even if they cannot get the ultimate
answer correct.

The proof for Theorem 2 uses similar “transportation of mass” techniques described in the proof
sketch of our main characterization.

7 Conclusion

We consider the setting where a test-taker (agent) is screened on the basis of his knowledge of a
binary state, and needs to provide justifications for his answers/“show his work”. He learns only
through verifiable evidence, of two contradictory kinds. The test-designer (principal) has a pref-
erence for both the accuracy of his knowledge (modeled as the precision of his belief about the
state), and the amount of evidence he can show in support of his answers. Due to the verifiable
nature evidence, the agent can only hide part of his evidence, but cannot manufacture any, lending
our incentive constraints a “unidirectional” nature. We delineate how the interaction of verifiability
and the principal’s preference for both evidence and accuracy leads to the novel evidence/accuracy
trade-off on the part of the agent. This leads to his desired deviations being type-dependent, in
a departure from the mechanism-design-with-evidence literature so far. This is the reason unidi-
rectionality has bite in our setting, unlike many of the settings previously considered (Celik, 2006;
KrÃ€hmer and Strausz, 2024).

When parameters are such that there is no evidence type which would be accepted by the principal
in both states under her first-best mechanism, we show that the optimal mechanism takes the form
of True-False with an evidence threshold. This means, the agent is accepted if and only if he correctly
predicts the state, but conditional on showing a minimum level of supporting evidence.
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When there are types the principal would ideally want to accept in both states, under a regularity
condition, we show that the optimal mechanism exhibits an additional upper threshold of evidence:
In particular, the optimal test passes (respectively, fails) the agent regardless of his answer, if the
amount of evidence provided is sufficiently high (respectively, sufficiently low), and passes him if
and only if his answer is correct, when the amount of evidence provided is intermediate.

Taken together, these results provide rationalization for commonly observed test structures, where
students, job interview candidates etc. are rewarded for the correctness of their answers, only if they
provide a minimum amount of reasoning/justifications for their answers, and conversely, they may
also be rewarded if they show enough reasoning, but are unable to arrive precisely at the correct
answer.
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A Related Literature

This paper mainly contributes to three distinct strands of literature – screening knowledge, mech-
anism design with evidence, and multi-dimensional mechanism design. Less directly, it also con-
tributes to the literature on mechanism design with verificaiton and that on test design.

First, this paper builds on the literature on screening agents on the basis of their “knowledge”,
modeled as beliefs, as in (Dasgupta, 2024) and Deb, Pai and Said (2023). Dasgupta (2024) is
related most closely to our work, who considers the same question – optimal mechanisms to evaluate
a test-taker on the basis of their knowledge – except all private information is unverifiable in her
model. Deb, Pai and Said (2023) consider a joint screening-and-persuasion problem and find a
similar characterization of the class of optimal mechanisms, as in Dasgupta (2024). This literature,
in turn, builds on the literatures on scoring rules (McCarthy (1956), Osband and Reichelstein
(1985), Lambert (2011), Abernethy and Frongillo (2012), Li et al. (2022), Li and Libgober (2023))
and evaluation of forecasters (Deb, Pai and Said (2018), Chambers and Lambert (2021), Ottaviani
and Sørensen (2006a), Ottaviani and Sørensen (2006b); also see Marinovic, Ottaviani and Sorensen
(2013) for a survey).
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This paper contributes to the literature on mechanism design with evidence (Green and Laffont
(1986), Forges and Koessler (2005), Bull and Watson (2007a), Deneckere and Severinov (2008),
Ben-Porath and Lipman (2012), Kartik and Tercieux (2012), etc.). Within this literature, this
paper relates most closely to Sher and Vohra (2015), Celik (2006), KrÃ€hmer and Strausz (2024),
Dasgupta, Krasikov and Lamba (2022) and Vaidya (2023). Sher and Vohra (2015), Dasgupta,
Krasikov and Lamba (2022) and Vaidya (2023), all have the classic monopolistic screening problem
at the core of their models. Dasgupta, Krasikov and Lamba (2022) allows flexible acquisition of
“all or nothing” evidence by the agent (buyer), in addition. While Vaidya (2023) permits arbitrary
correlation between the agent’s valuation and his evidence, he also allows the agent to only present
or not present his evidence to the principal (seller). In contrast, we allow the agent to choose the
amount of evidence he presents, which is bounded upwards by the amount he has. This restricts the
“directions” of misreporting by the agent, like in Celik (2006) and KrÃ€hmer and Strausz (2024).
Sher and Vohra (2015) allows for an evidence structure which can be thought of as a generalization
of all of the above cases, where each type can mimic some of the other types but not necessarily all
of them. None of these papers consider multi-dimensional evidence. Our two-dimensional evidence
structure is similar to Dziuda (2011)’s, though her problem is entirely different.

Our most fundamental point of departure from the above literature is that in much of it, the principal
and the agent’s payoff relevant information is the same – e.g., a buyer’s valuation, in case of the
classic selling problem – and evidence is used only to support claims regarding that information.
To the best of our knowledge, ours is the first paper to consider the case where the amount of
evidence has direct relevance to the principal, beyond its indirect relevance through informing the
agent about his payoffs.

The agent’s evidence is two-dimensional in this paper. This leads to the usual complications of multi-
dimensional screening, and connects it to the relevant, vast literature (Stigler (1963); Adams and
Yellen (1976); McAfee, McMillan and Whinston (1989); Armstrong (1996); Rochet and ChonÃ©
(1998); Carroll (2017); McAfee and McMillan (1988); Manelli and Vincent (2007); Pavlov (2011);
Daskalakis, Deckelbaum and Tzamos (2017); Yang (2023, 2022); Yang, Dworczak and Akbarpour
(2023); Yang, Haberman and Jagadeesan (2025); Yang et al. (2024)). Unlike this paper, much of the
aforementioned literature studies the multi-dimensional screening problem in a multi-good selling
setting. Hence, our work is related to this literature primarily in terms of technique. Our proof uses
a duality approach to certify optimality, leveraging a novel construction of virtual values. In this
regard, within this literature, our work is closest to Haghpanah and Hartline (2021), which in turn
builds on Carroll (2017) and Cai, Devanur and Weinberg (2019).

At a broader level, this paper also relates to the literature on mechanism design with verification
but without transfers. Like in our paper, in this literature the instrument for eliciting private
information from strategic agents is – not monetary incentives, but – information obtainable by
the principal. Closest to our work within this literature are Glazer and Rubinstein (2004) and
Carroll and Egorov (2019). In their models a principal accepts or rejects an agent based on limited
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verification of his claimed “quality”. Also related, although less closely, is Ben-Porath, Dekel and
Lipman (2014) which features a similar multi-agent model, but with exact verification at a cost.

In terms of our question – though not very closely in terms of our model or methods – this work
also relates to the literature on how a receiver of information (in our case, the principal) designs
a test of some unobservable quality of a strategic sender (the agent) (Rosar (2017); Harbaugh
and Rasmusen (2018); Weksler and Zik (2022); Hancart (2022)). Much of this literature leverages
information design tools to characterize optimal tests in various environments. A common finding
of this literature is that more informative tests are not always better, due to the strategic incentives
such tests create for the agent. In particular, similar to our paper, some of this literature finds
coarse tests arising at the optimum (Rosar (2017), Harbaugh and Rasmusen (2018)).

B Omitted Proofs

B.1 Preliminaries

We now provide some preliminary results for our proofs.

Lemma 1. Assumption 2 and assumption 3 are equivalent.

Proof. For the sake of brevity, we provide the proof for the case where u is differentiable in both
arguments. The proof is easily adjustable for the case where the type space is discrete.

Let p0 = p(r, l), i.e., l = p−1(p0; r), so ũ(p0, r) = u(r, l).

Assumption 3 ⇒Assumption 2 We first show that, ∂ũ
∂p0

≥ 0. ∂ũ
∂p0

= ∂u
∂l ·

∂l
∂p0

= ∂u
∂l ·

1
∂p(r,l)

∂l

.

∴
∂ũ

∂p0
=

1
∂p(r,l)

∂l

· ∂u(r, l)
∂l

(11)

By Assumption 3.1, ∂u(r,l)
∂l < 0. By Assumption 1, ∂p(r,l)

∂l , hence ∂ũ
∂p0

> 0.

Next we show that, ∂ũ
∂r ≥ 0.

We have, ∂ũ
∂r = ∂u

∂r + ∂u
∂l · ∂l

∂r , where ∂l
∂r is calculated along the curve p(r, l) = constant = p0.

∴ ∂l
∂r = −

∂p(r,l)
∂r

∂p(r,l)
∂l

.

∴
∂ũ

∂r
=
∂u

∂r
− ∂u

∂l
·
∂p(r,l)
∂r

∂p(r,l)
∂l

, (12)

According to Assumption 3.2, du
dr ≥ 0 along a curve along which p(r, l) = constant, i.e.,
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∂u

∂r

∣∣∣∣
p(r,l)=constant

≥ 0,

i.e.,
∂u

∂r
+
∂u

∂l
· ∂l
∂r

∣∣∣∣
p(r,l)=constant

=
∂u

∂r
− ∂u

∂l
·
∂p(r,l)
∂r

∂p(r,l)
∂l

≥ 0.

By (12), this establishes ∂ũ
∂r ≥ 0.

The two parts taken together establishes Assumption 3.

Assumption 2 ⇒Assumption 3 By Assumption 1 and (11), ∂ũ
∂p0

> 0 =⇒ ∂u(r,l)
∂l < 0. By

∂u(r,l)
∂l < 0 and Assumption 1, the term after the minus sign in (12) is positive. Therefore ∂ũ

∂r >

0 =⇒ ∂u
∂r >

∂u
∂l ·

∂p(r,l)
∂r

∂p(r,l)
∂l

> 0. This shows that Assumptions 2.1-2 taken together imply Assumption

3.1. Assumption 2.2 is clearly equivalent to Assumption 3.2. This completes the proof.

Lemma 2. Let I0u(l) := u−1(0; l) be the principal’s iso-value curve in state R, and Ip0p (l) :=

p−1(p0; l) be the agent’s iso-belief curve. The iso-belief curve is always steeper than the iso-value
curve, formally, for any p0 and l,

∂Ip0p (l)

∂l
>
∂I0u(l)

∂l
.

Proof. This uses the same idea as Lemma 1. Starting from any (r, l) with u(r, l) = 0, increase
the amount of evidence alone the iso-belief line to (r′, l′) > (r, l), assumption 2.2 implies that
u(r′, l′) > 0. To move back to the iso-value curve Ip0p (l), we have to increase l or decrease r due to
assumption 2.1. Therefore, the iso-belief curve is always steeper than the iso-value curve.

Lemma 3. vR(l, r) ≤ 0, vL(r, l) ≤ 0,∀r ≥ l.

Proof. Take any (r, l) ∈ E with r ≥ l. It suffices to show that u(l, r) ≤ 0. Suppose instead
u(l, r) > 0. Assumption 3.1 implies that u(r, r) > 0. But this directly contradicts Assumption
3.3.

Lemma 4. vR(r, l)− γ(r, l)vL(r, l) ≥ 0, ∀r ≥ l.

Proof. Take any (r, l) ∈ E with r ≥ l. To show that vR(r, l) − γ(r, l)vL(r, l) ≥ 0, we plug in the
definitions of vR, vL and γ.

u(r, l)f(r, l) ≥ Pr(R | r, l)
Pr(L | r, l)

u(l, r)f(l, r) (13)

⇔ u(r, l)f(r, l) ≥ f(r, l)

r(l, r)
u(l, r)f(l, r) (14)

⇔ u(r, l) ≥ u(l, r) (15)
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where we use Assumption 3.1 to see that

u(r, l) ≥ u(l, l) ≥ u(l, r).

Lemma 5 (Horizontal, vertical and local diagonal IC’s are sufficient). For each evidence type (r, l),
it is without loss to ignore all IC’s other than (1) (r, l) → (r, l′), l′ < l, (2)(r, l) → (r′, l), r′ < r and
(3) (r, l) → (r′, l′) where p(r, l) = p(r′, l′), r′ < r, l′ < l. Moreover, it is sufficient to consider only
local IC’s of the last nature.

Proof of Lemma 5. Fix any optimal solution to the principal’s problem. Suppose (r, l) → (r′, l′)

binds where r′ < r, l′, l and p(r, l) ̸= p(r′, l′). The line joining (r, l) and (r′, l′) is either strictly
between the isobelief line and the line joining (r, l) and (r, l′) or strictly between the isobelief line
and the line joining (r, l) and (r′, l), as shown in Fig. 8 below.

Suppose A → C binds. Which means A is indifferent between its own and C’s allocation. That
means B is also indifferent between A’s and C’s allocation, because A and B have the same pref-
erences (belief). But B can deviate to C, so B must prefer its own allocation to C’s. If B strictly
prefers its own allocation to C’s, it means B strictly prefers its own allocation to A’s as well, because
B is indifferent between A and C. That means A also prefers B’s allocation strictly to its own,
because, again, A and B are on the same isobelief line. This is a violation of the constraint A→ B,
i.e. a contradiction. Hence, B must be indifferent among all three allocations, A, B, C, hence so
must be A. That is, A→ B binds and B → C binds. Clearly, the converse is also true – if A→ B

binds and B → C binds, A → C binds. Hence, any binding IC can be decomposed into binding
IC’s along and across isobelief lines – AC binds if and only if AB and BC bind.

(r′, l) p(r, l) = p

(r, l′)

A

BC

(r′, l′) (r′′, l′′)

p(r′′, l′′) = p

(r′, l)

p(r,
l) =

p

A

B

C

Figure 8: It is sufficient to consider only horizontal, vertical and diagonal (along the isobelief curve)
deviations. The blue curves depict potential isobelief curves. Red arrows are deviations.

Let U(r, l) denote the truth-telling utility of evidence type (r, l) under an IC mechanism. Let
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r > r′ > r′′, l > l′ > l′′ such that p(r, l) = p(r′, l′) = p(r′′, l′′).

By IC’s (r, l) → (r′, l′) and (r′, l′) → (r′′, l′′) we need,

U(r, l) ≥ U(r′, l′) ≥ U(r′′, l′′) (Diagonal IC)

the IC (r, l) → (r′′, l′′) binds if and only if, U(r, l) = U(r′′, l′′). By (Diagonal IC), this means,
U(r, l) = U(r′, l′) = U(r′′, l′′). This shows that a non-local diagonal IC binds if and only if all local
diagonal IC’s in between them bind.

B.2 Strassen’s Theorem and First Order Stochastic Dominance

We present a version of Strassen (1965)’s theorem and a characterization of first order stochastic
dominance for measures over R2 (adapted from Theorem 3.3.4 of Müller and Stoyan (2002)). They
will be useful for our proof of Theorem 1.

Theorem 3 (Strassen 1965). Let µ and µ′ be probability measures on Rn. Suppose µ ≥FOSD µ′,
then there exists a probability measure µ̂ on Rn ×Rn with marginals µ and µ′ such that µ̂(M) = 1,
where M := {(x, x′) : x, x′ ∈ Rn, x ≤ x′}.

Before stating the second result, we introduce the following definition. Say that a set S ∈ Rn is a
lower set if the indicator function 1S is decreasing. Hence a set S is lower if and only if x ∈ S and
x ≥ y imply y ∈ S.

Theorem 4 (Adapted from Müller and Stoyan 2002). Let µ and µ′ be probability measures on Rn.
µ ≥FOSD µ′ if and only if µ(S) ≥ µ′(S) for any lower set S.

B.3 Proof of Theorem 1

We now prove Theorem 1. We do so in several steps. First, due to symmetry, it suffices to consider
problem (2) with half of the types and half of the constraints. Second, we incorporate the IC
constraints with multipliers. Next, we observe that the multipliers serve as a transport plan that
shifts values of vR and vL. We then apply Strassen (1965)’s theorem to prove the existence of such
multipliers as a transport plan.

Invoking Symmetry It suffices to certify the optimality of (21) in the following relaxed problem
with only half of the evidence type space E2 := {(r, l) ∈ E : r ≥ l} and the IC constraints within
E2,

max
aR,aL∈[0,1]E2

∫
E2

[vR(r, l)aR(r, l) + vL(r, l)aL(r, l)] drdl (16)

s.t. aR(r, l)γ(r, l) + aL(r, l) ≥ aR(r
′, l′)γ(r, l) + aL(r

′, l′),∀(r, l),
(
r′, l′

)
∈ E2,

(
r′, l′

)
≤ (r, l)
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Note that we divide the IC constraints by p(l, r) on both sides.

To see this, note that (16) changes the original problem (2) in two ways. First, it relaxes the IC
constraints (1) by ignoring deviations from any (r, l) with r > l to any (r′, l′) with r′ < l′ and vice
versa. Second, it invokes symmetry to focus on half of the types in E2 because principal’s value
from the other half is exactly the same. As a result, if (3) is optimal in the relaxed problem (16),
it should also be optimal in the original problem (2) because it is feasible under the constraints of
the original problem.

Constructing Virtual Values We attack the problem by constructing a set of multipliers that
certifies the optimality of the mechanism proposed in (3). Let Λr′,l′

r,l be the multiplier on the IC

constraint of type (r′, l′) misreporting as type (r, l) ≤ (r′, l′). Mathematically, Λr′,l′

r,l is a positive

measure on E2 × E2 := {(r′, l′, r, l) : (r′, l′), (r, l) ∈ E2}. Λr′,l′

r,l can only place mass on deviations
from (r′, l′) to some (r, l) ≤ (r′, l′). Formally, this requires

Λ(E2 \D) = 0 (17)

where D := {(r′, l′, r, l) : (r′, l′), (r, l) ∈ E2, (r
′, l′) ≥ (r, l)}.

Problem (16) becomes the following unconstrained problem,

max
aR,aL∈[0,1]E2

∫
(r,l)∈E2

[v̂R(r, l)aR(r, l) + v̂L(r, l)aL(l, r)] drdl (18)

where the virtual values v̂R and v̂L are defined by

v̂R(r, l) := vR(r, l) +

∫
(r′,l′)≤(r,l)

γ(r, l)Λr,l
dr′,dl′ −

∫
(r′,l′)≥(r,l)

γ(r′, l′)Λdr′,dl′

r,l (19)

= vR(r, l) + γ(r, l)Λr,l −
∫

(r′,l′)≥(r,l)

γ(r′, l′)Λdr′,dl′

r,l ,

v̂L(r, l) := vL(r, l) +

∫
(r′,l′)≤(r,l)

Λr,l
dr′,dl′ −

∫
(r′,l′)≥(r,l)

Λdr′,dl′

r,l (20)

= vL(r, l) + Λr,l − Λr,l,

where we let Λr,l :=
∫

(r′,l′)≤(r,l)

Λr,l
dr′,dl′ be the marginal measure of Λr′,l′

r,l on outgoing ICs from type

(r, l) to any lower type, and let Λr,l :=
∫

(r′,l′)≥(r,l)

Λdr′,dl′

r,l be the marginal measure of Λr′,l′

r,l on incoming

ICs from any higher type to (r, l).

We now write down the sufficient conditions for Λr′,l′

r,l to certify the optimality of (3). Partition E2
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into the following two sets depending on the allocation assigned by the proposed mechanism (3),

E00 := {(r, l) ∈ E2 : r < e},

E10 := {(r, l) ∈ E2 : r ≥ e}.

Types in E10 are given allocation (aR, aL) = (1, 0) and types in E00 are given allocation (aR, aL) =

(0, 0) by the mechanism in (3). Therefore, the goal is to find some Λr′,l′

r,l so that

v̂R(r, l) ≥ 0, v̂L(r, l) ≤ 0, ∀(r, l) ∈ E10,

v̂R(r, l) ≤ 0, v̂L(r, l) ≤ 0, ∀(r, l) ∈ E00,
(21)

It remains to show that such a Λr′,l′

r,l exists.

Existence of a Multiplier as a Transport Problem The existence problem of Λr′,l′

r,l is a

transport problem. To see this, according to (19) and (20), any mass that Λr′,l′

r,l places on an IC
constraint from (r′, l′) to (r, l) decreases the value of vR(r, l) (respectively, vL(r, l)) and increases
the value of vR(r′, l′) (respectively, vL(r′, l′)) by the same amount.

Our problem then becomes, given functions vL and vR, whether there exists a transport map Λr′,l′

r,l

that satisfies (17) and (21), and never places mass on (r′, l′, r, l) such that (r′, l′) ≥ (r, l) such that
(r, l) ∈ E00 and (r′, l′) ∈ E10 because ICs can only bind within E10 and E00.

It suffices to construct separate transport plans within E10 and E00 to satisfy (17) and (21). This is
because Λr′,l′

r,l is not allowed to transport values across E10 and E00: The IC constraints only bind
within each set for the mechanism in (3).15

Types in E10 We partition E10 based on the sign of vR(r, l). For any (r, l) ∈ E10, vL(r, l) ≤ 0

due to Lemma 3, and vR(r, l) can either be positive or negative. Define E−
10 := {(r, l) ∈ E10 :

vR(r, l) < 0}. This is the set of types with a negative vR. Let r1 := sup{r : ∃l, (r, l) ∈ E−
10}. r1 is

the maximum level of r evidence for any type in E−
10. Let E+

10 := {(r, l) ∈ E10 : vR(r, l) ≥ 0, r ≤ r1}.
Due to assumption 3.1, the iso-value line u(r, l) = 0 is always upwards sloping. E+

10 is always to the
left of E−

10.

We want to transport the positive values of vR(r, l) from types (r, l) ∈ E+
10 to the negative values of

vR(r
′, l′) from types (r′, l′) ∈ E−

10 to satisfy (21). We will show that there exists a transport map that
satisfies (21) and only moves values from (r′, l′) ∈ E−

10 to any type (r, l) ∈ E+
10 with (r, l) ≤ (r′, l′).

This means only the IC constraints from (r′, l′) ∈ E−
10 to (r, l) ∈ E+

10 with (r, l) ≤ (r′, l′) can bind.
All other constraints are slack.

15For any (r′, l′) ≥ (r, l) with (r′, l′) ∈ E10
2 and (r, l) ∈ E00

2 , the IC from (r′, l′) to (r, l) never binds because type
(r′, l′) gets a strictly smaller utility by mimicking type (r, l).
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For (21) to hold, we need for types (r′, l′) ∈ E−
10,

v̂R(r
′, l′) = vR(r

′, l′) + γ(r′, l′)Λr′,l′ ≥ 0, (22)

v̂L(r
′, l′) = vL(r

′, l′) + Λr′,l′ ≤ 0, (23)

and for types (r, l) ∈ E+
10,

v̂R(r, l) = vR(r, l)−
∫

(r′,l′)≥(r,l)

γ(r′, l′)Λdr′,dl′

r,l ≥ 0, (24)

v̂L(r, l) = vL(r, l)− Λr,l ≤ 0. (25)

We now show that there exists a transport plan Λr′,l′

r,l such that (22)-(25) hold and it only involves

moving vR values from (r, l) ∈ E+
10 to (r′, l′) ∈ E−

10 with (r′, l′) ≥ (r, l). We want some Λr′,l′

r,l such
that (22) binds for any (r′, l′) ∈ E−

10, that is, move just enough positive values of vR from E+
10 to E−

10

so that v̂R(r′, l′) = 0 for any (r′, l′) ∈ E−
10. If such Λr′,l′

r,l exists, (23) is then automatically satisfied
because vR(r′, l′) − γ(r′, l′)vL(r

′, l′) ≥ 0. Moreover, (25) holds due to Lemma 3. As for (24), it is
implied by the following inequality and (25)16

∫
(r′,l′)≥(r,l)

[
γ(r′, l′)− γ(r, l)

]
Λdr′,dl′

r,l ≤ vR(r, l)− γ(r, l)vL(r, l). (26)

(26) always holds by construction. To see this, the right hand side of (26) is negative due to Lemma 4.
The left hand side of (26) is always positive due to Lemma 2, which implies that γ(r′, l′)−γ(r, l) < 0

for any (r′, l′) ∈ E−
10 and (r, l) ∈ E+

10 with (r, l) ≤ (r′, l′).

It remains to show that there exists a Λr′,l′

r,l that shifts just enough values of vR from E+
10 to E−

10

so that (22) binds. By Strassen’s theorem (1965), such transport plan Λr′,l′

r,l exists if v+R(r, l) :=

max{vR(r, l), 0} is first order stochastically dominated by v−R(r, l) := max{−vR(r, l), 0}. To be
precise, view v+R and v−R as the densities of measures µ+R and µ−R on E10. We need that µ+R to be
first order stochastically dominated by µ−R. This ensures that there is enough positive mass in µ+R
to be shifted up to µ−R. In fact, we have to make sure µ+R has enough total mass. Indeed, we always
have ∫

E10

v+R(r, l)drdl ≥
∫
E10

v−R(r, l)drdl

since otherwise the principal would have optimally failed all types in state R. Observe also that
the above inequality may be strict, in which case we have excess positive mass. This never becomes
an issue when we apply Strassen’s theorem because we can always leave the excessive positive mass
untouched.

To check for first order stochastic dominance in this two-dimensional space, typically we have to
16To see this, take (26) plus γ(r, l) times (25) and we have (24).
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show that the integral of v+R over any lower set S is larger than that of v−R (see Theorem 4). In this
problem, however, it suffices to check lower sets of the form Sr′,l′ := (r, l) ∈ E2 : (r, l) ≤ (r′, l′). This
comes from our assumption 3, which implies that the iso-value line vR(r, l) = 0 is always upward
sloping with vR < 0 to its left and vR > 0 to its right.

Therefore, it suffices to verify that, for any (r′, l′) ∈ E−
10, there is more positive values to the

southwest of (r′, l′) in E+
10 than the negative values to the southwest of (r′, l′) in E−

10. Formally, we
need ∫ r′

e

∫ l′

0
v+R(r, l)dldr ≥

∫ r′

e

∫ l′

0
v−R(r, l)dldr.

Plug in v+R and v−R and split the integral into E+
10 and E−

10, the above becomes

∫ r′

e

∫ l′

0
vR(r, l)dldr ≥ 0

Since vR(r′, l′) < 0 for any (r′, l′) ∈ E−
10, the above inequality is implied by

∫ r′

e

∫ l̄(r)

0
vR(r, l)dldr ≥ 0 (27)

which sets l′ to be the upper bound l̄(r) := max{l : (r, l) ∈ E2} to include all negative vR.

(27) must hold due to the optimality of e. To see this, the integral in (27) is the principal’s value
from passing in state R every type (r, l) ∈ E2 with e ≤ r ≤ r′. This integral must be positive,
otherwise the principal can fail in state R every type (r, l) ∈ E2 with e ≤ r ≤ r′ and obtain a strictly
higher payoff, contradicting the optimality of e.

Types in E00 The construction for E00 is similar. We partition E00 based on the sign of vR(r, l).
For any (r, l) ∈ E10, vL(r, l) ≤ 0 due to Lemma 3, and vR(r, l) can either be positive or negative.
Define E+

00 := {(r, l) ∈ E00 : vR(r, l) > 0}. This is the set of types with a positive vR. Let
r2 := inf{r : ∃l, (r, l) ∈ E+

00}. r2 is the minimum level of r evidence for any type in E+
10. Let

E−
00 := {(r, l) ∈ E00 : vR(r, l) ≤ 0, r ≥ r2}. Due to assumption 3.1, the iso-value line u(r, l) = 0 is

always upwards sloping. E+
00 is always to the left of E−

00.

We again want to transport the positive values of vR(r, l) from types (r, l) ∈ E+
10 to the negative

values of vR(r′, l′) from types (r′, l′) ∈ E−
10 to satisfy (21). We will show that there exists a transport

map that satisfies (21) and only moves values from (r′, l′) ∈ E−
10 to any type (r, l) ∈ E+

10 with (r, l) ≤
(r′, l′). This means only the IC constraints from (r′, l′) ∈ E−

10 to (r, l) ∈ E+
10 with (r, l) ≤ (r′, l′) can

bind. All other constraints are slack.

10



For (21) to hold, we need for types (r′, l′) ∈ E−
00,

v̂R(r
′, l′) = vR(r

′, l′) + γ(r′, l′)Λr′,l′ ≤ 0, (28)

v̂L(r
′, l′) = vL(r

′, l′) + Λr′,l′ ≤ 0, (29)

and for types (r, l) ∈ E+
00,

v̂R(r, l) = vR(r, l)−
∫

(r′,l′)≥(r,l)

γ(r′, l′)Λdr′,dl′

r,l ≤ 0, (30)

v̂L(r, l) = vL(r, l)− Λr,l ≤ 0. (31)

We now show that there exists a transport plan Λr′,l′

r,l such that (28)-(31) hold and it only involves

moving vR values from (r, l) ∈ E+
00 to (r′, l′) ∈ E−

00 with (r′, l′) ≥ (r, l). We want some Λr′,l′

r,l such
that (30) binds for any (r, l) ∈ E+

10, that is, move just enough positive values of vR from E+
00 to

E−
00 so that v̂R(r, l) = 0 for any (r, l) ∈ E+

00. (31) holds by construction. We must also show that
such Λr′,l′

r,l respects (28) and (29). It suffices to consider (28) because (29) is implied by (28) due to
Lemma 4.

Again by Strassen’s theorem (1965), a transport plan Λr′,l′

r,l that makes (30) binding and satisfies
(28) exists if a similar first order stochastic condition holds. A similar argument as the E10 case
implies that, a sufficient condition for FOSD is, for any (r, l) ∈ E+

00, there is more negative mass to
the northeast of (r, l) in E−

00 than the positive mass to the northeast of (r, l) in E+
00. Formally, we

need ∫ e

r

∫ l̄(r)

l
v+R(r

′, l′)dl′dr′ ≥
∫ e

r

∫ l̄(r)

l
v−R(r

′, l′)dl′dr′.

Plug in v+R(r, l) := max{vR(r, l), 0} and v−R(r, l) := max{−vR(r, l), 0}, and split the integral into
E+

00 and E−
00, the above becomes

∫ e

r

∫ l̄(r′)

l
vR(r

′, l′)dl′dr′ ≤ 0

Since vR(r, l) > 0 for any (r, l) ∈ E+
00, the above inequality is implied by

∫ e

r

∫ l̄(r′)

0
vR(r

′, l′)dl′dr′ ≤ 0, (32)

which sets l = 0 to include all positive vR.

(32) must hold due to the optimality of e. Again, the integral in (32) is the principal’s value from
passing in state R every type (r′, l′) ∈ E2 with r ≤ r′ ≤ e. This integral must be negative, otherwise
the principal can pass in state R every type (r′, l′) ∈ E2 with r ≤ r′ ≤ e and obtain a strictly higher
payoff, contradicting the optimality of e.
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B.4 Proofs for Section 5

Assumptions 6 imply Assumptions 3.

The proof consists entirely of algebra. The details are presented below.

Proof. Notation. For any function – u, fq|q∈{G,B}, f , p – when we use it without an argument, the
argument is (r, l). When we superscript it with c, it denotes the same function, but with the
argument (l, r). We use the usual notation that for any function ϕ : E → R, ϕe = ∂ϕ

∂e .

Let ξ := 1−g
g . Recall that α = uB

1−g
g .

Assumptions 6 ⇒ Assumptions 3.1 For e ∈ {r, l}, algebra shows that:

∂u

∂e
> (<)0 ⇐⇒ (α+ ξ)fGfB

(
fGe

fG
− fBe

fB

)
> (< 0)

When e = r, the first part of Assumption 6.2 is sufficient for the above to hold. When e = l, the
second part of Assumption 6.2, combined with Assumption 6.1, is sufficient for the above.

Assumptions 6 ⇒ Assumptions 3.2. Essentially using equation (12), all we have to show is isobelief
curves are steeper than iso-utility (of the principal) curves, in the l − r plane:

dr

dl

∣∣∣∣
u=constant

≤ dr

dl

∣∣∣∣
p=constant

Algebra shows,

dr

dl

∣∣∣∣
p=constant

=
γf

c
l − f l

f r − γf
c
r

Also, using expressions for ul and ur derived in the previous step,

dr

dl

∣∣∣∣
u=constant

= − ul
ur

=

(
fBl
fB

− fGl
fG

)
(
fGr
fG

− fBr
fB

)
Hence,

dr

dl

∣∣∣∣
p=constant

≥ dr

dl

∣∣∣∣
u=constant

⇔ γf
c
l − f l

f r − γf
c
r

≥

(
fBl
fB

− fGl
fG

)
(
fGr
fG

− fBr
fB

) (33)
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Using the fact that f = gfG + (1− g)fB (and similarly, f c), algebra shows that Assumption 6.3 is
sufficient for (33).

B.5 Extensions

We assume at the outset, that maxẽ

( ∫
min{r,l}≥ẽ,r≥l

u(l, r)dF (l, r)

)
> 0. The case where this is not

satisfied is already dealt with in the proof of our main characterization.

Implications of Assumption 7. Let e∗ := maxe ϕ(e, e) ≤ 1, r̄(l) := sup{r : (r, l) ∈ E}. Let ē
be defined by (10). Let l1 and l2 be the point where the curve {(r, l) ∈ E : u(l, r) = 0} crosses the
45 degree line and the resource constraint ϕ(r, l) = 1, respectively.

By Assumption 7,

( ∫
min{r,l}≥ẽ,r≥l

u(l, r)dF (l, r)

)+

is single peaked, i.e.,

 e∗∫
l=ẽ

r(l)∫
r=l

u(l, r)dF (l, r)


+

is single-peaked.

Taking partial derivative w.r.t. l, we have the following equivalent version of Assumption 7.

∫ r̄(l)

l
u(l, r′)f(l, r′)dr′ ≤ 0,∀l1 ≤ l ≤ ē, (34)∫ r̄(l)

l
u(l, r′)f(l, r′)dr′ ≥ 0,∀ē ≤ l ≤ l2, (35)

Here we use the fact that

( ∫
min{r,l}≥ẽ,r≥l

u(l, r)dF (l, r)

)+

is maximized at ẽ = e, by the optimality

of e within the class of mechanisms described in Theorem 2.

Note also that by Assumption 3.1, u(r, l) > u(l, r) for all r ≥ l. This gives us the following:

∫ r̄(l)

l
u(r′, l)− u(l, r′)f(r′, l)dr′ ≥ 0,∀l1 ≤ l ≤ l2 (36)

Conditions (34)-(36) are what we use for our proof below.

Proof. The proof follows the same idea as the proof of Theorem 1 through multiplier construction.
Again, it suffices to certify the optimality of the mechanism proposed in (3) in the relaxed problem

13



(16). We incorporate the IC constraints with the multiplier Λr′,l′

r,l which is a positive measure on
E2 × E2 := {(r′, l′, r, l) : (r′, l′), (r, l) ∈ E2} that satisfies (17).

We now split E2 into three parts based on the allocation (aR, aL) assigned by the proposed optimal
mechanism. Define

E00 := {(r, l) ∈ E2 : r < e},

E10 := {(r, l) ∈ E2 : r ≥ e, l < ē},

E11 := {(r, l) ∈ E2 : l ≥ ē}.

Types in E00 are given allocation (aR, aL) = (0, 0), types in E10 are given allocation (aR, aL) = (1, 0),
and types in E11 are given allocation (aR, aL) = (1, 1) by the mechanism in (9).

To certify the optimality of (9), we want to construct a transport plan Λr′,l′

r,l so that

v̂R(r, l) ≤ 0, v̂L(r, l) ≤ 0, ∀(r, l) ∈ E00,

v̂R(r, l) ≥ 0, v̂L(r, l) ≤ 0, ∀(r, l) ∈ E10,

v̂R(r, l) ≥ 0, v̂L(r, l) ≥ 0, ∀(r, l) ∈ E11.

(37)

We can separately construct Λr′,l′

r,l within E00, E10 and E11 because again the IC constraints only
bind within each set for the proposed mechanism (9).

Types in E00 The construction for E00 is exactly the same as before. The part for E00 in the
proof of Theorem 1 still applies. Introducing E11 does not change anything for E00.

Types in E10 We partition E10 now based on the signs of both vR(r, l) and vL(r, l). Define

E−−
10 := {(r, l) ∈ E10 : vR(r, l) < 0, vL(r, l) ≥ 0},

E++
10 := {(r, l) ∈ E10 : vR(r, l) ≥ 0, vL(r, l) < 0}.

Let r1 := sup{r : ∃l, (r, l) ∈ E−−
10 }. r1 is the maximum level of r evidence for any type in E−−

10 .
Similarly, let l1 := inf{l : ∃r, (r, l) ∈ E++

10 }. l1 is the minimum level of l evidence for any type in
E++

10 . Next, define

Er1+−
10 := {(r, l) ∈ E10 : vR(r, l) ≥ 0, vL(r, l) ≥ 0, r ≤ r1},

El1+−
10 := {(r, l) ∈ E10 : vR(r, l) ≥ 0, vL(r, l) ≥ 0, l ≥ l1}.

Er1+−
10 and El1+−

10 do not overlap. This is because (r1, l1) is the point where the iso-value curve
u(r, l) = 0 crosses the 45 degree line. Also, there is no (r, l) ∈ E10 with vR(r, l) < 0 and vL(r, l) < 0
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to worry about due to symmetry.

We want to shift the positive values of vR from Er1+−
10 to E−−

10 , and the positive values of vL from
E++

10 to El1+−
10 so that (37) holds. We can do this separately for the two pairs of sets.

To shift the positive values of vR from Er1+−
10 to E−−

10 , we can use the same construction as in the
part proof of Theorem 1. Nothing has changed.

To shift the positive values of vL from E++
10 to El1+−

10 in a way that satisfies (37), we need types
(r′, l′) ∈ El1+−

10 to satisfy

v̂R(r
′, l′) = vR(r

′, l′) + γ(r′, l′)Λr′,l′ ≥ 0, (38)

v̂L(r
′, l′) = vL(r

′, l′) + Λr′,l′ ≤ 0, (39)

and types (r, l) ∈ E++
10 to satisfy,

v̂R(r, l) = vR(r, l)−
∫

(r′,l′)≥(r,l)

γ(r′, l′)Λdr′,dl′

r,l ≥ 0, (40)

v̂L(r, l) = vL(r, l)− Λr,l ≤ 0. (41)

This is where the additional assumption 7 kicks in. Assumption 7 implies the following,∫ r̄(l)

l
vL(l, r

′)dr′ ≤ 0, ∀l1 ≤ l ≤ ē, (42)∫ r̄(l)

l
(vR(r

′, l)− γ(r′, l)vL(l, r
′))dr′ ≥ 0, ∀l1 ≤ l ≤ ē. (43)

(42) says that there is enough negative values of vL to take in all the positive values of vL in E++
10

along every l. This implies that the transport plan can be constructed within each l to satisfy (39)
and (41) simultaneously. (38) holds because vR(r′, l′) ≥ 0 for (r′, l′) ∈ El1+−

10 . It remains to check
that (40) holds.

(43) implies that when we use the within-l transport plan to make (41) bind, we can always make
(40) hold. To see this, (43) says that there is enough positive values of vR for types in E++

10 so that
when they shift the negative values of vL upwards, the virtual values v̂R stays positive.

Types in E11 We partition E11 based on the sign of vL(r, l). Define E−
11 := {(r, l) ∈ E11 :

vL(r, l) < 0}. Let l2 := sup{l : ∃r, (r, l) ∈ E−
11}. l2 is the maximum level of l evidence for any type

in E−
11. Define E+

11 := {(r, l) ∈ E11 : vL(r, l) ≥ 0, l ≤ l2}. Note that for any (r, l) ∈ E11, vR(r, l) ≥ 0.

We want to transport the positive values of vL(r, l) from types (r, l) ∈ E+
11 to the negative values of

vR(r
′, l′) from types (r′, l′) ∈ E−

11 to satisfy (37). We will show that there exists a transport map that
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satisfies (37) and only moves values from (r′, l′) ∈ E−
11 to any type (r, l) ∈ E+

11 with (r, l) ≤ (r′, l′).
This means only the IC constraints from (r′, l′) ∈ E−

11 to (r, l) ∈ E+
11 with (r, l) ≤ (r′, l′) can bind.

All other constraints are slack.

For (37) to hold, we need for types (r′, l′) ∈ E−
11,

v̂R(r
′, l′) = vR(r

′, l′) + γ(r′, l′)Λr′,l′ ≥ 0, (44)

v̂L(r
′, l′) = vL(r

′, l′) + Λr′,l′ ≥ 0, (45)

and for types (r, l) ∈ E+
11,

v̂R(r, l) = vR(r, l)−
∫

(r′,l′)≥(r,l)

γ(r′, l′)Λdr′,dl′

r,l ≥ 0, (46)

v̂L(r, l) = vL(r, l)− Λr,l ≥ 0. (47)

This is again where we need the additional assumptions. Assumption 7 implies that∫ r̄(l)

l
vL(l, r

′)dr′ ≥ 0, ∀ē ≤ l ≤ l2, (48)∫ r̄(l)

l
(vR(r

′, l)− γ(r′, l)vL(l, r
′))dr′ ≥ 0,∀ē ≤ l ≤ l2. (49)

(48) says that there is enough positive values of vL to fill in all the negative values of vL in E−
11

along every l. This implies that the transport plan can be constructed within each l to satisfy (45)
and (47) simultaneously. (44) holds again because vR(r′, l′) ≥ 0 for (r′, l′) ∈ E−

11. It remains to
check that (46) holds.

(49) implies that when we use the within-l transport plan to make (47) bind, we can always make
(46) hold. To see this, (49) says that there is enough positive values of vR for types in E+

11 so that
when they shift the values of vL upwards, the virtual values v̂R stays positive.

This completes the proof.
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