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Abstract
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1 Introduction

Existing studies present two contrasting perspectives on the ability of voting to aggregate infor-
mation. Condorcet’s (1785) Jury Theorem offers an optimistic view: when voters share common
interests but possess dispersed information, majority voting can effectively select the commonly
preferred—or “correct”—alternative. This optimism is challenged by Downs’s (1957) hypothesis of
rational ignorance, which posits that voters must incur costs to acquire information. In a large
electorate, where an individual vote is unlikely to be pivotal, each voter may rationally choose to
remain uninformed, leading to an under-provision of information and casting doubt on the ability of
voting to aggregate information efficiently. This pessimism has spurred extensive research on vot-
ers’ information acquisition and aggregation (e.g., Persico, 2004; Martinelli, 2006, 2007; Koriyama
and Szentes, 2009; Oliveros, 2013; Triossi, 2013). The key trade-off highlighted in the literature is
between the cost of acquiring information and the probability of being pivotal.

In this paper, we examine the possibility that information about pivot probability may be
available to voters through public opinion polls (or simply polls). Polls may help voters more
accurately assess whether it is worthwhile to learn about the alternatives. If a poll suggests a
one-sided race, voters perceive a lower pivot probability and acquire less information; if it indicates
a close race, they perceive a higher pivot probability and acquire more.

Our main question is how polls shape both the acquisition and the aggregation of information.
Although the closeness of an election may affect voters’ incentives to learn, that closeness is itself
endogenously determined by their collective behavior. We seek to understand this equilibrium
interaction and its implications for the quality of collective decision-making.

Model Consider an electorate of N voters, with N odd, who must choose between two alternatives,
1 and 0, by majority rule. Each voter must cast a vote for one of the alternatives, with no abstention
allowed. There is a state θ that takes one of two values, 1 or 0, according to a prior µ. At state θ,
alternative θ is the “correct” choice; each voter receives a payoff of 1 if the collective choice matches
the state, and 0 otherwise.

Voters may acquire costly information about both the state and a poll, which indicates a likely
vote share of the two alternatives. We model their information acquisition using the framework
of rational inattention, in which a voter chooses any (noisy) signal that may correlate with
the state and the poll, subject to a cost proportional to the expected reduction in uncertainty,
measured by entropy (e.g., Sims, 2003; Matějka and McKay, 2015). This approach allows her to
pay close attention to the state when a poll suggests a close race, but ignore it otherwise. Each voter
maximizes her expected payoff from the election outcome, net of the (private) cost of information.1

Voting and polling are interdependent: voters respond to polling information, while the poll
reflects the aggregate behavior of the electorate. An equilibrium thus requires the following triadic
conditions: (i) voters’ behavior is individually optimal under their beliefs; (ii) their beliefs are

1The poll itself contains no noise in aggregating votes, but voters will typically acquire noisy signals about it.

2



0.3 0.4 0.5 0.6 0.7
vote share of alternative 1 given state µ = 1

N = 501

N = 1001

N = 2001

Figure 1: With opinion polls
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Figure 2: Without opinion polls

Note: The equilibrium vote-share distributions at state θ = 1 under the prior µ(1) = 0.5

consistent with the acquired information about the state and the poll; and (iii) the poll is consistent
with actual voting behavior. Such an equilibrium is a fixed point of this interactive system.

This equilibrium concept, built on Denti’s (2023) notion of robustness to information acquisi-
tion, has two interpretations in our setting. First, it parallels a rational-expectations equilibrium:
voters acquire (noisy) endogenous information about collective behavior and respond accordingly
(Grossman and Stiglitz, 1980; Hébert and La’O, 2023). Here, polls play a crucial role in aggregating
voting intentions, allowing them to form rational expectations. Second, although our model is fully
static, this equilibrium can be viewed as the long-run outcome of a sequential electoral process
in which voters repeatedly revise their votes upon observing updated polls. (See Section 2.2 for
details.) In this Introduction, we focus on informative equilibria, in which voters acquire infor-
mation, leaving uninformative equilibria to later analysis. As we show, an informative equilibrium
exists and is unique unless the prior µ is heavily biased toward one state.

Of particular interest is the equilibrium vote share. Figure 1 depicts the probability mass
functions of the vote shares of alternative 1 given state θ = 1 (at which alternative 1 is correct)
under the prior µ(1) = 0.5, for electorate sizes N = 501, 1001, 2001.2 At state θ = 1, any vote share
above 0.5 yields the correct choice. Observe that each distribution “jumps” at 0.5, indicating that
the election likely results in favor of the correct choice. This jump reflects our intuition that polls
encourage information acquisition when the election is close.

Main Results Our main results—formally stated as Theorems 1 and 2—are as follows:

In an election with an opinion poll, the equilibrium probability that majority vote
chooses the correct alternative is independent of the electorate size N and the prior µ.
Moreover, as N increases, the equilibrium vote share converges in probability to the
winning threshold of 0.5 even if µ is biased toward one state.

2The heights of the probability mass functions decrease as N increases, since the total probability 1 is distributed
across a larger number of possible vote share values.
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Theorem 1 states that Condorcet’s optimism (that larger electorates should choose more accurately)
is perfectly canceled by Downs’s pessimism (that larger electorates might choose less accurately).
Furthermore, the probability of making the correct choice does not depend on µ. Theorem 2 shows
that as N grows, the vote-share distribution concentrates at 0.5, as illustrated in Figure 1. This
implies that large elections tend to be close. Notably, this result continues to hold even if µ is
biased toward one state. Despite this closeness, the probability of choosing the correct alternative
remains considerably above one half.

Theorems 1 and 2 hold exactly as stated even when there are partisans in the electorate.
Suppose that N1 voters always vote for alternative 1 and N0 always vote for alternative 0, with
N1, N0 < N/2. Then, the probability that majority vote chooses the correct alternative is indepen-
dent of N1 and N0;3 similarly, as N increases, the vote share converges to 0.5 for any N1, N0 < N/2.
Furthermore, both theorems hold under supermajority rule, including unanimity rule.4

In contrast to settings with exogenous information, we do not find a swing voter’s curse, where
less-informed voters ignore their private signals to defer to (potentially) better-informed majorities
(Feddersen and Pesendorfer, 1996). In exogenous-information models, being pivotal can itself be
more informative than any private signal, causing voters to discount their own signals. In our
endogenous-information model, voters strategically acquire whatever signals they anticipate using,
knowing the likelihood of being pivotal and the presence of partisans. Consequently, no (non-
partisan) voter would acquire any costly information that she then ignores in equilibrium.

Comparison between Elections with and without Opinion Polls Do polls help the electorate
make more accurate choices? To address this question, consider an election without a poll, in
which voters learn only about the state (as in earlier rational-ignorance studies). Figure 2 plots
the probability mass function of the equilibrium vote share of alternative 1 in this setting. Unlike
Figure 1, there is no jump at 0.5, though the distribution shifts favorably toward the correct
alternative.

We show that, for a large enough electorate size N and a nearly symmetric prior µ(1) ≈ 0.5,
the probability that majority vote chooses the correct alternative is strictly higher with a poll
than without one (Proposition 1).5 This result underscores the role of polling in both information
acquisition and aggregation.

Regression Discontinuity Design in Close Elections Our findings offer novel implications for the
regression discontinuity (RD) design in close elections. Researchers often identify treatment
effects in electoral environments by comparing candidates who barely win against those who barely
lose (e.g., Hahn, Todd, and Van der Klaauw, 2001). Although such designs are widely applied,

3If either group of partisans is at least half of the electorate, their preferred alternative trivially wins.
4These extensions are essentially the same. For example, among N = 101 voters, with N1 = 10 partisans

for alternative 1 and N0 = 20 for alternative 0, the remaining 71 non-partisans face a 41-out-of-71 supermajority
requirement to elect alternative 1. Likewise, if N1 = 0 and N0 = 50, the remaining 51 non-partisans effectively face
a unanimity requirement.

5While this proposition formally applies only to nearly symmetric priors, we conjecture that it holds more generally.
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their validity has been called into question. For example, Caughey and Sekhon (2011) show that
winners and losers in close U.S. House elections differ significantly on pretreatment covariates (e.g.,
campaign finance and incumbency); Snyder (2005) finds that incumbents won a disproportionate
share of close U.S. House elections. By contrast, Eggers, Fowler, Hainmueller, Hall, and Snyder
(2015) do not detect such sorting in many close elections, yet confirm Snyder’s findings for the U.S.
House elections.

One possible cause of sorting is post-election manipulation of votes (Snyder, 2005); another
is precisely measured campaign effort (Caughey and Sekhon, 2011). Both mechanisms hinge on
having reliable information about how the vote is trending, which brings to mind polls. Indeed,
Eggers et al. (2015) note that close U.S. House elections, where sorting is repeatedly documented,
tend to be polled more often than other elections commonly used in RD designs.

We propose a novel mechanism for sorting in close elections that arises from individual voter
decisions alone. As illustrated in Figures 1 and 2, the equilibrium vote shares have a jump at the
0.5 threshold if and only if there is a poll. This suggests that even when alternatives are ex-ante
identical, voters may coordinate, through polling, to choose the (ex-post) correct alternative by a
narrow margin. This polling-based mechanism complements existing explanations and could help
reconcile the mixed evidence on sorting in close elections.

Related Literature Our study bridges two strands of the literature: rational ignorance and ra-
tional inattention. Downs’s (1957) classical hypothesis of rational ignorance maintains that voters
acquire information only when the expected benefits exceed the costs. This hypothesis helps explain
why voters in a large electorate (with a small pivot probability) may rationally remain uninformed.
By endogenizing information acquisition, it also foreshadows the approach of rational inattention.

Existing studies on rational ignorance adopt a “rigid” information structure, maintaining para-
metric assumptions about signals available to voters. For instance, Martinelli (2006) assumes that
voters choose a particular level of signal precision about a state; he then shows that the diminish-
ing incentives to acquire precise signals (due to small pivotal probabilities) can outweigh the value
of having more signals in a larger electorate. Oliveros (2013) and Triossi (2013) introduce voter
heterogeneity, while other related work focuses on a binary choice of whether to purchase a fixed-
quality signal or not (e.g., Mukhopadhaya, 2003; Persico, 2004; Martinelli, 2007; Gerardi and Yariv,
2008; Koriyama and Szentes, 2009). Experiments also implement similar binary-choice information
acquisition models (e.g., Bhattacharya, Duffy, and Kim, 2017; Elbittar, Gomberg, Martinelli, and
Palfrey, 2020).

We are not the first to posit that voters may learn about their pivot probabilities. Ekmekci and
Lauermann (2022) show that when voters receive information about electorate size, they may infer
their pivotality and potentially generate inefficient information aggregation. Because their environ-
ment assumes exogenous information, it does not explore the endogenous information acquisition
that we study. Taylor and Yildirim (2010) examine how polling may lead to closer elections when
turnout is endogenous, but they do not consider endogenous information acquisition.
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Another line of work examines cheap-talk communication before voting, focusing on how ex-
ogenous signals are shared. Feddersen and Pesendorfer (1998) and Austen-Smith and Banks (1996)
show that under unanimity rule, voters may rationally choose to disregard their private signals,
leading to inefficiency. Coughlan (2000) demonstrates that a single round of communication can
enable full information sharing; Gerardi and Yariv (2007) study broader communication protocols,
showing that many voting rules yield equivalent equilibrium outcomes after communication. In
our setting, opinion polls induce a similar equivalence across voting rules, but with endogenous
acquisition of information.6

The rational inattention approach has found applications in political economy, though it has
not yet been used to examine the implications of the rational ignorance hypothesis. Matějka and
Tabellini (2021) examine a spatial model of electoral competition with rationally inattentive voters.
Assuming that voters are rationally inattentive, Yuksel (2022) explores political polarization, while
Li and Hu (2023) investigate politicians’ accountability.7

Layout The paper is organized as follows. Section 2 develops the model of elections with polls
and presents our main results. Section 3 compares these outcomes to those in elections without
polls, focusing on the probability of choosing the correct alternative. Section 4 then discusses the
implications for regression discontinuity designs in close elections. Section 5 concludes by outlining
extensions and limitations of our analysis. Proofs are found in Appendix A.

The replication code for all figures in this paper is available at this webpage.

2 Elections with Opinion Polls

In this section, we study elections with opinion polls. We begin by introducing an election model
and an equilibrium concept, then characterize equilibria in finite-voter elections, and finally analyze
the limit case as the number of voters tends to infinity.

2.1 Model

Base Environment There are N = 2n + 1 voters, denoted i = 1, . . . , N , for an integer n ≥ 0.
There are two alternatives a ∈ A = {0, 1}, and each voter i votes for an alternative ai ∈ A, which
we call action ai. No abstention is allowed. Let a = (a1, . . . , aN ) be an action profile and a−i be

6A number of experimental studies examine the effect of polls. Sinclair and Plott (2012) find that voter errors
decline when polls inform people about others’ intentions; Agranov, Goeree, Romero, and Yariv (2018) observe that
availability of polling data shapes voters’ perceptions of pivotality and thus their choices.

7These studies assume a continuum of voters. Although this approach may have certain advantages, it would
not adequately capture the interplay between Condorcet-type information aggregation and the free-rider problem
emphasized by rational ignorance. In a continuum-voter model, each voter’s influence is infinitesimal, so pivotality
(and thus fully endogenous information acquisition) never arises.
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an action profile of all voters but i. Given a, the vote share (of alternative 1) is

āN = 1
N

N󰁛

i=1
ai,

while the vote share of alternative 0 is 1 − āN . Under simple majority rule, alternative 1 is
chosen if and only if āN > 1

2 , and alternative 0 is chosen otherwise; thus, the chosen alternative is
denoted by 1{āN > 1

2}, where 1 is the indicator function. There is no tie, since N is odd.
There is a true state θ drawn from a state space Θ = {0, 1} according to a prior µ ∈ ∆(Θ). At

state θ, alternative θ is considered “correct.” For now, we assume that all voters share the common
interest of matching the chosen alternative 1{āN > 1

2} with state θ. Specifically, we define each
voter’s payoff function u : [0, 1] × Θ → {0, 1} by

u(āN , θ) =

󰀻
󰀿

󰀽
1 if 1{āN > 1

2} = θ

0 if 1{āN > 1
2} ∕= θ.

In Section 2.5, we extend the model to incorporate supermajority rule (including unanimity
rule) and partisan voters whose preferences over the alternatives are independent of state θ.

Information Acquisition Voters acquire information at a cost. Each voter can learn about two
variables: the state θ and an opinion poll indicating how the remaining electorate is likely to vote.
Specifically, voter i may learn about the vote share ā−i =

󰁓
j ∕=i aj/(N − 1). We model information

acquisition using the framework of rational inattention (Sims, 2003). In this approach, each voter
can flexibly choose what to learn, not only how much to learn, allowing, for example, more attention
to the state θ when an election is likely to be close and less attention otherwise.

Each voter i selects a signal structure consisting of a signal space Si and a conditional dis-
tribution σi(· | ā−i, θ) ∈ ∆(Si) for each (ā−i, θ). She then takes an action based on the realized
signal. Without loss of generality, we can restrict ourselves to “direct” signal structures in which
the signal space is Si = A and each realization ai is interpreted as a recommendation to take action
ai.8 Accordingly, voter i’s strategy is represented by a system of conditional action distributions
Pi(· | ā−i, θ) ∈ ∆(A), one for each (ā−i, θ).

Following much of the literature (e.g., Sims, 2003; Matějka and McKay, 2015), we assume
the entropy-based cost of information.9 It is proportional to the expected reduction in the voter’s
uncertainty measured by entropy. Suppose that voter i has a belief µi(ā−i, θ), which is endogenously
determined in equilibrium. Given a strategy Pi, the expected reduction in entropy of (ā−i, θ) is

I(ā−i, θ; ai) = H(ā−i, θ) − H(ā−i, θ | ai),
8By a standard argument from the literature (e.g., Matějka and McKay, 2015), every pair of a signal structure and

an action mapping can be replaced by a (weakly) cheaper direct signal structure that induces the same conditional
action distribution. Also, voter i does not randomize over signal structures.

9See de Oliveira (2019) for axiomatic foundations.
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where H denotes the entropy function. Here, H(ā−i, θ) is the entropy of (ā−i, θ), where (ā−i, θ)
is distributed according to µi, and H(ā−i, θ | ai) is the conditional entropy of (ā−i, θ) given ai,
where (ai, ā−i, θ) is distributed according to Pi and µi.10 The information cost of Pi under µi is
λI(ā−i, θ; ai), where λ > 0 is the unit cost of information.

We denote by PN the election with a poll (omitting the prior µ and the unit cost λ).

2.2 Equilibrium

Voter i’s strategy Pi is called optimal under her belief µi if it maximizes her expected payoff net of
information costs: E[u(āN , θ)]−λI(ā−i, θ; ai), where E[u(āN , θ)] is the expected payoff with respect
to the distribution over (ai, ā−i, θ) induced by Pi and µi.

We define an equilibrium via the following triadic relationship: (i) voters’ strategies are optimal
under their beliefs; (ii) their beliefs are consistent with their acquired information about the state
and the poll; and (iii) the poll is consistent with their strategies. The equilibrium is the joint
distribution over action profiles and states implied by voters’ strategies and beliefs.

Definition 1. In an election PN , a distribution P ∗
N ∈ ∆(AN × Θ) is an equilibrium if it satisfies

the following conditions:
1. The marginal distribution of θ equals the prior µ; namely, µ(θ) =

󰁓
a∈AN P ∗

N (a, θ).
2. Each voter i’s strategy Pi is optimal under her belief µi, where µi is the marginal distribution

of (ā−i, θ) and Pi is the conditional distribution of ai given (ā−i, θ); namely,

µi(x, θ) =
󰁛

ai

󰁛

a−i:ā−i=x

P ∗
N (ai, a−i, θ),

Pi(ai | x, θ) = 1
µi(x, θ)

󰁛

a−i:ā−i=x

P ∗
N (ai, a−i, θ).

Equilibrium Interpretation This equilibrium concept builds on Denti’s (2023) notion of robustness
to information acquisition. We offer two interpretations. First, the equilibrium is interpreted as a
blend of a Bayesian Nash equilibrium and a rational-expectations equilibrium (Hébert and La’O,
2023). It is a Bayesian Nash equilibrium in that agents behave optimally under uncertainty, and
it is a rational-expectations equilibrium in that agents learn from endogenous aggregate behavior
while simultaneously choosing their strategies as in Grossman and Stiglitz (1980). In our setting,
the poll acts as an institutional device to aggregate voters’ actions, thus facilitating the rational-
expectations interpretation. Voters make decisions while learning about the state and the poll;
their behavior is consistent with the poll because otherwise, the poll would not reflect the voting
behavior.

10For a discrete random variable Y , the entropy is defined as H(Y ) = −
󰁓

y
pY (y) ln pY (y), where pY is the

probability mass function of Y . For another discrete random variable Z given Y , the conditional entropy H(Z | Y )
is defined as H(Z | Y ) = −

󰁓
y

pY (y)
󰁓

z
pZ|Y (z | y) ln pZ|Y (z | y), where pZ|Y is the conditional probability mass

function of Z given Y . See Cover and Thomas (2006) for a comprehensive treatment.
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Second, although our model is static, the equilibrium can be interpreted as the long-run out-
come of a dynamic electoral process. This interpretation aligns with the stochastic best-response
dynamics interpretation. Imagine a sequential procedure in which, each period, a randomly chosen
voter can acquire information and myopically revise her vote. Any revision is then reflected in a
new poll, and the process repeats. This protocol yields a Markov chain on action profiles that con-
verges to a unique stationary distribution, which coincides with our equilibrium, as shown in Denti
(2020, working paper version) and Hoshino (2018). This interpretation captures an environment
of frequent polling during an electoral campaign. Moreover, the assumption of myopic updating is
sensible in a large electorate, where individual votes have a negligible impact.

We focus on symmetric equilibria, where the strategies and beliefs are identical across all voters.
Even in a symmetric equilibrium, voters may receive distinct realized signals and take different
actions. A symmetric equilibrium P ∗

N is called uninformative if all voters choose to acquire no
information; otherwise, it is called informative.11

2.3 Equilibrium Characterization

Given a symmetric equilibrium P ∗
N , we define the equilibrium vote share as a random variable

ā∗
N =

󰁓N
i=1 a∗

i /N , where a∗
1, . . . , a∗

N and θ are distributed according to P ∗
N . The conditional proba-

bility of ā∗
N = k/N (i.e., k votes for alternative 1 and N − k votes for alternative 0) given state θ

is denoted by

Pr
󰀕

ā∗
N = k

N
| θ

󰀖
=

󰁛

a:āN =k/N

P ∗
N (a | θ),

where Pr denotes the probability.
Under entropy-based costs, equilibrium behavior is characterized by a biased logit distribution

(Matějka and McKay, 2015; Caplin, Dean, and Leahy, 2019; Denti, 2023). Using these results, we
characterize the equilibrium distributions as follows.

Lemma 1. In every election PN , every symmetric equilibrium P ∗
N has some p∗

N ∈ [0, 1] such that
the equilibrium vote share ā∗

N has the following distribution: for each θ and each k = 0, 1, . . . , N ,

Pr
󰀕

ā∗
N = k

N
| θ

󰀖
= 1

ZN (p∗
N , θ)

󰀣
N

k

󰀤

exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

(p∗
N )k(1 − p∗

N )N−k, (1)

where ZN : [0, 1] × Θ → R is the function defined by

ZN (p, θ) =
N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

pk(1 − p)N−k, (2)

11If N ≥ 3, there always exist two uninformative equilibria in which all voters choose the same action. Indeed, if
N − 1 voters vote for the same alternative, the remaining voter is never pivotal and thus acquires no information.
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and p∗
N equals the equilibrium marginal probability of each voter choosing action 1.12.

The following properties hold:
1. P ∗

N is an uninformative equilibrium if and only if p∗
N ∈ {0, 1}.

2. P ∗
N is an informative equilibrium if and only if p∗

N ∈ (0, 1) and it is a solution to equation

ZN (p, 1)
ZN (p, 0) = µ(1)

µ(0) . (3)

Informative Equilibrium By Lemma 1, an informative equilibrium exists if and only if (3) has a
solution p∗

N ∈ (0, 1). The function ZN (p,1)
ZN (p,0) is continuous and strictly increasing in p and ranges from

e−1/λ to e1/λ, as depicted in Figure 3.13 This implies that there is a unique informative equilibrium
if µ(1)

µ(0) is between e−1/λ and e1/λ. We formalize this observation as follows.

Condition 1. An election PN has the prior µ and the unit cost of information λ such that

e−1/λ <
µ(1)
µ(0) < e1/λ.

Lemma 2. An election PN has an informative equilibrium if and only if it satisfies Condition 1.
The informative equilibrium is unique whenever it exists.

Condition 1 depends only on the prior µ and the unit cost λ, and not on the electorate size N .
Under the prior µ(1) = 0.5, Condition 1 is satisfied for any λ > 0; under any µ(1) ∈ (0, 1), it is also
satisfied when λ > 0 is sufficiently small.

We illustrate the vote-share distribution (1) at the informative equilibrium. Figure 1 (in Section
1) plots the probability mass functions at state θ = 1 under the prior µ(1) = 0.5, with the unit cost

12That is, p∗
N =

󰁓
a−i,θ

P ∗
N (1, a−i, θ) for each voter i

13These properties are shown in the proof of Lemma 2.
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λ = 1. Figures 4 and 5 show these probability mass functions under µ(1) = 0.6 and 0.4 respec-
tively.14 In each case, the equilibrium vote-share distribution “jumps” at the winning threshold
of 0.5, thereby increasing the probability that majority vote chooses the correct alternative 1 (at
state θ = 1). Intuitively, when the poll indicates a close election, voters have stronger incentives to
acquire information, helping them to choose the correct alternative.

2.4 Main Results

2.4.1 Equilibrium Probability of Correct Choice

A key question is whether a larger electorate can choose the correct alternative more (or less)
accurately. To address this question, we consider the probability that majority vote chooses the
correct alternative. We then define the (unconditional) probability of correct choice as

Pr(u(ā∗
N , θ) = 1) = µ(1) Pr

󰀕
ā∗

N >
1
2 | θ = 1

󰀖
+ µ(0) Pr

󰀕
ā∗

N <
1
2 | θ = 0

󰀖
, (4)

where Pr(ā∗
N > 1

2 | θ = 1) is the conditional probability of choosing alternative 1 given state θ = 1
and Pr(ā∗

N < 1
2 | θ = 0) is the conditional probability of choosing alternative 0 given state θ = 0.

Our first main result is that the probability of correct choice is independent of both the electorate
size N and the prior µ, although the vote-share distribution depends on both.

Theorem 1. Every election PN satisfies the following properties:
1. In an uninformative equilibrium, with all voters choosing the same alternative a, the proba-

bility of correct choice is µ(a).
2. In an informative equilibrium, which exists (and is unique) if and only if Condition 1 is

satisfied, the probability of correct choice is

Pr(u(ā∗
N , θ) = 1) = e1/λ

1 + e1/λ
. (5)

Moreover, the informative equilibrium, if it exists, yields a strictly higher probability of correct
choice than all uninformative equilibria: e1/λ/(1 + e1/λ) > max{µ(1), µ(0)}.

Theorem 1 reflects a perfect cancellation between Condorcet’s optimism and Downs’s pessimism.
Increasing N has two opposing effects on decision quality: a positive effect that the electorate
aggregates more individual signals, and a negative effect that each voter’s signal becomes less
informative. The classic Condorcet-type results focus on exogenous, independent signals, capturing
the positive effect while ignoring the negative. In contrast, the rational ignorance hypothesis
emphasizes endogenous (often independent) signals, highlighting the negative effect. In our model,
signals are both endogenous and correlated, offsetting these effects.

14Condition 1 is satisfied since µ(1)/µ(0) = 3/2 and 2/3 for µ(1) = 0.6 and 0.4 respectively, and these ratios lie
between e−1 ≈ 0.368 and e ≈ 2.718.
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Figure 4: Prior µ(1) = 0.6
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Figure 5: Prior µ(1) = 0.4

Note: The equilibrium vote shares at state θ = 1 under priors µ(1) = 0.6 and 0.4

Here is a proof sketch for Theorem 1. The probability of choosing alternative 1 given state
θ = 1 is rewritten as Pr(ā∗

N > 1
2 | θ = 1) =

󰁓N
k=n+1 Pr(ā∗

N = k
N | θ = 1). By Lemma 1, we have

Pr
󰀕

ā∗
N >

1
2 | θ = 1

󰀖
=

e1/λ − µ(0)
µ(1)

e1/λ − e−1/λ
. (6)

Analogously, the probability of choosing alternative 0 given state θ = 0 is

Pr
󰀕

ā∗
N <

1
2 | θ = 0

󰀖
=

e1/λ − µ(1)
µ(0)

e1/λ − e−1/λ
. (7)

Note that both (6) and (7) are independent of N . By substituting them into (4), we obtain (5).

2.4.2 Large Elections

We examine the behavior of the equilibrium vote share ā∗
N as the electorate size N grows (while

we fix the prior µ and the unit cost λ). This analysis is nontrivial because the behavior of any two
voters is possibly correlated and each voter’s strategy changes with N .

We show that the marginal probability p∗
N of each voter choosing action 1 converges to 1

2 ,
even if the prior µ is biased toward one state. Recall that p∗

N is the (unique) solution to (3) in
any informative equilibrium (Lemma 1), determined by the intersection of ZN (p,1)

ZN (p,0) and µ(1)
µ(0) . This

convergence is illustrated in Figure 3.

Lemma 3. For every election PN that satisfies Condition 1, let P ∗
N be the informative equilibrium

and p∗
N be the equilibrium marginal probability of each voter choosing action 1. Then,

lim
N→∞

p∗
N = 1

2 .

Our second main result shows that a large election tends to be close. Figure 1 (in Section 1)
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illustrates that under the prior µ(1) = 0.5, the informative equilibrium vote share converges in
probability to the threshold of 1

2 as the electorate size N increases. Figures 4 and 5 show that even
under µ(1) = 0.6 or 0.4, the equilibrium vote share still converges in probability to 1

2 .

Theorem 2. For every election PN that satisfies Condition 1, let P ∗
N be the informative equilibrium

and ā∗
N be the equilibrium vote share. For each ε > 0,

lim
N→∞

Pr
󰀕󰀏󰀏󰀏󰀏ā

∗
N − 1

2

󰀏󰀏󰀏󰀏 < ε

󰀖
= 1.

Here is the intuition behind Theorem 2. In a large electorate, each voter’s probability of
being pivotal is very small, so she acquires almost no information. Consequently, her conditional
probabilities of choosing action 1 or 0 given state θ are close to the marginal probabilities p∗

N and
1 − p∗

N , respectively. Since both are close to 1
2 (Lemma 3), the equilibrium actions a∗

1, . . . , a∗
N

are approximated by i.i.d. random variables that take values 1 and 0 with equal probabilities. If
the equilibrium actions were i.i.d., the law of large numbers would guarantee that the vote share
converges to 1

2 . Since they are actually correlated (Lemma 1), we use the law of large numbers for
an approximating i.i.d. process.15

2.5 Extensions

The main model in Section 2.1 imposes two assumptions: it uses simple majority rule; and all
voters have common interests. Neither assumption is necessary to our main results.

2.5.1 Elections under Supermajority Rule

Consider the same model as in Section 2.1, except we now adopt a supermajority rule: alterna-
tive 1 is chosen if and only if the vote share āN is at least a given threshold α ∈ (1

2 , 1]. This rule
includes the unanimity rule as the special case of α = 1. Each voter’s payoff is 1 if the chosen
alternative is correct and 0 otherwise. We write PN,α for this supermajority election with a poll
(omitting the prior µ and the unit cost λ). We use the same equilibrium concept (Definition 1).

We extend our main results. The proofs for supermajority elections closely mirror those for
simple majority elections and are deferred to Online Appendix B. Lemmas 1 and 2 also extend.
In particular, an informative equilibrium exists if and only if Condition 1 holds, and it is unique
whenever it exists. The existence condition does not depend on a winning threshold α.

The extension of Theorem 1 establishes that the (unconditional) probability of correct choice at
the informative equilibrium equals e1/λ/(1 + e1/λ), independent of N , µ, and the winning threshold
α ∈ (1

2 , 1]. Moreover, the conditional probabilities of choosing the correct alternative do not depend
15Hoshino and Ui (2024) study games in which rationally inattentive players strategically interact, examining

asymptotic behavior as the number of players tends to infinity. Their model essentially differs from ours and so does
their analysis. In our model, each voter’s decision has a negligible impact on her own payoff in a large electorate,
whereas in their model (which covers Keynesian beauty contests, etc.), a player’s own action can still affect her payoff
even in large games. This difference in modeling underlies distinct analytical methods.
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on N or α. Thus, any apparent bias introduced by the voting rule is “perfectly absorbed” in the
equilibrium.

Theorem 1′. Theorem 1 holds as is, in every election PN,α with a winning threshold α ∈ (1
2 , 1].

Moreover, the conditional probabilities of correct choice, Pr(ā∗
N ≥ α | θ = 1) and Pr(ā∗

N < α | θ = 0),
equal the right-hand sides of (6) and (7), respectively.

The extension of Theorem 2 states that, as N tends to infinity, the informative equilibrium vote
share becomes closer to the winning threshold α.

Theorem 2′. For every election PN,α that satisfies Condition 1, let P ∗
N be the informative equilib-

rium and ā∗
N be the equilibrium vote share. For each ε > 0,

lim
N→∞

Pr(|ā∗
N − α| < ε) = 1.

2.5.2 Elections with Partisan Voters

We now incorporate “partisans,” who always vote for their preferred alternative regardless of a
realized state θ. Suppose that N1 and N0 partisans always take actions 1 and 0, respectively, with
N1, N0 ≤ n. (If either group exceeded half of the electorate, its preferred alternative would trivially
win.) The remaining M ≡ N − N1 − N0 ≥ 1 voters are non-partisans, each receiving a payoff of 1
if the chosen alternative is correct and 0 otherwise. Under simple majority rule, alternative 1 is
chosen if and only if at least n + 1 − N1 non-partisans vote for it.

This election is equivalent to a partisan-free but supermajority election PM,α with a winning
threshold α = (N − 2N1)/(2M). To see why, note that the vote share of alternative 1, āM =
󰁓M

i=1 ai/M , is at least α if and only if in the original election, the vote share of alternative 1,
(MāM + N1)/N , exceeds one-half. Hence, Theorems 1′ and 2′ apply directly.16

3 Comparison between Elections with and without Opinion Polls

Comparing elections with polls and those without, we show that polls can help large electorates
make the correct choice.

3.1 Elections without Opinion Polls

Base Environment The base environment is the same as in Section 2, but we use different notation
in order to avoid confusion with elections with polls. In an election without a poll, we denote voter
i’s action by bi. Let b = (b1, . . . , bN ) be an action profile and b−i be the actions of all voters but i.
Given b, we define the vote share of alternative 1 by b̄N =

󰁓N
i=1 bi/N ∈ [0, 1].

16Theorem 2′ extends if N − N1 − N0 → ∞, even if N1 → ∞ or N0 → ∞ (or both).
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Information Acquisition We model information acquisition as in Section 2, except voters now have
no access to polling information; they learn only about the state θ. Without loss of generality, voter
i’s strategy can be represented by a system of conditional action distributions Qi(· | θ) ∈ ∆(A) for
each θ. All voters’ choices of action are conditionally independent given θ.

The cost of information is modeled as before. Given voter i’s strategy Qi, the expected reduction
of the entropy of her prior µ is I(θ; bi) = H(θ)−H(θ | bi). Here H(θ) is the entropy of θ, and H(θ | bi)
is the conditional entropy of θ given bi, where (bi, θ) is distributed according to Qi and µ. The
information cost of Qi is λI(θ; bi), where λ > 0 is the unit cost of information.

We denote by QN the election without a poll (omitting the prior µ and the unit cost λ).

Equilibrium Voter i’s strategy Qi is called optimal given the others’ strategies Q−i = (Qj)j ∕=i if
it maximizes her expected payoff net of information costs: E[u(b̄N , θ)] − λI(θ; bi), where E[u(b̄N , θ)]
is the expected payoff with respect to the distribution over (bi, b−i, θ) induced by Qi, Q−i, and µ.

We focus on symmetric equilibria as in Section 2. A symmetric (Nash) equilibrium is a
strategy profile (Q∗

N , . . . , Q∗
N ) in which each voter’s strategy Q∗

N is optimal given that all voters
choose the same strategy Q∗

N . By a slight abuse of notation, we denote a symmetric equilibrium
by the strategy Q∗

N . A symmetric equilibrium Q∗
N is called uninformative if all voters acquire no

information; otherwise, it is called informative.
Given a symmetric equilibrium Q∗

N , we define the equilibrium vote share as a random
variable b̄∗

N =
󰁓N

i=1 b∗
i /N , where b∗

1, . . . , b∗
N are i.i.d. random variables distributed according to

Q∗
N (· | θ) given state θ. The conditional probability of b̄∗

N = k/N (i.e., k votes for alternative 1 and
N − k votes for alternative 0) given state θ is denoted by

Pr
󰀕

b̄∗
N = k

N
| θ

󰀖
=

󰁛

b:b̄N =k/N

N󰁜

i=1
Q∗

N (bi | θ).

When all voters j ∕= i choose the same strategy Q∗
N , voter i’s gross payoff (excluding information

costs) from choosing a strategy Qi is

󰁛

θ

µ(θ)
2n󰁛

k=0

󰀣
2n

k

󰀤

(Q∗
N (1 | θ))k(Q∗

N (0 | θ))2n−k
󰁛

bi

Qi(bi | θ)u(b̄N , θ),

where b̄N = (k + bi)/N is the vote share of alternative 1 when among the other N − 1 = 2n voters,
k vote for alternative 1 and 2n − k vote for alternative 0. Voter i’s action bi matters only if she
is pivotal: if k = n, her gross payoff is 1{bi = θ}; otherwise, it does not depend on bi. When all
voters j ∕= i play the same strategy Q∗

N , voter i’s pivot probability at state θ is

ΠN (θ) ≡
󰀣

2n

n

󰀤

(Q∗
N (1 | θ))n(Q∗

N (0 | θ))n.

Voter i’s gross payoff simplifies to
󰁓

θ µ(θ)ΠN (θ)Qi(θ | θ) plus a constant. Her problem is, therefore,
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equivalent to

max
Qi

󰁛

θ

µ(θ)ΠN (θ)Qi(θ | θ) − λI(θ; bi). (8)

As shown by Matějka and McKay (2015), the solution to this type of problem follows a biased logit
distribution. Based on their results, we obtain the following lemma.

Lemma 4. In every election QN , every symmetric equilibrium Q∗
N has some q∗

N ∈ [0, 1] such that

Q∗
N (1 | 1) = q∗

N eΠN (1)/λ

q∗
N eΠN (1)/λ + 1 − q∗

N

, Q∗
N (1 | 0) = q∗

N

q∗
N + (1 − q∗

N )eΠN (0)/λ
, (9)

where q∗
N equals the marginal probability of each voter choosing action 1.17

The following properties hold:
1. Q∗

N is an uninformative equilibrium strategy if and only if q∗
N ∈ {0, 1}.

2. Q∗
N is an informative equilibrium strategy if and only if q∗

N ∈ (0, 1).

Large Elections As the electorate size N grows, each voter’s pivot probability vanishes, leading
them to acquire less information. Indeed, we have ΠN (θ) → 0 as N → ∞ (as shown in the proof
of Lemma 5), which implies that |Q∗

N (1 | 1) − q∗
N | → 0 and |Q∗

N (1 | 0) − q∗
N | → 0 (Lemma 4). For

any subsequence of {q∗
N }N with the limit q∗

∞, the equilibrium vote share b̄∗
N then converges in

probability to a constant. Formally, we have the following lemma:

Lemma 5. For every election QN , let Q∗
N be a symmetric equilibrium and q∗

N be the equilibrium
marginal probability of each voter choosing action 1. For any subsequence, still denoted {Q∗

N }N ,
such that the corresponding {q∗

N }N converges to q∗
∞, and for any ε > 0,

lim
N→∞

Pr
󰀓󰀏󰀏󰀏b̄∗

N − q∗
∞

󰀏󰀏󰀏 < ε
󰀔

= 1.

By Lemma 5, if q∗
∞ > 1

2 then the probability of choosing alternative 1 converges to 1 and thus
the probability of correct choice approaches µ(1); similarly, if q∗

∞ < 1
2 then the probability of correct

choice approaches µ(0). The only nontrivial case is q∗
∞ = 1

2 . The next lemma characterizes the
limit probability of correct choice in this case.

Lemma 6. For every election QN , let Q∗
N be a symmetric equilibrium and q∗

N be the equilibrium
marginal probability of each voter choosing action 1. For any subsequence, still denoted {Q∗

N }N ,
such that the corresponding {q∗

N }N converges to q∗
∞, the following properties hold:

1. If q∗
∞ > 1

2 then the equilibrium probability of correct choice converges to µ(1), while if q∗
∞ < 1

2
then the equilibrium probability of correct choice converges to µ(0).

2. If q∗
∞ = 1

2 then the equilibrium probability of correct choice converges to µ(1), µ(0), or

µ(1)Φ(t1) + µ(0)Φ(t0)
17That is, q∗

N = µ(1)Q∗
N (1 | 1) + µ(0)Q∗

N (1 | 0).
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where (t1, t0) ∈ R2
++ is a solution to the system of equations

λµ(1)(t1 + t0) = φ(t0), λµ(0)(t1 + t0) = φ(t1).

Here, Φ and φ denote the standard normal cdf and pdf, respectively.

In the proof of Lemma 6, we cannot directly apply a standard central limit theorem since
voters’ equilibrium strategies Q∗

N vary with the electorate size N . Instead, we use the Berry–
Esseen theorem, which bounds the discrepancy between the actual distribution and its normal
approximation at any finite N , enabling a controlled normal approximation of b̄∗

N .

3.2 Comparison between Elections with and without Opinion Polls

Now we compare the probability of correct choice in elections with and without polls. We show
that for any unit cost of information λ and any nearly symmetric prior µ(1) ≈ 1

2 , the presence of a
poll strictly increases the probability of correct choice in large electorates.

Proposition 1. For any unit cost of information λ > 0, there exists an ε > 0 such that for any
prior µ with |µ(1) − 1

2 | < ε, there exists an N̄ ∈ N such that for all N > N̄ , the probability of
correct choice in the informative equilibrium P ∗

N of the election PN is strictly greater than that in
any symmetric equilibrium Q∗

N of the election QN .

Figure 6 illustrates Proposition 1 under the prior µ(1) = 0.5. This figure plots the limit
probabilities of correct choice when the electorate size N grows: the blue graph plots the informative
equilibrium probability of correct choice with a poll, e1/λ/(1 + e1/λ) (Theorem 1); and the orange
graph plots the (highest) limit equilibrium probability of correct choice without a poll (Lemma 6).

These probabilities illustrate how information accessibility shapes collective accuracy. When
λ → 0 (i.e., learning is essentially free), the probability of correct choice converges to 1 regardless
of whether polls are present; when λ → ∞ (i.e., learning is prohibitively expensive), the probability
of correct choice falls to 1

2 in both settings. Hence, polls have no impact in these two extreme cases.
However, for any finite λ > 0, the presence of polls strictly increases the probability of making
the correct choice. In this sense, the effect of information accessibility on collective accuracy is
non-monotonic.

4 Regression Discontinuity Design in Close Elections

Our findings provide new insights into the regression discontinuity (RD) design in close elec-
tions. The RD design in electoral contexts identifies treatment effects based on the assumption
that candidates who barely win or lose are comparable in all respects except the election outcome.
Yet our results show that when polls are available, better candidates are systematically more likely
to win close elections. This insight offers a new perspective on the mixed evidence concerning RD
validity in the existing literature.
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Figure 6: Proposition 1 under the prior µ(1) = 0.5

Regression Discontinuity Design The RD design, initially developed by Thistlethwaite and Camp-
bell (1960), is an empirical strategy for identifying treatment effects without random assignment
of subjects to treatments. In electoral settings, the RD design is applied to close elections in
which narrowly winning and narrowly losing candidates are presumed to form a quasi-experimental
comparison. The validity of the RD design relies on a continuity assumption: namely, candidates
whose vote shares fall just above the winning threshold (i.e., who barely win) should be similar in
unobservable traits to those whose shares lie just below the threshold (i.e., who barely lose) (Hahn,
Todd, and Van der Klaauw, 2001).

Many studies apply the RD design to close elections. Lee (2001, 2008) and Butler (2009) es-
timate incumbency advantage in subsequent U.S. congressional elections; Ferreira and Gyourko
(2009, 2014) examine how party affiliation or politicians’ gender influence municipal fiscal policy;
Firpo, Ponczek, and Sanfelice (2015) analyzes Brazil’s federal budgeting; and Dell (2015) inves-
tigates the effects of law enforcement on drug-trafficking networks and drug-related violence in
Mexico.

Despite its widespread adoption, the validity of the RD design in close elections remains debated.
This validity hinges on the continuity assumption, which breaks down if certain types of candidates
systematically win close races, a phenomenon called sorting. As discussed in Section 1, existing
evidence on sorting is mixed. As de la Cuesta and Imai (2016) note, “the literature is remarkably
divided on the question of whether sorting exists in the close election context.”

Novel Mechanism for Sorting As noted in Section 1, Eggers, Fowler, Hainmueller, Hall, and Sny-
der (2015) suggest that polling could generate sorting in close elections. Our mechanism supports
their insight. Figures 1 and 2 illustrate the equilibrium vote-share distributions. In elections with
polls (Figure 1), a discontinuity emerges at the winning threshold of 0.5, because in close elections,
voters perceive a higher pivot probability and aggressively learn more to vote for the correct can-
didate. This heightened coordination near 0.5 increases the probability that the correct candidate
wins. By contrast, in elections without polls (Figure 2), voters remain ignorant of their potential
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pivotality and no such discontinuity arises.18

Our results suggest that when polls are available, the superior candidate wins with a signif-
icantly higher probability, regardless of how narrow the margin might be (Theorems 1 and 2).
Existing analysis of sorting relies on the fact that although the identity of the superior candidate
may be unobservable, it may correlate with observable characteristics (e.g., incumbency status or
financial resources). Our findings suggest that sorting may arise in elections with polls even when
such correlation is absent, as long as voters acquire information unavailable to the researchers. Con-
sequently, even if winners and losers in close elections appear balanced on observable covariates,
the RD design may warrant careful consideration when voters have access to polls. Our results do
not invalidate the RD design in close elections; instead, we provide a complementary explanation
for the mixed empirical findings in the literature.

5 Concluding Remarks

We analyzed how opinion polls affect information acquisition and aggregation in voting. To do so,
we developed a model that captures the interaction between voting and polling. We conclude by
discussing several extensions and limitations of our analysis.

5.1 Role of Entropy-Based Costs of Information

We focused on entropy-based costs of information, arguably the most standard specification in
the literature (e.g., Sims, 2003; Matějka and McKay, 2015). Our formal arguments relied on this
functional form. For example, Lemma 1 (that gives the biased logit characterization of equilibrium)
is specific to the entropy-based costs. In addition, we used the properties of the entropy-based costs
in some steps of the proofs of Theorems 1 and 2.

Nevertheless, our intuition for these theorems extends beyond the entropy-based costs of infor-
mation. The key intuition is that information sharing through opinion polls can encourage voters
to acquire more information when elections are likely to be close (i.e., when the voters could be
pivotal) and can mitigate free-riding incentives. This intuition does not depend on any specific cost
structure and thus appears to be robust. An important direction for future research would be to
understand how these results depend on this specification of information costs.

5.2 Information Acquisition as Public Good Provision

An analogy to public-good provision is useful to better understand Theorem 1 (that with opinion
polls, the probability that majority vote makes the correct choice is independent of the number of
voters). In the voting context, information, once shared, is non-rivalrous and non-excludable, which
makes information acquisition analogous to the voluntary provision of public goods. In standard

18Our criticism does not apply to studies exploiting actual randomization in elections with exact ties (Hyytinen,
Meriläinen, Saarimaa, Toivanen, and Tukiainen, 2018; De Magalhães, Hangartner, Hirvonen, Meriläinen, Ruiz, and
Tukiainen, 2025).

19



public-good provision games (e.g., Bergstrom, Blume, and Varian, 1986), the equilibrium quantity
of the public good is determined by equating individual marginal benefits to marginal costs; under
quasi-linear utilities, this equilibrium quantity is independent of the number of individuals. In our
model, as in Downs’s hypothesis of rational ignorance, the equilibrium provision of information
is set by individual marginal benefits, discounted by their pivot probabilities, equaling marginal
costs. Furthermore, the additively separable utilities in rational inattention resemble quasi-linear
utilities. These parallels illuminate how Theorem 1 connects to the classic insight on public-good
provision.

5.3 Elections with Abstention

We restricted voters to choosing between two alternatives, with no abstention allowed. This as-
sumption facilitated comparisons with existing studies, highlighting the role of opinion polls. Nev-
ertheless, it is worth noting that the public-good intuition from the previous subsection naturally
extends to elections in which voters are allowed to abstain. From the perspective that views
informed voting as a public-good provision, if some voters opt to abstain (thus reducing their in-
formation provision to the public), this loss would be compensated for by the rest of the electorate.
Based on this intuition, we conjecture that if abstention is allowed, the equilibrium probability of
making the correct choice would be independent of the electorate size, and this probability would
remain constant across equilibria, although equilibrium uniqueness might no longer hold.

5.4 Opinion Polls Based on Random Sampling

In our model, the opinion poll represents a complete census aggregating all voters’ intentions. In
practice, polls are typically based on random samples of the electorate. While sampling error would
introduce additional noise into polling information, sufficiently large samples should approximate
the same information as a complete census. We thus expect our main results to hold under uniform
random sampling. Going forward, new questions of polling design would arise: not only determining
the optimal sample size, but also what to ask and whom to ask (given that voters’ opinions are
correlated with observable covariates). Such questions, which remain largely unexplored in the
literature, would connect our work to research on information design (e.g., Bergemann and Morris,
2019).

A Appendix

A.1 Lemma 1

Our base game is a common-interest game and thus a potential game (Monderer and Shapley,
1996). Indeed, the payoff function u is a potential. Lemma A follows directly from Denti’s (2023)
Corollary 1 applied to our setting.
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Lemma A. In an election PN , every symmetric equilibrium P ∗
N has some p∗

N ∈ [0, 1] such that for
each a = (a1, . . . , aN ) and each θ,

P ∗
N (a1, . . . , aN | θ) =

exp
󰀕

u(āN , θ)
λ

󰀖 󰁜

i:ai=1
p∗

N

󰁜

i:ai=0
(1 − p∗

N )

󰁛

a′∈{0,1}N

exp
󰀕

u(ā′
N , θ)
λ

󰀖 󰁜

i:a′
i=1

p∗
N

󰁜

i:a′
i=0

(1 − p∗
N )

, (10)

where (p∗
N , . . . , p∗

N ) is a symmetric pure-strategy Nash equilibrium of the normal-form game such
that all players i = 1, . . . , N have the same action space [0, 1] and the same payoff function

U(p′
1, . . . , p′

N ) =
󰁛

θ

µ(θ) ln

󰀳

󰁃
󰁛

a′∈{0,1}N

exp
󰀕

u(ā′
N , θ)
λ

󰀖 󰁜

i:a′
i=1

p′
i

󰁜

i:a′
i=0

(1 − p′
i)

󰀴

󰁄.

Using Lemma A, we show Lemma 1. Consider the denominator on the right-hand side of (10).
Reorganizing the sum over all action profiles a′ by grouping them according to the number of ones
in a′ = (a′

1, . . . , a′
N ), or equivalently partitioning the sum according to ā′

N = k
N for k = 0, 1, . . . , N ,

we can rewrite the denominator as

N󰁛

k=0

󰁛

a′:ā′
N =k/N

exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

(p∗
N )k(1 − p∗

N )N−k =
N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

(p∗
N )k(1 − p∗

N )N−k

= ZN (p∗
N , θ),

where the first equality follows from the number of action profiles a′ with exactly k ones being
󰀃N

k

󰀄

and the second one follows from (2). Then, we obtain (1) as follows:

Pr
󰀕

ā∗
N = k

N
| θ

󰀖
=

󰀣
N

k

󰀤

· 1
ZN (p∗

N , θ) exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

(p∗
N )k(1 − p∗

N )N−k.

where the number of actions profiles a with its average āN = k/N is
󰀃N

k

󰀄
and the equilibrium P ∗

N

is symmetric (so that each of such action profiles has equal probability).
To prove Lemma 1, it suffices to show that any symmetric pure-strategy Nash equilibrium

(p∗
N , . . . , p∗

N ) of the normal-form game of Lemma A is either p∗
N ∈ {0, 1} or p∗

N being a solution to
(3). At a symmetric Nash equilibrium, it must be that p∗

N ∈ argmaxp′
i
U(p′

i, p∗
N , . . . , p∗

N ). This is
immediate if p∗

N ∈ {0, 1}. In the interior case of p∗
N ∈ (0, 1), we must have the first-order condi-

tion, ∂U
∂p′

i
(p′

i, p∗
N , . . . , p∗

N )|p′
i=p∗

N
= 0. The first-order condition is sufficient since U(p′

i, p∗
N , . . . , p∗

N ) is
strictly concave in p′

i (Caplin, Dean, and Leahy, 2019, p. 1066). We write the first-order condition
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as

󰁛

θ

µ(θ) ·

2n󰁛

k=0

󰀣
2n

k

󰀤󰀥

exp
󰀣

u
󰀃

k+1
N , θ

󰀄

λ

󰀤

− exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤󰀦

(p∗
N )k(1 − p∗

N )2n−k

N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

(p∗
N )k(1 − p∗

N )N−k

󰁿 󰁾󰁽 󰂀
= ZN (p∗

N , θ) by (2)

= 0. (11)

In the numerator, if k ∕= n, the square bracket is zero since u(k+1
N , θ) = u( k

N , θ), while if k = n, the
square bracket is e1/λ − 1 when θ = 1 and 1 − e1/λ when θ = 0. By substituting them into (11),

µ(1)
ZN (p∗

N , 1)

󰀣
2n

n

󰀤

(p∗
N )n(1 − p∗

N )n(e1/λ − 1) + µ(0)
ZN (p∗

N , 0)

󰀣
2n

n

󰀤

(p∗
N )n(1 − p∗

N )n(1 − e1/λ) = 0.

Rearranging the terms, we obtain (3). For p∗
N ∈ (0, 1), if (p∗

N , . . . , p∗
N ) is a Nash equilibrium then

p∗
N is a solution to (3).

A.2 Lemma 2

We define the function WN : [0, 1] × Θ → R as

WN (p, 1) =
N󰁛

k=n+1

󰀣
N

k

󰀤

pk(1 − p)N−k,

WN (p, 0) =
n󰁛

k=0

󰀣
N

k

󰀤

pk(1 − p)N−k.

(12)

Note that WN (p, 1) + WN (p, 0) = 1 by the binomial theorem. Note that WN (p, 1) is strictly
increasing in p and WN (p, 0) is strictly decreasing in p, as can be shown by differentiation. Then,
we rewrite ZN , as defined in (2), as

ZN (p, 1) = WN (p, 0) + e1/λWN (p, 1),

ZN (p, 0) = e1/λWN (p, 0) + WN (p, 1).
(13)

Note that ZN (p, 1) is continuous and strictly increasing in p and ZN (p, 0) is continuous and strictly
decreasing in p.19 Hence, ZN (p,1)

ZN (p,0) is continuous and strictly increasing in p.
By Lemma 1, it suffices to show that (3) has a unique solution if Condition 1 is satisfied and no

solution otherwise. Note that WN (1, 1) = WN (0, 0) = 1 and WN (0, 1) = WN (1, 0) = 0. By (13),

ZN (0, 1)
ZN (0, 0) = e−1/λ,

ZN (1, 1)
ZN (1, 0) = e1/λ.

19To see that ZN (p, 1) is strictly increasing in p, we note that ZN (p, 1) = 1 + (e1/λ − 1)WN (p, 1) since WN (p, 0) +
WN (p, 1) = 1 and recall that WN (p, 1) is strictly increasing in p. Similarly, ZN (p, 0) is strictly decreasing in p.
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If Condition 1 is satisfied, then since ZN (0,1)
ZN (0,0) < µ(1)

µ(0) < ZN (1,1)
ZN (1,0) , (3) has a unique solution p∗

N ∈ (0, 1),
where ZN (p,1)

ZN (p,0) is continuous and strictly increasing in p. If Condition 1 is not satisfied, then either
ZN (0,1)
ZN (0,0) = e−1/λ ≥ µ(1)

µ(0) or ZN (1,1)
ZN (1,0) = e1/λ ≤ µ(1)

µ(0) , in both of which cases (3) has no solution in (0, 1).

A.3 Theorem 1

The conditional probability of choosing alternative 1 given state θ = 1 is

Pr
󰀕

ā∗
N >

1
2 | θ = 1

󰀖
=

N󰁛

k=n+1
Pr

󰀕
ā∗

N = k

N
| θ = 1

󰀖
.

By Lemma 1, this right-hand side equals

1
ZN (p∗

N , 1)

N󰁛

k=n+1

󰀣
N

k

󰀤

exp
󰀣

u( k
N , 1)
λ

󰀤

(p∗
N )k(1 − p∗

N )N−k.

Since u( k
N , 1) = 1 for all k = n + 1, . . . , N , by (12) and (13), we have

Pr
󰀕

ā∗
N >

1
2 | θ = 1

󰀖
= e1/λWN (p∗

N , 1)
WN (p∗

N , 0) + e1/λWN (p∗
N , 1)

.

By (13), we rewrite (3) as

WN (p∗
N , 0) + e1/λWN (p∗

N , 1)
e1/λWN (p∗

N , 0) + WN (p∗
N , 1)

= µ(1)
µ(0) ,

or equivalently, WN (p∗
N ,1)

WN (p∗
N ,0) = e1/λµ(1)−µ(0)

e1/λµ(0)−µ(1) . By substitution,

Pr
󰀕

ā∗
N >

1
2 | θ = 1

󰀖
=

e1/λ − µ(0)
µ(1)

e1/λ − e−1/λ
.

Similarly, the conditional probability of choosing alternative 0 given state θ = 0 is

Pr
󰀕

ā∗
N <

1
2 | θ = 0

󰀖
=

e1/λ − µ(1)
µ(0)

e1/λ − e−1/λ
.

Hence, we obtain that

Pr(u(ā∗
N , θ) = 1) = µ(1) Pr

󰀕
ā∗

N >
1
2 | θ = 1

󰀖
+ µ(0) Pr

󰀕
ā∗

N <
1
2 | θ = 0

󰀖
= e1/λ

1 + e1/λ
.

We show that e1/λ/(1+e1/λ) > max{µ(1), µ(0)} if the informative equilibrium exists. Since the
existence is equivalent to Condition 1 (Lemma 2), it suffices to prove that Condition 1 implies the
inequality. By simple algebra, we rewrite Condition 1 as 1/(1 + e1/λ) < µ(1) < e1/λ/(1 + e1/λ), or
equivalently, 1/(1 + e1/λ) < µ(0) < e1/λ/(1 + e1/λ), which implies the desired inequality.
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A.4 Lemma 3

To prove Lemma 3, it suffices to show that for any small ε > 0, if N is sufficiently large,

ZN (1
2 − ε, 1)

ZN (1
2 − ε, 0)

<
µ(1)
µ(0) <

ZN (1
2 + ε, 1)

ZN (1
2 + ε, 0)

. (14)

To see this sufficiency, note that since ZN (p,1)
ZN (p,0) is continuous and strictly increasing in p (as shown

in the proof of Lemma 2), if (14) is true then p∗
N ∈ (1

2 − ε, 1
2 + ε), where p∗

N is a solution to (3).
We show auxiliary inequalities. For any small δ > 0, there is an Nδ such that for any N > Nδ,

WN (1
2 + ε, 1) > 1 − δ, WN (1

2 + ε, 0) < δ,

WN (1
2 − ε, 0) > 1 − δ, WN (1

2 − ε, 1) < δ,
(15)

where WN is defined in (12). To see these inequalities, let w1, . . . , wN be i.i.d. Bernoulli random
variables that take values 1 and 0 with probabilities 1

2 +ε and 1
2 −ε respectively. Then, WN (1

2 +ε, 1)
and WN (1

2 + ε, 0) are the probabilities that the sample average
󰁓N

i=1 wi/N is, respectively, strictly
greater than 1

2 and strictly less than 1
2 . By the law of large numbers, there is an N ′

δ such that for
any N > N ′

δ, we have WN (1
2 +ε, 1) > 1−δ and WN (1

2 +ε, 0) < δ. To see the other two inequalities,
let w′

1, . . . , w′
N be i.i.d. Bernoulli random variables that take values 1 and 0 with probabilities 1

2 − ε

and 1
2 + ε respectively. By the same argument, there is an N ′′

δ such that for any N > N ′′
δ , we have

WN (1
2 − ε, 0) > 1 − δ and WN (1

2 − ε, 1) < δ. Lastly, let Nδ = max{N ′
δ, N ′′

δ }.
We show another inequality. Under Condition 1, there is a small δ > 0 such that

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) <

e1/λ(1 − δ)
e1/λδ + 1

. (16)

To see this inequality, note that e−1/λ < µ(1)
µ(0) < e1/λ (Condition 1) and that for a small enough δ,

the left- and right-hand sides of (16) are arbitrarily close to e−1/λ and e1/λ, respectively.
Now we prove (14). For any N > Nδ,

ZN (1
2 + ε, 1)

ZN (1
2 + ε, 0)

=
WN (1

2 + ε, 0) + e1/λWN (1
2 + ε, 1)

e1/λWN (1
2 + ε, 0) + WN (1

2 + ε, 1)
>

e1/λ(1 − δ)
e1/λδ + 1

>
µ(1)
µ(0) ,

where we use (13) for the equality, (15) for the first inequality, and (16) for the second one. Similarly,

ZN (1
2 − ε, 1)

ZN (1
2 − ε, 0)

=
WN (1

2 − ε, 0) + e1/λWN (1
2 − ε, 1)

e1/λWN (1
2 − ε, 0) + WN (1

2 − ε, 1)
<

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) .

Hence, we have (14), which completes the proof.
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A.5 Theorem 2

Fix any θ ∈ Θ and any ε > 0. By Lemma 1,

Pr
󰀕󰀏󰀏󰀏󰀏ā

∗
N − 1

2

󰀏󰀏󰀏󰀏 ≥ ε | θ

󰀖
= 1

ZN (p∗
N , θ)

󰁛

k:| k
N

− 1
2 |≥ε

󰀣
N

k

󰀤

exp
󰀣

u
󰀃

k
N , θ

󰀄

λ

󰀤

(p∗
N )k(1 − p∗

N )N−k

󰁿 󰁾󰁽 󰂀
(17∗)

, (17)

where the sum runs over all k = 0, 1, . . . , N such that | k
N − 1

2 | ≥ ε. Since u( k
N , θ) ≤ 1 for all k,

(17∗) ≤ e1/λ
󰁛

k:| k
N

− 1
2 |≥ε

󰀣
N

k

󰀤

(p∗
N )k(1 − p∗

N )N−k.

Since u( k
N , θ) ≥ 0 for all k, (2) gives a lower bound

ZN (p∗
N , θ) ≥

N󰁛

k=0

󰀣
N

k

󰀤

(p∗
N )k(1 − p∗

N )N−k = 1,

where we use the binomial theorem. By evaluating the right-hand side of (17) with these bounds,

Pr
󰀕󰀏󰀏󰀏󰀏ā

∗
N − 1

2

󰀏󰀏󰀏󰀏 ≥ ε | θ

󰀖
≤ e1/λ

󰁛

k:| k
N

− 1
2 |≥ε

󰀣
N

k

󰀤

(p∗
N )k(1 − p∗

N )N−k

󰁿 󰁾󰁽 󰂀
(18∗)

. (18)

Next, we show that (18∗) → 0 as N → ∞. Using a random variable BN ∼ Binomial(N, p∗
N ),

we rewrite (18∗) = Pr(|BN /N − 1/2| > ε). By Lemma 3, for any ε > 0, there exists an N ′ such
that |p∗

N − 1/2| < ε/2 for all N ≥ N ′. For such N , the triangle inequality gives
󰀏󰀏󰀏󰀏
BN

N
− 1

2

󰀏󰀏󰀏󰀏 ≤
󰀏󰀏󰀏󰀏
BN

N
− p∗

N

󰀏󰀏󰀏󰀏 +
󰀏󰀏󰀏󰀏p

∗
N − 1

2

󰀏󰀏󰀏󰀏 <

󰀏󰀏󰀏󰀏
BN

N
− p∗

N

󰀏󰀏󰀏󰀏 + ε

2 .

Hence,

(18∗) = Pr
󰀕󰀏󰀏󰀏󰀏

BN

N
− 1

2

󰀏󰀏󰀏󰀏 > ε

󰀖
≤ Pr

󰀕󰀏󰀏󰀏󰀏
BN

N
− p∗

N

󰀏󰀏󰀏󰀏 >
ε

2

󰀖
.

Since BN /N has the mean p∗
N and the variance p∗

N (1−p∗
N )/N , with p∗

N (1−p∗
N ) ≤ 1/4, Chebyshev’s

inequality gives

Pr
󰀕󰀏󰀏󰀏󰀏

BN

N
− p∗

N

󰀏󰀏󰀏󰀏 >
ε

2

󰀖
≤ 1

ε2N
N→∞−−−−→ 0.

Hence, (18∗) → 0 as desired. By (18), Pr(|ā∗
N − 1

2 | ≥ ε | θ) → 0. Since this holds for each θ, we
have Pr(|ā∗

N − 1
2 | < ε) → 1.
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A.6 Lemma 4

This lemma is immediate from the biased logit formula, shown by Matějka and McKay (2015,
Theorem 1) and Caplin, Dean, and Leahy (2019, Proposition 1).

A.7 Lemma 5

As N = 2n + 1 → ∞,

ΠN (θ) =
󰀣

2n

n

󰀤

(Q∗
N (1 | θ))n(Q∗

N (0 | θ))n ≤
󰀣

2n

n

󰀤
1

22n
→ 0.

By Lemma 4, |Q∗
N (1 | 1) − q∗

N | → 0 and |Q∗
N (1 | 0) − q∗

N | → 0.
Consider the case of θ = 1, as the case of θ = 0 is analogous. Fix any ε > 0. There exists an N1

such that for all N > N1, we have |Q∗
N (1 | 1) − q∗

N | < ε/3. Since q∗
N → q∗

∞ by assumption, there
exists an N2 such that for all N > N2, we have |q∗

N − q∗
∞| < ε/3. For any N > max{N1, N2},

|Q∗
N (1 | 1) − q∗

∞| ≤ |Q∗
N (1 | 1) − q∗

N | + |q∗
N − q∗

∞| <
2ε

3 .

The equilibrium actions b∗
1, b∗

2, . . . are conditionally independent given state θ = 1. By the law of
large numbers, for any δ > 0, there exists an N3 such that for all N > N3,

Pr
󰀕

|b̄∗
N − Q∗

N (1 | 1)| <
ε

3 | θ = 1
󰀖

> 1 − δ.

Since |Q∗
N (1 | 1) − q∗

∞| < 2ε/3, we have Pr(|b̄∗
N − q∗

∞| < ε | θ = 1) > 1 − δ for all N >

max{N1, N2, N3}.

A.8 Lemma 6

We focus on the case of q∗
∞ = 1

2 since we have discussed the case of q∗
∞ ∕= 1

2 in the main text. For
each N , we have t1

N , t0
N ∈ [−1

2 , 1
2 ] such that Q∗

N (1 | 1) = 1
2 + t1

N and Q∗
N (1 | 0) = 1

2 − t0
N . We also

have tN ∈ [−1
2 , 1

2 ] such that q∗
N = 1

2 + tN . Since q∗
N is the marginal probability of choosing action

1 (Lemma 4), we have q∗
N = µ(1)Q∗

N (1 | 1) + µ(0)Q∗
N (1 | 0). That is,

tN = µ(1)t1
N − µ(0)t0

N . (19)

Note that t1
N → 0, t0

N → 0, and tN → 0 as N → ∞ since q∗
N → 1

2 by assumption.

Step 1 The probability of correct choice is

µ(1) Pr
󰀕

b̄∗
N >

1
2 | θ = 1

󰀖
+ µ(0) Pr

󰀕
b̄∗

N <
1
2 | θ = 0

󰀖
. (20)

Given state θ = 1, the equilibrium actions b∗
1, . . . , b∗

N are i.i.d. Bernoulli random variables that
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take values 1 and 0 with probabilities 1
2 +t1

N and 1
2 −t1

N respectively. We have the mean µ1
N ≡ 1

2 +t1
N

and the variance (σ1
N )2 ≡ 1

4 − (t1
N )2. Hence,

Pr
󰀕

b̄∗
N >

1
2 | θ = 1

󰀖
= 1 − Pr

󰀣
b̄∗

N − µ1
N

σ1
N /

√
N

≤ −
√

Nt1
N

σ1
N

| θ = 1
󰀤

.

By Berry–Esseen theorem (Durrett, 2010, Theorem 3.4.9),
󰀏󰀏󰀏󰀏󰀏Pr

󰀣
b̄∗

N − µ1
N

σ1
N /

√
N

≤ −
√

Nt1
N

σ1
N

| θ = 1
󰀤

− Φ
󰀣

−
√

Nt1
N

σ1
N

󰀤󰀏󰀏󰀏󰀏󰀏 ≤ 3E[|b∗
i − µ1

N |3 | θ = 1]
(σ1

N )3
√

N
,

where Φ is the standard normal cdf. The right-hand side vanishes as N → ∞ since σ1
N → 1

2 and
E[|b∗

i − µ1
N |3 | θ = 1] ≤ 1

8 . Thus,

lim
N→∞

󰀏󰀏󰀏󰀏󰀏Pr
󰀣

b̄∗
N − µ1

N

σ1
N /

√
N

≤ −
√

Nt1
N

σ1
N

| θ = 1
󰀤

− Φ
󰀣

−
√

Nt1
N

σ1
N

󰀤󰀏󰀏󰀏󰀏󰀏 = 0.

Hence,

lim
N→∞

󰀏󰀏󰀏󰀏󰀏Pr
󰀕

b̄∗
N >

1
2 | θ = 1

󰀖
− Φ

󰀣√
Nt1

N

σ1
N

󰀤󰀏󰀏󰀏󰀏󰀏 = 0. (21)

Given state θ = 0, the equilibrium actions b∗
1, . . . , b∗

N are i.i.d. Bernoulli random variables that
take values 1 and 0 with probabilities 1

2 −t0
N and 1

2 +t0
N respectively. We have the mean µ0

N = 1
2 −t0

N

and the variance (σ0
N )2 = 1

4 − (t0
N )2. By the same argument as above,

lim
N→∞

󰀏󰀏󰀏󰀏󰀏Pr
󰀕

b̄∗
N <

1
2 | θ = 0

󰀖
− Φ

󰀣√
Nt0

N

σ0
N

󰀤󰀏󰀏󰀏󰀏󰀏 = 0. (22)

Step 2 Assume that t1
N ∕= 0 and t0

N ∕= 0. (The other cases are trivial, and we will discuss them in
footnote 21). We rewrite (9) as

λ

󰀣

ln Q∗
N (1 | 1)

Q∗
N (0 | 1) − ln q∗

N

1 − q∗
N

󰀤

=
󰀣

2n

n

󰀤

(Q∗
N (1 | 1))n(Q∗

N (0 | 1))n,

λ

󰀣

ln Q∗
N (0 | 0)

Q∗
N (1 | 0) − ln 1 − q∗

N

q∗
N

󰀤

=
󰀣

2n

n

󰀤

(Q∗
N (1 | 0))n(Q∗

N (0 | 0))n,

where we have q∗
N ∈ (0, 1) for large N , since q∗

∞ = 1
2 by assumption. Recall that Q∗

N (1 | 1) = 1
2 +t1

N ,
Q∗

N (1 | 0) = 1
2 − t0

N , and q∗
N = 1

2 + tN . Using the function f : (−1
2 , 1

2) ∋ t 󰀁→ ln
󰀃
(1

2 + t)/(1
2 − t)

󰀄
∈ R,

we rewrite the above equations as

λ
󰀓
f

󰀃
t1
N

󰀄
− f

󰀃
tN

󰀄󰀔
=

󰀣
2n

n

󰀤󰀕1
2 + t1

N

󰀖n󰀕1
2 − t1

N

󰀖n

,
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λ
󰀓
f

󰀃
t0
N

󰀄
+ f

󰀃
tN

󰀄󰀔
=

󰀣
2n

n

󰀤󰀕1
2 + t0

N

󰀖n󰀕1
2 − t0

N

󰀖n

.

By the mean value theorem, there exists a τ θ
N between 0 and tθ

N such that f(tθ
N ) = tθ

N f ′(τ θ
N ).

Similarly, there exists a τN between 0 and tN such that f(tN ) = tN f ′(τN ). Since f ′(t) = (1
4 − t2)−1,

we rearrange the terms to obtain that

λ

2

󰀣 √
Nt1

N
1
4 − (τ1

N )2 −
√

NtN
1
4 − (τN )2

󰀤

= 1
2

󰁶
N

n

󰀣
2n

n

󰀤√
n

22n
·

󰀣

1 − (2
√

Nt1
N )2

N

󰀤n

, (23)

λ

2

󰀣 √
Nt0

N
1
4 − (τ0

N )2 +
√

NtN
1
4 − (τN )2

󰀤

= 1
2

󰁶
N

n

󰀣
2n

n

󰀤√
n

22n
·

󰀣

1 − (2
√

Nt0
N )2

N

󰀤n

. (24)

Note that τ θ
N → 0 and τN → 0 as N → ∞ since tθ

N → 0 and tN → 0.

Step 3 Consider any subsequence of {N} along which
√

Nt1
N → T 1 ∈ R and

√
Nt0

N → T 0 ∈ R.
(We examine other subsequences to Step 4.) By (19),

√
NtN → T ∈ R along the subsequence:

T = µ(1)T 1 − µ(0)T 0. (25)

Letting N → ∞ along the subsequence, we derive, from (23) and (24), that

2λ(T 1 − T ) = φ(2T 1),

2λ(T 0 + T ) = φ(2T 0),
(26)

where φ is the standard normal pdf. Note that

the left-hand side of (23) → 2λ(T 1 − T ),

the left-hand side of (24) → 2λ(T 0 + T ).

By Stirling’s formula,

lim
N→∞

1
2

󰁶
N

n

󰀣
2n

n

󰀤√
n

22n
= 1√

2π
,

where N = 2n + 1. For each θ = 0, 1, we have20

lim
N→∞

󰀣

1 − (2
√

Ntθ
N )2

N

󰀤n

= exp
󰀣

−(2T θ)2

2

󰀤

.

Hence,

the right-hand side of (23) → φ(2T 1),
20If limm→∞ cm = c then limm→∞(1 + cm/m)m = ec (Durrett, 2010, Theorem 3.4.2).
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the right-hand side of (24) → φ(2T 0),

from which we obtain (26).
Substituting (25) into (26), we have

λµ(0)(2T 1 + 2T 0) = φ(2T 1),

λµ(1)(2T 1 + 2T 0) = φ(2T 0).
(27)

By (21) and (22),

lim
N→∞

Pr
󰀕

b̄∗
N >

1
2 | θ = 1

󰀖
= lim

N→∞
Φ

󰀣√
Nt1

N

σ1
N

󰀤

= Φ(2T 1),

lim
N→∞

Pr
󰀕

b̄∗
N <

1
2 | θ = 0

󰀖
= lim

N→∞
Φ

󰀣√
Nt0

N

σ0
N

󰀤

= Φ(2T 0),

where Φ is continuous, and
√

Ntθ
N → T θ and σθ

N → 1
2 for each θ = 0, 1. Therefore, as N → ∞, the

probability of correct choice (20) converges to

µ(1)Φ(2T 1) + µ(0)Φ(2T 0).

Letting t1 = 2T 1 and t0 = 2T 0 here and in (27), we have the desired result.21

Step 4 Consider any subsequence along which at least one of {
√

Nt1
N } and {

√
Nt0

N } diverges.
We have three cases to consider. First, suppose that one of {

√
Nt1

N } and {
√

Nt0
N } converges and

the other diverges to ±∞. Without loss of generality, let
√

Nt1
N → T1 ∈ R and

√
Nt0

N → ±∞.
By (19),

√
NtN → ∓∞. The left-hand side of (23) diverges to ±∞, but the right-hand side

converges to a finite value. This is a contradiction. Second, suppose that both {
√

Nt1
N } and

{
√

Nt0
N } diverge to +∞. Then, {

√
NtN } converges or diverges. If it converges, the left-hand sides

of (23) and (24) diverge to +∞ but their right-hand sides converge to finite values; otherwise,
the left-hand side of either (23) or (24) diverges but the right-hand sides of both (23) and (24)
converge. This is a contradiction. Third, suppose that one of {

√
Nt1

N } and {
√

Nt0
N } diverges to

+∞ and the other diverges to −∞. If
√

Nt1
N → +∞ and

√
Nt0

N → −∞ then Φ(
√

Nt1
N /σ1

N ) → 1
and Φ(

√
Nt0

N /σ0
N ) → 0 in (21) and (22), which implies that Pr(u(b̄∗

N , θ) = 1) → µ(1) in (20).
Similarly, if

√
Nt1

N → −∞ and
√

Nt0
N → +∞ then Pr(u(b̄∗

N , θ) = 1) → µ(0).

21Steps 2 and 3 assume that t1
N ∕= 0 and t0

N ∕= 0. If t1
N = 0 for all sufficiently large N then (21) implies

limN Pr(b̄∗
N > 1/2 | θ = 1) = 1/2; this case is covered in our result since t1 = 2 limN

√
Nt1

N = 0. If t0
N = 0 for

all sufficiently large N then (22) implies limN Pr(b̄∗
N < 1/2 | θ = 0) = 1/2; this case is also covered in our result.

Moreover, consider the case where tθ
N = 0 for infinitely many N but for any N̄ , there exists an N > N̄ such that

tθ
N ∕= 0. Then, we can use the same argument as in the proof by taking a subsequence along which for all N , tθ

N ∕= 0.
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A.9 Proposition 1

In an election with a poll, we have a unique informative equilibrium (Lemma 2) since for any λ,
Condition 1 holds for any small enough ε > 0 and any µ such that |µ(1) − 1

2 | < ε; moreover,
the probability of correct choice is e1/λ/(1 + e1/λ) at the informative equilibrium (Theorem 1). In
an election without a poll, the probability of correct choice at any (informative or uninformative)
equilibrium converges to one of µ(1), µ(0), or µ(1)Φ(t1) + µ(0)Φ(t0) as N → ∞ (Lemma 6).

It suffices to show that for any small ε > 0 and for any µ and λ such that |µ(1) − 1
2 | < ε,

e1/λ

1 + e1/λ
> max

󰁱
µ(1), µ(0), µ(1)Φ(t1) + µ(0)Φ(t0)

󰁲
, (28)

where

λµ(0)(t1 + t0) = φ(t1) and λµ(1)(t1 + t0) = φ(t0).

Since t1 and t0 are continuous in µ, so is µ(1)Φ(t1) + µ(0)Φ(t0). Hence, it suffices to prove (28) for
the prior µ(1) = 1

2 .

Lemma B. For each N , any election QN with the prior µ(1) = 1
2 has a symmetric equilibrium Q∗

N

such that q∗
N = 1

2 . For the sequence of these equilibria {Q∗
N }N , the equilibrium probability of correct

choice converges to either 1
2 or Φ(t) > 1

2 , where t > 0 is a unique solution to equation λt = φ(t).

Proof. Under µ(1) = 1
2 , we have a symmetric equilibrium Q∗

N (1 | 1) = Q∗
N (0 | 0) by Lemma 4.

Then, q∗
N = µ(1)Q∗

N (1 | 1) + µ(0)Q∗
N (1 | 0) = 1

2 .
The latter half of this lemma follows from Lemma 6. We use the same notation as in the

proof of Lemma 6. By symmetry, Q∗
N (1 | 1) = Q∗

N (0 | 0) > 1
2 and thus t1

N = t0
N > 0. Hence,

limN

√
Nt1

N = limN

√
Nt0

N . We have t ≡ t1 = t2 in Lemma 6 because t1 = 2 limN

√
Nt1

N and
t2 = 2 limN

√
Nt0

N (as defined at the end of Step 3 in the proof). Substituting it into Lemma 6, we
have µ(1)Φ(t1) + µ(0)Φ(t0) = Φ(t), where λt = φ(t). 󰃈

By Lemma B, we rewrite (28) under µ(1) = 1
2 as

e1/λ

1 + e1/λ
> Φ(t),

where t > 0 is a unique solution to λt = φ(t). That is, t is defined by the implicit function of λ.
Since this relation is bijective, by reparametrizing 1/λ = t/φ(t) =

√
2πtet2/2 and rearranging the

terms, we rewrite this inequality as

√
2πtet2/2 − ln Φ(t)

1 − Φ(t) > 0. (29)
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By the fundamental theorem of calculus,

ln Φ(t)
1 − Φ(t) =

󰁝 t

0

󰀗
φ(s)
Φ(s) + φ(s)

1 − Φ(s)

󰀘
ds.

where ln(Φ(0)/(1 − Φ(0)) = 0 for Φ(0) = 1
2 . For all s > 0, we have φ(s) < φ(0) = 1/

√
2π and

Φ(s) > Φ(0) = 1
2 , and thus φ(s)/Φ(s) <

󰁳
2/π. The inverse Mills ratio φ(s)/(1 − Φ(s)) is bounded

above by s +
󰁳

2/π.22 By evaluating the integral with these bounds, we have, for all t > 0,

ln Φ(t)
1 − Φ(t) <

t2

2 + 2
󰁵

2
π

t.

To prove (29), it suffices to show that [
√

2πet2/2 − (t/2 + 2
󰁳

2/π)]t > 0 for all t > 0. Since
et2/2 > 1 + t2/2 for all t > 0, we only need to show that

√
2π(1 + t2/2) − (t/2 + 2

󰁳
2/π) > 0, which

is easily verified since the left-hand side is quadratic.
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Online Appendix

In this online appendix, we give omitted proofs for Theorems 1′ and 2′ and related lemmas.

B Proofs of Theorems 1′ and 2′

We extend all results in Section 2 (Lemmas 1 to 3 and Theorems 1 and 2) to elections under
supermajority rule. The proofs are analogous to the original proofs, but not the same.

Preliminaries Let uα be the payoff function under supermajority rule. Formally, we define each
voter’s payoff function uα : [0, 1] × Θ → {0, 1} by, given a threshold α ∈ (1

2 , 1],

uα(āN , θ) =

󰀻
󰀿

󰀽
1 if 1{āN ≥ α} = θ

0 if 1{āN ≥ α} ∕= θ,

where the chosen alternative is denoted by 1{āN ≥ α}.
Let nα be the integer such that alternative 1 is chosen if and only if it receives at least nα + 1

votes. That is, nα = k for the unique integer k such that k
N < α ≤ k+1

N .23 In particular, n1 = N −1
for the unanimity rule (α = 1).

B.1 Lemma 1′

Lemma 1′. In any election PN,α, every symmetric equilibrium P ∗
N,α has some p∗

N,α ∈ [0, 1] such
that for each θ and each k = 0, 1, . . . , N , the equilibrium vote share āN satisfies

Pr
󰀕

ā∗
N = k

N
| θ

󰀖
= 1

ZN,α(p∗
N,α, θ)

󰀣
N

k

󰀤

exp
󰀣

uα
󰀃

k
N , θ

󰀄

λ

󰀤󰀓
p∗

N,α

󰀔k󰀓
1 − p∗

N,α

󰀔N−k
, (30)

where ZN,α : [0, 1] × Θ → R is the function defined by

ZN,α(p, θ) =
N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

uα
󰀃

k
N , θ

󰀄

λ

󰀤

pk(1 − p)N−k, (31)

and p∗
N,α is the marginal probability of each voter choosing action 1.

The following properties hold:
1. P ∗

N,α is an uninformative equilibrium if and only if p∗
N,α ∈ {0, 1}.

2. P ∗
N,α is an informative equilibrium if and only if p∗

N,α ∈ (0, 1) is a solution to equation

ZN,α(p, 1)
ZN,α(p, 0) = µ(1)

µ(0) . (32)

23Under simple majority rule, we have n1/2 = n, where there are N = 2n + 1 voters.



Proof. The proof of Lemma 1 goes through up to deriving the first-order condition (11) except u

is replaced by uα.24 Here is the modified first-order condition:

󰁛

θ

µ(θ) ·

2n󰁛

k=0

󰀣
2n

k

󰀤󰀥

exp
󰀣

uα
󰀃

k+1
N , θ

󰀄

λ

󰀤

− exp
󰀣

uα
󰀃

k
N , θ

󰀄

λ

󰀤󰀦󰀓
p∗

N,α

󰀔k󰀓
1 − p∗

N,α

󰀔2n−k

N󰁛

k=0

󰀣
N

k

󰀤

exp
󰀣

uα
󰀃

k
N , θ

󰀄

λ

󰀤󰀓
p∗

N,α

󰀔k󰀓
1 − p∗

N,α

󰀔N−k

󰁿 󰁾󰁽 󰂀
= ZN,α(p∗

N,α, θ) by (31)

= 0.

In the numerator, if k ∕= nα, the square bracket is zero, while if k = nα then the square bracket is
e1/λ − 1 when θ = 1 and 1 − e1/λ when θ = 0. By substituting them into the above equation,

µ(1)
ZN,α(p∗

N,α, 1)

󰀣
2n

nα

󰀤

(p∗
N,α)nα(1 − p∗

N,α)2n−nα(e1/λ − 1)

+ µ(0)
ZN,α(p∗

N,α, 0)

󰀣
2n

nα

󰀤

(p∗
N,α)nα(1 − p∗

N,α)2n−nα(1 − e1/λ) = 0.

Rearranging the terms, we obtain (32). Hence, (p∗
N,α, . . . , p∗

N,α) is a Nash equilibrium if and only
if p∗

N,α is a solution to (32). 󰃈

B.2 Lemma 2′

Lemma 2′. An election PN,α has an informative equilibrium if and only if it satisfies Condition
1. The informative equilibrium is unique whenever it exists.

Proof. The proof of Lemma 2 goes through with small modifications. We define the function
WN,α : [0, 1] × Θ → R by

WN,α(p, 1) =
N󰁛

k=nα+1

󰀣
N

k

󰀤

pk(1 − p)N−k,

WN,α(p, 0) =
nα󰁛

k=0

󰀣
N

k

󰀤

pk(1 − p)N−k.

(33)

Note that WN,α(p, 1) + WN,α(p, 0) = 1 by the binomial theorem. Note that WN,α(p, 1) is strictly
increasing in p and WN,α(p, 0) is strictly decreasing in p, as can be shown by differentiation. Then,
we rewrite ZN,α, as defined in (31), as

ZN,α(p, 1) = WN,α(p, 0) + e1/λWN,α(p, 1),

ZN,α(p, 0) = e1/λWN,α(p, 0) + WN,α(p, 1).
(34)

Note that ZN,α(p,1)
ZN,α(p,0) is continuous and strictly increasing in p, because ZN,α(p, 1) is strictly increasing

24Lemma A remains true except u is replaced by uα.
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in p and ZN,α(p, 0) strictly decreasing in p.
The remaining argument is the same in the original proof except WN and ZN are replaced by

WN,α and ZN,α, respectively. 󰃈

B.3 Proof of Theorem 1′

This proof is analogous to the proof of Theorem 1. We imitate the same argument but replace the
winning threshold 1

2 with α, the integer n with nα, the function u with uα, and WN with WN,α.
Then,

Pr(ā∗
N ≥ α | θ = 1) =

e1/λ − µ(0)
µ(1)

e1/λ − e−1/λ
,

Pr(ā∗
N < α | θ = 0) =

e1/λ − µ(1)
µ(0)

e1/λ − e−1/λ
.

Hence,

Pr(uα(ā∗
N , θ) = 1) = µ(1) Pr(ā∗

N ≥ α | θ = 1) + µ(0) Pr(ā∗
N < α | θ = 1) = e1/λ

1 + e1/λ
.

The proof that e1/λ/(1+e1/λ) > max{µ(1), µ(0)} when the informative equilibrium exists is exactly
the same as in the original proof.

B.4 Lemma 3′

Lemma 3′. For any election PN,α that satisfies Condition 1, let P ∗
N,α be the informative equilibrium

and p∗
N,α be the marginal probability of each voter choosing action 1. Then,

lim
N→∞

p∗
N,α = α.

Proof. First, we consider a winning threshold α ∈ (1
2 , 1). It suffices to show that for any small

ε > 0 such that 0 < α − ε < α + ε < 1, if we have a sufficiently large N then

ZN,α(α − ε, 1)
ZN,α(α − ε, 0) <

µ(1)
µ(0) <

ZN,α(α + ε, 1)
ZN,α(α + ε, 0) . (35)

To see this sufficiency, note that since ZN,α(p,1)
ZN,α(p,0) is continuous and strictly increasing in p, if (35) is

true then p∗
N,α ∈ (α − ε, α + ε), where p∗

N,α is a solution to (32).
We show auxiliary inequalities. For any small δ > 0, there is an Nδ such that for any N > Nδ,

WN,α(α + ε, 1) > 1 − δ, WN,α(α + ε, 0) < δ,

WN,α(α − ε, 0) > 1 − δ, WN,α(α − ε, 1) < δ,
(36)

where WN,α is defined in (33). To see these inequalities, let w1, . . . , wN be i.i.d. Bernoulli random
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variables that take values 1 and 0 with probabilities α + ε and 1 − α − ε respectively. Then,
WN,α(α + ε, 1) and WN,α(α + ε, 0) are the probabilities that the sample average 1

N

󰁓N
i=1 wi is,

respectively, strictly greater than α and strictly less than α. By the law of large numbers, there
is an N ′

δ such that for any N > N ′
δ, we have WN,α(α + ε, 1) > 1 − δ and WN,α(α + ε, 0) < δ. To

see the other two inequalities, let w′
1, . . . , w′

N be i.i.d. Bernoulli random variables that take values
1 and 0 with probabilities α − ε and 1 − α + ε respectively. By the same argument, there is an
N ′′

δ such that for any N > N ′′
δ , we have WN (α − ε, 0) > 1 − δ and WN (α − ε, 1) < δ. Lastly, let

Nδ = max{N ′
δ, N ′′

δ }.
Now we prove (35). This step is the same as in the original proof except the functions WN and

ZN are replaced by WN,α and ZN,α respectively and the winning threshold 1
2 is replaced by α.

Second, we consider the winning threshold α = 1. It suffices to show that for any small ε > 0,
if N is sufficiently large,

ZN,1(1 − ε, 1)
ZN,1(1 − ε, 0) <

µ(1)
µ(0) . (37)

To see this sufficiency, note that since ZN,1(p,1)
ZN,1(p,0) is continuous and strictly increasing in p, if (37) is

true then p∗
N,1 > 1 − ε, where p∗

N,1 is a solution to (32).
We show auxiliary inequalities. For any δ > 0, there is an Nδ such that for any N > Nδ,

WN,1(1 − ε, 1) < δ, WN,1(1 − ε, 0) > 1 − δ, (38)

where WN,1 is defined in (33). To see these inequalities, let w1, . . . , wN be i.i.d. Bernoulli random
variables that take values 1 and 0 with probabilities 1 − ε and ε respectively. Then, WN,1(1 − ε, 1)
and WN,1(1−ε, 0) are the probabilities that the sample average 1

N

󰁓N
i=1 wi is, respectively, equal to

1 and strictly less than 1. By the law of large numbers, there is an Nδ such that for any N > Nδ,
we have WN,1(1 − ε, 1) < δ and WN,1(1 − ε, 0) > 1 − δ.

We show another inequality. Under Condition 1, there is a small δ > 0 such that

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) . (39)

To see this inequality, note that e−1/λ < µ(1)
µ(0) (Condition 1) and that for a small enough δ, the

left-hand side of (39) is arbitrarily close to e−1/λ.
Now we prove (37). For any N > Nδ,

ZN,1(1 − ε, 1)
ZN,1(1 − ε, 0) = WN,1(1 − ε, 0) + e1/λWN,1(1 − ε, 1)

e1/λWN,1(1 − ε, 0) + WN,1(1 − ε, 1)
<

1 + e1/λδ

e1/λ(1 − δ)
<

µ(1)
µ(0) ,

where we use (34) for the equality, (38) for the first inequality, and (39) for the second one. Hence,
we have (37), which completes the proof. 󰃈
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B.5 Proof of Theorem 2′

Fix any θ ∈ Θ and any ε > 0. By Lemma 1′,

Pr(|ā∗
N − α| ≥ ε | θ) = 1

ZN,α(p∗
N , θ)

󰁛

k:| k
N

−α|≥ε

󰀣
N

k

󰀤

exp
󰀣

uα
󰀃

k
N , θ

󰀄

λ

󰀤󰀓
p∗

N,α

󰀔k󰀓
1 − p∗

N,α

󰀔N−k

󰁿 󰁾󰁽 󰂀
(40∗)

, (40)

where the sum runs over all k = 0, 1, . . . , N such that | k
N − α| ≥ ε. Since uα( k

N , θ) ≤ 1 for all k,

(40∗) ≤ e1/λ
󰁛

k:| k
N

−α|≥ε

󰀣
N

k

󰀤󰀓
p∗

N,α

󰀔k󰀓
1 − p∗

N,α

󰀔N−k
.

Since uα( k
N , θ) ≥ 0 for all k, (31) gives a lower bound

ZN,α(p∗
N,α, θ) ≥

N󰁛

k=0

󰀣
N

k

󰀤

(p∗
N )k(1 − p∗

N )N−k = 1,

where we use the binomial theorem. By evaluating the right-hand side of (40) with these bounds,

Pr(|ā∗
N − α| ≥ ε | θ) ≤ e1/λ

󰁛

k:| k
N

−α|≥ε

󰀣
N

k

󰀤󰀓
p∗

N,α

󰀔k󰀓
1 − p∗

N,α

󰀔N−k

󰁿 󰁾󰁽 󰂀
(41∗)

. (41)

Next, we show that (41∗) → 0 as N → ∞. Using a random variable BN,α ∼ Binomial(N, p∗
N,α),

we rewrite (41∗) = Pr(|BN,α/N − α| > ε). By Lemma 3′, for any ε > 0, there exists an N ′ such
that |p∗

N,α − α| < ε/2 for all N ≥ N ′. For such N , the triangle inequality gives

󰀏󰀏󰀏󰀏
BN,α

N
− α

󰀏󰀏󰀏󰀏 ≤
󰀏󰀏󰀏󰀏
BN,α

N
− p∗

N,α

󰀏󰀏󰀏󰀏 +
󰀏󰀏󰀏p∗

N,α − α
󰀏󰀏󰀏 <

󰀏󰀏󰀏󰀏
BN,α

N
− p∗

N,α

󰀏󰀏󰀏󰀏 + ε

2 .

Hence,

Pr
󰀕󰀏󰀏󰀏󰀏

BN,α

N
− α

󰀏󰀏󰀏󰀏 > ε

󰀖
≤ Pr

󰀕󰀏󰀏󰀏󰀏
BN,α

N
− p∗

N,α

󰀏󰀏󰀏󰀏 >
ε

2

󰀖
.

Since BN,α/N has the mean p∗
N,α and the variance p∗

N,α(1 − p∗
N,α)/N , with p∗

N,α(1 − p∗
N,α) ≤ 1/4,

Chebyshev’s inequality gives

Pr
󰀕󰀏󰀏󰀏󰀏

BN,α

N
− p∗

N,α

󰀏󰀏󰀏󰀏 >
ε

2

󰀖
≤ 1

ε2N
N→∞−−−−→ 0.

Hence, (41∗) → 0 as desired. By (41), Pr(|ā∗
N − α| ≥ ε | θ) → 0. Since this holds for each θ, we

have Pr(|ā∗
N − α| < ε) → 1.
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