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Motivation

Privacy regulations like CCPA, ATT framework from Apple and the GDPR enforced by
the EU are limiting third-party cookie advertising

Ï resulted in smaller audiences for advertisers to engage with

eCommerce businesses have shifted emphasis to 1st-party data collection as a
sustainable long-term strategy

Ï 1st-party data: information collected directly from customers through store’s own channels
and interactions like e-mail, purchase history, account information, etc.

However, 1st-party data are more difficult to generate targeted consumers for businesses
and thus collaborations are mutually beneficial

⇒ Opportunity for eCommerce platforms to design new marketplaces and trade these data
(in)efficiently at a profit

CCPA: California Consumer Privacy Act; ATT: App Tracking Transparency; GDPR: General Data Protection Regulation.
2 / 35



Running Example: Shopify Audiences
“Shopify Audiences ... is a pool of data
from all merchants participating...”

“To use Shopify Audiences, you must
opt in to share your data.”

“Shopify Audiences algorithms ... help
match a customer’s intent with the
unique attributes of your store.”

“Shopify Audiences algorithms ...
determine how likely a customer is to
purchase from you.”

“Shopify Audiences is built to allow you
to comply with applicable privacy laws...”
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Our Question

How should a profit maximizing eCommerce platform (e.g. Shopify)
design such (billion-dollar) marketplace ?

Shopify Audiences: Frequently asked questions
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MODEL
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Model

A mediator and sellers i ∈ N = {1,2, . . . ,n}

Heterogeneous buyers: representative buyer ω has
attribute (click probabilities) ω= (ωi )i∈N ∈Ω

Unit mass α ∈∆(Ω) of buyers and initial database
of seller i is αi := (αωi )ω∈Ω where∑

i∈N
αωi =α(ω), ∀ω ∈Ω.

Seller i has private profit margin θi of placing an
ad to a buyer ω yielding expected profit θiωi
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Model Assumptions back

Primitive assumptions:
Ï Each buyer ω has unit-demand
Ï Sellers sell one unit of an indivisible commodity to each customer
Ï Click probabilities ωi ∈Ωi = {li ,hi } where 0 ≤ li < hi ≤ 1

Distributional assumptions:
Ï type profile θ = (θi )i∈N ∈Θ where θi is drawn iid. from some F [0,1] that admits a

continuous and strictly positive density f with non-decreasing virtual functions

φB
i (θi ) = θi − (1−F (θi ))/ f (θi ) and φS

i (θi ) = θi +F (θi )/ f (θi ),

i.e. virtual value and virtual cost, respectively.

Informational assumptions:
Ï The model primitives Θ and F and (αi )i ’s are common knowledge
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Mediator’s Problem
Commits to a direct mechanism (q, x, t ):

Ï procurement rule q = (qωi )i ,ω s.t. θ 7→ qωi (θ)

Ï re-allocation rule x = (xωi )i ,ω s.t. θ 7→ xωi (θ)

Ï payment rule t = (ti )i s.t. θ 7→ t (θ)

subject to:

qωi (θ) ≤αωi and
∑

i∈N
xωi (θ) ≤ ∑

i∈N
qωi (θ), ∀θ,ω (fsb.)

Type θi seller gets a net payoff ui (q, x, t ) given by

ui (qi , xi , ti ,θi ) = θi
∑
ω∈Ω

ωi sωi (θ)− ti (θ)

Mediator’s Objective: Maximize expected profits∑
i∈N E[ti (θ)] subject to interim IC, IR and (fsb.)
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Stylized Example
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Stylized Example: Exclusive and Common Data Marketplace

Two sellers: i = 1,2

Symmetric click probabilities: ωi ∈ {0,1}
Ï initial mass α ∈∆(

(0,0), (0,1), (1,0), (1,1)
)

Types (1,0) and (0,1) are exclusive buyers
and (1,1) types are common buyers

WLOG α(0,0) = 0, α(1,0)
1 = 0 and α(0,1)

2 = 0

Ï i.e. α(1,0) =α(1,0)
2 and α(0,1) =α(1,0)

1
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Stylized Example: Benchmark Cases

a) Each seller owns only exclusive buyers of the competitor.

b) Only one seller owns data which are only common buyers.

c) Both sellers own a share of only common buyers data.
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Benchmark Case a): α(1,1) = 0
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Benchmark Case a): α(1,1) = 0

Analogous to monopoly pricing setting!

Optimal Mechanism (F ≡U [0,1])
Procure all data (at no cost) and sell each
separately at the posted price p∗

i = 1/2.

Excludes from buying all types with
virtual value φB

i (θi ) < 0 (= z) since their
true valuation θi < 1/2.
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Benchmark Case b): α(1,1)
1 = 1
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Benchmark Case b): α(1,1)
1 = 1

Analogous to bilateral trading model!

Optimal Mechanism
Trade if and only if φB (θ2) ≥φS(θ1).

For uniform distribution F ≡U ([0,1])),
trade if and only if θ2 −θ1 ≥ 1/2.
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Benchmark Case b): α(1,1)
1 = 1

Information rents highest for low
cost seller 1 and high value buyer 2.

One way to implement is by the
following ex-post transfers:

t S
1 (θ1,θ2) =sup{θ′1 :φB (θ2) ≥φS(θ′1)}

t B
2 (θ1,θ2) = inf{θ′2 :φB (θ′2) ≥φS(θ1)}.
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Benchmark Case c): α(0,1)
1 =α(1,0)

2 = 0
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Benchmark Case c): α(0,1)
1 =α(1,0)

2 = 0

Analogous to partnership dissolution model!

Countervailing incentives: a high (low) type is
more likely to buy (sell) and thus has an incentive
to under(over)-report

Ï types in the “middle" are least sure if they will sell
or buy ⇒ weakest incentives to misreport

Optimal Mechanism (F ≡U [0,1],β= 1/2)
Allocate all data to seller with strictly higher φi (θi ) and
no trade otherwise.

Alternatively, procure all data and allocate to
seller with highest φi (θi ) and break ties uniformly.
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Benchmark Case c): α(0,1)
1 =α(1,0)

2 = 0

Information rents highest for low
cost “sellers” or high value “buyers”.

No trade if θ1,θ2 ∈ [1/4,3/4] or
φi (θi ) = zi = 1/2

Ï Still, the volume of trades exceed
those in b) since θ1,θ2 ∈ [1/4,3/4]
imply θ2 −θ1 ≤ 1/2.

No simple ex-post implementation
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Stylized Example: α(1,1)
1 =α(1,1)

2 = γ/2 and α(0,1)
1 = 1−γ
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Stylized Example: New Case

Next: What if at least one seller owns a composition of common
and exclusive buyers?
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Stylized Example: α(1,1)
1 =α(1,1)

2 = γ/2 and α(0,1)
1 = 1−γ

Let θ(γ) = 1
4 −

1−γ
2γ and θ(γ) = 3

4 −
1−γ
2γ for γ> 2/3,

and otherwise 0 and 1/2, respectively.

Optimal Mechanism (F ≡U [0,1])
(i) WLOG procure everything first.
(ii) Ironing range zi (γ) = (1/2− (1−γ)/γ)+ for i = 1,2.
(iii) Allocate all common data to seller with strictly
higher φi (θi ), if any.
(iv) Allocate all exclusive lists to seller 2 iff φ2(θ2) > 0.
(v) If ties, i.e. θi ’s in [θ(γ),θ(γ)], break in favor of
seller 1 with probability min{1/2+ (1−γ)/γ,1}.

Remark. Sellers are treated symmetrically with
regards to virtual types φi !
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Stylized Example: α(1,1)
1 =α(1,1)

2 = γ/2 and α(0,1)
1 = 1−γ

Decompose U1(θ1) =UC
1 (θ1) and

U2(θ2) =UC
2 (θ2)+U E

2 (θ2)

θi ≥ θ(γ): (“Buyer”) rents from net
positive trades of the common data
(UC ) are:

UC
i (θi ) = γ

2
×

∫ θi

θ(γ)
(2θ̂i −1)d θ̂i (incr. ↑ θi )

whereas seller 2’s rents from always
buying exclusive data (U E ) are:

U E
2 (θ2) = (1−γ)×

∫ θ2

θ(γ)
1d θ̂2
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Stylized Example: α(1,1)
1 =α(1,1)

2 = γ/2 and α(0,1)
1 = 1−γ

θi ≥ θ(γ): Use decomposition of Ui (θi )’s to write expected transfers Ti (θi ) ≥ 0 as:

T1(θ1) = γ

2

(
θ2

1 −
(
1−θ(γ)

)
θ(γ))

)
︸ ︷︷ ︸

T C
1 (θ1)≥0

& T2(θ1) = γ

2

(
θ2

2 −
(
1−θ(γ)

)
θ(γ))

)
︸ ︷︷ ︸

T C
2 (θ2)≥0

+ (1−γ)θ(γ)︸ ︷︷ ︸
T E

2 (θi )≥0

Compare to benchmark models if (1,1)’s and (0,1)’s were sold separately:

T̂1(θ1) = γ

2

(
θ2

1 −
(
1− 3

4

)
3

4

)
& T̂2(θ1) = γ

2

(
θ2

2 −
(
1− 3

4

)
3

4

)
+ (1−γ)

1

2
Less profits in region C) from net zero expected trades.

More profits in region D) from net positive common data trades and, for θi ≥ 3/4, both
per-unit bundling prices (T C

i /SC
i and T E

i /SE
i ) are higher.

22 / 35



Stylized Example: α(1,1)
1 =α(1,1)

2 = γ/2 and α(0,1)
1 = 1−γ

θi ≤ θ(γ): (“Seller”) rents from net
negative trades of the common data
(UC ):

UC
i (θi ) = γ

2
×

∫ θ(γ)

θi

(1−2θ̂i )d θ̂i (incr. ↓ θi )

whereas seller 2’s rents from always
buying exclusive data (U E ) are:

U E
2 (θ2) =−(1−γ)×

∫ θ(γ)

θ2

1d θ̂2 (< 0)
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Stylized Example: α(1,1)
1 =α(1,1)

2 = γ/2 and α(0,1)
1 = 1−γ

θi ≤ θ(γ): Use decomposition of Ui (θi )’s to write expected transfers Ti (θi ) ≤ 0 as:
T1(θ1) = (γ/2)

(
θ2

1 −
(
1−θ(γ)

)
θ(γ))

)︸ ︷︷ ︸
T C

1 (θ1)≤0

& T2(θ1) = (γ/2)
(
θ2

2 −
(
1−θ(γ)

)
θ(γ))

)︸ ︷︷ ︸
T C

2 (θ2)≤0

+ (1−γ)θ(γ)︸ ︷︷ ︸
T E

2 (θi)≥0

Compare to benchmark models if (1,1)’s and (0,1)’s were sold separately:
T̂1(θ1) = (γ/2)

(
θ2

1 − (1−1/4)(1/4)
)

& T̂2(θ1) = (γ/2)
(
θ2

2 − (1−1/4)(1/4)
)+0

Net zero trades in region B) and thus zero compensated transfers; compare to T̂i (θi ) < 0.

More profits in region A) since the per-unit compensated transfers are lower.

More profits in region A) from exclusive data trades, overpriced at per-unit θ(γ) ≥ θ2!
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Stylized Example: Optimal Mechanism (Graphically) details
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2
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Withholding (Ex-Ante) Data
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Stylized Example: Withholding (Ex-Ante) Data
Example. Let α(1,1)

1 =α(1,1)
2 = γ/2 and

α(0,1)
1 =α(1,0)

2 = (1−γ)/2, where γ= 0.8

Observation. Withholding the exclu-
sive data may benefit or hurt sellers.

In i) withholding data increases ex-ante
expected rents from Ui = E[Ui (θi )] ≈ 3.5
to U W

i = E[Ui (θi )] ≈ 6.

In ii) withholding data decreases ex-ante
expected rents from Ui = E[Ui (θi )] ≈ 8.5
to U W

i = E[Ui (θi )] ≈ 6.

⇒ An issue if platform lacks commitment
power!
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Shopify Audiences: Withholding (Ex-Ante) Data

Shopify Audiences: Frequently asked questions

“...you can’t add or exclude customers to a specific audience.”

“Though... you can exclude them from all audiences.”
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General Result
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Optimal Mechanism

Theorem 1 (informal)
There exists a set of ironing parameters z and tie-breaking rule p which leaves zero expected
net trades (Sz,p

i (θi ) = 0) for θi ∈ [θ(z),θ(z)]. (WLOG) Procure all data and allocate all of ω
buyers to the agent with highest weighted virtual type ωiφi (θi , z), where ties are broken
according to p.
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Other stylized examples

Ωi = {0,1} but N ↑
Heterogeneous products: N = 2 but Ω1 = {0,1} ̸=Ω2 = {p,1}

Ï think of ωi ’s as quality differentiation

⇒ full characterization for each case is work in progress!
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Remaining...

Related Literature

Conclusion and Future Research
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Related Literature

Bilateral Trading: Myerson and Satterthwaite (1983)

Partnership Dissolution: Cramton et al. (1987), Loertscher and Wasser (2019)

Bundling: Yang (2023)
Ï our model: one-dimensional heterogeneity too but additive preferences.

Mechanism Design with Limited Commitment: Bester and Strausz (2001)
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Conclusion and Future Research
Conclusion:

The optimal mechanism sells data in bundles to extract higher rents.

By treating sellers symmetrically with regards to their (virtual) valuations, irrespective of
the differences in initial endowments, makes the bundling strategy more profitable.

(Ex-ante) sellers may be better-off withholding some of the data.

Future research:
Extensions to the current model—many directions! revisit

If designer lacks commitment power, look at robust (wrt. initial endowments) profit
maximizing mechanisms?

What can be implemented in dominant strategies?

Which mechanisms maximize expected total gains from trade?
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Appendix
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Stylized Example: Optimal Mechanism back

Proposition 1 (Optimal Mechanism)
There exists an (essentially) unique optimal mechanism characterized by (in)efficient trading
regions z∗

1 , z∗
2 and random priority rule p∗ which satisfy the followings:

1 If α ∈R+ then there exists a unique z∗
1 ≥ z∗

2 ∈ [0,1] such that
1 if C1(α)+C2(α) > P B

F (0) then z∗
2 > 0. Moreover, for z > 0 uniquely defined by

P B
F (z)+P S

F (z) =C1(α)+C2(α),
1 if P B

F (z)−P S
F (z) ≥C1(α)−C2(α) then z∗1 = z∗2 = z and the unique tie-breaking rule p∗ solves

p∗
1 =

(
1+ (

C1(α)−C2(α)
)(

P B
F (z)−P S

F (z)
))

/2.
2 if P B

F (z)−P S
F (z) <C1(α)−C2(α) then z∗1 > z∗2 such that z ∈ [z∗1 , z∗2 ] and uniquely solve

P B
F (z∗1 ) =C1(α) and P S

F (z∗2 ) =C2(α).
2 if C1(α)+C2(α) ≤ P B

F (0) then z∗
1 = z∗

2 = 0 and the unique random priority rule p∗ satisfies
p∗

1 =C1(α)/P B
F (0) and p∗

2 =C2(α)/P B
F (0).

2 If α ∈R1 then z∗
2 = 0 and z∗

1 = (P B
F )−1(C1(α)) > 0 if C1(α) > P B

F (0), and otherwise z∗
1 = 0

and p∗
1 =C1(α)/P F

B (0).
3 If α ∈R− then z∗

1 = z∗
2 = 0 and p∗ ≡ 0.

In particular, the expected optimal re-allocation of exclusive lists and common lists are
uniquely given by X (1,0)

1 (θ̂1) = min{α(1,0)
2 ,α(1,1)

1 } and X (0,1)
2 (θ̂2) = min{α(0,1)

1 ,α(1,1)
2 }.
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