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Abstract

I study a principal-agent model in which a principal hires an agent to collect

information about an unknown continuous state. The agent acquires a signal

whose distribution is centered around the state, controlling the signal’s precision

at a cost. The principal observes neither the precision nor the signal, but

rather, using transfers that can depend on the state, incentivizes the agent to

choose high precision and report the signal truthfully. I identify a sufficient

and necessary condition on the agent’s information structure which ensures

that there exists an optimal transfer with a simple cutoff structure: the agent

receives a fixed prize when his prediction is close enough to the state and

receives nothing otherwise. This condition is mild and applies to all signal

distributions commonly used in the literature.
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1 Introduction

In many situations, an agent is tasked with collecting information about a quantity of

interest. Examples include a statistician collecting data for the Bureau of Statistics,

a meteorologist forecasting weather for the National Weather Service, or a consultant

assessing the profitability of a new market. A natural question is how to design a

contract to incentivize the agent to collect information and report it accurately.

A difficulty in designing such contracts is that the agent’s effort and the infor-

mation acquired are often unobservable to the principal. For example, a statistician

might be able to fabricate part of their data. Similarly, in the case of a meteorologist

analyzing weather patterns, the amount of time and effort spent on the analysis might

not be easily observable. In the case of the consultant, predicting market profitabil-

ity may rely on private connections or specialized skills, which are often proprietary.

Therefore, the contract between the principal and the agent must take into account

moral hazard.

In this paper, I study the design of an optimal contract for a principal (she) that

incentivizes the agent (he) to gather information and maximize its precision. The

agent conducts a location-scale experiment that is centered around the state and

controls the precision (the inverse of the scale) at a cost. Eventually, the state is

revealed and the contract can depend on the state and the agent’s report. I abstract

from the principal’s broader decision problem—that is, the way in which the principal

uses the information generated by the agent—and focus on the problem where the

principal’s objective is only to maximize precision subject to some fixed budget con-

straint on transfers. My analysis and results shall be robust to whatever the broader

decision problem may be. The budget reflects the maximum amount of transfer that

the principal is able to use.

In practice, a budget that can only be used for a specific task is commonly ob-

served. For example, government agencies typically operate within budget limits

imposed by government funding and must return any unused funds to the govern-

ment.1 There are numerous reports of unspent government funding being returned to

the government, such as Mansouri (2024), Cuccia (2023).2 In firms, it is also common

1Schick (2008) provides an in-depth look at how the federal budget is structured and constrained
by funding limits imposed by the government.

2Federal regulations also specify where unspent grant money is returned, as seen at National
Archives (2024).
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for agents to operate under a budget and to eventually return unused funds to the

firm. Anthony et al. (2007) and Horngren (2009) provide comprehensive empirical ev-

idence for this practice.3 In the consulting example, the transfer could take the form

of a promotion, a recommendation, or a grade. Sometimes, budgets are restricted by

external funding designated for specific purposes, such as university grants.

In such settings, a simple contract is to allocate the entire budget to the agent

if their report is close to the actual state, and withhold payment otherwise. I call

these incentive schemes cutoff transfers. The cutoff transfer is the simplest transfer

rule: It is straightforward to understand and easy to implement. The literature

on principal-agent problems has long been interested in when simple contracts are

optimal (Carroll, 2015; Herweg et al., 2010; Oyer, 2000; Gottlieb and Moreira, 2022).

My main result is that cutoff transfers are optimal across a large variety of settings.

In particular, I identify a sufficient and necessary condition on the agent’s information

structure such that for all cost functions, there exists an optimal transfer that is a

cutoff transfer.

Formally, I study a model in which the principal wants to incentivize the agent to

acquire information on an underlying state θ ∈ R. For simplicity, I assume the state

θ admits an improper uniform common prior.4 The agent can acquire a costly signal

s ∈ R about the state. The signal takes the form s = θ + 1
λ
ε where ε is drawn from

some symmetric and single-peaked probability density function, and λ is a measure of

precision controlled by the agent. An important example is the case where ε admits

a standard Gaussian distribution. The agent chooses precision λ at a cost c(λ).

The principal observes neither the agent’s signal s nor the agent’s choice of pre-

cision λ. The agent makes a report a ∈ R after observing the signal. The principal

wants to incentivize the agent to maximize precision and truthfully report his signal.

She does so by a transfer rule t that depends on the report a and the state θ, which

is eventually observed by both players.5 I impose limited liability (t ≥ 0) and lim-

ited budget. The budget can only be used for this task. The agent’s payoff is his

3Anthony et al. (2007) offers an extensive analysis of organizational budget management, high-
lighting the frequent practice of returning unspent funds to a central or general fund in both private
and public sectors. Horngren (2009) explores cost control and budget allocation, noting how unused
resources are often returned to a central pool for future use.

4I generalize the model to the case where the state is multi-dimensional and the case with Gaussian
prior.

5I study the case where the state is unobservable but the principal has a private signal about the
state later.
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expected utility on transfer minus the cost. I allow any increasing utility function,

which accommodates arbitrary risk attitude of the agent.

I refer to a transfer rule as optimal if it induces the maximum precision among

all transfers and elicits truthful reports. There are at least two difficulties in this

problem. First, the transfer design problem is an infinite-dimensional optimization

problem, as the transfer rule itself is a function. Second, there are two layers of

incentive compatibility issues. The principal does not observe the precision chosen

by the agent, which is a moral hazard problem, and she does not observe the signal

either, leading to a communication problem.

I say that a transfer rule is a cutoff transfer if it pays the entire budget when the

distance between the report and the state is below a cutoff d and pays 0 otherwise.

For which signal distributions are cutoff transfers optimal?

My main result (Theorem 1) identifies a sufficient and necessary condition for

cutoff transfers to be optimal. This condition is weaker than the monotone likeli-

hood ratio property (Milgrom, 1981; Rogerson, 1985; Jewitt, 1988) and is satisfied by

most common distributions, including Gaussian, Laplace, logistic, and the uniform

distribution. Theorem 1 shows that if this condition holds, then for all cost functions

cutoff transfers are optimal. Conversely, if the condition does not hold, then there is

a cost function for which no cutoff transfer is optimal. Moreover, this cost function is

not pathological and can be taken to be increasing and differentiable. Furthermore,

when the condition holds, I characterize the optimal cutoff (Theorem 2).

An intuition for the optimality of cutoff rules is that they provide the strongest

incentives among all contracts. Loosely speaking, since more precise signal struc-

tures generate signals that are “more concentrated” around the state, a precision-

maximizing contract must pay the agent more for the report closer to the state.

The cutoff transfers take this logic to the extreme: the principal exhausts her entire

budget when the report is sufficiently close to the state and pays nothing otherwise.

Importantly, however, this intuition is incomplete, because the notion of “more con-

centrated” signals is imprecise. My condition is exactly what is needed to make this

logic tight.

All the results generalize to the n-dimensional case. The signal distribution is still

symmetric, single-peaked, and centered around θ. Here the symmetry means that

the density of the distribution depends only on the Euclidean distance from the state

θ. A cutoff transfer pays 1 when the Euclidean distance between the report and the
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state is less than a cutoff d. In this setting I show that an analogous result holds

(Proposition 2).

I also generalize my results to the case of a proper Gaussian prior and Gaussian

signals. I show that for all cost functions, cutoff transfers are optimal (Proposition

3).

In addition, I extend my results to the setting where the state is unobservable.

Instead, the principal privately receives a signal about the state. When designing the

transfer, she uses her signal instead of the state to discipline the agent. I show that

given a Gaussian or uniform prior and Gaussian signal, cutoff transfers are optimal

(Proposition 4).

Lastly, I apply my results to a classic principal-agent problem, offering new insights

into the optimality of simple contracts. In the classic setting, a principal incentivizes

the agent to produce an output. Unlike the traditional framework, in which the

principal’s goal is to maximize expected payoff (of outputs) minus transfers, I assume

the principal’s sole objective is to maximize output, constrained by a budget limit.6

As a corollary of my main result, the monotone likelihood ratio property is sufficient

to ensure the optimality of cutoff transfers (Corollary 3). Here, the cutoff transfer

pays the entire budget if the output is above a cutoff. This corollary provides an

alternative explanation for simple contracts: the optimality of cutoff transfers stems

from the nature of budgets in many contracting scenarios. In contrast, closed-form

solutions for the optimal transfers in the classic setting are generally not obtainable

(see Bolton and Dewatripont, 2004, Chapter 4.5).

One point to note is that my proof relies on techniques from monotone comparative

statics. This allows me to analyze the problem under weak assumptions on the cost

function and signal distribution. In particular, I do not need to assume the validity

of the first-order approach (Rogerson, 1985; Jewitt, 1988).

1.1 Related Literature

My paper is related to the literature on incentivizing information acquisition (see, e.g.

Osband, 1989; Li and Libgober, 2023; Li et al., 2022; Neyman et al., 2021; Zermeno,

2011; Carroll, 2019; Chen et al., 2023; Chade and Kovrijnykh, 2016; Whitmeyer and

6This is a common practice in firms, see Anthony et al. (2007) and Horngren (2009).
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Zhang, 2023; Sharma et al., 2023; Clark and Reggiani, 2021).7

In Li et al. (2022), an agent exerts a binary level of effort to refine a posterior

from a prior. The paper studies optimizing proper scoring rules by maximizing the

increase in the score with effort. In Li and Libgober (2023), a principal hires an agent

to learn about a binary state. The agent acquires information over time through

a Poisson information arrival technology. The principal rewards the agent with a

fixed-value prize as a function of the agent’s sequence of reports and the state. Li

and Libgober (2023) identify conditions that it is without loss to elicit a single report

after all information has been acquired.

Osband (1989) studies a principal with a quadratic prediction cost who incentivizes

an expert to collect information. The expert can increase the precision (the inverse

of variance) of the prediction at a constant cost. The principal minimizes the sum

of the expected error variance and the expected transfer. In this stylized setting,

the optimal transfer consists of a quadratic report error term plus a linear term on a

initial belief error, with three parameters.

In Whitmeyer and Zhang (2023) and Sharma et al. (2023), a rational inattentive

agent can acquire information flexibly subject to a posterior separable cost. The

principal wants to minimize the expected monetary cost of implementing a given

information structure. Similarly, Clark and Reggiani (2021) study the Pareto optimal

contract that maximizes social welfare. In all these papers, both the experiment and

the signal are unobservable to the principal. In Rappoport and Somma (2017), a

principal hires an agent to acquire costly information to influence a third party’s

decision. This paper assumes that the realized piece of information is observable and

contratible.

Zermeno (2011) and Papireddygari and Waggoner (2022) study menu design with

information acquisition. In their setting, the principal first offers a menu of contracts.

Then the agent privately acquire costly information. Next, the agent selects a contract

from the menu. The selection therefore reveals some information the agent acquired.

In Carroll (2019), the principal is uncertain about the expert’s information acqui-

sition technology and only knows some experiments that the agent can choose. The

principal evaluates the incentive contract by a worse-case criterion.

7In Neyman et al. (2021), a rational expert aims to predict the probability of a biased coin flip.
He acquires information by choosing the number of flip trials at a fixed cost per flip. Neyman et al.
(2021) study the optimal scoring rule that incentivize precision.
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Argenziano et al. (2016) and Kreutzkamp (2023) study costly information acquisi-

tion and transmission. In both papers, there is no transfer and the agent cares about

the principal’s action. In Kreutzkamp (2023) setting, the sender publicly chooses an

experiment. In Argenziano et al. (2016), the expert acquires information by choosing

a number of binary trials to perform.

In the classic principal-agent model, several papers also show the optimality of the

cutoff transfer but rely on different assumptions. Oyer (2000) assumes the validity of

the first-order approach, the existence of the optimal contract, and the absence of the

IR constraint. He shows that cutoff transfers are optimal among monotone contracts

for a risk neutral agent. Herweg et al. (2010) show that cutoff transfers are optimal

for expectation-based loss averse and risk neutral agent.

Notably, there is a rising literature adopting the same assumption that the prin-

cipal cannot take money from the agent and can only reward the agent with a prize

for which they have no other uses, see Li and Libgober (2023); Li et al. (2022); Deb

et al. (2018, 2023); Dasgupta (2023); Hébert and Zhong (2022); Wong (2023).

2 The Model

I study a principal-agent model, where the principal (she) wants to incentivize the

agent (he) to acquire information regarding an underlying state θ ∈ R. They share

a common prior over θ. It will be convenient to assume the prior to be an improper

uniform prior on R. I generalize my results to the case in which the state is multi-

dimensional in Section 5.1, and I study the case of a proper Gaussian prior in Section

5.2.

The agent can acquire a costly signal s ∈ R of the form

s = θ +
1

λ
ε

where ε is drawn from a distribution with a symmetric and single-peaked probability

density function (PDF) ϕ. I assume ϕ is continuously differentiable. The function ϕ

is supported on an interval, which can be bounded or unbounded. The parameter λ

is a measure of the signal’s precision, a scale parameter that is inversely proportional

to the standard deviation of s. The PDF of the signal, given θ and λ, is denoted by
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φ(·; θ, λ). It takes the form:

φ(x; θ, λ) = λϕ(λ(x− θ)).

For example, if ϕ is the PDF of the standard Gaussian distribution, then φ(·; θ, λ) is
the PDF of a Gaussian distribution with mean θ and standard deviation 1/λ. Note

that ϕ(x) = φ(x; 0, 1).

The agent chooses the precision λ at a cost c(λ). For example, suppose the agent’s

signal is the aggregation of many small independent signals. Then as the number of

small signals becomes large, the aggregate signal tends to a Gaussian distribution. If

the agent incurs a cost that depends on the number of small signals he gathers, then

the agent effectively controls the standard deviation of the aggregate signal at a cost.

I assume that the cost function c is lower semicontinuous.8 The pair (ϕ, c) constitutes

the primitive of the model.

The principal observes neither the agent’s signal s nor the agent’s choice of pre-

cision λ. Instead, after observing the signal, the agent sends a report a ∈ R to the

principal. Eventually both players observe the state θ.9 The principal wants to incen-

tivize the agent to maximize precision and truthfully report his signal. She does so

by means of a transfer. The transfer can depend on the state and the agent’s report.

The assumption that the realized state is contractible is familiar from the literature

on belief elicitation via (proper) scoring rules and prediction markets, ubiquitous in

the principal-expert literature, and well-suited to economic applications in which the

state is publicly observable ex post (e.g., the outcome of an election being forecast

by a pollster, or the conditions of a new market being analyzed by a consultant).

I assume that the transfer t is a function of the difference θ− a and it vanishes at

infinity. That is, it satisfies

lim
x→−∞

t(x) = lim
x→∞

t(x) = 0.

As I discuss below, the assumption that the transfer depends only on the difference

between a − θ is to ensure the agent’s payoff is well-defined. I also assume limited

8It would be natural to also assume that the cost function is increasing—that is, the higher the
precision, the higher the cost. Imposing this assumption or not does not affect my results.

9I relax this assumption in Section 5.3 where instead of eventually observing the state, they
eventually observe a signal about the state.
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liability, i.e., that the principal cannot take money from the agent, so that t ≥ 0. In

addition, the principal has a limited budget that does not depend on the state. She

can use this budget only for the transfer. Without loss, I take the budget to be 1.

The timing of moves is as follows:

1. The principal commits to a transfer rule t : R → [0, 1].

2. The agent chooses to accept or not. The game continues if the agent accepts

and terminates otherwise.

3. The agent privately chooses a signal precision λ.

4. The agent privately observes a signal realization s drawn from the distribution

φ(·; θ, λ).

5. The agent makes a report a ∈ R.

6. Finally, the state θ is revealed and the agent receives the transfer t(θ − a).

The agent’s payoff is given by the expected utility of the transfer minus the cost

of acquiring information:

Eu(t)− c(λ)

where u : [0, 1] → R is strictly increasing and continuous, and normalized so that

u(0) = 0, and u(1) = 1.10 To ease the notation, it will be convenient to treat the

transfer rule as paying in utils, rather than money. Under my assumptions on u, this

is equivalent, and without loss of generality, to assuming u is the identity function.

Finally, I assume the agent has an outside option which gives payoff 0 if he rejects

the contract.

After choosing λ, the agent observes a signal. Conditional on a signal realization

s, it follows from Bayes’ rule (adapted to a uniform prior) that the agent’s posterior

has PDF φ(·; s, λ). The agent now chooses a report a to maximize the expected

transfer, which is therefore given by:

E(λ; t) = max
a∈R

∫
R
t(θ′ − a)φ(θ′; s, λ)dθ′.

10Here I can drop the continuity assumption on u and only require u to be weakly increasing. All
my results still hold.
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Maximizing over report a shows that when choosing the precision, the agent antici-

pates how he optimally reports later. Thus, the model allows for double deviation.

The assumption that t vanishes at infinity ensures that the maximum is well defined.11

Note that as t depends only on the difference θ−a, the expected transfer computed

above does not depend on s.12 Consequently, the agent’s (interim) expected transfer

conditional on signal s does not depend on s, which must coincide with his uncondi-

tional expected transfer. If t depends arbitrarily on a and θ, the agent’s unconditional

expected transfer might not be well-defined, since the distribution of s is improper.

In Appendix A, I show that when the agent’s expected transfer is well-defined, it is

without loss to assume that the transfer depends only on the difference a − θ. An

interesting fact is that almost all popular key performance indicators in the forecast

industry depend only on the prediction error a− θ (Vandeput, 2021).

The principal’s objective is to maximize λ under the constraint of inducing a

truthful report from the agent. (As I show later, this constraint will not be binding.)

This objective can be interpreted as capturing, in reduced-form, settings in which

the principal uses the information conveyed by the agent’s report to solve some (un-

modeled) decision problem. Indeed, under broad conditions, it is optimal for the

principal to maximize precision regardless of the decision problem that she faces.

First, when the density ϕ is strongly unimodal, for a large class of monotone decision

problems (Karlin and Rubin, 1956), higher precision is always better for the principal

(see Lehmann, 2011, Theorem 5.1 and 5.2).1314 Second, when the distribution ϕ

is self-decomposable, the signal with different precisions are ranked in the Blackwell

order; thus the principal is better off with higher precision for all decision problems.

The self-decomposable distributions include all stable distributions (such as Gaussian

and Cauchy distributions) and some non-stable ones such as Laplace.15

11I prove this in Lemma 5 in the appendix.
12To see this, note that

max
a

∫
R
t(θ′ − a)φ(θ′; s, λ)dθ′ = max

a

∫
R
t(θ′ − a+ s)φ(θ′; 0, λ)dθ′ = max

a

∫
R
t(θ′ − a)φ(θ′; 0, λ)dθ′

13ϕ is strongly unimodal if − lnϕ is convex. This is slightly stronger than global increasing
elasticity.

14The class of monotone decision problems is defined in terms of the action space and the permis-
sible loss functions. For each θ, there is a correct action A(θ). The function A(θ) is real-valued and
nondecreasing. The range of A(θ) is the action space. The loss function is minimized at the correct
action and is nondecreasing as the action moves away from the correct action on either side.

15See Goel and DeGroot (1979) and Lehmann (2011) for a detailed discussion.
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3 Preliminary Analysis

First, I define a relaxed problem, in which the principal designs a transfer to maximize

the agent’s signal precision, without incentivizing truthful reporting.

maximize
λ, t

λ

subject to 0 ≤ t ≤ 1

λ ∈ argmaxE(·; t)− c(·) IC

E(λ; t)− c(λ) ≥ 0 IR

(1)

The first constraint in the relaxed problem is limited liability and limited budget.

The second constraint is an incentive compatibility constraint, since the precision λ

is chosen by the agent and is unobserved by the principal and cannot be contracted

upon.16 The last constraint is a participation constraint, also known as individual

rationality, and is implied by the outside option available to the agent. A transfer

rule t is optimal if it solves problem (1) and induces the agent to report truthfully.

A quantity that will be key to the analysis is the elasticity of the standardized

signal distribution ϕ.

Definition 1. The elasticity η of signal distribution ϕ at x > 0 is defined as

η(x) = −dϕ(x)/ϕ(x)

dx/x
.

For x such that ϕ(x) = 0, I let η(x) = +∞.

Elasticity measures by how much a percentage change in x leads to a percentage

change in the density function ϕ(x). For example, if ϕ is the PDF of a standard

Gaussian, then η(x) = x2. If ϕ is the PDF of a standard Laplace, then η(x) =

x. Notice that both examples have weakly increasing elasticity. In fact, weakly

increasing elasticity is satisfied by most common nonatomic distributions defined

on an interval, including the uniform distribution, the triangular distribution, and

the logistic distribution. The next lemma shows that, weakly increasing elasticity

condition is equivalent to a monotone likelihood property: For any 0 ≤ x1 ≤ x2, the

16The continuity of E(·; t) and the lower semicontinuity of c ensures that the argmax in IC is well
defined.
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ratio φ(x1;0,λ)
φ(x2;0,λ)

increases in λ. That is, a more accurate signal (x1) is more likely to

appear than a less accurate signal (x2) as precision increases.

Lemma 1.
∂[lnϕ(λx)]

∂ lnλ
= −η(λx).

In particular, for any 0 ≤ x1 ≤ x2,

φ(x1; 0, λ)

φ(x2; 0, λ)
increases in λ ⇔ η(λx1) ≤ η(λx2).

Next, I define a weaker condition.

Definition 2. The signal distribution satisfies increasing elasticity above 1 if η single-

crosses 1 from below and is weakly increasing after the cross, i.e.,̇ if for every x > 0

η(x) > 1 implies η(y) ≥ η(x) for all y > x.

I define a useful quantity.

η−1(1) = inf{x ∈ R+|η(x) > 1}.

Note that η−1(1) is well-defined, as the density function ϕ is integrable.17 Later on,

when I generalize the state and the signal to be n dimensional, η−1(n) is defined

similarly.

4 Characterization of the Optimal Transfer

A simple transfer rule is the cutoff transfer that pays the agent 1 when the distance

between the report and the state is less than a cutoff d and pays 0 otherwise (see Figure

1). As cutoff transfers are symmetric and single-peaked, they have the additional

desirable property of inducing truthful reports by the agent.

As transfer rules are functions, the principal faces an infinite dimensional opti-

mization problem. In my main result I show that when the standardized distribution

ϕ satisfies increasing elasticity above one—which holds for all commonly used signal

17Notice that function 1/x is not integrable over any neighborhood around 0. Thus, η(0+) < 1
since ϕ is integrable over any neighborhood around 0. Moreover, function 1/x is not integrable over
any neighborhood around +∞. Thus, η(x) > 1 must hold for some x ∈ R+.
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θ − a
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Figure 1: Cutoff Transfer

distributions—the principal chooses a cutoff transfer rule, reducing the problem to a

one-dimensional one. Moreover, I show that this property of ϕ is also necessary for

cutoff transfer rules to always be optimal.

Theorem 1. The following are equivalent.

1. For all cost functions, there exists an optimal transfer that is a cutoff transfer.

2. For all increasing and differentiable cost functions, there exists an optimal trans-

fer that is a cutoff transfer.

3. Signal density function ϕ satisfies increasing elasticity above 1.

Note that Theorem 1 holds even if we assume that all cost functions are differen-

tiable and increasing; that is, the result is not driven by considering ill behaved cost

functions.

Once we verify the condition in statement (3), then we do not need to worry about

the infinite dimensional optimization problem, as cutoff transfers shall be optimal.

Moreover, the condition is very easy to check. We only need to compute the elasticity

and check if it is monotone in some region. A direct implication of Theorem 1 is that

for all cost functions, there exists an optimal transfer that is a cutoff transfer when

the signal distribution is Gaussian, since the elasticity of a Gaussian distribution is

increasing. The lower bound 1 in the statement is the dimension of the problem.

So far both the state and the report are one-dimensional. In Section 5.1, where I

generalize this result to n-dimensional signal and states, the dimension n will replace

1.

Note that there is a unique solution—which must be a cutoff transfer—if we

additionally impose three mild assumptions.18

18I prove this uniqueness result at the end of the Proof of Theorem 1.
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1. Signal density function ϕ satisfies strictly increasing elasticity above19 1.

2. The cost function is continuously differentiable.

3. The optimal precision is an interior solution.

In the following, I shall first illustrate the sufficiency part (i.e., why (3) implies

(1)). Second, I optimize over cutoff transfers and characterize the optimal cutoff.

Third, I provide intuition for the necessity part (i.e., why (2) implies (3)).

I define the agent’s expected payoff given transfer t as

π(t) = max
λ

E(λ; t)− c(λ)

and the agent’s choice of precision given t

λ(t) =

max[argmaxλE(λ; t)− c(λ)] if π(t) ≥ 0,

0 otherwise.

When analyzing cutoff transfers, with slight abuse of notations, I use E(λ; d) to

represent the expected transfer at precision λ given the cutoff transfer with cutoff

d, i.e., E(λ; d) = E(λ;1|θ−a|≤d). Similarly, I denote by π(d) and λ(d) the expected

payoff and choice of precision for the cutoff transfer d, respectively.

4.1 Cutoff Transfers Are Optimal

I explain why increasing elasticity above 1 implies that for all cost functions, cutoff

transfers are optimal. Suppose that increasing elasticity above 1 holds. I show that

for any transfer rule t, there exists a cutoff transfer that induces a weakly larger

precision and truthful report.

Here, for ease of exposition, I assume that η is weakly increasing and consider a

transfer rule t that is symmetric in θ−a and weakly decreases in |θ−a|. Given such a

transfer rule, the agent reports truthfully and chooses the precision λ(t). I construct

a cutoff transfer by choosing a cutoff d such that

E(λ(t); d) = E(λ(t); t). (2)

19Density function ϕ satisfies strictly increasing elasticity above 1 if η(·) single-crosses 1 from
below, {x|η(x) = 1} is a singleton, and is strictly increasing after the cross.
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θ − a
tφ(·; 0,λ(d))

φ(·; 0,λ(t))

0−d d

1

Figure 2: The Transfer t and The Cutoff Transfer d. The given transfer t and the
matching cutoff transfer d are shown in black. The wider distribution shown in blue is
the signal distribution chosen by the agent under t, while the narrower (more precise)
distribution in red is the one chosen under d.

Such a d exists because E(λ(t); d) increases in d from 0 to 1 (as the budget is 1). See

Figure 2 for an example.

Next, I argue that

E(λ; d)− E(λ; t) ≥ 0 for λ > λ(t)

E(λ; d)− E(λ; t) ≤ 0 for λ < λ(t). (3)

This is depicted in Figure 3.

To see this, note that as the cutoff transfer pays the entire budget 1 when |θ−a| ≤
d, it is larger than the transfer t within the cutoff region. In addition, Lemma 1 shows

that, since the elasticity of ϕ is weakly increasing, for any 0 < x1 < d < x2 the ratio

φ(x1; 0, λ)

φ(x2; 0, λ)

increases in λ. Since E(λ; t) is the integral of the transfer with respect to the signal

distribution, (3) follows. As a result, we have λ(d) ≥ λ(t) (see Figure 3).

In the argument above, I use a stronger condition, global increasing elasticity, to

show that cutoff transfers are optimal. By Lemma 1, global increasing elasticity is

equivalent to the monotone ratio likelihood property:

For all 0 < x1 < x2,
φ(x1; 0, λ)

φ(x2; 0, λ)
is increasing in λ.
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E

λ

c(λ)

λ(t)

E(λ; t)

E(λ; d)

Figure 3: Expected Transfer

Thus, this property is a sufficient condition for cutoff transfers to be optimal.

Corollary 1. If for all x2 > x1 > 0, φ(x1;0,λ)
φ(x2;0,λ)

increases in λ, there exists an optimal

transfer that is a cutoff transfer.

To complete the proof of sufficiency in the general setting, there are two more

technical issues. First, for a general transfer t (which is not necessarily symmetric),

the agent’s report depends on both the signal and the precision. But in our previous

example (Figure 3), the agent’s report equals the signal and does not depend on

the precision. Second, the proof sketch above assumed globally increasing elasticity,

which is stronger than increasing elasticity above 1. Under this weaker assumption,

we do not have for all x2 > x1 > 0, φ(x1;0,λ)
φ(x2;0,λ)

increases in λ. The proof in the appendix

deal with both issues.

4.2 Optimization of Cutoff Transfers

When ϕ satisfies increasing elasticity above 1, Theorem 1 reduces the infinite dimen-

sional optimization problem to a one-dimensional problem of finding the value of the

optimal cutoff. In this section, I will solve this one-dimensional problem and identify

the optimal cutoff.

As the cutoff d increases, the agent’s expected transfer E(·; d) increases. Let d̄

denote the minimum cutoff such that IR constraint holds, i.e.,

d̄ = min{d ≥ 0|π(d) ≥ 0}.
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Notice that d̄ depends on the cost function c. The continuity of E(·; d) for all d and

the lower semicontinuity of c ensures that this minimum is well defined.

Theorem 2. If ϕ satisfies increasing elasticity above 1, the cutoff transfer

d∗ = min{d ≥ d̄|λ(d)d ≥ η−1(1)}

is optimal.

φ

θ − a
0

1/x

dd

E(λ; d)

Figure 4: Increment of Expected Transfer When Increasing λ
The agent slightly increases precision from λ to λ +∆λ. The area of the red region is the
expected transfer E(λ; d). The area of two blue regions is the increment of probability that
the signal falls into the cutoff.

To obtain this result, the following lemma is crucial.

Lemma 2 (Complements or Substitutes). The expected transfer E(λ; d) satisfies:

∂2E(λ; d)

∂λ∂d
≥ 0 ⇔ η(λd) ≤ 1.

This lemma characterizes whether the precision and the cutoff are complements

or substitutes. When the cross derivative ∂2E(λ;d)
∂λ∂d

is positive, increasing the cutoff

would increase the marginal return to the precision; thus they are complements. On

the other hand, when the cross derivative is negative, the cutoff and the precision are

substitutes.

I illustrate the intuition of the boundary case when η(λd) = 1 and show that

∂2E(λ; d)

∂λ∂d
= 0.

I plot the agent’s the expected transfer in Figure 4. Since the agent receives transfer

1 when the signal lies in the cutoff, the expected transfer E(λ; d) is the probability

17



that the signal lies in the cutoff, which is the area of the light red region. Suppose

that the agent slightly increases precision from λ to λ + ∆λ. The signal shall lie in

the cutoff with a higher probability. The area of dark blue region is the incremental

probability that the signal lies in the cutoff. Since η(λd) = 1, in a neighborhood of d,

φ(·; 0, λ) behaves like x−1. We can compute the incremental expected transfer, which

coincides with the incremental probability, by the area of the dark blue region

E(λ+∆λ; d)− E(λ; d) ≈ 2φ(d; 0, λ)

(
d− d

λ

λ+∆λ

)

which is independent of d as φ(·; 0, λ) decays at x−1. As a result, ∂2E(λ;d)
∂λ∂d

= 0. A

similar argument shows that ∂2E(λ;d)
∂λ∂d

and η(λd) − 1 have the opposite sign. Here 1

appears as this problem is one dimensional, which is also why “increasing elasticity

above 1” appears in Theorem 1 and η−1(1) appears in Theorem 2. Later on when I

generalize this problem to n-dimensional, n shows up in both characterizations.

E

λ

E(λ; d)

λd = η−1(1)
Complement

Substitute

Figure 5: Expected Transfer

As the expected transfer E(λ; d) is the probability that a signal falls within the

cutoff region, we have E(λ; d) = 2Φ(λd)− 1 where Φ is the CDF of the distribution

ϕ. Consequently, E(λ; d) is increasing in λd. Since ∂2E(λ;d)
∂λ∂d

and η(λd) − 1 have the

opposite sign, by the definition of η−1(1), we have

∂2E(λ; d)

∂λ∂d
≥ 0 if λd ≤ η−1(1)

∂2E(λ; d)

∂λ∂d
≤ 0 if λd ≥ η−1(1).

Thus, the graph of expected transfer is separated into two parts (see Figure 5). When
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λd ≥ η−1(1), ∂2E(λ;d)
∂λ∂d

≤ 0, I refer to this part as the substitute region. When λd <

η−1(1), ∂2E(λ;d)
∂λ∂d

> 0, I refer to this part as the complement region.

Recall that d̄ denotes the minimum cutoff that the agent is willing to work. If

(d̄,λ(d̄)) lies in the substitute region, increasing d shall reduce λ(d), which is not

optimal for the principal. Consequently, she should set the cutoff at the minimum d̄.

In this case, the IR constraint is binding and the agent’s surplus is zero. If (d̄,λ(d̄))

lies in the complement region, increasing d shall first increase λ(d), and λ(d)d shall

increase until it hits the boundary η−1(1). After hitting the boundary, if we further

increase d, then λ(d) shall decrease as (d,λ(d)) enters the substitute region. Thus,

the optimal cutoff is the d where λ(d)d first hits the boundary η−1(1). In this case,

the IR constraint is relaxed and the agent enjoys some surplus.

Note that although λ∗ is unique by design, the optimal cutoff transfer is not

necessarily unique. To see this, recall that changing d causes the curve E(·; d) to

rotate. If the cost function c has a kink and λ(d) is stuck at this kink, rotating

E(·; d) slightly might not affect λ(d), which gives rise to multiple optimal cutoff

transfers. The cutoff d∗ in Theorem 2 is the optimal cutoff transfer that provides

the strongest local incentive around λ∗, i.e., it has the largest derivative ∂E(λ;d)
∂λ

∣∣
λ=λ∗

among all optimal cutoff transfers. But this example is not generic due to the kink

in the cost function. This is also why a continuous differentiable cost function helps

us to get a unique optimal transfer rule.

4.3 The Necessity of Increasing Elasticity above 1

In this section, I explain the intuition behind the necessity result—(2) implies (3)—in

Theorem 1. That is, why increasing elasticity above 1 is necessary for a cutoff transfer

to always be optimal.

I first provide an example where ϕ does not satisfy increasing elasticity above 1.

In this case, for some increasing and differentiable cost function, all cutoff transfers

are suboptimal.

Example 1. The standardized signal distribution is truncated exp(1/x):

ϕ(x) =


k exp(1/ϵ), if x ∈ [0, ϵ),

k exp(1/x), if x ∈ [ϵ, 1],

0, otherwise.
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where k is a normalizing factor (see the left panel of Figure 6). I plot the elasticity of

ϕ on the right panel of Figure 6. The signal distribution does not satisfy increasing

elasticity above 1 as η(x) is decreasing for x ∈ [ϵ, 1]. Fix a pair (λ∗, d∗) such that

ϵ < λ∗d∗ < 1. Suppose an increasing cost function c ∈ C1 is tangent to E(·; d∗) at

λ = λ∗ and c(λ) is strictly above E(λ; d∗) for all λ ̸= λ∗ (see the right panel of Figure

7).

x

ϕ(x)

0

k exp( 1x )

1−1 ϵ x

η(x)

1
x

1ϵ

1

Figure 6: Signal Distribution and Elasticity

sθ

t

φ(s; θ, λ∗)

d∗

E

λ

c(λ)

λ∗

E(λ; d∗)

E(λ; t)

Complement

Substitute

Figure 7: The New Transfer Rule and The Expected Transfer

First, note that d∗ is the best cutoff among all cutoff transfers: By design, d∗ is the

minimum cutoff for the agent to work. By Lemma 2, as (λ∗, d∗) lies in the substitute

region, any cutoff transfer with cutoff d > d∗ induces a smaller precision. Thus, d∗ is

the best cutoff transfer.

Second, I construct a new transfer rule t which induces a strictly larger precision.

Starting with the best cutoff transfer rule d∗, I modify the transfer rule by setting

one interior region (dark blue) within the cutoff to 0 and one exterior region (light

brown) outside the cutoff to 1 (see the left panel of Figure 7). These two regions are

chosen such that the area of the dark blue region and the light brown region are the
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same. Note that the area of each region is the expected transfer contributed by this

region at precision λ∗. Thus, the new transfer rule t has the same expected transfer

as cutoff transfer d∗ at precision λ∗.

As the signal distribution features decreasing elasticity, the density function φ(s; θ, λ∗)

is steeper at the blue region. Once we increase precision, the blue area shall shrink

more than the brown area. This implies that the new transfer rule t has higher

expected transfer than the cutoff transfer d∗ for slightly higher precision. I trans-

late this comparison to the right panel of Figure 7. For higher precision λ > λ∗,

E(λ; t) > E(λ; d∗). Thus, t shall induces a higher precision.

This example is key to understand more generally the necessity of increasing

elasticity above 1. I call a pair (λ∗, d∗) exposed if the cutoff transfer d∗ is the optimal

transfer for some increasing cost function c ∈ C1 and induces precision λ∗. A pair

(λ∗, d∗) being exposed implies that η(x1) ≤ η(x2) for all 0 ≤ x1 ≤ λ∗d∗ ≤ x2.

Otherwise, I can use the construction in Example 1 to construct a new transfer than

induces a strictly larger precision. In Theorem 2, all (d∗, λ∗) pairs in the substitute

region are exposed, as I can always find an increasing and continuously differentiable

cost function that is tangent to E(·; d∗) at λ∗ and strictly above E(·; d∗) everywhere
else. Similarly, when for all increasing and differentiable cost functions there exists an

optimal transfer that is a cutoff transfer, all pairs with η(d∗λ∗) ≥ 1 are exposed. This

implies increasing elasticity above 1. However, as the construction in the example

above only works in the substitute region, pairs in the complement regions are not

exposed. Consequently, we do not have monotonicity for η when it is below 1.

4.4 Comparative Statics

Next I study how the optimal cutoff changes with the cost function. Without loss

of generality, I assume that the cost function is weakly increasing.20 I express de-

pendence on the cost function. Let d∗(c) and λ∗(c) denote the optimal cutoff and

precision given cost function c. Consider two cost functions c1 ≤ c2 where c1 is less

costly. Intuitively, if the agent’s cost is higher, the optimal cutoff increases. The next

result formalizes this intuition.

20Given any cost function c̃ that is not weakly increasing, I can define a new cost function c to be
the largest weakly increasing function that is below c̃. The agent’s precision choice problem under
cost function c is the same as under cost c̃, because E(λ; d) is weakly increasing in λ.

21



Proposition 1 (Comparative Statics). Suppose that ϕ satisfies increasing elasticity

above 1 and c1 ≤ c2. If c2(λ) − c1(λ) is weakly increasing in λ, then d∗(c1) ≤ d∗(c2)

and λ∗(c2) ≤ λ∗(c1). In particular, if c2 = kc1 for some constant k > 1, then

d∗(c1) ≤ d∗(c2) and λ∗(c2) ≤ λ∗(c1).

The cost difference c2(λ)−c1(λ) being weakly increasing occurs if c2 is more convex

than c1. Another interesting comparative statics is to change the budget from 1 to

1/k. This is equivalent to keeping the budget at 1 and change the cost function from

c1 to kc1. Thus, lowering the budget would lead to a larger optimal cutoff.

As a direct corollary, I can study what happens if the agent’s signal is more precise.

Suppose that ε2 = kε1 with some constant k > 1. Recall that the agent’s signal is

s = θ+ 1
λ
ε. Thus, a smaller noise ε1 corresponds to a more precise signal, which leads

to a smaller cutoff by the next result.

Corollary 2. Suppose that the cost function is weakly convex. If ε2 = kε1 with some

constant k > 1, d∗1 ≤ d∗2.

What if the cost difference c2 − c1 is not increasing? Then the answer is more

involved. Denote by λ(d; c) the induced precision given cutoff transfer d and the cost

function c. Given the cost function c1, the minimum cutoff d̄(c1) and the induced

precision λ(d̄(c1); c1) pair lies either in the substitute region λ(d̄(c1); c1)d̄(c1) ≥ η−1(1)

or not. If this pair lies in the substitute region, then the optimal cutoff coincides with

the minimum cutoff, d∗(c1) = d̄(c1), by Theorem 2. Then given a larger cost function

c2, the minimum cutoff must be larger, d̄(c2) ≥ d̄(c1), which entails a larger optimal

cutoff, d∗(c2) ≥ d∗(c1).

However, if the λ(d̄(c1); c1), d̄(c1) pair lies in the complement region, the com-

parison of d∗ can go both directions. If c2 − c1 is decreasing, it may render higher

precision relatively more attractive to the agent under cost c2 than c1. This may

induce a higher precision for each cutoff transfer. As the optimal precision and opti-

mal cutoff are substitutes by Theorem 2, a higher induced precision leads to a lower

optimal cutoff.

Readers may wonder what happens to the optimal precision λ∗ given c2 ≥ c1. It

turns out that increasing the cost function can shift λ∗ in both directions, depending

on the shape of the cost difference c2 − c1.
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5 Extensions

5.1 The Multi-Dimensional Case

My results can generalize to the case with a multi-dimensional state. In this section,

suppose the state, the signal, and the report are n-dimensional, i.e., θ, s, a ∈ Rn.

The signal distribution is still symmetric, single-peaked, and centered around θ. Here

symmetry means that the density of the distribution depends only on the Euclidean

distance from the state θ. A cutoff transfer pays 1 when the Euclidean distance

between the report and the state is less than a cutoff d. The next proposition shows

that a statement analogous to that of Theorem 1 applies in this case too.

Proposition 2. Suppose the state is n-dimensional. The following statements are

equivalent.

1. For all cost functions, there exists an optimal transfer that is a cutoff transfer.

2. For all increasing and differentiable cost functions, there exists an optimal trans-

fer that is a cutoff transfer.

3. Density function ϕ satisfies increasing elasticity above n.

Moreover, if ϕ satisfies increasing elasticity above n, the cutoff transfer

d∗ = min{d ≥ d̄|λ(d)d ≥ η−1(n)}

is optimal.

Note that the increasing elasticity condition of Theorem 1 is generalized in this

proposition to increasing elasticity above the dimension n, providing an explanation

for why the number 1 appeared in Theorem 1.

5.2 Gaussian Prior and Gaussian Signal

In this section, I assume that both the prior and the signal admit Gaussian distri-

butions. Since the prior is no longer uniform, a slight adjustment is that now the

principal wants the agent to truthfully report the posterior mean rather than the

signal.
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Let the prior distribution be N (0, 1/λ2
0). Conditional on a signal s, the agent’s

posterior is also Gaussian

N (
sλ2

λ2
0 + λ2

,
1

λ2
0 + λ2

)

where λ is the agent’s choice of precision. I let Λ denote the precision of the posterior

Λ(λ) =
√

λ2
0 + λ2.

Then, the expected transfer becomes E(Λ(λ); t) instead of E(λ; t). Therefore, Λ(λ)

shall replace λ in the characterization. Other than this difference, the results remain

the same as in previous sections, as the posterior is Gaussian whose elasticity is

increasing.

Proposition 3. Suppose the prior and the signal admit Gaussian distribution. There

exists an optimal transfer that is a cutoff transfer. Moreover, the cutoff transfer

d∗ = min{d ≥ d̄|Λ(λ(d))d ≥ η−1(1)}

is optimal.

5.3 Unobserved State

In this section, I extend my results to the setting where the state is unobservable.

Instead, the principal has some private information about the state. When designing

the transfer, she uses her private information instead of the state to discipline the

agent.21

I assume that the prior is uniform or Gaussian N (0, 1/λ2
0). The principal wants

the agent to truthfully report his posterior mean and maximizes λ. The principal and

the agent receive independent Gaussian signals: sp ∼ N (θ, 1/λ2
p) and s ∼ N (θ, 1/λ2).

I show that it is without loss to focus on cutoff transfers that pay 1 when |sp − a| is
less than a cutoff and 0 otherwise.

Proposition 4. Suppose that the state is unobservable and the prior admits uniform

or Gaussian distribution. The principal and the agent receive independent Gaussian

21Note that the principal does not have utility for their budget, and so have no incentive to lie
about their private signals. Thus, it is without loss of generality to assume that the principal has
commitment power.
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signals. There exists an optimal transfer that is a cutoff transfer. Moreover, the cutoff

transfer

d∗ = min{d ≥ d̄|Λ(d)d ≥ η−1(1)}

is optimal where Λ(d) = ( 1
λ2
p
+ 1

λ2(d)
)−

1
2 for the uniform prior and Λ(d) = ( 1

λ2
p
+

1
λ2(d)+λ2

0
)−

1
2 for the Gaussian prior.

6 Implications for Classic Principal-Agent Prob-

lem

In this section, I demonstrate how my results apply to a classic principal-agent prob-

lem, offering new insights into the optimality of simple contracts. In the classic

setting, a principal incentivizes the agent to produce an output. Unlike the tradi-

tional framework, in which the principal’s goal is to maximize expected payoff (of

outputs) minus transfers, I assume the principal’s sole objective is to maximize out-

put, constrained by a budget limit. The budget with a specific usage is a common

practice in firms. Anthony et al. (2007) and Horngren (2009) provide comprehensive

empirical evidence for this approach. In firms, managers (the principals in my model)

control the resources without being the ultimate owners, giving rise to agency costs,

known as residual loss in finance (Jensen and Meckling, 1976). To combat this loss,

a budget constraint with a specific usage is commonly deployed.

Suppose that an agent chooses an effort level e ≥ 0, which can be discrete or

continuous. A continuous output y ≥ 0 is random and distributed according to a

probability density function g(y; e). A principal’s objective is to maximize the agent’s

output, subject to a budget constraint equals to 1. The transfer t(y) depends on the

output y, such that 0 ≤ t(y) ≤ 1. A cutoff transfer with parameter d is of the form

t(y) = 1 if y ≥ d and t(y) = 0 otherwise. The agent’s cost of effort is given by a

lower semi-continuous function c(e) and he maximizes the expected transfer minus

the cost.

Corollary 3. Suppose that g satisfies the monotone likelihood ratio condition: For

all y1 ≤ y2,
g(y2;e)
g(y1;e)

is weakly increasing in e. Then, there exists an optimal transfer

that is a cutoff transfer.22

22Banks and Sundaram (1998) study how a long-lived principal interact with a series of short-
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This is an immediate corollary of Corollary 1. My model can be “projected down”

onto this classic setting. The argument involves making the signal s publicly ob-

servable, which removes the truthful report issue. Then set output y = 1/|s − θ|
and effort e = λ. I formalize a sense that my principal-expert setting is strictly

richer than the classic principal-agent setting and derive new results for the classic

setting. Economically, this corollary suggests that my insights apply not only to

contracting for modern “knowledge/information economy” jobs but also for classic

“production/manufacturing” jobs.

The literature on principal-agent problems has long been interested in when sim-

ple contracts are optimal (Carroll, 2015; Herweg et al., 2010; Oyer, 2000). This

corollary provides an alternative explanation for simple contracts: the optimality of

cutoff transfers stems from the nature of budgets in many contracting scenarios. The

bounded budget that can only be used for this task can lead to the optimality of

cutoff transfers, and the monotone likelihood ratio property is a sufficient condition

to generate this sharp characterization.

Classic principal-agent models maximize the principal’s expected payoff (of out-

puts) minus transfers, subject to incentive compatibility (IC), individual rationality

(IR), and sometimes limited liability constraints. Generally, closed-form solutions for

the optimal transfers are not obtainable (see Bolton and Dewatripont, 2004, Chap-

ter 4.5). In a special case with binary effort levels and a risk-neutral principal, a

well-known result emerges: the monotone likelihood ratio property is necessary and

sufficient for optimal transfers to increase with output (see Laffont and Martimort,

2009, Proposition 4.6). However, analyzing the general case with more than two ef-

fort levels is much more challenging. Grossman and Hart (1983) study this problem

with continuous effort under the assumption of finite output levels. Their findings

show that even the monotone likelihood ratio property is not sufficient to ensure op-

timal transfers to be increasing. Beyond some weak predictions, we do not have a

characterization of optimal transfers.23

lived agent with moral hazard and adverse selection. Agents have different types (abilities) and can
derive utility from working. Each agent can work for at most two periods. The principal designs a
retention rule that maps from the first-period output to two outcomes: retain or fire. The principal
aims to maximize output. Banks and Sundaram (1998) show that a cutoff retention rule can be
optimal under some condition on the agent’s preference and MLRP. However, the principal is unable
to induce effort with moral hazard alone. See their proposition 3.5 for a detailed discussion.

23For a risk-neutral principal, we only know that the optimal transfer cannot be decreasing every-
where, nor can it increase faster than the output everywhere.
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From a methodological perspective, my results rely on techniques of monotone

comparative statics, which allows me to impose relatively mild assumptions on the

output distribution. Another popular method is the first-order approach (Rogerson,

1985; Jewitt, 1988). To ensure the validity of the first-order approach, people either

impose restrictive conditions on the distribution of outputs, like the convexity of

output distribution (Rogerson, 1985), or impose strong assumptions on the agent’s

utility function (Jewitt, 1988). My results do not rely on the first-order approach.
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A The Assumption That Transfer Depends Only

on the Difference Between the State and Report

In this section, I show that given the uniform prior, it is without loss to assume that

the transfer depends only on the difference a − θ. To make the expected transfer

well-defined for the uniform prior, I take two approaches. In the first approach, I

define the agent’s expected transfer to be conditional on the event that the signal

falls in some set of finite Lebegue measure. Then I show that the conclusion holds

for any such set. The conditioning on some set is merely an artifact to deal with

the improperness of unbounded uniform prior. In the second approach, I study an

alternative setting where the state space is a circle in R2 and the prior is proper and

uniform. This unit circle is similar to the one-point compactification of R.
Throughout this section, I allow the transfer to depend on both the state and the

report. To ensure that the agent’s report is well-defined, I assume that the family of

maps a 7→ t(y + a, a) parametrized by y is equicontinuous. This is trivially satisfied

when the transfer depends only on θ−a, as t(y+a, a) stays constant as a varies. When

the prior is improper uniform on R, I additionally assume that t(θ, θ + x) vanishes

uniformly (in θ) as x tends to infinity.

First, I show that the agent’s report is well-defined.

Lemma 3. The maximum

max
a∈R

∫
R
t(θ′, a)φ(θ′; s, λ)dθ′.

is well-defined.

Proof of Lemma 3. Fix a signal s and precision λ. Let T (a) be the agent’s expected

transfer after reporting a,

T (a) =

∫
t(θ′, a)φ(θ′; s, λ)dθ′.

If T (a) = 0 for all a ∈ R, then the maximum is well-defined. Suppose that there

exists a1 ∈ R such that T (a1) > 0. As t(θ, θ + x) vanishes uniformly (in θ) as x

tends to infinity, there exists a K1 > 0 such that for all |θ − a| > K1, t(θ, a) <
T (a1)

2
.

Moreover, there exists a K2 > 0 such that Φ(λK2) > 1− T (a1)
4

. Let K = max(K1, K2).
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If |a− s| > 2K,

T (a) =

∫
t(θ′, a)φ(θ′; s, λ)dθ′

=

∫
θ′:|θ′−s|<K

t(θ′, a)φ(θ′; s, λ)dθ′ +

∫
θ′:|θ′−s|≥K

t(θ′, a)φ(θ′; s, λ)dθ′

≤T (a1)

2

∫
θ′:|θ′−s|<K

φ(θ′; s, λ)dθ′ + 1 ·
∫
θ′:|θ′−s|≥K

φ(θ′; s, λ)dθ′

≤T (a1)

2
+ 2[1− Φ(λK)]

=T (a1).

Thus,

max
a∈R

T (a) = max
|a−s|≤2K

T (a).

Next, I show that T (·) is continuous.

T (a+ ϵ)− T (a) =

∫
t(θ′, a+ ϵ)φ(θ′; s, λ)dθ′ −

∫
t(θ′, a)φ(θ′; s, λ)dθ′

=

∫
[t(θ′, a+ ϵ)− t(θ′ − ϵ, a)]φ(θ′; s, λ)dθ′ +

∫
[t(θ′ − ϵ, a)− t(θ′, a)]φ(θ′; s, λ)dθ′

=

∫
[t(θ′, a+ ϵ)− t(θ′ − ϵ, a)]φ(θ′; s, λ)dθ′ +

∫
t(θ′, a)[φ(θ′ + ϵ; s, λ)− φ(θ′; s, λ)]dθ′

|T (a+ ϵ)− T (a)| ≤ sup
θ′

|t(θ′, a+ ϵ)− t(θ′ − ϵ, a)|+
∣∣∣∣ ∫ t(θ′, a)[φ(θ′; s− ϵ, λ)− φ(θ′; s, λ)]dθ′

∣∣∣∣
≤ sup

θ′
|t(θ′, a+ ϵ)− t(θ′ − ϵ, a)|+

∫
|φ(θ′; s− ϵ, λ)− φ(θ′; s, λ)|dθ′

≤ sup
θ′

|t(θ′, a+ ϵ)− t(θ′ − ϵ, a)|+ 2

∫
θ′≤s− ϵ

2

φ(θ′; s− ϵ, λ)− φ(θ′; s, λ)dθ′

≤ sup
θ′

|t(θ′, a+ ϵ)− t(θ′ − ϵ, a)|+ 2[Φ(
ϵ

2
λ)− Φ(− ϵ

2
λ)]

Note that supθ′ |t(θ′, a+ϵ)−t(θ′−ϵ, a)| tends to 0 as ϵ tends to 0 by the equicontinuity

of t. Moreover, the CDF Φ is continuous. Thus, T is continuous. A continuous

function achieves a maximum on a compact set. So the maximum is well-defined.

Next, I show that it is without loss to assume that the transfer depends only on

the difference θ − a. For a transfer rule t(θ − a) that depends only on the difference
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θ−a, let Ê(λ; t) denote the agent’s expected transfer when he has to report truthfully

Ê(λ; t) =

∫
R
t(θ′)φ(θ′; 0, λ)dθ′.

Let λ̂(t) denote the corresponding induced precision

λ̂(t) =

max[argmax Ê(·; t)− c(·)], if max Ê(·; t)− c(·) ≥ 0,

0, otherwise.

For a transfer rule t(θ, a) that depends on both the state and the report, we need

to integrate the signal when computing the expected transfer. Let g denote the PDF

of the signal, which is also uniform. Fix any measureable set A of finite Lebegue

measure. I define the agent’s expected transfer conditional on the signal falls in set

A, i.e., s ∈ A

E(λ; t) =

∫
s∈A

g(s)ds

(
max

a

∫
t(θ′, a)φ(θ′; s, λ)dθ′

)

λ(t) =

max[argmaxE(·; t)− c(·)], if maxE(·; t)− c(·) ≥ 0,

0, otherwise.

Lemma 4. For a transfer rule t(θ, a), there exists a transfer rule t∗(θ−a) that depends

only on the difference θ − a; given transfer rule t∗, the agent chooses precision λ(t)

when he is forced to reveal the signal. That is,

λ(t) = λ̂(t∗)

Proof. Let a(s;λ) denote the agent’s report after observing signal s given precision

λ.

a(s;λ) = argmax
a

∫
R
t(θ′, a)φ(θ′; s, λ)dθ′.

E(λ; t) =

∫
s∈A

g(s)ds

∫
t(θ′,a(s;λ))φ(θ′; s, λ)dθ′

Note that this integral is well-defined since a(s;λ) is well-defined and the set A has
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finite Lebegue measure. Let θ′′ = θ′ − s,

E(λ; t) =

∫
s∈A

g(s)ds

∫
t(θ′′ + s,a(s;λ))φ(θ′′; 0, λ)dθ′′.

Let t∗(θ′′) =
∫
s∈A g(s)t(θ′′ + s,a(s;λ(t)))ds. By Fubini-Tonelli Theorem,

E(λ(t); t) =

∫
s∈A

g(s)ds

∫
t(θ′′ + s,a(s;λ(t)))φ(θ′′; 0,λ(t))dθ′′

=

∫
R
t∗(θ′′)φ(θ′′; 0,λ(t))dθ′′

= Ê(λ(t); t∗)

Moreover, at λ ̸= λ(t),

E(λ; t) =

∫
s∈A

g(s)ds

∫
R
t(θ′,a(s;λ))φ(θ′; s, λ)dθ′

≥
∫
s∈A

g(s)ds

∫
R
t(θ′,a(s;λ(t)))φ(θ′; s, λ)dθ′

=

∫
s∈A

g(s)ds

∫
t(θ′′ + s,a(s;λ(t)))φ(θ′′; 0, λ)dθ′′

=

∫
R
t∗(θ′′)φ(θ′′; 0, λ)dθ′′

= Ê(λ; t∗).

where the inequality follows by the definition of a(s;λ). By the definition of λ(t),

λ̂(t∗) = λ(t).

Given this Lemma, we can input the constructed t∗ into the proof of Theorem 1,

where I show that there exists a cutoff transfer that induces a higher precision.

In the second approach, the state space is a circle in R2 with a circumference of

1, and the prior distribution is uniform. This setup corresponds to cases where the

state is periodic, such as the unit vector in R2 which corresponds a direction in R2 (In

Machina triangle, each direction corresponds to an indifference curve.), the time of

day (e.g., 15:20) or the day of the year (e.g., October 19). The model remains almost

the same. The only exception is that ϕ admits a compact support [−M,M ] and the

precision λ ∈ [2M,+∞]. The proof that it is without loss to assume that transfer
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depends only on the difference θ − a is almost the same as above. The exception is

that the integral of s in Lemma 4 can be taken over the entire circle.

B Omitted Proofs

Proof of Lemma 1.
∂ lnϕ(λx)

∂ lnλ
=

ϕ′(λx)

ϕ(λx)
λx = −η(λx).

Thus, we have

∂[ln ϕ(λx1)
ϕ(λx2)

]

∂ lnλ
= η(λx2)− η(λx1).

The second part follows by

∂[φ(x1;0,λ)
φ(x2;0,λ)

]

∂λ
=

∂[ϕ(λx1)
ϕ(λx2)

]

∂λ

Proof of Lemma 2. Let Φ denote the anti-derivative of ϕ, i.e., Φ(x) =
∫ x

−∞ ϕ(y)dy.

We compute the expected transfer given the cutoff transfer d

E(λ; d) = 2Φ(λd)− 1.

The derivative of the expected transfer with respect to λ is

∂E(λ; d)

∂λ
= 2dϕ(λd).

Let us see how the derivative changes when varying d,

∂ ∂E(λ;d)
∂λ

∂d
= 2ϕ(λd)[1− η(λd)].

Lemma 5. The agent’s expected transfer

E(λ; t) = max
a∈R

∫
R
t(θ′ − a)φ(θ′; s, λ)dθ′.

36



is well-defined.

Proof of Lemma 5. I show that the maximum is well-defined, given that the transfer

rule t vanished at infinity. Fix a signal s and precision λ. Let T (a) be the agent’s

expected transfer after reporting a,

T (a) =

∫
t(θ′ − a)φ(θ′; s, λ)dθ′.

If T (a) = 0 for all a ∈ R, the argmaxa T (a) is well-defined. Suppose that there

exists a1 ∈ R such that T (a1) > 0. As t vanished at infinity, there exists a K1 > 0

such that for all |x| > K1, t(x) <
T (a1)

2
. Moreover, there exists a K2 > 0 such that

Φ(λK2) > 1− T (a1)
4

. Let K = max(K1, K2). If |a− s| > 2K,

T (a) =

∫
t(θ′ − a)φ(θ′; s, λ)dθ′

=

∫
θ′:|θ′−s|<K

t(θ′ − a)φ(θ′; s, λ)dθ′ +

∫
θ′:|θ′−s|≥K

t(θ′ − a)φ(θ′; s, λ)dθ′

≤T (a1)

2

∫
θ′:|θ′−s|<K

φ(θ′; s, λ)dθ′ + 1 ·
∫
θ′:|θ′−s|≥K

φ(θ′; s, λ)dθ′

≤T (a1)

2
+ 2[1− Φ(λK)]

=T (a1).

Thus,

argmax
a∈R

T (a) = arg max
|a−s|≤2K

T (a).
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Next, I show that T (·) is continuous.

|T (a+ ϵ)− T (a)| =
∣∣∣∣ ∫ t(θ′ − a− ϵ)φ(θ′; s, λ)dθ′ −

∫
t(θ′ − a)φ(θ′; s, λ)dθ′

∣∣∣∣
=

∣∣∣∣ ∫ t(θ′ − a)φ(θ′ + ϵ; s, λ)dθ′ −
∫

t(θ′ − a)φ(θ′; s, λ)dθ′
∣∣∣∣

=

∣∣∣∣ ∫ t(θ′ − a)φ(θ′; s− ϵ, λ)dθ′ −
∫

t(θ′ − a)φ(θ′; s, λ)dθ′
∣∣∣∣

=

∣∣∣∣ ∫ t(θ′ − a)[φ(θ′; s− ϵ, λ)− φ(θ′; s, λ)]dθ′
∣∣∣∣

≤
∫ ∣∣∣∣φ(θ′; s− ϵ, λ)− φ(θ′; s, λ)

∣∣∣∣dθ′
=2

∫
θ′≤s− ϵ

2

φ(θ′; s− ϵ, λ)− φ(θ′; s, λ)dθ′

=2[Φ(
ϵ

2
λ)− Φ(− ϵ

2
λ)]

Thus, T is continuous as the CDF Φ is continuous. A continuous function achieves a

maximum on a compact set. So the maximum in E(λ; t) is well-defined.

Let Ê(λ; t) denote the agent’s expected transfer when he has to report truthfully

Ê(λ; t) =

∫
R
t(θ′)φ(θ′; 0, λ)dθ′.

Let λ̂(t) denote the corresponding induced precision

λ̂(t) =

max[argmax Ê(·; t)− c(·)], if max Ê(·; t)− c(·) ≥ 0,

0, otherwise.

Lemma 6. Suppose f satisfies increasing elasticity above 1. Suppose the agent has

to report truthfully. Given a symmetric transfer rule t̃ and induced λ∗ = λ̂(t̃), the

new transfer

t̃′(x) =

 1, if λ∗|x| < η−1(1),

t̃(x), otherwise

can induce a weakly higher precision λ̂(t̃′) ≥ λ̂(t̃).
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Proof of Lemma 6. Let ∆t = t̃′ − t̃. I shall show that

Ê(λ∗; ∆t) ≥ Ê(λ; ∆t) for all λ ≤ λ∗.

This implies that λ̂(t̃′) ≥ λ̂(t̃) since λ̂(t) = max[argmax Ê(·; t)− c(·)].
Consider two cutoff transfers 0 < d1 < d2 ≤ η−1(1)/λ∗. For all λ ≤ λ∗, we have

η(λd1) ≤ 1, η(λd2) ≤ 1. By Lemma 2,

∂2E(λ; d)

∂λ∂d
≥ 0 ⇔ η(λd) ≤ 1.

This implies ∂E(λ;d)
∂λ

increases in d ∈ [d1, d2] for all λ ≤ λ∗, which implies E(λ; d2) −
E(λ; d1) increases in λ ∈ [0, λ∗]. As ∆t is an integral of such difference of cutoff

transfers and Ê(λ; t) is linear in t, Ê(λ; ∆t) increases in λ ∈ [0, λ∗].

Lemma 7. Suppose f satisfies increasing elasticity above 1. Let η−1(1) < x1 < x2.

Then
ϕ(λ′x2)

ϕ(λ′x1)
≥ ϕ(x2)

ϕ(x1)
for all λ′ < 1.

Proof of Lemma 7. By Lemma 1,

ln
ϕ(λ′x)

ϕ(x)
=

∫ 1

λ′
η(λx)d lnλ.

Then,
ϕ(λ′x1)

ϕ(x1)
≤ ϕ(λ′x2)

ϕ(x2)
for all λ′ < 1

is equivalent to ∫ 1

λ′
η(λx1)d lnλ ≤

∫ 1

λ′
η(λx2)d lnλ for all λ′ < 1.

Let y = lnλ, then it suffices to show∫ 0

lnλ′
η(x1 exp(y))dy ≤

∫ 0

lnλ′
η(x2 exp(y))dy for all λ′ < 1.
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Let ∆y = ln(x2/x1) > 0. Then it suffices to show∫ 0

lnλ′
η(x2 exp(y −∆y))dy ≤

∫ 0

lnλ′
η(x2 exp(y))dy for all λ′ < 1.

Let g(y) = η(x2 exp(y)). Then it suffices to show∫ 0

lnλ′
g(y −∆y)dy ≤

∫ 0

lnλ′
g(y)dy for all λ′ < 1. (4)

Note that function g(y) is increasing in y ∈ [ln η−1(1)
x2

, 0] and single-crosses 1 from

below at ln η−1(1)
x2

.

If lnλ′ ≥ −∆y, then for all y ∈ [lnλ′, 0],

g(y) ≥ g(lnλ′) ≥ g(−∆y) ≥ g(y −∆y).

Suppose lnλ′ < −∆y. Equation (4) is∫ −∆y

lnλ′−∆y

g(y)dy ≤
∫ 0

lnλ′
g(y)dy for all λ′ < 1.

I can subtract
∫ −∆y

lnλ′ g(y)dy from both sides. Then the inequality becomes

∫ lnλ′

lnλ′−∆y

g(y)dy ≤
∫ 0

−∆y

g(y)dy for all λ′ < 1.

It holds since for all y ∈ [−∆y, 0], y′ ∈ [lnλ′ −∆y, lnλ′],

g(y) ≥ g(−∆y) ≥ g(lnλ′) ≥ g(y′).

Proof of Theorem 1 (3) implies (1) and Proof of Theorem 2. Suppose that f satisfies

increasing elasticity above 1. If there is no t such that λ(t) > 0, then the problem

is trivial.24 Now suppose there exists a t such that λ(t) > 0. In step 1, I shall show

that for all transfer t with λ(t) > 0, I can construct a new cutoff transfer d such that

λ(d) ≥ λ(t). That is, cutoff transfer d weakly improves over t. In step 2, I shall

24In this case, we adopt the convention that every transfer is optimal.
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optimize over cutoff transfers and prove Theorem 2. In step 3, I show uniqueness

under stronger conditions.

Step 1: Optimality of Cutoff Transfers

Fix a transfer rule t. First, I show that there exists a transfer rule t∗(θ − a) such

that given t∗, the agent chooses precision λ(t) when he has to report truthfully. That

is,

λ̂(t∗) = λ(t).

For the transfer rule t that depends on the state and the report, Lemma 4 gives us the

desired t∗. Now assume that t depends only on the difference between the state and

the report, θ − a. The construction of t∗ is simpler and is as follows. Let a(s;λ(t))

denote the agent’s report after observing signal s at the precision λ(t).

a(s;λ(t)) = argmax
a

∫
R
t(θ′ − a)φ(θ′; s,λ(t))dθ′.

As both t and φ are translation invariant, a(s;λ(t))− s is a constant. I define a new

transfer rule t∗ by

t∗(x) = t(x+ s− a(s;λ(t))).

Given transfer t∗, the agent reports truthfully at λ(t). Note that replacing t by t∗

only changes the agent’s report by a constant. Two transfers t and t∗ provide the

same incentive for the agent to choose λ, i.e.,

E(·; t) = E(·; t∗), λ(t∗) = λ(t).

I define an auxiliary problem: the agent has to reveal his signal. The agent’s expected

transfer is

Ê(λ; t∗) =

∫
R
t∗(θ′)φ(θ′; 0, λ)dθ′.

It must be true that for all λ ∈ R+,

Ê(λ; t∗) ≤ E(λ; t∗) (5)

and

Ê(λ(t); t∗) = E(λ(t); t∗). (6)

The inequality holds as the agent loses the flexibility to misreport in the auxiliary
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problem. The equality holds as the agent reports truthfully at λ = λ(t). By Equation

(5) and (6),

λ̂(t∗) = λ(t∗) = λ(t).

Then, I symmetrify the transfer rule t∗ to obtain

t̃(x) =
1

2
[t∗(x) + t∗(−x)].

For all λ ∈ R+, we have

Ê(λ; t̃) = Ê(λ; t∗).

λ̂(t̃) = λ̂(t∗) = λ(t)

By Lemma 6, I can augment transfer t̃ to a new transfer t̃′

t̃′(x) =

 1, if λ(t)|x| < η−1(1),

t̃(x), otherwise

and induces higher precision

λ̂(t̃′) ≥ λ̂(t̃) = λ(t)

Then I can construct a cutoff transfer d. I pin down the cutoff by requiring that

cutoff transfer d and t̃′ offers the same expected transfer at λ(t), i.e.,

E(λ(t); d) = Ê(λ(t); t̃′). (7)

Let ∆t(x) = 1|x|≤d− t̃′(x) denote the transfer difference. The transfer difference must

take the form

∆t(x)


= 0, if |x| ≤ η−1(1)/λ(t),

≥ 0, if η−1(1)/λ(t) < |x| ≤ d,

≤ 0, otherwise.

Compare the expected transfer given cutoff transfer d and the expected transfer t̃′ in

the auxiliary problem.

E(λ; d)− Ê(λ; t̃′) =

∫
R
∆t(θ′)φ(θ′; 0, λ)dθ′
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Consider y1, y2 such that η−1(1)/λ(t) < y1 < y2. Let x1 = λ(t)y1, x2 = λ(t)y2. Then

η−1(1) < x1 < x2. By Lemma 7, for all λ < λ(t), we have

ϕ(x2λ/λ(t))

ϕ(x1λ/λ(t))
≥ ϕ(x2)

ϕ(x1)
.

ϕ(λy2)

ϕ(λy1)
≥ ϕ(λ(t)y2)

ϕ(λ(t)y1)
.

φ(y2; 0, λ)

φ(y1; 0, λ)
≥ φ(y2; 0,λ(t))

φ(y1; 0,λ(t))
.

This implies

E(λ; d)− Ê(λ; t̃′) ≤ 0, if λ < λ(t).

As λ̂(t̃′) ≥ λ(t) and the definition λ(t) = max[argmaxE(·; t)− c(·)], we have λ(d) ≥
λ(t) (see Figure 8).

E

λ

c(λ)

E(λ; t)
Ê(λ; t∗) = Ê(λ; t̃)

λ(t)

Ê(λ; t̃′)

λ̂(t̃′)

E(λ; d)

Figure 8: Expected Transfer

Step 2: Proof of Theorem 2

Next, I optimize over cutoff transfers to prove Theorem 2 and show the existence

of the optimal cutoff transfer. If we set d < d̄, the agent never chooses to work. So

consider d ≥ d̄.

Case 1: λ(d̄)d̄ ≥ η−1(1).

Let λ̃ = η−1(1)/d̄ ≤ λ(d̄). For any d > d̄, if λ(d) ≤ λ̃, then λ(d) ≤ λ(d̄). Consider
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λ(d) > λ̃. For all d ≥ d̄ and λ ≥ λ̃,

η(λd) ≥ η(d̄λ̃) ≥ 1 ⇒ ∂2E(λ; d)

∂λ∂d
≤ 0.

Since λ(d) = max[argmaxE(·; d) − c(·)]. By the Topkis’ monotone comparative

statics theorem, λ(d) ≤ λ(d̄) for all d ≥ d̄. Thus, d̄ is the optimal cutoff.

Case 2: λ(d̄)d̄ < η−1(1). For all d̄ ≤ d ≤ d∗ and λ ≤ η−1(1)
d

,

η(λd) ≤ 1 ⇒ ∂2E(λ; d)

∂λ∂d
≥ 0.

This implies λ(d) is increasing in d for d̄ ≤ d ≤ d∗. Now suppose d > d∗. If

λ(d)d ≤ η−1(1), then

λ(d) ≤ η−1(1)/d ≤ η−1(1)/d∗ = λ∗.

If λ(d)d > η−1(1), for all d ≥ d∗ and λ ≥ η−1(1)/d,

∂2E(λ; d)

∂λ∂d
≤ 0 ⇒ λ(d) ≤ λ(d∗)

by the Topkis’ monotone comparative statics theorem.

Now, I prove existence. In case 1, d̄ is the optimal cutoff transfer. In case 2, I

can increase d starting from d̄. Before hitting d∗, λ(d) increases in d. As η−1(1) is

well-defined and finite given that f satisfies increasing elasticity above 1. Eventually,

increasing λ(d)d can hit η−1(1). Thus, d∗ is well defined.

Step 3: Uniqueness

Finally, suppose that ϕ satisfies strictly increasing elasticity above 1, the cost

function is continuously differentiable, and the optimal precision is an interior solution

(not 0 or +∞).25 I show that the optimal transfer rule is unique. First, I show that

for any transfer rule t that is not a cutoff transfer, the cutoff transfer constructed

above induces a strictly larger precision: λ(d) > λ(t). Since t is not a cutoff transfer,

25Distribution ϕ satisfies strictly increasing elasticity above 1 if η(·) single-crosses 1 from below,
{x|η(x) = 1} is a singleton, and is strictly increasing after the cross.
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at least one of t̃′ − t̃ and ∆t is a non-zero function. If t̃′ − t̃ is non-zero,

∂[Ê(λ; t̃′)− Ê(λ; t̃)]

∂λ

∣∣∣∣
λ=λ∗

> 0. (8)

This follows by a strict version of Lemma 6 in which strictly increasing elasticity

above 1 implies

η(λd) < 1 ⇒ ∂2E(λ; d)

∂λ∂d
> 0.

As Ê(·; t̃)− c(·) is continuously differentiable,26 λ̂(t̃) is interior, Equation (8) implies

λ̂(t̃′) > λ̂(t̃) by Edlin and Shannon (1998). This implies λ(d) > λ(t).

If ∆t is non-zero, next I show

∂[E(λ; d)− Ê(λ; t̃′)]

∂λ

∣∣∣∣
λ=λ(t)

> 0. (9)

By the construction of ∆t, ∫
∆t(x)φ(x; 0,λ(t))dx = 0 (10)

∫
∆t(x)ϕ(λ(t)x)dx = 0

Take some small ϵ > 0. Let λ′ = λ(t) exp(ϵ). Consider

E(λ′; d)− Ê(λ′; t̃′) =

∫
∆t(x)λ′ϕ(λ′x)dx

By ln(λ′)− ln(λ(t)) = ϵ and Lemma 1,

lnϕ(λ′x)− lnϕ(λ(t)x) = −η(λ(t)|x|))ϵ+ O(ϵ)

26Ê(·; t̃) is continuously differentiable as ϕ is continuously differentiable.

45



Thus,

E(λ′; d)− Ê(λ′; t̃′) =

∫
∆t(x)λ′ϕ(λ′x)dx

= λ′
∫

∆t(x)ϕ(λ(t)x) exp(−ϵη(λ(t)|x|))dx+ O(ϵ)

= −λ′
∫

∆t(x)ϕ(λ(t)x)ϵη(λ(t)|x|)dx+ O(ϵ)

where the last equality follows by Equation (10).

lim
ϵ→0

E(λ′; d)− Ê(λ′; t̃′)

ϵ
= −λ(t)

∫
∆t(x)ϕ(λ(t)x)η(λ(t)|x|)dx

= −
∫

∆t(x)φ(x; 0,λ(t))η(λ(t)|x|)dx

∂[E(λ; d)− Ê(λ; t̃′)]

∂λ

∣∣∣∣
λ=λ(t)

= − 1

λ(t)

∫
∆t(x)φ(x; 0,λ(t))η(λ(t)|x|)dx

which is strictly positive by Equation (10), η(y) being strictly increasing for y >

η−1(1), and ∆t(x) being supported on |x| ≥ η−1(1)
λ(t)

. Again by Ê(·; t̃′) − c(·) being

continuously differentiable, λ̂(t̃′) is interior, Equation (9) implies λ(d) > λ̂(t̃′) ≥ λ(t)

by Edlin and Shannon (1998).

I have shown that for any transfer rule t that is not a cutoff transfer, λ(d) >

λ(t). Thus, any optimal transfer must be a cutoff transfer. Given strictly increasing

elasticity above 1, cost function being continuously differentiable, optimal precision

being interior, all comparative statics analyses in the proof of Theorem 2 are strict.

Thus, there exists a unique optimal transfer rule, which is a cutoff transfer.

Lemma 8. Suppose that for all cost functions, there exists an optimal transfer that is

a cutoff transfer. For a cost function c ∈ C1, let d∗ be the optimal cutoff and λ∗ be the

induced precision with η(λ∗d∗) ≥ 1. Then for all x1 ∈ [0, λ∗d∗) and x2 ∈ [λ∗d∗,+∞),

η(x1) ≤ η(x2).

Proof of Lemma 8. Without loss I can assume c(λ∗) = E(λ∗; d∗) since I can increase

c by a constant without affecting d∗ and λ∗. Similarly, without loss of generality, I
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assume that λ∗ uniquely maximizes E(λ; d∗)− c(λ).27

Towards a contradiction, suppose ∃x1 ∈ [0, λ∗d∗), x2 ∈ [λ∗d∗,+∞) such that

η(x1) > η(x2). As η(·) is continuous, I can pick δ1 > 0, δ2 > 0 small enough such that

for all y1 ∈ [x1

λ∗ − δ1,
x1

λ∗ + δ1] and y2 ∈ [x2

λ∗ − δ2,
x2

λ∗ + δ2],

η(y1λ
∗) > η(y2λ

∗) (11)

and ∫ x1
λ∗+δ1

x1
λ∗−δ1

φ(x; 0, λ∗)dx =

∫ x2
λ∗+δ2

x2
λ∗−δ2

φ(x; 0, λ∗)dx.

I define

∆t(x) = −1|x|∈[ x1
λ∗−δ1,

x1
λ∗+δ1] + 1|x|∈[ x2

λ∗−δ2,
x2
λ∗+δ2]

and a new transfer t(x) = 1|x|≤d∗ +∆t(x).

I can set δ1 and δ2 to be small enough such that the agent reports truthfully given

the transfer t, since φ′(d∗; 0, λ∗) < 0 is bounded from above due to η(λ∗d∗) ≥ 1. To

see this, it suffices to consider the case λ∗ = 1. If the agent reports truthfully, the

expected transfer is 2Φ(d∗) − 1. Now suppose the agent misreports by ϵ′ > 0. Then

his expected transfer is

Φ(d∗ − ϵ′) + Φ(d∗ + ϵ′)− 1

+Φ(x2 − ϵ′ + δ2)− Φ(x2 − ϵ′ − δ2) + Φ(x2 + ϵ′ + δ2)− Φ(x2 + ϵ′ − δ2)

−[Φ(x1 − ϵ′ + δ1)− Φ(x1 − ϵ′ − δ1)]− [Φ(x1 + ϵ′ + δ1)− Φ(x1 + ϵ′ − δ1)]

where the second and the third line can be made arbitrarily close to 0 as δ1 and δ2

tend to 0, since F is continuous. Moreover, the difference

Φ(d∗ − ϵ′) + Φ(d∗ + ϵ′)− 2Φ(d∗)

is strictly negative and is strictly decreasing in ϵ′, due to f being single-peaked and

η(d∗) = −f ′(d∗)
ϕ(d∗)

d∗ ≥ 1. Therefore, the expected transfer under misreport is lower than

2Φ(d∗)− 1 when δ1 and δ2 are small enough.

Then we have

E(λ∗; t) = E(λ∗; d∗).

27Otherwise, I can always increase c(λ) for λ ̸= λ∗, without affecting d∗ and λ∗.
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By Lemma 1 and Equation (11),

∂[E(λ; t)− E(λ; d∗)]

∂λ

∣∣∣∣
λ=λ∗

> 0.

Since previously λ∗ uniquely maximizes E(λ; d∗)− c(λ), we can pick δ1 and δ2 small

enough such that λ(t) ∈ (λ∗ − ϵ, λ∗ + ϵ), for some small ϵ > 0. As c is continuously

differentiable, E(λ∗; t) = E(λ∗; d∗),

∂[E(λ; t)− E(λ; d∗)]

∂λ

∣∣∣∣
λ=λ∗

> 0,

by Edlin and Shannon (1998) we have λ(t) > λ∗, contradicting that (d∗, λ∗) is optimal

(Figure 9).

E

λ

c(λ)

E(λ; t)

E(λ; d∗)

λ∗

Figure 9: Expected Transfer

Proof of Theorem 1 (2) implies (3). Suppose that for all increasing and continuously

differentiable cost functions, there exists an optimal transfer that is a cutoff transfer.

Take a increasing cost function c0 ∈ C1, with d0 and λ0 being the corresponding opti-

mal cutoff and induced precision. I can pick c0 such that λ0 is the unique maximizer

of28 E(·; d0) − c0(·). As E(·; d0) − c(·) is continuously differentiable, I can use the

28Given any increasing cost function c0 ∈ C1, I can always construct a new increasing and con-
tinuously differentiable cost function by increasing c0(λ) for all λ ̸= λ0 while keeping c0(λ0) and
dc0
dλ |λ=λ0

unchanged.
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first-order approach. As

∂2E(λ; d)

∂λ∂d
≤ 0 ⇔ η(λd) ≥ 1,

we have η(λ0d0) ≥ 1. If not, I can slightly increase d0, which leads to a larger

∂E(λ; d)

∂λ

∣∣∣∣
λ=λ0

This induces a larger λ > λ0, a contradiction.29

Since the cutoff transfer d0 is the optimal transfer and c0 ∈ C1, by Lemma 8 and

η(·) being continuous,

η(x) ≤ η(λ0d0) if x ≤ λ0d0

η(x) ≥ η(λ0d0) if x ≥ λ0d0.

Note that η(0+) < 0 (as f is integrable around 0), η(λ0d0) ≥ 1, η(·) is continuous, I
can find the largest x where η(·) crosses 1 from below

x1 = min{x|η(x′) ≥ 1, if x′ ≥ x} ≤ λ0d0.

η(x) ≥ 1 when x ≥ x1.

Now pick d1 and λ1 such that λ1d1 = x1. Construct an increasing cost function

c1 ∈ C1 such that

c1(λ) > E(λ; d1) if λ ̸= λ1

c1(λ1) = E(λ1; d1)

∂E(λ; d1)

∂λ

∣∣∣∣
λ=λ1

=
dc1(λ)

dλ

∣∣∣∣
λ=λ1

.

As
∂2E(λ; d)

∂λ∂d
≤ 0 ⇔ η(λd) ≥ 1

and η(x) ≥ 1 for all x ≥ x1, the cutoff transfer d1 is the best among all cutoff

transfers for cost function c1. Since there exists an optimal transfer that is a cutoff

transfer, cutoff transfer d1 is the optimal transfer, and λ1 is the maximum precision.

29As λ0 is the unique maximizer of E(·; d0)− c0(·), I can always make the increment on d0 small
enough such that the new maximizer never falls in [0, λ0).
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By Lemma 8,

η(x) ≤ 1 if x ≤ x1

η(x) ≥ 1 if x ≥ x1.

Thus, η(·) single-crosses 1 at x1.

Similarly, for all x2 > x1, I can pick d2 and λ2 such that λ2d2 = x2. Pick a

increasing cost function c2 ∈ C1 such that

c2(λ) > E(λ; d2) if λ ̸= λ2

c2(λ2) = E(λ2; d2)

∂E(λ; d2)

∂λ

∣∣∣∣
λ=λ2

=
dc2(λ)

dλ

∣∣∣∣
λ=λ2

By the same argument, we have

η(x) ≤ η(x2) if x ≤ x2

η(x) ≥ η(x2) if x ≥ x2.

Thus, η(·) is increasing once it goes above 1 at x1.

Proof of Proposition 1. First suppose for all λ, c2(λ) ≥ E(λ; d∗(c1)). Then d̄(c2) ≥
d∗(c1), implying d∗(c2) ≥ d∗(c1). Moreover, since

for all λ ≥ λ∗(c1) and d ≥ d∗(c1),
∂2E(λ; d)

∂λ∂d
≤ 0

and c2 − c1 is increasing,

max[argmax
λ

E(λ; d∗(c2))− c2(λ)] ≤ max[argmax
λ

E(λ; d∗(c1))− c1(λ)].
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Thus, λ∗(c2) ≤ λ∗(c1). Now suppose for some λ, c2(λ) ≤ E(λ; d∗(c1)). Note that

max[argmax
λ

E(λ; d∗(c1))− c2(λ)]

=max[argmax
λ

E(λ; d∗(c1))− c1(λ)− (c2(λ)− c1(λ))]

≤max[argmax
λ

E(λ; d∗(c1))− c1(λ)] = λ∗(c1)

where the inequality follows by c2 − c1 being increasing. Thus,

λ(d∗(c1); c2)d
∗(c1) ≤ λ∗(c1)d

∗(c1) = η−1(1).

By the proof of Theorem 2, d∗(c2) ≥ d∗(c1) and λ∗(c2) ≤ λ∗(c1).

Proof of Corollary 2. Changing the noise from ε1 to kε1 is equivalent to keeping the

noise at ε1 and changing the cost function from c1(λ) to c2(λ) = c1(kλ). Notice that

c2(λ)− c1(λ) = c1(kλ)− c1(λ)

which is increasing in λ due to the convexity of c1. The conclusion follows by Propo-

sition 1.

Proof of Proposition 2. The proof of the first part remains the same as Theorem 1.

For proving the second part, the only difference is to note that the expected transfer

is

E(λ; d) =

∫ λd

0

ϕ(r)
πn/2

Γ(n/2 + 1)
drn

where Γ is the gamma function and πn/2

Γ(n/2+1)
rn is the volume of the n-dimensional

ball.
∂2E(λ; d)

∂λ∂d
=

nπn/2

Γ(n/2 + 1)
ϕ(λd)(λd)n−1[n− η(λd)].

Thus,
∂2E(λ; d)

∂λ∂d
≥ 0 ⇔ η(λd) ≤ n.

The rest of the argument remains the same.
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Proof of Proposition 3. The optimality of cutoff transfers follows by the Proof of The-

orem 1 (3) implies (1), as Gaussian distributions satisfy increasing elasticity.

For proving the counterpart of Theorem 2, it suffices to notice that

∂2E(λ; d)

∂λ∂d
=

nπn/2

Γ(n/2 + 1)
ϕ(Λ(λ)d)(Λ(λ)d)n−1dΛ(λ)

dλ
[n− η(Λ(λ)d)]

where Λ(λ) = ( 1
λ2
p
+ 1

λ2 )
− 1

2 for uniform prior and Λ(λ) = ( 1
λ2
p
+ 1

λ2+λ2
0
)−

1
2 for Gaussian

prior.

Proof of Proposition 4. I first prove the case of uniform prior. Given the agent’s

signal s, his posterior belief about the state is N (s, 1/λ2). Since the principal’s signal

is Gaussian centered at θ with variance 1
λ2
p
, the agent’s posterior belief about sp is

N (s,
1

λ2
+

1

λ2
p

).

Now the agent’s payoff maximization problem is same as in Section 4 except that sp

replaces θ and his precision is ( 1
λ2 +

1
λ2
p
)−

1
2 . Thus, Proposition 4 follows from Theorem

1 and 2.

The proof for the Gaussian prior is similar. The only difference is that conditional

on a signal s, the agent’s posterior about sp is

N (
sλ2

λ2
0 + λ2

,
1

λ2
0 + λ2

+
1

s2p
).

Thus, the precision is Λ = [ 1
λ2
0+λ2 +

1
s2p
]−

1
2
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