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1 Introduction
Auctions for durable assets such as houses and artwork are commonly recurring: A subsequent

auction is often held if the initial one fails to sell the item. Despite the prevalence of recurring

auctions, efforts to understand their existence and equilibrium properties have been scarce. This

paper fills the gap by providing both a theoretical model and an empirical analysis of recurring

auctions. We show that recurring auctions can outperform single-round mechanisms in terms of

efficiency and revenue, and evaluate the related gains in an empirical setting. The results aid in

explaining the ubiquity of such mechanisms. Our analyses also shed light on how to fine-tune

recurring auctions to further promote efficiency and revenue.

Costly entry, which is usually the case in reality,1 underlies the dominance of recurring auctions

over single-round ones. We illustrate this point by setting up an auction model with independent

private values (IPV) and costly entry. In the model, a seller has one item for sale and there is a fixed

pool of potential buyers whose values are independently drawn from the same distribution. The

seller holds auctions in a recurring manner: If an auction fails, either because no bidder shows up or

because the reserve price is not met, she will hold a follow-up auction in the next period until some

time limit is reached. Potential buyers decide whether to incur an entry cost to participate in an

auction and become a bidder as time progresses. To align with our empirical context, in which the

majority of the entry cost comes from the financial constraints and the eligibility screening process,

we assume that potential buyers know their private values before they make entry decisions.2 We

characterize the equilibrium of the recurring auction game with any arbitrary time limit and reserve

price sequence.

Absent costly entry, it is clear from the revelation principle that a single-round auction is opti-

1For example, it may take time and effort to qualify as a bidder and prepare a bid. In particular, a deposit is often
required in auctions for valuable assets, which imposes a liquidity cost on the bidder.

2A voluminous literature theoretically studies auctions with costly entry. One strand of the literature, which inter-
prets entry costs as information acquisition costs, assumes that potential buyers are uninformed of their values when
they make entry decisions (e.g., Levin and Smith, 1994; Burguet and Sakovics, 1996). Another strand focuses on the
costs of preparing bids or achieving eligibility and assumes that potential buyers are fully informed of their values (e.g.,
Samuelson, 1985; McAdams, 2015). Recently, a growing literature combines the two modeling approaches and allows
potential buyers to receive an arbitrarily informative signal before deciding whether to enter (Roberts and Sweeting,
2013; Gentry, Li, and Lu, 2017). This paper follows the second strand and considers fully informed entry, which
seems plausible in our empirical application, given that it is relatively easy for a local resident to inspect the house
for sale—while it takes more effort to raise funds to meet the deposit and paid-in-full requirement (see Section 4.1 for
details of the institutional background).
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mal for either efficiency or revenue.3,4 However, with costly entry, recurring auctions give rise to

sorted entry and, as a result, dominate single-round auctions. Specifically, in a recurring auction,

potential buyers sort their timing of entry according to their private values for the item. Strong

potential buyers (who have high values) tend to enter early, while weak potential buyers (who have

low values) tend to wait until they have a good chance of winning. This is because strong potential

buyers lose more from waiting, and weak potential buyers’ entry costs are more likely wasted if

they enter early.

The sorted entry pattern increases the expected total surplus in two ways.5 First, it reduces

the probability that two or more bidders simultaneously incur the entry cost, and thereby reduces

waste. In particular, weak potential buyers wait until they are sure that others are also not too

strong, then enter the auction. This way, their entry costs are less often incurred and wasted in

early rounds. Second, it increases the probability that the item is ultimately sold. When an auction

fails, potential buyers update their beliefs about others’ private values. In late rounds, they infer that

the market is less competitive, since no potential rivals had high enough values to enter in previous

rounds. This encourages them to enter the auction, which reduces the likelihood that the item goes

unsold. Because of these two benefits, recurring auctions with appropriately chosen reserve prices

always generate higher expected total surplus than single-round auctions (Theorem 1). Similarly,

we obtain a revenue dominance result (Theorem 2).

We then derive the optimal sequence of reserve prices in a recurring auction.6 If the seller aims

to maximize efficiency, she trades off between making a marginal potential buyer enter at time t or

at time t + 1. Consider a thought experiment in which the marginal potential buyer enters at time

t +1 instead of time t. Then there is a social gain, since the marginal potential buyer’s entry cost is

less often incurred because his entry is conditional on no entry by other potential buyers at time t.

However, there are also two kinds of social loss. First, there is a loss from discounting because the

3In fact, since potential buyers are ex ante symmetric, any standard auction format (i.e., first-price auction, second-
price auction, English auction, Dutch auction) without reserve price achieves fully efficient allocation. With an appro-
priately chosen reserve price, as in Myerson (1981), these auction formats maximize revenue.

4This implies that price-skimming due to uncertain demand is not why recurring auctions perform better in our
setting. We thank a reviewer for suggesting this connection.

5Section 3.1 illustrates these two benefits in detail with a simple example.
6This is a non-trivial task, since an explicit solution for the equilibrium is generally unattainable for an arbitrary

reserve price sequence. We overcome this challenge by optimizing over entry thresholds directly and then recovering
the corresponding reserve prices.
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item may be allocated 1 period later. Second, entry at time t + 1 by other potential buyers could

have been avoided had the marginal potential buyer entered at time t. In the optimum, the choice

of reserve prices equalizes the social gain and loss from making a marginal potential buyer enter at

time t + 1 instead of time t (Theorem 3). If the seller aims to maximize profit, she faces a similar

trade-off, and the optimal reserve prices can be characterized accordingly (Theorem 4). In partic-

ular, the profit-maximizing condition can be obtained by replacing the marginal potential buyer’s

value with his virtual value in the efficiency-maximizing condition. This is intuitive, because we

know from the mechanism design literature that the virtual value accrues to the seller while the

value contributes to social surplus.

Given the theoretical results, it is natural to ask the following quantitative questions in an

empirical setting: (i) What are the magnitudes of the efficiency gain and the revenue gain from

using a recurring auction relative to a single-round auction? (ii) How much can efficiency and

revenue be improved for recurring auctions in practice?

We apply our theory to home foreclosure auctions in China, which represent a significant mar-

ket. In 2019, over 118,000 foreclosed houses were transacted for 28 billion USD. The market size

continues to grow at a high speed, with 149,000 foreclosed houses transacted for 43 billion USD

in 2023. Using home foreclosure auction data for Fujian province from 2017 to 2019, we estimate

structural parameters in a recurring auction model. The data attest to the important features in our

theoretical model setup: Up to three auctions were held in a row for a foreclosed property; the fail-

ure rate of the initial auctions was high (38%), while only 7% of the foreclosed homes went unsold

after all follow-up auctions; and entry costs were considerable due to the financial constraints and

the eligibility screening process.7

Using simulated maximum likelihood with importance sampling (Ackerberg, 2009), our struc-

tural estimation comprises two steps. First, for each auction round and each simulation, we solve

for the equilibrium entry thresholds using the intertemporal indifference conditions. Second, we

calculate the likelihood using the entry thresholds and observable auction outcomes. We contrast

the estimation results with those obtained when the intertemporal link between auction rounds is

ignored and each auction round is treated as a single-round auction. The recurring auction model

performs better in predicting both in-sample and out-of-sample deal prices and numbers of bid-

7See Section 4.1 for more details.
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ders. That the estimation results differ significantly across the two settings affirms the necessity of

incorporating the intertemporal link between auction rounds in the empirical analysis.

Our counterfactual analyses support the theoretical predictions: compared with single-round

auctions with the same (first-period) reserve price, recurring auctions raise the annual efficiency by

3.40 billion USD (16.60%) and revenue by 2.97 billion USD (15.92%) in China’s home foreclosure

market. Using the optimal reserve price sequences derived from our model can further improve

efficiency by 0.80 billion USD (3.35%) and revenue by 0.66 billion USD (3.06%), respectively.

Most of the efficiency and revenue gains are realized by holding a 2-round recurring auction.

Increasing the recurring auction rounds from 2 to 3 has a relatively small impact on the auction

outcome.

This paper contributes to the literature on mechanism design with costly entry. Stegeman

(1996) investigates efficiency-maximizing mechanisms in an independent private value (IPV) set-

ting with costly entry. Lu (2009) and Celik and Yilankaya (2009) study revenue-maximizing mech-

anisms within the same framework. These studies all focus on single-round mechanisms in the

sense that messaging and allocation happen within the same period. This single-round assumption

is innocuous with free entry. However, it misleads the auction design when entry is costly. Notably,

in the single-round mechanism design problem, it is impossible for potential buyers to acquire any

information about others’ values before deciding whether to enter, because the mechanism only

assigns allocation conditional on entry. This paper complements prior literature by incorporating

the time dimension and considering a dynamic auction setting. We demonstrate how sorted entry

emerges in recurring auctions, which allows potential buyers to update their beliefs about competi-

tors’ values and make more efficient entry decisions. McAfee and Vincent (1997); Skreta (2015);

and Liu, Mierendorff, Shi, and Zhong (2019) also consider auction games with the possibility of

follow-up auctions. However, they abstract away from entry costs and focus on the implications of

limited seller commitment on the reserve price sequence and optimal auction design.

Previous literature typically focuses on single-round auctions.8 The only exception, to our

knowledge, is Burguet and Sakovics (1996), in which the authors consider 2-period recurring auc-

8In a single-round auction in which bids can be submitted or updated over time, dynamic considerations play an
important role when rational inattention or bidding frictions—such as limited or stochastic bidding opportunities—
exist (Hopenhayn and Saeedi, 2016; Cho, Paarsch, and Rust, 2024), or when bidders must pay a fee to place or update
a bid (Dee, 2020). In this case, bidders update their beliefs upon observing previous bids rather than auction failures.
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tions while assuming uninformed entry and no discounting. Because potential buyers do not know

their values the sorted entry pattern does not appear and the benefit whereby weak potential buyers

wait to avoid wasting entry costs does not exist. Still, an encouraging entry effect exists in the sec-

ond round, because potential buyers infer that first-round entrants had bad draws upon observing

auction failure. Due to this effect, the authors conclude that a recurring auction can generically

achieve greater efficiency and higher revenue than a single-round auction. In the informed en-

try case, we demonstrate two benefits of the recurring auction, as stated previously: We establish

the efficiency and revenue dominance result and provide a complete characterization of optimal

reserve price sequences with any number of auction rounds and any discount rate.

Previous studies have considered other types of dynamics in auction games with costly entry.

Ye (2007) and Quint and Hendricks (2018) analyze auction games in which an indicative bidding

round precedes the actual auction to screen potential buyers. McAdams (2015) studies sequential

costly bidding in a second-price auction. Bulow and Klemperer (2009) and Roberts and Sweeting

(2013) also consider sequential costly bidding but fix the order in which potential buyers move.

We contribute to the empirical literature in two ways. First, we introduce and study a new

dynamic setting in which multiple auctions can be held across time for the same item. To our

knowledge, this is the first empirical study to incorporate the possibility of follow-up auctions

upon auction failure.9 Building on previous research on single-round auction estimation (Laffont,

Ossard, and Vuong, 1995; Guerre, Perrigne, and Vuong, 1995; Guerre, Perrigne, and Vuong, 2000;

Hortaçsu and Perrigne, 2021; Luo, Sang, and Xiao, 2024), we propose a framework for estimat-

ing recurring auctions with costly entry. Our findings suggest that ignoring the dynamics when

auctions are recurring can result in underestimating bidders’ value distribution and overestimat-

ing entry costs. This is because the single-round model overlooks potential buyers’ self-selection

across time and incorrectly attributes low transaction prices in late auction rounds to low values

and high entry costs. While a plethora of auction dynamics have been explored in the theoretical

literature, related empirical studies are scarce and most focus on repeated sales or the procurement

of homogeneous items. For instance, in a repeated highway procurement setting, Jofre-Bonet

and Pesendorfer (2000, 2003) and Groeger (2014) empirically investigate the effects of backlog

9Since we consider endogenous entry in recurring auctions, this paper is related to a growing empirical literature
that considers endogenous entry in single-round auctions (see, e.g., Li and Zheng, 2009; Athey, Levin, and Seira,
2011; Krasnokutskaya and Seim, 2011).
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or experience on bidders’ behavior. Jeziorski and Krasnokutskaya (2016) demonstrate that sub-

contracting allows suppliers to control their capacities more flexibly and thus alleviates dynamic

concerns.

Second, we contribute to the literature by structurally analyzing foreclosure auctions. Prior

studies focus on price discounts (Campbell, Giglio, and Pathak, 2011; Conklin, Coulson, Diop,

and Mota, 2023); negative spillover effects on neighborhoods (Anenberg and Kung, 2014); and the

causes of foreclosure (Corbae and Quintin, 2015), and typically employ a reduced-form approach.

This paper is one of the first to apply a structural approach to the study of foreclosure auctions.

Our estimation enables various counterfactual analyses, and thus informs better designs to promote

important social objectives.

The remainder of the paper proceeds as follows. Section 2 lays out the recurring auction

model and discusses the single-round benchmark. Section 3 provides some illustrative examples

and the theoretical results. Section 4 discusses the data and institutional background of home

foreclosure auctions and presents descriptive evidence. Section 5 proposes an empirical framework

to estimate the recurring auction model. Section 6 presents the estimation results and Section 7 the

counterfactual analyses. Section 8 concludes. All proofs are relegated to Appendix A.

2 Model
A seller has one item for sale, and her value for the item is vs. There are N potential buyers, indexed

by the set N := {1,2, . . . ,N}. Each potential buyer n ∈N has a private value vn for the item. The

values of the potential buyers are independently and identically distributed on the interval [v,v]

according to the cumulative distribution function F(·). The seller holds an English auction, or

possibly a sequence of English auctions, to sell the item. We focus on English auctions for ease

of exposition and to be consistent with the empirical application, in which the data are from open

outcry auctions. However, it is worth noting that revenue equivalence can be established in the

current setting, so our results hold for all standard auction formats. Participation or entry in an

auction is costly for potential buyers. The entry cost is K > 0. Potential buyers know their values

at the time they make entry decisions. It is natural to require that vs < v−K.

The timing of the auction game is as follows. An auction is held at time t = 1. If no buyer

shows up or bids above the reserve price at time t, the seller will hold another auction at time t +1
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until time T ≥ 1, after which the seller keeps the item forever. Before the game starts, the seller

sets and publicly announces a reserve price sequence r := (rt)1≤t≤T , where rt is the reserve price

in the auction (possibly) held at time t. If T = 1, we have a single-round auction; if T > 1, we

refer to the auction as a recurring auction.

At time t, if an auction is held—which implies that all previous auctions failed—potential

buyers simultaneously and independently decide whether to incur an entry cost of K to become

a bidder, and bidders who had entered previously are still eligible to bid without incurring the

entry cost again. For ease of exposition, we assume that potential buyers can only observe the bid

history but not the entry history in previous auctions. This implies that if an auction fails, potential

buyers cannot tell whether it is due to no entry or no bid above the reserve price.10 Once the entry

decisions are made, the auction begins and a price clock ascends continuously from the reserve

price. At the beginning of the auction, each bidder observes the number of all bidders. At every

instant, bidders decide whether to stay in the auction. If no bidder participates or all bidders drop

out at the reserve price, the auction fails and the game proceeds to the next period (or ends if this is

the last period T ). Otherwise, the price clock continues to ascend so long as two or more bidders

remain in the auction, and stops when only one bidder remains. The last bidder remaining in the

auction wins the item at the final clock price, and the auction game ends.

The common discount factor for the seller and potential buyers is δ ∈ (0,1). As long as the

item has not been sold, the seller derives a flow utility (1− δ )vs from the item in each period.

Everything described above, apart from potential buyers’ private values, is common knowledge.

Assumption 1 (Symmetric Equilibrium) Given that the potential buyers are ex ante symmetric,

throughout the paper we restrict our attention to the symmetric Perfect Bayesian Equilibrium (PBE)

of the auction game, whereby potential buyers employ identical entry and bidding strategies.

In the equilibrium analysis detailed in Section 3.2, we show that in equilibrium, bidders will bid

truthfully (i.e., a bidder will stay in the auction until the running price reaches his value) and that

potential buyers follow a cutoff entry strategy: There is a sequence of entry thresholds (v∗t )1≤t≤T ,

10As will be seen in Section 3.2, in the equilibrium we characterize no potential buyer chooses to delay bidding until
the next period conditional on entry. With this assumption, we do not need to specify the off-equilibrium-path belief
of potential buyers when they see an auction fail due to someone entering without submitting a bid. If this assumption
were dropped and entry history is also publicly observable, we could still obtain the same equilibrium characterization
with appropriately specified off-equilibrium-path belief.

7



such that at time t a potential buyer will enter the auction if and only if his value is above v∗t . In

particular, this means that even though paying the entry cost grants a potential buyer access to the

current and all subsequent auctions, the potential buyer bids above the reserve price immediately

after incurring the entry cost.

We take the single-round auction as a benchmark because it performs well in terms of both

efficiency and revenue. Celik and Yilankaya (2009) show that the single-round auction, with an

appropriately chosen reserve price, is optimal among all symmetric single-round mechanisms.

That is, with an appropriately chosen reserve price, the single-round auction can maximize either

the efficiency or the seller’s expected profit. Moreover, the authors provide conditions under which

the single-round auction is optimal among all single-round mechanisms, symmetric or not.11

Notably, a disadvantage of the single-round auction—or any other single-round mechanism—is

that potential buyers cannot learn anything about their rivals’ values before making entry decisions.

This foreshadows an efficiency loss in wasteful entry. In contrast, the recurring auction incorpo-

rates the time dimension, which allows potential buyers to make dynamic entry decisions. As such,

potential buyers have the opportunity to update their beliefs about others’ realized values and to

economize on their entry decisions. For example, if a potential buyer observes that no one has

participated in previous periods, he would infer that others do not have high values for the item

and thus feel more confident about entry in the auction. This comparison underlies the superior

performance of the recurring auction. We elaborate more on this point in the following section.

3 Illustrative Examples and Equilibrium Analysis

3.1 Illustrative Examples

Before we analyze the general model in detail, it will be beneficial to illustrate the main insights

using simple examples.

Example 1 There are N = 2 potential buyers whose values are independently and identically

drawn from the uniform distribution on [0,1]. The seller’s value is vs = 0. A potential buyer’s

entry cost is K = 0.2. The common discount factor is δ = 0.97.

11Under certain circumstances, an asymmetric equilibrium in a single-round auction can achieve the highest effi-
ciency or revenue (Stegeman, 1996; Lu, 2009). We discuss this in more detail at the end of Section 3.1.
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In this example, there is a unique equilibrium of the single-round auction with no reserve

price (Tan and Yilankaya, 2006). In the equilibrium, potential buyers use a cutoff entry strategy:

Potential buyer n participates and bids vn in the auction if and only if vn ≥ 0.45.12 This equilibrium

maximizes the expected total surplus among all single-round mechanisms (Stegeman, 1996). The

expected total surplus in this case is 0.39.

Now consider a 2-period recurring auction (i.e., T = 2) with a reserve price sequence (r1,r2) =

(0.14,0).13 As previously stated, bidders will bid truthfully in equilibrium conditional on entry.

To characterize the equilibrium, we only need to pin down entry thresholds. Intuitively, a strong

potential player (who has a high realized value) tends to enter early while a weak player tends to

wait, for two reasons. First, the strong player loses more if he waits and the item is bought by other

potential buyers; he also loses more to discounting if he wins in the next period compared with

winning now. And second, the weak player has a lower chance of winning in the current period,

which means the entry cost is more likely wasted. We therefore consider the following cutoff entry

strategy: Potential buyers whose values are above v∗1 enter in the first period; those with values in

between v∗1 and v∗2, with v∗2 ≤ v∗1, enter in the second period; and those whose values fall below

v∗2 never enter. Equilibrium entry cutoffs can be pinned down by the indifference conditions of

marginal potential buyers: A potential buyer with a cutoff value should be indifferent between

entering now or in the next period (or, if the current period is the last period, not entering at all).

In Example 1, we have that (v∗1,v∗2) = (0.66,0.36). The expected total surplus in this case is 0.42,

which is higher than that in the single-round auction.

To understand the reason for the comparison in efficiency, it is useful to note that the recurring

auction allows potential buyers to sort their entry over time. This provides an opportunity for

players to condition their entry on information updates about potential rivals. Sorting generates

two benefits for the total surplus: First, weak potential buyers can wait until they are sure that

others are also not too strong and then enter the auction. This way, their entry costs are wasted less

often. We refer to this as the economizing on entry benefit. Second, when an auction fails, potential

buyers update their beliefs about the others. They infer that the market is less competitive, since

12The cutoff 0.45 is obtained by solving the indifference equation for the marginal type potential buyer:
v[F(v)]N−1 −K = 0.

13This reserve price sequence maximizes the expected total surplus across all reserve price sequences.
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no potential rivals have a high enough value to have entered in the previous period.14 Thus they

would be encouraged to enter the auction, which reduces the possibility that the item goes unsold.

This is reflected by the fact that the entry threshold in the single-round auction (0.45) is higher

than the entry threshold in the recurring auction at t = 2 (0.36). In the single-round auction, the

item remains unsold with a probability of 0.2; in the recurring auction, the probability is reduced

to 0.13. We refer to this as the reducing auction failure benefit.

We use Figure 1 to visualize the two benefits. Figure 1(a) shows the entry decisions in the

single-round auction. When both potential buyers’ values are above the entry cutoff 0.45, there is

excessive entry: Ex post efficiency would be maximized if the strong potential buyer is the only

participant. Value profiles that correspond to excessive entry are denoted by the shaded area in the

upper right corner. When both potential buyers’ values are below the entry cutoff, but one has a

value higher than the entry cost (the shaded area close to the lower left corner), there is no entry,

which is not efficient: The total surplus would be raised if the strong potential buyer were to enter.

In all other unshaded areas, (no) entry is efficient in equilibrium. We similarly plot the efficient

and inefficient areas in terms of entry for the recurring auction in Figure 1(b). Because players sort

their entry over time, both the areas that denote excessive entry and inefficient no entry are much

smaller than in the single-round auction case.15 The difference between the excessive entry areas

reflects the economizing on entry benefit, and the difference between the inefficient no entry areas

reflects the reducing auction failure benefit.

Notably, as pointed out by Samuelson (1985), setting the reserve price equal to the seller’s val-

uation maximizes the expected total surplus in the single-round auction. In contrast, to maximize

efficiency in the recurring auction, a non-trivial reserve price at t = 1 would be used. This is be-

cause the first-period reserve price affects the extent of sorting. If r1 is 0, too many potential buyers

would participate in the first period, and this reduces the informativeness of observing whether the

first auction has failed. As a result, the gain from sorting is not maximized. In Figure 1(b), varying

r1 effectively changes the entry threshold in the first period and thus the areas of the two shaded

squares. If the entry threshold is too low (resp. too high), the excessive entry at t = 1 (resp. t = 2)

area will grow too big and squeeze out the economizing on entry benefit.

14In this example, after the first auction fails, potential buyers know that no one has a value above v∗1 = 0.66.
15When the item is not allocated in the first period, there is a loss in total surplus from discounting—but that does

not offset the gain in more efficient entry.
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Figure 1: Equilibrium Entry in Recurring and Single-round Auctions.

(a) Entry in the Single-round Auction. (b) Entry in the Recurring Auction.

Next, we consider the revenue comparison between the revenue-maximizing single-round mech-

anism and the recurring auction. Because the recurring auction outperforms single-round mech-

anisms in terms of efficiency, one might expect the recurring auction (with appropriately chosen

reserve prices) to also generate more revenue for the seller—after all, the seller’s revenue is part of

the total surplus. Celik and Yilankaya (2009) set up the single-round mechanism design problem

with costly entry and study revenue maximization. From their results, it follows that a second-price

auction with a reserve price of 0.35 maximizes the revenue across all single-round mechanisms in

Example 1. The maximized revenue is 0.25. In contrast, with the reserve price sequence set to

(r1,r2) = (0.4,0.37), the recurring auction generates a revenue of 0.26.

Finally, we briefly discuss another example to further illustrate the recurring auction’s effi-

ciency dominance over the single-round auction. With costly entry, it is well-known that the effi-

ciency may not be monotonically increasing in the number of potential buyers (Samuelson, 1985).

This is because with more potential buyers, each potential buyer worries more about prospective

competition and is more inclined to skip the auction to save entry costs. We demonstrate that re-

curring auctions can reverse this counterintuitive result using the following example taken from

Stegeman (1996).

Example 2 There are N ≥ 1 potential buyers whose values are independently and identically
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drawn from the uniform distribution on [1,2]. The seller’s value is vs = 0. A potential buyer’s

entry cost is K = 0.3. The common discount factor is δ = 0.97.

The diamond markers in Figure 2 show how the expected total surplus in the single-round auction

changes with the number of potential buyers.16 It can be seen that the efficiency actually decreases

with more potential buyers. This reflects the fact that coordinating and economizing on entry is

difficult in a single-round setting. Without coordination, the prospect of excessive competition

distorts entry and harms efficiency. The triangle and circle markers show the maximized expected

total surplus (across all reserve price sequences) in 2- and 3-period recurring auctions, respectively.

As potential buyers sort their entry over time in recurring auctions, the efficiency is monotonically

increasing in the number of potential buyers.

Figure 2: Maximized Expected Total Surplus in Single-round and Recurring Auctions While Vary-
ing N.

Stegeman (1996) points out that coordination may occur in single-round auctions in the form

of asymmetric equilibria. Consider the N = 2 case: Apart from the symmetric equilibrium where

a potential buyer enters if his value is above 1.24, there is also an asymmetric equilibrium where

one bidder always enters and the other enters if his value is above 1.77. The expected total surplus

is 1.22 in the asymmetric equilibrium,17 which is greater than that in the symmetric equilibrium,

1.20. However, relying on asymmetric equilibria to coordinate entry and improve efficiency is

16Recall that a reserve price equal to vs = 0 maximizes the expected total surplus in the single-round auction.
17This is the maximum efficiency that can be achieved by any single-round mechanism.
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precarious, since an asymmetric equilibrium need not always exist.18 Moreover, coordination in

the form of asymmetric equilibrium may not be very effective compared with the sorted entry

pattern in recurring auctions. As Figure 2 shows, in the N = 2 case, efficiencies in the 2- and

3-period recurring auctions are 1.23 and 1.26, respectively.

In a similar vein, Celik and Yilankaya (2009) and Lu (2009) provide examples in which asym-

metric equilibria in single-round auctions generate higher expected revenue for the seller. How-

ever, these improvements are insignificant—and once dynamics are incorporated, the symmetric

equilibria in recurring auctions lead to much more sizable improvements.19,20

3.2 Equilibrium Analysis

We now proceed to formal analysis of the model. As stated in Assumption 1, we focus on sym-

metric PBE of the auction game. In what follows, we show that potential buyers’ equilibrium

strategy consists of a cutoff entry structure and truthful bidding conditional on entry. For nota-

tional ease, we denote the CDF of the highest value among N − 1 potential buyers by G(·). That

is, G(·) := [F(·)]N−1.

Consider a sequence of entry thresholds v† := (v†
t )1≤t≤T that satisfy v ≥ v†

1 ≥ . . . ≥ v†
T ≥ v

and focus on a representative potential buyer n with value vn.21 Suppose that all the other N − 1

potential buyers follow the cutoff entry strategy (i.e., for all 1≤ t ≤ T , entering the period-t auction

if and only if having a value greater than v†
t ) and bid truthfully conditional on entry. Then potential

buyer n’s interim expected payoff from entering the time-t auction (conditional on this auction

18In Example 1, there is no asymmetric equilibrium in cutoff strategies. More generally, Tan and Yilankaya (2006)
provide a sufficient condition for there to be a unique symmetric equilibrium and no asymmetric equilibrium in the
class of cutoff strategies equilibria.

19In Example 1 of Celik and Yilankaya (2009), there are two potential buyers whose valuations are distributed
according to F(v) = v4 on [0,1], and the participation cost is K = 0.4. In the revenue-maximizing single-round
auction, the entry cutoffs are asymmetric. A cutoff pair (0.816,0.92) generates a profit of 0.2525 for the seller, whereas
the optimal symmetric cutoff, 0.868, generates a profit of 0.25155. However, suppose δ = 0.97. The seller’s expected
revenue is 0.2935 in (the symmetric equilibrium of) a 2-period recurring auction with optimally selected reserve prices.

20In the example of Lu (2009), there are two potential buyers whose valuations are distributed uniformly on [0.6,1],
and the participation cost is K = 0.2. A cutoff pair (0.66,0.86) generates a profit of 0.431 for the seller, whereas the
optimal symmetric cutoff, 0.76, generates a profit of 0.427. However, suppose δ = 0.97. The seller’s expected revenue
is 0.467 in (the symmetric equilibrium of) a 2-period recurring auction with optimally selected reserve prices.

21It is convenient to let v†
0 := v.
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being held) and bidding truthfully is Πt(vn;v†)/G(v†
t−1), where

Πt(v;v†) := δ
t−1

[∫ min{max{v,v†
t },v†

t−1}

v†
t

(v− x)dG(x)+ (v− rt)G(v†
t )−G(v†

t−1)K

]
. (1)

We further specify the sequence of entry thresholds that will render the marginal type v†
t indif-

ferent between entering at time t or waiting to enter in the future.

Definition 1 Define v∗ := (v∗t )1≤t≤T with v ≥ v∗1 ≥ . . . ≥ v∗T ≥ v as the solution to Πt(v∗t ;v∗) ≤

maxτ≥t+1 Πτ(v∗t ;v∗) with the equality holding if v∗t−1 > v∗t .22

Intuitively, v∗t−1 = v∗t means that the period-t auction is skipped for sure (e.g., due to high reserve

price in that period). If no period is skipped, the marginal type v∗t is indifferent between entering

at time t or waiting to enter at time t + 1. In this case, the indifference conditions are simplified to

G(v∗t )(v
∗
t − rt)−KG(v∗t−1) =

δ

[
G(v∗t )(v

∗
t −K)−

∫ v∗t
v∗t+1

xdG(x)− rt+1G(v∗t+1)
]

, if t < T ,

0, if t = T .
(2)

We are now ready to present the symmetric PBE.

Proposition 1 (Equilibrium Characterization) The symmetric PBE of the auction game can be

described as follows. At time t, if an auction is held, potential buyer n ∈N chooses to enter if and

only if vn > v∗t . Upon entry, potential buyer n bids truthfully.

With the equilibrium characterization, we now compare the efficiency in recurring auctions

and that in single-round auctions. Because of the economizing on entry benefit and the reducing

auction failure benefit laid out in Section 3.1, the following ensues.

Theorem 1 (Efficiency Dominance) Suppose that N ≥ 2 and K > 0. Then a recurring auction

with an appropriately chosen reserve price sequence will achieve strictly higher efficiency than the

symmetric equilibrium in any single-round auction.

Further, we show that the dominance of recurring auctions over single-round auctions also

applies to the seller’s expected profit.

22We let ΠT+1(·) = 0, since there will be no follow-up auctions after time T .
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Theorem 2 (Revenue Dominance) Suppose that N ≥ 2 and K > 0. Then a recurring auction with

an appropriately chosen reserve price sequence will generate strictly higher profit for the seller

than the symmetric equilibrium in any single-round auction.

3.3 Recurring Auction Design

In this part, we study the design of recurring auctions to maximize either efficiency or the seller’s

profit. It is useful to note that the equilibrium conditions in Proposition 1 establish a mapping

between reserve price sequences and the entry threshold sequences. The mapping allows us to

reformulate the problem of choosing a reserve price sequence to that of choosing an entry threshold

sequence. The reformulation will greatly simplify things, since it is generally infeasible to obtain

an analytical solution of the entry threshold sequence given an arbitrary reserve price sequence,

but the reverse is easy. In fact, an arbitrary entry threshold sequence v∗ that is weakly decreasing

can be induced by the reserve price sequence r(v∗), with rt(v∗) given by the following:23

rt(v∗) =
1

G(v∗t )

 ∑
T
τ=t(1−δ )δ τ−tG(v∗τ)v

∗
τ −KG(v∗t−1)+

∑
T−1
τ=t δ τ−t+1 ∫ v∗τ

v∗
τ+1

xdG(x)+ δ T−t+1G(v∗T )v
∗
T

 . (3)

We now present and solve the efficiency and revenue maximization problem with respect to

entry thresholds.

Efficiency Maximization Given a weakly decreasing entry threshold sequence v∗, the expected

total surplus in the recurring auction is

T S(v∗) =
T

∑
t=1

δ
t−1

{∫ v∗t−1

v∗t
(x− vs)d[F(x)]N −N[F(v∗t−1)]

N−1[F(v∗t−1)−F(v∗t )]K
}
+ vs, (4)

where
∫ v∗t−1

v∗t
(x−vs)d[F(x)]N is the expected gain in allocative efficiency in period t, and the second

term in the bracket is the expected entry cost in period t. The efficiency maximization problem is

max
v∗

T S(v∗) s.t. v∗t−1 ≥ v∗t for all 1 ≤ t ≤ T . (5)

The key to solving the problem is to show that the constraint v∗t−1 ≥ v∗t does not bind. The reason

v∗t−1 > v∗t in the optimum can be illustrated by discussing two cases. First, if some final periods

23If a certain period is skipped for sure, say v∗t0 = v∗t0+1 for some 1 ≤ t0 ≤ T , multiple reserve prices can be used for
that period. However, they all lead to the same equilibrium outcome.

15



are skipped—i.e., v∗t0−1 > v∗t0 = v∗t0+1 = . . .= v∗T for some t0—then the seller is effectively holding

a single-round auction at time t0 − 1, which cannot be efficient by Theorem 1. Second, if some

periods other than the final periods are skipped—i.e., v∗t0 = v∗t0+1 > v∗T for some t0—then the seller

could in effect move every period after t0 to 1 period earlier by using the entry threshold sequence

v∗′ = (v∗1, . . . ,v∗t0 ,v∗t0+2, . . . ,v∗T ,v∗T ). This is more efficient than the original entry threshold sequence

v∗, since the efficiency gains in periods after t0 are realized earlier. Having established that the

constraint does not bind, the solution to (5) is characterized by the first-order conditions. Formally,

we have the following result.

Theorem 3 (Efficient Recurring Auction) Suppose the seller aims to maximize the expected total

surplus by selecting a reserve price sequence of the recurring auction. Then in the efficient design,

the equilibrium entry thresholds v∗ solve the following:
{[

F(v∗t−1)

F(v∗t )

]N−1
−δ

NF(v∗t )−(N−1)F(v∗t+1)

F(v∗t )

}
K − (1−δ )(v∗t − vs) = 0, if t < T ,[

F(v∗t−1)

F(v∗t )

]N−1
K − (v∗t − vs) = 0, if t = T .

(6)

The corresponding reserve price sequence can be obtained from (3).

To see the intuition behind Theorem 3, let us consider the social gain and loss of making the

marginal potential buyer with value v∗t enter at time t + 1 instead of time t. The social gain man-

ifests as saving in entry costs. Conditional on time t being reached (i.e., no one has shown up

in previous auction rounds), the cost of participating at time t is K. However, if the marginal

buyer participates at time t + 1, he incurs entry cost only if no one shows up at time t, so the ex-

pected entry cost is δ [F(v∗t )/F(v∗t−1)]
N−1K. Consequently, the social gain of cost saving is {1−

δ [F(v∗t )/F(v∗t−1)]
N−1}K. The social loss consists of two parts. First, in the event that all other

potential buyers have values below v∗t , there is a loss of allocating the item 1 period later. Specif-

ically, the loss from discounting is (1−δ )[F(v∗t )/F(v∗t−1)]
N−1(v∗t − vs). Second, if the marginal

potential buyer had entered in period t, entry by other potential buyers in period t + 1 could have

been avoided. Since there are N − 1 other potential buyers and the probability of each of them

entering in period t + 1, conditional on period t + 1 being reached, is [F(v∗t )−F(v∗t+1)]/F(v∗t ),

the waste of period-(t + 1) entry is δ [F(v∗t )/F(v∗t−1)]
N−1(N −1)[F(v∗t )−F(v∗t+1)]/F(v∗t )K.

To maximize the expected social surplus, the choice of entry thresholds must equalize the social
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gain and social loss. We rewrite the condition in Theorem 3 for the t < T case as follows to reflect

the trade-off.{
1−δ

[
F(v∗t )

F(v∗t−1)

]N−1
}

K︸ ︷︷ ︸
social gain in entry cost saving

= (1−δ )(v∗t − vs)︸ ︷︷ ︸
social loss from

delayed allocation

+δ

[
F(v∗t )

F(v∗t−1)

]N−1

(N −1)
F(v∗t )−F(v∗t+1)

F(v∗t )
K︸ ︷︷ ︸

social loss from period-(t + 1) entry

.

Profit Maximization The problem of maximizing profits requires additional effort, because it is

non-trivial to derive the expression of the seller’s expected profit in terms of entry thresholds v∗.

To do that, we first express the seller’s expected profit as a function of both entry thresholds and

reserve prices:

R(v∗;r) =
T

∑
t=1

δ
t−1

 N(N −1)
∫ v∗t−1

v∗t
(x− vs) f (x)[F(v∗t−1)−F(x)][F(x)]N−2dx

+N[F(v∗t−1)−F(v∗t )][F(v
∗
t )]

N−1(rt − vs)

 ,

where the first line in the bracket is the expected profit in the event that at least two bidders show up

at time t, and the second line in the bracket is the expected profit when exactly one bidder presents

at time t (so the reserve price is charged).

Next, we plug r(v∗) given by (3) into R(v∗;r). After algebraic manipulation, we have that

R(v∗;r(v∗)) = δ
T N[1−F(v∗T )]G(v∗T )v

∗
T+

T

∑
t=1

δ
t−1

 N
∫ v∗t−1

v∗t
x[1−F(x)]dG(x)+N(1−δ ) [1−F(v∗t )]G(v∗t )v

∗
t

−NG(v∗t−1)[F(v
∗
t−1)−F(v∗t )]K − vs

[
(F(v∗t−1))

N − (F(v∗t ))
N]

 .
(7)

The profit maximization problem becomes

max
v∗

R(v∗;r(v∗)) s.t. v∗t−1 ≥ v∗t for all 1 ≤ t ≤ T . (8)

A technique similar to that in the efficiency part would establish that the constraint v∗t−1 ≥ v∗t does

not bind in the optimum. As a result, Theorem 4 characterizes the profit-maximizing recurring

auction.

Theorem 4 (Profit-maximizing Recurring Auction) Suppose the seller aims to maximize her

profit by selecting a reserve price sequence of the recurring auction. Then in the profit-maximizing
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design, the equilibrium entry thresholds v∗ solve the following:
{[

F(v∗t−1)

F(v∗t )

]N−1
−δ

NF(v∗t )−(N−1)F(v∗t+1)

F(v∗t )

}
K − (1−δ )

[
v∗t −

1−F(v∗t )
f (v∗t )

− vs

]
= 0, if t < T ,[

F(v∗t−1)

F(v∗t )

]N−1
K −

[
v∗t −

1−F(v∗t )
f (v∗t )

− vs

]
= 0, if t = T .

(9)

The corresponding reserve price sequence can be obtained from (3).

Notably, the condition for profit-maximizing (9) is similar to the condition for efficiency-

maximizing (6). In fact, the profit-maximizing condition can be obtained by replacing v∗t with

the virtual value v∗t − [1−F(v∗t )]/ f (v∗t ) in the relevant places in the efficiency-maximizing condi-

tion. This is intuitive, since the mechanism design literature suggests that the virtual value accrues

to the seller while the value contributes to social surplus.

In what follows, we take our model to a practical setting and empirically estimate the model

parameters. The structural estimation allows us to quantitatively identify the efficiency gain and

revenue gain brought about by recurring auctions. We also conduct counterfactual analyses to

inform better auction design.

4 Industry Background, Data, and Descriptive Evidence
This section introduces the background of the home foreclosure auction market in China and

presents the data, summary statistics, and some descriptive evidence.

4.1 Industry Background

In China, the market for home foreclosure auctions is substantial, with a transaction volume of 196

billion CNY (28 billion USD) in 2019. Since 2014, it has become common practice for Chinese

local courts to conduct foreclosure auctions through online platforms, with over 90% of these

auctions taking place on Alibaba. Since 2017, the supreme court has mandated that auctions for

foreclosed properties must be held publicly and online.

When a foreclosed property is up for auction, the government will commission a company to

assess the property’s market value. This assessed price will be used as a benchmark to determine

the reserve price in the auction and any follow-up auctions. In the initial auction, it is required

by law that the reserve price is set above 70% of the assessed price. For more than 60% of the

properties in our sample, the initial reserve price is between 70% and 80% of the assessed price.
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Information regarding the property, the assessed price, and the reserve price will be posted online 1

month prior to the auction date. An open outcry auction is held on the auction date if any potential

buyer qualifies as a bidder and participates. The open outcry stage lasts for 24 hours. During this

stage, bidders can observe the standing bid and decide whether to raise their own bid. If no bid

(above the reserve price) is received, the auction fails. If a property is not successfully sold in

the initial auction, the government will typically hold a follow-up auction within 2 months. The

median time gap between two auction rounds in our sample is 36 days. Figure 3 presents the

distribution of the time gap between two auction rounds.

The law mandates that the reserve price in the second auction is set above 80% of the reserve

price in the initial auction. In practice, the vast majority of second-round reserve prices are set at

exactly 80%.24 If the second auction also fails, the property will be listed again for the third and

final auction.25 According to the law, the reserve price in the third round must remain the same as

it was in the second auction.

Entry costs in the auction market are non-negligible. Potential buyers must fulfill several re-

quirements to qualify as bidders, including depositing 10% to 20% of the reserve price before the

auction to demonstrate their eligibility. It is worth noting that the deposit itself is not an entry cost,

since it is refundable. However, interest proceeds (or costs) during the period the deposit is frozen

are considered entry costs. In the event a potential buyer has to borrow to meet the deposit require-

ment, efforts to obtain those funds are also entry costs. Furthermore, the winning bidder must pay

the full amount within 5 working days, which poses a financial challenge for home buyers because

obtaining a mortgage from a bank within 5 working days is infeasible. Along with the liquidity

cost, there are also bureaucratic costs associated with preparing documents to participate in the

24In our sample, the average reserve price in the second round is 82% of the reserve price in the initial auction.
25The third auction is referred to as the liquidation stage by the court. In 2017, there was no difference between

this stage and the first two rounds, so the liquidation stage can be treated simply as the third auction round. In 2018,
the Supreme Court of Fujian province (where our data are from) changed the auction rule for the liquidation stage.
Following the change, a foreclosed property can be listed for sale at the liquidation stage for a 60-day period. If a bid
is received during this period, an open outcry auction is initiated, and other qualified bidders can participate within
a 24-hour timeframe. Since it is impossible to finish all the paperwork and qualify for participation within 24 hours,
bidders cannot condition their entry decisions on others’ actions. For the sample period after the policy change, we
continue to treat the liquidation stage as the third round of the recurring auction game. This simplification offers
great tractability without much loss. As we shall see, the outcomes of 2-period recurring auctions are similar to those
of 3-period auctions, which indicates that the value of having additional rounds beyond the second is limited. As a
robustness check, we use the 2017 subsample to estimate the recurring auction model. The results (reported in Online
Appendix B.4) are similar to those obtained from the full sample.
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Figure 3: Distribution of the Time Gap between Two Consecutive Auctions.

auction.26

Purchase and reselling restrictions in the housing market discourage speculators from partici-

pating in home foreclosure auctions. Households in most cities in our sample are allowed to own

at most one or two houses. Reselling the property within 2 years of purchase will result in a value-

added tax and surtax totaling 5.6% of the house’s value. Although firms are not subject to the

purchase restriction, they are heavily taxed for owning houses. The annual property tax amounts

to 1.2% of the house value or 60% of the rent. Also, when a firm resells a house, the combined

value-added tax and sales tax exceed 30% of the value added. As a result, participants in home

foreclosure auctions are likely to be ordinary buyers rather than speculators.27

The homebuying restrictions and resale taxes mitigate the concern of interdependent valuations

resulting from a resale market (Haile, 2001) and support our IPV assumption. Moreover, in our

empirical model setup, we allow the mean and variance of the value distribution to depend on

observable characteristics of the property, and thereby encompass a common value component.

The private value component stems from the fact that people derive different utilities from owning

the same house with a particular combination of characteristics.28 While we do not formally test

26The cost of services that assist with filing the paperwork is approximately 100 USD.
27In an interview, the owner of Dongfang Hanhai Auction Co., an intermediary that helps clients prepare documents

for foreclosure homes, stated that most clients are buying homes for their own residential use.
28The IPV assumption has been widely adopted in various empirical settings. See, e.g., Athey, Levin, and Seira

(2011) and Roberts and Sweeting (2013) for timber auctions and Allen, Clark, Hickman, and Richert (2023) for
failed-bank assets auctions.
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the IPV framework against a common value alternative,29 one piece of suggestive evidence in favor

of the former is that in our sample, bidders rarely wait until near the end of the auction to submit

their bids,30 which would have been optimal if common value is a concern (Bajari and Hortaçsu,

2003) because bidders would not want opponents to learn about their values.

4.2 Data

The home foreclosure auction data used in this paper come from CnOpenData, a data consulting

company. CnOpenData has collected information on home foreclosure auctions via Alibaba’s

digital platform since 2017 (CnOpenData, 2023). The dataset contains detailed information about

each auction, including a property identification number, the deal price (if any), the reserve price,

the number of bidders, and the bidding records of each bidder.31 We also observe the assessed

value, area, and location of the property being sold.

Our data consist of home foreclosure auctions that took place in Fujian province from 2017

to 2019. The province’s population is approximately 41 million, roughly equivalent to that of

California. Its per capita GDP is 15,500 USD. Our sample includes a total of 11,675 auctions

for 7,973 foreclosed homes.32 During the sample period, the total transaction volume of home

foreclosure auctions in Fujian is 9.2 billion CNY, or 1.3 billion USD.

Table 1 presents the recurring pattern of home foreclosure auctions. The auction failure rate

stands at 38% in the first round and becomes 31% in the second round. It increases to 68% in

the third and final round, possibly because there is no reserve price reduction from the second

to the third round. As can be seen in the table, there is some attrition across auction rounds. In

the first round, 3,002 houses were unsold, of which 150 houses never appeared in subsequent

auctions. In the second round, 889 auctions failed, and 850 of those houses entered the third

29The existing literature (e.g., Athey and Haile, 2002; Bougt, Ghosh, and Liu, 2023) typically assumes away costly
entry when developing tests of private versus common value models, and thus the tests do not directly apply to our
setting. Moreover, conducting the tests requires observing more than the winner’s bid. However, the bid data we
observe from open outcry auctions cannot simply be treated as bid data from standard auctions (see footnote 31). This
data limitation further hinders our ability to perform a formal test.

30Only around 8% of the auctions receive initial bids within the last 10 minutes. In most auctions, initial bids are
submitted at the very beginning.

31Although we observe the bidding records of all bidders, it is known that the losing bids in open outcry auctions
may be lower than the bidders’ values (Haile and Tamer, 2003). Therefore, in our estimation, we use only the winning
bid and take it as the second-highest realized value.

32In our analysis, we focus on foreclosed homes and exclude other types of foreclosed properties, such as parking
spaces, shops, commercial apartments, and factories, from our sample.
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stage afterward. Overall, the attrition rate is around 5%. Attrition between auction rounds may

be caused by various reasons, such as the foreclosed property owner securing enough funds to

pay off their outstanding debts, legal complications arising for either the lender or the foreclosed

property owner, or the lender and owner reaching an agreement.33 We incorporate the possibility

of houses “disappearing” when setting a discount factor. For our empirical analysis, we exclude

unsold properties that disappeared from the market before the third round.34

Table 1: Number of Auctions across Rounds.

First auction Second auction Third auction

Success 4971 1963 271
Fail 3002 889 579
Total 7973 2852 850
Auction failure rate 0.38 0.31 0.68

Echoing our theoretical analysis and for tractability, we assume that the same set of potential

buyers are interested in a foreclosed house across time. Since the number of potential buyers cannot

be directly observed, we construct a proxy using the number of individuals who bookmarked and

browsed the properties before they are auctioned. Specifically, the number of potential buyers is

defined as the number of individuals who have shown interest in the first auction round, divided by

1,000, plus the number of entrants.35,36

To further alleviate concerns about the set of potential buyers or their valuations changing

over time, we estimate the empirical model for a subsample with short time lags (bottom quartile,

or less than 24 days) between the first two auction rounds and a subsample with long time lags

(top quartile, or more than 44 days). The estimation results are reported in Online Appendix B.5.

Also, we estimate a single-round auction model, which corresponds to a new set of potential buyers

arriving in each period while previous potential buyers exit. This alternative specification performs

33In Online Appendix B.6, we show that the observable characteristics of the houses that experience attrition do not
differ significantly from those of the other houses.

3411,411 auctions for 7,772 foreclosed homes remain after removing attrited properties.
35Our results are robust to alternative definitions of potential entrants using factors other than 1/1,000. Estimation

and counterfactual analysis results for factors 1/500 and 1/1,500 are reported in Online Appendix B.3.
36Notably, differences in the number of bookmarks between auction rounds are small. For houses that failed to sell

in the initial auction, the average number of bookmarks in the following round is only about 4% higher.
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worse than the recurring auction specification (with a constant set of potential buyers) in model fit.

Table 2 presents summary statistics of the main variables used in this paper. In Table 2, auctions

are pooled together across rounds. The average assessed value for a house is about 1.43 million

CNY (210 thousand USD), which is approximately 108 thousand CNY (16 thousand USD) higher

than the average deal price. The average reserve price is 1.12 million CNY (165 thousand USD).

The overall auction success (resp. failure) rate is 63% (resp. 37%).

Table 2: Summary Statistics.

Percentiles

Mean Std. dev. 0.25 0.5 0.75 Obs

Deal price (10K CNY) 132.71 123.71 56.00 88.35 157.24 7201
Assessed price (10K CNY) 143.52 144.00 59.09 90.52 162.69 11411
Reserve price (10K CNY) 111.79 119.70 44.00 69.23 124.50 11411
Success 0.631 0.483 11411
Number of bidders 3.29 3.98 0 1 5 11411
Number of potential entrants 9.58 6.01 5 8 13 11411
Area (m2) 130.11 45.75 97.19 127.90 155.67 11411
Distance to city center (km) 7.24 14.00 1.26 2.40 5.55 11411

The home foreclosure auction market is an exemplary empirical setting for our recurring auc-

tion model. In particular, the auction failure rates are high, and the entry costs are sizable. Before

diving into the structural analysis, we first present some reduced-form evidence of dynamics and

intertemporal trade-offs in the market.

4.3 Hedonic Housing Price Regression

We use the following hedonic regression to investigate how various factors affect the deal price in

home foreclosure auctions, with special emphasis on the effects of auction rounds:

log(pi) = α0 +α1 log(assessi)+α2areai +α3 log(disti)

+α4Dround=2,i +α5Dround=3,iα6(# of potential entrants)i +ηt + εi.
(10)

Specifically, pi is the deal price, assessi represents the assessed price, areai is the construction area

of the property, and disti denotes property i’s distance to the city center. Dround=2,i and Dround=3,i

are dummies that switch on if the auction round is 2 and 3, respectively. Auctions in the first round
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are set as the base group. # of potential entrantsi is the number of the potential entrants. ηt controls

for year-by-month fixed effects. Table 3 reports regression results with gradually added controls.

Column (5) corresponds to the specification in Equation (10).

Table 3: Effects of Auction Rounds on Deal Price.

(1) (2) (3) (4) (5)
log(deal price)

log(assessed price) 0.981 0.981 0.988 0.944 0.945
(0.003) (0.003) (0.003) (0.003) (0.015)

round=2 -0.204 -0.199 -0.135 -0.135
(0.005) (0.005) (0.004) (0.004)

round=3 -0.306 -0.299 -0.172 -0.171
(0.011) (0.011) (0.010) (0.009)

area (100 m2) -0.016 0.0284 0.0250
(0.005) (0.004) (0.005)

log(distance to city center) -0.022 -0.019 -0.020
(0.002) (0.001) (0.001)

# of potential entrants 0.019 0.018
(0.000) (0.000)

Year-by-month fixed effects X
Observations 7,201 7,201 7,201 7,201 7,201
R2 0.933 0.949 0.950 0.966 0.967

Notes: (1) First-round auctions (round=1) are set as the base group, and the correspond-
ing coefficient is absorbed. (2) Standard errors in parentheses. (3) All coefficients are
significant at the p < 0.01 level.

The regression results suggest that the assessed price accurately reflects the housing value,

since its coefficients are close to 1 in all specifications. Column (1) shows that assessed price alone

can explain 93% of the variation in the deal price. Under the full specification, shown in Column

(5), the transaction price for a property sold in the second round is 14.4% (exp(0.135)-1) lower

than a property sold in the first round. The price reduction is 18.6% (exp(0.171)-1) for a property

sold in the third round. Note that we do not control for the reserve price in the regressions: It is a

bad control (Angrist and Pischke, 2009), because it is almost perfectly determined by the auction

round and the assessed price. This means that we cannot econometrically disentangle the effects of

reserve price changes and auction rounds on deal prices. However, since the reserve price remains

the same from the second to the third round, the 4.2% price drop between these two rounds reflects

24



the auction round effect.

These findings support the sorted entry pattern predicted by our theoretical model. That is,

potential buyers with high private values tend to participate in early auction rounds, while weak

potential buyers tend to wait and enter late. The sorted entry pattern offers an explanation for lower

prices in later auction rounds. Alternatively, if sorting is absent and each auction independently

draws a new set of potential buyers, the auction round should not have a significant impact on the

deal price.37

5 Empirical Strategy
In this section, we specify our empirical model, introduce the simulated maximum likelihood

method, and briefly discuss the sources of identification.

5.1 Empirical Model

Our empirical model is specified as follows. For property i, we assume each potential buyer’s

value follows a truncated log-normal distribution, i.e., vn ∼ T RLN(µi,σi,v,v), where µi and σi

are the location parameters of the log-normal distribution, and v and v are the lower and upper

truncation bounds.38 Then the auction setting for property i is described by the vector of parameters

Λ̃i = (µi,σi,Ki;Ni,T ,δ ,ri), where Ki is the entry cost, Ni is the number of potential buyers, T is

the maximum number of auction rounds, δ is the discount factor, and ri = (rti)1≤t≤T is the reserve

price sequence.

The parameters (Ni,T ,δ ,ri) can be obtained using information from the data. As discussed

in Section 4.2, the number of potential buyers is proxied using the number of individuals who

bookmarked and browsed the property online. We set T = 3 to reflect the institutional setup and let

δ = 0.95, which encompasses both discounting and the probability of a property’s being withdrawn

from the market. For auctions that actually happened, we can observe the reserve prices. But if a

property is sold in either the first period or the second period, we cannot observe the full reserve

price sequence, as the subsequent auctions never took place. In such cases, we follow the common

37While other factors such as the “stigma” effect may also negatively impact auction prices, they are likely to be
much smaller in magnitude than the estimates in Table 3. For instance, Cortés, Singh, Solomon, and Strahan (2022)
suggest that the size of the stigma effect in the Australian home auction market is approximately 1%.

38In practice, we set the lower bound v to be sufficiently low and the upper bound v to be sufficiently high, thereby
rendering the truncation of the distribution negligible.
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practice we see in the data and assume that the second-period reserve price is 80% of the initial

reserve price, and the third-period reserve price is the same as the second-period reserve price.

Our objective is to identify the value distribution parameters (µi,σi) and the entry cost Ki

in home foreclosure auctions. For notational ease, we define Λi := (µi,σi,Ki). Given a set of

observables Xi, including a constant, the logarithm of the assessed price, the area, and the logarithm

of the distance to city center, we assume the auction parameters Λi = (µi,σi,Ki) are governed by

the following truncated normal distributions:39,40

µi ∼ T RN(Xiβµ ,ωµ ,1,7), σi ∼ T RN(Xiβσ ,ωσ ,0.01,3), Ki ∼ T RN(XiβK ,ωK ,0,15), (11)

where (βµ ,βσ ,βK) are the coefficients of the covariates and (ωµ ,ωσ ,ωK) are the standard de-

viations of the untruncated distributions. We denote the set of parameters to be estimated by B.

Formally, B := (βµ ,βσ ,βK ,ωµ ,ωσ ,ωK).

Our model specification allows for cross-auction heterogeneity in the structural parameters that

is observable to potential buyers but unobservable to the econometrician. This is crucial given the

considerable variation in assessed price, deal price, area, and location across the auctions in our

sample, as shown in Table 2. This also encompasses the possibility that houses sold in different

auction rounds are associated with different draws in value distributions or entry costs. For ex-

ample, given the same observables (Xi,Ni,ri), a house with a better draw of µi according to (11)

is associated with a more favorable value distribution and may be sold earlier. Conversely, how

houses with identical observables in the sample differ in observed entry pattern and transaction

time helps us infer the extent of unobserved heterogeneity in value distribution and entry cost

parameters.

To estimate our structural model, we adopt the simulated maximum likelihood (SML) method.

We denote the observable auction outcome for property i by yi, which consists of the number

of bidders, the winning bid, and the transaction round. Given the outcome yi and the auction

parameters Λi, we can calculate the likelihood of the outcome, denoted by Li(yi|Λi), based on the

recurring auction model we discussed in Section 2. The calculation steps are detailed in Online

39We denote by T RN(µ ,σ ,D,D) a truncated normal distribution with location parameters µ and σ and truncation
bounds D and D.

40Note that µi, σi, and Ki are in 10K CNY (1.5K USD). The truncation bounds are chosen to cover sensible ranges
of these parameters. For example, with µi = 7, the mean of the value distribution T RLN(µi,σi,v,v) is above exp(7) =
1,096, which is greater than the highest deal price in our sample.
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Appendix B.1. The log-likelihood function can be written as

L(B;X) =
P

∑
i

log
[∫

Li(yi|Λi)φ (Λi|B,Xi)dΛi

]
, (12)

where P denotes the number of properties and φ (Λi|B,Xi) is the probability density of Λi condi-

tional on Xi and B, which can be calculated from (11).

Since evaluating the log-likelihood by simulation is computationally expensive,41 we follow

Ackerberg (2009) and Roberts and Sweeting (2013) to reduce the computational burden using

importance sampling. Details of the SML method with importance sampling can be found in

Online Appendix B.2.

5.2 Identification

Although we use a parametric model for estimation, we informally discuss identification here. Ab-

sent unobserved heterogeneity across auctions, the identification would be straightforward (Gentry

and Li, 2014). To see the intuition, suppose there is sufficient exogenous variation in equilibrium

entry thresholds, which may be driven by variation in the number of potential entrants, entry costs,

and reserve prices. Then bidders’ value distributions can be obtained from empirical bid distribu-

tions when the entry threshold (in the first auction round) is sufficiently low. As entry thresholds

vary, the bid distribution in a particular auction round will be truncated at the corresponding entry

threshold. Then the expected payoff for the marginal type can be calculated using the recovered

value distribution. In the final auction round, the expected payoff of the marginal type should equal

0, which helps identify the entry costs.

Recent empirical studies of auctions have highlighted the importance of accounting for auction-

specific heterogeneity that is known to the market participants, but not the econometrician (Kras-

nokutskaya, 2011; Athey, Levin, and Seira, 2011; Roberts and Sweeting, 2013). In particular,

unobserved heterogeneity helps explain within-auction bid correlation conditional on observable

sale characteristics. Because unobserved heterogeneity renders identification difficult (Athey and

Haile, 2002), this literature adopts a parametric approach. In the home foreclosure auction market,

it is plausible that potential buyers may be better informed about some traits of the foreclosed home

41To put this into perspective, suppose we draw S = 1,000 realizations of Λi to simulate the likelihood for a given
B. We would need to solve for the equilibrium S×P times. Given a sample size of 7,772 properties and each solution
takes 15 seconds on average, the evaluation would take approximately 1,350 days.

27



and the neighborhood than the econometrician. We therefore follow the literature and estimate a

parameterized model with unobserved heterogeneity.

The sources of identification for our model parameters are as follows. First, identification of the

mean value parameter µ is based on winning bids or transaction prices. Higher transaction prices

correspond to a higher µ . Second, the scale parameter σ reflects the extent to which potential

buyers disagree on the value of a given property, and is identified through variations in transaction

prices across auctions, conditional on auction characteristics. Third, the entry cost K is identified

through potential buyers’ entry decisions across auction rounds. If the entry cost is high, potential

buyers would be reluctant to enter in the first period and tend to wait until the next period to ensure

that there are no strong competitors.

6 Parameter Estimates and Model Fit
Having discussed our empirical strategies, we now report our parameter estimates in Table 4. Es-

timation results for the recurring auction model are reported in Panel A. As a comparison, we

also estimate a single-round model using the same data and the same parametric distribution as-

sumptions. In the single-round model, we ignore the links between auction rounds for the same

property and treat them as independent auctions. Estimation results for the single-round model are

presented in Panel B of Table 4.

To assess the fit of the two models, we calculate both in-sample and out-of-sample mean

squared error of predictions (MSEP) for the deal price and number of bidders.42 Results are re-

ported in Table 5. Model fit results support the recurring model as the preferred specification,

since it outperforms the single-round alternative for predicting both the deal price and number of

bidders.

As Panel A in Table 4 shows, the assessed price accurately reflects potential buyers’ mean value

parameter µ . The coefficient is close to the hedonic regression results reported in Table 3. This

is consistent with the observation that the assessed price strongly correlates with the deal price,

which, in turn, reflects the bidders’ valuation. Conditional on the assessed price, µ is negatively

affected by the property’s distance to the city center and its construction area. However, the mag-

nitude of the coefficients is small. This could mean that the price assessment slightly overvalues

42MSEP is a commonly used model selection criterion (see, e.g., Li and Zheng, 2009).
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Table 4: Parameter Estimates.

constant log
(

assess.
price

)
log(dist.) area (100 m2) ω mean

Panel A: Recurring auction model results
µ ∼ T RN -0.198 0.994 -0.040 -0.036 0.162 4.330
(Xβµ ,ωµ ,1,7) (0.018) (0.004) (0.002) (0.007) (0.003)
σ ∼ T RN 0.249 -0.028 0.023 0.031 0.100 0.192
(Xβσ ,ωσ ,0.01,3) (0.019) (0.004) (0.002) (0.007) (0.003)
K ∼ T RN -2.971 0.634 -0.260 0.301 0.479 0.509
(XβK ,ωK ,0,15) (0.131) (0.027) (0.018) (0.048) (0.014)

Mean of v ∼ T RLN(4.330,0.192,10−4,1200): 77.4

Panel B: Single-round auction model results
µ ∼ T RN -0.294 1.012 -0.057 -0.080 0.209 4.212
(Xβµ ,ωµ ,1,7) (0.019) (0.004) (0.003) (0.008) (0.003)
σ ∼ T RN 0.190 -0.018 0.020 0.037 0.083 0.180
(Xβσ ,ωσ ,0.01,3) (0.014) (0.003) (0.003) (0.007) (0.002)
K ∼ T RN -2.370 0.567 -0.301 0.212 0.560 0.607
(XβK ,ωK ,0,15) (0.139) (0.029) (0.024) (0.050) (0.016)

Mean of v ∼ T RLN(4.212,0.180,10−4,1200): 68.6

Notes: (1) Potential buyers’ valuation is assumed to follow a truncated lognormal distribution: v ∼
T RLN(µ ,σ ,10−4,1200). (2) Standard errors in parentheses are obtained through bootstrapping 200
times. (3) The rightmost column shows the mean of Λ = {µ ,σ ,K} obtained through simulation. (4)
All coefficients are significant at the p < 0.01 level.

Table 5: Mean Squared Error of Predictions.

In-Sample Out-of-Sample
Recurring Single-round Recurring Single-round

Deal price 0.0372 0.0469 0.0384 0.0482
Number of bidders 14.857 17.060 15.318 17.3161

Notes: (1) For deal prices, we normalize the error as a percentage of the assessed price.
(2) For out-of-sample predictions, we estimate the recurring and the single-round auc-
tion model using data from 4,000 randomly selected properties (5,887 auctions). We
then compute the MSEP for the 3,772 properties (5,524 auctions) not included in the
estimation sample.

the construction area and undervalues the distance to the city center.

Estimation results for σ suggest that there is greater variation in potential buyers’ private val-
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uations for properties located in the suburbs and those with larger construction areas. However,

there is greater consensus among potential buyers regarding the value of properties with higher

assessed prices.

The mean values of µ and σ in our sample are 4.330 and 0.192, respectively. The correspond-

ing value distribution T RLN(4.330,0.192,10−4,1200) has a mean of 77.4, which implies that the

mean of the private value distribution is 774 thousand CNY (114 thousand USD).

Our estimation indicates that entry costs are higher for properties with higher assessed values,

larger construction areas, and shorter distances to the city center. As discussed in Section 4.1,

the requirement to deposit 10% to 20% of the assessed value and to pay the full amount within 5

working days of winning poses a financial challenge for potential buyers, who must make costly

efforts to tackle the liquidity constraint. For properties with higher assessed values, the liquidity

constraint binds more tightly. The mean entry cost in our sample is 5,090 CNY (748 USD).

Panel B in Table 4 reports the estimation results for a single-round auction model, and reveals

the extent of bias when the recurring structure is ignored in auction estimation. The main differ-

ence between estimating the recurring auction model and the single-round auction model is that

the former is based on observations at the property level, whereas the latter is estimated at the auc-

tion level. As a result, the single-round auction model misses information on the linkage between

auction rounds. Since the single-round auction model does not incorporate the sorted entry pattern

across auction rounds, it is “unaware” of the downward updates in the upper bound of potential

buyers’ value distribution. By treating subsequent auction rounds in the same way as the initial

round, the single-round auction model may well underestimate potential buyers’ values and over-

estimate entry costs. As Panel B shows, the mean of µ is notably lower, and the mean of K is

higher than the estimation results for a recurring auction model. In this case, the mean value for

a property becomes 686 thousand CNY (101 thousand USD), which is underestimated by 11.4%.

The mean entry cost is 6,070 CNY (867 USD), which represents a 16.1% overestimation.

7 Counterfactuals
We conduct two counterfactual exercises based on the structural estimation results. First, to quan-

tify the efficiency and revenue gains associated with recurring auctions, we reduce the number of

possible auction rounds and examine the outcomes of single-round auctions and 2-period recurring
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auctions. We keep the reserve prices unchanged for this exercise. Specifically, the reserve prices in

the single-round auctions are the observed first-period reserve prices, and the reserve prices in the

2-period recurring auctions are the observed first- and second-period reserve prices. Results are

presented in Panel A of Table 6. The rightmost column reports the efficiency and revenue of the

observed 3-period recurring auctions. Compared with single-round auctions, 3-period recurring

auctions increase the efficiency and revenue by 16.6% and 15.9%, respectively. This translates

to an efficiency gain of 1.46 billion CNY (0.21 billion USD) and a revenue gain of 1.28 billion

CNY (0.19 billion USD) from 2017 to 2019 in Fujian province alone. Extrapolating to the entire

country, the annual efficiency and revenue gains amount to 23.13 and 20.19 billion CNY (3.40 and

2.97 billion USD), respectively.43

Table 6: Counterfactual Analyses.

Single-round (T = 1) Recurring (T = 2) Recurring (T = 3)

Panel A: current reserve price
Mean efficiency (10K CNY) 114.28 132.48 133.26
Mean revenue (10K CNY) 104.06 119.98 120.62

Panel B: optimal reserve price
Mean efficiency (10K CNY) 136.88 137.68 137.72
Mean revenue (10K CNY) 123.49 124.27 124.31

Notes: (1) We report mean revenue and efficiency at property level. (2) “Single-round (T=1)” refers to
single-round auctions; “Recurring (T=2)” refers to 2-period recurring auctions; “Recurring (T=3)” refers
to 3-period recurring auctions. (3) For Panel A, we use the current reserve prices, i.e., the reserve prices
used in the estimation of the 3-period recurring auctions. For Panel B, we use the optimal reserve prices
for efficiency and revenue, respectively, in each of the three cases in which T = 1, T = 2, and T = 3.

It is worth pointing out that most of the efficiency and revenue gain from using recurring

auctions is realized when there are two possible rounds, i.e., T = 2. Adding an additional auction

round beyond the second improves the auction outcome to a lesser degree. Interestingly, prior to

2017, foreclosed homes were auctioned up to four times in a row. Our findings provide justification

for the policy change that reduced the number of auction rounds by one.

Second, we explore optimal auction design in practice by applying the pricing rules in Theo-

43Note that home foreclosure auctions in Fujian province represent approximately 2.4% of the total market in China,
and home foreclosure auctions in 2019 account for 38% of the sample. To calculate the annual gain at country level,
we multiply the annual gain in Fujian from 2017 to 2019 by 38% and divide the result by 2.4%.
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rem 3 and Theorem 4. Results are presented in Panel B of Table 6. Figure 4 visualizes the reserve

prices in 3-period recurring auctions to maximize efficiency or revenue for the properties in our

sample. Box plots of the observed reserve prices are also presented. The figure indicates that

the observed reserve prices in the first 2 periods are fairly close to optimal for either efficiency or

revenue maximization. However, the observed reserve prices in the final period are too high, and

cause excessive auction failures and leave room for improvement. In fact, optimal reserve price se-

quences can raise efficiency by 3.35% and revenue by 3.06% over actual outcomes. On a national

scale, these improvements translate to an efficiency gain of 5.43 billion CNY (0.80 billion USD)

and a revenue gain of 4.50 billion CNY (0.66 billion USD).

Figure 4: Efficiency-maximizing, Revenue-maximizing, and Observed Reserve Prices (as Frac-
tions of Assessment Price) in 3-Period Recurring Auctions.

Recurring auctions continue to outperform single-round auctions in both revenue and efficiency

with optimal reserve prices (respectively for both kinds of auctions), but the relative gain is mod-

est.44 In practice, a seller may still benefit from holding recurring auctions for the following

reasons. First, setting the reserve price optimally requires detailed information about potential

44To explore how the parameters matter for the efficiency and revenue improvements from adding auction rounds
when the reserve prices are optimally set, we regress improvements on the fitted values of µ , σ , K, and number of
potential entrants. For properties with lower µ or σ , or higher K or the number of potential buyers, the extent of
efficiency and revenue improvement is lower. Detailed results can be found in Online Appendix B7. This provides
further guidance for the design of recurring auctions in our empirical setting.
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buyers’ value distribution for each property. This information may be unavailable in practice, and

the fine-tuning of reserve prices may impose additional administration costs. In contrast, as shown

in Table 6, recurring auctions with a rule-of-thumb type of decreasing reserve price sequence per-

form reasonably well. Second, even if the value distribution is known, the seller may still hold

recurring auctions to satisfy legal restrictions on reserve prices. In our context, the optimal single-

round auctions prescribe relatively low reserve prices, and often contradict the mandate that the

reserve price in the initial auction must be set above 70% of the assessed price.45 To put this into

perspective, in single-round auctions, the efficiency-maximizing reserve price is 0 and the aver-

age revenue-maximizing reserve price is 240 thousand CNY, both of which are nowhere close to

the amount required by law, which is 1.005 million CNY. This is less of an issue for recurring

auctions, in which the mean efficiency-maximizing reserve price sequence is (1.057,0.964,0) in

million CNY, and the mean revenue-maximizing reserve price sequence is (1.074,0.989,0.362) in

million CNY.

We conclude this section with two comments on the effects of entry subsidies and exogenous

shocks to entry costs. First, the seller can achieve the same level of efficiency and revenue with

optimally designed entry subsidies as using optimally designed reserve prices.46 This is because

holding fixed reserve prices, entry subsidies can be used to induce the desired entry thresholds,47

and we have shown that the efficiency and revenue are determined by entry thresholds in equilib-

rium. Second, under observed reserve prices, a 10% increase in entry costs (509 CNY on average)

reduces the average efficiency (revenue) in the T = 1 auction by 3,906 (3,507) CNY and that in

the T = 3 auction by 1,580 (1,496) CNY.48 This shows that entry costs have non-negligible effects

on the auction outcome, but recurring auctions are less affected, reflecting that the sorting pattern

in recurring auctions helps potential buyers economize on entry.

45There may be practical reasons for not running single-round auctions with low reserve prices, such as curtailing
corruption as in Cai, Henderson, and Zhang (2013).

46Negative entry subsidies are allowed and correspond to entry fees.
47Specifically, the subsidies needed can be solved from (3) by allowing time-varying entry costs (due to time-varying

subsidies) while fixing the reserve price sequence.
48A 10% decrease in entry costs leads to changes in revenue and efficiency of similar magnitudes, albeit in opposite

directions. Detailed results are presented in Online Appendix Table B8.
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8 Conclusion
This paper studies recurring auctions in which an item can be auctioned again if a previous attempt

fails. Our theoretical analysis shows that a recurring auction with an appropriately chosen reserve

price sequence can generate greater expected total surplus than any single-round auction. This is

because potential buyers sort their entry over time, and participation in later rounds is contingent

on no entry in previous rounds. Sorted entry generates two benefits for the expected total surplus.

First, it allows potential buyers to economize on their entry, since weak potential buyers can wait to

enter when the market is less competitive. Second, weak potential buyers are encouraged to enter if

no one has entered in previous rounds, which reduces the auction failure rate. Similarly, recurring

auctions can always raise the seller’s expected profit compared with single-round auctions. In line

with our theoretical results, our empirical analysis suggests that recurring auctions lead to large

efficiency and revenue gains in China’s home foreclosure market. Compared with single-round

auctions with the same (first-period) reserve price, recurring auctions raise efficiency by 16.60%

and revenue by 15.92%. Using the optimal reserve price sequences derived from our model can

further improve efficiency by 3.35% and revenue by 3.06%, respectively.

References
Ackerberg, Daniel A, “A new use of importance sampling to reduce computational burden in sim-

ulation estimation,” Quantitative Marketing and Economics, 2009, 7 (4), 343–376.
Allen, Jason, Robert Clark, Brent Hickman, and Eric Richert, “Resolving failed banks: Uncer-

tainty, multiple bidding & auction design,” Review of Economic Studies, 2023, p. rdad062.
Anenberg, Elliot and Edward Kung, “Estimates of the size and source of price declines due to

nearby foreclosures,” American Economic Review, 2014, 104 (8), 2527–2551.
Angrist, Joshua D and Jörn-Steffen Pischke, Mostly harmless econometrics: An empiricist’s com-

panion, Princeton university press, 2009.
Athey, Susan and Philip A Haile, “Identification of standard auction models,” Econometrica, 2002,

70 (6), 2107–2140.
, Jonathan Levin, and Enrique Seira, “Comparing open and sealed bid auctions: Evidence
from timber auctions,” The Quarterly Journal of Economics, 2011, 126 (1), 207–257.

Bajari, Patrick and Ali Hortaçsu, “The winner’s curse, reserve prices, and endogenous entry: Em-
pirical insights from eBay auctions,” RAND Journal of Economics, 2003, pp. 329–355.

Bougt, Daniel, Gagan Ghosh, and Heng Liu, “Identification of interdependent values in sequential
first-price auctions,” International Journal of Industrial Organization, 2023, 91, 103033.

Bulow, Jeremy and Paul Klemperer, “Why do sellers (usually) prefer auctions?,” American Eco-
nomic Review, 2009, 99 (4), 1544–1575.

Burguet, Roberto and Jozsef Sakovics, “Reserve prices without commitment,” Games and Eco-

34



nomic Behavior, 1996, 15 (2), 149–164.
Cai, Hongbin, J Vernon Henderson, and Qinghua Zhang, “China’s land market auctions: evidence

of corruption?,” The Rand journal of economics, 2013, 44 (3), 488–521.
Campbell, John Y, Stefano Giglio, and Parag Pathak, “Forced sales and house prices,” American

Economic Review, 2011, 101 (5), 2108–2131.
Celik, Gorkem and Okan Yilankaya, “Optimal auctions with simultaneous and costly participa-

tion,” The BE Journal of Theoretical Economics, 2009, 9 (1).
Cho, Sungjin, Harry J Paarsch, and John Rust, “Explaining Early Bidding in Informationally-

Restricted, Ascending-Bid Auctions,” Working paper., 2024.
CnOpenData, “Home foreclosure auction dataset,” 2023, (https://www.cnopendata.com/data/

fapaifang.html, accessed February 13, 2023).
Conklin, James N, N Edward Coulson, Moussa Diop, and Nuno Mota, “An alternative approach

to estimating foreclosure and short sale discounts,” Journal of Urban Economics, 2023, 134,
103546.

Corbae, Dean and Erwan Quintin, “Leverage and the foreclosure crisis,” Journal of Political Econ-
omy, 2015, 123 (1), 1–65.

Cortés, Kristle, Mandeep Singh, David H Solomon, and Philip Strahan, “The Stench of Failure:
How Perception Affects House Prices,” Technical Report, National Bureau of Economic
Research 2022.

Dee, Jan Victor, “A Dynamic Structural Model for Pay-Per-Bid Auctions: Explaining the Excess
Revenue Puzzle in Online Auctions,” Technical Report, Technical report. Concordia Univer-
sity 2020.

Gentry, Matthew and Tong Li, “Identification in auctions with selective entry,” Econometrica,
2014, 82 (1), 315–344.
, , and Jingfeng Lu, “Auctions with selective entry,” Games and Economic Behavior,
2017, 105, 104–111.

Groeger, Joachim R, “A study of participation in dynamic auctions,” International Economic Re-
view, 2014, 55 (4), 1129–1154.

Guerre, Elodie, Isabelle Perrigne, and Quang Vuong, “Nonparametric estimation of first-price auc-
tions,” Mimeo, 1995.

Guerre, Emmanuel, Isabelle Perrigne, and Quang Vuong, “Optimal nonparametric estimation of
first-price auctions,” Econometrica, 2000, 68 (3), 525–574.

Haile, Philip A, “Auctions with resale markets: An application to US forest service timber sales,”
American Economic Review, 2001, 91 (3), 399–427.
and Elie Tamer, “Inference with an incomplete model of English auctions,” Journal of

Political Economy, 2003, 111 (1), 1–51.
Hopenhayn, Hugo and Maryam Saeedi, “Bidding dynamics in auctions,” Technical Report, Na-

tional Bureau of Economic Research 2016.
Hortaçsu, Ali and Isabelle Perrigne, “Empirical perspectives on auctions,” in “Handbook of Indus-

trial Organization,” Vol. 5 2021, pp. 81–175.
Jeziorski, Przemyslaw and Elena Krasnokutskaya, “Dynamic auction environment with subcon-

tracting,” The RAND Journal of Economics, 2016, 47 (4), 751–791.
Jofre-Bonet, Mireia and Martin Pesendorfer, “Bidding behavior in a repeated procurement auction:

A summary,” European Economic Review, 2000, 44 (4-6), 1006–1020.
and , “Estimation of a dynamic auction game,” Econometrica, 2003, 71 (5), 1443–

35



1489.
Krasnokutskaya, Elena, “Identification and estimation of auction models with unobserved hetero-

geneity,” The Review of Economic Studies, 2011, 78 (1), 293–327.
and Katja Seim, “Bid preference programs and participation in highway procurement auc-

tions,” American Economic Review, 2011, 101 (6), 2653–2686.
Laffont, Jean-Jacques, Herve Ossard, and Quang Vuong, “Econometrics of first-price auctions,”

Econometrica: Journal of the Econometric Society, 1995, pp. 953–980.
Levin, Dan and James L Smith, “Equilibrium in auctions with entry,” The American Economic

Review, 1994, pp. 585–599.
Li, Tong and Xiaoyong Zheng, “Entry and competition effects in first-price auctions: Theory and

evidence from procurement auctions,” The Review of Economic Studies, 2009, 76 (4), 1397–
1429.

Liu, Qingmin, Konrad Mierendorff, Xianwen Shi, and Weijie Zhong, “Auctions with limited com-
mitment,” American Economic Review, 2019, 109 (3), 876–910.

Lu, Jingfeng, “Auction design with opportunity cost,” Economic Theory, 2009, 38, 73–103.
Luo, Yao, Peijun Sang, and Ruli Xiao, “Order statistics approaches to unobserved heterogeneity in

auctions,” Electronic Journal of Statistics, 2024, 18 (1), 2477–2530.
McAdams, David, “On the benefits of dynamic bidding when participation is costly,” Journal of

Economic Theory, 2015, 157, 959–972.
McAfee, R Preston and Daniel Vincent, “Sequentially optimal auctions,” Games and Economic

Behavior, 1997, 18 (2), 246–276.
Myerson, Roger B, “Optimal auction design,” Mathematics of Operations Research, 1981, 6 (1),

58–73.
Quint, Daniel and Kenneth Hendricks, “A theory of indicative bidding,” American Economic Jour-

nal: Microeconomics, 2018, 10 (2), 118–151.
Roberts, James W and Andrew Sweeting, “When should sellers use auctions?,” American Eco-

nomic Review, 2013, 103 (5), 1830–61.
Samuelson, William F, “Competitive bidding with entry costs,” Economics Letters, 1985, 17 (1-2),

53–57.
Skreta, Vasiliki, “Optimal auction design under non-commitment,” Journal of Economic Theory,

2015, 159, 854–890.
Stegeman, Mark, “Participation costs and efficient auctions,” Journal of Economic Theory, 1996,

71 (1), 228–259.
Tan, Guofu and Okan Yilankaya, “Equilibria in second price auctions with participation costs,”

Journal of Economic Theory, 2006, 130 (1), 205–219.
Ye, Lixin, “Indicative bidding and a theory of two-stage auctions,” Games and Economic Behavior,

2007, 58 (1), 181–207.

36



Appendix A Proofs
Proof of Proposition 1. It is useful to prove the following lemma first.

Lemma 1 Suppose 1 ≤ t < t ′ ≤ T or t = T = t ′−1. Then Πt(v;v∗)−Πt ′(v;v∗) strictly increases

with v ∈ [v,v].

Proof. If t = T = t ′−1, it is easy to see that Πt(v;v∗)−Πt ′(v;v∗) = ΠT (v;v∗) increases with v.

Consider the 1 ≤ t < t ′ ≤ T case. Simple algebra yields that

d[Πt(v;v∗)−Πt+1(v;v∗)]

dv
= δ

t−1{G[min{max{v,v∗t },v∗t−1}]−δG[min{max{v,v∗t+1},v∗t }]}> 0.

As a result, Πt(v;v∗)−Πt+1(v;v∗) is increasing. Similarly, Πt+1(v;v∗)−Πt+2(v;v∗), ..., and

Πt ′−1(v;v∗)−Πt ′(v;v∗) are increasing. Since

Πt(v;v∗)−Πt ′(v;v∗) =
t ′−1

∑
τ=t

[Πτ(v;v∗)−Πτ+1(v;v∗)] ,

Πt(v;v∗)−Πt ′(v;v∗) is increasing.

Suppose that all potential buyers other than n use the equilibrium entry and bidding strategy.

We verify that the entry and bidding strategy is optimal for potential buyer n by establishing the

following three claims.

Claim 1 At time t, suppose v∗t−1 > v∗t . If potential buyer n with vn > v∗t had entered, bidding

truthfully in the current auction is optimal.

Proof. We prove the claim by induction. Consider the base case of t = T . Since there is

no continuation play, the game becomes a single-period English auction, so bidding truthfully is

optimal for potential buyer n.

Suppose the claim holds for all t ′ ≥ t > 1. We show that it also holds for t in the following.

At time t, if other bidders are present in the auction, according to their bidding strategy, the item

will be sold in the current period, so there is no continuation play and bidding truthfully is optimal

for potential buyer n. If n is the only bidder, he can either bid up to his true value, which entails

buying the item at the current reserve price, or let the auction fail. In the former case, the payoff is

vn− rt ; in the latter case, suppose t̃ is the earliest time after t such that v∗t̃−1 > v∗t̃ .49 Then according

49Let t̃ = T if v∗t = v∗τ for all τ ∈ {t + 1, . . . ,T}.
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to the induction hypothesis, potential buyer n will bid and win in some t ′′ ∈ {t + 1, . . . , t̃} and the

expected payoff is δ t ′′−t
[

vn −
∫ v∗t′′−1

v∗
t′′

xd G(x)
G(v∗t )

− rt ′′
G(v∗t′′ )
G(v∗t )

]
. It suffices to show that

vn − rt ≥ δ
t ′′−t

[
vn −

∫ v∗t′′−1

v∗
t′′

xd
G(x)
G(v∗t )

− rt ′′
G(v∗t ′′)
G(v∗t )

]
. (A1)

Since v∗t−1 > v∗t , by Definition 1, we have that Πt(v∗t ;v∗) ≥ Πτ(v∗t ;v∗) for all τ ≥ t + 1. This

implies that

v∗t − rt ≥ δ
t ′′−t

[
v∗t −

∫ v∗t′′−1

v∗
t′′

xd
G(x)
G(v∗t )

− rt ′′
G(v∗t ′′)
G(v∗t )

]
+

K[G(v∗t−1)−δ t ′′−tG(v∗t ′′−1)]

G(v∗t )
.

Then (A1) follows from the fact that vn > v∗t and G(v∗t−1)−δ t ′′−tG(v∗t ′′−1) ≥ 0.

Claim 2 Suppose that v∗t−1 ≥ vn > v∗t . If an auction is held at time t, potential buyer n prefers to

enter that auction rather than wait.

Proof. By Claim 1, if potential buyer n enters at time t, he will bid truthfully and get the expected

payoff Πt(vn;v∗)/G(v∗t−1).

If n does not enter at time t, it is never optimal for him to wait to enter in some future period

t ′ > t and delay bidding further until some t ′′ > t ′. This follows immediately from Claim 1 for the

v∗t ′−1 > v∗t ′ case. For the case in which v∗t ′−1 = v∗t ′ , entering at t ′+1 and delaying bidding until t ′′ is

a better strategy because it allows n to pay entry cost 1 period later.

If n waits to enter in some t ′> t and bids without delay, the expected payoff is Πt ′(vn;v∗)/G(v∗t−1).

By Definition 1, we know that Πt(v∗t ;v∗) ≥ Πt ′(v∗t ;v∗). By Lemma 1 and the assumption that

vn > v∗t , we have that Πt(vn;v∗)/G(v∗t−1)> Πt ′(vn;v∗)/G(v∗t−1), i.e., the payoff of entering now

is greater than the payoff of waiting to enter in the future.

Claim 3 At time t, if vn ≤ v∗t , potential buyer n prefers to wait rather than enter the auction.

Proof. First, consider the situation in which potential buyer n has entered the auction. If other

bidders are present, given their strategy, it is optimal for n to bid truthfully and lose. If n is the

only bidder, he may choose to buy at the current reserve price or let the auction fail. However,

the strategy of entering and letting the auction fail when there is no competition is worse than not

entering in the current period.
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Then it suffices to show that entering to buy when no one else participates is also worse than

waiting. The expected payoff from the former is Πt(vn;v∗)/G(v∗t−1). Because of Lemma 1, the

assumption that vn ≤ v∗t , and the fact that Πt(v∗t ;v∗) ≤ Πt ′(v∗t ;v∗) for some t ′ > t, we have that

Πt(vn;v∗)/G(v∗t−1) ≤ Πt ′(vn;v∗)/G(v∗t−1), where the right-hand side is the expected payoff of

waiting to bid truthfully at time t ′. This implies that waiting is better than entering at time t.

Proof of Theorem 1. First, it is useful to note the following result.

Lemma 2 (Samuelson, 1985) In a single-round auction, a reserve price equal to the seller’s val-

uation maximizes efficiency.

Proof of Lemma 2. Samuelson (1985) provides a proof in the context of procurement auctions.

For completeness, a proof for forward auctions is provided here.

For any reserve price r ≥ 0, in equilibrium, the entry threshold in value v∗ satisfies the following

indifference condition: (v∗− r)[F(v∗)]N−1 = K. That is, potential buyers with values above v∗

participate in the auction, while those with values below v∗ do not. It is useful to note that at

r = vs, the threshold, denoted by v∗∗, satisfies

(v∗∗− vs)[F(v∗∗)]N−1 = K. (A2)

For any given threshold v∗, the expected total surplus is

T S(v∗) =
∫ v

v∗
(x− vs)d[F(x)]N −N[1−F(v∗)]K + vs.

Note that

∂T S(v∗)
∂v∗

= N f (v∗)
{

K − (v∗− vs)[F(v∗)]N−1}⋛ 0 ⇐⇒ v∗∗ ⋛ v∗.

Therefore, T S(v∗) is maximized at v∗ = v∗∗. Since r = vs induces the threshold v∗∗, it maximizes

efficiency.

By Lemma 2, in a single-round auction, efficiency is maximized at the reserve price r = vs. In

this case, the entry threshold in value v∗∗ is given by (A2). The expected total surplus is T S(v∗∗) =∫ v
v∗∗(x− vs)d[F(x)]N −N[1−F(v∗∗)]K + vs.

Consider a 2-period recurring auction. If r1 = vs and r2 = v∗∗−K,50 then the entry threshold

in period 1 is exactly v∗∗ and no one enters in the second period. That is, v∗1 = v∗2 = v∗∗. Therefore,

50It is useful to note that by (A2), v∗∗−K > vs.
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the equilibrium outcome coincides with that in the single-round auction with r = vs. To complete

the proof, it suffices to show that lowering r2 improves efficiency.

Note that the expected total surplus in the 2-period auction is

T S(v∗1,v∗2) =
∫ v

v∗1
(x− vs)d[F(x)]N + δ

∫ v∗1

v∗2
(x− vs)d[F(x)]N

−N
{
[1−F(v∗1)]K + δ [F(v∗1)−F(v∗2)][F(v

∗
1)]

N−1K
}
+ vs.

Simple algebra shows that51

∂T S(v∗1,v∗2)
∂v∗1

∣∣∣∣
v∗1=v∗2=v∗∗

= δ (v∗∗− vs −K)
∂ [F(v∗∗)]N

∂v∗∗
, and

∂T S(v∗1,v∗2)
∂v∗2

∣∣∣∣
v∗1=v∗2=v∗∗

= −δ (v∗∗− vs −K)
∂ [F(v∗∗)]N

∂v∗∗
.

Therefore, after a marginal decrease in r2, the change in T S(v∗1,v∗2) is

δ (v∗∗− vs −K)
∂ [F(v∗∗)]N

∂v∗∗
∂ (v∗1 − v∗2)

∂ r2
.52

In fact, given r1 = 0, a decrease in r2 from v∗∗ −K must increase (v∗1 − v∗2). Otherwise, if

(v∗1 −v∗2) were not increased, no one would enter in the second period. Then the entry threshold in

period 1 stays at v∗∗, and a potential buyer with value v∗∗ gets a payoff of 0. But for the potential

buyer, deviating to the second period generates a positive payoff of δ [F(v∗∗)]N [v∗∗− (r2−∆r2)−

K] = δ [F(v∗∗)]N∆r2. A contradiction.

Since ∂ (v∗1−v∗2)
∂ r2

< 0 and δ (v∗∗− vs −K) ∂ [F(v∗∗)]N

∂v∗∗ > 0, the change in T S(v∗1,v∗2) is positive after

a decrease in r2. This completes the proof.

Proof of Theorem 2. In Section 3.3, we derive the seller’s expected profit as a function of v∗, (7).

In the T = 1 case, simple algebra yields that

dR(v∗1;r1(v∗1))
dv∗1

=
d[F(v∗1)]

N

dv∗1

{[
1

F(v∗1)

]N−1

K −
[

v∗1 −
1−F(v∗1)

f (v∗1)
− vs

]}
. (A3)

Since v∗1 = v or v∗1 = v does not maximize R(v∗1;r1(v∗1)), (A3) must equal 0 in the optimum. We

51It is useful to note that
∂

{∫ v
v∗1
(x−vs)d[F(x)]N−N[1−F(v∗1)]K

}
∂v∗1

∣∣∣∣∣∣
v∗1=v∗∗

=
∂T S(v∗1)

∂v∗1

∣∣∣
v∗1=v∗∗

= 0, where the second equality

follows from the proof of Lemma 2.
52To be precise, the expression ∂ (v∗1−v∗2)

∂ r2
denotes the left derivative of (v∗1 − v∗2) with respect to r2. That is, we

consider a marginal decrease in r2.
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denote the maximizer by v∗∗.

Consider a 2-period recurring auction, with v∗ = (v∗∗,v∗∗). Clearly, this recurring auction

generates the same expected profit for the seller as the optimal single-round auction. However, by

taking the derivative of (7) with respect to v∗1, we have that

dR(v∗;r1(v∗))

dv∗1

∣∣∣∣
v∗1=v∗2=v∗∗

= δK
d[F(v∗∗)]N

dv∗∗

{[
1

F(v∗∗)

]N−1

−1

}
> 0.

As a result, the seller’s expected profit can be improved by raising v∗1 in the recurring auction.

Proof of Theorem 3. We prove the theorem in two steps. First, we show that a solution to (5)

exists. Second, we establish that (6) is the necessary condition for the optimum and has at most

one solution. As a result, the solution to (6) must exist and be optimal.

Step 1: Existence. It is useful to note that to maximize efficiency, it is never optimal to have types

below vs −K enter the auction. So it is without loss to impose the constraint vT ≥ min{vs +K,v}.

This constraint and the constraints of (5) form a compact set. Since T S(v∗) is continuous in v∗,

the compactness of the feasible set guarantees the existence of a solution.

Moreover, the constraint vT ≥ min{vs −K,v} never binds. That is, vT > min{vs −K,v} in the

optimum. Suppose to the contrary that v∗T = min{vs +K,v} in the optimum. It is without loss to

assume that v∗T−1 > min{vs +K,v}, because otherwise, if v∗T−1 = v∗T = min{vs +K,v}, we can

think of T −1 as the last period. For a given v∗T−1 > min{vs+K,v}, choosing the last-period entry

threshold is like a single-round problem considered in Lemma 2. From (A2), it follows that the

efficiency-maximizing entry threshold should be strictly greater than min{vs+K,v}, contradicting

with v∗T = min{vs +K,v} being optimal.

Step 2: The Necessary Condition. First, we show that the constraint v∗t−1 ≥ v∗t does not bind in

the optimum. To see that, consider the entry threshold sequence v∗ and assume that v∗t0 = v∗t0+1 for

some period t0. It suffices to show that v∗ is never optimal. If v∗t0 = v∗t0+1 ≤ min{vs +K,v}, then

it follows from Step 1 that v∗ cannot be optimal. So we focus on the v∗t0 = v∗t0+1 > min{vs +K,v}

case. If v∗t0 = v∗t0+1 = v∗T , it is like using a single-round auction at time t0. It follows from Theorem 1

that efficiency can be improved for the subgame starting from t0, so v∗ is not optimal. If v∗t0 =

v∗t0+1 > v∗T , consider an alternative entry threshold sequence in which all entry thresholds after
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time t0 are moved to 1 period earlier—i.e., v∗′ = (v∗1, . . . ,v∗t0 ,v∗t0+2, . . . ,v∗T ,v∗T ). v∗′ improves over

v∗ since the efficiency gain after time t0 is realized 1 period earlier.

Since the constraint v∗t−1 ≥ v∗t does not bind, the necessary condition is given by the first-order

condition of the unconstrained maximization problem. Simple algebra would verify that the first-

order condition (with respect to v∗t ) is equivalent to (6).

Proof of Theorem 4. The proof of Theorem 4 is omitted, since it closely follows that of Theo-

rem 3.
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Recurring Auctions with Costly Entry:
Theory and Evidence

ONLINE APPENDIX

(Not Intended for Publication)

In this appendix, we collect the analyses and discussions omitted from the main text.53

Appendix B Details in Empirical Analysis

B.1 Likelihood Function

Four scenarios emerge as the outcomes of recurring auctions. The likelihood function for each

scenario can be calculated as follows.

Scenario 1: No one enters for three consecutive auctions. This implies that no one’s valuation

is higher than the entry threshold in the last auction (v∗3), so the likelihood is L1 = [F(v∗3)]
N .

Scenario 2: Only one potential buyer enters and wins at the reserve price. This implies that

there is only one potential buyer whose private value is above the entry threshold. The probability

for that event is L2 = (N
1) [F(v

∗
t−1)−F(v∗t )]F(v

∗
t )

N−1.

Scenario 3: There are multiple entrants, and the deal price is higher than the reserve price.

We calculate the likelihood as the unconditional probability of Ne entrants, multiplied by the con-

ditional density of the second-highest value being the deal price:

L3 =

(
N
Ne

)
Ne(Ne −1)[F(v∗t )]

N−Ne f ( p̂)[F( p̂)−F(v∗t )]
Ne−2[F(v∗t−1)−F( p̂)],

where p̂ is the observed winning bid.

Scenario 4: Zero probability events given the equilibrium, such as the winning bid being lower

than the predicted entry threshold. The likelihood is 0 for these events. However, this does not

imply that the simulated likelihood is 0, since this is only for one particular simulation. If, in

all simulations for property i, there is at least one simulation draw in which the outcome can be

rationalized, the simulated likelihood 1
S ∑s Lsi would be positive.

53This note is not self-contained; it is the online appendix of the paper “Recurring Auctions with Costly Entry:
Theory and Evidence.”
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B.2 Importance Sampling

In this section, we lay out the detailed steps of the simulated maximum likelihood approach with

importance sampling. Specifically, we rewrite the integral in equation (12) as follows:∫
Li(yi|Λi)φ (Λi|B,Xi)dΛi =

∫
Li(yi|Λi)

φ (Λi|B,Xi)

g(Λi|Xi)
g(Λi|Xi)dΛi, (B1)

where g(Λi|Xi) is the importance sampling density, which does not depend on the parameters B.

In practice, we pick an initial guess B0 and use φ (Λi|B0,Xi) as the importance sampling density.

We then simulate the right-hand side of (B1) by drawing S = 1,000 realizations of Λi accord-

ing to the importance sampling density, g(Λi|Xi). Compared with φ (Λi|B,Xi), the importance

sampling density renders Λi draws independent of B. The simulation is given by

1
S ∑

s
Lis(yis|Λis)

φ (Λis|B,Xi)

g(Λi|Xi)
, (B2)

where Λis denotes a representative draw. The benefit of the importance sampling approach can be

clearly seen from (B2): When B changes, it is not necessary to draw a new set of realizations of Λi

and reevaluate Lis(yis|Λis). Instead, the same set of S = 1,000 simulations can be used and only

φ (Λis|B,Xi)/g(Λi|Xi) needs to be reevaluated, which is significantly less time-consuming.

Figure B1 shows the details of the estimation steps. In Panel (a), we show a hypothetical

scenario in which we estimate a model without using the importance sampling method. The flow

chart in Panel (b) of Figure B1 shows the estimation steps of the simulated maximum likelihood

method with importance sampling.

We use a computer cluster to evaluate Lis(yis|Λis) for all properties and simulations in parallel,

which further reduces the computation time for Step 1 in Figure B1(b). After obtaining the results,

we search for B that maximizes the simulated likelihood. Standard errors are computed using a

bootstrapping method in which properties are resampled 200 times.

B.3 Alternative Definitions of Potential Buyers

We examine the robustness of our results to alternative definitions of potential buyers. In the

baseline setting, we compute the number of potential buyers as the number of individuals who

have shown interest online, divided by 1000, plus the number of actual entrants. In this section, we

change the factor from 1/1,000 to 1/500 and 1/1,500 and reestimate the recurring auction model.
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Figure B1: Estimation Steps with and without Importance Sampling.

(a) SML without Importance Sampling. (b) SML with Importance Sampling.

The estimation results reported in Table B1 and the counterfactual analysis results reported in

Table B2 are similar to those obtained in the baseline setting, which attests to the robustness of our

results.

B.4 Estimation Results by Year

In this section, we divide our sample into two groups: houses auctioned in 2017 and houses auc-

tioned in 2018 and 2019. The estimation results reported in Table B3 suggest that coefficient

estimates are similar across the two groups.

B.5 Estimation Results by Time Lag between First Two Auction Rounds

To further address concerns about potential buyers or their valuations changing over time, we

compare parameter estimates for two subsamples: one with short time lags (bottom quartile, less

than 24 days) between the first two auction rounds, and another with long time lags (top quartile,

more than 44 days). The results reported in Table B4 indicate that the estimated parameters are very

similar across subsamples with different time lags, which suggests that new entrants and changing
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Table B1: Estimation Results for Alternative Definitions of Potential Buyers.

constant log
(

assess.
price

)
log(dist.) area (100 m2) ω mean

Panel A: Factor=1/500
µ ∼ T RN -0.288 1.002 -0.048 -0.038 0.167 4.268
(Xβµ ,ωµ ,1,7) (0.022) (0.005) (0.003) (0.010) (0.003)
σ ∼ T RN 0.250 -0.023 0.021 0.018 0.096 0.196
(Xβσ ,ωσ ,0.01,3) (0.020) (0.004) (0.002) (0.008) (0.003)
K ∼ T RN -2.876 0.605 -0.251 0.337 0.480 0.513
(XβK ,ωK ,0,15) (0.154) (0.031) (0.020) (0.045) (0.003)

Panel B: Factor=1/1500
µ ∼ T RN -0.158 0.989 -0.035 -0.029 0.157 4.364
(Xβµ ,ωµ ,1,7) (0.015) (0.003) (0.002) (0.007) (0.003)
σ ∼ T RN 0.257 -0.032 0.022 0.035 0.104 0.188
(Xβσ ,ωσ ,0.01,3) (0.018) (0.004) (0.002) (0.008) (0.004)
K ∼ T RN -3.011 0.642 -0.249 0.304 0.478 0.514
(XβK ,ωK ,0,15) (0.132) (0.027) (0.018) (0.039) (0.013)

Notes: (1) We use the same data and the same parameterization for Panel A and Panel B. The
only difference lies in the definition of potential buyers. (2) Potential buyers’ valuation is as-
sumed to follow a truncated lognormal distribution: v ∼ T RLN(µ ,σ ,10−4,1200). (3) Standard
errors in parentheses are obtained through bootstrapping 200 times . (4) The rightmost column
shows the mean of Λ = {µ ,σ ,K}.

valuations across rounds are not a major concern in the current setting.54

B.6 Balance Test for Attrited Houses

A balance test is performed to determine whether the observable characteristics of attrited houses

differ significantly from those of other houses. As Table B5 shows, there are no significant differ-

ences in any of the observed variables we analyze between attrited houses and others.

B.7 Determinants of the Number of Bidders

Table B6 reports determinants of the number of entrants. The results suggest that the number

of potential entrants has a significant and positive impact on the number of actual entrants. The

number of potential entrants alone can explain 66% of the variation in the number of actual entrants

54Since the subsamples consist of observations conditional on the failure of the initial auction, estimation results are
not expected to be similar to the baseline estimates obtained using the whole sample.
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Table B2: Counterfactual Analyses for Alternative Definitions of Potential Buyers.

Single-round (T = 1) Recurring (T = 2) Recurring (T = 3)

Panel A: current reserve price
Factor=1/500
Mean efficiency (10K CNY) 112.79 131.79 132.71
Mean revenue (10K CNY) 103.37 120.30 121.09
Factor=1/1500
Mean efficiency (10K CNY) 114.66 132.51 133.20
Mean revenue (10K CNY) 104.13 119.55 120.11

Panel B: optimal reserve price
Factor=1/500
Mean efficiency (10K CNY) 135.74 136.70 136.75
Mean revenue (10K CNY) 123.60 124.54 124.59
Factor=1/1500
Mean efficiency (10K CNY) 137.25 137.95 137.99
Mean revenue (10K CNY) 123.16 123.85 123.89

Notes: (1) We report the mean revenue and efficiency at property level. (2) “Single-round (T=1)”
refers to single-round auctions; “Recurring (T=2)” refers to 2-period recurring auctions; “Recur-
ring (T=3)” refers to 3-period recurring auctions. (3) For Panel A, we use the current reserve
prices, i.e., the reserve prices used in the estimation of the 3-period recurring auctions. A single-
round auction is a 3-period recurring auction with the last 2 periods removed. A 2-period recurring
auction is a 3-period recurring auction with the last period removed. For Panel B, we use the op-
timal reserve prices for efficiency and revenue, respectively, in each of the three cases in which
T = 1, T = 2, and T = 3.
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Table B3: Estimation Results by Year.

constant log
(

assess.
price

)
log(dist.) area (100 m2) ω mean

Panel A: Year=2017
µ ∼ T RN -0.318 1.033 -0.025 -0.052 0.159 4.336
(Xβµ ,ωµ ,1,7) (0.028) (0.007) (0.004) (0.014) (0.005)
σ ∼ T RN 0.246 -0.025 0.033 0.014 0.099 0.191
(Xβσ ,ωσ ,0.01,3) (0.032) (0.007) (0.004) (0.014) (0.006)
K ∼ T RN -3.476 0.719 -0.374 0.398 0.495 0.506
(XβK ,ωK ,0,15) (0.142) (0.033) (0.036) (0.064) (0.022)

Panel B: Year=2018 or 2019
µ ∼ T RN -0.175 0.987 -0.044 -0.039 0.157 4.329
(Xβµ ,ωµ ,1,7) (0.019) (0.004) (0.003) (0.008) (0.003)
σ ∼ T RN 0.257 -0.031 0.020 0.038 0.099 0.192
(Xβσ ,ωσ ,0.01,3) (0.018) (0.004) (0.003) (0.009) (0.003)
K ∼ T RN -2.890 0.618 -0.235 0.294 0.477 0.514
(XβK ,ωK ,0,15) (0.164) (0.034) (0.021) (0.058) (0.016)

Notes: (1) #Obs.=2,303 in Panel A; #Obs.=5,469 in Panel B. (2) Potential buyers’ valuation is as-
sumed to follow a truncated lognormal distribution: v ∼ T RLN(µ ,σ ,10−4,1200). (3) Standard
errors in parentheses are obtained through bootstrapping 200 times. (4) The rightmost column
shows the mean of Λ = {µ ,σ ,K}.

(as shown in the first column), which implies that the proxy is well constructed.

In the last column, we further explore the heterogeneous effects of the number of potential

buyers across auction rounds. The results suggest that each additional potential buyer leads to an

increase of 0.593 in the number of actual entrants in the first round. This effect rises to 0.775

(0.593 + 0.182) in the second round and falls to 0.45 (0.593 - 0.143) in the third round. The sorted

entry pattern offers an explanation for the differential impact of the number of potential buyers on

actual entrants across rounds. Alternatively, if sorting were absent and each auction independently

drew a new set of potential buyers, the effect of the number of potential buyers on actual entrants

would be homogeneous between the second and third rounds, since the reserve price remains the

same.

The increase in the impact of the number of potential buyers on actual bidders during the second

round and its decrease in the third round are also consistent with the institutional background and

our model. Specifically, there is a 20% decrease in the reserve price in the second round, with no
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Table B4: Estimation Results by Time Lag.

constant log(assess. price) log(dist.) area (100 m2) ω mean

Panel A: Top quartile (time lag<24 days)
µ ∼ T RN -0.460 1.030 -0.033 -0.076 0.161 4.150
(Xβµ

,ωµ ,1,7) (0.028) (0.007) (0.004) (0.014) (0.005)
σ ∼ T RN 0.276 -0.023 0.028 -0.006 0.096 0.199
(Xβσ

,ωσ ,0.01,3) (0.032) (0.007) (0.004) (0.014) (0.006)
K ∼ T RN -2.042 0.434 -0.201 0.415 0.478 0.591
(XβK ,ωK ,0,15) (0.142) (0.033) (0.036) (0.064) (0.022)

Panel B: Bottom quartile (time lag>44 days)
µ ∼ T RN -0.522 1.025 -0.027 -0.032 0.195 4.150
(Xβµ

,ωµ ,1,7) (0.019) (0.007) (0.004) (0.014) (0.005)
σ ∼ T RN 0.259 -0.024 0.012 0.038 0.106 0.219
(Xβσ

,ωσ ,0.01,3) (0.032) (0.007) (0.004) (0.014) (0.006)
K ∼ T RN -1.553 0.351 -0.172 0.355 0.399 0.537
(XβK ,ωK ,0,15) (0.142) (0.033) (0.036) (0.064) (0.022)

Notes: (1) #Obs.=617 in Panel A and B; (2) Potential buyers’ valuation is assumed to follow a
truncated lognormal distribution: v ∼ T RLN(µ ,σ ,10−4,1200). (3) Standard errors in parenthe-
ses are obtained through bootstrapping 200 times. (4) The rightmost column shows the mean of
Λ = {µ ,σ ,K}.

Table B5: Balance Test for Attrited Houses.

log(reserve) log(assess. price) area (100 m2) log(dist.)

attrition=1 0.010 -0.002 -0.013 0.001
(0.062) (0.060) (0.035) (0.095)

Year-by-month fixed effects X X X X
Observations 3891 3891 3891 3891
R-squared 0.056 0.050 0.031 0.041

Notes: (1) Standard errors in parentheses. (2) We remove houses sold in the first period from
the balance test, since no attrition can happen in the first period.

further decrease in the third round. Therefore, we expect a significant drop in the entry threshold

for the second round, while the decrease in the entry threshold between the second and third rounds

is more moderate.
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Table B6: Determinants of the Number of Bidders.

# of bidders

# of potential buyers 0.538 0.605 0.621 0.593
(0.004) (0.004) (0.004) (0.004)

round=2 ·# of potential buyers 0.182
(0.009)

round=3 ·# of potential buyers -0.143
(0.037)

log(assessed price) -0.936 -1.013 -1.053
(0.029) (0.029) (0.029)

area (100 m2) 0.379 0.510 0.534
(0.049) (0.049) (0.048)

log (dist to city center) -0.131 -0.141 -0.144
(0.016) (0.016) (0.016)

round=2 1.608 1.676 0.196
(0.048) (0.048) (0.088)

round=3 0.860 0.935 1.272
(0.081) (0.080) (0.165)

Year-by-month fixed effects X X
Observations 11411 11411 11411 11411
R-squared 0.659 0.714 0.727 0.737

Notes: (1) Standard errors in parentheses. (2) We pool auctions in all
three rounds in this table.
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B.8 What Parameters Drive the Efficiency and Revenue Improvements?

To explore how auction-specific heterogeneity affects revenue and efficiency improvements from

adding auction rounds, we regress the percentage improvements in efficiency and revenue—calculated

for running T = 3 auctions instead of T = 1 auction using optimal reserve prices—against the mean

value parameter µ , the entry cost K, the scale parameter σ , and the number of potential entrants.

Results are reported in Table B7.

The findings are consistent with our recurring auction model. Properties with higher mean

valuations and greater variance in bidders’ value distributions are more likely to be sold, even in

a single-round auction. As a result, the revenue and efficiency improvements from the reducing

auction failure channel are limited. For properties where potential bidders face higher entry costs or

the number of potential entrants is large, adding auction rounds helps potential buyers economize

on entry costs and leads to improvements.

Table B7: Revenue and Efficiency Improvement by Adding
Auction Rounds.

Eff_improv Rev_improv

µ -0.561 -0.602
(0.006) (0.006)

K 0.839 0.898
(0.015) (0.017)

σ -4.282 -4.421
(0.094) (0.102)

# of potential entrants 0.027 0.029
(0.000) (0.000)

Year-by-month fixed effects X X
Observations 7699 7699
R2 0.710 0.702

Notes: (1) Standard errors in parentheses.

B.9 Varying Entry Costs
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Table B8: Varying Entry Costs.

Single-round (T = 1) Recurring (T = 2) Recurring (T = 3)

Panel A: current entry cost
Mean efficiency (10K CNY) 114.28 132.48 133.26
Mean revenue (10K CNY) 104.06 119.98 120.62

Panel B: 90% of the current entry cost
Mean efficiency (10K CNY) 114.67 132.70 133.42
Mean revenue (10K CNY) 104.41 120.18 120.77

Panel C: 110% of the current entry cost
Mean efficiency (10K CNY) 113.89 132.26 133.10
Mean revenue (10K CNY) 103.71 119.77 120.47

Notes: (1) We report the mean revenue and efficiency at property level. (2) “Single-round (T=1)”
refers to single-round auctions; “Recurring (T=2)” refers to 2-period recurring auctions; “Recur-
ring (T=3)” refers to 3-period recurring auctions.
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