
Algorithmic Attention and Content Creation on
Social Media Platforms*

Yi Chen† Fei Li‡ Marcel Preuss§

February 26, 2025

Abstract

This paper develops a theoretical framework to examine how a social media plat-
form allocates attention through recommendation algorithms and how this in turn
shapes content creation and consumption. Creators and viewers, as the two sides
of the algorithm, fall into different categories based on interest. Creators are also
heterogeneous in ability. We show that a platform, to maximize advertisement rev-
enue, optimally filters out low-ability creators, restricts the reach of medium-ability
creators to relevant audiences only, and propagates viral content for high-ability ones
at the expense of relevance. The attention a creator receives grows disproportionally
in his ability and the popularity of his category. We show the source of the ineffi-
ciencies of the algorithm by contrasting it with a welfare-maximizing benchmark. We
additionally study the effect of monetary transfers in the algorithm. Our framework
offers insights into content production and matching in digital markets, giving rise to
potential regulatory interventions.
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1 Introduction

Today, there are estimated to be more than 5 billion people globally who use social
media, accounting for more than 62 percent of the world population. In the US, the share
is even higher, at around 90 percent. The intensity at which people use social media is
just as staggering as the number of users, if not more so. Americans, on average, clock
in more than 2 hours per day. Teenagers hit almost 5 hours, with 90 percent of their time
spent on Youtube, TikTok and Instagram. Accordingly, advertisers spend more than 100
billion USD in the United States alone on social media and influencer advertising.

Social media platforms not only connect content creators with viewers, but through
the design of their algorithms decide what viewers see and how much attention content
creators receive.1 Although recommendation algorithms have been instrumental in driv-
ing the influence and success of social media, the dominance of algorithmically curated
content in users’ feeds has not been universally welcomed. When Instagram moved to
recommended content in 2022, Kylie Jenner, then the world’s most followed person on
Instagram, expressed her frustration about the social media platform’s move by sharing
a post that said “Make Instagram Instagram again. (Stop trying to be Tiktok, I just want
to see cute photos of my friends).” The dominance of recommended content has not only
led to discontent among content consumers (viewers), but also among creators, whose
content is shown to others only if the algorithm decides so. In 2022, this has led a Tik-
Tok influencer with thousands of followers to complain on Reddit, another social media
platform, asking “What’s the point of having TikTok followers?”(Reddit, 2022).

At the same time, social media platforms make money from advertising. A user
scrolling through their Instagram feed inevitable encounters sponsored content regularly,
that is, posts (or reels) which are only shown because an advertiser paid Instagram to
target the user. To maximize advertising revenue, however, the platform cannot show
viewers just ads. Rather, the algorithm needs to blend ads with high quality content of
creators that viewers like, or else viewers would leave the platform. To incentivize content
creators, in turn, the algorithm must allocate them a certain level of viewers’ attention, or
else creators would not spend effort to make content. Thus, a social media platform faces
a two-sided mechanism design problem.

In this article, we study how a social media platform solves this mechanism design
problem and characterize the platform-optimal recommendation algorithm (mechanism).
In addition, we consider the welfare-optimal algorithm, allowing us to identify the distor-
tions and inefficiencies created by the platform’s profit-maximization incentive. The latter

1On Instagram, the Reels and the Explore tab are exclusively for recommended content. Even the user’s
feed, which before 2022 was exclusively reserved for followed content, “will have a mix of content from the
accounts you’ve chosen to follow, recommended content from accounts we think you’ll enjoy and ads” an
offcial instagram blogpost explains (Instagram Announcement, 2022). On Tiktok, recommended content is
even more prominent.
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improves our understanding of which regulation and behavioral measures can raise the
welfare of viewers and content creators. Finally, we study how introducing monetary
transfers between the platform and creators affects the optimal recommendation algo-
rithm. Youtube has been relying on creator payments for a long time, and Tiktok has
recently experimented with this too (see WSJ, 2024).

Our analysis reveals three main findings. First, the profit-maximizing algorithm crowds
out low-ability content creators, forces intermediate-ability creators to exert too much ef-
fort, and induces viewers to spend excessive time on the platform. Our analysis thus
makes an important contribution to the public debate about whether people spend too
much time on social media.2 Second, our analysis provides a profit-maximization ra-
tionale of the recent phenomenon of social media content “going viral,” which took off
after said platforms switched to an algorithm-led approach. Specifically, we show that to
maximize profits from advertising, the platform optimally chooses to show already pop-
ular content to disproportionally many viewers, including viewers not interested in the
content. Third, transfers from the platform to content creators fully eliminate irrelevant
content from the viewers’ feed if and only if selling ads is sufficiently lucrative for the
platform (compared to the value content creators derive from receiving attention).

Our analysis builds on a novel model of social media that allows content creators
to choose the effort they put into producing content and viewers to decide whether to
pay attention to the recommended content. In the model, an algorithm is a mechanism
that determines the content that each viewer sees (the viewer’s “feed”), and the attention
that each content creator receives. Content creators are horizontally differentiated in that
creators focus on different topics, which vary in popularity among viewers. In addition,
content creators differ in their ability to create high quality content. Content creators care
about receiving attention from viewers.4 Viewers vary in what topic they are interested
in. We accordingly quantify the popularity of a topic by the mass of viewers interested in
it. The platform wants to maximize the total attention paid to ads, which it sells for a fixed
price in the advertising market. Ads can be blended in the viewer’s feed together with the
creators’ content. Both producing content and paying attention to it is costly. Therefore,
the platform needs to satisfy the following two sets of obedience constraints: (i) each
viewer’s feed yields the viewer weakly positive utility so that viewers pay attention to

2A large and growing literature in social sciences studies the effect of social media on well-being. Allcott
et al. (2020) find that disconnecting from social media in an experiment improves subjective well-being.
Braghieri et al. (2022) find similar results, and further suggest that one of the mechanisms is related to
social comparisons (the fear of receiving fewer likes than others).3 In another controlled experiment by
Collis and Eggers (2022), the authors do not find any effect of reducing social media usage on well-being.
However, in that study subjects in the treatment group used other apps on their smartphone more heavily
(instant messaging), which could be detrimental for well-being as well.

4This assumption reflects intrinsic or extrinsic motivation from monetizing attention via deals with
advertisers. However, Toubia and Stephen (2013) show that intrinsic motivation plays an important role
for social media users. Similarly, Lindström et al. (2021) show that the desire for attention on social media
follows a pattern of “reward learning, comparable to the behavior of animals in seeking rewards.
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it, and (ii) each creator receives sufficient attention to motivate his production of high
quality content.5

Intuitively, if the platform has access to higher quality content by creators, this relaxes
the viewer’s obedience constraint. As a result, the platform can blend more ads into the
viewer’s feed. To incentivize the costly production of high quality content, however, the
platform needs to reward producers with more attention. The platform thus faces a trade-
off: allocate attention directly to ads or to content producers to incentivize the production
of higher quality content, which then allows it to show more ads. For creators who are
sufficiently popular or high in ability, the platform finds it profitable to do the latter.
This relaxes the obedience constraint of a larger mass of viewers, eventually allowing the
platform to show even more ads.

This implies distortions on both user sides of the platform. Some content creators exert
more effort than they would if their content were recommended only to viewers who are
in fact interested in their content. Conversely, viewers see content they are not interested
in – in addition to ads – thus lowering their overall utility from consuming their feed.
Thus, the fact that social media platforms earn money from selling ads not only affects
viewers because it means viewers are exposed to ads, but it also because it distorts the
platform’s recommendation algorithm toward recommending irrelevant content.

That the platform thrives on irrelevant content recommendations also explains why
certain content is made viral, i.e., shown to all viewers regardless of the viewers’ inter-
ests. While showing the content of popular creators to all viewers lowers some viewers’
utility from reading their feed, this boosts the utility of popular creators and allows the al-
gorithm to extract more effort from them.6 This, in turn, relaxes the obedience constraint
of the viewers interested in those creators’ topics, of whom there are many since the plat-
form makes mostly creators with popular topics go viral. Those viewers, therefore, can
then be shown more ads, whereas the platform shows more irrelevant content to a smaller
mass of viewers interested in less popular topics. In other words, the irrelevant content
has a non-linear effect on profit after this feedback loop. As a result of this feedback loop,
the number of ads shown to a viewer depends on their type. Viewers interested in less
popular topics see fewer ads because the platform finds it more profitable to steer their
attention toward content creators of popular categories to raise the effort of these creators.
Due to the increased quality of content by popular creators, the platform can then expose
viewers interested in that popular content to more ads.

5In the model, the platform perfectly observes quality as well as each viewer’s and creator’s type.
In practice, social media platforms learn quality through experimentation, and user characteristics from
machine learning. For example, to determine the quality of content, social media platforms reportedly
show it only to a small group of users, whose engagement with said content is used as a proxy for quality.
Our analysis abstracts from this experimentation phase.

6Note that popular here means that the creator focuses on a popular topic. That those creators become
eventually popular in the true sense is endogenous to the algorithm and not assumed ex ante.
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Finally, we highlight that if the value of ads is high, then inefficient recommendations
of irrelevant content arise only if the platform is unable to pay creators. Compared to the
algorithm that directs some of a viewer’s attention to irrelevant (from a certain viewer’s
point of view) but popular content creators, showing the viewer an ad instead means less
total attention that the platform can allocate to those popular creators. With transfers,
however, the platform can provide alternative incentives. In particular, if the platform
earns more for directing a unit of attention to an ad than the content creators value one
unit of attention, then it is more profitable to incentivize the content creator with pay-
ments rather than attention from viewers who deem their content irrelevant.

In sum, our model rationalizes common behaviors related to social media. First, with
the advent of TikTok in the US, which pioneered the heavy use of recommended content
on users’ feeds, a new phenomenon started on college campus (and other places): groups
of young adolescents spending hours together to film content for the platform, hoping the
algorithm will help their video go viral.7 Our model predicts that the profit-maximizing
algorithm crowds out participation from low- to medium-ability content creators in favor
of higher average content quality and increased advertisement exposure. Second, allo-
cating too much attention to already popular content is part of the optimal algorithm.
This explains the growing number of content creators whose content is distributed to
millions of viewers as well as the phenomenon of viral content in general. Third, the
profit-maximizing algorithm leads to excessive time spent on the social media platform,
which appears in line with the high reported average daily social media usage of 4.8
hours (among teenagers) in the US. As our analysis shows, the main reason for these dis-
tortions lies in the advertising-funded nature of social media. As it tries to show viewers
more ads, social media needs to also ramp up the production of content, which, in turn,
requires it to harvest even more attention from viewers.

We contribute to the growing literature that studies competition for attention on social
media. Relatively early work by Iyer and Katona (2016) studies a model of social media
in which the platform cannot directly control the flows of content and attention. Rather,
the key feature of social media in their model is that a message can be sent to multiple
receivers. The authors show that increasing the number of recipients (growing the so-
cial media platform) drives up effort of senders, but also leads to fewer people choosing
becoming senders. Ghosh and McAfee (2011), by contrast, consider a platform that can
design an algorithm to incentivize content production. Specifically, they allow for algo-
rithms that exclude low quality content from producers who exert too little effort.8 Ben-
Porat and Tennenholtz (2018) study recommender systems with strategic content creators

7Besides, this anecdotal evidence, data show that the share of teenagers (its heaviest users) creating
content on tiktok indeed very high at almost 80 percent .

8The platform relies on collecting engagement data from users to learn about the quality of content.
They derive an algorithm which maximizes the average quality on the platform while keeping the number
of instances when users see a low quality post for the purpose of learning the post’s quality as small as
possible.
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as well but consider different objectives of the algorithm (e.g., fairness). Importantly, in
those papers, the recommendation algorithm does not affect the total supply of attention,
nor is the goal to maximize profits from advertising.

Closest to our work is the analysis by Qian and Jain (2024). They study the interac-
tion of social media recommendation algorithms with endogenous content creation and
revenue-sharing plans between influencers and the platform. Their main result is that
the platform may want to bias its recommendation in favor of high-quality content even
if it is less relevant. There are several differences between their analysis and ours. First,
they fix the number of content creators and put a cap on content consumption, making
it is impossible to assert the welfare distortions of the platform’s algorithm, which is our
focus. Second, our model features rich heterogeneity among viewers and content cre-
ators, allowing us to characterize agents’ equilibrium participation, content production
and consumption and outcomes for different types of creators and viewers. This allows
us to assess the distributional impact of targeted regulatory interventions.

More generally, we contribute to the literature on advertising-funded media platforms
(see, e.g., Anderson and Coate, 2005; Peitz and Valletti, 2008). More broadly, our re-
search is related to two-sided markets research (see Jullien et al., 2021, for an excellent
overview). The two-sided market literature typically considers platforms that charge at
least one group of users for access to the other side of the market (e.g., advertisers). Since
social media platform also charges advertisers, this work is closely related to ours. How-
ever, our focus lies on moderating the exchange between content creators and viewers,
neither of which pay a monetary fee. Notable exceptions are from Bhargava (2022) and
Ren (2024), who explicitly model the three-sided nature of social media platforms. Bhar-
gava (2022) analyzes the optimal level of ads permitted by the platform and the optimal
revenue sharing mechanism given endogenous content supply decisions. Relatedly, Ren
(2024) studies advertising policies on decentralized content creation and examine its im-
plications on designing advertising and revenue-sharing. However, these authors do not
study the design of the optimal algorithm.9

Other work on social media includes Filippas et al. (2023), who consider a model of
social media platforms (e.g., facebook or Twitter) where users, rather than an algorithm,
have full control over which users they interact with. They show that users form strategic
links to attain more attention, and characterize patterns of such link formation between
users. Those papers differ from ours in that we focus on the case where the platform
can control the flow of attention between users through the design of a recommendation
algorithm. Although not our focus, others have also studied the spread of misinformation
through social media users and the ensuing polarization (e.g., Berman and Katona, 2020;
Acemoglu et al., 2024).

9Rather than modeling an algorithm explicitly, they assume, for example, that utility of viewers in-
creases in the average effort and mass of content creators joining the platform, or that higher quality content
is always prioritized by default.
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In our model, some content creators endogenously emerge as influencers due to the
algorithm and we are agnostic about whether those influencers desire attention for mone-
tary incentives or are intrinsically motivated. A small but growing literature focuses more
on how influencers make money, and the trade-off the face when showing organic versus
sponsored content, including Fainmesser and Galeotti (2021) and Mitchell (2021).

Notably, sellers, two-sided platforms, and intermediaries in general, frequently use
recommendation algorithms in e-commerce setups as well. Bergemann and Bonatti (2024)
study a platform that uses data to match heterogeneous consumers with multi-product
sellers. A common finding in this literature is that the profit-maximizing algorithm not al-
ways recommends the best product to consumers. For example, Hagiu and Jullien (2011)
argue that an information intermediary uses divert consumer search to gain higher con-
sumer traffic and influence sellers pricing. Teh and Wright (2022) show that an inter-
mediary has the incentive to steer the recommendation to influence the competition of
upstream sellers on prices and commissions. Choi and Jeon (2023) analyze the platforms’
design biases in a two-sided market. Peitz and Sobolev (2025) show when an interme-
diary recommends a welfare-reducing bad match to facilitate better surplus extraction
from sellers, and Bar-Isaac and Shelegia (2022) consider when an intermediary steers
consumers to more profitable products. Janssen et al. (2023) study the profit-maximizing
ranking algorithm of a search platform when consumers face search costs to inspect all
options and find that the platform obfuscates the search results. De Corniere and Taylor
(2019), Aridor and Gonçalves (2022) and Chen and Tsai (2024) study how an intermedi-
ary leverages biased recommendations to favor its own products when competing with
third-party sellers. Ichihashi and Smolin (2023) and Condorelli and Szentes (2023) ex-
amine how recommendation algorithms can enhance consumers’ countervailing power,
shielding them from surplus extraction by sellers.

2 Model

2.1 Primitives

We model social media platform as a monopolistic two-sided online marketplace where
users produce and consume digital content, such as articles, music, and videos. The plat-
form employs a personalized recommendation algorithm to distribute content and adver-
tisements to maximize its advertising revenue.

Creators and Viewers We consider two kinds of platform users: there are measure mc >

0 of content creators and measure mv > 0 of content viewers, which we call creators and
viewers for short.
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A creator is characterized by a two-dimensional type (θ, j), where θ ∈ R+ represents
his ability, and j ∈ N ≡ {1, . . . , N} indicates the horizontal category of a creator’s con-
tents. The proportion of type-j creators is denoted µj > 0. The conditional distribution
of θ given j is denoted by C.D.F. F (θ|j). For notation convenience, we assume F (θ|j) is
differentiable for each (θ, j).

For simplicity, we only account for horizontal heterogeneity among viewers and as-
sume that every viewer is interested in only one content category. So, a viewer is labeled
by k ∈ N , the horizontal category that she is interested in.10 The proportion of type-k
viewers is denoted νk > 0.

Production, Ads, and Consumption Each creator of type (θ, j) can put in costly effort
eθj ⩾ 0 to produce a unit of content, a post or a video for example. We assume that effort
boots the quality of the content generated, not quantity. With effort level eθj , creator type
(θ, j) generates content of quality qθj ≡ θeθj , while incurring cost c(eθj). Therefore, the
higher ability θ, the more efficient use of effort. As usual, we assume c(0) = c′(0) = 0 and
c′(e), c′′(e) > 0 for all e > 0. Moreover, c is assumed to be log-concave for normality.

Meanwhile, there is a competitive external market for ads. The platform can choose a
non-negative amount of ads, blend them with the creators’ contents, and make personal-
ized recommendation to each viewer.

Each viewer of type k can spend attention on contents and ads that are recommended
to them. Let aθj,k ∈ [0, 1] denote viewer k’s (unit) attention on creator (θ, j)’s content, and
let Ak ⩾ 0 denote the attention on ads by viewer k. Attention is costly, and viewer k’s
total cost of reading contents and ads is:

t ·

[
mc

∑
j

µj

∫
aθj,kdF (θ|j) + Ak

]
,

where t > 0 is the unit cost of attention. In return, viewers derive ex post utility from
reading contents (from entertainment or information, for example). A viewer k’s total
benefit from reading is:

mc

∑
j

µj

∫
aθj,kq

θ
j1{j = k}dF (θ|j) = mcµk

∫
aθk,kq

θ
kdF (θ|k).

The benefit from each content depends on two factors: the quality qθj and relevance (i.e.,
whether j = k or not). Here we make the simplifying assumption that reading irrelevant
content (j ̸= k) yields zero utility, but this can be easily generalized. The benefit from
watching ads is always zero.

10Similar results arise if we allow a viewer to be interested in multiple categories.
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The platform profits from showing ads. The competitive market price for a unit of
attention on ads is z > 0, so that the total profit of the platform reads:

zmv

∑
k

νkAk.

An important element of our model is that creators derive utility from the attention
by viewers. In particular, a type-(θ, j) creator receives linear utility:

mv

∑
k

νka
θ
j,k

from all attention received. The reduced-form specification captures creators’ desire to
gain online reach as it is the foundation of their psychological satisfaction, earning po-
tential, influence, and career growth. In one extension we allow for explicit monetary
transaction between the platform and the creators.

Platform Algorithm as Mechanism We model the algorithm of the social media plat-
form as a recommendation mechanism. Formally:

Definition 1 (Algorithm)
An algorithm A ≡ (ã, Ã) consists of a content assignment ãθj,k(q) : R+ ×N 2 ×R+ → [0, 1] and
an ads assignment Ãk : N → R+.

The content assignment determines the probability of recommending (θ, j)’s content to
type-k viewer, given the observed quality q. Remarkably, unlike ordinary commodities,
digital content is non-rival: a creator’s work can be consumed by an unlimited number of
users simultaneously without diminishing its availability. Hence, we allow

∑
k ã

θ
j,k(q) > 1

for any j, θ, q. The ads assignment determines the measure of ads in the recommendation
for type-k viewer. If some type stays out, the corresponding assignment is defined to be
zero. The timeline is as follows.

1. The platform commits to the algorithm A , and then all creators and viewers simul-
taneously decide to join the platform or not. The outside option for all users is zero.

2. All creators (θ, j) who join the platform simultaneously put in effort eθj to produce
content of quality qθj = θeθj .

3. After seeing all qθj , the algorithm sets aθj,k = ãθj,k(q
θ
j ) and Ak = Ãk. It then mixes

contents and ads into a personalized recommendation set exclusive to viewer type
k, k ∈ N .
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4. Each viewer k receives the recommendation set containing aθj,k proportion of type
(θ, j)’s content for all (θ, j), along with a measure Ak of ads. All contents and ads are
indistinguishable ex ante so that a viewer cannot cherry-pick. She chooses to read a
share αk ∈ [0, 1] of the recommendation set.

2.2 Model Discussions

The mechanism involves several important assumptions, which we discuss here. First,
the platform can see the types of users as well as the quality of contents. This is because
our model aims to characterize the long-run equilibrium instead of the transitory learn-
ing stage. With big data and long term interactions, a user’s type is easily learned by
algorithm. Quality is also mostly visible because a platform can hire a small set of test
viewers or even AI to judge the quality of posts (Ghosh and McAfee, 2011).

Second, the assumption that content creators derive utility from attention is docu-
mented by a large empirical literature, and is also adopted in theory studies (e.g., Filip-
pas et al., 2023). It explains why in many platforms with user-generated contents people
voluntarily contribute even without direct monetary reward. For the purpose of this pa-
per, we remain agnostic about the exact source of utility, be it psychological satisfaction
or exogenous pecuniary benefits proportional to the creator’s popularity.

Third, we assume that reading is an experience good. That is, viewers cannot cherry-
pick contents within the recommended set without incurring some attention costs. This
assumption is mostly appropriate when it comes to static content such as short text or
photos, because by the time viewers determines whether they like it or not, the attention
is already spent. That is, there is little difference between evaluating and consuming it.
Longer videos or texts, on the other hand, are different in that users can try to filter con-
tents from the first few seconds of reading. However, such screening is far from perfect,
as “click bait” on social media platform is all but rare. Oftentimes, viewers watch a video
till the end, only to find that it is a scam or an embedded ad. As long as viewers can-
not perfectly filter, the no-cherry-picking assumption is innocuous.11 Moreover, trying to
guess the quality by the sequence of recommended contents and ads is not effective, as
the algorithm can always prevent it by randomizing the sequence.

Finally, in our model viewers can only read within their tailored recommendation.
Notably, this does not forbid viewers from following creators of their choice; rather, the
constraints is that viewers cannot read “followed content” exclusively. In reality, recom-
mended content represents the lion’s share of what people consume social medias such
as Tiktok and Instagram, while “followed content” is in decline. These platforms even

11Suppose the platform shows a viewer a mass A > 0 of ads if the viewer cannot cherry pick at all. Now
suppose the user can detect and skip irrelevant content with probability 1/2, then the platform can just raise
the mass of ads to 2A to achieve the same outcome.
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start to weaken the “follow” function so that recommended contents and ads sneak in
under the tab of “followed content.”12 In sum, the platforms realize the profitability of
strengthening the algorithm and taking control of the attention flow. As such, we omit
the “follow” function to simplify analysis.

3 Analysis

3.1 Simplifying the Problem

Revelation principle (Myerson, 1986) can further reduce the space of algorithms to
obedient algorithms without loss of generality.

Definition 2 (Obedient Algorithm)
An obedient algorithm consists of an effort assignment eθj : R+ ×N → R+, a content assignment
aθj,k : R+ ×N 2 → [0, 1] and an ads assignment Ak : N → R+, such that:

mv

∑
k

νka
θ
j,k − c(eθj) ⩾ 0, ∀ θ, j, (1)

mcµk

∫
θaθk,ke

θ
kdF (θ|k)− t ·

[
mc

∑
j

µj

∫
aθj,kdF (θ|j) + Ak

]
⩾ 0, ∀ k. (2)

The first set of constraints, (1), are the obedience constraints for creators. When follow-
ing the recommendation, their individual net utility must be greater than their individual
rational payoff. This is so because the platform observes creator’s ability and content
quality, and whenever the realized quality does not equal θeθj , the platform can use the
harshest punishment aθj,k = 0 for all k ∈ N , resulting in a non-positive net utility. The
second set of constraints, (2), represents the obedience constraints for viewers. These con-
straints ensure that, for every viewer type, the marginal benefit of paying more attention
to the recommended set always exceeds the marginal cost, making it optimal for them to
fully consume the recommended content.

Lemma 1 (Revelation Principle)
For any equilibrium outcome induced by some algorithm, there exists an obedient algorithm in-
ducing the same outcome.

12Similarly, on Quora and Reddit, ads and recommended threads are mixed among the pertinent con-
tents.
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Among obedient algorithms, the optimization problem can be written as:

max
{eθj}θ,j⩾0,{Ak}k⩾0

{aθj,k}θ,j,k∈[0,1]

zmv

∑
k

νkAk

s.t. (1), (2).

Next, we make two observations of the constraints. First, the obedience constraints (2)
must be binding at optimum. If not for some k, then the platform should simply increase
Ak to improve profits. Second, it is without loss of generality to require the obedience
constraints (1) to be binding. If not for some creator type (θ, j), then the platform can in-
crease eθj without violating the obedience constraints. This is summarized in the following
lemma.

Lemma 2 (Binding Constraints)
There exists an optimal algorithm where the obedience constraint (1) and the obedience constraint
(2) are both binding.

With the binding constraints, we can substitute eθj and Ak, omit the positive multiplier
zmcmv

t
, and rewrite the problem as:

max
{eθj}θ,j⩾0

{aθj,k}θ,j,k∈[0,1]

∑
k

νkµk

∫
θaθk,ke

θ
kdF (θ|k)− t ·

[∑
k

∑
j

νkµj

∫
aθj,kdF (θ|j)

]
(3)

s.t. eθj = c−1

(
mv

∑
k

νka
θ
j,k

)
, ∀ θ, j, (4)

µk

∫
θaθk,ke

θ
kdF (θ|k)− t ·

[∑
j

µj

∫
aθj,kdF (θ|j)

]
⩾ 0, ∀ k. (5)

The objective (3) is the total ads inserted in the recommendation set of all viewers. If the
total benefit from reading is higher than the total attention cost from reading contents,
then there is room for the platform to sneak in more ads. The constraint (4) is a rewrit-
ing of the binding obedience constraint. The constraint (5) is the previous non-negativity
constraint on Ak. It appears here because Ak is no longer an explicit variable in the opti-
mization.

3.2 Optimal Algorithm

In this section we first solve the profit maximization problem for the platform, and
then contrast it with a user welfare maximization problem of a hypothetical benevolent
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platform. We focus on the case of low attention cost, where t is sufficiently small but
positive. This guarantees that the constraint (5) does not bind at optimum.

To understand the platform’s trade off of attention allocation, we examine the impact
of adjusting aθjk on the platform’s advertising revenue. To do so, we replace eθj in (3) by
constraint (4) and take first derivative with respect to aθjk.

For some generic (θ, j, k), if qθj = θeθj = 0, then the derivative of the objective with
respective to aθj,k is

−tνkµjf(θ|j) < 0,

regardless of whether k = j. This means if the quality of a content is zero, it is never
optimal to allocate any attention, be it relevant or irrelevant. This is intuitive. If qθj = 0, it
must be either because the creator’s ability is θ = 0 or because their effort level is eθj = 0.
In the first case, allocating any attention to the creator has no incentive value. In the
second case, since the creator’s optimal effort is zero, there is no reason to allocate them
any attention.

If θeθj > 0, however, the derivative of the objective with respective to aθj,k reads (omit-
ting positive multipliers):

−t + θeθj +
θ

c′(eθj)
mvνja

θ
j,j if k = j,

−t +
θ

c′(eθj)
mvνja

θ
j,j if k ̸= j.

The intuition for the derivative is clear. If k = j, then recommending (θ, j)’s content
to k has three effects on the quantity of ads. The first term, −t, is the attention cost on
the content that crowds out attention on ads. The second term, θeθj , is the quality of
content, which is also the benefit from reading. This relaxes the obedience constraint and
thus allows for more ads. The third term, θ

c′(eθj )
mvνja

θ
j,j , is the most interesting force. By

assigning attention, the creator receives higher utility, which in turn allows the platform to
extract marginally 1

c′(eθj )
more effort. The increased effort then benefits all relevant viewers

of mass mvνja
θ
j,j , amplified by the ability θ.

If k ̸= j, then the second term is missing as the viewers do not benefit from reading ir-
relevant contents. Nevertheless, the third term is still there, meaning that recommending
irrelevant contents is not a pure waste of time. By increasing the reach among irrelevant
viewers, a creator gains from attention and is willing to work harder subject to the obedi-
ence constraint. The resulting higher quality content benefits relevant viewers and relaxes
their obedience constraint, thereby admitting more ads. This explains why the algorithm
may want to mismatch contents on purpose.

The comparison between the two cases implies that as long as a creator produces con-
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tent of positive quality, it must first reach to all relevant viewers before starting to reach
irrelevant ones. Formally, define

• aθj ≡ aθj,j ∈ [0, 1] as the reach among the relevant viewers, or the attention a type-(θ, j)
creator receives from type-j viewers, and

• aθj ≡ 1
1−νj

∑
k ̸=j νka

θ
j,k ∈ [0, 1] as the reach among the irrelevant viewers, or the atten-

tion a type-(θ, j) creator receives from all viewers other than type j.

We conclude the following.

Lemma 3 (Priority)
(i) If aθj = 0, then aθj = 0;
(ii) If aθj > 0, then aθj = 1.

Furthermore, the objective can now be simplified to:

∑
j

µj

∫ (
νja

θ
jθc

−1
(
mvνja

θ
j +mv(1− νj)a

θ
j

)
− t
(
νja

θ
j + (1− νj)a

θ
j

) )
dF (θ|j), (6)

where aθj ∈ [0, 1] and aθj ∈ [0, 1] are the only choice variables, and

mvνja
θ
j +mv(1− νj)a

θ
j

is the total attention (also utility from attention) creator (θ, j) receives. The reformulation
reveals that what matters for the optimal attention allocation for each creator type-(θ, j)
are the received attention from the relevant viewers and the one from irrelevant viewers.
Exactly how to allocate attention over different irrelevant viewer types has no impact.
This observation substantially reduces the dimensionality of our optimization analysis.

The objective is concave in aθj . This is because in the second term, irrelevant attention
comes with a linear cost, while in the first term, it generates a marginally decreasing ef-
fect in extracting the creators. In contrast, the objective is convex in aθj . While the second
term is still linear in aθj , the first term is convex as there is complementarity between the
attention from a viewer and the effort of a creator. The more relevant attention, the more
profitable squeezing effort from creators; the higher effort, the more profitable it is to allo-
cate relevant attention. Therefore, the multiplicative term aθjc

−1
(
mvνja

θ
j +mv(1− νj)a

θ
j

)
is convex, given the log-concavity of c.

Therefore, the optimal algorithm must display a bang-bang solution for the reach of
relevant contents but could feature interior reach of irrelevant contents. Indeed, this is
confirmed in the following statement of the optimal algorithm.
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Proposition 1 (Optimal Algorithm)
Suppose the attention cost t is sufficiently low. For each category j, the optimal algorithm parti-
tions abilities into four groups with cutoffs 0 < θ∗j < θ†j < θ‡j :
(1) If θ ⩽ θ∗j , the creator is inactive, with eθj = 0, aθj = 0 and aθj = 0;
(2) If θ∗j < θ ⩽ θ†j , the creator is a local producer, with eθj = c−1(mvνj), aθj = 1 and aθj = 0;
(3) If θ†j < θ < θ‡j , the creator is a fledgling influencer, with eθj = c′−1(θmvνj/t), aθj = 1 and

aθj =
c(c′−1(θmvνj/t))−mvνj

mv(1−νj)
∈ (0, 1);

(4) If θ ⩾ θ‡j , the creator is a global influencer, with eθj = c−1(mv), aθj = 1 and aθj = 1.
The cutoffs are: θ∗j =

t
c−1(mvνj)

, θ†j =
tc′(c−1(mvνj))

mvνj
, θ‡j =

tc′(c−1(mv))
mvνj

.

For each category j, the optimal algorithm sorts creators into four segments accord-
ing to their ability θ. The ones with lowest ability are inactive creators, excluded from
production because their effort hardly generates any synergy with their ability, which
does not justify any attention away from ads. The ones with slightly higher ability are
called local producers, who puts in the same effort in exchange for attention from and only
from relevant viewers. The ones with even higher ability are called fledgeling influencers
as they not only cater to relevant viewers but also project their influence onto some of
the irrelevant viewers. The total attention a creator receives increases in his ability θ, but
the utility increase in completely offset by the higher effort level required by the plat-
form. Finally, the ones with the highest ability are called global influencers. Their contents
penetrate the entire market, relevant and irrelevant alike. Figure 1 plots the total atten-
tion mv(νja

θ
j + (1 − νj)a

θ
j) a type-(θ, j) creator receives in the optimal algorithm, where

c(e) = e2. Panel (a) shows the total attention as an increasing function of ability θ, while
Panel (b) plots the total attention as an increasing function of the popularity νj of his own
category.

As is evident from the optimal algorithm, the platform thrives on irrelevant content
recommendations. While irrelevant content and ads are both worthless for the viewers,
they serve different roles in the maximization. Ad is the way to cash out the viewers’
positive net utility, if any, and has a linear effect on the profit. On the other hand, while
irrelevant contents do not benefit the viewers, they boost the utility of the creators and
allows the algorithm to extract more effort from them. This in turn relaxes the obedience
constraint of the relevant viewers and makes room for more ads. In other words, the
irrelevant content has a non-linear effect on profit after this feedback loop. This also
explains why in the optimal algorithm, irrelevant attention increases in the ability θ or
popularity νj . When assigning more irrelevant attention and extracting higher effort, it is
the high-θ creators whose extra effort is most fruitful, and it is the creators in the popular
category whose viewers benefit the most.

It is notable in Figure 1 that for fledgling influencers, the total attention grows faster
than linearly. This implies that when we compare two creators in the same category, the
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(a) Attention in θ
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(b) Attention in νj

Figure 1: Effort and attention assignment in the optimal mechanism. Parameter: c(e) =
e2. Panel (a): Total attention received as function of ability θ, fixing j. Panel (b): Total
attention received as function of popularity νj , fixing θ.

one with higher ability will gain disproportionally larger attention; the same is true when
we compare two creators of the same ability but born in categories of different popularity.

Corollary 1 (Skewness)
For fledgling influencer of type (θ, j), the total attention received is c(c′−1(θmvνj/t)). Moreover,
c(c′−1(θmvνj/t))

θ
increases in θ and c(c′−1(θmvνj/t))

νj
increases in νj .

Intuitively, a creator with higher ability or larger relevant audience are required to work
harder, and due to the convex effort cost, the algorithm must allocate increasingly more
attention to compensate the creators. This disproportional effect resonates well with the
empirical finding that the attention distribution on the social platforms is skewed towards
high-ability creators and popular categories.

Finally, we would like to discuss the sustainability of categories. Suppose the distri-
bution of ability θ has a bounded support on [0, θj] for category j, j ∈ N . In order for any
creator in category j to produce, we require θjc

−1(mvνj) ⩾ t, and therefore mvν
∗
j ≡ c(t/θj)

is the critical mass for the category to remain active. The platform is viable only if νj ⩾ ν∗
j

for at least one category j. Similarly, in order for a category j to be popular enough to
support any global influencers, we need θjmvνj

c′(c−1(mv))
⩾ t, and therefore mvν

‡
j ≡ tc′(c−1(mv))

θj
is

the critical mass for this category to hatch a global influencer.

Corollary 2 (Critical Mass)
A category j is active on the platform only if νj ⩾ ν∗

j . A category j hatches fledgling (resp. global)
influencers only if νj ⩾ ν†

j (resp. νj ⩾ ν‡
j ).
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Figure 2: Four segments of creators on a νj − θ panel, where θj = θ for all j. mvν
∗ is the

critical mass for a category to exist. mvν
† (resp. mvν

‡) is the critical mass for a category to
hatch fledgling (resp. global) influencers.

Figure 2 shows the four segments of creators across all possible θ and νj , where θj = θ for
all j. A category has to represent ν∗ share of the viewer population in order to survive,
and has to house ν† (resp. ν‡) share to become a sufficiently popular category that hatches
fledgling (resp. global) influencers.

3.3 Welfare Consequences

Having characterized the optimal algorithm that maximizes the ads income of the
platform, we take a detour to contemplate on the welfare consequences of such modern
algorithm that prevails the social media. Obviously, in the optimal algorithm, both sides
of the users earn zero profit. The creators exert so much effort that they are on the verge
of quitting. The viewers watch irrelevant contents and ads to the extent that they barely
find the utility from reading worth their time.

Now suppose we consider a hypothetically benevolent platform, utilizing the algo-
rithm to maximize users’ welfare. To be specific, the users’ welfare is a weight sum of
creators’ and viewers’ net utility. As the weight varies, we obtain the Pareto frontier of
what is achievable from an algorithm. Let wc, wv > 0 denote the Pareto weight on the
creators and viewers, respectively.
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We look for an obedient mechanism solving the following problem:

max
{eθj}θ,j⩾0

{aθj ,aθj}θ,j∈[0,1]2

wc

∑
j

µj

∫ (
mv

(
νja

θ
j + (1− νj)a

θ
j

)
− c

(
eθj
) )

dF (θ|j)

+ wv

∑
j

µj

∫ (
νja

θ
jθe

θ
j − t

(
νja

θ
j + (1− νj)a

θ
j

) )
dF (θ|j) (7)

s.t. c
(
eθj
)
⩽ mv

(
νja

θ
j + (1− νj)a

θ
j

)
, ∀ θ, j. (8)

Again, we consider the case where t is sufficiently small such that there exist {aθj,k}θ,j,k
consistent with aj and aj while (5) does not bind.

It appears that the welfare-maximizing algorithm crucially depends on the Pareto
weights, in particular, the ratio of payoff-adjusted Pareto weights twv

wc
. We call it payoff-

adjusted because t is a viewer’s cost of reading while 1 is a creator’s normalized utility
from attention. The ratio twv

wc
thus weighs the social cost of reading against the social gain

from the same action. The next result characterizes welfare-maximizing algorithms under
different ratios.

Proposition 2 (Welfare Maximization)
(i) When twv

wc
⩾ c′(c−1(mvνj))c

−1(mvνj)

mvνj
for all j ∈ N , the welfare-maximizing algorithm assigns the

same eθj and aθj,k as in the main model, but sets Ak = 0.
(ii) When 1 < twv

wc
<

c′(c−1(mvνj))c
−1(mvνj)

mvνj
for some j ∈ N , the welfare-maximizing algorithm

has a cutoff ability for local producers lower than that in the main model for category j, and some
creators exert lower effort and enjoy positive utility.
(iii) When twv

wc
⩽ 1, the welfare-maximizing algorithm has all θ producing, with aθj = aθj = 1.

Part (i) claims that when the benevolent platform sufficiently values the viewer side,
the profit-maximizing algorithm can be readily used for welfare maximization too, ex-
cept that there are no ads inserted in the recommendation. Intuitively, when the creators’
utility has a low weight, they will be required to exert effort up to the limit of the partici-
pation constraint, which is also the case in the profit maximization. Given zero utility of
the creators, the remaining problem is to maximize the viewers’ utility, and that coincides
with profit maximization too. Indeed, maximum ads is achieved by maximizing viewers’
utility before cashing it out by inserting ads. By comparing the two algorithms, the source
of inefficiency in the profit maximization is clear: viewers waste time on the ads. Other
than that, there is no distortion on the production or the attention allocation on contents.

Part (ii) proposes a different algorithm when creators’ utility becomes more impor-
tant. As the platform now wants to leave some creators a positive net utility, it must be
the lowest-ability active creators who should relax. After all, due to their low abilities, re-
ducing the effort level has a smaller impact on the content quality than the same change
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on a high-ability creator. Moreover, since the entry-level creators only exert a reduced
level of effort, it is efficient to set the cutoff ability lower. Therefore, the source of inef-
ficiency in the profit maximization is now two fold. First, the requirement on ability to
start producing is too high. Second, the low ability active creators exert too much effort.
In short, the profit-maximizing algorithm is not inclusive enough, and is too demanding
on the low ability creators.

4 Monetary Transfers

So far we do not allow for monetary transfers between the platform and the creators.
The only source of utility for a creator is the attention he receives. In this extension we
explicitly allow the platform to pay type-specific amount of money to the creators as an
alternative method to incentivize them. In some platforms (e.g., YouTube and TikTok),
this is the main reason for production.

In the obedient algorithm, when the platform recommends effort eθj for a type-(θ, j)
creator, it also promises a non-negative payment πθ

j ⩾ 0 if the recommendation is fol-
lowed. We allow for any general payment schedule, including but not limiting to the lin-
ear pay-per-attention one. With similar arguments to Lemma 2, the obedience constraints
are binding. The objective now reads:

zmcmv

t

∑
j

νjµj

∫
aθjθc

−1
(
πθ
j +mvνja

θ
j +mv(1− νj)a

θ
j

)
dF (θ|j)

− zmcmv

∑
j

µj

∫ (
νja

θ
j + (1− νj)a

θ
j

)
dF (θ|j)−mc

∑
j

µj

∫
πθ
j (1− λθ

j)dF (θ|j), (9)

where λθ
j is the Lagrangian multiplier for πθ

j ⩾ 0. It turns out that positive payment is
always used for high-ability creators, but depending on whether the market competitive
price for ads is high or low, the optimal algorithm may or may not involve irrelevant
attention.

4.1 High Ads Fee: z > 1

Since we normalize the utility from a unit of attention to 1, the condition z ⩾ 1 is a rel-
ative comparison that the ads fee per unit of attention is higher than the creator’s utility
per unit of attention. When this is the case, it is optimal to never recommend irrelevant
contents. If the algorithm were to recommend some irrelevant contents from (θ, j) to k,
then it can instead reduce a unit of them, free up space for one unit of ads in k’s recom-
mendation set, gather z ⩾ 1 dollars of ads fee, and pay creator (θ, j) one dollar to make up
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for the lost attention. Therefore, irrelevant attention is an inefficient channel to provide
incentives. The next result characterizes the optimal algorithm with transfers.

Proposition 3 (Optimal Payment: High Ads Fee)
Suppose z > 1 and the attention cost t is sufficiently low. For each category j ∈ N , there exists
some θ̂∗j such that for θ < θ̂∗j , eθj = 0, aj = 0, aj = 0 and πθ

j = 0; for θ ⩾ θ̂∗j , eθj = c−1(mvνj),
aj = 1, aj = 0 and πθ

j = max
{
c
(
c′−1 (θmvzνj/t)

)
−mvνj, 0

}
.

According to the proposition, irrelevant attention aj = 0 for every creator. Moreover,
the transfer is strictly increasing and convex in the creator’s ability θ and the size of r
relevant audience νj whenever it is positive, similar to that of irrelevant attention in the
main model (Corollary 1). Indeed, it plays the role of a cheaper and unbounded version
of of the latter. The lesson is that when the ads market pays a lucrative piece rate, the
platform should feature accurate recommendation without irrelevant attention. It pays
high ability creators (if not all), and the payment increases in the creator’s ability and
relevant audience size.

In practice, platforms share revenue with content creators by allocating a percentage
of the advertising revenue generated from ads displayed on their content. One popular
ad revenue-sharing model is to reward creators based on views. Proposition 3 suggests
that for those creators who are paid, the optimal monetary transfer per attention unit,

πθ
j

mvνj
=

c
(
c′−1 (θmvzνj/t)

)
mvνj

− 1,

increases in the creator’s ability and relevant audience size according to Corollary 1.

4.2 Low Ads Fee: z < 1

When the earnings from ads are low compared to the utility from attention, the plat-
form should not rely solely on transfers. Instead, it will max out irrelevant attention be-
fore using money. The following result characterizes the optimal algorithm where other
than the four existing segments of creators, there is a fifth segment: paid global influencers.

Proposition 4 (Optimal Payment: Low Ads Fee)
Suppose z < 1 and the attention cost t is sufficiently low. The optimal algorithm is the same as
in Proposition 1 except that among global influencers, if additionally θmvνj

c′(c−1(mv))
> t

z
, then creator

(θ, j) receives a positive payment πθ
j = c

(
c′−1 (θmvzνj/t)

)
−mv.

Note that the condition for positive payment is stricter than that for global influencers due
to z < 1. Therefore, there is a segment of unpaid global influencers because although they

19



deserve full attention from irrelevant viewers, their content quality is not high enough to
justify payment which has a discretely higher cost. The proposition implies that when
the ads market does not pay well, the algorithm should still deliberately use irrelevant
attention as in the main model, and payment only occurs on very high-end global influ-
encers. This aligns with the spirit of some ad revenue sharing programs like TikTok Pulse,
which splits ad revenue only with creators whose videos rank in the top 4% of all TikTok
content. Similar to the previous case, the optimal monetary transfer per attention unit for
these global influencers πθ

j/mv = c
(
c′−1 (θmvzνj/t)

)
/mv − 1 increases in their ability and

relevant audience size.

5 Conclusion

Social media has become an increasingly important part of many people’s lives. The
platforms of social media also fundamentally shape how information is created and dis-
tributed. In this paper we study a model with some crucial aspects of social media such as
costly attention, directed attention by algorithm, vanity utility from attention, etc. We ar-
gue that since costly attention is a scarce resource to manage, the platform uses algorithms
to meticulously allocate attention of the viewers and effort of the creators. When profit
maximization is the goal of the designer, the optimal algorithm filters out low-ability
creators, restricts medium-ability creators to niche audiences, and amplifies viral con-
tent from high-ability creators, creating a skewed distribution of attention. This naturally
gives rise to a set of global influencers who is seen by all viewers, even if their specializa-
tion (horizontal location) does not necessarily fit all viewers. In contrast, when welfare
maximization is the objective, the allocation of attention shifts away from prioritizing vi-
ral content and engagement-driven ad revenue. Instead, the platform broadens content
exposure to better match viewers with creators who align with their preferences. This
leads to a more inclusive ecosystem where low-ability creators are encouraged to partic-
ipate. While global influencers still emerge, their dominance is reduced as the platform
promotes a more diverse content landscape. Additionally, we explore how monetary
transfers within the algorithm can mitigate some inefficiencies. Our results offer insights
into the economics of content production, distribution, and consumption in digital mar-
kets, with direct implications for platform design, creator incentives, and regulatory in-
terventions aimed at improving content allocation and market efficiency. Future research
could explore how competition between platforms, alternative monetization models, or
policy constraints influence these outcomes in digital markets.
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Appendix: Proofs

Proof of Lemma 1. Given an arbitrary algorithm (ã, Ã), suppose an equilibrium features
effort eθj and reading share α̃k of the recommendation set. Equilibrium requires:

eθj ∈ max
e⩾0

mv

∑
k

νkã
θ
j,k(θe)α̃k − c(e),∀ θ, j,

mv

∑
k

νkã
θ
j,k(θe

θ
j)α̃k − c(eθj) ⩾ 0,∀ θ, j,

α̃k ∈ max
α∈[0,1]

αmcµk

∫
θãθk,k(θe

θ
k)e

θ
kdF (θ|k)− αt ·

[
mc

∑
j

µj

∫
ãθj,k(θe

θ
j)dF (θ|j) + Ãk

]
,∀ k,

α̃kmcµk

∫
θãθk,k(θe

θ
k)e

θ
kdF (θ|k)− α̃kt ·

[
mc

∑
j

µj

∫
ãθj,k(θe

θ
j)dF (θ|j) + Ãk

]
⩾ 0,∀ k.

Now consider a new mechanism, in which the platform recommends effort eθj , promises
attention assignment:

aθj,k(q) =

{
ãθj,k(θe

θ
j)α̃k if q = θeθj ,

0 if q ̸= θeθj .
,

ads assignment Ak = Ãkαk, and recommends reading share αk = 1. Under the new
mechanism, all constraints are satisfied:

eθj ∈ max
e⩾0

mv

∑
k

νka
θ
j,k(θe)− c(e),∀ θ, j,

mv

∑
k

νka
θ
j,k(θe

θ
j)− c(eθj) ⩾ 0,∀ θ, j,

1 ∈ max
α∈[0,1]

αmcµk

∫
θaθk,k(θe

θ
k)e

θ
kdF (θ|k)− αt ·

[
mc

∑
j

µj

∫
aθj,k(θe

θ
j)dF (θ|j) + Ak

]
,∀ k,

mcµk

∫
θaθk,k(θe

θ
k)e

θ
kdF (θ|k)− t ·

[
mc

∑
j

µj

∫
aθj,k(θe

θ
j)dF (θ|j) + Ak

]
⩾ 0,∀ k.

Finally, rewrite aθj,k ≡ aθj,k(θe
θ
j) to save notations.

Proof of Lemma 2. Suppose (2) is strict for some k. Then the platform should increase
Ak to improve its profit. Now suppose (1) is strict for some (θ, j). Then the platform
can increase eθj , which weakly relaxes (2) and weakly improves its profit. Therefore, (2)
being binding is necessary for optimization, while (1) being binding is without loss of
generality.

Proof of Lemma 3. Plug (4) into (3), and then take the derivative w.r.t. aθj,k. If θeθj = 0,
then the derivative reads −tνkµjf(θ|j) < 0, and we must have aθj,k = 0 for all k.
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If θeθj > 0, then the derivative reads νkµjf(θ|j)
(
−t+ θeθj +

θ
c′(eθj )

mvνja
θ
j,j

)
if k = j, and

νkµjf(θ|j)
(
−t+ θ

c′(eθj )
mvνja

θ
j,j

)
if k ̸= j.

(i) Suppose aθj = aθj,j = 0. If θeθj = 0, then aθj,k = 0 for all k ̸= j. If θeθj > 0, then
−t + θ

c′(eθj )
mvνja

θ
j,j < −t + θeθj +

θ
c′(eθj )

mvνja
θ
j,j ⩽ 0, and again aθj,k = 0 for all k ̸= j. As a

result, aθj =
1

1−νj

∑
k ̸=j νka

θ
j,k = 0.

(ii) Suppose aθj > 0, then there exists some k ̸= j s.t. aθj,k > 0, and θeθj > 0. Then
0 ⩽ −t+ θ

c′(eθj )
mvνja

θ
j,j < −t+ θeθj +

θ
c′(eθj )

mvνja
θ
j,j . As a result, aθj = aθj,j = 1.

Proof of Proposition 1. Differentiating (6) w.r.t. aθj and aθj , we have respectively:

f(θ|j)µjνj

(
−t+ θc−1(mvνja

θ
j +mv(1− νj)a

θ
j) +

θmvνja
θ
j

c′(c−1(mvνja
θ
j +mv(1− νj)aθj))

)
,(10)

f(θ|j)µj(1− νj)

(
−t+

θmvνja
θ
j

c′(c−1(mvνja
θ
j +mv(1− νj)aθj))

)
. (11)

Notice that (11) is strictly decreasing in aθj because c′ and c−1 are both increasing. How-
ever, (10) is strictly increasing in aθj because the second derivative reads:

θmvνj
c′(eθj)

3

(
2c′(eθj)

2 − c(eθj)c
′′(eθj) +mva

θ
j(1− νj)c

′′(eθj)
)
> 0,

where the inequality follows from the log-concavity of c. Therefore, the optimizer must
feature aθj ∈ {0, 1}. According to Lemma 3, aθj > 0 implies aθj = 1, and aθj = 0 implies
aθj = 0.

Then we have potentially four cases. Case 3: aθj = 1 and aθj ∈ (0, 1). (11) implies that

aθj =
c(c′−1(θmvνj/t))−mvνj

mv(1−νj)
and we need θ ∈ (θ†j , θ

‡
j) so that aθj ∈ (0, 1). Moreover, (6) must be

higher than when aθj = aθj = 0, which boils down to θmvνj
t

c′−1
(

θmvνj
t

)
⩾ c

(
c′−1

(
θmvνj

t

))
.

This is always true because xc′−1(x) − c(c′−1(x)) ≡
∫ x

0
c′−1(x′)dx′ > 0 for all x > 0. Note

that θ†j < θ‡j because νj < 1 and c′ and c−1 are strictly increasing.

Case 4: aθj = 1 and aθj = 1. (11) implies θ ⩾ θ‡j . Moreover, (6) must be higher than when
aθj = aθj = 0, which boils down to θνjc

−1(mv) ⩾ t. This is always true for θ ⩾ θ‡j because
we can set x = c′(c−1(mv)) and use the inequality xc′−1(x)− c(c′−1(x)) > 0 for all x > 0.

Case 2: aθj = 1 and aθj = 0. (11) implies θ ⩽ θ†j . Moreover, (6) must be higher than
when aθj = aθj = 0, which boils down to θ > θ∗j . Note that θ∗j < θ†j because we can set
x = c′(c−1(mvνj)) and use the inequality xc′−1(x)− c(c′−1(x)) > 0 for all x > 0.

Case 1: aθj = aθj = 0. We only require (6) to be higher than when aθj = 1 and aθj
is optimally chosen. If aθj > 0, this is impossible from the analysis of Cases 3 and 4.
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Therefore, aθj = 0, and the comparison boils down to θ ⩽ θ∗j . Since t > 0, we have θ∗j > 0.

Proof of Corollary 1. The total attention for a fledgling influencer (θ, j) is mv(a
θ
jνj +

aθj(1− νj)) = c
(
c′−1(θmvνj/t)

)
.

Note that:
d

dθ

c
(
c′−1(θmvνj/t)

)
θ

=
c′(x)2 − c(x)c′′(x)

θ2c′′(x)
> 0,

where x = c′−1(θmvνj/t). The inequality comes from the log-concavity of c. Considering

the symmetry between θ and νj in c
(
c′−1(θmvνj/t)

)
, the proof for

c(c′−1(θmvνj/t))
νj

is similar.

Proof of Corollary 2. If a category j supports active creators, we must have θ∗j ⩽ θj . By
definition, this means θjc−1(mvνj) ⩾ t, or equivalently mvνj ⩾ c(t/θj). Therefore, νj ⩾ ν∗

j .

Similarly, if a category j hatches global influencers, we must have θ‡j ⩽ θj . By defi-

nition, this means θjmvνj
c′(c−1(mv))

⩾ t, or equivalently mvνj ⩾ tc′(c−1(mv))

θj
. Therefore, νj ⩾ ν‡

j .

Proof of Proposition 2. In welfare maximization, Lemma 3 still holds. Denote the
Lagrangian multiplier for (8) as wcλ

θ
j ⩾ 0. The first order condition w.r.t. eθj requires:

eθj = c′
−1

(
θmvwvνja

θ
j

wc(1 + λθ
j)

)
.

(i) We first examine conditions under which (8) always holds with equality. Note that
when this is the case, the objective reduces to the one in the main model and the candidate
solution is the same as in the main model. In particular, eθj = c−1(mv(a

θ
jνj + aθj(1 − νj))).

When θ < θ∗j , we have aθj = aθj = 0, and the two expressions for eθj trivially coincide. When
θ ⩾ θ∗j , we know aθj = 1. Then, λθ

j ⩾ 0 means:

c′
−1

(
θmvwvνja

θ
j

wp

)
⩽ c−1(mv(a

θ
jνj + aθj(1− νj)))

for all θ ⩾ θ∗j . Given the solution to the main model, the necessary and sufficient condition
is twv

wc
⩾ c′(c−1(mvνj))c

−1(mvνj)

mvνj
.

(ii) Suppose 1 < twv

wc
<

c′(c−1(mvνj))c
−1(mvνj)

mvνj
for some j. Plugging in the effort eθj from

the first order condition, the derivative of (7) w.r.t. aθj yields mvwc(1 − νj)(1 − twv

wc
+ λθ

j).
If θ > θ†j and λθ

j = 0, then aθj = 0, aθj = 1 and the candidate eθj violates (8). Therefore,

λθ
j > 0 and we end up with Cases 3 and 4 in Proposition 1. If wc

wv

c′(c−1(mvνj))

mvνj
< θ < θ†j and

λθ
j = 0, then the same contradiction arises. Therefore, λθ

j > 0 and we end up with Cases 2
in Proposition 1. If θ ⩽ wc

wv

c′(c−1(mvνj))

mvνj
, then regardless of λθ

j we must have aθj = 0. If aθj = 1
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then (8) is not binding. This, compared to aθj = 0, produces a higher objective if and only
if θ ⩾ θ̃∗j , where θ̃∗j > 0 uniquely solves∫ θ̃∗jwvmvνj/wc

0

c′
−1
(x)dx = mvνj

(
twv

wc

− 1

)
.

Finally, we want to show θ̃∗j < θ∗j . We know θ̃∗j > 0 satisfies:

mvνj

(
twv

wc

− 1

)
+ c

(
c′
−1

(
θ̃∗jmvwvνj

wc

))
−

θ̃∗jmvwvνj

wc

c′
−1

(
θ̃∗jmvwvνj

wc

)
= 0.

Replacing θ̃∗j with θ∗j and taking the derivative of the left-hand side w.r.t. t, we have:

mvwvνj
c−1(mvνj)

(
c−1(mvνj)− c′

−1

(
twvmvνj

wcc−1(mvνj)

))
> 0

for twv

wc
<

c′(c−1(mvνj))c
−1(mvνj)

mvνj
, and the left-hand side becomes zero when twv

wc
=

c′(c−1(mvνj))c
−1(mvνj)

mvνj
.

Therefore, the left-hand side is negative for twv

wc
<

c′(c−1(mvνj))c
−1(mvνj)

mvνj
. Since xc′−1(x) −

c(c′−1(x)) increases in x > 0, we know that θ∗j > θ̃∗j .

(iii) Suppose twv

wc
⩽ 1 for some j. Then according to the derivatives of (7) w.r.t. aθj and

aθj yields aθj = aθj = 1 for all θ. In order for (8) to bind, we need θ > wc

wv

c′(c−1(mv))
mvνj

.

Proof of Proposition 3. Plugging the first order condition w.r.t. πθ
j into the derivatives

w.r.t. aθj and aθj , we have tmvνj(1−z+
θeθjz

t
−λθ

j) increasing in aθj , and tmv(1−νj)(1−z−λθ
j) <

0. This means aθj = 0 for all θ, and aθj ∈ {0, 1}.

If aθj = 0, then the first order condition w.r.t. πθ
j requires πθ

j = 0. If aθj = 1, then

πθ
j = c

(
c′−1

(
θzmvνj
t(1−λθ

j )

))
− mvνj . Comparing the two cases, the objective is greater if and

only if

z

t
mvνj

(
θc−1(πθ

j +mvνj)− t
)
> πθ

j . (12)

When z ⩾ c′(c′−1(mvνj))c
′−1(mvνj)

mvνj
, (12) must imply λθ

j = 0. If not, then πθ
j = 0 and (12) reduces

to θ > θ∗j . Given this, πθ
j > 0, a contradiction. Therefore, aθj = 1 whenever θ > θ̂∗j , where

θ̂∗j uniquely solves ∫ θ̂∗j zmvνj/t

0

c′
−1
(x)dx = mvνj(z − 1).

Now suppose z <
c′(c′−1(mvνj))c

′−1(mvνj)

mvνj
. For θ ⩾ tc′(c−1(mvνj))

zmvνj
, (12) must imply λθ

j = 0 for

the same reason as above. For θ∗j ⩽ θ <
tc′(c−1(mvνj))

zmvνj
, (12) must imply λθ

j > 0. If not, then
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λθ
j = 0 and πθ

j < 0, a contradiction. For θ < θ∗j , (12) is violated. Therefore, θ̂∗j = θ∗j .

Proof of Proposition 4. Plugging the first order condition w.r.t. πθ
j into the derivatives

w.r.t. aθj and aθj , we have tmvνj(1−z+
θeθjz

t
−λθ

j) increasing in aθj , and tmv(1−νj)(1−z−λθ
j).

This means aθj ∈ {0, 1}.

For θ ⩽
θ‡j
z

, if πθ
j > 0, then λθ

j = 0. This implies aθj = aθj = 1. However, the first order
condition w.r.t. πθ

j requires

πθ
j = c

(
c′
−1

(
θzmvνja

θ
j

t(1− λθ
j)

))
−mv(a

θ
jνj +aθj(1−νj)) = c

(
c′
−1

(
zθ

θ‡j
c′(c−1(mv))

))
−mv ⩽ 0,

a contradiction. Therefore, πθ
j = 0 for all θ ⩽

θ‡j
z

, and the solution is the same as the main
model for these θ.

For θ >
θ‡j
z

, we must have πθ
j > 0. If not, then aθj = aθj = 1 according to Proposition 1.

However,

πθ
j = 0 > c

(
c′
−1

(
θ‡jmvνj

t

))
−mv = 0,

a contradiction. Therefore, πθ
j > 0 for all θ >

θ‡j
z

, and since λθ
j = 0, we know aθj = aθj = 1.
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Aridor, G. and D. Gonçalves (2022). Recommenders’ originals: The welfare effects of the
dual role of platforms as producers and recommender systems. International Journal of
Industrial Organization 83, 102845.

Bar-Isaac, H. and S. Shelegia (2022). Monetizing steering. Centre for Economic Policy
Research.

Ben-Porat, O. and M. Tennenholtz (2018). A game-theoretic approach to recommenda-
tion systems with strategic content providers. Advances in Neural Information Processing
Systems 31.

Bergemann, D. and A. Bonatti (2024). Data, competition, and digital platforms. American
Economic Review 114(8), 2553–2595.

25



Berman, R. and Z. Katona (2020). Curation algorithms and filter bubbles in social net-
works. Marketing Science 39(2), 296–316.

Bhargava, H. K. (2022). The creator economy: Managing ecosystem supply, revenue shar-
ing, and platform design. Management Science 68(7), 5233–5251.

Braghieri, L., R. Levy, and A. Makarin (2022). Social media and mental health. American
Economic Review 112(11), 3660–3693.

Chen, N. and H.-T. Tsai (2024). Steering via algorithmic recommendations. The RAND
Journal of Economics 55(4), 501–518.

Choi, J. P. and D.-S. Jeon (2023). Platform design biases in ad-funded two-sided markets.
The RAND Journal of Economics 54(2), 240–267.

Collis, A. and F. Eggers (2022). Effects of restricting social media usage on wellbeing and
performance: A randomized control trial among students. PloS one 17(8), e0272416.

Condorelli, D. and B. Szentes (2023). Buyer-optimal platform design.

De Corniere, A. and G. Taylor (2019). A model of biased intermediation. The RAND
Journal of Economics 50(4), 854–882.

Fainmesser, I. P. and A. Galeotti (2021). The market for online influence. American Eco-
nomic Journal: Microeconomics 13(4), 332–372.

Filippas, A., J. J. Horton, and E. Lipnowski (2023). The production and consumption of
social media. Technical report, National Bureau of Economic Research.

Ghosh, A. and P. McAfee (2011). Incentivizing high-quality user-generated content. In
Proceedings of the 20th international conference on World wide web, pp. 137–146.

Hagiu, A. and B. Jullien (2011). Why do intermediaries divert search? The RAND Journal
of Economics 42(2), 337–362.

Ichihashi, S. and A. Smolin (2023). Buyer-optimal algorithmic consumption. Available at
SSRN 4635866.

Iyer, G. and Z. Katona (2016). Competing for attention in social communication markets.
Management Science 62(8), 2304–2320.

Janssen, M., T. Jungbauer, M. Preuss, and C. Williams (2023). Search platforms: Big data
and sponsored positions. CEPR Discussion Papers,,(18639).

Jullien, B., A. Pavan, and M. Rysman (2021). Two-sided markets, pricing, and network
effects. In Handbook of industrial organization, Volume 4, pp. 485–592. Elsevier.

Krasnova, H., T. Widjaja, P. Buxmann, H. Wenninger, and I. Benbasat (2015). Research
note—why following friends can hurt you: an exploratory investigation of the effects
of envy on social networking sites among college-age users. Information systems re-
search 26(3), 585–605.

26



Lindström, B., M. Bellander, D. T. Schultner, A. Chang, P. N. Tobler, and D. M. Amodio
(2021). A computational reward learning account of social media engagement. Nature
communications 12(1), 1311.

Mitchell, M. (2021). Free ad (vice): internet influencers and disclosure regulation. The
RAND Journal of Economics 52(1), 3–21.

Myerson, R. B. (1986). Multistage games with communication. Econometrica: Journal of the
Econometric Society, 323–358.

Peitz, M. and A. Sobolev (2025). Inflated recommendations. The RAND Journal of Eco-
nomics forthcoming.

Peitz, M. and T. M. Valletti (2008). Content and advertising in the media: Pay-tv versus
free-to-air. international Journal of industrial organization 26(4), 949–965.

Qian, K. and S. Jain (2024). Digital content creation: An analysis of the impact of recom-
mendation systems. Management Science.

Ren, Q. (2024). Advertising and content creation on digital content platforms. Marketing
Science 43(4), 734–750.

Teh, T.-H. and J. Wright (2022). Intermediation and steering: Competition in prices and
commissions. American Economic Journal: Microeconomics 14(2), 281–321.

Toubia, O. and A. T. Stephen (2013). Intrinsic vs. image-related utility in social media:
Why do people contribute content to twitter? Marketing Science 32(3), 368–392.

27


	Introduction
	Model
	Primitives
	Model Discussions

	Analysis
	Simplifying the Problem
	Optimal Algorithm
	Welfare Consequences

	Monetary Transfers
	High Ads Fee: z>1
	Low Ads Fee: z<1

	Conclusion

