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Abstract

A large and unifying family of noisy or non-deterministic contests is pro-

posed. The de�ning characteristic is that the marginal return to e¤ort exhibits

a log-supermodularity property. The model nests both the usual rank-order

tournament and the microfoundations for the Tullock contest. With homoge-

neous technologies, strategic incentives and comparative statics are qualitative

similar across the entire family. Robust comparative statics include collective

discouragement and disparity e¤ects. The e¤ects of precommitment are also

robust. Moreover, the model provides a framework for studying the role of

heterogeneous technologies. Su¢ cient conditions are provided under which the

comparative statics and their policy implications are preserved.
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1 Introduction

The literature on contests and tournaments is vast, well-established, and still rapidly

growing. However, it remains dominated by a small set of tractable models. In the

case of static contests with �noisy�outcomes, the workhorse models are the Tullock

contest and the rank-order tournament, due originally to Tullock (1980) and Lazear

and Rosen (1981), respectively. The outcome of a contest is noisy whenever the

identity of the winner is not a deterministic function of the action or e¤ort pro�le.

The Tullock contest and the rank-order tournament exemplify but do not exhaust

all the ways in which noise may impact a contest. This observation immediately

invites some overdue questions: Are there general and robust properties or character-

istics of noisy contests, and to what extent are the workhorse models representative?

This paper aims to answer these foundational questions in contest theory. The main

message is that a number of comparative statics, and their policy implications, are

remarkably robust along one dimension but more fragile along another, more subtle,

dimension. Roughly speaking, the faultline is whether agents are subjected to noise

in a homogeneous or heterogeneous manner. In the former case, the exact nature of

the noise is unimportant as long as it falls within a very permissible family.

The workhorse models have particularly stark properties in contests with two

agents. Dixit (1987) shows that the favorite � i.e. the agent most likely to win

the contest � views actions as strategic complements whereas the underdog views

actions as strategic substitutes. Such properties enable a deep understanding of the

economic incentives in contests and games more generally, as explored in e.g. Bulow,

Geanakoplos, and Klemperer (1985). Hence, it becomes possible to predict, and

to intuitively understand, the consequences of changes in the contest environment.

Dixit (1987) uses these properties to study the e¤ects of precommitment in sequential

contests. Whether the resulting insights are robust depends on whether or not the

strategic incentives are qualitatively similar in a broader family of contests.

This paper considers contests in which noise takes the form of stochastic per-

formance. That is, the agent�s action combines with random factors to produce a

non-degenerate distribution over her performance. The winner is the agent with the

best realized performance, but this need not be the agent with the highest e¤ort.

Lazear and Rosen�s tournament is a special case in which the agent�s action shifts

the location of a symmetric distribution function. Similarly, Tullock�s contest has
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been microfounded as a contest with stochastic performance. In the microfoundation

proposed by Fullerton and McAfee (1999), higher e¤ort makes the distribution more

convex in a particular way. In Hirschleifer and Riley�s (1992) microfoundation, the

agent manipulates the scale parameter of an exponential distribution.

To �x ideas, let F i(xijai) denote the cumulative distribution function of agent i�s
performance, xi, when her action is ai. The distribution F i(xijai) describes the agent�s
�performance technology�and it is the most important primitive of the model. Unlike

existing models, this paper imposes no functional forms on F i(xijai) but instead
identi�es basic properties that unify and generalize the workhorse models.

The central property is log-supermodularity. It is imposed on the model in two

ways. First, the monotone likelihood-ratio property (MLRP) is assumed to hold,

but this is equivalent to assuming that the density is log-supermodular in (xi; ai).

Second, and more importantly, the distribution is assumed to have the no-upward-

crossing (NUC) property introduced by Chade and Swinkels (2020) for problems

with a single agent. To interpret NUC, recall that the probability that agent i�s

performance exceeds some threshold, xi, is 1 � F i(xijai). The latter increases at a
rate of �F ia(xijai) in the agent�s action, and NUC is now precisely that �F ia(xijai) is
log-supermodular. Chade and Swinkels (2020) note that �NUC is satis�ed for every

distribution that we are aware of that is commonly used in economic applications.�

This paper is the �rst to use log-supermodularity to systematically study contests.

Contests in which performance technologies satisfy MLRP and NUC are henceforth

referred to as log-supermodular contests, or LSM contests for short. The contests in

Fullerton and McAfee (1999) and in Hirschleifer and Riley (1992) are LSM contests.

So are rank-order tournaments under the common assumption that densities are log-

concave. Thus, the family of contests under consideration nests the standard models.

The analysis starts with contests in which agents have access to fully homogeneous

performance technologies. The easiest interpretation is that F i(xijai) is identity-
independent. In the literature mentioned above, agents independently convexify iden-

tical distributions, manipulate the scale of independent exponential distributions, or

shift the location of identical distributions. Hence, any agent can perfectly replicate

the performance distribution of any other agent by simply taking the same action.

However, agents may di¤er in their e¤ectiveness at, or cost of, manipulating the per-

formance technology. They may also attach di¤erent values to winning the contest.

The �rst, but central, insight concerns the strategic incentives in LSM contests
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with homogeneous technologies and two contestants. As in Dixit�s (1987) contests,

for any action pro�le, the favorite (underdog) views actions as strategic complements

(substitutes). The next step is to understand equilibrium properties and compar-

ative statics. These are in turn determined by the reaction functions. An iconic

image in contest theory is the hump-shaped reaction function that arise in Tullock

contests. The hump-shape is a direct consequence of how the favorite and under-

dog view actions as strategic complements and substitutes, respectively. Thus, the

reaction functions have the same shape in all LSM contests with fully homogeneous

technologies. Comparative statics with respect to changes in such characteristics as

valuations and cost functions are therefore qualitatively similar in all these contests.

Dixit�s (1987) conclusions regarding precommitment are similarly robust.

Three comparative statics are worth highlighting. Their resulting policy implica-

tions are detailed later. The �rst comparative static is an individual discouragement

e¤ect. Any individual agent works hardest if the equilibrium is such that she wins

with probability 1
2
, as is the case when she faces a symmetric opponent. On the

other hand, if she is matched with an asymmetric opponent then her incentives are

lessened and she is discouraged from working as hard, although the reason is di¤erent

depending on whether the agent is the favorite or the underdog.

The second and third comparative statics relate to the overall e¤ects of an in-

crease in asymmetry across agents. The collective discouragement e¤ect reveals that

both agents work less hard in equilibrium if the underdog becomes weaker, or values

winning less. In comparison, the collective disparity e¤ect says that if the favorite

becomes stronger, then equilibrium actions move even further apart �the disparity

widens �and the favorite becomes even more likely to win. The two e¤ects capture

di¤erent adverse consequences of a more uneven playing �eld.

However, the assumption that technologies are fully homogeneous is strong. Since

any agent can perfectly copy the distribution of her competitor, there is no room

for personal idiosyncrasies. In a contest between product developers, one may be

more e¤ective at thinking outside the box, meaning that her performance is likely to

have higher variance. If salespeople in a promotion contests are assigned to di¤erent

regions, then small di¤erences in income distributions or tastes across regions carry

over to the agents�performance distributions. Importantly, heterogeneous technolo-

gies are more subtle than heterogenous cost functions, since the former maps actions

into di¤erent functions (distributions) rather than simply into di¤erent real numbers
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(costs). Consequently, the problem is more nuanced with heterogeneous technologies.

The most important consequence of heterogeneous technologies is that the favorite

may not view actions as strategic complements. However, su¢ cient conditions are

identi�ed under which this is the case in equilibrium. Roughly speaking, the su¢ cient

conditions hold when one agent has a performance technology that is both more pro-

ductive and more sensitive to e¤ort than the other. In such �ordered LSM contests�,

the �rst agent is enticed to work harder and ends up being the favorite not only due to

her higher e¤ort but also because she is more productive to start with. Versions of the

collective discouragement and disparity e¤ects hold in ordered LSM contests, but not

more generally. Moreover, even in ordered LSM contests, the individual discourage-

ment e¤ect changes qualitatively, which as discussed later has important implications

for biased contests. These �ndings are signi�cant because they highlight that the

received wisdom may be sensitive to heterogeneity in performance technologies.

Noisy contests with more agents are less well-studied. Still, LSM contests with

many agents have several properties in common. These results and other extensions

are detailed in the discussion section. It is shown that the standard results and

intuition are turned on their heads in the rare contests that are log-submodular.

Policy implication: Discouragement e¤ects of various kinds take a central place

in the literature. An early example is the celebrated �exclusion principle�discovered

by Baye, Kovenock, and de Vries (1993) in deterministic contests, or all-pay auctions.

Here, the presence of a very strong agent can be so discouraging to everyone else

that excluding the former may lead to higher aggregate e¤ort. Kirkegaard (2024)

shows that it may instead be optimal to exclude a weaker agent in a speci�c contest

model with noise. In comparison, the current paper investigates a large class of noisy

contests and shows that certain discouragement e¤ects are common to many of them.1

Discouragement e¤ects are integral to the debate on the merits of policies meant to

level the playing �eld. In their survey, Chowdhury, Esteve-González, and Mukherjee

(2023) ask for more work to �help scholars form conclusions about the generalizability

of the di¤erent policy outcomes observed� in existing models. The current paper

represents a step towards answering this call for generality.

Imagine that there is some regulator with the ability to in�uence the stakes of

1Fang, Noe, and Strack (2020) study di¤erent manifestations of discouragement e¤ects in all-pay
auctions with symmetric contestants when e.g. prizes become more unequal or when more agents
enter. In the present paper, discouragement e¤ects refer to properties of asymmetric contests.
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the contest. If his objective is to achieve more even outcomes, then the collective

disparity e¤ect supports a policy of disincentivizing the favorite, e.g. by making it

less desirable for her to win or by making the consolation prize more desirable to

her. On the other hand, the collective discouragement e¤ect implies that improving

the underdog�s incentives, e.g. by promising her an additional bonus if she wins,

causes both agents to work harder, which is bene�cial for any regulator whose payo¤

is increasing in the performances or actions of the two agents.

The model also helps understand and extend key results in the literature on biases

in Tullock contests, culminating in Fu andWu (2020). They show that if the regulator

is able to bias the impact of the two agents�actions, then it is typically optimal to do so

in a way that leads to a completely level playing �eld. The current paper argues that

this conclusion is ultimately due to the individual discouragement e¤ect. Thus, the

result may generalize to other LSM contests with homogeneous technologies, although

this depends in part on the degree of �exibility the regulator has. Conversely, with

heterogeneous technologies, a level playing �eld is generally not optimal.

Although the collective disparity and discouragement e¤ects are robust, they pre-

dict the direction but not the magnitude of equilibrium responses. It is possible that

aggregate outcomes can be sensitive to the performance technologies. For instance,

aggregate e¤ort can increase or decrease when valuations become more asymmetric.

Thus, there is no robust aggregate discouragement e¤ect within LSM contests.2

Related literature: The literature on generalized contests is scant. Focusing

on two-agent contests, Malueg and Yates (2005) examine the role of the contest

success function (CSF) in comparative statics. However, their CSF is a black box

that maps the action pro�le into winning probabilities and no microfoundations are

o¤ered. Malueg and Yates (2005) mainly concentrate on (potentially asymmetric)

CSFs that are homogenous of degree zero in actions. For such CSFs, the reaction

functions are hump-shaped. The comparative statics are again determined by who

views actions as strategic substitutes or complements in equilibrium, but there are no

insights into how this relate to who is the underdog or favorite in equilibrium. In the

current paper, su¢ cient conditions on the primitives are provided for contests with

heterogeneous technologies under which it can be concluded that the favorite views

actions as complements in equilibrium. Thus, one advantage of the current approach

2See e.g. the examples in Kirkegaard (2024), whose model is also a special case of LSM contests.
Drugov and Ryvkin (2022) thoroughly discuss the literature on aggregate discouragement e¤ects.
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is that there are clearly de�ned primitives �namely the performance technologies �

that give structure to the CSF and which lend themselves to economic interpretation.3

Using the �state-space approach�, Bastani, Giebe, and Gürtler (2022) consider

tournaments in which agents have identical production functions but identity-dependent

noise or state distributions. These are contests with heterogeneous technologies. They

assume that agents have the same valuations and cost functions. Their focus is on

ranking equilibrium actions and they do not consider the shape of the reaction func-

tions or the comparative statics of changes to individual valuations or cost functions.

In two-agent contests, Bastani, Giebe, and Gürtler (2022) �nd that the two agents

have the same equilibrium action.4,5 The current paper shows that this surprising

result is due to the precise way in which they capture technological heterogeneity.

There are two important features of their model. First, as in Lazear and Rosen (1981),

they assume that noise is one-dimensional. However, it is easy to imagine that there

are multiple sources of noise in the production process. It turns out that Bastani,

Giebe, and Gürtler�s (2022) result does not hold with multivariate noise. The current

paper makes use of the �Mirrlees approach�, which takes the performance distribution

F i(xijai) as the starting point. As explained in Section 5, this approach can easily
encompass what corresponds to multiple sources of noise in the state-space approach.

Second, Bastani, Giebe, and Gürtler (2022) assume that agents have the same

production function but, depending on the interpretation, di¤erent distributions of

noise, luck, or skill. It is equally possible that agents have access to di¤erent resources,

opportunities, machinery, or technology more broadly. With such identity-dependent

production functions, Bastani, Giebe, and Gürtler�s (2022) result does not hold.

Finally, considering biased contests, Kirkegaard (2023a) argues that it can be un-

clear how to directly bias actions if what is observed is performance. Thus, he derives

general design principles when the designer can bias how each agent�s performance is

scored. A substantial improvement over Fu and Wu (2020) can be achieved in this

manner. However, the optimal bias rarely leads to a completely level playing �eld.

3Relatedly, Ewerhart and Serena (2024) ask what can be said about the structure of the CSF in
rank-order tournaments with two agents when the only assumptions are that noise is additive and
i.i.d. In comparison, it turns out that the CSF is log-supermodular in all LSM contests.

4Bastani, Giebe, and Gürtler (2022) also examine how the equilibrium action changes when the
noise distributions change. Such comparative statics are omitted from the current paper, in large
part because it is not generally speaking the case in LSM contests that agents take the same action.

5Giebe and Gürtler (2024) allow for more agents. Some of their results are generalized in Section
6. However, Giebe and Gürtler (2024) consider more varied and general prize structures.
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2 Model and preliminaries

2.1 Contests with stochastic performance

A total of n � 2 risk neutral agents compete in a winner-take-all contest. Agent i�s
value of winning the contest is vi > 0, i = 1; 2; :::; n. She exerts e¤ort ai � 0 in pursuit
of winning. The cost of action ai is described by a twice continuously di¤erentiable

cost function ci(ai), with c0i(ai) > 0 for all ai > 0. The cost function is unbounded

above. These characteristics are common knowledge.

Let P i(a) denote the probability that agent i wins the contest if the action pro�le

is a = (a1; a2; :::; an).6 Thus, agent i�s expected utility from action pro�le a is

ui(a) = viP
i(a)� ci(ai): (1)

Let ai denote the action for which vi � ci(ai) = �ci(0). Following Siegel (2009), ai
is referred to as the agent�s reach. Any action above ai is strictly dominated by the

action ai = 0. Hence, attention is at times restricted to the set of actions [0; ai].

The function P i(a) is known as the contest success function (CSF). Rather than

treating the CSF as a black box, the current paper unpacks it by assuming that

performance is stochastic and that the agent with the highest realized performance is

the winner. In this story, agent i�s action matters because it shapes the distribution

from which her performance is drawn. In particular, agent i�s stochastic performance,

Xi, is described by some distribution function, F i(xijai), which is parameterized by
her action, ai. The distribution function can be thought of as the agent�s performance

technology. Given a, performance is statistically independent across agents.

If ai > 0 then F i is atomless and has full support on [x; x], with x > x. Let

f i(xijai) denote the density function, assumed to be strictly positive on (x; x). In
order to invoke some results in Chade and Swinkels (2020), assume that F i and f i

are C2. Assume that F ia < 0 for all x 2 (x; x). Thus, the performance distribution
improves in the sense of �rst order stochastic dominance when the agent works harder.

The support [x; x] is the same for all ai > 0 and all agents i = 1; 2; :::; n.

If ai = 0 then F i either has the above properties, or it is degenerate at x. In the

6Subscripts on variables and univariate functions indicate the identity of the agent. For multi-
variate functions, the identity of the agent is captured by a superscript, such that subscripts can be
used to indicate partial derivatives.
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latter case, the agent�s performance is the worst possible with probability one. Hence,

she has no chance of outperforming an agent whose distribution is not degenerate. If

a = 0 and all F i are degenerate, then all agents deliver the same performance, x. In

this case, let P i(0) = 1
n
. In all other cases, the best performance is greater than x

with probability one. Thus, when F i is not degenerate, agent i wins with probability

P i(a) =

Z Y
m6=i

Fm(xjam)f i(xjai)dx: (2)

If F i is degenerate when ai = 0, it is still assumed that the distribution is continuous

in ai, i.e. that limai!0 F (xijai) = 1 for all x 2 [x; x]. The implication is that P i(a) is
continuous in ai whenever at least one opponent has a non-degenerate distribution.

The next examples demonstrate that existing contest and tournament models can

be viewed as special cases of contests with stochastic performance.

Example 1 (Rank-order tournaments and probit CSFs): Lazear and Rosen

(1981) consider a rank-order tournament with additive noise. Agent i�s performance

is xi = ai+"i, where "i 2 R is the realization of a random variable that is unknown to
the agent when she decides her action. If "i has distribution Qi("i), then F i(xijai) =
Qi(xi � ai) captures the performance technology. If n = 2, agent i wins if ai � aj >
"j�"i and it follows that P i(a) is a function of ai�aj. Hence, rank-order tournaments
with additive noise provide a microfoundation for the so-called probit CSF.

Lazear and Rosen (1981) follow the state-space approach, in which "i is the

�state� and the agent�s performance is described by a state-contingent production

function. This approach requires the speci�cation of both a production function,

xi = �i("i; ai), and a distribution over states, Qi("i). Lazear and Rosen (1981) as-

sume that �i("i; ai) = ai + "i and that Qi("i) is identity-independent. In the current

paper, the �Mirrlees approach�is used instead, meaning that F i(xijai) is taken to be
the primitive, as in the next example. N

Example 2 (best-shot contests and logit CSFs): Tullock�s (1980) CSF is

oftentimes thought of as a black box, but it has also been microfounded as a contest

with stochastic performance. A slight variation of the microfoundation in Fullerton

and McAfee (1999) is presented here.

Agent i�s performance is independently drawn from the distribution function

F i(xijai) = H(xi)
pi(ai), where H(xi) is some atomless and twice di¤erentiable dis-

tribution function with full support and where pi(ai) � 0 is a strictly increasing and
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twice di¤erentiable function. The function pi(ai) is known as the impact function. It

is as if agent i�s action buys her pi(ai) independent draws from the distribution H(xi),

and her performance equals the best of those draws. Since H is identity-independent,

any draw by any agent has an equal chance of being the best draw. Thus, agent i

wins with probability

P i(a) =
pi(ai)Pn
j=1 pj(aj)

; (3)

whenever
Pn

j=1 pj(aj) > 0. This can also be veri�ed directly from (2). In the special

case where
Pn

j=1 pj(aj) = 0, it must hold that aj = 0 and that pj(0) = 0 for all

j. However, note that when pj(0) = 0, the distribution of agent j�s performance is

degenerate. Thus, when
Pn

j=1 pj(aj) = 0, all agents tie for the same performance, x.

Following Dixit (1987), the CSF in (3) is referred to as the logit CSF. Fullerton

and McAfee (1999) assume that pi(ai) = ai, but this is clearly not important for the

argument that led to (3). However, when pi(ai) = ai, (3) reduces to the lottery CSF.

If pi(ai) = ari for some r > 0, then (3) is known as the Tullock CSF. N

The primitives of contests with stochastic performance are fvi; ci(�); F i(�j�)gni=1. It
is common in contest theory to allow agents to have identity-dependent valuations

and cost functions, but rare to allow identity-dependent technologies. However, the

proposed model provides a framework for studying heterogeneous technologies in

detail. A more precise taxonomy is needed.

De�nition 1 (Homogeneous and heterogeneous technologies) Agents have ho-
mogeneous technologies if F i can be written as F i(xijai) = G(xijpi(ai)) for all i. Tech-
nologies are fully homogeneous if the range of pi(ai) is the same for all i. Agents have

heterogeneous technologies in all other cases.

Technologies are fully homogeneous if and only if any agent can perfectly reproduce

the performance distribution of any other agent, regardless of the latter�s action. In

particular, agent i can mimic F j(xjjaj) simply by choosing an action ai for which
pi(ai) = pj(aj). However, the cost of said performance distribution may be di¤erent

for agent i and agent j. Hence, this situation is identical to one in which the pi
functions are normalized to be the same for all agents, but the ci functions are not.

In this case, technologies are identity-independent.

For homogeneous technologies, F ia(xijai) = Gp(xijpi(ai))p0i(ai). To conform to pre-
vious assumptions, assume that Gp(xijpi(ai)) < 0 for x 2 (x; x) and that p0i(ai) > 0.
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Thus, pi(ai) can be interpreted as an impact function, with higher impacts translating

into stronger distributions of performance. Let g(xijpi(ai)) denote the density.
Technologies are fully homogeneous in Example 2 if e.g. pi(ai) = a

ri
i with poten-

tially identity-dependent ri > 0, but not fully homogeneous if pi(ai) = i+ ari . In the

latter case, agent 2 cannot reproduce the poor performance technology of agent 1 if

a1 is small enough. This is similar to a situation in which the action set is di¤er-

ent for di¤erent agents. Note that all homogeneous technologies can be ranked in a

�rst-order stochastic dominance sense, based on how large pi(ai) is.

In comparison, technologies are heterogeneous ifH(xi) is made identity-dependent

in Example 2. Bastani, Giebe, and Gürtler (2022) and Giebe and Gürtler (2024) con-

sider rank-order tournaments with noise that have identity-dependent distributions.

These are also heterogeneous technologies. Heterogeneous technologies can not nec-

essarily be ranked across agents in a �rst-order stochastic dominance sense.

2.2 Log-supermodular contests

The distribution functions are important because they shape the CSF, P i(a). A

main contribution of the paper is to identify general conditions on the performance

technologies that in turn give structure to the CSF. Key to these developments is the

notion of log-supermodularity. Recall that a non-negative and multivariate function

t(z1; z2; :::; zm) is log-supermodular if, for all z0 and all z00, it holds that

t(z0 _ z00)t(z0 ^ z00) � t(z0)t(z00); (4)

where z0 _ z00 (the �join�) is the component-wise maximum and z0 ^ z00 (the �meet�)
is the component-wise minimum. Thus, log-supermodularity is a complementarity

condition. If t is strictly positive and di¤erentiable, then log-supermodularity obtains

if and only if
@2 ln t(z1; z2; :::; zm)

@zi@zj
� 0

for all i and j, with i 6= j. In the following, t is said to be strictly log-supermodular
if the above inequality is strict whenever t is strictly positive. Athey (2002) uses

log-supermodularity for comparative statics in decision problems and some games.

To start on familiar ground, the commonly invoked monotone likelihood ratio

property (MLRP) is precisely that the density f i(xijai) is log-supermodular in (xi; ai).
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A strict version of MLRP will sometimes be required.

De�nition 2 (MLRP) The distribution F i has the (strict) monotone likelihood ra-
tio property (MLRP) if f i is (strictly) log-supermodular on [x; x]� (0;1).

The MLRP implies that F ia � 0 but, as mentioned earlier, the stronger assumption
that F ia < 0 for all x 2 (x; x) is made. The next step adds further structure to F ia.
In particular, a regularity property from Chade and Swinkels (2020) is imposed.

They also assume that F ia < 0 for all x 2 (x; x). Their no-upward-crossing (NUC)
condition then says that for any 
 2 R, F iaa(�jai)� 
Fa(�jai) never crosses zero from
below on (x; x). However, they prove that this is equivalent to assuming that �F ia is
log-supermodular. A strict version is often required for this paper.

De�nition 3 (NUC) The distribution F i satis�es NUC if �F ia is log-supermodular
on [x; x] � (0;1). It satis�es strict NUC if �F ia is strictly log-supermodular on
(x; x)� (0;1).

The NUC condition has a natural economic interpretation, although it takes a few

steps to develop the intuition. Fix some performance threshold level, xi, and note that

the probability that the agent successfully exceeds the threshold is 1�F i(xijai), given
her action is ai. Thus, a marginal increase in ai increases the probability of success

by �F ia. Hence, NUC disciplines how the marginal return to extra e¤ort depends on
the threshold and the starting level of e¤ort. In the following, an explanation that

complements the one in Chade and Swinkels (2020) is provided.

First, consider two actions aH and aL and two interior thresholds xH and xL, with

aH > aL and xH > xL. Then, it follows from (4) that

�F ia(xH jaH)
�F ia(xH jaL)

� �F ia(xLjaH)
�F ia(xLjaL)

:

That is, the relative increase in the success probability from extra e¤ort is more

sensitive to the starting e¤ort level the higher the threshold is. If the threshold is

high, then it is hard to succeed and a small increase in e¤ort is unlikely to make much

di¤erence if e¤ort is low to begin with, but it may make a di¤erence if e¤ort is high.

Thus, the left hand side is large. On the other hand, if the threshold is low then it is

easy to succeed and a small increase in e¤ort is of little consequence if e¤ort is high

11



to start with, but it may be signi�cant if e¤ort was low originally. Hence, the right

hand side is small.

Some of the following results rely only on MLRP, others only on NUC, but many

rely on both. Since both properties are log-supermodularity properties, contests that

satisfy both MLRP and NUC will be referred to as log-supermodular (LSM) contests.

De�nition 4 (LSM Contests) If F i satis�es (strict) MLRP and (strict) NUC for
all i, then the contest is said to be a (strict) log-supermodular (LSM) contest.

Chade and Swinkels (2020) observe that MLRP and NUC are identical require-

ments in the location families of distributions where F i(xijai) = Qi(xi � ai). In this
case, f i(xijai) = �F ia(xijai) = qi(xi � ai), where qi is the density. Hence, the two
properties hold if and only if the density is log-concave. It follows that rank-order

tournaments with additive noise are LSM contests as long as densities are log-concave.

The best-shot contest in Example 2 is also a LSM contest. Similarly, Hirschleifer and

Riley (1992) use an exponential distribution to microfound the lottery contests with

two agents. This distribution also satis�es both MLRP and NUC. In this sense, LSM

contests nest and unify existing models.

As proven in e.g. Athey (2002), the MLRP implies that F i is log-supermodular.

Hence, f i, F i, and �F ia are all log-supermodular in LSM contests. Some of the

paper�s main insights rely on the structure that these properties lend to the CSF. The

�rst proposition summarizes some of these properties. The main take-away is that

the log-supermodularity properties of the primitives lead the CSF to have certain

log-supermodular properties as well. In other words, CSFs with log-supermodular

properties are microfounded. The underlying reason is that the CSF and its partial

derivatives are obtained by integrating products of functions like f i, F i, and �F ia
across agents, but such operations preserve log-supermodularity. The derivative of

P i(a) with respect to aj is denoted P ij (a).

Proposition 1 The CSF in any LSM contest has the following properties:

1. P i(a) is log-supermodular in a on (0;1)n.

2. For j 6= i, �P ij (a) is log-supermodular in a on (0;1)n.

3. For n = 2, P ii (a) is log-supermodular in a on (0;1)2.
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3 Incentives in small LSM contests

This section considers LSM contests with two agents. The �rst objective is to under-

stand the strategic incentives. The second, related, aim is to describe the shape of

the reaction functions, which in turn opens the door for comparative statics later on.

3.1 Strategic substitutes and complements

Two important de�nitions help frame the analysis and discussion.

De�nition 5 (Complements/substitutes) Fix any interior action pro�le. With
two agents, agent i views actions as strategic complements if P i12(a) > 0 and strategic

substitutes if P i12(a) < 0.

De�nition 6 (Favorite/underdog) Fix any action pro�le. With two agents, agent
i is the favorite if P i(a) > 1

2
and the underdog if P i(a) < 1

2
.

These de�nitions are local, i.e. speci�c to the action pro�le. To understand why

agent i views actions as strategic complements if P i12(a) > 0, note that her return

to extra e¤ort is proportional to P ii (a). If this is increasing in agent j�s action �or

P i12(a) > 0 �then her incentives to invest extra e¤ort is higher the higher aj is. For

homogeneous technologies, agent i is the favorite if and only if pi(ai) > pj(aj).

Since P 1(a) + P 2(a) = 1 for all a, the cross-partial derivatives must cancel out,

or P 112(a) + P
2
12(a) = 0. Hence, if one agent views actions as strategic complements

then the other views actions as strategic substitutes, and vice versa.

Dixit (1987) reasons that: �little can be said about [the cross-partial derivative]

in general. Therefore, I will consider special functional forms [the logit and probit

CSFs].� In these settings, Dixit (1987) establishes that the sign of P i12(a) depends

only on whether the agent is the favorite or the underdog. Contrary to Dixit (1987),

the current paper solves the problem without special functional forms. In fact, with

homogeneous technologies, a generalization follows immediately from strict NUC.

Assume that technologies are identity-independent, or F i(xijai) = F (xijai), i =
1; 2. Then,

P i(a) =

Z
F (xjaj)f(xjai)dx;

where the integrand F (xjaj)f(xjai) is the probability that agent i wins contingent on
performance x, weighted by the likelihood that her performance is indeed x. With
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this in mind, note that strict NUC is equivalent to

@

@a

fa(xja)
Fa(xja)

> 0 for all x 2 (x; x),

meaning that

Fa(xjaj)fa(xjai) > Fa(xjai)fa(xjaj) (5)

if ai > aj. In other words, for any performance level x, there is �greater com-

plementarity�between ai and aj in F (xjaj)f(xjai) than in F (xjai)f(xjaj) whenever
ai > aj. Since this holds for all performance levels, there must be greater complemen-

tarity between ai and aj in P i(a) than in P j(a), or P i12(a) > P
j
12(a). It follows that

P i12(a) > 0 > P
j
12(a). The argument easily extends to all homogeneous technologies.

Theorem 1 Consider any strict LSM contest with homogeneous technologies and

two agents. Fix any interior action pro�le with p1(a1) 6= p2(a2). Then, the favorite
views actions as strategic complements and the underdog views actions as strategic

substitutes.

The MLRP is not required for Theorem 1. However, it is shown later on that the

conclusion in Theorem 1 does not generally hold for heterogeneous technologies. Thus,

what is important for Dixit�s (1987) results is that technologies are homogeneous.

3.2 The iconic hump-shaped reaction function

By continuity, agent i has at least one best response to any aj > 0 and she may or

may not have a best response to aj = 0. In the following, attention is narrowed to

LSM contests in which best responses are unique. Let bi(aj) = argmaxai u
i(a) denote

the reaction function, de�ned on (0;1) or [0;1), depending on whether F 1(xj0) and
F 2(xj0) are both degenerate or not.

Assumption A1 (Best responses) Whenever a best response exists, it is unique
and uii(bi(aj); aj) = 0 implies that u

i
ii(bi(aj); aj) < 0.

7

A standard justi�cation for unique best responses is that ci(ai) is �su¢ ciently

convex�. In the spirit of Rogerson�s (1985) and Jewitt�s (1988) approach to the

7Strict local concavity, or uiii(bi(aj); aj) < 0, simpli�es some of the proofs. Note that if bi(aj) = 0
then uii(bi(aj); aj) < 0 is possible, in which case A1 does not impose local concavity.

14



moral hazard problem, restrictions can alternatively be imposed on the performance

technologies to ensure that P i(a) is concave in ai, which in turn implies that ui(a)

is concave in ai as long as ci(ai) is weakly convex. Rogerson�s (1985) condition is

satis�ed in the best-shot contest described in Example 2 when pi(ai) is concave.

Concavity of ui(a) is stronger than required. Building on Chade and Swinkels

(2020), the supplementary material shows that the structure of LSM contests makes

it easier to verify quasiconcavity. In particular, it is possible to more precisely quan-

tify �how convex�the cost function must be in order to ensure quasiconcavity. For

instance, if F j is concave in x, then agent i�s problem is quasiconcave as long as her

cost function is �more convex�in ai than her expected performance, E[Xijai].
The problem is uninteresting if bi(aj) = 0 always. Thus, assume that the contest

is non-trivial in the sense that agents �nds it optimal to actively participate in the

contest in response to at least some rival actions.

Assumption A2 (Non-trivial contests) For any i = 1; 2, there is some aj > 0 for
which bi(aj) > 0.

Let asupj = supfajjbi(aj) > 0g, such that bi(aj) = 0 if aj > asupj . Hence, it is the

properties of the reaction function on (0; asupj ) that is of interest. Note that since

ui(a) is continuous in aj for all aj > 0, bi(aj) is continuous in aj when aj > 0.

Given these assumptions, the aim of this subsection is to investigate whether

the iconic hump-shaped reaction functions known from Tullock and rank-order tour-

naments arise in LSM contests. For fully homogeneous technologies, the question is

answered in the a¢ rmative. Outside of fully homogeneous technologies, reaction func-

tions are at least single-peaked. That is, they are either hump-shaped or monotonic.

De�nition 7 The reaction function bi(aj) is (strictly) hump-shaped on an interval
if it is �rst (strictly) increasing and then (strictly) decreasing on the interval. It is

(strictly) single-peaked if it is either (strictly) hump-shaped or (strictly) monotonic.

3.2.1 Homogeneous technologies

Theorem 1 implies that agent i�s reaction function is increasing when she is the

favorite and decreasing when she is the underdog. Other things equal, agent i is the

favorite when her opponent is not working very hard and the underdog when her

opponent is working hard. It is therefore intuitive that agent i�s reaction function is

�rst increasing and then decreasing in aj. This intuition is broadly speaking correct,
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but there are some subtle di¤erences between contests with homogeneous and fully

homogeneous technologies, respectively.

Geometrically, Theorem 1 splits the action space into two regions, neatly divided

by the increasing locus of points along which P i(a) = 1
2
and P i12(a) = 0. In one region,

agent i is the favorite and her reaction function is locally increasing. In the other

region, she is the underdog and her reaction function is locally decreasing. Thus,

Theorem 1 essentially produces a �slope �eld�for the reaction function. In the case

of fully homogeneous technologies, the P i(a) = 1
2
locus starts from the origin and

diverges to in�nity. One implication is that the reaction function enters both regions.

Proposition 2 Consider any strict LSM contest with fully homogeneous technologies

and two agents. Assume that A1 and A2 hold. Then, bi(aj) > 0 on (0; a
sup
j ) and it

is strictly hump-shaped in aj on this interval. At any point on the increasing

(decreasing) part, agent i is the favorite (underdog).

When technologies are homogeneous but not fully homogeneous, the P i(a) = 1
2

locus need not start at the origin or diverge to in�nity. The �rst implication is

that it is possible that the best response is zero for a non-degenerate interval before

becoming strictly positive. The second implication is that the reaction function may

be monotonic. In this case, the agent is either the favorite or the underdog everywhere

along her reaction function.8

Proposition 3 Consider any strict LSM contest with homogeneous technologies and

two agents. Assume that A1 and A2 hold. Then, bi(aj) > 0 on an interval, and it is

strictly single-peaked in aj on the interior of this interval. At any point where the
reaction function is increasing (decreasing), agent i is the favorite (underdog).

Example 2 (continued): Assume that p1(a1) = 2 � e�a1 and that p2(a2) = a2 in
the best-shot model. Assume that ci(ai) = ai, i = 1; 2. The impact functions are

weakly concave and the costs are weakly convex. Hence, given (3), agent i�s payo¤ is

concave in her own action. The de�ning characteristic of this example is that p1(a1)

has limited range, [1; 2), which is a proper subset of the range of p2(a2). In other

words, agent 1 cannot access as many performance technologies as agent 2.

8Imagine as a special case that the range of the impact functions do not overlap, or p1(0) >
lima2!1 p2(a2). Then, regardless of the action pro�le, agent 1 is always the favorite. Her reaction
function is globally increasing, whereas agent 2�s reaction function is globally decreasing.

16



Agent 2�s reaction function is

b2(a1) = maxf0;
p
v2 (2� e�a1)�

�
2� e�a1

�
g;

the properties of which depends on v2. For v2 > 8, b2(a1) is strictly positive always,

and globally increasing. For v2 2 (4; 8), b2(a1) is hump-shaped and always strictly
positive. For v2 2 (2; 4), it is decreasing and always strictly positive. For v2 2 (1; 2), it
is decreasing and becomes zero for large enough a1. For v2 2 (0; 1], the best response
is always zero. Figure 1(a) depicts b2(a1) for v2 2 f3; 6; 9g in (a1; a2) space.
Agent 1�s reaction function is

b1(a2) = maxf0;� ln(a2 +
1

2
a2v1 + 2�

1

2

p
a2v1 (4a2 + a2v1 + 8))g:

Regardless of v1, the best response is zero if a2 is small. Indeed, if v1 � 4, then

b1(a2) = 0 for all a2. For higher v1, the reaction function is �rst increasing and then

decreasing. Figure 1(b) depicts b1(a2) in (a2; a1) space when v1 = 6. �
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Figure 1: Single-peaked reaction functions.

3.2.2 Heterogeneous technologies

Theorem 1 and the implications in Propositions 2 and 3 rely on strict NUC. The addi-

tional restriction to homogeneous technologies gives enough structure to the problem,

meaning that the MLRP is in fact not required. In the following, heterogeneous tech-
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nologies are permitted, at the cost of utilizing the MLRP instead.

The last two properties in Proposition 1 turn out to imply that if P i12(a) < 0 then

it remains the case that P i12(a) < 0 if ai decreases and/or aj increases. Thus, the

action space is again split into two regions, but the curve that does so need not be

strictly increasing in the interior. Consequently, the reaction function must still be

single-peaked, but not necessarily strictly single-peaked.

Proposition 4 Consider any LSM contest with two agents and assume that A1 and

A2 hold. Then, bi(aj) is single-peaked on (0;1):

The general property in Proposition 4 does not rule out that the reaction function

is �at on an interval where the best response is positive. However, such a situation

can be ruled out in strict LSM contests. The idea is to use the insight in Chade

and Swinkels (2020) that NUC can be helpful in establishing strict quasiconcavity.

In particular, it can be shown that �P ij (a) is strictly quasiconcave in ai in any strict
LSM contest. Indeed, P ii12(a) > 0 whenever P

i
12(a) = 0. Thus, for any aj, P

i
12(a) = 0

for at most one ai. A counterpart to Theorem 1 is now clear.

Theorem 2 Consider any strict LSM contest with two agents. If P i12(a
0
1; a

0
2) = 0 for

some interior (a01; a
0
2), then P

i
12(a1; a2) > 0 (P

i
12(a1; a2) < 0) for all interior (a1; a2)

with ai � a0i and aj � a0j (ai � a0i and aj � a0j) and at least one strict inequality.

Theorem 2 implies that the action space once again consists of two regions, divided

by a strictly increasing (when interior) locus of points along which P i12 = 0. However,

the dividing line need not coincide with the line where P i = 1
2
. In other words, with

heterogenous technologies it is no longer necessarily the case that it is the favorite

(underdog) that views actions as strategic complements (substitutes). Nevertheless,

the general shape of the reaction functions are unchanged.

Proposition 5 Consider any strict LSM contest with two agents and assume that

A1 and A2 hold. Then, bi(aj) > 0 on an interval, and it is strictly single-peaked
in aj on the interior of this interval.

3.3 Equilibrium

In any game, the properties of the reaction functions help determine both the number

of equilibria and the comparative statics. Thus, attention now turns to equilibria of

strict LSM contests. The next sections are devoted to comparative statics.
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A pure-strategy equilibrium is interior if both agents take strictly positive actions

in equilibrium. Given the shape of the reaction functions, it is straightforward to

show that there is at most one interior pure-strategy equilibrium when A1 is satis�ed.

Clearly, if A2 is violated then the contest has no interior equilibrium. Similarly, if

valuations across agents are too asymmetric, an interior equilibrium need not exist.

The agent with the stronger valuation may work so hard that she completely deters

the other agent. To illustrate, Figure 2 revisits the set-up in Figure 1. It describes how

the valuations determine the nature of the equilibrium. Finally, if there is no interior

equilibrium, then it is possible that no pure-strategy equilibrium exists at all, due to

the discontinuity that arises in cases where F 1(xj0) and F 2(xj0) are degenerate.

Theorem 3 (Existence and uniqueness) Consider any strict LSM contest with

two agents in which A1 holds. Then, there is at most one interior pure-strategy Nash

equilibrium. If F 1(xj0) and F 2(xj0) are non-degenerate, then a unique pure-strategy
equilibrium exists for any (v1; v2).

Consider the case in which F 1(xj0) and F 2(xj0) are degenerate. Perturb the game
by de�ning some " > 0 and restrict the action set to [";1) rather than [0;1). It
follows from the proposition that as long as " > 0, the perturbed game has a pure-

strategy Nash equilibrium. Similar observations can be found in the literature on

logit CSFs. See Ewerhart (2014) and the references therein.
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Figure 2: Equilibrium properties as a function of (v1; v2).
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4 Comparative statics: Homogeneous technologies

This section examines the comparative statics of strict LSM contests with homoge-

neous technologies. Technologies are held �xed throughout, and focus is entirely on

the consequences of changes to the agents�other characteristics, such as their valua-

tions.9 This approach makes it possible to determine whether �classical�comparative

statics are robust within the class of LSM contests with homogeneous technologies.

For expositional simplicity, the comparative statics take as the starting point a

contest in which an interior pure-strategy Nash equilibrium exists, which implies that

A2 is satis�ed. Moreover, A1 is assumed to be satis�ed in the original contest.

4.1 Discouragement and disparity e¤ects

As noted by Drugov and Ryvkin (2022), it is often argued that asymmetry is �detri-

mental for incentives in contests�. To evaluate this claim from the point of view of

an individual agent, consider the following question: Does an agent exert lower e¤ort

when matched with an opponent who is di¤erent from herself?

To answer the question, assume for now that technologies are fully homogeneous.

Hence, the reaction functions are strictly hump-shaped and, importantly, reach their

peak where P i(a) = 1
2
. Thus, the very highest possible equilibrium action for agent i

is if the contest is such that agent i wins with probability 1
2
, i.e. if the outcome of the

contest is even. This occurs when she is matched with an agent who has the exact

same characteristics as herself, or v1 = v2, p1(�) = p2(�), and c1(�) = c2(�). All else
equal, if the two agents have di¤erent valuations, say, then the reaction functions are

di¤erent, and the two will not intersect at the peak of agent i�s reaction function.

Corollary 1 (Individual discouragement e¤ect) Consider a strict LSM contest

with two agents and fully homogeneous technologies. Assume that A1 and A2 hold

when agents are symmetric. Then, an interior and symmetric pure-strategy equilib-

rium exists in the symmetric contest. Moreover, asymmetries discourage e¤ort: When

a pure-strategy Nash Equilibrium exists, agent i�s equilibrium action is strictly lower
when agent j�s characteristics change in such a way that P i(a) 6= 1

2
in equilibrium.

9A rescaling of the cost function by a constant factor is isomorphic to a change in the agent�s
valuation. More general changes in the cost function can be dealt with as well, but at greater
expositional cost. The consequences of changing the impact function is similar to the e¤ects of
changing the cost function, since what matters to the agent is the cost of attaining a given impact.
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To illustrate, if vj > vi = v then agent i is competing against someone who

is �stronger�. The competitor works hard, and agent i views actions as strategic

substitutes. Hence, she is discouraged. On the other hand, if vj < vi, then agent i is

competing against a �weaker�opponent. This opponent works less hard and agent i

views actions as complements. Hence, agent i is not encouraged to work very hard.

Corollary 1 does not extend beyond fully homogeneous technologies. To illustrate,

recall that reaction functions can be monotonic in general LSM contests. When that

occurs, the agent�s equilibrium action is monotonic in the other agent�s valuation.

Nevertheless, it is argued in Section 6 that the individual discouragement e¤ect is

responsible for some key results in the literature on optimal biases in logit contests.

Section 6 contains a discussion of the robustness of these insights.

Drugov and Ryvkin�s (2022) main focus is on the aggregate e¤ect of asymmetry.

They begin by elucidating what they term the �standard story.�The story is that

the weaker agent works less hard, which in turn means that the stronger agent has

little incentive to work hard either. Their main objective is to clarify that the story is

true only in some contest models. However, the standard story has merit in any LSM

contests with homogeneous technologies in the sense that if the underdog becomes

even weaker, then she lowers her e¤ort as a direct result of which the favorite �who

views actions as strategic complements �responds by working less hard as well.

Corollary 2 (Collective discouragement e¤ect) Consider a strict LSM contest

with two agents and homogeneous technologies. Assume that A1 holds and that there

is an interior pure-strategy Nash Equilibrium in which agent i is the underdog, or

pi(ai) < pj(aj) in equilibrium. Then, a decrease in vi causes both ai and aj to decrease

in equilibrium as long as a pure-strategy Nash Equilibrium exists.

The asymmetry between players also increases if the favorite becomes even stronger.

In this case, the favorite works even harder and in doing so she discourages her op-

ponent (who views actions as strategic substitutes). Hence, the disparity between

impacts widens. As a result, the disparity in winning probabilities widens as well,

meaning that the stronger agent wins even more often than before.

Corollary 3 (Collective disparity e¤ect) Consider a strict LSM contest with two

agents and homogeneous technologies. Assume that A1 holds and that there is an

interior pure-strategy Nash Equilibrium in which agent i is the favorite, or pi(ai) >
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pj(aj) in equilibrium. Then, an increase in vi causes ai to increase and aj to decrease

in equilibrium as long as a pure-strategy Nash Equilibrium exists. The disparity in

winning probabilities increases and agent i wins even more often than before.

In summary, Corollaries 2�3 describe di¤erent adverse e¤ects of increased asymme-

try. If the underdog becomes weaker, then both agents work less hard. If the favorite

becomes stronger, then the outcome of the contest becomes even more uneven. These

insights are robust across all LSM contests with homogeneous technologies. In con-

trast, and as discussed in the introduction, there is no robust result on whether total

e¤ort increases or decreases when agents become more asymmetric.10

4.2 Precommitment in sequential contests

Dixit (1987) is interested in sequential contests in which the leader commits to an

action that is observed by the follower before the latter makes her move. Dixit�s aim

is to understand whether the opportunity for such precommitment gives the leader

an incentive to increase or decrease her action. He assumes that the CSF is of the

probit or the logit form, while allowing for identity-dependent impact functions.

Dixit articulates the intuition as follows: since �each player�s e¤ort level harms the

other [it is] strategically desirable for [the leader] to precommit his e¤ort level in such

as way as to induce a lower e¤ort from [the follower] in response.�How to induce a

lower e¤ort by the follower depends on whether she considers actions to be strategic

substitutes or complements. By Theorem 1, starting from the equilibrium action

pro�le in the simultaneous-move contests, the favorite (underdog) views actions as

strategic complements (substitutes) whenever technologies are homogeneous. Thus,

Dixit�s (1987) main result can be generalized, as stated in the next Corollary.

Corollary 4 Consider a strict LSM contest with two agents and homogeneous tech-

nologies. Assume that A1 holds and that there is an interior pure-strategy Nash Equi-

librium, (a�1; a
�
2), in the simultaneous contest. Then, in a sequential contest, if the

leader was the favorite (underdog) in the simultaneous contest, she has an incentive

10However, total e¤ort is not always the most relevant metric in contests with stochastic per-
formance. For instance, expected performance is typically non-linear in e¤ort, meaning that the
distribution of e¤ort across agents matters if the regulator cares about total expected performance.
Likewise, the policy maker may be interested in the best performance, but the distribution of this
statistic again depends on the whole action pro�le and not just total e¤ort.
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to increase (decrease) her action in the sequential contest, or

@ui(ai; bj(ai))

@ai jai=a�i
? 0() P i12(a

�
1; a

�
2) ?

1

2
.

Corollary 4 is a local result. It is hard to formally rule out that a very large

departure from a�i in the opposite direction could be better. Dixit (1987) himself is

quite careful to focus on actions in a �neighborhood of the Nash equilibrium�.11

5 Ordered LSM contests

Corollaries 2�4 do not necessarily hold in contests with heterogeneous technologies.

The reason is that the link between who views actions as complements and who is

the favorite may break down. The purpose of this section is to examine a subset of

heterogeneous technologies in which the link can be reestablished.

De�nition 8 (Ordered LSM contests) Any strict LSM contest with two agents

is an ordered LSM contest if

(T1) f1(xja1)
F 1(xja1) �

f2(xja2)
F 2(xja2) for all x 2 (x; x) when a1 = a2 > 0,

(T2) f1a (xja1)
F 1a (xja1)

� f2a (xja2)
F 2a (xja2)

for all x 2 (x; x) when a1 = a2 > 0,

(T3) �F 1a (xja1)
f1(xja1) �

�F 2a (xja2)
f2(xja2) for all x 2 (x; x) when a1 = a2 > 0, and

(C1) v1 � v2 and the two agents have the same cost function, c(�).

Properties (T1)�(T3) relate to the agents� technologies and property (C1) to

their other characteristics. To illustrate and motivate, consider the case of homo-

geneous technologies with identity-dependent impact functions. Assume that agent 1

is stronger than agent 2 in the sense that p1(a) � p2(a). Then, MLRP implies (T1)
and NUC implies (T2). Property (T3) is more model-speci�c and generally requires

p1(a) to be su¢ ciently steeper than p2(a). For rank-order tournaments with produc-

tion function �i("i; ai) = pi(ai) + "i and i.i.d. noise with log-concave density, (T3)

holds if p01(a) � p02(a). In homogeneous best-shot contests,
p01(a)
p1(a)

� p02(a)
p2(a)

is required.

11There are other technical complications. Baye and Shin (1999) note that if agents are completely
symmetric, or P i(a�) = 1

2 , then (consistent with Corollary 4) there is no �rst-order e¤ect of a change
in the leader�s action, but this does not rule out a second-order e¤ect. Baik and Shogren (1992)
endogenize the order of moves.
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Property (T1) says that agent 1 has a more productive performance technology

than agent 2 in the sense of reverse hazard rate dominance. Thus, agent 1 is the

favorite if a1 > a2. Property (T2) is related to NUC. By combining (T2) and strict

NUC,
f 1a (xja1)
F 1a (xja1)

>
f 1a (xja2)
F 1a (xja2)

� f 2a (xja2)
F 2a (xja2)

(6)

when a1 > a2. Using the same argument as in the proof of Theorem 1 then implies

that agent 1 views actions as strategic complements if a1 > a2.

The last two properties are used to rank incentives. Since P 1(a) = 1� P 2(a),

u11(a) = v1

Z �
�F 1a (xja1)

�
f 2(xja2)dx� c(a1).

Hence, (T3) and (C1) imply that u11(a) � u22(a) if a1 = a2. At this point, more explicit
structure is imposed on the agent�s problem. In particular, assume in addition to A1

that ui(a) is quasiconcave in ai. Then, u11(a) � u22(a) at a1 = a2 implies that if agent
2�s best response to some a0 is a0, then agent 1�s best response to a0 is no smaller than

a0. This property is su¢ cient to conclude that a1 � a2 in equilibrium.

Proposition 6 Consider any ordered LSM contest in which A1 holds and ui(a) is

quasiconcave in ai, i = 1; 2. Assume that there is an interior equilibrium. Then,

a1 � a2 in equilibrium, with a1 > a2 if the inequality in (T3) and/or (C1) is strict.
Whenever a1 > a2 in equilibrium, agent 1 is the favorite and views actions as com-

plements.

Note that agent 1 is weakly stronger than agent 2 along two dimensions in ordered

LSM contests. She has both the more productive technology by (T1) and the higher

valuation by (C1). The signi�cance of Proposition 6 is that it re-connects the identity

of the favorite (underdog) with the identity of the agent who considers actions to be

complements (substitutes). Hence, ordered LSM contests have many of the same key

features as LSM contests with homogeneous technologies.

Corollary 5 Consider any ordered LSM contest in which A1 holds and ui(a) is qua-

siconcave in ai, i = 1; 2. Assume that the inequality in (T3) and/or (C1) is strict

and that there is an interior equilibrium. Then, agent 1 (2) is the favorite (underdog)

in equilibrium, and the conclusions of Corollaries 2�4 hold.
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Three examples of ordered LSM contests follow. The examples are selected to

show how ordered LSM contests relate to, and extend, the standard models.

Example 1 (continued): Consider a rank-order tournament with identity-independent

production function, �("i; ai), which is assumed to be strictly increasing in both argu-

ments. Hence, given her action ai, agent i�s production is below xi if "i is below some

threshold, T (x; ai). As in Bastani, Giebe, and Gürtler (2022), let the distribution of

"i be identity-dependent, and described by Qi("i). Then, F i(xjai) = Qi(T (x; ai)).12

Assume that Qi and T is such that the contest is a strict LSM contest.

Bastani, Giebe, and Gürtler (2022) assume that agents have the same valuations

and cost functions. They conclude that there is a symmetric equilibrium even though

performance technologies are heterogeneous. To understand why, note that

F ia(xjai)
f i(xjai)

=
Ta(x; ai)

Tx(x; ai)

is identity-independent. Hence, (T3) trivially holds.

Assume now also that Q1 dominates Q2 in terms of the likelihood-ratio, which

is exactly identical to (T2) in the current example, and stronger than (T1). In this

case, Bastani, Giebe, and Gürtler�s (2022) equilibrium characterization can be further

extended. First, assuming quasiconcavity as in Proposition 6, equilibrium is unique.

Second, if v1 > v2 then a1 > a2 in equilibrium and Corollary 5 applies. If Q1 strictly

dominates Q2 in terms of the likelihood-ratio, then agent 1 is the favorite and views

actions as complements even if v1 = v2, and a1 = a2 in equilibrium. N

Example 2 (continued): Consider a version of the best-shot model in which

F i(xjai) = Hi(x)ai ; x 2 [x; x] ;

where Hi(x) is now allowed to be an identity-dependent distribution. Note that the

support is the same for both agents, however. This setting describes a strict LSM

contest. Generally speaking, the CSF no longer reduces to a logit CSF. An exception

12An isomorphic contest arises if the function T (x; ai) is itself a distribution function. For in-
stance, assume that F i(xjai) = T (x; ai)ki , ki � 1. In this setting, agent i has an exogenous number,
ki, of team members. Each member independently delivers some performance, the distribution of
which is T (x; ai) and which depends on the agent�s e¤ort at motivating the team, ai. However, the
agent is judged based only on the best performance within her team, the distribution of which is
exactly T (x; ai)ki .
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is when Hi(x) = H(x)�i, where �i > 0 is an identity-dependent parameter, but in

this case agents have fully homogeneous technologies.

The �rst three properties of ordered LSM contests are satis�ed under two further

assumptions. First, assume that H1 dominates H2 in terms of the reverse hazard rate,

or equivalently that H1(x)
H2(x)

is increasing. This directly implies (T1), and (T2) can be

seen to follow. The interpretation is that any given draw that agent 1 makes is more

likely to be of high quality than any given draw that agent 2 makes. The second

assumption is that lnH1(x)
lnH2(x)

is increasing as well, which implies (T3). N

The �nal example provides a di¤erent perspective on the somewhat surprising re-

sult in Bastani, Giebe, and Gürtler (2022, henceforth BGG) that heterogeneous noise

distributions do not lead to heterogeneous incentives when the production functions

are homogeneous. The example establishes that BGG�s result is due to the fact that

they assume that noise is univariate. The result does not hold more generally, i.e.

when more sources of noise is permitted.

Example 3 (rank-order tournaments with multivariate noise): Assume

that agent i�s production function can be written as �i("i; �i; ai) = �iai + "i, i = 1; 2.

If one of �i or "i is deterministic or degenerate and the other is stochastic, then the

model reduces to the one in BGG. In the remainder, both �i and "i are assumed

to be stochastic. In other words, the agent is subjected to multivariate noise. For

concreteness, assume that �i follows an exponential distribution with rate parameter

ri > 0 and mean 1
ri
. Hence, �iai is exponentially distributed with rate parameter ri

ai

and mean ai
ri
. Assume that "i follows an exponential distribution with rate parameter

�i > 0, and mean 1
�i
. Note that the agent�s expected performance is lower the higher

ri and �i are.

Finally, assume that �i and "i are independent. The agent�s performance is the

convolution of two exponential distributions, which gives rise to the hypoexponential

distribution

F i(xijai) = 1�
�ie

� rixi
ai � ri

ai
e��ixi

�i � ri
ai

when the rate parameters are distinct, or �i 6= ri
ai
. When the rate parameters co-

incide, the distribution is an Erlang distribution, which can be obtained from the

hypoexponential distribution via an application of L�Hôpital�s rule.
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It is straightforward to verify that the contest is a strict LSM contest. Similarly, it

can be veri�ed that T1 and T2 hold if agent 1 has a more productive technology than

agent 2 in the sense that r1 � r2 and �1 � �2. The more interesting condition is T3,
which as explained above holds in a trivial sense in BGG�s setting with univariate

noise. However, with multivariate noise, the inequality in T3 is strict if r1 < r2

and �1 = �2. Thus, the contest is an ordered LSM contest if C1 holds and r1 � r2

and �1 = �2. On the other hand, when r1 = r2 and �1 < �2, the inequality in T3 is

reversed, in which case it is possible that the agent with the less productive technology

(agent 2) has stronger incentives (depending on her valuation). In either case, it is

to be expected that the two agents take di¤erent actions even if their valuations are

identical, unlike in BGG.

To understand the intuition, recall that a higher ri implies that �i has lower mean,

which in turn means that an increase in ai does less to change the agent�s production.

Hence, incentives are weaker and the agent is betting on a high realization of "i
compensating for her low e¤ort. On the other hand, a higher �i implies that "i
has lower mean. Hence, the agent has to bet on ai�i for a good performance, and

incentives are therefore larger. This intuition is not valid in BGG, because there is no

interaction or substitutability in that setting between di¤erent sources of noise. N

Example 3 illustrates the parsimonious character of the Mirrlees approach. The

agent ultimately cares about the distribution of her performance, and how her action

changes it. These characteristics are directly captured in the distribution function

that the Mirrlees approach relies on. Whether there is one or more source of noise in

the background is not important per se. Indeed, the best-shot model can also be seen

as the result of a production function with multivariate noise. Imagine that there is

an in�nite sequence of i.i.d. random variables in the background. The action ai is the

number of these that agent i gets to inspect. She picks the best of the realizations

available to her, and submits this as her entry into the contest. In this sense, the

best-shot model with identity-dependent Hi described earlier can already be seen as

an illustration that BGG does not hold with multivariate noise.13

Example 3 also cautions that not all LSM contests are ordered LSM contests.

Hence, it should be expected that the received wisdom in Corollaries 2�4 may fail
13The best-shot model can also be forced into a univariate state-space representation. Consider

�i("i; ai) = "
1=ai
i and assume that "i is uniformly distributed on [0; 1]. Then, F i(xijai) = xaii ,

xi 2 [0; 1]. The production function is not concave in ai, yet F i(xijai) satis�es Rogerson�s (1985)
regularity condition that leads expected utility to be concave in ai when ci(ai) is weakly convex.
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in contest with heterogeneous technologies more generally. Section 6.2 discusses a

tractable model that can be used to illustrate such failures.

6 Discussion and extensions

The �rst part of this section discusses some of the assumptions, beginning with As-

sumption A1. It it also explained and demonstrated why (strict) NUC is crucial to

the results when the support is the same for all agents. The supplementary material

establishes that Theorem 1 holds when the support shifts with the agent�s action.

In fact, NUC can be relaxed in some such cases. The supplementary material also

shows that some existing CSFs cannot be microfounded as LSM contests. This is the

case for the �relative di¤erence CSF�with two or more agents in Beviá and Corchón

(2015) and the �di¤erence-form CSFs� in Cubel and Sanchez-Pages (2016) with at

least three agents. The structure of these CSFs is not consistent with what is implied

by the LSM model.

The second part of this section examines other extensions. Properties of larger

LSM contests are identi�ed. A discussion of biased contests concludes the section. In

both cases, details are in the supplementary material.

6.1 Quasiconcavity and unique best responses

Assumption A1 is stronger than required in practice. It implies that the properties

of the reaction function, bi(aj), can be characterized for all aj 2 (0;1). However,
recall that agent j�s equilibrium action can never exceed aj. Thus, for equilibrium

existence and uniqueness, as well as for most of the comparative statics, it is enough

that a unique best response exists to any aj 2 (0; aj]. A su¢ cient condition is that
ui(a) is strictly quasiconcave in ai for any aj 2 (0; aj]. Now, as alluded to earlier,
LSM contests have special properties that make the latter condition easier to check.

Recall that P ii (a) is log-supermodular, or that
P iii(a)

P ii (a)
is increasing in aj. The

implication is that P i(a) in a sense becomes more convex in ai when aj increases,

thus suggesting that the agent�s utility maximization problem is less likely to be

well-behaved the larger aj is. Hence, it is su¢ cient to check that ui(a) is strictly

quasiconcave in ai when aj = aj. This is the case if P i(ai; aj) is �more concave�

than ci(ai) is convex at any stationary point. A su¢ cient condition is provided in the
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supplementary material, along with extensions to several agents.

6.2 The importance of (strict) NUC

Chade and Swinkels (2020) remark that �NUC is satis�ed for every distribution that

we are aware of that is commonly used in economic applications.�Nevertheless, they

provide counterexamples, including

F i(xijai) = �
1

3
a2ix

3
i +

1

2
a2ix

2
i �

1

6
a2ixi + 2aix

2
i � 2aixi + xi; xi 2 [0; 1];

de�ned on ai 2 [0; 0:48]. Here,

�F iai(xijai) =
1

3
xi (1� xi) (ai � 2aixi + 6)

which is strictly log-submodular in (xi; ai). Thus, in a two-agent contests in which

both agents have this kind of distribution function, the exact opposite conclusions

of those in Theorem 1 obtain. That is, the favorite (underdog) views actions as

strategic substitutes (complements).14 As a result, the reaction functions are either

monotonic or u-shaped, rather than hump-shaped. For instance, when the cost func-

tion is ci(ai) = a2i , the reaction function is

bi(aj) = min

�
0:48;

30vi + a
2
jvi

2ajvi + 180

�
:

Depending on vi, bi(aj) is either monotonic or �rst decreasing and then increasing.

Kirkegaard (2024) analyzes the mixture model of contests with homogeneous tech-

nologies. This is a contest in which distribution functions take the form

F i(xijai) = pi(ai)H(xi) + (1� pi(ai))G(xi);

where H and G are distribution functions, and where H �rst-order stochastically

dominates G in the strict sense that H(xi) < G(xi) on the interior. The impact

function pi(ai) 2 [0; 1] is strictly increasing, with p0i(ai) > 0. Then, ln(�F ia(xijai)) =
ln pi(ai) + ln(G(xi) � H(xi)) is additively separable. In other words, the mixture

14More directly, agent 1�s CSF is P 1(a1; a2) = � 1
90a

2
1a2 +

1
90a1a

2
2 +

1
3a1 �

1
3a2 +

1
2 . Hence,

P 112(a1; a2) =
a2�a1
45 , which is negative when agent 1 is the favorite, or a1 > a2.
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model is log-modular and is the boundary case in which NUC is satis�ed in the

weakest possible sense.

Retracing the steps that led to Theorem 1 proves that P i12(a) = 0 when n =

2. Thus, agent i�s best response is independent of aj and the reaction function is

horizontal. That is, each agent has a dominant action. See Kräkel (2010) and Gürtler

and Kräkel (2012) for applications of the mixture model with two agents or teams.

Kirkegaard�s (2024) focus is on contests with three or more agents, in which case he

proves that actions are strategic substitutes in a global sense. The model has so much

structure that it is easy to incorporate multivariate incomplete information about

valuations, impact functions, cost functions, and action sets. Thus, he is able to study

the comparative statics of changes in the multivariate dependence structure (and thus

correlation) between such characteristics as valuations and budget constraints.

Kirkegaard (2023b) considers a two-agent mixture model with heterogeneous tech-

nologies, i.e. where H and G are identity-dependent. Then, reaction functions are

monotonic. Among other things, he considers contests that violate the �rst three

properties of ordered LSM contest and where Corollaries 2�4 need not hold. Thus,

the mixture model illustrates that the standard results do not always carry over to

environments with heterogeneous technologies.

6.3 Larger LSM contests

The paper concentrates on LSM contests with two agent, in large part because the

predictions and implications of the model are so clear-cut in this case. However,

contests with more agents also have systematic properties, some of which are outlined

in the following. The results are formalized in the supplementary material.

As a point of reference, Dixit (1987) notes that is it is not necessarily the case

that any agent takes actions to be (pairwise) strategic complements when there are

many agents. With this in mind, consider any pair of agents in a LSM contest with

homogeneous technologies. Within the pair, the agent who is weakly less likely to

win can be shown to view the actions of the two agents as strategic substitutes. An

implication is that in a symmetric pure-strategy equilibrium of a completely sym-

metric contest, agents views actions as strategic substitutes in equilibrium. Thus, if

utility is concave in the agent�s own action in such a contest, then there is at most

one symmetric pure-strategy equilibrium, and the equilibrium action is increasing in
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the common valuation.

It is impossible in general to determine how the agent who is more likely to win

views actions. However, utilizing Proposition 1, it can be shown that any agent is

more likely to consider the actions of the pair to be strategic substitutes the harder

their common rivals work. This holds even if technologies are heterogeneous.

Giebe and Gürtler (2024) examine a rank-order tournament with identity-independent

production functions but heterogeneous noise distributions. They rank the equilib-

rium actions of any two agents, say agents 1 and 2, if (T1) and (C1) from Section 5

hold (they assume that v1 = v2, but their proof carries through to v1 � v2). Recall
that (T3) is trivially satis�ed in their setting. Their proof that a1 � a2 in any interior
equilibrium relies, in part, on the fact that u11(a) � u22(a) whenever a1 = a2.
To generalize, consider any strict LSM contest in which the relationship between

agents 1 and 2 satis�es (T1), (T3), and (C1). Then, regardless of the total number

of agents, it remains the case that u11(a) � u22(a) if a1 = a2. However, since less

can be said about the structure of the reaction functions, the proof of Proposition 6

does not directly extend. Nevertheless, it turns out that Giebe and Gürtler�s (2024)

method of proof also applies to the more general setting. However, as alluded to, this

proof relies on more than just u11(a) � u22(a) whenever a1 = a2. It is also required

that the cost function is �su¢ ciently convex�, or in other words that mina2[0;ai] c
00(ai)

is su¢ ciently large. However, with this assumption, the result in Giebe and Gürtler

(2024) generalizes.15 Note that if (T2) is added, then the weaker of the two (agent

2) views the pair�s actions as substitutes, even though nothing can be said in general

about the stronger agent (agent 1).

6.4 Biased LSM contests

The rules of the game have been held �xed. Fu and Wu (2020), and the references

therein, instead consider logit contests in which a regulator can somehow manipulate

the impact of an agent�s action. For a host of natural objective functions, their results

imply that it is optimal in two-agent contests to ensure the bias is such that a com-

pletely level playing �eld is created.16 Their biases amount to a¢ ne transformations

of the impact functions.

15Giebe and Gürtler (2024) also rank equilibrium actions with di¤erent prize structures.
16This is just one implication. Fu and Wu�s (2020) main contribution is to develop a method to

handle the case with several agents.
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The result should be seen in light of the individual discouragement e¤ect in Corol-

lary 1. After all, any agent works hardest if the equilibrium is such that she wins with

probability 1
2
in equilibrium. The supplementary material formalizes this intuition

and extends it to LSM contests more generally. It is shown that the a¢ ne transfor-

mations that Fu and Wu (2020) use work only because the logit CSF is homogeneous

of degree zero in impacts. More �exible transformations are required in general.

Moreover, the individual discouragement e¤ect changes when technologies are

heterogeneous. The peak of the reaction function is still where P i12(a) = 0, but this

is not necessarily where P i(a) = 1
2
. Thus, optimal biases generally lead to an uneven

playing �eld.

Kirkegaard (2023a) advocates for another approach to the optimal design of con-

tests with stochastic performance. He argues that since performances, but not nec-

essarily actions, are observable, biases are more likely to be applied to the former.

The two approaches are not generally equivalent. Kirkegaard (2023a) provides an

example in which a large improvement over Fu and Wu (2020) is obtained by biasing

how performance is scored and evaluated across agents. Generally, this approach also

leads to an uneven playing �eld. Thus, this section has presented two reasons, based

on general contests with stochastic performance, to be cautious of the claim that

biases should be used to level the playing �eld.

7 Conclusion

Currently, the literature on contests �and the ensuing economic insights �rely on

rather speci�c contest models. There is no general or unifying model. However, in a

recent survey Fu and Wu (2019) conclude by noting that �theoretical predictions can

be sensitive to modelling nuances. It is important to examine more thoroughly the

robustness of previous results and the logic for their robustness/fragility.�

The current paper presents a unifying model of noisy or non-deterministic contests.

It is assumed that noise is due to stochastic performance. Without imposing speci�c

functional forms, a large family of such contests is examined. The resulting log-

supermodular (LSM) contests are de�ned only by weak regularity conditions on the

performance technologies. The results for all the contests within this family share the

same �logic for their robustness/fragility�. However, in this respect it turns out to

be important whether technologies are homogeneous or heterogeneous.
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The strategic incentives and the comparative statics are robust across all LSM

contests with homogeneous technologies. This conclusion is important because it

supports the vast literature on noisy contests that relies on two of the workhorse

models, both of which are nested within the current framework. Most signi�cantly,

reaction functions are single-peaked and incentives are determined by whether the

agent is the favorite or the underdog. It is straightforward to identify the mechanisms

responsible for these uni�ed results, as they are in fact all rather easily traced back

to the weak log-supermodularity properties that the performance technologies are

assumed to have.

The model also provides a foundation for challenging the standard assumption

that technologies are homogeneous across agents. With heterogeneous technologies,

reaction functions are still single-peaked. However, incentives are no longer solely

determined by whether the agent is the favorite or the underdog. Nevertheless, a set

of �ordered contests�with heterogenous technologies is identi�ed in which the usual

comparative statics are recovered.

The paper mostly focuses on contests with two agents. A natural next step is

to extend the comparative statics to contests with several agents. Likewise, the

technologies were held �xed in the comparative statics. It is left for future research

to explore the comparative statics of changing technologies in general LSM contests.
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Appendix A: Proofs

Proof of Proposition 1. As in Athey (2002), two important properties are used re-

peatedly. First, the product of log-supermodular functions is itself log-supermodular.

Second, log-supermodularity is preserved under integration. In particular, let z =

(x; a) and think of x as a variable and a as parameters. Then, if t(z) or t(x; a) is

log-supermodular in (x; a), the function T (a) =
R
t(x; a)dx is log-supermodular in a.

In LSM contests, when a 2 (0;1)n the integrand in (2) is log-supermodular
in (x; a) since it is the product of log-supermodular functions. Then, since log-

supermodularity is preserved under integration, P i(a) is log-supermodular in a on

(0;1)n. Note that this conclusion relies only on the MLRP.
Next, note that P ij (a) < 0 for j 6= i when a 2 (0;1)n. That is, agent i is less

likely to win when agent j works harder. For j 6= i, consider then

�P ij (a) =
Z
(�F ja (xjaj))

Y
m6=i;j

Fm(xjam)f i(xjai)dx:

By the MLRP and NUC, the integrand is again log-supermodular in (x; a). Hence,

�P ij (a) is log-supermodular in a on (0;1)n.
Finally, consider the derivative with respect to ai. Since winning probabilities sum

to one, or P i(a) = 1�
P

j 6=i P
j(a), it follows that P ii (a) =

P
j 6=i(�P

j
i (a)) is the sum

of log-supermodular functions. However, the sum of log-supermodular functions need

not be log-supermodular. Hence, P ii (a) is not guaranteed to be log-supermodular

when n � 3. On the other hand, P ii (a) must be log-supermodular when n = 2 since
in this case P ii (a) = �P ij (a).

Proof of Theorem 1. Note that

P i12(a) =

Z
F ja (xjaj)f ia(xjai)dx

where j 6= i is agent i�s competitor. For expositional clarity, consider �rst the case
where technologies are identity-dependent, or F i(xja) = F j(xja) = F (xja). Then,

P i12(a) =

Z
Fa(xjaj)fa(xjai)dx:

Assume strict NUC is satis�ed, i.e. that �Fa is strictly log-supermodular. Then, for
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any interior action,
@

@a

fa(xja)
Fa(xja)

> 0 for all x 2 (x; x).

Thus, for any interior action pro�le for which agent i is the favorite, or ai > ai, it

must hold that
fa(xjai)
Fa(xjai)

>
fa(xjaj)
Fa(xjaj)

for all x 2 (x; x); (7)

or

Fa(xjaj)fa(xjai) > Fa(xjai)fa(xjaj) for all x 2 (x; x):

Hence, P i12(a) > P
j
12(a), which in turn implies that P

i
12(a) > 0 and P

j
12(a) < 0. Thus,

in any strict LSM contest with identity-independent technologies, the agent who is

the favorite (underdog) views actions as strategic complements (substitutes). The

argument holds for all strict LSM contests with homogeneous technologies because,

as explained previously, di¤erent impact functions amount to di¤erent cost functions,

and the cost functions are irrelevant to the argument.

More formally, for homogeneous contests, or F i(xijai) = G(xijpi(ai)), i = 1; 2, it
holds that

P i12(a) = p
0
i(ai)p

0
j(aj)

Z
Gp(xjpj(aj))gp(xjpi(ai))dx:

Strict NUCmeans that�F ia(xijai) = �Gp(xijpi(ai))p0i(ai) is strictly log-supermodular,
which is equivalent to strict log-supermodularity of �Gp(xijpi(ai)). Hence, for any
interior action,

@

@pi

gp(xjpi(ai))
Gp(xjpi(ai))

> 0 for all x 2 (x; x).

Agent i is the favorite if pi(ai) > pi(ai), in which case

gp(xjpi(ai))
Gp(xjpi(ai))

>
gp(xjpj(aj))
Gp(xjpj(aj))

for all x 2 (x; x);

and the rest of the proof is the same as before.

Proof of Proposition 2. Let � i(aj) denote the ai value for which P i(a) = 1
2
, as a

function of aj. In other words, � i(aj) = p�1i (pj(aj)) describes the curve along which

the impacts are the same and along which the agents win with equal probability.

Since pi and pj are strictly increasing functions with the same range, � i(aj) is strictly

increasing and satis�es � i(0) = 0 and � i(aj)!1 as aj !1.
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If the best response to aj is interior, it must satisfy the �rst order condition that

viP
i
i (bi(aj); aj)� c0i(bi(aj)) = 0:

By Assumption A1, it then holds that the second-order condition holds in a strict

sense, or

uiii(bi(aj); aj) = viP
i
ii(bi(aj); aj)� c00i (bi(aj)) < 0:

Consider now a marginal change in aj. The �rst-order condition implies that

b0i(aj) =
viP

i
12(bi(aj); aj)

�uiii(bi(aj); aj)

has the same sign as P i12(bi(aj); aj). Thus, if P
i
12 > 0 �or, by Theorem 1, bi(aj) >

� i(aj) �then b0i(aj) > 0. Similarly, if P
i
12 < 0, or bi(aj) > � i(aj), then b

0
i(aj) < 0. In

words, if bi(aj) is above (below) � i(aj) for some aj > 0, then the reaction function must

be locally increasing (decreasing) because agent i considers actions to be strategic

complements (substitutes), by Theorem 1. Finally, if P i12 = 0, or bi(aj) = � i(aj), then

b0i(aj) = 0. Thus, there can be at most one interior point at which bi(aj) intersects

the strictly increasing � i(aj) function.

At the same time, there must be some interior aj value for which bi(aj) = � i(aj).

By contradiction, assume there is no such value, or in other words that bi(aj) is always

either strictly above or strictly below � i(aj). Now, assume that bi(a0j) > � i(a
0
j) > 0

for some a0j and consider aj > a
0
j. If bi(aj) > � i(aj) for all aj > a

0
j, then bi(aj) ! 1

as aj ! 1 because � i(aj) ! 1 as aj ! 1. However, this contradicts the fact
that the best response is bounded above by ai <1. Thus, bi(aj) must intersect the
� i(aj) curve to the right of a0j. This argument also implies that there must be some aj
value for which bi(aj) < � i(aj). However, bi(aj) cannot be always below � i(aj) either.

If 0 < bi(a
00
j ) < � i(a

00
j ) for some a

00
j , then bi(aj) increases as aj is reduced. Hence,

bi(aj) must intersect the � i(aj) curve to the left of a00j . This intersection is guaranteed

because � i(0) = 0 and � i(aj) is an increasing function. In conclusion, there exists

precisely one interior aj value, baj for which bi(baj) = � i(baj).
Finally, bi(aj) > � i(aj) for all aj < baj implies that bi(aj) > 0 for all aj 2 (0;baj).

Along with the hump-shape of the reaction function, this implies that if bi(a0j) > 0

then bi(aj) > 0 for all aj 2 (0; a0j). In other words, bi(aj) > 0 on an interval of aj
values. The last part of the proposition follows from Theorem 1 and the fact that
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bi(aj) > � i(aj) on the increasing part and bi(aj) < � i(aj) on the decreasing part.

Proof of Proposition 3. When technologies are homogeneous but not fully ho-

mogeneous, � i(aj) need not be de�ned for all aj and, if it is, its range need not be

[0;1). Nevertheless, the �rst steps of the proof of Proposition 2 still apply. Thus, if
P i12 > 0 then b

0
i(aj) > 0 and if P

i
12 < 0 then b

0
i(aj) < 0. Likewise, there is at most one

aj value for which bi(aj) = � i(aj).

If there is a point at which bi(aj) = � i(aj), then the reaction function is strictly

single-peaked whenever the best-response is strictly positive, by the same argument

as in Proposition 2. If there is no such point, then it is because either P i12 > 0 or

P i12 < 0 everywhere along the reaction function, but in this case the reaction function

is strictly monotonic whenever the best response is strictly positive.

If the reaction function is decreasing, then it is still the case that bi(aj) > 0 on

(0; asupj ). To see this, P i12 < 0 along the reaction function if the reaction function is

decreasing. Hence, b0i(aj) < 0. Then, bi(aj) increases as aj decreases, which means

that it must remain strictly positive.

If the reaction function is increasing, then P i12 > 0 along the reaction function.

Since bi(aj) decreases as aj decreases, it may therefore become zero for small values of

aj. This is possible when P i12 > 0 or P
i > 1

2
near the origin (see the example following

the proposition). Once it has become zero in this manner, it cannot become strictly

positive for smaller but strictly positive values of aj. The reason is that P i12 > 0

would hold at such a point, implying that bi is increasing, but this contradiction the

property that bi is zero for larger aj.

If the reaction function is non-monotonic, then it is increasing on an interval, in

which case the same argument as in the previous paragraph implies that bi(aj) may

be zero for small aj values.

The last part of the proposition follows the same logic as in Proposition 2.

Proof of Proposition 4. For two-agent LSM contests, Proposition 1 reveals

that P ii (a) is log-supermodular in a on (0;1)2. Hence,
P i12(a)

P ii (a)
is weakly increasing

in ai. The implication is that if P i12(a) < 0 then it remains strictly negative as ai
decreases, holding aj �xed. Similarly, since �P ij (a) is log-supermodular,

P i12(a)

P ij (a)
is

weakly increasing in aj. As P ij (a) < 0, it follows that if P
i
12(a) < 0 then it remains

strictly negative as aj increases, holding ai �xed. In sum, if P i12(a) < 0 then this is

also the case as ai decreases or aj increases. Thus, if b0i(aj) < 0 for some aj, then not
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only is P i12(a) < 0, it is also the case that bi(aj) decreases in aj, thus moving the best

response further into the region where P i12(a) < 0. Hence, once b
0
i(aj) < 0, the best

response keeps decreasing as aj increases further. Hence, bi(aj) is either monotonic

or it is �rst increasing and then decreasing.

The proof of Theorem 2 relies on the following lemma.

Lemma 1 Consider a distribution function F i(xjai) that satis�es strict NUC and a
di¤erentiable function v(x) that is strictly quasiconcave and has at most one interior

stationary point. Then,

V (ai) =

Z
v(x)f i(xjai)dx

is strictly quasiconcave in ai, with V 00(ai) < 0 whenever V 0(ai) = 0. As an application,

in any strict LSM contest with two agents, �P ij (a) is strictly quasiconcave in ai, with
�P ii12(a) < 0 whenever �P i12(a) = 0

Proof of Lemma 1. Using integration by parts,

V 0(ai) =

Z �
�v0(x)F ia(xjai)

�
dx

=

Z �
�v0(x)F

i
a(xjai)
f i(xjai)

�
f i(xjai)dx

and

V 00(ai) =

Z
(�v0(x))F iaa(xjai)dx

=

Z �
�v0(x)F

i
a(xjai)
f i(xjai)

�
F iaa(xjai)
F ia(xjai)

f i(xjai)dx:

By strict NUC, the term F iaa(xjai)
F ia(xjai)

is strictly increasing in x. The expectation of

the term �v0(x)F
i
a(xjai)
f i(xjai) is zero at any stationary point, i.e. whenever V

0(ai) = 0.

For interior x, the sign of the term is determined by v0(x). Since v(x) is strictly

quasiconcave and has at most one interior stationary point, either (i) v0(x) < 0 or

v0(x) > 0 almost always, or (ii) it is �rst strictly positive and then strictly negative. In

case (i), V 0(ai) is either strictly positive or strictly negative, meaning that is is strictly

quasiconcave. In case (ii), v0(x) strictly single-crosses zero from above, which in turn

means that �v0(x)F
i
a(xjai)
f i(xjai) strictly single-crosses zero from above on the interior. As in
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Chade and Swinkels (2020, Proposition 4), a version of Beesack�s inequality can now

be invoked: If h(x) is a function that strictly single-crosses zero from above and q(x)

is a strictly increasing function, then the expectation of h(x)q(x) is strictly negative

when the expectation of h(x) is zero. This result can be veri�ed using integration

by parts. Letting h(x) = �v0(x)F
i
a(xjai)
f i(xjai) and q(x) =

F iaa(xjai)
F ia(xjai)

, the conclusion is that

V 00(ai) < 0 whenever V 0(ai) < 0. Hence, V (ai) has at most one stationary point,

and this stationary point (if it exists) must be a maximum. Hence, V (ai) is strictly

quasiconcave.

For the application mentioned in the lemma, �P ij (a) is

�P ij (a) =
Z
(�F ja (xjaj))f i(xjai)dx;

and strict MLRP implies that �F ja (xjaj) has the same properties as v(x) in the
lemma. To see this, note that

@(�F ja (xjaj))
@x

= �f
j
a(xjaj)
f j(xjaj)

f j(xjaj)

is �rst strictly positive and then strictly negative on (x; x). Hence, �P ij (a) is strictly
quasiconcave in ai in any strict LSM contest, with �P ii12(a) < 0 whenever �P i12(a) =
0. Thus, for any aj, P i12(a) = 0 for at most one ai.

Proof of Theorem 2. Consider some interior (a01; a
0
2) for which P

i
12(a

0
1; a

0
2) = 0.

Then, P ii12(a
0
1; a

0
2) > 0, by the argument following Lemma 1, and it follows that

P i12(a1; a
0
2) > 0 when ai > a

0
i. By a similar argument, P

j
j12(a

0
1; a

0
2) > 0, meaning that

P j12(a
0
1; a2) < 0 when aj < a0j and therefore that P

i
12(a

0
1; a2) > 0 when aj < a0j. As

mentioned already, once P i12 > 0 it remains strictly positive as ai increases further.

This proves that P i12(a1; a2) > 0 for all interior (a1; a2) with ai � a0i and aj � a0j and
at least one strict inequality. The other part is proven in a similar manner.

To see more directly that the locus of points in question is increasing, let �i(aj)

denote the ai value (when it exists) for which P i12(�i(aj); aj) = 0. When �i(aj) is

interior, implicit di¤erentiation implies that

�0i(aj) =
�P ij12(�i(aj); aj)
P ii12(�i(aj); aj)

=
P jj12(�i(aj); aj)

P ii12(�i(aj); aj)
> 0:
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Proof of Proposition 5. By the usual arguments, if P i12 > 0 then b
0
i(aj) > 0 and

if P i12 < 0 then b
0
i(aj) < 0. The latter implies that if the reaction function is in the

region where P i12 < 0, then it remains in that region. In other words, once bi(aj) is

below �i(aj), de�ned in the proof of Theorem 2, it remains below �i(aj). Thus, bi(aj)

can cross �i(aj) at most once and, if it does, the crossing must be from above. It is

not necessary to prove that there is at most one aj value for which bi(aj) = �i(aj).

For instance, if the two functions �touch�m > 1 times (they could also coincide on an

interval), then they must be tangent in at least the �rst m�1 of those instances.17 In
those cases, however, b0i(aj) = �

0
i(aj) > 0, so it remains the case that bi(aj) is strictly

increasing until it crosses �i(aj). The proof that bi(aj) > 0 on an interval is the same

as in Proposition 3.

Proof of Theorem 3. Unique interior equilibrium: For the �rst part of the
proposition, assume that an interior pure-strategy equilibrium exists, which necessi-

tates that A2 is satis�ed. Let (a�1; a
�
2) denote the equilibrium action pro�le. Assume

to start that P 212(a
�
1; a

�
2) > 0 > P

1
12(a

�
1; a

�
2). In (a1; a2) space, (a

�
1; a

�
2) is thus in the area

above the locus of points where P i12(a1; a2) = 0 (see Figure 1(a)). In this area b2(a1)

is strictly increasing and b1(a2) strictly decreasing. Hence, the two reaction functions

do not intersect at any other point in the interior of this area, nor at any interior point

where P i12(a1; a2) = 0. Thus, if one of the two reaction functions does not cross the

P i12(a1; a2) = 0 locus, then (a
�
1; a

�
2) must be the unique interior equilibrium. If both re-

action functions cross the P i12(a1; a2) = 0 locus, then agent 2�s reaction function does

so further to the north-east than agent 1�s reaction function. At the latter point, b1(a2)

is maximized, meaning that this is the right-most point of agent 1�s reaction function

in (a1; a2) space. Since agent 2�s reaction function intersect the P i12(a1; a2) = 0 curve

later and becomes decreasing thereafter, the two reaction functions cannot intersect

in the region where P 212(a1; a2) < 0 < P
1
12(a1; a2). Hence, (a

�
1; a

�
2) is the unique interior

equilibrium. Similar arguments apply if P 212(a
�
1; a

�
2) � 0 � P 112(a�1; a�2) to start with.

For the second part, assume that F 1(xj0) and F 2(xj0) are non-degenerate.

17In Propositions 2 and 3, bi(aj) and � i(aj) touch only once (which is when they cross each other).
The signi�cance of this property is that whenever bi(aj) is strictly increasing, bi(aj) > � i(aj) and
so agent i is the favorite. However, Proposition 5 with heterogeneous technologies is silent on when
agent i is the favorite or underdog.
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Existence. Since F 1(xj0) and F 2(xj0) are non-degenerate, agent i has a best
response to aj = 0. By A1, there is a unique best response to any aj � 0, and the

resulting reaction function is continuous.

Consider the rectangle [0; a1] � [0; a2] in (a1; a2) space. Any pure-strategy equi-
librium must fall within this rectangle. As mentioned, bi(aj) is continuous, and its

range on [0; aj] is a closed and convex subset of [0; ai]. It follows that the reaction

functions intersect at least once on [0; a1]� [0; a2].
Uniqueness. Given that reaction functions are continuous everywhere, including

along the boundaries of [0; a1] � [0; a2], the proof of the �rst part of the proposition
generalizes to all possible equilibria, both interior and those on the boundary.

However, with the existing literature in mind, it is instructive to discuss the pos-

sibility of an equilibrium at (0; 0). Consider a lottery contest, microfounded as a

best-shot contests with pi(ai) = ai for i = 1; 2. Reaction functions are hump shaped

and bi(aj) ! 0 as aj ! 0. There is a unique (interior) equilibrium, but the two

reaction functions also both converge towards the point (0; 0). The latter is not an

equilibrium because F 1(xj0) and F 2(xj0) are degenerate and agent i has no best re-
sponse to aj = 0. Nevertheless, this example may raise the question of whether it

is possible to have both an interior equilibrium and an equilibrium at (0; 0) when

F 1(xj0) and F 2(xj0) are non-degenerate? The answer is no.
First, if P i12(0; 0) 6= 0, as in Figure 1, then previous arguments show that the two

reaction functions cannot intersect at (0; 0) as long as A2 is satis�ed. On the other

hand, if A2 is violated, then at least one agent�s best response is always zero. Then,

there must be a unique equilibrium since the other agent has a unique best response

to zero e¤ort. Second, if P 112(0; 0) = 0 = P 212(0; 0), then reaction reaction functions

are strictly hump-shaped on [0; asup) when A2 is satis�ed. Now, if bi(0) = 0 then

either uii(0) < 0 or uii(0) = 0. In the �rst case, bi(aj) = 0 even if aj is marginally

above 0, but this is not consistent with the strict hump-shape. In the second case,

the agent�s �rst-order condition is satis�ed at (0; 0) and A1 can be invoked. Since

P iij(0; 0) = 0, the implication is that b0i(aj) = 0. Hence, bi(aj) is below the curve

where P i12(a1; a2) = 0 as aj increases further, but this is possible only if bi(aj) = 0

always, thus violating A2.

Proof of Corollary 1. In the symmetric contest, reactions functions are identity-

independent and, by Proposition 2, strictly hump-shaped. The peak occurs at the

unique aj value where bi(aj) = � i(aj). Thus, there is a symmetric equilibrium (aS; aS)
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where bi(aS) = aS = � i(aS), i = 1; 2. By symmetry P i(aS; aS) = 1
2
.

Assume now that agent j�s characteristics, i.e. vj, pj(�), or cj(�), change. Changes
in vj and cj(�) have no impact on agent i�s reaction function, which therefore still
peaks at aS. Moreover, the point (aS; aS) is the only point on agent i�s reaction

function where P i(a) = 1
2
. Hence, if the equilibrium changes in such a way that

P i(a) 6= 1
2
, then it must hold that ai < aS in the new equilibrium. Regarding changes

in pj(�), note that agent i cares about the impact of agent j�s action rather than the
action per se. Hence, agent i�s reaction is still maximized at the unique aj where

pj(aj) = pi(a
S) and where agent i wins with probability 1

2
. Thus, if P i(a) 6= 1

2
in

equilibrium, then ai < aS.

Proof of Corollary 2. When vi decreases, bi(aj) strictly decreases for all aj > 0

where bi(aj) > 0 originally. To see this, let b�i denote the unique best response to aj
in the original contest, and let b��i denote a (not necessarily unique) best response

when agent i�s valuation changes from vi to v0i < vi. Then,

viP
i(b�i ; aj)� ci(a�i ) � viP

i(b��i ; aj)� ci(a��i )
v0iP

i(b��i ; aj)� ci(a��i ) � v0iP
i(b�i ; aj)� ci(a�i );

which implies that

vi
�
P i(b�i ; aj)� P i(b��i ; aj)

�
� ci(a�i )� ci(a��i ) � v0i

�
P i(b�i ; aj)� P i(b��i ; aj)

�
:

Since vi > v0i, P
i(b�i ; aj) � P i(b��i ; aj), or b�i � b��i . At the same time, b��i = b�i cannot

occur since the same action cannot satisfy the �rst order condition in both the original

and new contest. Hence, b�i > b
��
i .

Let (a�1; a
�
2) denote the original interior equilibrium action pro�le. Since agent i

views actions as strategic substitutes at (a�1; a
�
2), b

0
i(a

�
j) < 0 and b0j(a

�
i ) > 0 in the

original contest. In the new contest, bj(ai) is unchanged and is increasing in the

region where the original equilibrium occurs. Since agent i�s best response(s) have

decreased, any pure-strategy Nash equilibrium must occur at a point below her old

reaction function. Since bj(ai) is increasing, the implication is that any pure-strategy

equilibrium (when one exists) occurs at point where ai < a�i and aj < a
�
j .

Proof of Corollary 3. The �rst part of the corollary follows from the same type

of argument as in the proof of Corollary 2. The second part follows from the fact
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that the favorite by de�nition won with probability greater than 1
2
in the original

contest, and wins with even greater probability in the new contest due to the change

in equilibrium actions.

Proof of Corollary 4. Simple di¤erentiation and bj(a�i ) = a
�
j yields

@ui(ai; bj(ai))

@ai jai=a�i
= uii(a

�) + uij(a
�)b0j(a

�
i )

= uij(a
�)b0j(a

�
i );

where the last inequality follows from the �rst-order condition. The corollary then

follows from uij(a
�) < 0 and Theorem 1.

Proof of Proposition 6. Let (a�1; a
�
2) denote the equilibrium action pro�le. If

a�2 > a�1 then a
�
2 = b2(a

�
1) > a�1. However, it is not possible for b2(a1) > a1 for all

a1, since the best response is bounded above by a2. Thus, by continuity, there exists

some a0 > a�1 such that b2(a
0) = a0. It then holds that b1(a0) � a0, as explained in

the main text. If b1(a0) = a0 then (a0; a0) is an equilibrium, and since equilibrium is

unique it contradicts that (a�1; a
�
2) is an equilibrium. If b1(a

0) > a0 then agent 1 views

actions as complements at (b1(a0); a0), again as explained in the main text. Hence,

b1(a2) is increasing in a2 for a2 � a0. Since agent 2 views actions as (weak) substitutes
at (a0; a0), b2(a1) is decreasing for a1 > a0. Putting these observations together yields

the conclusion that b1(a2) and b2(a1) intersect at some point where a1 2 [a0; b1(a0)]
and a2 2 (0; a0). This intersection is an equilibrium, which contradicts that (a�1; a�2) is
an equilibrium. Hence, there is no interior equilibrium with a�2 > a

�
1.

In conclusion, a�1 � a�2 in equilibrium. If a�1 = a�2 then u11(a�) > u22(a�) if v1 > v2,
which contradicts that both players are best responding. Hence, a�1 > a

�
2 if v1 > v2.

The last statement follows from the �rst two properties of ordered LSM contests.

Proof of Corollary 5. By Proposition 6, agent 1 (2) views actions as complements

(substitutes) in equilibrium. The proofs of Corollaries 2�4 now carry over.
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Appendix B: Supplementary material

This supplementary material �rst provides an example that demonstrates su¢ cient

conditions for NUC. Conditions for concave and quasiconcave payo¤ functions are

then described. These conditions lean heavily on the literature on principal-agent

models, like Rogerson (1985) and Jewitt (1988), as well as on Chade and Swinkels�

(2020) paper. The assumption that the support is the same for all actions is discussed,

and relaxed, in the case of homogeneous technologies. Next, properties of larger LSM

contests are examined. It is then observed that certain CSFs in the literature are in-

consistent with the properties of LSM contests and therefore cannot be microfounded

as such. Finally, a discussion of biases in contest is provided, which links the relevant

literature to the individual discouragement e¤ect.

B.1 Another example

Chade and Swinkels (2020) o¤er su¢ cient conditions for NUC. The next example

makes use of one of their su¢ cient conditions, which has the advantage that the

starting point is the density f i(xijai) rather than the distribution function F i(xijai).

Example 4 (kth-shot contests): Let k be a positive integer. Let H(x) be some

atomless distribution with full support and strictly positive and di¤erentiable density

h(x). The performance technology is described by a distribution function with density

f i(xjai) = B(pi(ai))H(x)pi(ai)�1 (1�H(x))k�1 h(x);

where B(�) is such that f i(xjai) integrates to one over [x; x]. The impact function
pi(ai) is non-negative, twice di¤erentiable, and satis�es p0i(ai) > 0. It is as if agent

i makes pi(ai) + k � 1 draws from H(x) and the agent�s performance is taken to be

the kth highest of those draws. If k = 1, the contest reduces to the best-shot contest

in Example 2. If k = 2, the agent�s performance is determined by the second-best

draw out of pi(ai) + 1 draws. As in best-shot contests, the analogy is not perfect

as pi(ai) is not restricted to be an integer. The kth-shot contest can e.g. describe a

setting in which competing agents are required to develop a product with k critical

components. The agent puts together a product consisting of the k best components

that she is able to make, out of a total of pi(ai) + k � 1. However, the quality of the
product is determined by the weakest of the selected components.
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For any k,
@2 ln f i(xjai)
@x@ai

= p0i(ai)
h(x)

H(x)

is strictly positive, implying that the distribution has the strict MLRP. Moreover,

p0i(ai)
h(x)
H(x)

is trivially log-supermodular. Thus, the least demanding of the three su¢ -

cient conditions for NUC in Chade and Swinkels (2020, Proposition 2) applies. Hence,

the contest is a LSM contest.

For future reference, when n = 2 and k = 2 the CSF reduces to

P 1(a1; a2) =
p1 (a1) (p1 (a1) + 1) (p1 (a1) + 3p2(a2) + 2)

(p1 (a1) + p2(a2)) (p1 (a1) + p2(a2) + 1) (p1 (a1) + p2(a2) + 2)
; (8)

using (2). N

B.2 Single-valued best responses and the �rst-order approach

B.2.1 Concave payo¤ functions

This subsection assumes that c00i (ai) � 0 and asks what properties the performance

technologies must have in order for ui(a) to be strictly concave in ai, or uiii(a) < 0.

This exercise is near-identical to how the literature on principal-agent models jus-

tify the �rst-order approach, as pioneered by Rogerson (1985) and Jewitt (1988).

In that setting, the performance-contingent reward takes the form of a wage sched-

ule, w(x), whereas in the contest setting it takes the form of a winning probability,Q
j 6=i F

j(xjaj). The di¤erence in interpretation aside, the same techniques apply.
Rogerson�s (1985) result applies directly, since the only structure he requires on

w(x) is that it is increasing. Clearly,
Q
j 6=i F

j(xjaj) has that property. Rogerson then
shows that ui(a) is concave in ai as long as F i(xjai) is convex in ai. This condition
is satis�ed in e.g. the best-shot model. A strict version of his result is stated below.

Jewitt�s (1988) result requires that w(x) is increasing and concave. In the n = 2

case, this holds if F j(xjaj) is concave in x, which is satis�ed if e.g. F j(xjaj) is an ex-
ponential distribution, as in Hirschleifer and Riley (1992). In addition, Jewitt (1988)

imposes a condition on F i(xjai) that is weaker than Rogerson�s convexity condition. It
turns out that NUC adds structure to F i(xjai) that makes it easier to check the latter.
The exponential distribution F i(xjai) = 1�e�

x
pi(ai) , x 2 [0;1), satis�es this condition

as long as the mean pi(ai) > 0 is concave. Let a�i = (a1; :::; ai�1; ai+1; :::; an).
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Proposition 7 Consider a strict LSM contest with n � 2 agents. If c00i (ai) � 0, then
agent i�s problem is strictly concave in ai for any a�i 6= 0 if either:

1. F i(xjai) is strictly convex in ai for all ai and all x 2 (x; x), or

2.
Q
j 6=i F

j(xjaj) is strictly concave in x and E[Xijai] is weakly concave in ai.

Proof. The condition that a�i 6= 0 means that
Q
j 6=i F

j(xjaj) is not degenerate, but
is strictly increasing in x. With this in mind, the �rst result is a strict version of

Rogerson�s (1985) result and can be proven by using integration by parts.

Using integration by parts twice, the second result similarly follows from Jewitt

(1988) if
R x
x
F i(sjai)ds is strictly convex in ai for all x 2 (x; x). It will now be shown

that this property follows from strict NUC and the condition that E[Xijai] is weakly
concave in ai.

Strict NUC is equivalent to the requirement that @
@x

F iaa
F ia
> 0 for x 2 (x; x). Since

@2

@a2i

Z x

x

F i(sjai)ds =
Z x

x

F ia(sja)
F iaa(sja)
F ia(sja)

ds;

strict NUC and F ia(sja) < 0 imply that the integrand is either of constant sign for

all s or that it is �rst positive and then negative. Hence, if @2

@a2i

R x
x
F i(sjai)ds � 0 for

some x0 2 (x; x], then @2

@a2i

R x
x
F i(sjai)ds > 0 for all x 2 (x; x0). Hence, it is su¢ cient

that @2

@a2i

R x
x
F i(sjai)ds � 0, but this is the same as requiring that E[Xijai] is weakly

concave in ai.

Example 4 (continued): The second part of the proposition is relevant to Example

4. First, note that it is without loss of generality to let H(x) = x, x 2 [0; 1]. Formally,
this can be seen through a change of variable. Intuitively, the reason is that rather

than thinking about performance on a scale between x and x, it can be thought of in

terms of the corresponding quantiles of H(x). For n = 2, it can then be shown that

the second part of the proposition is satis�ed pi(ai) is concave and pj(aj) < 1. Of

course, these are merely su¢ cient conditions. To illustrate, if k = 2 and impact and

cost functions are linear, then it can be veri�ed from (8) that ui(ai; aj) is concave in

ai whenever aj < 1:894 4. N
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B.2.2 Quasiconcave payo¤ functions

Following the logic oulined in Section 6.1, the next result provides a su¢ cent condition

that ensures ui(a) that is strictly quasiconcave on the relevant range of actions.

Proposition 8 Consider a LSM contest with two agents. For any aj 2 (0; aj], ui(a)
is strictly quasiconcave in ai 2 [0; ai], with uiii(a) < 0 whenever uii(a) = 0, if

P iii(ai; aj)

P ii (ai; aj)
� c

00
i (ai)

c0i(ai)
< 0 for all ai 2 (0; ai]:

Proof. Fix aj 2 (0; aj]. If ui(ai; aj) does not have a stationary point on (0; ai), then it
is monotonic and thus quasiconcave on [0; ai]. Assume now that there is a stationary

point, or some ai 2 (0; ai) for which

viP
i
i (ai; aj) = c

0
i(ai):

Then, the second derivative of ui(ai; aj) with respect to ai is proportional to

P iii(ai; aj)

P ii (ai; aj)
� c

00
i (ai)

c0i(ai)
� P iii(ai; aj)

P ii (ai; aj)
� c

00
i (ai)

c0i(ai)
< 0

where the �rst inequality follows from log-supermodularity of P ii (ai; aj) and the second

from the assumption in the proposition. Hence, the second derivative is strictly

negative, and it follows that the stationary point is a local maximum. Thus, there is

at most one stationary point. In conclusion ui(ai; aj) is either monotonic in ai or it

is �rst-increasing-then-decreasing on [0; ai]. In either case, ui(ai; aj) is quasiconcave

in ai.

To explain Proposition 8, consider the following exercise: Hold the technologies

and ai �xed. Fix ci(0) and ci(ai). Then, the proposition quanti�es how much the cost

function must be �curved�or �convexi�ed�on the interval [0; ai] in order to achieve

quasiconcavity. Finally, note that if the condition in Proposition 8 holds for some

(v1; v2), then it also holds if the valuations decrease. The reason is that a1 and a2
then decrease.

The proof of Proposition 8 is self-contained and relies only on log-supermodularity

of P ii (a). However, the proposition can alternatively be shown to be an implication of

a result in Chade and Swinkels (2020). To this end, note that Proposition 8 requires
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calculating P i(ai; aj) and examining its curvature properties. It may be convenient

to have a �looser�condition, if such a condition is easier to check. Proposition 5 in

Chade and Swinkels (2020) is highly useful in this regard. A version, adapted to the

current setting, is provided next.

Proposition 9 (Chade and Swinkels (2020)) Consider a LSM contest with two

agents. Fix aj > 0 and assume that there is a function q(x) that satis�es

(i) q0(x) > 0 and
@

@x

f j(xjaj)
q0(x)

� 0, and

(ii)
Eaa[qjai]
Ea[qjai]

� c
00
i (ai)

c0i(ai)
< 0 for all ai 2 (0; ai].

Then ui(a) is strictly quasiconcave in ai 2 (0; ai].

Proof. This is Proposition 5 in Chade and Swinkels (2020), with � degenerate and
v(x) = viF

j(xjaj):
Proposition 8 can in fact be seen as a corollary of this last proposition. Let

q(x) = F j(xjaj). The MLRP implies that (i) is satis�ed for all aj 2 (0; aj]. Moreover,
since E[qjai] coincides with P i(ai; aj), (ii) reduces to the condition in Proposition 8.
Another application arises in contests in which F j(xjaj) is concave in x. Letting

q(x) = x then implies that (i) is satis�ed. In this case E[qjai] = E[Xijai]. Hence, (ii)
is satis�ed if

Eaa[Xijai]
Ea[Xijai]

� c
00
i (ai)

c0i(ai)
< 0 for all ai 2 (0; ai];

or in other words if the cost function is more convex than E[Xijai], which in turn im-
plies that E[Xijai]�ci(ai) is strictly quasiconcave. The same logic is behind Corollary
1 in Chade and Swinkels (2020).

The following example compares Propositions 8 and 9.

Example 4 (continued): Consider the two-shot model in (8). To focus on the role

of the cost function, assume that pi(ai) = ai, i = 1; 2. In this case, it can be veri�ed

that

lim
a2!1

P 111(a1; a2)

P 11 (a1; a2)
=

2

2a1 + 1
:

Note that if c1(a1) is proportional to a21 + a1, then
c001 (a1)
c01(a1)

= 2
2a1+1

. Hence, if the cost

function is �more convex�than (or a convex transformation of) a21 + a1, then agent
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1�s problem is quasiconcave by Proposition 8. This holds if, for example, c1(a1) = a

1
1

with 
1 � 2.
For an application of Proposition 9, consider the general kth-shot contest and

normalize H(x) = x, x 2 [0; 1]. Assume again that pi(ai) = ai, i = 1; 2. Let q(xja2) =
xda2e, where da2e is the smallest integer greater than or equal to a2. Condition (i)
is satis�ed for all a2 2 (0; a2]. Note that E[qja1] is the expected value of the da2eth

moment of the distribution F 1(xja1). However, the latter is a beta distribution, for
which the da2eth moment is known to equal

E[qja1] =
Yda2e�1

r=0

a1 + r

a1 + k + r
:

For instance, assume that da2e = 2. Then,

Eaa[qja1]
Ea[qja1]

=
�2 (2a31 + 3a21k + 3a21 + 3a1k + 3a1 � k3 + 2k + 1)
(a21 + 2a1k + a1 + k

2 + k) (2a1 + k + 2a1k + 2a21 + 1)
;

which is increasing in k. Hence, condition (ii) is hardest to satisfy for k ! 1.
However, the limit is once again 2

2a1+1
. Thus, as before, if the cost function is a21

or a convex transformation thereof, then agent 1�s problem is quasiconcave for all

a2 2 (0; a2]. N

An extension to Proposition 8 that allows for n � 2 agents is provided next.

First note that in the n = 2, case P i(a) = 1 � P j(a) implies that the condition in
Proposition 8 is equivalent to

P jii(ai; aj)

P ji (ai; aj)
� c

00
i (ai)

c0i(ai)
< 0 for all ai 2 (0; ai]:

If a version of the this inequality holds for all j 6= i in larger contests, then agent i�s
payo¤ is quasiconcave in ai. The point is that it is su¢ cient to check quasiconcavity

only at a�i = a�i = (a1; :::; ai�1; ai+1; :::; an).

Proposition 10 Consider a LSM contest with n � 2. For any a�i 2 �j 6=i(0; aj],
ui(a) is strictly quasiconcave in ai 2 [0; ai], with uiii(a) < 0 whenever uii(a) = 0, if

P jii(ai; a�i)

P ji (ai; a�i)
� c

00
i (ai)

c0i(ai)
< 0 for all ai 2 (0; ai] and all j 6= i:
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Proof. Since �P ji (a) is log-supermodular by Proposition 1,
P jii(a)

P ji (a)
is increasing in all

elements of a�i. Hence,

P jii(ai; a�i)

P ji (ai; a�i)
� P jii(ai; a�i)

P ji (ai; a�i)
for any a�i 2 �j 6=i(0; aj]

and the condition in the proposition then implies that for any such (ai; a�i),

P jii(ai; a�i)

P ji (ai; a�i)
� c

00
i (ai)

c0i(ai)
� P jii(ai; a�i)

P ji (ai; a�i)
� c

00
i (ai)

c0i(ai)
< 0:

Since

ui(a) = vi

�
1�

X
j 6=i
P j(a)

�
� ci(ai);

it holds that at any point where uii(a) = 0,

vi
X

j 6=i

�
�P ji (a)

�
= c0i(ai)

and therefore that

uiii(a) = vi
X

j 6=i

�
�P jii(a)

�
� c

00
i (ai)

c0i(ai)
c0i(ai)

= vi
X

j 6=i

�
�P jii(a)

�
� c

00
i (ai)

c0i(ai)
vi
X

j 6=i

�
�P ji (a)

�
= vi

X
j 6=i

�
�P ji (a)

� P jii(a)
P ji (a)

� c
00
i (ai)

c0i(ai)

!
;

which is strictly negative whenever a�i 2 �j 6=i(0; aj]. The proposition follows.
The condition in Proposition 10 implies that

P iii(ai; a�i)

P ii (ai; a�i)
� c

00
i (ai)

c0i(ai)
< 0 for all a 2 �nj=1(0; aj]; (9)

which directly implies quasiconcavity of ui(a) in ai. However, note that

P iii(ai; a�i)

P ii (ai; a�i)
� c

00
i (ai)

c0i(ai)
< 0 for all ai 2 (0; ai]
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does not necessarily imply (9). The reason is that P ii (ai; a�i) =
P

j 6=i(�P
j
i (ai; a�i))

is not guaranteed to be log-supermodular when n > 2, because the sum of log-

supermodular functions need not itself be log-supermodular.

B.3 Shifting supports

It has been assumed that the support of the performance is the same for both agents

and independent of the action, at least as long as the action is strictly greater than

zero. This subsection brie�y explores the consequences of relaxing this assumption.

Assume that technologies are identity-independent and let the support of agent i�s

performance be denoted [l(ai); u(ai)]. Assume that both l(�) and u(�) are di¤erentiable
and non-decreasing, or l0(�); u0(�) � 0. This is consistent with the assumption that

F (xjai) improves in the sense of �rst-order stochastic dominance when ai increases.
Consider an action pro�le for which ai > aj. Hence, agent i is the favorite. Assume

that u(aj) � l(ai). Otherwise, agent i wins with probability one, meaning that she

could lower her action without lowering her chance of winning. Modifying (2),

P i(a) =

Z u(aj)

l(ai)

F (xjaj)f(xjai)dx+ 1� F (u(aj)jai):

Hence, the cross-partial derivative with respect to ai and aj is

P i12(a) = �Fa(l(ai)jaj)f(l(ai)jai)l0(ai) +
Z u(aj)

l(ai)

Fa(xjaj)fa(xjai)dx: (10)

The second term is familiar from the case in which the support does not shift. The

�rst term is strictly positive whenever l0(ai) > 0 and l(ai) > l(aj), since Fa < 0 in

that case. This re�ects the fact that there is an additional source of complementarity

when the support shifts with the action. Starting from aj < ai, an increase in aj
means that agent j�s support eats its way into the support of agent i�s performance.

Hence, agent i is less likely to win if her performance is the lowest possible, l(ai).

This provides her with an extra incentive to work harder herself, to further separate

the supports.

Thus, Theorem 1 extends to the case where the support shifts with the agent�s

action. In fact, even if �Fa is log-submodular rather than log-supermodular and the
second term in (10) is negative, the �rst term may dominate and ensure that the
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favorite views actions as strategic complements.

Similarly, the cross-partial derivative of agent j�s winning probability,

P j12(a) = Fa(u(aj)jai)f(u(aj)jaj)u0(aj) +
Z u(aj)

l(ai)

Fa(xjai)fa(xjaj)dx; (11)

contains an extra negative term. This is because the underdog�s incentive to work

hard diminishes when the favorite�s support shifts to the right. The underdog then

has a smaller chance of in�uencing the outcome, meaning the return to e¤ort is lower.

Thus, the main message is that the conclusions of Theorem 1 is robust to shift-

ing supports and may hold even without NUC. The following example proves this

assertion in a setting where MLRP is violated and �Fa is log-submodular.

Example 5 (Pareto Distributions): Consider a rank-order tournament with

additive noise. Assume that the noise term follows a Pareto distribution with scale

and shape parameters that are both equal to one. In other words, the distribution

of the noise term "i is Q("i) = 1 � 1
"i
with density q("i) = 1

"2i
, "i 2 [1;1). Agent i�s

performance is ai + "i, which has distribution F (xjai) = Q(x � ai), x 2 [1 + ai;1).
This example is inspired by a leading example in Drugov and Ryvkin (2020) and

Drugov, Ryvkin, and Zhang (2024). Their focus is on rank-order tournaments with

homogenous agents, but they endogenize the prize schedule and a minimum standard,

respectively. The Pareto distribution is one of the distributions with a �heavy tail.�

It has the unusual property that the likelihood-ratio is decreasing, thus violating

MLRP, but positive on the entire support. Thus, the second term in (10) is negative,

which is consistent with the fact that �Fa is log-submodular. Nevertheless, it can
be veri�ed that the �rst term in (10) dominates, meaning that the favorite does

indeed view actions as strategic complements. Intuitively, Fa(l(ai)jaj) in the �rst
term is bounded away from zero and f(l(ai)jai) is large, since f(l(ai)jai) = g(1) is

the highest value that the density ever takes. Thus, there is a signi�cant incentive

to take a higher action in order to shift the support. Alternatively, note that u(a) is

constant, meaning that the �rst term in (11) is zero while the second term is negative.

Hence, the underdog views actions as strategic substitutes, which in turn implies that

the favorite views actions as complements. N
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B.4 Larger contests

B.4.1 Basic properties of large LSM contests

With n � 3 agents,

P 312 (a) =

Z
F 1a (xja1)F 2a (xja2)

Y
j2f4;:::;ng

F j(xjaj)f 3(xja3)dx:

Note that P 312 (a) > 0 if all actions are interior. The same property holds for

P 412 (a) ; :::; P
n
12 (a). Hence,

0 =
Xn

i=1
P i12(a) > P

1
12 (a) + P

2
12 (a) ;

which implies that at least one of P 112 (a) or P
2
12 (a) must be strictly negative. That

is, within any given pair of agents, at least one views the actions of the two agents

as strategic substitutes. It is possible that neither views actions as strategic comple-

ments.

Next, note that

P 112 (a)�P 212 (a) =
Z
F 1a (xja1)F 2a (xja2)

Y
j2f3;:::;ng

F j(xjaj)
�
f 1a (xja1)
F 1a (xja1)

� f 2a (xja2)
F 2a (xja2)

�
dx:

(12)

Hence, if technologies are identity dependent and satisfy strict NUC, then P 112 (a) >

P 212 (a) if a1 > a2. Since, P 112 (a) + P
2
12 (a) < 0, it follows that P 212 (a) < 0. Thus,

within the pair, the agent who is less likely to win must view actions as strategic

substitutes. The argument extends to contests with homogeneous technologies, even

if they are not fully homogenous.

Recall also that �P 12 (a) is log-supermodular, by Proposition 1. Hence,

@2 ln (�P 12 (a))
@a1@a3

=
@

@a3

P 112(a)

P 12 (a)
� 0:

Since P 12 (a) < 0, the implication is that if P
1
12(a) is negative then it remains negative

if a3 increases. In other words, agent 1 is more likely to view a1 and a2 as strategic

substitutes the harder any of their common rival works. Note that the argument

allows for heterogenous technologies.
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B.4.2 Ordered LSM contests with n � 3 agents

As in Section 5, consider the relationship between agents 1 and 2 and their equilibrium

actions. The characteristics of the remaining agents 3; :::; n are not important. To

rank incentives, assume that (T1), (T3), and (C1) are satis�ed. Note that (T1) and

(T3) together imply that

�F 1a (xja1)
F 1(xja1)

� �F 2a (xja2)
F 2(xja2)

for all x 2 (x; x) when a1 = a2 > 0: (13)

Consider now

P 1(a) = 1� P 2(a)�
Xn

i=3
P i(a)

= 1�
Z
F 1(xja1)f 2(xja2)

Y
j2f3;:::;ng

F j(xjaj)dx

�
Xn

i=3

Z
F 1(xja1)F 2(xja2)f i(xjai)

Y
j2f3;:::;ngnfig

F j(xjaj)dx

and the analogous expansion of P 2(a). Combining the two and letting�(a) = P 11 (a)�
P 22 (a) yields

�(a) =

Z ��F 1a (xja1)
f 1(xja1)

� �F
2
a (xja2)

f 2(xja2)

�
f 1(xja1)f 2(xja2)

Y
j2f3;:::;ng

F j(xjaj)dx

+
Xn

i=3

Z ��F 1a (xja1)
F 1(xja1)

� �F
2
a (xja2)

F 2(xja2)

�
F 1(xja1)F 2(xja2)f i(xjai)

Y
j2f3;:::;ngnfig

F j(xjaj)dx;

which is weakly positive by (T3) and the property in (13). In other words, under

(T1), (T3), and (C1), u11(a) � u22(a) at any interior action pro�le where a1 = a2. The
inequality is strict if one or more of the inequalities in (T1), (T3), and (C1) are strict.

Giebe and Gürtler (2024) rely on (T1) in their study of rank-order tournaments with

n � 3 agents. Recall from Section 5 that (T3) is automatic in their setting. Hence,

the �rst term in �(a) is nil, and the sign of �(a) is driven entirely by (T1) though

(13).

As mentioned in Section 6, a trick from Giebe and Gürtler (2024) is borrowed

to conclude the proof that a1 � a2 in any interior equilibrium. The proof of their

Lemma 1 holds for any contest with the property that u11(a) � u22(a) if a1 = a2 and
that mina2[0;ai] c

00(ai) is su¢ ciently large. To explain, assume by contradiction that
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there exists an interior equilibrium with a1 < a2 and write

u11(a)� u22(a) = u11(a1; a1; a3; :::; an) +

Z a2

a1

u112(a1; x; a3; :::; an)dx

�
�
u22(a1; a1; a3; :::; an) +

Z a2

a1

u222(a1; x; a3; :::; an)dx

�
=

�
u11(a1; a1; a3; :::; an)� u22(a1; a1; a3; :::; an)

�
+

�Z a2

a1

u112(a1; x; a3; :::; an)dx�
Z a2

a1

u222(a1; x; a3; :::; an)dx

�
The �rst part is weakly positive since u11(a) � u22(a) if a1 = a2. The second part

is strictly positive if mina2[0;ai] c
00(ai) is su¢ ciently large. The reason is that u112 is

independent of c00(ai) while u222 is decreasing in c
00(�). In conclusion, u11(a)�u22(a) > 0,

but this violates the requirement that the �rst-order conditions are satis�ed.

Note also that if (T2) holds and a1 � a2, then it follows from (6) and (12) that

agent 2 must necessarily view a1 and a2 as strategic substitutes.

B.5 LSM contests and CSFs

Proposition 1 signi�es that the CSF in any LSM contests has some very speci�c

properties. Moving in the other direction, if the starting point is some postulated

CSF, then it can be checked whether the CSF in question satis�es the properties in

Proposition 1. If not, then the CSF cannot be microfounded as a LSM contest with

constant support. For instance, the CSF in Beviá and Corchón (2015) is not log-

supermodular when �(1 + s) < 1 in their parameterization with two agents. Hence,

it cannot be microfounded as a contest with stochastic performance that satis�es the

MLRP and the assumption of identity-independent support.

Cubel and Sanchez-Pages (2016) provide an axiomatic justi�cation for di¤erence-

form CSFs with several agents. However, in addition to the properties in Proposition

1, it is easily seen that P 123(a) > 0 in LSM contests with n � 3 agents. Hence,

di¤erence-form CSFs �which have the property that P 123(a) = 0 �cannot be micro-

founded as LSM contests when n � 3.18

For completeness, it is shown next that the di¤erence-form CSF can be micro-

founded as a contest with stochastic performance even when n � 3, but the setting is

18For n = 2, the mixture model with homogeneous technologies provides a microfoundation for
the di¤erence-form CSF. This explains why there is a dominant action in the former.
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somewhat arti�cial and requires violating MLRP. It it therefore not a LSM contest.

Consider a contest in which distributions have the same support, but where agents�

actions e¤ect disjoint subsets of the support. For concreteness, consider

F i(xjai) =
(

x
n

if x 2 [0; n]=[i� 1; i]
i�1
n
+ (x�(i�1))1+ai

n
if x 2 [i� 1; i]

;

for i = 1; 2; :::; n. Here F i �rst-order stochastically dominates the uniform distribution

on [0; n] and weakly improves in a �rst-order stochastic dominance sense when ai
increases. However, the MLRP does not hold (nor is the density continuous in this

speci�c example).

Note that P i(a) can be written as a sum of terms, where each term depends only

on the action of one player, or

P i(a) =
nX
k=1

Z k

k�1

Y
j 6=i
F j(xjaj)f i(xjai)dx:

One term is increasing in ai and each of the other terms is decreasing in the action of

precisely one of the other agents. Thus, this additive CSF is a di¤erence-form CSF.

B.6 Biases in contests

This section explains Fu and Wu�s (2020) result on biased contests with two agents

and examines whether it is generalizable.

Consider the following general setting. There are two agents with identity-independent

technology F (xjai). Valuations and cost functions can be identity-dependent. As-
sume the contest is a strict LSM contest. The regulator can transform, or bias,

agent i�s impact from ai to ti(ai), where ti(�) belongs to a set of feasible transforma-
tions, T , with the property that t0i(ai) � 0. Note that the transformed contest, with
F i(xjai) = F (xjti(ai)), remains a strict LSM contest with homogeneous technologies.

Moreover, agent i�s reaction function depends only on agent j�s transformed impact,

tj(aj).

Assume the regulator has a payo¤ function that is increasing in actions. Let

(t�1; t
�
2) and (a

�
1; a

�
2) denote the optimal transformations and the induced equilibrium

action pro�le, respectively. The conjecture is that if T is su¢ ciently �exible, then

the optimal design is such that the playing �eld is completely level in equilibrium, or
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P i(a�) = 1
2
. In other words, equilibrium impacts are the same, or t�1(a

�
1) = t

�
2(a

�
2). The

intuition stems from the individual discouragement e¤ect: Any agent works hardest

if the equilibrium is such that equilibrium impacts are the same, since this is where

the reaction functions reach their peaks.

Consider �rst the following heuristic argument. Assume to start that P 2(a�) < 1
2
.

Keep t1(�) �xed, but if possible change t2 to some bt2, where bt2(a�2) = t2(a
�
2) andbt02(a�2) = t02(a�2) + ". Given t1(�) and bt02(�)

u22(a
�
1; a

�
2jt1;bt2) = Z F (xjt1(a�1))fa(xjt2(a�2)) (t02(a�2) + ") dx� c02(a�2):

Hence, agent 2�s best response to a�1 increases when " > 0. Agent 1�s reaction to bt2(a�2)
and t2(a�2) are by de�nition the same, and since P

1(a�) > 1
2
, her reaction function is

strictly increasing locally. Hence, when " is small, both agents work strictly harder in

the new equilibrium. In other words, if T is su¢ ciently �exible, there is an opportunity

to �kill two birds with one stone�and entice both agents to work harder, which is

bene�cial to the regulator.

Fu and Wu (2020) essentially assume that T consists of a¢ ne transformations,

ti(ai) = �iai + �i with �i; �i � 0. Using the logic above suggests that �i > 0 cannot
be optimal (since it would enable a lowering of �i and increase of �i), which is indeed

what Fu and Wu �nd. Once �i = 0, there is no longer the required �exibility to keep

t2(a
�
2) �xed while changing t

0
2(a

�
2). Nevertheless, in their speci�c contest, the optimal

�i�s still ensure P i(a�) = 1
2
. However, as explained next, this turns out to be the case

because their CSF is homogeneous of degree zero in actions.

Assume, as in Fu and Wu (2020), that P i(a) is strictly concave in ai and ci(ai) is

convex. Recall that the former is more broadly justi�ed in Section B.2.1. Then, agent

i�s problem is strictly concave in ai for all �1; �2 > 0. Now, normalize �1 = 1, such

that a1 and a2 are implicit functions of �2 and derived from the �rst-order conditions

v1P
1
1 (a1; �2a2)� c01(a1) = 0

v2P
2
2 (a1; �2a2)�2 � c02(a2) = 0:
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By implicit di¤erentiation,

a01 (�2) =
P 112�2v1k � a2v1P 112 [v2P 222�22 � c002(a2)]

[v1P 111 � c001(a1)] [v2P 222�22 � c002(a2)]� v1v2�22P 112P 212

a02 (�2) =
v1v2�2a2P

1
12P

2
12 � [v1P 111 � c001(a1)] k

[v1P 111 � c001(a1)] [v2P 222�22 � c002(a2)]� v1v2�22P 112P 212
;

where

k = v2P
2
22(a1; �2a2)�2a2 (�2) + v2P

2
2 (a1; �2a2):

The terms in square brackets are evidently negative. Hence, given that P 112P
2
12 � 0,

the denominator is positive. Now consider an �2 for which P i12(a) = 0 in equilibrium.

Then, a01 (�2) = 0, whereas the sign of a02 (�2) is the same as the sign of k. Thus,

if k 6= 0, a2 can be increased without any �rst-order e¤ect on a1. In this case, as

long as the regulator�s payo¤ is increasing in actions, P i12(a) = 0 cannot be optimal.

Remember that if technologies are homogeneous, then P i12(a) = 0 if and only if

P i(a) = 1
2
, i.e. if the playing �eld is perfectly balanced. Thus, in general, a balanced

playing �eld is not optimal when the design instrument is as in Fu and Wu (2020).

However, assume now that P i(a) is homogeneous of degree zero in actions, as is

the case in Fu and Wu (2020). Then, k can be shown to be precisely equal to

k = �v2P 212(a1; �2a2)a1;

which is of course zero when P i12(a) = 0. Moreover, it holds that

P 111(a1; �2a2)a1 + P
1
12(a1; �2a2)�2a2 = �P 11 (a1; �2a2) and

P 222(a1; �2a2)�
2
2a2 + P

2
12(a1; �2a2)�2a1 = �P 22 (a1; �2a2)�2:

Since P 212(a) = �P 112(a), it now holds that

a01 (�2) = P 112
v1v2P

2
2�2 + a2v1c

00
2(a2)

[v1P 111 � c001(a1)] [v2P 222�22 � c002(a2)]� v1v2�22P 112P 212

a02 (�2) = P 112
v1v2P

1
1 + a1v2c

00
1(a1)

[v1P 111 � c001(a1)] [v2P 222�22 � c002(a2)]� v1v2�22P 112P 212
;

meaning that both have the same sign as P 112(a). Hence, if P
1
12(a) > 0 (< 0) then

an increase (decrease) in �2 leads to an increase in both a1 and a2, to the regulator�s
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bene�t. In other words, the optimal bias is such that P i12(a) = 0 in equilibrium.

Clearly, this conclusion depends on the combination of linear transformations and a

CSF that is homogeneous of degree zero.

In the case where the CSF is asymmetric as a consequence of heterogeneous

technologies, but still homogeneous of degree zero, it is typically not the case that

P i12(a) = 0 coincides with P i(a) = 1
2
. That is, it is not generally the case that the

optimal linear bias implements a perfectly balanced playing �eld.
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