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ABSTRACT
We consider an analyst whose goal is to identify a subject’s utility func-

tion through revealed preference analysis. We argue the analyst’s preference
about which experiments to run should adhere to three normative principles:
The first, Structural Invariance, requires that the value of a choice experiment
only depends on what the experiment may potentially reveal. The second,
Identification Separability, demands that the value of identification is inde-
pendent of what would have been counterfactually identified had the subject
had a different utility. Finally, Information Monotonicity asks that more in-
formative experiments are preferred. We provide a representation theorem,
showing that these three principles characterize Expected Identification Value
maximization, a functional form that unifies several theories of experimental
design. We also study several special cases and discuss potential applications.
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1 INTRODUCTION

This paper proposes a theory of experimental design. We consider an analyst who’s
goal is to identify a subject’s utility function through the use of experiments, specifi-
cally, by offering the subject decision problems and observing his choices. Because
of time, cost, or computational constraints, the analyst will only be able to offer a
limited set of decision problems; how then should she choose which experiments to
conduct? In this paper, we advance three normative principles and argue that they
should guide any rational experimental design, independent of the specific objec-
tives of the analyst.

As we explain in detail below, each observation in an experiment (partially) iden-
tifies some set of utilities, those that that are consistent with the observation. For
example, observing a subject known to be a CRRA utility maximizer reject an actu-
arially fair lottery would identify him as risk averse, but might not resolve anything
further about their coefficient of risk aversion. With this notion of partial identifi-
cation in mind, the three normative principles can be stated as follows: First, In-
formation Monotonicity, asserts that the analyst prefers sharper identification; that
is, if one experiment always identifies a smaller subset of utilities than another ex-
periment, it is preferred. Second, Structural Invariance, maintains that the value of
an experiment should depend only on what it allows the analyst to identify and not
on other structural details. Specifically, if two experiments yield the same set of
possible inferences about the subject, they must be valued equally. Finally, Identi-
fication Separability demands that the value of making some partial identification
should depend only on what was identified, and not on what the experiment would
have counterfactually identified had the subject made a different choice.

Our main result shows that an analyst’s preference over experiments adheres to
these principles if and only if she seeks to maximize expected identification value,
as we now explain. A rational analyst should be able to assign a value to each partial
identification, that is, a value for learning that the subject’s true utility lies is some
subset. For example, an analyst can reflect on the relative value of learning a CRRA
subject “is risk averse” versus learning the subject “has a coefficient of risk aver-
sion in [1.5, 2].” This value of identification is subjective and encodes the analyst’s
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particular goals and motivations.1

Given a ex-ante distribution over the utility type of the subject, interpreted as the
analyst’s prior belief about the subject’s preferences, each experiment will induce
a distribution over consequent partial identifications: our three normative princi-
ples characterize ranking experiments in accordance with the expected value of the
identification they permit. By accommodating any subjective value of identifica-
tion, our theory unveils the common facets of rational experimental design that are
independent of the idiosyncratic objectives of the analyst. Indeed, we detail how
our approach unifies several distinct experimental paradigms. We then show how
this theory provides additional insight in specific environments, where the norma-
tive principles settle concrete design choices. In particular, we specialize the model
in two ways. First, by examining the case where the subject is known to be an ex-
pected utility maximizer. Second, by examining the case where the analyst seeks to
maximize the reduction in entropy between her prior and posterior.

Discussion of Model and Results • To keep the analysis simple, we abstract away
from the physical details of an experiment. Instead, we model an experiment as a
menu of alternatives A and a partition of the menu P that captures what is observ-
able to the analyst; when the subject chooses a ∈ A, the analyst observes the (unique)
P ∈ P such that a ∈ P . When P is the discrete partition, the subject’s choice is
perfectly observed, as is likely in very simple environments, e.g., single-stage lab-
oratory experiments. By allowing P to be coarser, we allow for more complex
experimental environments. For example, A could represent the set of strategies in
a dynamic environment whereP captures the unobservability of off-path behavior.2

In less controlled environments, observational restrictions are common-place, e.g.,
an online platform (google) might be able to observe which retailer was chosen by a
user, but not the user’s actual purchase. We take as primitive a preference over ran-
domized experiments, that is, finitely supported distributions π over experiments. In
the literature, such experiments are called discrete choice experiments. We also take
as part of our primitive the set of ex-ante possible utility functions from which the

1For instance, an analyst may only be only interested in classifying subjects as risk averse or not,
but uninterested in any further details of the subject’s preference. Such an analyst would be indifferent
between the two partial identifications from the prior sentence.

2This interpretation is discussed in Section 7.
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subject’s true utility, u∗, was drawn and a probability µ over U , capturing the prior
beliefs of the analyst.3

Given an experiment (A,P) and an observation P ∈ P, let WA,P ⊆ U denote
those utility functions that would choose an element in P out of A. Thus, the obser-
vation that an element of P was chosen out of A induces the partial identification
of WA,P , i.e., the analyst infers that u∗ ∈ WA,P . Our main result shows that Struc-
tural Invariance, Identification Separability, and Information Monotonicity4 hold if
and only if the analyst assigns a value, τ(W ), to each possible partial identification,
W ⊆ U , and values experiments according to the expected value of the identifica-
tion they will yield. Formally, the analyst’s preference must be representable by a
expected identification value functional of the form

F (π) =
∑

supp(π)

( ∑
P∈P

τ(WA,P )µ(WA,P )
)
π(A,P) (⋆)

where π is a lottery over experiments, τ is interpreted as an identification index and
µ as the analysts prior.

Since τ depends only on what can be inferred from the observed outcome, each
experiment is equated with the sets of utilities it can partially identify. This re-
flects Structural Invariance. Moreover, the representation is additive across cells
of the partitions and thus, the ranking between two experiments is independent of
whatever they commonly identify. This reflects Identification Separability. Finally,
Information Monotonicity, requires the identification index τ to always find infor-
mation weakly beneficial: for all disjoint W,W ′ ⊆ U (set V = W ∪W ′) it must be
that

τ(W )µ(W |V ) + τ(W ′)µ(W ′|V ) ≥ τ(V )

where µ(·|V ) is the conditional of µ given V . That is, given that the analyst can
already identify V , the expected value of further learning the distinction between

3As this is a normative exercise, we are interested in providing a potential experimenter with
guidance on how to construct rational preferences, rather than identifying her prior beliefs; as such
we take µ as part of the primitive. Our theory can be applied, modulo certain technicalities, in the
event there is no prior beliefs, as discussed in Section 6.

4Along with an an axiom dictating that the analyst is an expected utility maximizer with respect
to the randomization across experiments.
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W and W ′ is weakly positive.

Normative Principles as Guiding Design Choices • To better understand how
Structural Invariance and Identification Separability relate to experimental design
choices, we now consider two simple examples within the environment of expected
utility maximizing subjects. We apply our general theory to this setting in Section
4.

In particular, assume that the subject entertains a linear utility function over
lotteries defined on three alternatives {a, b, c}. Denote by αx+(1−α)y the lottery
that places probability α on alternative x and (1 − α) on y, for x, y ∈ {a, b, c}.
Consider an analyst who needs to choose one of the following two experimental
procedures. Both experimental procedures offer two menus to the subject:

EXP A : A = {a, 1
2
a+ 1

2
b, 1

2
a+ 1

2
c, 1

2
b+ 1

2
c}

A′ = { 6
10
b+ 4

10
c, 4

10
b+ 6

10
c}.

EXP B : B = {a, b, c}

B′ = {2
3
a+ 1

3
b, 2

3
a+ 1

3
c, 1

3
a+ 1

3
b+ 1

3
c}.

These are visualized in the top of Figure 1.
Which of these two experiments should the analyst run? At first glance, this

appears to be a matter of taste, as it seems plausible the answer should depend on
the analyst’s objectives, that is, on which aspects of the subject’s preference she is
interested in identifying. However, the principle of Structural Invariance imposes
that these two experiments must be valued equally, as they induce the same possible
set of partial identifications. To see this, observe that because expected utility is
linear, observing a choice from A and A′ is informationally equivalent to observing
a single choice from {1

2
x+ 1

2
x′ | x ∈ A, x′ ∈ A′} ≡ 1

2
A+ 1

2
A′ (and likewise for B

and B′). Moreover, as shown in the bottom of Figure 1, 1
2
A + 1

2
A′ and 1

2
B + 1

2
B′

yield the same identifiable sets.5

Within the domain of linear utility, Structural Invariance is captured by a trans-
lation invariance axiom, which arises from the specific characteristics of the en-

5For example, the set of utilities which find 1
2 (

1
2a+

1
2b)+

1
2 (

6
10b+

4
10c) maximal from 1

2A+ 1
2A

′

is exactly those that find 1
2b+

1
2 (

2
3a+ 1

3b) maximal from 1
2B + 1

2B
′ (the set W1).
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Figure 1: Top: The four decision problems in experiments EXP A and EXP B repre-
sented in the simplex. The convex hull of the decision problems is shaded. Bottom:
The identifiable sets from 1

2
A+ 1

2
A′ and 1

2
B + 1

2
B′. These form the same partition

of U as shown in the third panel.
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Figure 2: The four partitions of A from EXP C and EXP D.

vironment. Conceptually, Structural Invariance states that changing aspects of an
experiment that do not affect what it can identify should not change its value; linear
translations are the specific structural property invariant for linear utilities. As such,
applying our results for expected utility (Section 4) to non-linear models (e.g. am-
biguity averse utility functions) only requires identifying the appropriate invariance
axiom.

To understand Identification Separability, consider the following four partitions
of the decision problem A (from the earlier example); these partitions are shown in
Figure 2.

P =
{
{a}, {1

2
a+ 1

2
b}, {1

2
a+ 1

2
c}, {1

2
b+ 1

2
c}
}

P′ =
{
{a, 1

2
a+ 1

2
b}, {1

2
a+ 1

2
c, 1

2
b+ 1

2
c}
}

Q =
{
{a, 1

2
a+ 1

2
b}, {1

2
a+ 1

2
c}, {1

2
b+ 1

2
c}
}

Q′ =
{
{a}, {1

2
a+ 1

2
b}, {1

2
a+ 1

2
c, 1

2
b+ 1

2
c}
}

Based on these decision problems, the analyst considers two randomized experi-
ments:

EXP C : The analyst offers (A,P) and (A,P′) each with probability with 1
2
.

EXP D : The analyst offers (A,Q) and (A,Q′) each with probability with 1
2
.

As in the previous example, what might seem to depend on the aims of the analyst
is in fact dictated by criteria of rational design; the principle of Identification Sep-
arability requires these two experiments are valued equally. To see this, notice that
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under EXP C, with probability 1
2

the analyst learns exactly which element was chosen,
and with the remaining probability 1

2
, she learns only which cell of P′ contained the

chosen alternative. Although less immediate, this is also the case for EXP D. Indeed,
let W ⊂ U denote the set of utilities such that the subject will choose an element of
the first cell of P′ (i.e., will choose either a or 1

2
a+ 1

2
b) and W c ⊂ U those utilities

such that the subject will choose an element of the second (i.e., either 1
2
a + 1

2
c or

1
2
b+ 1

2
c).6 Then, conditional on u∗ ∈ W , the subject will choose an element out of

the first cell of P′: under Q this is all that is observed, while under Q′ the choice
is observed perfectly. Conditional on u∗ ∈ W c, the same logic applies: Q perfectly
reveals the subject’s choice, while Q′ only that the second cell of P′ contains the
chosen alternative.

Thus, both EXP C and EXP D reveal the subject’s choice half of the time and the
cell of P′ containing his choice the other half. The difference between these two
experiments is that in the latter, the amount of information revealed is correlated with
the the subject’s utility type. That is, if EXP D ends up perfectly revealing the subject’s
choice when u∗ ∈ W , we know that it would not have done had u∗ ∈ W c, and vice
versa. The principle of Identification Separability dictates that such counterfactual
assessments are irrelevant, and thus, that the two randomized experiments are valued
equally.

Functional Forms • The expected identification value representation is flexible
enough to accommodate many Bayesian theories of optimal experimental design.
For instance, by taking

τ(W ) = − log(µ(W )),

the value of an experiment is its expected reduction in entropy relative to the prior
(Cover et al., 1991). We axiomatize this special case in Section 5. Drake et al. (2022)
propose a dynamic Bayesian procedure for preference identification on the basis
of this functional form. Another special case of our index comes from hypothesis
testing. An analyst who wishes to test if the subjects preference is in some set W ∗

6Using the notation from the bottom of Figure 1, W = W1 ∪W2 ∪W3 and W c = W4 ∪W4 ∪
W5; notice we are excluding the possibility of the subject being indifferent between alternatives.
Following the literature on random utility, we assume such ties occur with zero probability. See
section 2.
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would consider

τ(W ) =

{
1 if W ⊆ W ∗ or W ∗ ⊆ W c

0 otherwise .

Finally, we observe that although our theory is meant to contribute to the concep-
tual understanding of choice experiments, it is flexible enough to allow for functional
forms unrelated to experimental design. For instance, a Bayesian principal may only
want to promote agents with similar preferences to herself. Hence, she conducts a
test to see what kind of preferences her agents have when making promotion deci-
sions. The following specification allows for such interpretation

τ(W ) = max
a∈{0,1}

∫
W

ξ(a, u)dµ.

where a = 1 (a = 0) is interpreted as (not) promoting the agent and ξ(a, u) is her
utility of promoting an agent that has preference u and µ is her prior over the agent’s
preference.

Outline • The paper proceeds as follows: The introduction concludes with a re-
view of the relevant literature. The model is presented in Section 2. Our normative
principles and main representation result are in Section 3. Sections 4 and 5 discuss
the special cases of Expected Utility maximizing subjects and entropy reduction, re-
spectively. Section 6 outlines a version of the model without prior beliefs. Finally,
Section 7 concludes by showing how our framework is general enough to capture
dynamic experiments. All proofs are collected in the Appendix.

1.1 RELATED LITERATURE

This paper joins the large literature in economics on eliciting preferences from ob-
servable behavior. It differs from most of the literature as it does not focus on effi-
ciency of a particular elicitation method, but on what are the minimal properties a
method should satisfy in order to be considered rational. Such questions have been
suggested in the statistics literature on Bayesian experimental design. Early texts
such as Raiffa and Schlaifer (2000) and Lindley (1972) propose a utility function
for Bayesian experimenters. The literature that followed provided specializations of
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the general function to feet more stylized settings such as regression analysis and
model discrimination analysis (see Chaloner and Verdinelli (1995) for a review of
the literature). Thus, our work complements the existing literature by providing a
framework to discuss experimental design as well as the missing axiomatic founda-
tion.

Our framework is inspired by the literature in economics on Discrete Choice
Experiments (henceforth DCE). DCE’s were initially developed by Louviere and
Hensher (1982). They are based on the theoretical framework of the Random Utility
Model (Luce (1959) and McFadden (1973)). We contribute to the DCE literature
by providing a unifying framework to analyse deviations from the standard DCE
method. Given the recent interest in employing dynamic procedures to substitute
DCE’s, our results can be used as a test for such procedures. If they do not satisfy
our axioms, they should not be employed.

Outside of the DCE literature but within the random utility literature, Gul and
Pesendorfer (2006) (henceforth GP) provide necessary and sufficient conditions for
random choice data to be consistent with random expected utility. We use their work
as a building block in providing foundations to Bayesian procedures. Specifically,
our richness condition described in Section 4 are direct consequences of the GP
assumptions.

Gilboa and Lehrer (1991) studies a related problem to ours. Their goal is to pro-
vide axiomatic foundations for functions over partitions of states that can be inter-
preted as describing the value of information for some Bayesian agent. Our analysis
can also be interpreted as providing foundations for functions that can be interpreted
as describing the value of additional information of an agent’s preference. There are
two key differences. First, we take as observable preference over experiments as op-
posed to a function over partitions of the utility space, which would be the analog of
their domain in our setting. Second, we do not look for identification functions for
which there exists a Bayesian experimenter that may employ them. Indeed, we do
not take rationality as given and look for identification functions that satisfy it. We
propose a notion of rationality and characterize the set of identification functions
that satisfy it.

Finally, our work also contributes to the preference over menus in decision the-
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ory. Starting with Gul and Pesendorfer (2001) and Dekel et al. (2001), economists
have used preferences over menus of lotteries to study distinct phychological phe-
nomena such as temptation and self-control. The literature then generalized the
domain to lotteries over menus of lotteries to obtain sharper results (Stovall (2018)
and Ergin and Sarver (2015)). Our work shows that lotteries over menus can also be
employed to analyze experimental design. Thus, it suggests that some of the earlier
work in decision theory may be useful for experimental design.

2 GENERAL MODEL

2.1 PRELIMINARIES

An abstract experimental environment is a tuple (Z,U ,Ω, µ) where Z is some set
of possible choice alternatives, U ⊆ {u : Z → R} a set of utility types, Ω is
an algebra of measurable sets of U and µ probability distribution over (U ,Ω). We
interpret (Z,U ,Ω, µ) as the theory the analyst has about the subject’s preferences.
A decision problem A is a finite subset of Z. Let D denote the set of all decision
problems.

Given a decision problem A and some B ⊆ A, let

WA,B = {u ∈ U , B ∩ arg max
x∈A

u(x) 6= ∅}

denote the set of utilities for which some element of B is a maximizer when facing
the decision problemA. Intuitively, WA,B is the set of preferences that would choose
an element in B when facing menu A.

To achieve her goal, the analyst can can offer the subject a decision problem
from which she will observe the subject’s choice. While it is plausible that a sub-
ject’s behavior can be observed perfectly in static laboratory conditions, in dynamic
settings or more general environments (i.e., field experiments, consumer testing in
industry, data collection by online platforms, etc.), the analyst may only be able to
partially observe choice. To allow for such constraints, we define an experiment as a
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decision problem and a partition.7 The interpretation is that P ∈ P represents what
the analyst observes when the subject’s choice out of A is contained in P .

Formally, an experiment e = (A,P) is a pair where where A ∈ D and P is a
partition of A such that for any P,Q ∈ P

(E1) WA,P ∈ Ω

(E2) µ(WA,P ∩WA,Q) = 0

The first requirement states that analyst assigns a prior probability to each observ-
able outcome, and the second states that the analyst can unambiguously interpret
the observed outcome. Specifically, the analyst places µ-probability 0 on the sub-
ject being indifferent between two alternatives in A so that observed choice can be
interpreted without worrying about how ties are broken.

Our notion of experiments can be used to define partial identification: A set of
preferences W ⊆ U is identifiable in (A,P) if W = WA,P for some P ∈ P. Given
an experiment (A,P), the analyst can calculate the family {WA,P |P ∈ P}, the sets
of preferences that are identifiable by the experiment.

Call two (finite) collections of subsets of U , {W1, . . .Wn} and {V1, . . .Wm} µ-
equivalent if for every Wi with µ(Wi) > 0 there exists a Vj such that µ(Wi) =

µ(Wi∩Vj) = µ(Vj), and vice versa. That is, the collections are µ-equivalent if they
are equal up to measure 0 sets.

We assume the analyst has access to a set of experiments E that satisfies the
following two properties:

• (A,P) ∈ E and Q is a coarsening of P then (A,Q) ∈ E,

• For any finite Ω-measurable partition W of U , there is a some experiment
(A,P) ∈ E such that {WA,P |P ∈ P} is µ-equivalent to W .

The first property states that if (A,P) is feasible, then an experiment that potentially
identifies less utilities is also feasible. The second property demands that for any
finite partition of the utility space, the analyst can always find an experiment that
would induce such a partition. We call such sets of experiments rich.

7A partition P of X is a set of subsets of X that are mutually disjoint and whose union is X .
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Given a set of experiments E, a randomized experiment (over E) π is a finitely
supported probability distribution over E. The set of all randomized experiments
over E is denoted by Π(E). For a given randomized experiment, π, let supp(π) =
{e ∈ E | π(e) > 0} denote the support of π. Our primitive is the analyst’s pref-
erence, ≽, over the set of all randomized experiments over some rich set of experi-
ments.

2.2 REPRESENTATION

A expected identification value representation for ≽ is the following:

F (π) =
∑

supp(π)

( ∑
P∈P

τ(WA,P )µ(WA,P )
)
π(A,P) (⋆⋆)

where τ : Ω → R satisfies

(T1) For all non-µ-null V and W ⊆ V ,

τ(W )µ(W |V ) + τ(V \W )(1− µ(W |V )) ≥ τ(V ),

with equality holding whenever µ(W ) = 0.
(T2) τ(U) = 0.

Condition (T1) states that information is never bad for the analyst. Indeed, con-
sider an analyst who has already made the identification V ⊆ U—that is, who al-
ready knows that the subject’s preference is contained in V —and is contemplating
the value of an additional observation that would reveal if the subject’s preference is
inW . The current value of her identification is τ(V ). If she learns the additional ob-
servation, the total value will depend on if the subject’s preference lies in W or not,
resulting in τ(W ) or τ(V \W ) respectively. According to her beliefs, the former oc-
curs with probability µ(W |V ) and the latter with probability 1− µ(W |V ). Thus,
Condition (T1) requires the expected value of this further information is (weakly)
positive. Notice that if τ(W ) ≥ τ(V ) whenever W ⊆ V , then the constraint fol-
lows immediately.
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In many cases, the analyst may not entertain a prior over U . Nonetheless, our
theory applies almost exactly. In this case, the value function F can be written as

F (A,P) =
∑
P∈P

ν(WA,P ),

for an abstract identification index ν which does not separate the intrinsic value of
identification from its likelihood. This is akin to the failure of separation into tastes
and beliefs in state-dependent expected utility. In this case, ν must be sub-additive
to imbue a positive value for information.

3 NORMATIVE PRINCIPLES OF EXPERIMENTAL DESIGN

If P is a partition of some set X and Y ⊆ X , then P|Y = {P ∩ Y | P ∈ P} is
a partition of Y ; we denote the corresponding (possibly empty) cells as P |Y . If P
and Q are both partitions of the same set X and Y ⊆ X is measurable with respect
to both P and Q then PYQ denotes the partition that coincides with P over Y and
with Q over X \ Y .

We impose four axioms on ≽, the first of which requires that it admits an ex-
pected utility representation. This axiom is not expressed in terms of its individual
choices, as its behavioral foundations are widely known.

A1—EXPECTED UTILITY. ≽ entertains an expected utility representation.

The following three axioms reflect our normative principles. Recall that our
first principle, Information Monotonicity, asserts that the analyst has a preference
for sharper identification. In the current domain, this amounts to assuming finer
partitions will always be weakly preferred..

A2—MONOTONICITY. For A ∈ D, and partitions P, Q of A it follows that

(A,P) ≽ (A,Q)

whenever P is finer than Q.
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Our second principle maintains that the value of an experiment should only de-
pend on what is potentially identifiable. Thus, it requires indifference between two
experiments that have the same ex-ante identifiable set’s of preferences (up to µ-
probability 0 events).

A3—STRUCTURAL INVARIANCE. Let (A,P) and (B,Q) be such that {WA,P |P ∈
P} is µ-equivalent to {WB,Q|Q ∈ Q}. Then (A,P) ∼ (B,Q).

Finally, Identification Separability demands that the value of some partial iden-
tification cannot depend on the counterfactual. We take advantage of our lottery
domain to capture this. Specifically, fix a decision problem A and partitions P

and Q of A. Identification Separability requires that for any subset B ⊆ A, the
value of identification given (A,P) and (A,Q), conditional that the choice is in B,
should only depend on P|B and Q|B, respectively. Hence, if the agent will choose
an element of B, a radomized experiment between (A,P) and (A,Q) should be
indifferent to a randomized experiment between (A,PBQ) and (A,QBP).

A4—IDENTIFICATION SEPARABILITY. For A ∈ D, partitions P, Q of A, and B ⊆ A

measurable with respect to both P and Q

1
2
(A,P) + 1

2
(A,Q) ∼ 1

2
(A,PBQ) +

1
2
(A,QBP).

Requiring that the value of an object that is uncertain does not depend on the
counterfactual is a well known implication of Dynamic Consistency and Conse-
quentialism. As we now elaborate, our axiom is a direct implication of these re-
quirements.

Consider an extension of the analyst’s preferences to the case in which she knows
choice out ofAwill be contained inB, denoted≽B, and the case in which she knows
the opposite, denoted ≽Bc . If the choice is in B, then in terms of preference identifi-
cation, the experiment (A,P) is equivalent to (A,PBQ) and (A,Q) to (A,QBP).
Analogously, if the choice is not in B, (A,Q) is equivalent to (A,PBQ) and (A,P)

to (A,QBP). Hence, if the analyst’s preference do not depend on the counterfactual
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(consequentialism), then

(A,P) ∼B (A,PBQ) and (A,Q) ∼B (A,QBP);

(A,Q) ∼Bc (A,PBQ) and (A,P) ∼Bc (A,QBP).

Therefore, under Independence,

1
2
(A,P) + 1

2
(A,Q) ∼B

1
2
(A,PBQ) +

1
2
(A,QBP)

1
2
(A,P) + 1

2
(A,Q) ∼Bc

1
2
(A,PBQ) +

1
2
(A,QBP).

Finally, observe that if the analyst’s ex-ante preference respects her conditional pref-
erences (dynamic consistency), she must exhibit

1
2
(A,P) + 1

2
(A,Q) ∼ 1

2
(A,PBQ) +

1
2
(A,QBP).

These four axioms—A1 providing the expected utility structure, and A2–A4
capturing our three normative principles—characterize expected identification value
maximization.

THEOREM 1. The preference ≽ satisfies A1–A4 if and only if it has an expected
identification value representation.

4 IDENTIFYING EXPECTED UTILITY PREFERENCES

The structural invariance axiom, A3, states abstractly that the value of an experi-
ment should not depend on structural details. When the choice environment has a
specific structure, this principle can be made concrete so as to reflect the particular
invariant quantities of the environment at hand. We will now show how structural
invariance captures tangible restrictions on the ranking of experiments within the
specific environment of linear utility. Here, the analyst is interested in identifying
the Von Neumann–Morgenstern utility index of the subject, under the maintained
assumption that he is an expected utility maximizer.
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This environment is closely related to the setup of random expected utility mod-
els à la Gul and Pesendorfer (2006). In particular, the experimenter’s prior µ defines
a GP random expected utility model. Our conditions on experiments (E1) and (E2)
and our richness condition are then direct consequences of the GP assumptions.

Let ∆ be a convex and compact subset of a finite dimensional Euclidean space
Rℓ and U∆ denote the set of expected utility (i.e., affine) functions over ∆. So the
set of decision problemsD is the set of all finite subsets of ∆. Let Ω∆ be the smallest
algebra on U∆ that contains all identifiable sets: that is contains WA,B for all A ∈ D
and B ⊆ A. Following GP call a µ ∈ P(U∆,Ω∆) regular if µ(u ∈ U∆|u(x) =

u(y)) = 0 for all x, y ∈ ∆.8

Theorem 2, below, shows that our richness assumption is not overly strong;
within the expected utility model, it is a natural consequence of standard assump-
tions over the ex-ante distribution on utilities.

THEOREM 2. If µ is regular, then E∆ = {(A,P) | A ⊆ ∆ is finite,P partitions A}
is a rich set of experiments.

We will now recast structural invariance in a domain specific manner, illuminat-
ing the concrete notion of invariance that is relevant to the expected utility model.
Specifically, we will show that structural invariance is equivalent to two axioms that
specify when two experiments are equivalent and that do not need to directly ref-
erence sets of identifiable utilities. To do this, we first need to define a notion of
mixing: For A,B ⊆ ∆, and α ∈ [0, 1], let αA+ (1−α)B = {αx+ (1−α)y | x ∈
A, y ∈ B} denote the the Minkowski sum. If A and B are decision problems (i.e.,
are finite), then so is αA+ (1− α)B.

Observe that under the assumption that u is linear, if x maximizes u over A
and y maximizes u over B, then the mixture of x and y will maximize u over the
corresponding mixture of the menus. That is:

x ∈ arg maxA u(·)

y ∈ arg maxB u(·)

}
if and only if αx+ (1− α)y ∈ arg max

αA+(1−α)B

u(·)

8GP shows that regular measures are exactly the measures that can be potentially identified from
(random) choice data.
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for any α > 0 and A,B ∈ D. Now consider the experiment (A, {P1, . . . Pn})
and some other decision problem B; by the above logic u ∈ WA,Pi

if and only
u ∈ WαA+(1−α)B,αPi+(1−α)B. Indeed, there must be some y ∈ B that maximizes
u over B, so that αx + (1 − α)y ∈ αPi + (1 − α)B maximizes u over the mix-
ture. Hence, translating an experiment by mixing both the decision problem and the
observability partition with some common B does not alter which preference sets
can be identified. This particular form of invariance is captured by the following
axiom.9

A5—TRANSLATION INVARIANCE. For A,B ∈ D, we have

(A, {P1, . . . Pn}) ∼ (αA+ (1− α)B, {Q1, . . . Qn}),

whenever Qi ⊆ (αPi + (1− α)B) for all i ≤ n.

Recall that A3 also implies that the value of identification should not depend on
zero probability perturbations. The following axiom reflects this implication.

A6—BELIEF CONSISTENCY. Fix A ∈ D, and let {P1, P2, . . . Pn} be a partition of A
such that µ(WA,P1) = 0. Then:

(A, {P1, P2, . . . Pn}) ∼ (A, {P1 ∪ P2, . . . Pn}).

Within the expected utility framework, translation invariance and belief con-
sistency are equivalent to structural invariance. Thus, along with the other axioms
from the general model, the two axioms above provide a characterization of expected
identification value maximization with linear utility.

THEOREM 3. Let ≽ be defined over Π(E∆). Then ≽ satisfies A5 and A6 if and only
if it satisfies A3.

9The reason there is a subset, rather than set equality, in the axiom is that it is possible that z ∈
αA+(1−α)B is not a unique mixture of two elements. That is, z = αx+(1−α)y = αx′+(1−α)y′

for some x, x′ ∈ A and y, y′ ∈ B. For these elements, the cell of the partition in which they reside
is not determined, but, it turns out not to matter. See the appendix for the formal argument.
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5 SHANNON ENTROPY

Aside from applying to broader settings, out analysis can be used as a building block
to provide foundations for specific theories of Bayesian experimental design. In this
section we show how our Structural Invariance and Identification Separability can
be strengthened to characterize the case in which the identification index τ conforms
to the Shannon entropy:

τ(W ) = − log(µ(W )).

Notice that within this special case, the value of identifying a subset of utilities
depends only on it’s ex-ante probability.

First, Structural Invariance can be strengthened to a Symmetry axiom stating
that experiments inducing more evenly distributed probabilities across observations
are preferred. When the analyst’s value for identification depends only on its prior
probability, then experiments in which the probability of each observation is approx-
imately equal ensure that the ex-post identification value is approximately equal as
well. Thus, for a cautious analyst, such experiments are desirable as they increase
the worst case identification.

A7—SYMMETRY. Fix A,B ∈ D, and partitions {P1, . . . Pn} and {Q1, . . . Qn} of A
and B, respectively. Then if |µ(WB,Qi

)− 1
n
| ≥ |µ(WA,Pi

)− 1
n
| for i ≤ n, it follows

that
(A, {P1 . . . Pn}) ≽ (B, {Q1 . . . Qn}).

Notice that if two experiments induce µ-equivalent identification sets then they
also induce the same distribution over the set of positive probability observations.
Under A6, we can ignore µ-probability zero observations, and so symmetry ensures
that the experiments are equally valued. In other words, Symmetry (along with
Belief Consistency) imply Structural Invariance.

Next, we can strengthen Identification Separability to get not only additivity but
the specific logarithmic form of the entropic representation. Entropic Additivity,
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below, disciplines how much the analyst values replacing P1 in (A,P) with one
of it partitions. Let P = {P1, . . . Pn} be a partition A and P1 = {P 1

1 , . . . P
1
k }

a partition P1. Then P† = {P 1
1 , . . . P

1
k , P2, . . . Pn} is also partition of A. Fix an

experiment (B,Q) such that µ(WB,Qi
) = µ(WA,P 1

i
| WA,P1) for i = 1, ..., k.

The fundamental character of the entropic representation is that the value of an
experiment only depends on the ratio between the prior and each induced posterior:
as such learning which element ofQ was chosen would impart the same value to the
analyst as learning which element ofP1 was chosen conditional on already knowing
that P1 was chosen from P. Further, the partition P† is exactly like learning P and
in the event P1 ∈ P is chosen further learning which element of P1 is chosen.
The extra learning happens with probability µ(WA,P1): so the value (A,P†) should
equal the value of (A,P) plus µ(WA,P1) times the value of learning the element
chosen from P1, which as argued above is the value of (B,Q). Translating this into
lotteries, we have:

A8—ENTROPIC ADDITIVITY. Fix A ∈ D let P = {P1, . . . Pn} partition A and let
{P 1

1 , . . . P
1
k } partition P1. So P† = {P 1

1 , . . . P
1
k , P2, . . . Pn} is also partition of A.

Set α = 1
1+µ(WA,P1

)
. Then if B ∈ D is such that Q = {Q1, . . . Qk} is a partition of

B with µ(WB,Qi
) = µ(WA,P 1

i
| WA,P1), it follows that

α(A,P†) + (1− α)(A, {A}) ∼ α(A,P) + (1− α)(B,Q)

By replacing Structural Invariance and Identification Separability with the stronger
entropic variants above, we find a characterization of expected entropy minimiza-
tion.

THEOREM 4. Let µ be non-atomic. The preference ≽ satisfies A1–A2 and A6–A8 if
and only if it is represented by

F (π) = −
∑

supp(π)

( ∑
P∈P

log(µ(WA,P ))µ(WA,P )
)
π(A,P).

While the Shannon specification has significant normative appeal, Symmetry
does impose restrictions on the analyst’s risk attitudes that need to be spelled out.
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To illustrate, consider two experiments (A, {P1, P2}) and (B, {Q1, Q2}). Suppose

µ(WA,P1) = µ(WA,P2) =
1

2

µ(WB,Q1) =
3

4
, µ(WB,Q2) =

1

4
.

Thus, if the analyst offers (A, {P1, P2}) she will be able to rule out “half” of the pref-
erence for the subject regardless of the subject’s true utility. However, if she offers
(B, {Q1, Q2}), then the size of the mass of preference she will be able to eliminate
depends on the subjects preference. If the subject’s preference is maximized in Q1,
she will be able to eliminate three quarters; if it is maximized in Q2, she will only
eliminate one quarter. The entropic model imposes that the former is preferred, im-
plicitly requiring a specific risk preference on the part of the analyst. We view this
as beyond the scope of what can be argued only on normative grounds.

6 BELIEF FREE MODELS

In many cases, the analyst may not entertain a prior over U . Nonetheless, our theory
applies almost exactly. In this case, the value function F can be written as

F (A,P) =
∑
P∈P

ν(WA,P ), (1)

for an abstract subadditive identification index ν which does not separate the intrinsic
value of identification from its likelihood. This is akin to the failure of separation
into tastes and beliefs in state-dependent expected utility.

In the original model, the value of identification was invariant to µ-measure zero
perturbations. This is what allowed us to work with µ-equivalent-approximations of
partitions ofU , greatly extending the set of scope of application. Without beliefs, we
must re-cast the notation of null sets in a more general from. Call V ∈ Ω transparent
if for any (A, {P1, P2, . . . Pn}) with WA,P1 = V , we have

(A, {P1, P2, . . . Pn}) ∼ (A, {P1 ∪ P2, . . . Pn}). (2)
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Using transparency as a preference based definition of nullness, we can restate
the condition (E2) and richness without having to appeal to beliefs. In particular,
assume that for a given set of experiments E

(E1') For all (A,P) ∈ E and P,Q ∈ P, if V ⊆ (WA,P ∩ WA,Q), then V is
transparent.

Further, call two (finite) collections of subsets ofU , {W1, . . .Wn} and {V1, . . .Wm}
T -equivalent if for every non-transparent Wi there exists a Vj such that Wi \ Vj and
Vj \Wi are both transparent, and vice versa. That is, the collections are T -equivalent
if they can be identified up to transparent sets.

Modulo these two changes, Theorem 1 goes through exactly as stated to arrive
at a representation of the form (1). To see this, notice that the set of all {V | V ⊆
WA,P ∩ WA,Q, for some (A,P) ∈ E, P,Q ∈ P} is a down-set. The ideal gener-
ated by this down-set is a subset of all transparent sets (it is immediate from their
definition that transparent sets are closed under finite unions). Thus, there exists a
{0, 1}-valued finitely additive measure on Ω sending all such sets to 0. We can then
define µ as this measure and set ν = µ · τ .

7 OBSERVABILITY CONSTRAINTS

We conclude the paper by illustrating how our framework is general enough to cap-
ture partial observability in dynamic environments. We begin by considering the
case in which an analyst employs an adaptive method and the subject is an expected
utility maximizer.

Suppose an analyst first offers {x0, y0}. If the subject chooses x0, then she offers
{xx, yx}, otherwise she offers {xy, yy}. Given the nature of the procedure, if the
agent chooses x (y) from {x, y}, then the analyst will know the choice out of {xx, yx}
but not the choice out of {xy, yy} ({xx, yx}). Figure 3 illustrates the procedure.

Observe that because of linearity of the preferences, observing a choice from
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{x, y}

{xx, yx} {xy, yy}

x y

Figure 3: Adaptive Procedure

{x, y} and {xx, yx} is the same as observing a choice from

Ax = {1
2
x+

1

2
xx,

1

2
x+

1

2
yx,

1

2
y +

1

2
xx,

1

2
y +

1

2
yx}.

The reason is that any expected utility maximize that would choose a out of {x, y}
and b out of {xx, yx} would choose 1

2
a+ 1

2
b out of Ax.

Similarly, observing a choice from {x, y} and {xy, yy} is the same as observing
a choice from

Ay = {1
2
x+

1

2
xx,

1

2
x+

1

2
yy,

1

2
y +

1

2
xy,

1

2
y +

1

2
yy}.

Consider the menu Ax ∪ Ay and the partition

P =
{
{1
2
x+

1

2
xx,

1

2
x+

1

2
yx}, {

1

2
y +

1

2
xy,

1

2
y +

1

2
yy}

}
.

Then the information provided by the adaptive design is equivalent to the informa-
tion provided by (Ax ∪ Ay,P).

The above example can be easily generalized to adaptive procedures that employ
T rounds of choices that allow for non-binary menus. While the intuition is clear,
precisely stating an equivalence result requires a significant amount of notation and
so we leave this at the informal level.

Next, consider an analyst interested in learning the subject’s preference by em-
ploying a dynamic game. Suppose the game features two players, the subject and
a computer. The subject can first choose out (o) or in (i). If the subject chooses
in, then the computer randomizing between right (r) and left (l). Following left the
subject has a choice between a and b and following right, a choice between c and d.
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Figure 4: The dynamic game between the subject and computer. The subject’s de-
cision nodes are shaded red and the computer’s blue.

The game is provided in Figure 4.
Suppose that the analyst only observes the on-path strategies; she cannot know

how the subject would behave in a sub-game that is not reached. There are five ac-
tions the analyst could potentially observe: (o), (i, a), (i, b), (i, c), and (i, d). Notice
which of these is observed depends not only on the subject’s choice but also the out-
come of the computer randomization. These observations can be adapted into our
framework. Let A be the set of all strategies for the subject:

A =

{
(i, a, c), (i, b, c), (i, a, d), (i, b, d),

(o, a, c), (o, a, d), (o, b, c), (o, b, d)

}

Now consider the following partitions of A

PL =



{
(i, a, c), (i, b, c),

(i, a, d), (i, b, d)

}
,{

(o, a, c), (o, a, d)
}
,{

(o, b, c), (o, b, d)
}


PR =



{
(i, a, c), (i, b, c),

(i, a, d), (i, b, d)

}
,{

(o, a, c), (o, b, c)
}
,{

(o, a, d), (o, b, d)
}


Observe that a single choice of (A,PL) would yield the same information as

observing the subject play the dynamic game in the event that the computer chooses
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left, and likewise (A,PR) should the computer choose right. Thus, if the com-
puter chooses left with probability α, then an observation in the dynamic game
is observationally equivalent to an observation from the randomized experiment
α(A,PL) + (1 − α)(A,PR). Again, this can be generalized: observations of on-
path behavior in dynamic games can be incorporated into our framework via the
appropriately constructed random experiments.

A PROOFS

A.1 PROOF OF THEOREM 1

Let part(U) denote the finiteΩ-measurable partitions ofU . That is, {W1, . . .Wn} ∈
part(U) if it is a (finite) partition of U such that each Wi ∈ Ω.

LEMMA 1. Let (A, {P1, . . . Pn}) ∈ E; then {WA,Pi
}i≤n is µ-equivalent to some par-

tition W ∈ part(U).

Proof. By (E1) {WA,Pi
}i≤n and since each u ∈ U find some maximum on A, we

have
∪

i≤n WA,Pi
= U . Define Wi = WA,Pi

\
∪

i<j WA,Pj
. Clearly, {Wi}i≤n ∈

part(U). Moreover, µ(WA,Pi
) = µ(WA,Pi

)−
∑

i<j µ(WA,Pi
∩WA,Pj

) ≤ µ(WA,Pi
\∪

i<j WA,Pj
) = µ(Wi) = µ(Wi ∩ WA,Pi

) ≤ µ(WA,Pi
), establishing µ-equivalence

(the first, and only non-set-theoretically obvious, equality comes form (E2)). ⋆

LEMMA 2. Let W ⊆ Ω be µ-equivalent to V ⊆ Ω, and assume µ(W ∩ W ′) = 0

and µ(Vi ∩ Vj) = 0 for any distinct W,W ′ ∈ W and V, V ′ ∈ V . Then there exists
a bijection, q, between {W ∈ W | µ(W ) > 0} and {V ∈ V | µ(V ) > 0} such that
µ(W ) = µ(W ∩ h(W )) = µ(q(W )).

Proof. Take some W ∈ W with µ(W ) > 0. By µ-equivalence, there exists a
V ∈ V such that µ(W ) = µ(W∩V ) = µ(V ). To see that it is unique, let V, V ′ ∈ V

both be such that the needed relation holds. Then we have µ(W ) < 2µ(W ) =

µ(V ∩W )+µ(V ′∩W ) = µ((V ∪V ′)∩W )+µ((V ∩V ′)∩W ) ≤ µ(W )+µ(V ∩V ′).
This means that µ(V ∩ V ′) > 0. By the condition in the statement of the Lemma,
this requires V = V ′. ⋆
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LEMMA 3. LetW ∈ part(U) and let (A,P) ∈ E be such that such that {WA,P |P ∈
P} is µ-equivalent it. Then there exists a family of partitions

{PV | V is a coarsening of W}

such that

1. {WA,P |P ∈ PV} is µ-equivalent V , and

2. If V ′ is a coarsening of V , then PV ′ is a coarsening of PV .

Proof. First, for each W ∈ W with µ(W ) > 0, let PW ∈ P be the unique element
such that µ(WA,P ) = µ(WA,P ∩W ) = µ(W ). This exists by Lemma 2.

Now, for each V ∈ V , let [V ] = {PW ∈ P | W ∈ W , µ(W ) ≥ 0,W ⊆
V }. It is easy to see that {

∪
PW∈[V ] WA,PW

| V ∈ V} is µ-equivalent V . In-
deed, either µ(V ) = 0, in which case [V ] = ∅ or µ(V ) =

∑
W⊆V µ(W ) =∑

PW∈[V ] µ(WA,PW
) = µ(

∪
PW∈[V ] WA,PW

). Let PV be the coarsest partition con-
taining {

∪
[V ] | V ∈ V}. Note that

∪
[V ] ∩

∪
[V ′] = ∅ whenever V 6= V ′, so PV

will simply be {
∪
[V ] | V ∈ V} adjoined with whatever elements of A were not in

any
∪
[V ]—these are exactly the observations that have 0-probability. ⋆

Proof of Theorem 1. From A1 there exists a vNM index vnm : E → R such that

π ≽ ρ ⇐⇒
∑

supp(π)

vnm(e)π(e) ≥
∑

supp(ρ)

vnm(e)ρ(e)

vnm can be chosen such that vnm({x}, {{x}}) = 0 (since this induces the trivial
partition of U independent of x, by A3, the choice of x is irrelevant).

For each W ∈ part(U) let (AW ,PW) ∈ E be such that such that {WAW ,P |P ∈
PW} is µ-equivalent to W . This exists by the richness assumption on the set of
experiments. Define the function φ : part(U) → R as

φ : W 7→ vnm(AW ,PW). (3)

By Axiom 3, φ does not depend on the choice of (AW ,PW).
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Call ν : Ω → R a GL-representation of φ if ν(∅) = 0 and

φ(W) =
∑
W∈W

ν(W ). (4)

LEMMA 4. A GL representation of φ exists.

Proof. Following Gilboa and Lehrer (1991) (Observation 2.1), call two partitions,
W ,V ∈ part(U), non-intersecting iff there is an event U ∈ Ω such that U is mea-
surable with respect to bothW andV and such thatW|U refinesV|U andV|Uc refines
U|Uc .

Theorem 3.2 of Gilboa and Lehrer (1991) states that a GL-representation of φ
exists if and only if

φ(W ∧ V) + φ(W ∨ V) = φ(W) + φ(V) (5)

for any non-intersecting partitions, where W ∧ V and W ∨ V denote their meet
(coarsest common refinement) and join (finest common coarsening), respectively.

So, let W and V be non-intersecting and U the jointly measurable event de-
lineating which partition is finer. Consider an experiment (A,PW∧V) such that
{WA,P |P ∈ PW∧V} is µ-equivalent to W . Again, this exists by the richness as-
sumption.

By Lemma 3,we can construct partitions PW , PV , PW∨V , P{U,Uc} of A, each
inducing a partition µ-equivalent with respect to the corresponding partition of U
(i.e., indicated by the subscript).

Let B ∈ P{U,Uc} be the cell such that µ(WA,B) = µ(WA,B ∩U) = µ(U). It fol-
lows thatB is measurable with respect to all of the above partitions, and furthermore,
(PW∧V)B(PW∨V) = PW and (PW∨V)B(PW∧V) = PV .

Applying axiom A4, we have

1
2
(A,PW∧V) +

1
2
(A,PW∨V) ∼ 1

2
(A,PW) + 1

2
(A,PV)

Thus, from (3), the definition of φ, we obtain (5). Theorem 3.2 of Gilboa and Lehrer
(1991) ensures us of the existence of some GL-representation. ⋆
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Call V ∈ Ω transparent if for any partition containing V , {V,W,U1 . . . Un}, it
follows that

φ({V,W,U1 . . . Un}) = φ({V ∪W,U1 . . . Un}). (6)

Notice, while it is easier to write this as a condition on φ, it is completely de-
termined by the preference. Let Ω∅ collect the transparent measurable sets. Notice
that if ν ′ is any GL-representation of φ and V ∈ Ω∅ and W ∈ Ω with W ∩ V = ∅,
it holds that

ν ′(W ∪ V ) = ν ′(W ) + ν ′(V ). (7)

This follows immediately from plugging the GL-representation, (4), into (6). In
particular, notice that ν ′ is finitely additive over Ω∅.

LEMMA 5. Let C ⊆ ∅ be a set of transparent subsets such that (i) ∅ ∈ C, (ii)
U /∈ C, (iii) W,V ∈ C implies W ∪ V ∈ C, and, (iv) W ∈ C and V ∈ Ω with
V ⊆ W implies V ∈ C. Then there exists a GL-representation, ν, of φ such that
ν(V ) = 0 for all V ∈ C.

Proof. Let ν ′ : Ω → R be a GL-representation, which exists by Lemma 4. Notice
that C is a ring of sets, since if W,V ∈ C then W \ V ⊆ W ∈ C by (iv). Further,
by (7), it follows that ν ′|C : C → R is finitely additive. Hence, by Theorem 3.2.5
of Rao and Rao (1983), there exists a finitely additive measure µ′ : Ω → R that
extends ν ′|C.

Notice also that C is an ideal in Ω (as a Boolean algebra of sets). Thus by
the Boolean prime ideal theorem, C is contained in some maximal (proper) ideal,
I ⊂ Ω. Then

µ′′ : W 7→

{
0 if W ∈ I

µ′(U) otherwise

is a finitely additive measure. It follows that µ† = µ′ − µ′′ is a finitely additive
measure and µ†(U) = 0. By Proposition 3.3 of Gilboa and Lehrer (1991), ν =

ν ′ − µ† is also a GL-representation of φ. Moreover, for V ∈ C, we have ν(V ) =

ν ′(V )− µ†(V ) = ν ′(V )− µ′(V ) + µ′′(V ) = ν ′(V )− ν ′(V ) + 0 = 0. ⋆

Let Cnull = {W ∈ Ω | µ(W ) = 0}. Note that Cnull satisfies the conditions for
Lemma 5 (that Cnull ⊆ Ω∅ is a straightforward consequence of A3). Thus, we can
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choose ν such that µ(W ) = 0 implies ν(W ) = 0. Now define τ as

τ : W 7→


ν(W )
µ(W )

if W /∈ Cnull

0 otherwise.

It is obvious that this τ satisfies (T2). To see that it also τ satisfies (T1), first note
that by A2, if W refines V then φ(W) ≥ φ(V), and so by Observation 4.1 of Gilboa
and Lehrer (1991) ν is subadditive.

Now let µ(V ) > 0 and W ⊂ V ; by sub-additivity ν(W ) + ν(V \W ) ≥ ν(V ).
Plugging in for the definition of τ we have τ(W )µ(W ) + τ(V \ W )µ(V \ W ) ≥
τ(V )µ(V ). Dividing by µ(V ) delivers the inequality part of (T1). If we further
assume that µ(W ) = 0, then W ∈ Ω∅ and the equality part of (T1) follows from the
definition of transparency (7).

Finally, to see that τ represents ≽ according to (⋆⋆), let (A,Q) ∈ E. By Lemma
1, there is some W ∈ part(U) such that {WA,Q}Q∈Q is µ-equivalent to W . Let
(AW ,PW) be the experiment used to define φ(Ω). Clearly, (A,Q) and (AW ,PW)

are themselves µ-equivalent, and hence by A3, (A,Q) ∼ (AW ,PW).
By µ-equivalence, for each Q ∈ Q with µ(WA,Q) > 0 there exists some WQ ∈

W such that µ(WA,Q) = µ(WQ ∩WA,Q) = µ(WQ). In particular, this implies that
µ(WQ \WA,Q) = µ(WA,Q \WQ) = 0. This further implies, via the equality part
of (T1), that τ(WQ) = τ(WQ ∪WA,Q) = τ(WA,Q). So finally, we have∑

Q∈Q

τ(WA,Q)µ(WA,Q) =
∑
Q∈Q

µ(WA,Q)>0

τ(WQ)µ(WQ)

=
∑
W∈W

ν(W )

= φ(W)

= vnm(AW , PW)

= vnm(A,Q)

as desired. ■
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A.2 PROOF OF THEOREM 2

Preliminaries: Convex Spaces

For a set X ⊆ Rℓ, let conv(X), int(X), and cl(X) denote the convex hull, the
interior, and the closure of X , respectively. If X is convex, then ext(X) collects all
the extreme points of X and ri(X) denotes the relative interior of X . When it is
not confusing to do so, we will write ri(X) and ext(X) to mean ri(conv(X)) and
ext(conv(X)) for non-convex X .

For convex X , let F ⊂ X be called a face if whenever αx+ (1− α)y ∈ F (for
x, y ∈ X) then also x, y ∈ F . Let F(X) denote the set of all (non-empty) faces of
X and F◦(X) = {ri(F ) | F ∈ F(X)}.

If X ⊆ Rℓ is a convex set and ext(X) is finite then X is a called at polytope. Let
poly denote the set of all polytopes in Rℓ. If X ∈ poly, then F(X) is finite.

If K ⊆ Rℓ and λK ⊆ K for all λ ≥ 0 then K is called a cone. We say a cone
K is generated by X if K = {λx | x ∈ X,λ ≥ 0}. A cone K is polyhedral if it
is generated by a polytope; let K∗ denote all such cones. Let K denote the set of
pointed polyhedral cones, those cones with 0 ∈ ext(K). The face of a polyhedral
cone is a polyhedral cone.

For X ∈ poly, let
X⋆ =

∪
I⊆ext(X)

∑
i∈I

xi

|I|

The set X⋆ is a decision problem that contains one point in the relative interior of
every face of X . Further, given a partition of H = {H1 . . . Hn} of F(X), let H⋆ =

{H⋆
1 . . . H

⋆
n} denote the partition of X⋆ defined via H⋆ = X⋆ ∩ (

∪
F∈Hi

ri(F )).
For X ⊆ Rℓ (convex or not) and x ∈ X let N(X, x) = {u ∈ U | u(y − x) ≤

0, for all y ∈ X} denote the normal cone of X at x. Alternatively, N(X, x) = {u ∈
U∆ | x ∈ arg maxX u}. Notice that WA,B =

∪
x∈B N(A, x).

For X ∈ poly, and a face F ∈ F(X), let N(X,F ) =
∩

x∈F N(X, x). It follows
that N(X,F ) = {u ∈ U∆ | F ⊆ arg maxx∈D u(x)} = N(X, x) for any x ∈ ri(F ).
Notice therefore that ∪

x∈H⋆
i

ri(N(X⋆, x)) =
∪

F∈Hi

ri(N(X,F )) (8)
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It is immediate that N(X,F ) is closed and in K∗. Let N (X) = {N(X,F ) |
F ∈ F(X)} denote the normal fan of X; that N (X) is a fan indicates that it is a
family of cones such, with the following two properties:

(i) Every nonempty face of a cone in N (X) is also a cone in N (X).
(ii) The intersection of any two cones in N (X) is a face of both.

Furthermore,N (X) is complete (the union ofN (X) isU∆). LetN ◦(X) = {ri(N(X,F )) |
F ∈ F(X)}.

LEMMA 6. The following are true for all convex X and Y :

1. cl(ri(X)) = cl(X) (Theorem 6.3 of Rockafellar (1970)).

2. F◦(X) is a partition of X (Theorem 18.2 of Rockafellar (1970)).

3. Let F ∈ F(X) and Y ⊆ X be such that ri(Y ) ∩ F 6= ∅, then Y ⊆ F .
(Theorem 18.1 of Rockafellar (1970)).

LEMMA 7. For X ∈ poly, N ◦(X) is a partition of U∆.

Proof. Let u ∈ U∆. Since N (X) is complete, u ∈ K for some K ∈ N (X). By
property (i) of fans, we see that F(K) ⊆ N (X); since F◦(K) is a partition of K, it
follows that x ∈ ri(F ) for some F ∈ N (X). So, the elements of N ◦(X) cover U∆.

Now assume that x ∈ ri(K)∩ri(K ′) for someK,K ′ ∈ N (X). Then by property
(ii) of fans, K ∩K ′ ∈ F(K); moreover, since x ∈ (K ∩K ′) ∩ ri(K) 6= ∅, Lemma
6.3 delivers that the face K ∩ K ′ must be equal to K itself. By symmetry also
K ′ = (K ∩K ′) = K. So, the elements of N ◦(X) are disjoint. ■

LEMMA 8. For polytopes X and X ′, the following are equivalent

(i) X = αX ′ + Z, for some polytope Z and α > 0

(ii) for all K ∈ N (X) there is a K ′ ∈ N (X ′) such that K ⊆ K ′

(iii) N ◦(X) refines N ◦(X ′).

Proof. (i) ↔ (ii) Theorem 15.1.2 of Grnbaum (2003)
(ii) → (iii) Take some ri(K) ∈ N ◦(X). Let K† =

∩
{K ′ ∈ N (X ′) | K ⊆ K ′},

which is an element of N (X ′) by (ii) and the properties of fans. Moreover, by
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construction K 6⊆ F for any F ∈ F(K†) with F ⊊ K†. Thus, by (the contra-
positive of) Lemma 6.3, we have that ri(K)∩ ri(F ) 6= ∅ for all such F . Then, since
F◦(K†) partitions K†, it follows that ri(K) ⊆ ri(K†).

(iii) → (ii) Take some K ∈ N (X). Then by (iii) ri(K) ⊆ ri(K ′) for some K ′ ∈
N (X ′). Since K and K ′ are closed, we have K = cl(K) and K ′ = cl(K ′). Thus,
K = cl(ri(K)) ⊆ cl(ri(K ′)) = K ′, where both equalities come from Lemma 6.1
and the inclusion relation from the fact that taking closures is subset preserving. ■

Proof of Theorem 2. The coarsening property is obvious. We will show that any
partition can be captured up to µ-equivalence. Let W = {W1, . . .Wn} ∈ part(U).
First, from Gul and Pesendorfer (2006) Proposition 6(ii), we can write each Wi ∈ Ω

as the finite union of elements in K: Wi =
∪mi

j=1 ri(Kj
i ). Moreover, by Gul and

Pesendorfer (2006) Proposition 4, each Kj
i = N(Xj

i , x
j
i ) for some polytope Xj

i and
xj
i ∈ Xj

i . Thus ri(Kj
i ) ∈ N ◦(Xj

i ).
Let a = m1 + . . . +mn and consider the polytope X =

∑n
i=1

∑mi

j=1
1
a
Xj

i . By
Lemma 8, N ◦(X) refines each N ◦(Xj

i ). Let H = {H1, . . . , Hn} be a partition of
F(X) defined by

Hi = {F ∈ F(X) | ri(N(X,F )) ⊆ Wi} (9)

Now take some i ≤ n and u ∈ Wi. So, there exists some j ≤ mi such that
u ∈ ri(Kj

i ) ∈ N ◦(Xj
i ). Since N ◦(X) is a partition of U , there exists some F ∈

F(X) with u ∈ ri(N(X,F )), and furthermore, since this partition refines N ◦(Xj
i ),

ri(N(X,F )) ⊆ ri(Kj
i ) ⊆ Wi. Hence F ∈ Hi and so u ∈

∪
F∈Hi

ri(N(X,F )).
We have established that Wi ⊆

∪
F∈Hi

ri(N(X,F )), and since the other inclusion
is obvious, that Wi =

∪
F∈Hi

ri(N(X,F )). Now, on the basis of (8), we have

Wi =
∪

x∈H⋆
i

ri(N(X⋆, x)) (10)

Finally, by Lemma 2 of Gul and Pesendorfer (2006), we know that for µ which satis-
fies (E2), it must be thatµ(ri(N(X⋆

W , H⋆)) = µ(N(X⋆
W , H⋆).Thus, {WX⋆,H⋆}H⋆∈H⋆

is µ-equivalent to W . ■
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A.3 PROOF OF THEOREM 3 AND 4

Proof of Theorem 3. Let (A, {P1, . . . Pn}) and (B, {Q1, . . . Qm}) be such that
{WA,Pi

}i≤n is µ-equivalent to {WB,Qi
}i≤m. Furthermore, from Lemma 2, we can

assume there are 1 ≤ k ≤ n elements of each partition with positive µ-probability
and for each i ≤ k, µ(WA,Pi

) = µ(WA,Pi
∩WB,Qi

) = µ(WB,Qi
).

Consider the problem C = 1
2
A + 1

2
B. For each i ≤ n, define Ri ⊆ C as

Ri = {1
2
Pi +

1
2
B} ∩ ext(C). Clearly, we have for each i ≤ n, Ri ⊆ 1

2
Pi +

1
2
B; it

follows from A5 that (A, {P1, . . . Pn}) ∼ (C, {R1, . . . Rn}).
Now for each i ≤ k, letR′

i = Ri∩(12Pi+
1
2
Qi)∩ext(C) = (1

2
Pi+

1
2
Qi)∩ext(C).

The final equality arises from the fact that each extreme point of C has a unique
decomposition as elements of A and B (so that any x ∈ (1

2
Pi +

1
2
Qi) ∩ ext(C) was

not in Rj for j < i). We claim that µ(WC,Ri\R′
i
) = 0. Indeed,

WC,Ri\R′
i
⊆ WA,Pi

∩
∪
j ̸=i

WB,Qj

=
∪
j ̸=i

(WA,Pi
∩WB,Qj

)

⊆
∪
j ̸=i

(
(WA,Qi

∩WB,Qj
) ∪ (WA,Pi

\WB,Qi
)
)

The claim then follows from the fact that for all i 6= j, µ(WA,Qi
∩WB,Qj

) = 0 (from
(E2)) and µ(WA,Pi

\WB,Qi
) = 0 (from µ-equivalence).

By repeatedly appealing to A6, we can see that

(C, {R1, . . . Rn}) ∼ (C, {R′
1, . . . R

′
k, R

†}),

where R† = C \
∪

i≤k R
′
i. We make use the fact for i > k, µ(WC,Ri

) = 0 on account
of the fact that WC,Ri

⊆ WA,Pi
. Thus we have

(A, {P1, . . . Pn}) ∼ (C, {R1, . . . Rn}) ∼ (C, {R′
1, . . . R

′
k, R

†})

A symmetric argument ensures that also (B, {Q1, . . . Qm}) ∼ C, {R′
1, . . . R

′
k, R

†}),
and so the two experiments are indifferent, as is required. ■
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Proof of Theorem 4. As before let vnm be the utility index that represents ≽, that
exists by A1, normalized such that vnm({x}, {{x}}) = 0; by A7, the choice of x is
irrelevant, and by A2 the trivial experiment is the worst possible, so vnm : E → R+

takes only weakly positive values.
Let prob denote the set of finitely valued probability distributions, i.e., finite

lists taking values in [0, 1] whose entries sum to 1. Let prob∗ ⊂ prob denote those
whose entries are all strictly positive. Define ζ : E → prob as ζ(A, {P1, . . . Pn}) =
(µ(WA,P1), . . . , µ(WA,Pn)).

LEMMA 9. For each {p1, . . . pn} ∈ prob∗, there exists some (A,P) ∈ E such that
ζ(A,P) = {p1, . . . pn}. Moreover, if ζ(A,P) = ζ(B,Q) then (A,P) ∼ (B,Q).

Proof. It is well know that since µ is non-atomic, there exists {W1, . . .Wn} ∈
part(U), such that µ(Wi) = pi for i ≤ n (for example, see Billingsley (1995) Prob-
lem 2.19(d)). By richness, there exists some (A, {P1, . . . , Pm}) such that {WA,Pi

}i∈m
is µ-equivalent to {W1, . . .Wn}. By Lemma 2, it is without loss of generality to as-
sume µ(WA,Pi

) = µ(Wi) for i ≤ n; it follows that µ(WA,Pj
) = 0 for j > n. Then

(A, {P1 ∪
∪

j>n Pj, P2, . . . Pn} is the desired experiment. The later claim follows
directly from A7. ⋆

In light of Lemma 9, we can define the functional η : prob∗ → R via

η(p1, . . . , pn) = vnm(A,P),

where (A,P) ∈ ζ−1(p1, . . . , pn). Extend η to all of prob by simply ignoring 0s.
That is, for each (p1, . . . , pn) ∈ prob, set η(p1, . . . , pn) = η(pk1 , . . . , pkm), where
k1, . . . , km ⊆ 1, . . . , n is the subsequence that selects strictly positive entries. Our
normalization vnm({x}, {{x}}) = 0 implies η(1) = 0.

For p = (p1, . . . pn) ∈ prob∗ and {qi}i≤n, where each qi = (qi1, . . . , q
i
mi) ∈

prob∗ is of (possibly distinct) length mi, let

p⊗ {qi}i≤n = (p1q
1
1, . . . , p1q

1
m1 , . . . , pnq

n
1 , . . . , pnq

n
mn).
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We can intuitively view p⊗{qi}i≤n as the reduction of a compound lottery over over∑
i≤n m

i outcomes, thinking of p as the marginal on n first stage lotteries and qi the
conditional lottery on mi outcomes given the realization of p.

We will now show that η satisfies the following three properties:

(K1) η(p1, . . . , pn) = η(p1, . . . , pn, 0)

(K2) η(p1, . . . , pn) ≤ η( 1
n
, . . . , 1

n
)

(K3) η(p⊗ {qi}i≤n) = η(p) +
∑

i≤n piη(q
i)

Property (K1) follows immediately from the construction of η, in particular how
it is extended from prob∗ to prob. (K2) follows immediately from A7. We will show
(K3).

Fix some p ∈ prob∗ and {qi}i≤n, with each qi ∈ prob∗. For each 0 ≤ k ≤ n,
let

qi,k =

{
qi if i ≤ k

(1) otherwise

Notice that qi,n = qi and p⊗ {qi,0} = p. Thus, the result follows by showing that

η(p⊗ {qi,k}) = η(p⊗ {qi,k−1}) + pkη(q
k), (11)

for 0 < k ≤ n.
For for 1 ≤ i ≤ n and 1 ≤ j ≤ mi, set rij = piq

i
j . With this notation we can

write the relevant distributions as

p⊗ {qi,k−1} =(r11, . . . , r
1
m1 , . . . , rk−1

1 , . . . , rk−1
mk−1 , pk, pk+1, . . . pn)

p⊗ {qi,k} =(r11, . . . , r
1
m1 , . . . , rk1 , . . . , r

k
mk , pk+1, . . . pn)

From Lemma 9, we obtain some ek = (A, {R1
1, . . . , R

k
mk , Pk+1, . . . , Pn}) in

ζ−1(p ⊗ {qi,k}) and also some e′ = (B, {Q1, . . . , Qmk}) in ζ−1(qk). Define Pk =∪mk

j=1 R
k
j . By construction, µ(WA,Pk

) =
∑mk

j=1 µ(WA,Rk
j
) =

∑mk

j=1 pkq
k
j = pk. Thus,

we have ek−1 = (A, {R1
1, . . . R

k−1
mk−1 , Pk, . . . , Pn}) is in ζ−1(p⊗{qi,k−1}). Using the
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definition of η, we have

η(p⊗ {qi,k−1}) = vnm(ek−1)

η(p⊗ {qi,k}) = vnm(ek)

η(qj) = vnm(e′)

(12)

At last, we have the requisite ingredients to appeal to A8, and the representation
via vnm, obtaining

1
1+µ(WA,Pk

)
vnm(ek) + µ(WA,Pk

)

1+µ(WA,Pk
)
0 = 1

1+µ(WA,Pk
)
vnm(ek−1) +

mu(WA,Pk
)

1+µ(WA,Pk
))

vnm(e′)

Simplifying and plugging in the suitable replacements via (12) yields the desired
relation.

Theorem 1 of Khinchin (1957) shows that if η satisfies the properties (K1)–(K3),
it take the form

η(p1, . . . , pn) = −λ
n∑

i=1

pi log(pi), (13)

where λ > 0.10 Since we are free to rescale an expected utility representation by a
positive constant (we only used a single degree of freedom in choosing the intercept
vnm({x}, {{x}}) = 0) we can set λ = 1.

Finally, let (A, {P1, . . . , Pn}) ∈ E. Without loss of generality, assume the first
k ≤ n observations have positive probability (i.e., µ(WA,Pi

) > 0 if and only if
i ≤ k). Set P † = P1 ∪

∪n
i=k+1 Pi We have

vnm(A, {P1, . . . , Pn}) = vnm(A, {P †, P2, . . . , Pk}) (from A6)

= η(µ(WA,P1), . . . , µ(WA,Pk
)) (definition of η)

= η(µ(WA,P1), . . . , µ(WA,Pn)) (from (K1))

= −
∑
i≤n

log(µ(WA,Pi
))µ(WA,Pi

), (from (13))

10The property (K3) in Khinchin (1957) is stated slightly differently: it requires all qi to be the
same length, but allows for zero-probability entries. These formulations are clearly equivalent under
(K1), where 0s can be added to make each qi the same length.
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as needed to complete the proof. ■
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