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Abstract

This paper proposes a refinement of the maxmin criterion for ro-

bust mechanism design and characterizes its implications in a canoni-

cal monopoly screening environment. In the model, a seller produces

quality-differentiated goods to sell to a buyer of unknown payoff type. A

mechanism is properly robust if it lexicographically maximizes expected

profit with respect to a lexicographic probability system capturing first-

order and higher-order uncertainty aversion about the buyer’s type. It

is shown that a mechanism is properly robust if and only if it is effi-

cient and revenue maximizing. That is, asymmetric information does

not lead to economic inefficiency.
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1 Introduction

Many markets are characterized by asymmetric information. For instance, a

consumer may know its willingness-to-pay for various cellphone features bet-

ter than the company selling the phone. A central finding in the Bayesian

analysis of such markets is that asymmetric information leads to economic in-

efficiency (Akerlof (1970), Spence (1973), and Rothschild and Stiglitz (1976)).

For instance, the cellphone company may degrade the quality of its lower-

tier cellphones in order to make them less attractive to high-value consumers,

thereby allowing the company to increase the price of its premium cellphones

without affecting their demand (Mussa and Rosen (1978)).

Unfortunately, in the canonical Bayesian screening model, optimal allo-

cations and prices are sensitive to the assumed prior distribution over buyer

valuations (types). A common way to address this critique is to assume that

the seller chooses a selling mechanism that performs well regardless of the

environment she faces. That is, she is assumed to choose a “maxmin” (or,

“robust”) mechanism that maximizes her minimum payoff across all distribu-

tions over buyer types.1

The maxmin criterion, however, is too weak in many applications. Con-

sider, for instance, the decision problem in Figure 1a; the decision-maker

chooses a row and each column corresponds to a state (L, C, or R). Ob-

serve that U and D are maxmin optimal strategies; each ensures a payoff of

1, whereas M only ensures a payoff of 0. However, U weakly dominates D (U

yields at least the same payoff as D in all states and, in some state, yields a

strictly higher payoff). So, D is maxmin optimal, but violates the principle of

admissibility.2

More broadly, even if dominated strategies are ruled out by assumption, the

decision-maker is permitted to abandon her supposedly conservative attitude

1See Carroll (2019) for a survey of the rapidly growing literature on robust mechanism
design.

2The principle of admissibility has a long heritage in decision and game theory (see, e.g.,
Arrow (1951) and Luce and Raiffa (1957)). Börgers (2017) argues that admissibility should
be a minimal requirement for “robustness” in maxmin mechanism design problems.
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L C R
U 1 3 4
M 0 6 6
D 1 2 3

(a) Inadmissibility.

L C R
U 1 3 4
M 0 6 6
D 1 2 5

(b) Lexicographic inconsistency.

Figure 1: Properties of maxmin optimal strategies.

towards uncertainty outside of worst-case scenarios. Consider, for instance, the

decision problem in Figure 1b. U and D, again, are the only maxmin optimal

strategies. But, the payoffs have been modified so that both are (weakly)

undominated. Nevertheless, if the decision-maker strictly prefers U and D to

M , shouldn’t she strictly prefer U to D? U ensures a payoff of 3 outside of

state L, whereas D only ensures a payoff of 2. Such considerations are not

captured by the maxmin criterion.3

This paper proposes a refinement of the maxmin criterion for robust mech-

anism design that addresses several of its criticisms, and sharply characterizes

its predictions in a canonical screening environment. It is shown that, if the

seller uses this refinement, then asymmetric information does not lead to any

loss in social surplus. The contribution is thus two-fold — a modeling frame-

work for robust mechanism design and a substantial economic prediction.

The model is briefly outlined here, so that the refinement can be more

precisely defined. As in Mussa and Rosen (1978), a profit-maximizing seller

can produce costly quality-differentiated goods to sell to a buyer of unknown

type. The seller knows the set of possible types of the buyer, but not its

distribution. She commits to a (possibly stochastic) direct mechanism — a

quality and price pair targeted to each buyer type. The buyer’s payoff function

satisfies strictly increasing differences and there is a unique efficient (surplus

maximizing) allocation for each type.

The seller’s attitude towards distributional uncertainty is characterized by

the non-Archimedean extension of subjective expected utility proposed by

3This type of reasoning can be traced back to Dresher (1961) (Chapter 3, Section 18),
who suggests that a decision-maker should maximize the (minimum) gain resulting from the
“mistakes” of a strategic adversary.
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Blume, Brandenburger, and Dekel (1991a). Specifically, the seller possesses

a lexicographic probability system (LPS) — an ordered collection of prior dis-

tributions. The first prior distribution can be interpreted as the seller’s pri-

mary belief, the second as her secondary belief, and so on. The seller ranks

mechanisms lexicographically using the ordered vector of expected utilities

corresponding to her LPS. For example, in Figure 1b, the decision-maker’s

first belief could be the point mass on L, her second belief could be the point

mass on C, and her third could be the point mass on R. Under such an LPS,

U yields the vector of expected utilities (1, 3, 4), whereas D yields (1, 2, 5). So,

U is strictly preferred to D (because 1 ≥ 1 and 3 > 2).

The approach taken in the paper is to impose restrictions on the seller’s

LPS and study the implications of these restrictions on the structure of opti-

mal mechanisms. An LPS is adversarial if the seller’s first-order belief coheres

with the maxmin criterion; given her mechanism, the seller believes her payoff

is primarily determined by a worst-case distribution over types. For exam-

ple, if the decision-maker chooses U in either Figure 1a or Figure 1b, then the

decision-maker’s primary belief in any adversarial LPS must be the point mass

on L. Strengthening this property, an LPS is strongly adversarial if the seller’s

higher-order beliefs also reflect her conservative attitude towards uncertainty;

any buyer type yielding the seller a strictly lower payoff than another first

appears with positive probability in a lower-order prior distribution. For ex-

ample, if the decision-maker chooses U in either Figure 1a or Figure 1b, then

C must appear with positive probability before R. Finally, an LPS has full

support if each buyer type occurs with positive probability in some probabil-

ity distribution contained in the LPS. For example, given any strategy of the

decision-maker in Figures 1a and 1b, L, C, and R must appear with positive

probability in some belief contained in her LPS.

The analysis begins with two preliminary results. The first preliminary

result, Theorem 1, completely characterizes robust mechanisms, each of which

is a best-response to some adversarial LPS. Any robust mechanism prescribes

an efficient allocation for the lowest type. But, there are few other restric-

tions on the form of robust mechanisms. For instance, robust mechanisms
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can be inadmissible. The second preliminary result, Theorem 2, completely

characterizes perfectly robust mechanisms, each of which is a best-response to

some adversarial LPS with full support. It is shown that the set of perfectly

robust mechanisms is equivalent to the set of robust and admissible mecha-

nisms. In settings with two types, the unique perfectly robust mechanism is

the efficient and revenue maximizing mechanism. But, with more than two

types, there is little discipline on the allocations targeted to “intermediate”

types. Moreover, the higher-order beliefs that generate inefficiency for these

types are inconsistent with the seller’s lower-order beliefs.

The main result, Theorem 3, completely characterizes properly robust mech-

anisms, each of which is a best-response to some strongly adversarial LPS with

full support. It is shown that a mechanism is properly robust if and only if

it is efficient and revenue maximizing. The basic economic insight is that, if

the seller is concerned about her payoff guarantee, then she is most concerned

with maximizing profit from the lowest type. Hence, there is no distortion

at the bottom. If she is next most concerned about the second lowest type,

then this type should also receive an undistorted allocation because the lowest

type’s allocation has already been fixed. Inductive reasoning leads all types to

receive an efficient allocation.

Section 4.1 formalizes the intuition behind the main result by exploiting

an equivalence between lexicographic optimality and Bayesian optimality with

respect to the limits of the “trembles” justifying proper equilibria (Myerson

(1978)) in normal-form games. A “proper” sequence of trembles placing more

weight on lower types than higher types is exhibited. In the limit of the se-

quence, inverse hazard rates vanish. Hence, quality distortions vanish in any

corresponding sequence of Bayesian optimal mechanisms. Section 4.2 provides

an alternative foundation for the efficient and revenue maximizing mechanism

using a variation of the “leximin” criterion (Sen (1970), Rawls (1971), Macken-

zie (2024)), which has been proposed as an alternative to the maxmin criterion

in the literature on social choice theory. It is shown, however, that leximin

optimality does not in general coincide with perfect or proper robustness; a

leximin optimal strategy need not be a best-response to any full support LPS.
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1.1 Related literature

The paper’s contribution is now briefly related to the literatures on Bayesian

screening, non-Bayesian mechanism design, and equilibrium refinements.

Relative to the literature on Bayesian screening, the model nests (discrete-

type versions of) the product design model of Mussa and Rosen (1978), the

nonlinear pricing model of Maskin and Riley (1984), and the single-agent case

of the optimal auction model of Myerson (1981). A key finding in this lit-

erature is that there is “no distortion at top”, i.e., the highest type receives

an undistorted allocation, whereas the allocations of buyers with lower valua-

tions can be distorted downwards. The results in this paper demonstrate that

robustness considerations “reverse” this intuition; distorting the allocation of

the lowest type is suboptimal under any robustly optimal mechanism and this

property cascades upwards in any properly robust mechanism. Applied to op-

timal auction settings in which it is efficient to allocate an indivisible good

to all buyer types, the results show that a posted price pinned down by the

binding participation constraint of the lowest type is properly robust.

Other authors have studied non-Bayesian variants of canonical screening

problems. Closest to the setting of the paper, Bergemann and Schlag (2011)

and Carrasco, Farinha Luz, Kos, Messner, Monteiro, and Moreira (2018) study

the problem of selling a single indivisible good to a buyer of unknown type.45

Bergemann and Schlag (2011) assume that the seller has knowledge that the

true distribution lies in some neighborhood of a baseline distribution, whereas

Carrasco, Farinha Luz, Kos, Messner, Monteiro, and Moreira (2018) assume

that the seller knows the first N moments of the distribution.6 The main result

4Bergemann and Schlag (2008) and Bergemann and Schlag (2011) also study the form
of mechanisms that minimize worst-case regret (Savage (1951)). A foundational issue with
the regret minimization criterion is that it is dependent on irrelevant alternatives (Chernoff
(1954)). Proper robustness does not suffer this drawback.

5Madarász and Prat (2017) study local preference uncertainty that may cause non-local
incentive compatibility constraints to bind in an optimal mechanism. Che (2022) extends
the setting of Carrasco, Farinha Luz, Kos, Messner, Monteiro, and Moreira (2018) to the
case of multiple buyers.

6Carroll (2017) considers a multi-dimensional screening setting in which the marginal
distributions over values are known, but not the joint distribution. His main result is that
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in Bergemann and Schlag (2011) is that the seller chooses a posted price to

maximize her Bayesian payoff against a worst-case distribution. Carrasco, Far-

inha Luz, Kos, Messner, Monteiro, and Moreira (2018) show that the seller’s

worst-case payoff is a linear combination of the known moments of the distri-

bution over types. Theorem 1 coheres with Bergemann and Schlag (2011)’s

result; if any distribution is possible, i.e., the seller entertains an arbitrarily

large neighborhood around the known distribution, then the seller maximizes

her payoff against the point mass on the lowest buyer valuation type. The

purpose of reprising (a version of) this result in this paper, however, is to

demonstrate that if the seller’s uncertainty set is large, then maxmin predic-

tions are weak. Bergemann and Schlag (2011) and Carrasco, Farinha Luz,

Kos, Messner, Monteiro, and Moreira (2018) escape this issue by imposing

assumptions on the seller’s knowledge. This paper offers a complementary

modeling approach.

Within the broader literature on robust mechanism design, the point of

view taken in this paper is inspired by Börgers (2017). Börgers (2017) cri-

tiques the foundations for dominant strategy mechanisms provided by Chung

and Ely (2007) in a setting featuring multiple agents on the grounds that such

mechanisms are weakly dominated. Others have built upon this implicitly lex-

icographic approach; Dworczak and Pavan (2022) assume that an information

designer primarily optimizes against a worst-case distribution. Among the

set of worst-case optimal mechanisms, the designer chooses a mechanism that

maximizes her payoff under a baseline distribution. In the language of this

paper, Dworczak and Pavan (2022)’s approach corresponds to assuming the

designer chooses a mechanism that is optimal with respect to an adversarial

LPS containing exactly two prior distributions. This paper shows that fruitful

insights arise if it is also required that the designer’s LPS has full support and

is lexicographically consistent with her uncertainty aversion.

Finally, the restrictions placed on the seller’s LPS correspond to those

used to characterize the strategies that survive tremble-based refinements in

bundling is suboptimal. Che and Zhong (2024) consider alternative ambiguity sets that lead
to the optimality of bundling.
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normal-form games (Blume, Brandenburger, and Dekel (1991b)). Indeed, the

terms “perfect robustness” and “proper robustness” are directly inspired by

the notions of (trembling hand) perfect equilibrium (Selten (1975)) and proper

equilibrium (Myerson (1978)). A detailed discussion of this relationship is

contained in Section 2.4. Predating Blume, Brandenburger, and Dekel (1991a)

and Blume, Brandenburger, and Dekel (1991b), Dresher (1961) (Chapter 3,

Section 18) proposes an approach to selecting strategies in two-player, zero-

sum games that involves maximizing the (guaranteed) gain resulting from

a strategic opponent’s “mistakes”. Van Damme (1983) observes that this

procedure identifies proper equilibrium strategies in such games (see Chapter 3,

Theorem 3.5.5). Choosing an optimal mechanism with respect to the criterion

considered in this paper thus coheres with what would arise following the

protocol of Dresher (1961), once the problem is formulated as a zero-sum

game between the seller and an opponent who chooses the distribution over

buyer types.

2 Model

2.1 Environment

There is a single seller (she) and a single buyer (he). The seller can produce

a good of variable quality q ∈ Q, where Q ⊆ R+ is a compact, convex set and

0 ∈ Q, at a cost determined by the continuous function c : Q → R+. The

seller’s ex post payoff from selling a good of quality q ∈ Q at a price of p ∈ R+

is given by the function v : Q× R+ → R, where

v(q, p) = p− c(q).

The buyer has private information about her payoff type θ ∈ Θ, where Θ :=

{θ1, . . . , θN} ⊆ R+ and θ1 < · · · < θN . Specifically, the buyer’s ex post payoff
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from purchasing a good of quality q ∈ Q at a price of p ∈ R+ is

u(q, θ)− p,

where u : Q × Θ → [0,M ] for M > 0 is continuous and satisfies u(0, θ) = 0

for all θ ∈ Θ. Moreover, u is non-decreasing in q and has strictly increasing

differences: if q′ > q and θ′ > θ, then

u(q′, θ′)− u(q, θ′) > u(q′, θ)− u(q, θ).

The buyer’s payoff from not transacting with the seller is normalized to zero.

Finally, the surplus function s(·, θi) := u(·, θi) − c(·) is strictly quasiconcave

for each θi ∈ Θ.7

2.2 Mechanisms

The seller has commitment power and can sell different qualities at differ-

ent prices. By the Revelation Principle, without loss of optimality, the seller

can restrict attention to direct mechanisms. A (direct) mechanism is an

allocation rule and transfer rule,

Q : Θ → ∆(Q) and P : Θ → R+,

that together are incentive compatible and individually rational: for all

θ ∈ Θ,

Eu(Q(θ), θ)− P (θ) ≥ Eu(Q(θ′), θ)− P (θ′) for all θ′ ∈ Θ

7The assumptions that Q is compact and that u and v are continuous ensure that an
efficient mechanism exists. The assumption that the surplus function is strictly quasicon-
cave ensures that there is a unique efficient mechanism and it is deterministic. If all such
assumptions are dropped, then the proceeding arguments establish that any deterministic
mechanism that is efficient and revenue maximizing mechanism is properly robust. More-
over, if the seller restricts herself to use deterministic mechanisms, then the set of properly
robust mechanisms coincides with the set of efficient and revenue maximizing mechanisms
(which may be empty or contain more than one element).
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and

Eu(Q(θ), θ)− P (θ) ≥ 0,

where ∆(Q) is the space of Borel measures onQ and Eu : ∆(Q)×Θ → R is the

extension of u taking expectations over allocations. LetM ⊂ (∆(Q)×[0,M ])N

denote the compact metric space of all mechanisms.8

It is worth remarking that it is without loss of optimality to restrict atten-

tion to deterministic transfer rules; any stochastic transfer to type θ can be

replaced with its mean and yield the seller equivalent expected profit. More-

over, randomizing over mechanisms (the set M) cannot improve the seller’s

payoff, i.e., there are no “hedging” advantages to randomization.9 Hence, the

restrictions on the mechanism space entail no loss of optimality.10

2.3 Lexicographic probability systems

The seller’s attitude towards uncertainty coheres with the non-Archimedean

variant of subjective expected utility proposed by Blume, Brandenburger, and

Dekel (1991a). Specifically, the seller possesses a lexicographic probability sys-

tem and ranks mechanisms using a corresponding vector of expected utilities.

A lexicographic probability system (LPS) is a vector of prior beliefs

µ = (µ1, . . . , µK), whereK is a strictly positive integer and µk ∈ ∆(Θ) for each

k ∈ {1, . . . , K}. Fixing an LPS µ = (µ1, . . . , µK), each mechanism (Q,P ) ∈ M
8∆(Q) is compact in the topology of weak convergence because Q is compact in the

Euclidean topology. Moreover, [0,M ] is compact in the Euclidean topology. So, (∆(Q) ×
[0,M ])N is compact in the corresponding product topology. The set of functions (Q,P ) ∈
(∆(Q)×[0,M ])N satisfying the incentive compatibility and individual rationality constraints
form a closed subset of (∆(Q)× [0,M ])N . Hence, M is a closed subset of a compact metric
space and, therefore, compact.

9Randomizing over allocation rules results in a compound lottery for each type. These
lotteries can be reduced to a simple lottery. The reduced lottery yields the seller and the
buyer the same payoffs as under the original randomization against any distribution over
types. In robust principal-agent problems with technological uncertainty, this argument does
not hold because randomization affects the set of uncertainty (see Kambhampati (2023) and
Kambhampati, Toikka, and Vohra (2024)).

10Strausz (2006) presents an example in which randomization over allocations is strictly
optimal in a Bayesian model, even under standard assumptions on u and c. That such
stochastic allocation rules are not properly robust is therefore a result of this paper.
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gives rise to a K-vector of expected payoffs. The seller’s k-th order payoff

from (Q,P ) ∈ M is ∑
θ∈Θ

µk(θ)Ev(Q(θ), P (θ)),

where Ev : ∆(Q) × R → R is the extension of v taking expectations over

allocations. Then, a mechanism (Q,P ) ∈ M is lexicographically preferred

to the mechanism (Q′, P ′) ∈ M if(∑
θ∈Θ

µk(θ)Ev(Q(θ), P (θ))

)K

k=1

≥L

(∑
θ∈Θ

µk(θ)Ev(Q′(θ), P ′(θ))

)K

k=1

,

where ≥L is the lexicographic order.11 Finally, a mechanism (Q,P ) ∈ M is

µ-optimal if it is lexicographically preferred to any mechanism (Q′, P ′) ∈ M.

If µ is a single-dimensional LPS, i.e., µ = (ρ) for some ρ ∈ ∆(Θ), and (Q,P ) ∈
M is µ-optimal, then it is simply written that (Q,P ) is ρ-optimal.

Notice that, in the standard monopoly screening problem, the seller pos-

sesses a single prior belief about the type of the buyer. Such a belief is a

special case of an LPS in which K = 1, corresponding to the setting in which

the decision-maker is a subjective expected utility maximizer. A mechanism

(Q,P ) ∈ M is thus Bayesian optimal if it is µ-optimal with respect to some

LPS µ.12

This paper is concerned with the role of restrictions on the seller’s LPS and

the implications of these restrictions on the form of lexicographically optimal

mechanisms. To define these restrictions, it will be useful to introduce an order

on types with respect to an LPS. Given an LPS µ and types θ, θ′ ∈ Θ, write

θ >µ θ′ if

min{k ∈ {1, . . . , K} : µk(θ) > 0} < min{k ∈ {1, . . . , K} : µk(θ
′) > 0}.

11For a, b ∈ RK , a ≥L b if whenever bk > ak, there exists a j < k such that aj > bj .
12The usual definition of Bayesian optimality is that there exists a prior ρ ∈ ∆(θ) such

that (Q,P ) ∈ M is ρ-optimal. The point here is that, if (Q,P ) ∈ M is µ-optimal for some
µ = (µ1, . . . , µK), where K > 1, then it must be µ1-optimal. Hence, the set of Bayesian
optimal mechanisms in the usual sense is identical to the set of Bayesian optimal mechanisms
defined here.
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If θ >µ θ′, then θ is said to be “infinitely more likely” than θ′. The weak order

is defined in the usual way: if it is not the case that θ′ >µ θ, then θ ≥µ θ′.

Three properties will be of interest. First, an LPS is adversarial given

her mechanism if the seller’s first-order belief is that the type distribution

minimizes her expected payoff.

Definition 1

An LPS µ = (µ1, . . . , µK) is adversarial with respect to (Q,P ) ∈ M if

µ1(θ) > 0 implies

Ev(Q(θ), P (θ)) ≤ Ev(Q(θ′), P (θ′)) for all θ′ ∈ Θ.

Second, an LPS is strongly adversarial given her mechanism if the seller’s

higher-order beliefs cohere with her lower-order beliefs; if type θ′ is not in-

finitely more likely than θ, then the seller must receive a higher expected

payoff when transacting with type θ′ than with type θ.

Definition 2

An LPS µ = (µ1, . . . , µK) is strongly adversarial with respect to (Q,P ) ∈
M if, for all θ ∈ Θ,

Ev(Q(θ), P (θ)) ≤ Ev(Q(θ′), P (θ′)) for all θ′ ∈ Θ with θ ≥µ θ′.

Finally, an LPS has full support if each buyer type occurs with positive

probability in some probability distribution contained in the LPS.

Definition 3

An LPS µ = (µ1, . . . , µK) has full support if, for each θ ∈ Θ, there exists a

k ∈ {1, . . . , K} such that µk(θ) > 0.

Observe that if an LPS is strongly adversarial, then it is adversarial. To

see why, suppose that µ is not adversarial. Then, there exist types θ, θ′ ∈ Θ

such that µ1(θ) > 0, but

Ev(Q(θ), P (θ)) > Ev(Q(θ′), P (θ′)).
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Because θ ≥µ θ′, it follows that µ is not strongly adversarial. On the other

hand, an LPS can be strongly adversarial, but not have full support. For

instance, given any mechanism (Q,P ) ∈ M satisfying Q(θ) = Q(θ′) and

P (θ) = P (θ′) for all θ, θ′ ∈ Θ, the seller’s payoff is constant in the buyer’s

type. So, the LPS with K = 1 that places probability one on the lowest type

is strongly adversarial. But, it does not have full support.

2.4 Robust optimality

The following optimality criteria incorporate increasingly stronger restrictions

on the seller’s LPS.

Definition 4 (Robust optimality criteria)

1. A mechanism (Q,P ) ∈ M is robust if there exists an LPS, µ, that is

adversarial with respect to (Q,P ) and for which (Q,P ) is µ-optimal.

2. A mechanism (Q,P ) ∈ M is perfectly robust if there exists a full

support LPS, µ, that is adversarial with respect to (Q,P ) and for which

(Q,P ) is µ-optimal.

3. A mechanism (Q,P ) ∈ M is properly robust if there exists a full

support LPS, µ, that is strongly adversarial with respect to (Q,P ) and

for which (Q,P ) is µ-optimal.

Five remarks are in order regarding the optimality criteria:

1. Because any adversarial LPS with full support is an adversarial LPS,

any perfectly robust mechanism is robust. Moreover, any properly robust

mechanism is perfectly robust because any strongly adversarial LPS with

full support is an adversarial LPS with full support.

2. If a mechanism is robust, then, by definition, it is a part of a saddle point

in a fictitious zero-sum game between the seller and an adversarial “Na-

ture” that chooses the distribution of types. An alternative formulation
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of the maxmin criterion is sequential; given the seller’s mechanism, one

computes her infimum expected payoff over all distributions. A maxmin

optimal mechanism is then defined as a mechanism that maximizes the

seller’s infimum payoff. Such a criterion is more permissive than the ro-

bustness criterion defined here. That is, a robustly optimal mechanism

in the sense of this paper is maxmin optimal according to the sequential

criterion, but the converse need not hold. Nevertheless, this distinction

plays no role in the analysis of the model considered in this paper.

3. The restrictions on the seller’s LPS sustaining a perfectly robust mech-

anism correspond to those that sustain a (trembling-hand) perfect equi-

librium strategy in the fictituous game between the seller and Nature.

Precisely, Blume, Brandenburger, and Dekel (1991b) show that, if a

decision-maker’s strategy is a part of a perfect equilibrium in a finite

game, then she must play a strategy that is optimal with respect to a

full support LPS whose first-order belief coheres with the other’s cho-

sen strategy (see Proposition 4). So, any robust mechanism that is not

perfectly robust cannot be played in a perfect equilibrium of any game

between the seller and Nature in which the seller’s strategy space is

discretized, but sufficiently rich.

4. The restrictions on the seller’s LPS sustaining a properly robust mech-

anism correspond to those that sustain a proper equilibrium strategy in

the fictituous game between the seller and Nature. Blume, Branden-

burger, and Dekel (1991b) show that if a decision-maker’s strategy is a

part of a proper equilibrium in such a game, then she must play a strat-

egy that is optimal with respect to a full support LPS whose higher-order

beliefs respect the preferences of the other player (see Proposition 5). In

the context of zero-sum games, the restriction to preference-respecting

LPSs corresponds precisely to the requirement that the decision-maker

play a best-response to a strongly adversarial belief. So, any perfectly

robust mechanism that is not properly robust cannot be played in a

proper equilibrium in any sufficiently rich discretized game between the
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seller and Nature.

5. Perfection (properness) of a mechanism does not immediately guarantee

that it is played in some perfect (proper) equilibrium. The reason is

that no restrictions are placed on the perfection or properness of the

distribution chosen by Nature in response to the seller’s mechanism. This

seems a natural relaxation given that Nature is an artificial player used

to facilitate understanding of the seller’s attitude towards uncertainty. It

is left as a conjecture, however, that the strategy profile in which Nature

chooses the point mass on θ1 and the seller chooses an efficient and

revenue maximizing mechanism is, in fact, a proper equilibrium under

any of the three extensions of the concept defined for infinite games by

Simon and Stinchcombe (1995).

3 Analysis

3.1 Preliminaries

Some useful definitions and results from the standard theory of monopoly

screening are recorded here before proceeding to the main analysis (see, e.g.,

Chapter 6 of Vohra (2011)). Because Q is compact and s(·, θi) is continuous
and strictly quasiconcave for each i = 1, . . . , N , there exists a unique efficient

quality for each type: for each i = 1, . . . , N ,

{q∗i } := argmax
q∈Q

u(q, θi)− c(q).

Hence, randomization is strictly inefficient, i.e., the unique solution to

max
Q∈∆(Q)

Eu(Q, θi)− Ec(Q),

where Ec : ∆(Q) → R+ is the extension of c taking expectations over alloca-

tions, is the Dirac measure on q∗i .

An allocation Q(θi) ∈ ∆(Q) is efficient for type θi if Q(θi) is the Dirac
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measure on the efficient quality q∗i . An allocation rule Q : Θ → ∆(Q) is

efficient if it is efficient for all types θ ∈ Θ. Because u satisfies strictly in-

creasing differences, the Monotone Selection Theorem (Milgrom and Shannon

(1994)) ensures that efficient allocations are non-decreasing in type: q∗1 ≤ q∗2 ≤
· · · ≤ q∗N . Hence, the unique efficient allocation rule is implementable (Rochet

(1987)). Given an efficient allocation rule and any full support distribution

over types, the unique expected revenue maximizing prices are characterized

by the binding downward adjacent incentive compatibility constraints and the

individual rationality constraint for the lowest type. Specifically, the mecha-

nism (Q,P ) ∈ M is efficient and revenue maximizing if and only if Q is

efficient and P satisfies

P (θ1) = Eu(Q(θ1), θ1) and

P (θj) = Eu(Q(θ1), θ1) +

j∑
i=2

Eu(Q(θi), θi)− Eu(Q(θi−1), θi) for j ∈ {2, ..., N}.

(1)

There is a well-known relationship between full-information optimality and

efficiency. Let δi ∈ ∆(Θ) denote the measure that places probability one on

buyer type θi. Then, (Q,P ) ∈ M is δi-optimal if and only if it is efficient for

type θi and the seller extracts full surplus,

P (θi) = u(q∗i , θi).

Any such mechanism is said to be full-information optimal for type θi.

3.2 Robust mechanisms

The first result establishes that there are few restrictions placed on the seller’s

chosen mechanism if the only requirement is that she choose a best-response

to an adversarial LPS; any mechanism that is “efficient at the bottom” and

does not yield excessive rent to other types is robustly optimal.

Theorem 1 (Characterization of robust mechanisms)

A mechanism (Q,P ) ∈ M is robust if and only if it is full-information optimal
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for the lowest type, θ1, and the seller attains the lowest payoff from the lowest

type,

Ev(Q(θ), P (θ)) ≥ Ev(Q(θ1), P (θ1)) for all θ ∈ Θ.

Proof. To prove sufficiency, suppose (Q,P ) ∈ M is a mechanism for which

Ev(Q(θ), P (θ)) ≥ Ev(Q(θ1), P (θ1)) for all θ ∈ Θ. Then, the LPS µ = (δ1) is

adversarial with respect to (Q,P ). If, in addition, (Q,P ) is full-information

optimal for type θ1, then it maximizes the seller’s first-order payoff. Hence,

(Q,P ) is µ-optimal and, thus, robustly optimal.

To prove necessity, suppose that under (Q,P ) ∈ M there exists a type

θ > θ1 such that Ev(Q(θ), P (θ)) < Ev(Q(θ1), P (θ1)). Then, under any LPS

µ that is adversarial with respect to (Q,P ), the seller’s first-order payoff is

strictly smaller than Ev(Q(θ1), P (θ1)). So, (Q,P ) cannot be µ-optimal; the

seller obtains a payoff of Ev(Q(θ1), P (θ1)) from the mechanism (Q′, P ′) ∈ M
under which Q′(θ) = Q(θ1) and P ′(θ) = P (θ1) for all θ ∈ Θ.

It remains to establish the necessity of full-information optimality for type

θ1. Suppose (Q,P ) ∈ M is not full-information optimal for type θ1 and

Ev(Q(θ), P (θ)) ≥ Ev(Q(θ1), P (θ1)) for all θ ∈ Θ. Then, under any LPS µ

that is adversarial with respect to (Q,P ), the seller’s first-order payoff is no

larger than Ev(Q(θ1), P (θ1)). But, if (Q′, P ′) sets Q′(θ) equal to the Dirac

measure on q∗1 and P ′(θ) = u(q∗1, θ1) for all θ ∈ Θ, then (Q′, P ′) ∈ M and

Ev(Q′(θ), P ′(θ)) > Ev(Q(θ1), P (θ1)) for all θ ∈ Θ. Hence, (Q′, P ′) yields a

strictly higher first-order payoff than (Q,P ) against µ. It follows that (Q,P )

is not lexicographically preferred to (Q′, P ′) and, thus, cannot be robustly

optimal.

A simple example illustrates the multiplicity of robustly optimal mecha-

nisms.

Example 1. Suppose Θ = {θ1, θ2}, Q = [0,max(Θ)], u(q, θ) = θq, and c(q) =
1
2
q2. Then, the full-information optimal quality for type θi is q

∗
i := θi. Theorem

1 establishes that a mechanism is robustly optimal if and only if Q(θ1) is

the Dirac measure on θ1, P (θ1) = u(q∗1, θ1) = θ21, the incentive compatibility
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constraints are satisfied,

0 ≥ θ1EQ(θ2)[q]− P (θ2) and θ2EQ(θ2)[q]− P (θ2) ≥ θ2θ1 − θ21,

and a profitability constraint is satisfied,

P (θ2)−
1

2
EQ(θ2)[q

2] = Ev(Q(θ2), P (θ2)) ≥ Ev(Q(θ1), P (θ1)) =
1

2
θ21.

Notice that the quality for type θ2 need not be efficient and can be distorted

upwards or downwards: for any Dirac measure Q(θ2) on q2 ∈ R+ such that

q22 − 2θ2q2 + 2θ2θ1 − θ21 ≤ 0,

there exists a price P (θ2) ∈ R+ such that (Q,P ) satisfies both the incentive

compatibility and profitability constraint (e.g., set P (θ2) so that the downward

incentive compatibility constraint binds). For instance, if θ1 = 1 and θ2 = 2,

then any Dirac measure on q2 ∈ [1, 3] is a part of a robustly optimal mechanism.

3.3 Perfectly robust mechanisms

One objection to the maxmin criterion is that it permits the use of weakly

dominated mechanisms.

Definition 5

A mechanism (Q′, P ′) ∈ M weakly dominates the mechanism (Q,P ) ∈ M
if

Ev(Q′(θ), P ′(θ)) ≥ Ev(Q(θ), P (θ)) for all θ ∈ Θ

and the inequality is strict for some θ ∈ Θ.

This possibility is illustrated in the setting of Example 1.

Example 2. Return to the setting of Example 1. The unique efficient and

revenue maximizing mechanism, (Q∗, P ∗) ∈ M, sets Q∗(θ1) equal to the Dirac

measure on q∗1 = θ1, Q
∗(θ2) equal to the Dirac measure on q∗2 = θ2, P

∗(θ1) =

p∗1 := θ21, and P ∗(θ2) = p∗2 := θ22 − θ21. It is shown that any robust mechanism
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that is not equal to (Q∗, P ∗) ∈ M is weakly dominated by (Q∗, P ∗) ∈ M.

Recall from Theorem 1 that any robust mechanism must coincide with the

efficient and revenue maximizing mechanism for type θ1. Hence, for any robust

mechanism (Q,P ) ∈ M,

Ev(Q∗(θ1), P
∗(θ1)) = Ev(Q(θ1), P (θ1)).

Because N = 2, the weak dominance claim is thus equivalent to the claim

that, for any robust mechanism (Q,P ) ̸= (Q∗, P ∗),

Ev(Q∗(θ2), P
∗(θ2)) > Ev(Q(θ2), P (θ2)).

It suffices to show that (q∗2, p
∗
2) uniquely maximizes the seller’s payoff from θ2

subject to the downward incentive compatibility constraint. That is, it suffices

to show that (q∗2, p
∗
2) solves the relaxed problem13

max
q2,p2

p2 −
1

2
q22

subject to

u(q2, θ2)− p2 ≥ u(q∗1, θ2)− p∗1.

In any solution, the incentive compatibility constraint binds, yielding p2 =

u(q2, θ2)+ p∗1−u(q∗1, θ2). Eliminating constants from the objective function, it

follows that any optimal quality must solve

max
q2

θ2q2 −
1

2
q22.

The unique solution is q2 = θ2, which yields p2 = θ22 − θ21. So, (q
∗
2, p

∗
2) uniquely

maximizes the seller’s payoff from θ2.

In settings such as Example 2, Börgers (2017) argues that the seller should

select a robust mechanism that is also admissible. Indeed, admissibility is

13Stochastic mechanisms are strictly suboptimal in the example given the linearity of u
and the strict convexity of c.

18



often imposed as a choice axiom in decision theory.14

Definition 6

The mechanism (Q,P ) ∈ M is admissible if there does not exist a mecha-

nism (Q′, P ′) ∈ M that weakly dominates it.15

The following Theorem establishes that requiring the seller to choose an

optimal mechanism against some full support and adversarial LPS is equivalent

to requiring the seller to choose a robust and admissible mechanism.

Theorem 2 (Characterization of perfectly robust mechanisms)

A mechanism (Q,P ) ∈ M is perfectly robust if and only if it is robust and

admissible.

Proof. It is first proven that if a mechanism (Q,P ) ∈ M is perfectly robust,

then it is robust and admissible. Suppose (Q,P ) ∈ M is perfectly robust.

Then, by definition, there exists an LPS, µ, that is adversarial with respect to

(Q,P ) and such that (Q,P ) is µ-optimal. Hence, it is robust. To prove that

such a mechanism is admissible, observe that if (Q,P ) ∈ M is not admissible,

then there exists a mechanism (Q′, P ′) ∈ M that weakly dominates it. Hence,

(Q′, P ′) is lexicographically preferred to (Q,P ) given any full support LPS, µ.

It follows that (Q,P ) cannot be a best-response to any full support LPS and,

hence, cannot be perfectly robust.

To prove sufficiency, suppose that (Q,P ) ∈ M is robust. By Theorem 1,

Ev(Q(θ1), P (θ1)) ≤ Ev(Q(θ), P (θ)) for all θ ∈ Θ.

So, any LPS, µ, with µ1 = δ1 is adversarial with respect to (Q,P ). Moreover,

because (Q(θ1), P (θ1)) is full-information optimal for type θ1, for any (Q
′, P ′) ∈

M,

Ev(Q′(θ1), P
′(θ1)) ≤ Ev(Q(θ1), P (θ1)).

14See, e.g., Luce and Raiffa (1957) p. 287, Axiom 5 and p. 77 for an argument for its
imposition in the particular context of two-player, zero-sum games.

15If σ ∈ ∆(M) dominates (Q,P ) ∈ M, then there exists a pure strategy (Q′, P ′) ∈ M
that dominates (Q,P ) by the reduction argument in footnote 9. So restricting attention to
pure strategy domination in the definition of admissibility is without loss of generality.

19



So, no other mechanism obtains a higher first-order payoff than (Q,P ) against

any LPS with µ1 = δ1.

If, in addition, (Q,P ) ∈ M is admissible, then there exists a full support

distribution ρ ∈ ∆(Θ) such that, for any (Q′, P ′) ∈ M,∑
θ∈Θ

ρ(θ)Ev(Q(θ), P (θ)) ≥
∑
θ∈Θ

ρ(θ)Ev(Q′(θ), P ′(θ)). (2)

The proof of this claim is immediate from a standard linear programming

duality argument if M is assumed to be finite (see, e.g., Myerson (1991) The-

orem 1.7). Appendix A shows that the claim continues to hold even though

M is infinite. Thus, (Q,P ) ∈ M is µ-optimal for µ = (δ1, ρ). Because µ has

full support and is adversarial with respect to (Q,P ), it follows that (Q,P ) is

perfectly robust.

An immediate implication of Theorem 2 is that, in Example 2 (and any

setting with two types), the unique perfectly robust mechanism is the efficient

and revenue maximizing mechanism. Observe that in Example 2 the efficient

and revenue maximizing mechanism is robust and admissible. If it were to

be weakly dominated, then it must be dominated by a robust mechanism —

if a mechanism is not robust, then it attains a strictly lower payoff from θ1.

Moreover, it was shown that the efficient and revenue maximizing mechanism

attains a strictly higher payoff from type θ2 than any other robust mechanism.

With more than two types, perfectly robust mechanisms need not be ef-

ficient. The following example — a minimal departure from Example 2 —

demonstrates that “intermediate” types can be maximally distorted subject

to monotonicity constraints on the allocation rule.16

Example 3. Suppose Θ = {θ1, θ2, θ3}, Q = [0,max(Θ)], u(q, θ) = θq, and

c(q) = 1
2
q2. Consider an allocation in which bothQ(θ1) andQ(θ2) are the Dirac

measure on q∗1 = θ1 and Q(θ3) is the Dirac measure on q∗3 = θ3; notice that the

allocation to the middle type is completely distorted subject to monotonicity

16If the seller restricts herself to use deterministic mechanisms, then it is possible to show
that any such mechanism entails efficiency for types θ1 and θN . However, all other types
may receive a distorted allocation.
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of the allocation rule. Moreover, suppose that prices are determined by the

individual rationality constraint for the lowest type and the downward adjacent

incentive compatibility constraints:

P (θ1) = P (θ2) = u(q∗1, θ1) and

P (θ3) = u(q∗1, θ1) + u(q∗3, θ3)− u(q∗1, θ3).

It is easy to verify that (Q,P ) ∈ M. In addition, the LPS µ = (δ1, δ3, δ2) has

full support and is adversarial with respect to (Q,P ) ∈ M because the seller’s

payoff is increasing in the buyer’s type.

It remains to show that (Q,P ) ∈ M is µ-optimal and, therefore, perfectly

robust. Observe first that (Q(θ1), P (θ1)) uniquely attains the highest possible

payoff against δ1. Second, from standard constraint simplification arguments,

any mechanism that is full-information optimal for the lowest type cannot at-

tain a payoff against δ3 higher than the value of the following relaxed problem:

max
(q2,p2),(q3,p3)

p3 −
1

2
q23

subject to

u(q3, θ3)− p3 ≥ u(q2, θ3)− p2

u(q2, θ2)− p2 ≥ u(q∗1, θ2)− u(q∗1, θ1)

q3 ≥ q2 ≥ q∗1.

It is immediate that, in any solution, the second incentive constraint binds. If

not, then p2 can be strictly increased, slackening the first incentive constraint.

Hence, p3 can be strictly increased to strictly increase the objective function.

So,

p2 = u(q∗1, θ1) + u(q2, θ2)− u(q∗1, θ2)
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in any solution. The relaxed problem thus reduces to

max
q2,(q3,p3)

p3 −
1

2
q23

subject to

u(q3, θ3)− p3 ≥ u(q2, θ3)− u(q2, θ2)− (u(q∗1, θ1)− u(q∗1, θ2))

q3 ≥ q2 ≥ q∗1.

Notice that the incentive constraint must bind in any solution. Moreover, the

right-hand side of the incentive constraint is minimized subject to q2 ≥ q∗1 if

and only if q2 = q∗1 because

u(q2, θ3)− u(q2, θ2) = (θ3 − θ2)q2.

Hence, in any solution, it must be that q2 = q∗1 and

p3 = u(q∗1, θ1) + u(q3, θ3)− u(q∗1, θ3).

Substituting p3 into the objective function and eliminating constants yields

the surplus maximization problem

max
q3

p3 −
1

2
q23,

whose solution is q∗3 = θ3. It follows that (Q,P ) ∈ M uniquely maximizes

the seller’s second-order payoff (it is uniquely optimal in the relaxed problem

and is feasible in the constrained problem). Therefore, it is optimal against

(δ1, δ3, δ2).

22



3.4 Properly robust mechanisms

Are the beliefs sustaining the inefficient mechanism in Example 3 reasonable?

If the seller were truly concerned with the robustness of her mechanism, then

she might be relatively more concerned about a buyer type that is more harm-

ful for her bottom line than a type that is less harmful. In particular, the

LPS µ′ = (δ1, δ2, δ3) seems more consistent with uncertainty aversion than

µ = (δ1, δ3, δ2) because the seller obtains a strictly higher payoff from θ3 than

θ2. The main result of the paper is that, when the seller must play a best-

response to a full support and strongly adversarial LPS (such as µ′ = (δ1, δ2, δ3)

in Example 3), a sharp prediction arises: the seller’s unique optimal mecha-

nism is the efficient and revenue maximizing mechanism.

Theorem 3 (Characterization of properly robust mechanisms)

A mechanism is properly robust if and only if it is efficient and revenue max-

imizing.

Proof. To establish sufficiency, suppose (Q,P ) ∈ M is the efficient and revenue

maximizing mechanism. To prove that it is properly robust, consider the

LPS µ = (δ1, δ2, . . . , δN). By construction, µ has full support. Because the

seller’s payoff under (Q,P ) is increasing in the buyer’s type, µ is also strongly

adversarial with respect to (Q,P ). To show that (Q,P ) is µ-optimal, proceed

by induction on the vector of payoffs obtained from an arbitrary mechanism

(Q′, P ′) ∈ M. For the base case, note that (Q(θ1), P (θ1)) is full-information

optimal against δ1. Hence, (Q′, P ′) cannot obtain a higher first-order payoff

than (Q,P ) against µ. Now, suppose Q′ is efficient for types θ1, . . . , θk and P ′

is revenue maximizing given Q′ for types θ1, . . . , θk. That is,

P ′(θ1) = u(q∗1, θ1) and

P ′(θj) = u(q∗1, θ1) +

j∑
i=2

u(q∗i , θi)− u(q∗i−1, θi) for j ∈ {2, ..., k}.

Any mechanism in this class that maximizes the seller’s (k+1)-th order payoff
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cannot yield a higher payoff than the solution to the relaxed problem

max
Q∈∆(Q),p∈R

p− Ec(Q)

subject to

Eu(Q, θk+1)− p ≥ ū := u(q∗k, θk+1)− P (θk).

(3)

In any solution to (3), p is determined by the binding constraint. Substituting

the binding constraint into the objective function and eliminating the constant

ū yields the surplus maximization problem

max
Q∈∆(Q)

Eu(Q, θk+1)− Ec(Q),

whose value is no higher than what is attained under an efficient allocation

for type θk+1. It follows that (Q′, P ′) cannot attain a higher (k + 1)-th order

payoff than any mechanism that is efficient and revenue maximizing for types

θ1, . . . , θk+1. The µ-optimality of (Q,P ) follows from induction.

To establish necessity, let M′ ⊇ M denote the set of pairs (Q,P ), where

Q : Θ → ∆(Q) and P : Θ → R+, that are individually rational and satisfy the

downward adjacent incentive compatibility constraints: for all i = 2, . . . , N ,

Eu(Q(θi), θi)− P (θi) ≥ Eu(Q(θi−1), θi)− P (θi−1).

It is shown that if a mechanism is properly robust in the relaxed mechanism

space M′ (i.e., there exists a full support LPS µ that is strongly adversarial

with respect to the mechanism and the mechanism is lexicographically pre-

ferred to any other in M′), then it is the efficient and revenue maximizing

mechanism. Because the efficient and revenue maximizing mechanism is fea-

sible in M, the desired result follows.

Now, fix a properly robust mechanism (Q,P ) ∈ M′. It is first shown

that Ev(Q(θ), P (θ)) must be non-decreasing in θ ∈ Θ. Suppose, towards con-

tradiction, that Ev(Q(θ), P (θ)) is not non-decreasing. Then, there exists an

integer j ∈ {1, . . . , N−1} such that Ev(Q(θj+1), P (θj+1)) < Ev(Q(θj), P (θj)).
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Let J denote the smallest such integer. Now, consider the pair of functions

(Q′, P ′) that is identical to (Q,P ) for types θ1, . . . , θJ , but sets Q
′(θ) = Q(θJ)

and P ′(θ) = P (θJ) for each θ ∈ {θJ+1, . . . , θN}. Notice that (Q′, P ′) is in-

dividually rational and satisfies all downward adjacent incentive compatibil-

ity constraints, i.e., (Q′, P ′) ∈ M′. In addition, (Q,P ) is not lexicographi-

cally preferred to (Q′, P ′) against any full support LPS that is strongly ad-

versarial with respect to (Q,P ). To see why, fix such an LPS, µ, and let

κ := min{k : µk(θJ+1) > 0}. For any type θ ≤ θJ , Ev(Q′(θ), P ′(θ)) =

Ev(Q(θ), P (θ)). In addition, if θ > θJ and µk(θ) > 0 for some k ∈ {1, . . . , κ},
then Ev(Q(θ), P (θ)) ≤ Ev(Q(θJ+1), P (θJ+1)) < Ev(Q(θJ), P (θJ)) = Ev(Q′(θ), P ′(θ)).

So, by Ev(Q(θJ+1), P (θJ+1)) < Ev(Q′(θJ+1), P
′(θJ+1)),∑

θ∈Θ

µκ(θ)Ev(Q(θ), P (θ)) <
∑
θ∈Θ

µκ(θ)Ev(Q′(θ), P ′(θ))

and, for any strictly positive integer k < κ,∑
θ∈Θ

µk(θ)Ev(Q(θ), P (θ)) ≤
∑
θ∈Θ

µk(θ)Ev(Q′(θ), P ′(θ)).

It follows that (Q,P ) is not lexicographically preferred to (Q′, P ′). Hence, it

is not properly robust.

Observe now that if (Q,P ) ∈ M′ is properly robust, then Q(θ1) is the Dirac

measure on q∗1 and P (θ1) = u(q∗1, θ1) (because any properly robust mechanism

is robust and, therefore, full-information optimal for type θ1 by the argument

in Theorem 1). It is shown that if Q(θi) is the Dirac measure on q∗i and P (θi)

is pinned down by (1) for types θ ∈ {θ1, . . . , θk}, then Q(θk+1) is the Dirac

measure on q∗k+1 and P (θk+1) is pinned down by (1) in any properly robust

mechanism (Q,P ) ∈ M′. Suppose, towards contradiction, that the implica-

tion does not hold. Consider the mechanism (Q′, P ′) ∈ M′ that coincides with

(Q,P ) ∈ M′ for types θ ∈ {θ1, . . . , θk}, but which is efficient and revenue max-

imizing. Then, under (Q′, P ′) ∈ M′, Ev(Q′(θi), P
′(θi)) = Ev(Q(θi), P (θi))

for i = 1, . . . , k and Ev(Q′(θi), P
′(θi)) > Ev(Q(θk+1), P (θk+1)) for i = k +

1, . . . , N . If Ev(Q(θk+1), P (θk+1)) < Ev(Q(θk+2), P (θk+2)), then let J =
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k + 1. Otherwise, let J ∈ {k + 2, . . . , N} be the largest integer such that

Ev(Q(θk+1), P (θk+1)) = Ev(Q(θk+2), P (θk+2)) = · · · = Ev(Q(θJ), P (θJ)). If

(Q,P ) ∈ M′ is properly robust, then Ev(Q(θ), P (θ)) is non-decreasing in θ by

the previous paragraph. So, for any type θ > θJ , θ <µ θj for all j = 1, 2, . . . , J

under any full support LPS µ that is strongly adversarial with respect to

(Q,P ). Because Ev(Q′(θi), P
′(θi)) = Ev(Q(θi), P (θi)) for i = 1, . . . , k and

Ev(Q′(θi), P
′(θi)) > Ev(Q(θi), P (θi)) for i = k + 1, . . . , J , it follows that

(Q,P ) is not lexicographically preferred to (Q′, P ′) under µ. In particular, for

κ := min{ℓ : µℓ(θk+1) > 0},∑
θ∈Θ

µκ(θ)Ev(Q(θ), P (θ)) <
∑
θ∈Θ

µκ(θ)Ev(Q′(θ), P ′(θ))

and, for any strictly positive integer k < κ,∑
θ∈Θ

µk(θ)Ev(Q(θ), P (θ)) ≤
∑
θ∈Θ

µk(θ)Ev(Q′(θ), P ′(θ)).

Hence, (Q,P ) is not properly robust. The proof of necessity follows from

induction.

To conclude the analysis of Example 3, observe that the unique prop-

erly robust mechanism is the efficient and revenue maximizing mechanism; it

is µ-optimal with respect to the full support and strongly adversarial LPS

µ = (δ1, δ2, δ3). The logic is simple: against δ1, any µ-optimal mechanism

must have Q(θ1) equal to the Dirac measure on q∗1 with prices extracting full

surplus. Within the set of mechanisms with this property, any optimal mech-

anism against δ2 must set Q(θ2) equal to the Dirac measure on q∗2, with prices

extracting as much surplus as possible subject to the downward adjacent in-

centive compatibility constraint. Repeating the argument for the highest type

establishes the result.
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4 Alternative foundations

4.1 Bayesian foundations

The proof of Theorem 3 establishes that any properly robust mechanism is a

best-response to the LPS µ = (δ1, δ2, . . . , δN). By construction, it is therefore

Bayesian optimal against δ1. Notice, however, that any mechanism that is

full-information optimal for type θ1 is Bayesian optimal against δ1. For sim-

plicity of exposition, suppose for now that the seller restricts herself to using

deterministic mechanisms. Then, a (deterministic) allocation rule is a part of

a ρ-optimal mechanism if and only if it solves

max
Q:Θ→Q

N∑
i=1

ρ(θi) [u(Q(θi), θi)− c(Q(θi))− d(θi)]

subject to

d(θi) =

h(θi) (u(Q(θi), θi+1)− u(Q(θi), θi)) if ρ(θi) > 0

0 otherwise

Q(·) non-decreasing,

(4)

where h(θi) =
∑n

j=i+1 ρ(θj)/ρ(θi) is the inverse hazard rate for type θi and

d(θi) is a term that distorts the allocation given to a buyer of type θi. Notice,

for any full-support prior distribution, quality distortions must arise for all

types below θN and these distortions depend on the shape of the corresponding

inverse hazard rates. However, for ρ = δ1, there are no restrictions on the form

of the optimal mechanism other than full-information optimality for the lowest

type (because no other type appears in the objective function).

Due to the relationship between LPSs and the vanishing “trembles” used

in the literature on equilibrium refinements, there is a precise sense in which

properly robust mechanisms outperform others in the limit of particular se-

quences of Bayesian priors converging to δ1. Specifically, given any LPS

µ = (µ1, . . . , µK) and vector r ∈ (0, 1)K−1, define a probability measure on
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Θ by the nested convex combination

r□µ := (1− r1)µ1+

r1 [(1− r2)µ2 + r2 [(1− r3)µ3 + r3 [· · ·+ rK−2 [(1− rK−1)µK−1 + rK−1µK ] · · · ]]] .

Now, suppose (Q,P ) ∈ M is a properly robust mechanism and (Q′, P ′) ∈ M
is not properly robust. It is shown that, if µ = (δ1, . . . , δN) and (r(ℓ))ℓ ∈
((0, 1)K−1)N converges to the zero vector, then (Q,P ) yields a higher expected

payoff for the seller than (Q′, P ′) along the tail of the sequence of prior beliefs

(r(ℓ)□µ)ℓ. Moreover, a converse result holds.

Corollary 1 (Bayesian foundations)

Let µ = (δ1, . . . , δN). A mechanism (Q,P ) ∈ M is properly robust if and

only if for any mechanism (Q′, P ′) ∈ M that is not properly robust and any

sequence (r(ℓ))ℓ ∈ ((0, 1)K−1)N with r(ℓ) → (0, 0, . . . , 0), there exists an L ∈ N
such that∑
θ∈Θ

(r(ℓ)□µ)(θ)Ev(Q(θ), P (θ)) >
∑
θ∈Θ

(r(ℓ)□µ)(θ)Ev(Q′(θ), P ′(θ)) for all ℓ ≥ L.

Proof. Immediate from the sufficiency direction of Theorem 3 and Proposition

4 of Mailath, Samuelson, and Swinkels (1997), which itself is almost immediate

from Proposition 1 of Blume, Brandenburger, and Dekel (1991b).

To better understand the intuition behind the result, suppose |Θ| = 3 and

consider a sequence (r1(ℓ), r2(ℓ))ℓ ∈ ((0, 1)2)N for which (r1(ℓ), r2(ℓ)) → (0, 0).

Then, for µ = (δ1, δ2, δ3), the Bayesian prior (r(ℓ)□µ) sets

(r(ℓ)□µ)(θ1) = 1− r1(ℓ),

(r(ℓ)□µ)(θ2) = r1(ℓ) (1− r2(ℓ)) , and

(r(ℓ)□µ)(θ3) = r1(ℓ)r2(ℓ).
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The corresponding inverse hazard rates are

hℓ(θ1) =
r1(ℓ)

1− r1(ℓ)
,

hℓ(θ2) =
r2(ℓ)

1− r2(ℓ)
, and

hℓ(θ3) = 0.

If r1(ℓ) ≥ r2(ℓ) for each ℓ, then the inverse hazard rate is non-increasing in type

and the monotonicity constraint on the allocation rule does not bind in the

(deterministic) Bayesian screening problem (4). By Strausz (2006), restricting

attention to deterministic mechanisms is thus without loss of optimality; there

is a deterministic mechanism, (Qℓ, Pℓ), where Qℓ : Θ → Q and Pℓ : Θ → R+,

that is r(ℓ)□µ-optimal in the space of all mechanisms. Necessarily, it satisfies

Qℓ(θi) ∈ argmax
q∈Q

u(q, θi)− c(q)− dℓ(θi),

where

dℓ(θi) = hℓ(θi) (u(q, θi+1)− u(q, θi)) ,

and Pℓ satisfies (1) replacing Q(·) with Qℓ(·) and eliminating expectations.

Now, suppose (Q′, P ′) is a deterministic mechanism that is not efficient and

revenue maximizing. Then, because maxθ hℓ(θ) → 0 as ℓ → ∞, the efficient

and revenue maximizing mechanism, (Q,P ), will attain expected profits closer

to the r(ℓ)□µ-optimal mechanism than (Q′, P ′) for ℓ sufficiently large. This

sketch formalizes the following “Bayesian” intuition: if lower value buyers are

much more likely than higher value buyers, then inverse hazard rates con-

verge to zero. Correspondingly, quality distortions converge to zero in any

corresponding sequence of deterministic, Bayesian optimal mechanisms.
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4.2 Leximin foundations

A related optimality criterion to proper robustness is the leximin criterion

(Rawls (1971), Sen (1970)). Modifying Savage (1972)’s framework to allow

for discontinuous preferences over subjective lotteries, Mackenzie (2024) re-

cently showed that the leximin criterion reflects an axiom of “maximal risk

aversion”.17 A definition of leximin optimality adapted to the setting studied

in this paper is provided below.

Definition 7 (Leximin optimality)

A mechanism (Q,P ) ∈ M is leximin preferred to the mechanism (Q′, P ′) ∈
M if there exist permutations π : {1, . . . , N} → {1, . . . , N} and π′ : {1, . . . , N} →
{1, . . . , N} such that

1. for any i ∈ {1, . . . , N} and j ∈ {1, . . . , N} satisfying i ≤ j,

Ev(Q(θπ(i)), P (θπ(i))) ≤ Ev(Q(θπ(j)), P (θπ(j)))

and

Ev(Q(θπ′(i)), P (θπ′(i))) ≤ Ev(Q(θπ′(j)), P (θπ′(j)));

2. and

(
Ev(Q(θπ(k)), P (θπ(k)))

)N
k=1

≥L

(
Ev(Q′(θπ′(k)), P

′(θπ′(k)))
)N
k=1

.

A mechanism (Q,P ) ∈ M is leximin optimal if it is leximin preferred to

any mechanism (Q′, P ′) ∈ M.

In general decision problems, leximin optimality does not imply perfect

(and, hence, proper) robustness; leximin optimal strategies need not be a

best-response to any full support LPS.

Example 4. Consider the decision problem in Figure 2; again, the decision-

maker chooses a row and each column corresponds to a state. U is associated

17I thank Andy Mackenzie for introducing me to the leximin criterion and for conjecturing
that Corollary 2 holds.
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L C R
U 6 3 3
M 3 3 6
D 4 3 4

Figure 2: Leximin optimality versus proper robustness.

with the sorted payoff vector (3, 3, 6); M is associated with the sorted payoff

vector (3, 3, 6); and D is associated with the sorted payoff vector (3, 4, 4).

Hence, D is leximin preferred to U and M . On the other hand, D is neither

perfectly nor properly robust. To see why, fix any full support LPS, µ, of

length K and let κ := min{k ∈ {1, . . . , K} : µk(L) > 0 or µk(R) > 0}.
Then, for any strictly positive integer k < κ, µk(C) = 1. So, for all strictly

positive integers k < κ,

Eµk
[f(U, θ̃)] = Eµk

[f(M, θ̃)] = Eµk
[f(D, θ̃)] = 3,

where f : {U,M,D} × {L,C,R} → R is the decision-maker’s payoff function.

Moreover,

Eµκ [f(D, θ̃)] < max{Eµκ [f(U, θ̃)],Eµκ [f(M, θ̃)]}.

Hence, D is not lexicographically preferred to either U or M . So, D is not a

best-response to any full-support LPS, i.e., it is neither perfectly nor properly

robust.

Nevertheless, the proof of Theorem 3 can be modified to show that the

unique leximin optimal mechanism is also the efficient and revenue maximizing

mechanism.

Corollary 2 (Leximin foundations)

A mechanism (Q,P ) ∈ M is leximin optimal if and only if it is efficient and

revenue maximizing.

Proof. Let M′ ⊇ M denote the set of pairs (Q,P ), where Q : Θ → ∆(Q) and

P : Θ → R+, that are individually rational and satisfy the downward adjacent
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incentive compatibility constraints: for all i = 2, . . . , N ,

Eu(Q(θi), θi)− P (θi) ≥ Eu(Q(θi−1), θi)− P (θi−1).

The third paragraph of the proof of Theorem 3 establishes that, for any

(Q,P ) ∈ M′ for which Ev(Q(·), P (·)) is not non-decreasing, there exists a

(Q′, P ′) ∈ M′ for which Ev(Q′(·), P ′(·)) is non-decreasing that is strictly lex-

imin preferred to (Q,P ). The first paragraph of the proof of Theorem 3

establishes that the efficient and revenue maximizing mechanism (Q,P ) ∈
M is strictly leximin preferred to any (Q′, P ′) ∈ M′\{(Q,P )} for which

Ev(Q′(·), P ′(·)) is non-decreasing. Hence, the efficient and revenue maximiz-

ing mechanism is strictly leximin preferred to all other mechanisms in M′.

Because the efficient and revenue maximizing mechanism belongs to M and

M′ ⊇ M, it is therefore the unique leximin optimal mechanism.

An interesting feature of Example 4 is that leximin optimality, perfect ro-

bustness, and proper robustness coincide if the choice space is extended to

allow for lotteries; the lottery 1
2
◦U + 1

2
◦M is the unique leximin optimal, per-

fectly robust, and properly robust strategy. So, Corollary 2 is perhaps unsur-

prising given that randomization has no “hedging” advantage in the screening

environment considered (see footnote 9).18 Nevertheless, it provides further

justification for the use of the efficient and revenue maximizing mechanism.

The Blume, Brandenburger, and Dekel (1991a) framework is used in this paper

in order to illuminate the connection between the seller’s lexicographic consid-

erations, the literature on equilibrium refinements, and Bayesian optimality.

Moreover, the criterion produces an arguably more cognitively straightfor-

ward foundation for the efficient and revenue maximizing mechanism; it is the

unique lexicographically optimal mechanism under the LPS µ = (δ1, . . . , δN).

18Restricting attention to pure strategies is often of interest in robust mechanism design
problems even if hedging has value in a simultaneous-move game with Nature; any hedging
benefit of randomization is eliminated under beliefs that Nature moves after the decision-
maker’s strategy is realized (see, e.g., Ke and Zhang (2020) for a discussion of the issues
concerning beliefs about the timing of resolution of uncertainty). Identifying general con-
ditions for finite and infinite-dimensional decision problems under which proper robustness
and leximin optimality coincide is thus an interesting avenue for future research.
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5 Discussion

This paper proposed a refinement of the maxmin criterion — proper robustness

— and characterized its predictions in a canonical screening environment. It

was shown that a mechanism is properly robust if and only if it is efficient

and revenue maximizing. While the screening model studied in this paper is

important in its own right, the optimality criterion developed can be used to

study other problems of economic interest, such as multi-dimensional screening

and mechanism design with multiple agents. The analysis of these important

extensions is left for future research.
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A Weak dominance and optimality

It is shown here that, for any admissible mechanism (Q,P ) ∈ M, there exists

a full support distribution ρ ∈ ∆(Θ) under which (Q,P ) is a best-response in

M. Observe that the following linear program has value strictly less than zero

if and only if there exists a full support distribution against which (Q,P ) ∈ M
is a best-response:

min
δ∈R,ρ∈RN

δ

subject to

−
∑
θ∈Θ

ρ(θ) ≥ −1

ρ(θ) + δ ≥ 0 for all θ ∈ Θ∑
θ∈Θ

ρ(θ) (Ev(Q(θ), P (θ))− Ev(Q′(θ), P ′(θ)) ≥ 0 for all (Q′, P ′) ∈ M.

(5)

To see why, suppose that the program has value strictly less than zero. Then,

there exists a feasible (δ, ρ) with ρ(θ) ≥ −δ > 0 for all θ ∈ Θ and
∑

θ∈Θ ρ(θ) ≤
1 such that∑

θ∈Θ

ρ(θ) (Ev(Q(θ), P (θ))− Ev(Q′(θ), P ′(θ)) ≥ 0 for all (Q′, P ′) ∈ M.
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If
∑

θ∈Θ ρ(θ) = 1, then ρ ∈ ∆(Θ) is a full support distribution against which

(Q,P ) is a best-response. If not, then (Q,P ) is a best-response against the

full support distribution ρ′ ∈ ∆(Θ) defined by

ρ′(θ) =
ρ(θ)∑
θ̂∈Θ ρ(θ̂)

.

For the other direction, suppose that ρ ∈ ∆(Θ) is a full support distribution

against which (Q,P ) is a best-response and let −δ = minθ ρ(θ). Then, (δ, ρ)

is feasible and −δ = ρ(θ′) for some θ′ ∈ Θ. Because ρ(θ′) > 0 by hypothesis,

it has thus been shown that there is a feasible solution with δ < 0. Hence, the

value of (5) must be strictly less than zero.

Let B+ denote the space of bounded, regular, and positive Borel measures

on M. Then, the dual of (5) can be formulated as

max
ϵ∈R+,η∈RN

+ ,σ∈B+

−ϵ

subject to∑
θ∈Θ

η(θ) = 1

η(θ)− ϵ+

∫
M

(Ev(Q(θ), P (θ))− Ev(Q′(θ), P ′(θ))) dσ(Q′, P ′) = 0 for all θ ∈ Θ.

(6)

Note also that (5) is the dual of (6). It is now shown that (6) has value

greater than or equal to zero if and only if there exists a σ ∈ ∆(M) that

weakly dominates (Q,P ) ∈ M. Suppose that the dual program has value

weakly greater than zero. Then, there exists a feasible (ϵ, η, σ) with ϵ ≤ 0 (in

fact, feasibility implies ϵ = 0). Hence, for all θ ∈ Θ,

η(θ) +

∫
M

(Ev(Q(θ), P (θ))− Ev(Q′(θ), P ′(θ))) dσ(Q′, P ′) ≤ ϵ ≤ 0,

or

η(θ) +

∫
M

Ev(Q(θ), P (θ))dσ(Q′, P ′) ≤
∫
M

Ev(Q′(θ), P ′(θ))dσ(Q′, P ′).
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Because η(θ) ≥ 0 for θ ∈ Θ and
∑

θ∈Θ η(θ) = 1 (so that η(θ′) > 0 for some

θ′ ∈ Θ), it follows that∫
M

Ev(Q(θ), P (θ))dσ(Q′, P ′) ≤
∫
M

Ev(Q′(θ), P ′(θ))dσ(Q′, P ′)

for all θ ∈ Θ and∫
M

Ev(Q(θ′), P (θ′))dσ(Q′, P ′) <

∫
M

Ev(Q′(θ′), P ′(θ′))dσ(Q′, P ′) (7)

for some θ′ ∈ Θ. Thus, if σ ∈ B+ is a probability measure on M, i.e.,

σ ∈ ∆(M) and

Ev(Q(θ), P (θ)) =

∫
M

Ev(Q(θ′), P (θ′))dσ(Q′, P ′),

then σ dominates (Q,P ). If σ ∈ B+ is not a probability measure, then the

re-scaled measure σ′ ∈ ∆(M) defined by19

σ′(E) =
σ(E)

σ(M)
for each Borel set E

dominates (Q,P ). For the other direction, suppose there exists σ ∈ ∆(M) ⊂
B+ that weakly dominates (Q,P ). Set ϵ = 0 and define η(θ) for each θ ∈ Θ

using the second constraint:

η(θ) = −
∫
M

(Ev(Q(θ), P (θ))− Ev(Q′(θ), P ′(θ))) dσ(Q′, P ′).

Because σ weakly dominates (Q,P ), we have η(θ) ≥ 0 for all θ ∈ Θ and

η(θ′) > 0 for some θ′ ∈ Θ. If
∑

θ η(θ) = 1, then (ϵ, η, σ) is feasible, implying

that the value of the dual is at least zero. Otherwise, define η′ ∈ RN
+ and

σ′ ∈ B+ by

η′(θ) =
η(θ)∑
θ̂∈Θ η(θ̂)

for each θ ∈ Θ

19Notice that the denominator is strictly positive by (7).
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and

σ′(E) =
σ(E)∑
θ̂∈Θ η(θ̂)

for each Borel set E.

Then (ϵ, η′, σ′) is feasible, again implying that the value of the dual is at least

zero.

It is now shown that the value of (6) equals the value of (5), i.e., strong

duality holds for the pair of linear programs. Note that all constraints in (6)

can be satisfied: set ϵ = 1
N
, η(θ) = 1

N
for all θ ∈ Θ, and σ to be the Dirac

measure on (Q,P ). Moreover, the value of (6) is finite: ϵ ≥ 0 by feasibility

and the value must be smaller than 1
N
. If M were finite, the equivalence

of the values of (5) and (6) would then be immediately satisfied by strong

duality for finite linear programs. Strong duality need not hold, in general,

for linear programs with an infinite number of constraints (see Section 4.2.1 of

Anderson and Nash (1987) for an example). Notice, however, that (6) is of the

form (EP) in Section 3.3 of Anderson and Nash (1987) when the max operator

is replaced with the min operator in the objective function and the minus

sign is removed. Hence, by Theorem 3.10 of Anderson and Nash (1987), it is

sufficient to observe that the following set is closed to establish the equivalence

of the values of (6) and (5):

D = {x(ϵ, η, σ) ∈ RN+2 : ϵ ∈ R+, η ∈ RN
+ , σ ∈ B+},

where

x1(ϵ, η, σ) =
∑
θ∈Θ

η(θ)

x2(ϵ, η, σ) = η(θ1)− ϵ+

∫
M

(Ev(Q(θ1), P (θ1))− Ev(Q′(θ1), P
′(θ1))) dσ(Q

′, P ′)

...

xN+1(ϵ, η, σ) = η(θN)− ϵ+

∫
M

(Ev(Q(θN), P (θN))− Ev(Q′(θN), P
′(θN))) dσ(Q

′, P ′)

xN+2(ϵ, η, σ) = ϵ.
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Closedness follows from continuity of x(ϵ, η, σ) in (ϵ, η, σ) ∈ R+×RN
+×B+ when

R+ ×RN
+ ×B+ is equipped with the product topology inducing the Euclidean

topology on R+ and RN
+ and the weak topology on B+.

To conclude the proof, notice that admissibility ensures that (6) has value

strictly smaller than zero. So, strong duality implies that (5) has strictly

negative value. Hence, for any admissible mechanism (Q,P ) ∈ M, there exists

a full support distribution ρ ∈ ∆(Θ) under which (Q,P ) is a best-response in

M.
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