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Abstract

We consider the disclosure problem of a sender with a large dataset of hard evidence. The

sender has an incentive to drop observations before submitting the data to the receiver to

persuade them to take a favorable action. We predict which observations the sender discloses

using a model with a continuum of data, and show that this model approximates the outcomes

with large, multi-variable datasets. In the receiver’s preferred equilibrium, the sender plays

an imitation strategy, under which they submit evidence that imitates the natural distribution

under a more desirable target state. As a result, it is enough for an experiment to record data on

outcomes that maximally distinguish higher states. A characterization of these strategies shows

that senders with little data or a favorable state fully disclose their data, but still suffer from

the receiver’s skepticism, and therefore are worse-off than they are under full information. On

the other hand, senders with large datasets can benefit from voluntary disclosure by dropping

observations under low states.
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1 Introduction

Many decisions – including technology adoption, regulatory approval, and research grantmaking

– are based on self-disclosed data. The datasets used can often be very large, on the order of

tens of thousands of trials for drug approval, and often hundreds of thousands of datapoints about

locations and sales in merger cases. In and of themselves, big datasets may paint an accurate

picture of reality, but the sender can disclose them strategically: it is easier to verify that the data

submitted are real than that they are complete, and even in the presence of mandatory disclosure

rules, deciding which observations are admissible to include in the dataset is largely at the sender’s

discretion.

We want to understand the role data play in strategic communication between the sender and the

decision-maker when receivers have uncertainty about the underlying dataset from which the sender

extracted the submitted data. We consider the case of a sender with state-independent motives to

persuade the receiver towards a particular action, and a receiver who observes a dataset the sender

discloses, but interprets it with partial skepticism that the data are incomplete. Equilibrium play

between the sender and receiver involves the sender submitting data as “proof” that the receiver

should take a favorable action, and the receiver evaluating how persuasive the proof is depending

on how likely it is sent by a sender with less persuasive data who has trimmed some discouraging

observations. This can be modeled under the framework of an evidence game in which senders that

have access to datasets with weakly more observations of each outcome can always mimic senders

with fewer observations. A special case, in which senders either have or do not have access to a

single data point, with probability known to the receiver, is already well-understood (Dye 1985),

and demonstrates that senders can manipulate the receiver by disclosing nothing when the evidence

is sufficiently poor.

Our primary innovation is to characterize disclosure in the opposite extreme, when datasets

contain many observations. We propose a continuous-data model of the asymptotic distribution

over potential datasets of the sender that depends on two things: the true state of the world that

generates the data, and a random variable that describes the amount of data the sender collects.

The continuum assumption captures the fact that empirical distributions are approximately deter-

ministic in the limit with large numbers, and allows us to eliminate uncertainty over the randomness

of draws, which makes the model more tractable than directly modeling large, finite N . Instead,

we show that the outcome we characterize in the continuous model describes the limit outcome of

communication in finite-data games as N → ∞.

In addition to an extensive list of observations, a second characteristic feature of “big” data

is a large outcome space. This motivates the novel use of a framework that encompasses general

statistical settings, including those in which outcome and state spaces are large and the relationship

between them complex. In particular, we place essentially no restrictions on the state-contingent
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data distribution. In general, unlike in a “good news-bad news” model of data, the ranking of

states and the shape of their data-generating distributions endogenously affects the interpretation of

different outcomes, and context determines whether data take on a positive or negative connotation.

Indeed, our first main result, Prop. 1, is a sufficiency result that says that in the receiver-optimal

partial pooling equilibrium outcome, the state-contingent experimental outcome distribution affects

the information transmitted only through a handful of key features: what matters are the obser-

vations of outcomes with the greatest likelihood ratio under a better vs. a worse state. Strikingly,

since the distribution of data that distinguishes one state from another depends solely on the rel-

ative probabilities of likelihood ratio-maximizing outcomes, a receiver who wants to distinguish a

relatively small number of states with many observations of high-dimensional data can do just as

well restricting the dataset to only retain information about these outcomes. When state-contingent

distributions of experimental outcomes satisfy the monotone likelihood ratio property (MLRP), we

return to the case of only one “good news” outcome, and distinguishing it from other outcomes is

sufficient to support receiver-optimal communication.

Our second result, Theorem 2, characterizes an “imitation” equilibrium implementation of the

receiver-optimal equilibrium outcome, in which senders always show the receiver a dataset that can

correspond to a naturally-generated dataset, so that on path, the receiver always places positive

probability on the event that the sender is sending all their data. However, the receiver also infers

from some datasets that the sender has with positive probability observed data corresponding to

a different state than the revealed data suggest, but has dropped observations in order to imitate

a more favorable distribution. When MLRP fails, it is important for the imitating sender to

send a large-enough mass of realizations of a certain outcome, but not too much. The resulting

outcome benefits senders under low states with more data at the expense of senders with less data

in high states, since the former pool with the latter. The extent of pooling depends on the receiver’s

uncertainty about the sender’s data collection capabilities: the greater the variance in the receiver’s

belief about how much data the sender starts out with, the more senders can profitably imitate

other senders, with outcomes converging to the full-information one as uncertainty vanishes.

The other contribution is an algorithm, in section 3.1, to construct the limit game equilibrium

outcomes that follows a top-down logic: senders with more data receive weakly greater payoffs, and

we can construct the payoff frontiers of the continuous payoff function by specifying the burden of

proof, or how much data of a given state’s distribution a sender needs, to induce a particular belief

in the receiver. The algorithm is applicable to any number of states and to any datasets with finite

support, and we illustrate it with representative 2 and 3 state examples.
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1.1 Related literature

Strategic disclosure has been studied since the work of Grossman (1981) and Milgrom (1981), which

showed that full disclosure is the unique outcome when receivers know that the sender wishes to

prove the value of a good is high using verifiable information that they could choose to disclose.

The assumption that receivers know the sender is informed is crucial to this benchmark, as Dye

(1985) and Jung and Kwon (1988) show. They consider a case in which the sender has access to a

single, real-valued piece of evidence with interior probability p ∈ (0, 1), and shows that only senders

for whom the evidence exceeds a threshold will choose to disclose it, with the rest withholding it

in order to pool with those senders who lack evidence altogether. Shin (1994, 2003) shows that in

the case where senders have an uncertain endowment of good news and bad news, the fact that

senders withhold bad enough evidence implies a “sanitation equilibrium”, in which all bad news is

disposed of.

We extend these results by considering evidence structures with large, multidimensonal datasets.

In our data-based setting, evidence is neither exogenously good nor bad, but the receiver draws

inferences statistically, based on knowledge of the relationship between relevant state-parameters

and the distributions of data they generate. The setting we consider encompasses the settings

above and captures a special case of more abstract evidence games of the type considered by Green

and Laffont (1986), Hart et al. (2017), and Glazer and Rubinstein (2006). The main focus in

those settings has been on receiver-optimal mechanisms to induce beneficial disclosures from the

sender. Hart et al. (2017) in particular is foundational to our equilibrium selection criterion. Their

observation that the optimal deterministic mechanism, the receiver-optimal equilibrium, and the

unique truth-leaning equilibrium all yield the same outcome generalizes straightforwardly to our

setting.1

Rappoport (2022) and Jiang (2022) use an iterative algorithm to solve for truth-leaning equi-

librium outcomes in finite evidence games, but it is computationally demanding to use it in games

with large type spaces, and therefore infeasible to directly compute the large-N limit of outcomes

in finite-data games. Our approach is instead to use a continuous-data approximation to solve for

asymptotic outcomes without explicitly computing outcomes of finite-data games, and to show that

it is exactly the big-data limit outcome.

Only one other paper that we know of, by Dzuida (2011), uses a continuous measure of evidence

to solve for communication with verifiable evidence. Differently from our model, hers considers

evidence with a continuum of states but a simple “good news-bad news” outcome structure, and

assumes there is a positive probability of a behavioral, honest type of the sender. The existence of

1The optimal mechanism equivalence result has been noted by others, including Glazer and Rubinstein (2006),
Sher (2011), and Ben-Porath et al. (2019), who show that the fact that commitment is not necessary for the optimum
is robust to other settings, in particular with binary actions and multiple senders with type-dependent preferences.
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the honest type, along with the assumption of continuity in outcomes, selects the most plausible

equilibrium in a similar fashion to truth-leaning. The honest type also drives one of the paper’s

key observations: providing interior amounts of negative evidence can be optimal in otherwise

sanitation-like equilibria, because honest types will send some negative evidence. The sender sends

intermediate amounts of evidence of some outcomes in our model as well, even though we lack

honest types. In particular, with more than two states or two outcomes, there is no single “good”

outcome, and we show that sending interior amounts of some outcomes may rule in just the right

set of rational types, while sending either none or as much as possible of an outcome might both

be strictly worse.

We also relate to a broader literature about the optimal collection and disclosure of evidence,

that considers costly (Migrow and Severinov (2022)) and dynamic evidence acquisition (Felgenhauer

and Schulte 2014, Henry and Ottaviani 2019), sender-optimal disclosure mechanisms (Haghtalab

et al. 2022), and discretionary disclosure after test or information design (Shiskin 2022, Dasgupta

et al. 2022). Several papers use a restricted notion of evidence but are also explicitly concerned with

the effect of allowing sample selection: Fishman and Haggerty (1990) and Di Tillio et al. (2021)

study the case in which only a subset of observations are disclosed, and give conditions under which

it is better that an informant have discretion over which data are selected.

Finally, there is a small literature of empirical findings about common patterns of voluntary

disclosure. Some work in econometrics by Simonsohn et al. (2014), Andrews and Kasy (2019) and

others studies the bias that arises from a range of exogenous patterns of selective reporting, and

describes inference procedures that correct for it. In addition, a small body of experimental work

studies how subjects disclose evidence when incentivized to persuade receivers in the lab. Jin et al.

(2021) finds evidence that receivers’ inferences are often biased by accounting insufficiently for the

sender’s nondisclosure, and Li and Schipper (2020) shows that senders are also biased towards

naive, truthful behavior. Both suggest that these behaviors are consistent with an initial lack of

higher-order sophistication that is remedied, to some extent, by experience. On the other hand,

Osun and Ozbay (2021) suggest that in a binary-type evidence game, senders’ disclosure policies

and receivers’ commitment policies differ from those predicted by Hart et al. (2017) in a direction

consistent with a positive cost of lying, which is absent from monetary payoffs but may be inherent

to the subjects’ preferences.

2 Model

States and payoffs. There is a sender (S), who wishes to communicate to a receiver (R) about

an unknown state of the world, θ ∈ Θ = {θ1, . . . , θJ}. The sender and receiver share a common

prior β0(·) over Θ. We assume that the receiver takes an action ar ∈ R and that θ1, . . . , θJ are real

numbers ordered with θj ≤ θj+1, representing the optimal action for the receiver under each state,
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if it was known with certainty. The sender’s payoff is simply (a monotone function of) ar;
2 in short,

regardless of their type, they want to induce the receiver to take the highest action possible.

Finally, we assume the receiver has an expected utility that is differentiable and single-peaked at

the action that matches their expectation of the value of θ, that is, that for any belief β ∈ ∆Θ, the

receiver’s expected payoff Eβ[ur(a)] is single-peaked at ar(β) = Eβ[θ].
3 We work with the sender’s

indirect utility as a function of the receiver’s beliefs, which induces them to maximize the receiver’s

posterior expectation of θ:

us(β) = Eβ[θ]. (1)

For example, when the receiver is a policymaker, states can represent the true optimal policy. While

the policymaker might be uncertain, they wish to enact a policy that matches the optimal policy

in expectation, while the sender wishes for them to take as high an action as possible.

Evidence. The private information of the sender comes in the form of hard evidence about the

state of the world. In particular, the sender has access to a dataset of observations drawn from

a finite set of outcomes, D = {1, . . . , D}. The underlying data-generating distribution is state-

contingent: under state θj , the observations are i.i.d. draws from distribution fj .

We model the amount of data the sender has access to as a mass, µ ∈ [0, 1], that represents

the fraction of total potential data that the sender can access, and has a continuous distribution,

g, that is state-independent4, supported on [0, 1] with g(1) = 0, and infinitely left-differentiable5.

The continuum assumption models big datasets in which the large number of draws essentially

removes all uncertainty about the impact of randomly realized outcomes on the sender’s dataset:

conditional on state θj , the empirical distribution of data the sender observes is certain to be fj ,

and µ does not affect the distribution of their evidence, only the amount of it. In other words,

with probability 1, a sender with a mass µ of data under state θj observes the dataset t = µfj .

Any nonzero measure of data fully informs the sender of the state, and the set of possible complete

datasets and types of the sender is T = [0, 1]×Θ.

The receiver, on the other hand, is uninformed about how much data the sender has. Their

2Because the receiver will always play a pure strategy, the sender’s problem is unchanged if their payoffs are
rescaled through a monotone mapping.

3The assumption of single-peakedness is necessary to identify the receiver-optimal equilibrium and the receiver-
optimal mechanism.

4For simplicity of exposition, we focus on the case in which their belief about µ conditional on θ is given by a
probability density g that is independent of θ, although most results hold identically for cases in which the distribution
of µ is state-specific.

5The assumption that g has a vanishing right tail ensures that it is continuous on R+ while being supported on
[0, 1], and simplifies the equilibrium construction: specifically, it ensures that the equilibrium payoffs are continuous
in µ.
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Figure 1: A feasible type and a feasible message.

prior belief about the sender’s type is given by the density

q(µfj) = β0(θj)g(µ). (2)

Messaging and inference. Senders can choose a subset of observations from their dataset to

submit to the receiver. We assume total flexibility in the choice of subset:

Assumption 1. The sender can send any message m ∈ M = [0, 1]×∆D that is a subset of their

dataset (m⊆̃µfj), where

m⊆̃µfj ⇔ m(d) ≤ µfj(d) ∀d ∈ D.

That is, a sender can drop an arbitrary mass of observations from their data, and then show the

remaining ones to the receiver. By dropping observations, they can arbitrarily alter the relative

frequencies of each outcome in the submitted dataset in order to imitate any distribution. However,

this is costly in that it reduces the size of the submitted dataset, which is observable.

We have that M ⊃ T : the message space contains the set of all possible complete datasets, but

also a D-dimensional set of other datasets that could be disclosed to the receiver after excluding

part of their dataset. For any set of messages M , define the upper set U(M) to be the set of types

that can send a message in M , and for any set of types T , define the lower set L(T ) as the set of

messages that some t ∈ T can send.

Call the disclosure game with these parameters G(Θ,D, β0, {fj}Jj=1, G). Upon observing the

sender’s message, the receiver updates their belief about the sender’s type to q(t|m), and then

forms a new belief about the state,

β(θj |m) =

∑J
j=1

∫ 1
µ=0 q(µfj |m)θj∑J

j=1

∫ 1
µ=0 q(µfj |m)

. (3)
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2.1 Equilibrium

The sender plays a messaging strategy σ∗ : T → ∆M, knowing which the receiver infers the

content of message they receive. As usual, the equilibrium we consider will be a Perfect Bayesian

Equilibrium (Fudenberg and Tirole 1970), that is, β∗(·|m) must be consistent with the sender’s

strategy σ∗, and the sender must optimize, so σ∗(m|t) > 0 only if m ∈ argmaxm′∈L(t) Eβ(·|m′)[θ].

Call the map from types to payoffs, uσ∗(t), the outcome of the equilibrium.6 In the perfectly

separating outcome, the sender obtains a payoff of θ. As in Milgrom (1981), Grossman (1981),

and Dye (1985), when g is a degenerate distribution such that µ is known to the receiver, then all

attempts to mislead the receiver unravel, and the fully separating outcome obtains in every PBE.

When g and all fj have full support, there is partial pooling in every PBE. However, PBE are often

not unique, and in this case, there may be multiple β∗, differing on off-path messages, that are

consistent with σ∗, and the game generically has multiple, non-payoff-equivalent PBE outcomes.

Any message that can be played by some type of sender under a state θj ≥ Eβ0 [θ] is played on-path

in some PBE.

Intuition suggests that the game is fundamentally one of imitation: senders tailor their data to

increase the receiver’s belief that the state is a higher one, and they can only do so by imitating

the datasets submitted by higher-state types, who themselves may be imitating others or trying to

distinguish themselves as well as possible from lower-state types. One way to imitate a higher-state

type of sender is to try to prove you have all the data that they would, and no more – that is, to

imitate their complete dataset. We define an imitation equilibrium to capture the idea that sender

masquerades as other type by imitating their full datasets.

Definition 2.1. (σ∗, β∗) is an imitation equilibrium if it is an equilibrium, and under σ∗,

a. Every on-path message is in T ,

b. Type µfj plays m ̸= µfj if and only if θj < maxm′∈L(t) Eβ∗(·|m′)[θ], and otherwise reports their

full dataset.

In other words, with an imitation messaging strategy every type of the sender either fully reveals

their data or imitates another type’s full dataset, and they only consider the latter if it could give

them a better payoff than letting the receiver be fully informed of the state.

Why do we focus on these equilibria? Imitation equilibria are truth-leaning, as first defined by

Hart et al. (2017) in the context of general evidence games with finite types. The idea applies

identically in this setting. Formally, given a base game G, for ϵ = (ϵt, ϵt|t)t∈T , let a game Gϵ be

the game with an identical type set and type distribution, but with two differences. First, type t’s

6This is a departure from the usual definition of an outcome of an extensive-form game, but consistent with the
definition in Hart et al. (2017) and Rappoport (2022). It describes the action the receiver plays after communicating
with each type, and so describes the consequences of communication in the game.
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payoffs to playing t are perturbed by ϵt, so that t’s payoff to playing t is Eβ(·|t)[θ] + ϵt. Secondly,

type t plays t with at least probability ϵt|t – i.e. with probability ϵt|t a sender with dataset t is a

commitment type that plays their full dataset regardless of whether doing so is optimal, while with

probability 1 − ϵt|t type t is strategic. A truth-leaning equilibrium is an equilibrium of the base

game that can be obtained as a limit of equilibria of ϵ-perturbed games as ϵ → 0.

While truth-leaning equilibrium strategies capture a sender’s slight bias towards truth-telling,

the truth-leaning equilibrium outcome has desirable properties in its own right. When the receiver’s

expected payoffs are single-peaked in their action, the truth-leaning equilibrium outcome is also

receiver-optimal, and is the outcome of the optimal mechanism when the receiver can commit to a

single action as a response to each message. This is well-known in the finite case studied by Hart

et al. (2017), and continues to be true in the continuous model that we study. It is also the only

equilibrium outcome robust to a slightly stronger version of a credible announcement (Matthews

et al. 1991). We say that under equilibrium σ∗ a collection T of types of the sender can benefit

from an inclusive credible announcement if there is a set of messages such that T is comprised of

every type that 1) finds some message in the set feasible and 2) weakly benefits from the receiver

updating that their type is in T from the prior, relative to the receiver’s equilibrium inference; and

there is at least one type in T that strictly benefits.7 Robustness to such announcements means

that the equilibrium survives even if senders are able to override the receiver’s beliefs by proposing

sensible reinterpretations of messages, and can coordinate to do so; it rules out, for example, play

that is “stuck” in a bad equilibrium due to immalleable off-path beliefs. For a deeper discussion of

these refinements, see Hart et al. (2017) and Appendix B.

Claim 1. Imitation equilibrium messaging strategies are the truth-leaning equilibrium messaging

strategies of G. Imitation equilibrium outcomes are:

• Receiver-optimal among equilibria and deterministic mechanisms;

• The unique inclusive announcement-proof equilibrium outcomes.

2.2 Examples

2.2.1 A 2-state prediction problem

A sender wishes to provide evidence to prove the quality of a prediction algorithm that aims to

classify whether a future event (e.g., rain) is likely or unlikely. The quality of the algorithm is either

high or low (Θ = {θL, θH}), with θL = 0 and θH = 1.8 Suppose that there are 4 possible outcomes,

7The departure from the usual credible announcement is that the collection of types making the announcment
must also contain all types who are indifferent between participating in the announcement and their equilibrium
payoff.

8We can think of the high-quality algorithm as being able to more accurately make the right call when it will not
rain, while the low-quality algorithm often predicts rain even when it will not rain.
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D = {1, 2, 3, 4} with the following distribution of outcomes per state:

j fj(1) fj(2) fj(3) fj(4)

H 0.6 0.2 0.1 0.1

L 0.4 0.2 0.3 0.1

Table 1: The generating distribution of outcomes under states θH and θL.
Outcome 1 is (predict no rain, no rain), outcome 2 is (predict rain, rain), outcome 3 is (predict
rain, no rain), and outcome 4 is (predict no rain, rain).

Imitation implies that every on-path message either contains data distributed like fH or like fL,

which the receiver can interpret as a claim that “the state is θH” or “the state is θL”, respectively.

But since the sender strictly prefers the receiver to believe the state is H with higher probability,

there is no reason to imitate fL. Indeed, part 2.1(b) of the definition of an imitation equilibrium

ensures that the only on-path messages take the form µfH , since no posterior belief of the receiver

is worse for the sender than full certainty that θ = θL.

Additionally, the sender chooses an amount of data to send, which the receiver can interpret as

an amount of support to back up their claim. The sender’s true dataset determines whether they

are able to submit more or less data that fits the distribution, and it is optimal for the receiver

distinguish them along this margin to encourage partial separation. When evidence is generated as

in Table 1, the sender can send m = µfH if and only if the true data are µ′fH with µ′ ≥ µ, or µ′fL

with µ′ ≥ 3
2µ. The distinguishability factor of 3

2 reflects the relative advantage to a sender under

θH of imitating fH , and comes from the fact that in order to be able to submit enough observations

of outcome 1 to imitate µfH , a sender under θL must start with 3
2 as much data.

As a naive first guess, suppose that the sender’s strategy is to always send the maximum possible

amount of data that is distributed like fH .

mmax(µfH) = µfH , mmax(µfL) =
2

3
µfL. (4)

Consider the uniform prior β0(θH) = 1
2 and a data-mass distribution that is “triangular”,

g(µ) = 2− 4|x− 1/2|.

The receiver’s inference upon receiving a message mmax = µfH , plotted by the solid line in Figure
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(a) Posterior beliefs when g is triangular (b) Posterior beliefs when g is double-triangular

Figure 2: Inferences from message m = µfH in the binary-state example.

2(a), is

ρmax(µ) =



1, µ ≥ 2/3

4−4µ
10−13µ , µ ∈ [1/2, 2/3)

4µ
6−5µ , µ ∈ [1/3, 1/2)

4
13 , µ < 1/3.

To visualize how the receiver constructs the posterior inference, observe that the density of senders

who send a message µfH for a µ for whom the true state is θH and θM are g(µ) and 3g(3µ/2)
2 , which

are plotted as two dotted lines. Their ratio is the likelihood ratio of the high vs. the low state

given message µfH .

Observation 1. ρmax depends only on β0, g, and the distinguishability factor.

In other words, the distinguishability of fH from fL is a sufficient statistic for both distributions

that captures their implications for inferences under the naive strategy. In fact, we can verify

that the naive messaging strategy in eq. 4 supports an equilibrium, under the assumption that

any off-path messages feasible for some low-state type of the sender are evidence of the low state.

More generally, the naive strategy is the unique imitation equilibrium strategy whenever it induces

monotone inferences from the receiver.

In some cases, ρmax(µ) is nonmonotone, such as when µ takes the “double triangular” distribu-

tion

g(µ) =

2− 8|x− 1/4|, x ∈ [0, 1/2]

2− 8|x− 3/4|, x ∈ (1/2, 1].

If all types of the sender send the maximal mass of data imitating fH , then the message 1/2fH

makes the receiver more pessimistic than the message 1/3fH , and incentive compatibility fails

because a sender who was to send the former would choose to send the latter instead. This is easily

fixed, however, if, within a pooling interval, all types of the sender still imitate fH , but send less

than the maximal mass. The dashed line in Figure 2(b) shows that the receiver’s inferences given
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all messages in an interval can be equalized this way, so that the unique equilibrium inference is

instead an ironed version of ρmax(µ).
9

Remark. In this example, data on outcome 1 is the limiting factor that restricts the state-θL

sender from providing more data to support “the state is θH”. Data on the remaining outcomes

does not matter. There are several things one could do with the remaining outcomes that would not

change the results of disclosure:

1. Merge them, i.e., design an experiment that does not distinguish between outcomes 2, 3, and

4, and let the sender self-disclose raw data generated from the simplified experiment.

2. Delete them, i.e. allow the sender to report only observations of outcome 1, while leaving no

option to input instances of outcomes 2, 3, and 4.

Finding the determinants of distinguishability therefore points out ways to lighten the burden of

data transmitted while retaining the most essential information.

2.2.2 A 3-state extension

Now suppose there is a 3rd possible quality of the prediction model, represented by state θM . The

medium-quality model yields a different distribution of predictions; to summarize, the distributions

of the same 4 outcomes under all states are given by Table 2.10

fj(1) fj(2) fj(3) fj(4)

H 0.6 0.2 0.1 0.1

M 0.4 0.25 0.3 0.05

L 0.4 0.2 0.3 0.1

Table 2: Data-generating distributions under states θH , θM and θL.

Consider first the problem of a sender who knows that θ = θL. There are now 2 distributions

that they can imitate: fM and fH . On the other hand, a sender for whom θ = θM may wish to

9The ironing process can be described as follows. If all types that would send m = µfH for some µ ∈ [µ, µ̄] were
pooled, the receiver’s inference given the pool would be

p(µ, µ̄) =

∫ µ̄

µ
g(µ)dµ∫ µ̄

µ

(
g(µ) + 3g(3µ/2)

2

)
dµ

.

Given some µ∗ at which ρmax(µ) is decreasing, we can find µ < µ∗ < µ̄, such that either ρmax(µ) is increasing at
both µ and µ̄, and ρ(µ) = ρ(µ̄) = p(µ, µ̄); or µ = 0 and ρmax(µ) is increasing at µ̄ with ρ(µ̄) = p(µ, µ̄); or, µ̄ = 0 and
ρmax(µ) is increasing at µ with ρ(µ) = p(µ, µ̄). There is a pair (µ, µ̄) satisfying these criteria that are closest to µ∗,
and they are the endpoints of the ironing interval.

10In the example weather-prediction application, the state-M algorithm is better than the state-H algorithm at
calling the presence of rain, but worse at identifying when it will not rain. It is correct less often than the state-H
algorithm, but more often than the state-L algorithm.
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Figure 3: Under states θL, θH , and θM , the sender either imitates fH (in green region) or fM (in
blue region), or mixes (boundary). The arrows indicate datasets that selected types imitate, and
show that some types mix (bottom left).

imitate is fH , but never fL. It takes at least
5
4µfL and 3

2µfL to imitate µfM and µfH , respectively,

and 2µfM to imitate µfH . We can now keep track of three distinguishability factors, rL(M) = 5
4 ,

rL(H) = 3
2 , and rM (H) = 2.

Relative to the binary-state case, solving for the equilibrium when |Θ| ≥ 3 involves an extra step:

understanding which state a sender will choose to target in imitation. Nevertheless, construction

can proceed from the top down. First observe that types µfH with µ > 1
rL(H) can separate and

obtain a payoff of θH . We then ask which types of senders obtain a payoff v ∈ (θM , θH). For this

restricted set of payoff frontiers, it suffices to consider imitating fH only, since no message imitating

fM can yield a payoff greater than θM . Similarly to the binary-state case, in this regime the receiver

can conjecture that the sender “imitates as much of fH as possible”, and restore monotonicity if

needed by ironing. For payoff frontiers corresponding to v < θM , one of two things is possible. If

the state is θM and the sender has enough data to separate from all other types that cannot obtain

v > θM by imitating fH , then they play their full dataset and separate. Otherwise, unless the

state is θL, the sender plays their full dataset, but their full dataset is imitated by some type for

whom the state is low, and who plays a strategy that mixes between imitating fH and fL. Figure

3 summarizes how the three distinguishability factors rL(M), rL(H), and rM (H) determine the

equilibrium: it projects all types onto a space that summarizes how imitable fH and fM are, as the

vertical and horizontal dimensions, and shows their imitation strategies and payoffs in equilibrium.
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A novelty of the payoff structure with 3, and indeed more, states is that the sender will separate

and fully inform the receiver of the state only if they possess an intermediate amount of data –

ignoring the best and worst state, under θM there is a temptation to drop evidence with too much

data, and an inability to distinguish oneself from imitators when too little data is acquired. The

generality of multiple states also has other implications.

Observation 2. The multi-state case has features that do not occur when |Θ| = 2 or |D| = 2:

• Sending observations of multiple outcomes may be necessary, and an interior mass of obser-

vations of some outcomes may be strictly optimal.

• Keeping µ constant, the sender can receive greater payoffs under a lower state.

As an example of the first point, consider type µfL imitating 2
3µfH by sending a mass 1

15µ of

observations of outcome 4. Sending a greater mass would rule out the type 2
3µfH that it wants to

imitate, but sending less would rule in types like ( 2
15 − ϵ)µfM , which would worsen the receiver’s

inference from the message. To demonstrate the second point, observe that the type µfL obtains

a greater payoff than the type µfM when µ = 1, because the former can imitate 2
3µfH , while the

latter can only imitate 1
2µfH . In this case, the true state determines a sender’s welfare not so

much through its value as through the relative advantage it confers in matching better states on

observables.

3 Construction and characterization

This section characterizes the imitation equilibrium, constructs it, and shows that it is essentially

unique. The imitation equilibrium is distinguished among equilibria by the fact that in it, worse

types imitate better types (condition 2.1b). This is directly reflected in the structure of the receiver’s

beliefs once they receive an on-path message m: the best case for any message is that the receiver

takes it literally to be the sender’s full dataset, while any skepticism that this is true negatively

affects their inferences. Any off-path dataset m ∈ T might as well be taken literally,

q∗(·|m) = 1m for all off path m ∈ T , (5)

and is off path not because the receiver’s inferences are “artificially depressed” but because imitating

some other dataset is strictly preferred for the type t = m. Therefore, the sender benefits from

selective disclosure if and only if they lie – there are no imitation equilibria that increase the payoff

of truthful senders relative to their payoff when the receiver is fully informed. On the other hand,

truthful senders can suffer – since other senders can dishonestly imitate them, the receiver can be

skeptical of their dataset even if they tell the truth.
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In addition, for any dataset not resembling some raw dataset, m ̸∈ T , there are off-path beliefs

q∗(·|m) = q∗(t| argmin
t′⊇m, t′∈T

Eβ(·|σ∗(t′))[θ]) for all m ∈ M \ T , (6)

and given these beliefs, senders never benefit from playing a dataset that the receiver knows for sure

to be incomplete. Because of this, an observer of the interaction between senders and receivers would

not be able to tell if senders are strategically omitting data simply by looking at the distributions

of the published data – some prior about how much data the sender ought to have is necessary to

know if observations are being dropped.

We have established that, in an imitation equilibrium, a sender’s ability to positively influence

the receiver depends on the extent to which they can imitate another state. In turn, this depends

on the mass of their own dataset, µ, and the extent to which fk can be distinguished from fj , which

is given by

rj(k) = max
d∈D

fk(d)

fj(d)
.

This distinguishability factor rj(k) is a measure of the comparative advantage to a sender under

state θk to reporting a dataset distributed like fk, relative to a sender under state θj .
11 It can be

interpreted to mean that “under state θj , a sender would need rj(k) times as much data to imitate

µfk than under θk”. A sharp feature of the continuum model is that pairwise distinguishability

comparisons fully suffice to summarize the impact of the shape of generating distributions {fj}Jj=1

on the imitation equilibrium outcome.

Proposition 1 (Sufficiency). Two games G and G′ must yield the same outcome if they share the

same state space Θ and priors β0 and G, and for all j and k,

max
d∈D

fk(d)

fj(d)
≡ rj(k) = r′j(k) ≡ max

d′∈D′

f ′
k(d

′)

f ′
j(d

′)
.

In other words, even if D is very large, {fj}Jj=1 only affect the menu of possible beneficial

manipulations through a select set of summary statistics, which are each supported by a single

point in D. We will delay discussion of the comparative statics of distinguishability, as well as their

implications for optimal experimental design, to section 5. In the present section, we leverage these

factors to complete our characterization of the imitation equilibrium. All equilibrium outcomes can

be described by a vector-valued function û(µ) = (ûj(µ))
J
j=1, with µ̂j(µ) = uσ(µfj). The imitation

equilibrium outcome has an even simpler description: each sender’s messaging problem can be

simplified down to the choice of a weakly better state to imitate, k ∈ {j, . . . , J}, and an amount µ

11Equivalently, we can consider its inverse, 1
rj(k)

, an imitability factor that describes how easily fk is imitated under

state θj .
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of that state’s distribution to send – “as much as possible” is always weakly optimal, though, as

with ironing in example 2.2.1, may not be the only strategy played in equilibrium. Since û describes

the payoff under every state to every µ, its inverse µ̂, defined as

µ̂j(u) = min{µ : ûj(µ) ≥ u},

describes a burden of proof in order to achieve payoff u, and what is necessary is that a type t can

provide at least a measure µ̂k(u) of distribution fk, where θk ≥ u. Crucially, fixing the pairwise

distinguishability factors, optimality of the sender’s imitation strategy amounts to saying that a

sender that achieves payoff u via imitation is either truthful with θj ≥ u or imitates another state

θk > u in the set

Aj(µ) =

{
θk : k ∈ argmax

k>j
ûk

(
µ

rj(k)

)}
.

Theorem 2 (Existence and uniqueness). There there exists an essentially12 unique imitation equi-

librium, implemented by a vector-valued burden of proof function µ̂ : [0, θJ ] → RJ with outcome û

such that

1. ûj(µ) is continuous and (weakly) increasing in µ for all j.

2. σ∗(µfj) is supported on
{
µ′fk : µ′ = µ̂k

(
ûk

(
µ

rj(k)

))
and θk ∈ Aj(µ)

}
.

3.1 Construction of the equilibrium

In the Appendix, we give the details of the step-by-step construction of σ∗ in general. But to

capture the main idea, consider a minimal setup that illustrates the forces at play. Suppose we

face the problem of constructing µ̂(v) for v ∈ [θJ−1, θJ ], assuming that µ̂(θJ−1) is known. Fig. 4

shows that a typical type space can be projected onto 2 dimensions: one dimension describes the

ability of each type to imitate fJ , given by µ
rj(J)

, and the other dimension describes their ability

to imitate fJ−1, given by µ
rj(J−1) . We can plot senders with all possible amounts of data under a

given state as a ray when we describe the type space this way. Since any v > θJ−1 is obtained

through imitating one of these two types, this description is sufficient to determine the imitation

strategies used to obtain this subset of responses from the receiver.

The burden-of-proof vector lies in the same space and describes two simple things: which of the

two states each type imitates, and what the highest action is that they can induce the receiver to

take by doing so. A couple of observations allow us to identify the unique continuation of µ̂(v) at

and to the left of any v∗ whenever µ̂(v) is already known for all v > v∗.

Taking the higher payoff frontiers to be fixed, focus on the set of types unable to meet any

12β∗ is uniquely determined, and σ∗ is uniquely determined up to payoff-irrelevant mixing probabilities.
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Figure 4: In equilibrium, µ̂(v) equalizes payoffs to imitating each state θk > v. Rays represent types
in T and red and blue lines represent payoff frontiers to those imitating fJ−1 and fJ , respectively.
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component of µ̂(v) for any v > v∗. There may exist within this set a self-separating set of positive

measure that can pool with each other to induce action v∗. Fig. 4(b) shows that if so, µ̂(v) is

discontinuous at v∗, since the equilibrium construction then immediately pools these types and

assigns them all a payoff of v∗. Otherwise, µ̂(v∗) = limϵ→0 µ̂(v
∗ + ϵ).

The key fact is that given µ̂(v∗), it is always possible to exactly specify µ̂(v) for v in some,

possibly small, nonempty interval (v∗ −∆, v∗). Consider first the case in which all types in the v∗-

payoff frontier strictly prefer to imitate either fJ or fJ−1. When µ̂j(v
∗)fj imitates distribution fJ ,

then all types µfj with µ close to µ̂j(v
∗) behave likewise, and the same is true for those imitating

distribution fJ−1. In other words, the payoff frontiers are locally determined because imitation

strategies are fixed, up the amount of data submitted. Panel (a) of Fig. 4 shows that µ̂(v) then

follows along the path of equivalent payoffs from imitating either state, and is continuous, due to

the continuity of g.

A second possibility is that for some j, type µ̂j(v
∗)fj may indeed be indifferent between imitating

fJ and fJ−1, and mixes between the two with interior probability. Locally, for µ close to µj(v
∗),

the types µfj must also be indifferent, and so for a set of values v ≈ v∗, µ̂(v) coincides with the

set of types under state θj that achieve the corresponding payoff. For all state-θj senders obtaining

a payoff in this range, the mixed strategy played equalizes payoffs to imitating each of the two

highest states. Fig. 4(c) shows that if σ( µ
rj(J)

fJ |µfj) increases too quickly, this fails to hold, since

then payoffs to imitating θJ decrease quickly relative to those to imitating θJ−1, and (d) shows

that payoffs to imitating θJ decrease too quickly in the opposite case. There is, then, a unique

continuation of the mixed strategy that respects the restriction on µ̂, and it is continuous due to

the continuity of g.

When there are more than 2 candidate states to imitate, the construction is slightly more

complicated in that there may be more than one state under which types are indifferent across dis-

tributions to imitate, and a given type may be indifferent between imitating more than 2 different

states. Nevertheless, the idea is the same. It is always possible to construct an interval of frontiers

and their associated equilibrium strategies, given knowledge of higher-payoff frontiers. The con-

struction technique then proceeds interval-by-interval, where we note that each interval formed in

a step of the process is nonempty but may be small: it may be necessary to switch from handling

the problem as in the first case to handling it as in the second case, and vice versa, multiple times

as the algorithm proceeds to successively lower payoff frontiers.

3.2 A separation theorem

Let us return briefly to the matter of why the imitation outcome stands out from other equilibrium

outcomes. It turns out that, although we can construct the imitation equilibrium payoff frontiers

iteratively, we can also characterize them each individually, and independently of the remainder of
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the equilibrium. Put simply, imitation equilibrium payoff frontiers universally divide the type space

into a greater-value upper region and a lesser-value lower region, and they are the only frontiers to

do so.

We start with some definitions.

Definition 3.1. An upper pool of payoff frontier µ̂(v) is a set

T̄ = U(µ̂(v)) \ U(M)

for some collection of messages M .

Definition 3.2. A lower pool of of payoff frontier µ̂(v) is a set

T = U(M) \ U(µ̂(v))

for some collection of messages M .

An upper pool consists of all types above the payoff frontier µ̂(v) but below some other frontier,

while a lower pool consists of types below it but above another frontier.

We define the pooled value of any set of types, upool(T ), to be the receiver’s expectation of the

state given that the sender’s type is in the set T , and state the separation theorem:

Theorem 3 (Separation). For any nonempty upper pool T̄ and lower pool T of µ̂(v),

upool(T̄ ) ≥ v > upool(T ).

In other words, upper pools are weakly improving and lower pools are strictly worsening — for

any subset of T that is bounded by two frontiers and contains µ̂(v), the value of the part above

µ̂(v) is at least v, while the value of the part below is less than v.13

The fact that upper pools are improving is a consequence of the conditions of imitation equilibria:

the property holds because in each group of senders who send the same message under σ∗, only

those with worse-than-average values can be truncated by excluding U(M). On the other hand, the

equilibrium we construct has worsening lower pools because in it, any potentially self-separating

pool of senders below limϵ→0 µ̂(v+ ϵ) that achieves a value of at least v must lie above the frontier

µ̂(v).

These properties guarantee uniqueness of the imitation equilibrium outcome if we use them to

compare outcomes under σ∗ and another PBE, σ. If the outcome under σ differs from that under

13The former inequality is weak and the latter strict because we have defined the imitation payoff frontiers such
that, when there are multiple types µfk that all achieve v, µ̂k(v) is the lowest such µ.
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σ∗, then worsening lower pools under σ∗ imply that there is a frontier with a worsening upper

pool under σ. Moreover, the only frontiers in T that satisfy either property are the frontiers of

σ∗. Given any prospective frontier and its associated payoff, checking either of these properties in

isolation is enough to verify that it shows up in the imitation equilibrium, and may in some cases

be easier than constructing the entire imitation equilibrium outcome.

The separation theorem is a general result — it also applies to finite evidence games, where

it is related to the “downward biased” characterization of Rappoport (2022). In all these cases,

worsening lower pools rules out credible inclusive announcements, and improving upper pools turns

out to imply that no other equilibrium is credible inclusive announcement-proof.

4 Comparative statics

All imitation outcomes share some concrete features. Here, we present comparative statics of the

sender’s reports in µ, of the sender’s welfare with respect to the receiver’s prior belief about θ and

µ, and of separation as V ar[µ] → 0. We begin with a corollary to Theorem 2.

Corollary (to Thm. 2). Under σ∗, there are thresholds z∗j > z∗∗j for each state such that:

• Whenever the sender’s type is µfj with µ > z∗j , the sender masquerades as a higher type, and

receives a payoff ûj(µ) > θj.

• Whenever µ ∈ (z∗∗j , z∗j ], the sender is honest and the receiver knows it upon receiving the data:

ûj(µ) = θj.

• Whenever µ ≤ z∗∗j , the sender is honest, but the receiver believes they are a worse type with

positive probability, and ûj(µ) < θj.

We can think of senders with µ > z∗j as high-data senders, with enough data to benefit from

manipulating their data against the receiver’s uncertainty about their data endowment. The costs

of voluntary disclosure are borne by low-data senders, those with µ < z∗∗j , who the receiver is

skeptical of even when they are truthful. These thresholds vary by j, and in particular, z∗1 = 0 and

z∗J = 1. However, they need not be monotone in j.

The potential presence of an intermediate, full-information interval between disjoint upper and

lower partial-pooling intervals when we fix θ and vary µ is a novel feature of these equilibria that

occurs when there are multiple imitated states with different distinguishing outcomes. It is a

consequence of the fact that it requires a strictly greater amount of data to benefit from imitating

a different state than it does to send one’s full dataset and discourage all imitators. The structure

of pooling and separation contrasts with strategies in binary-state models of voluntary disclosure,

or in models with ordered outcomes. In those cases, full separation only occurs at the very top,

that is, for types with a maximal state and a maximal amount of evidence (see, for example, Dye
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(1985) and Dzuida (2011)). We show that this doesn’t have to be true in general: although they

remain able to separate, types with the most evidence are often more tempted to pool with others.

Partial pooling occurs in the receiver-optimal equilibria in our model because uncertainty about

µ makes it impossible for lower-data, higher-state senders to separate from higher-data, lower-state

senders. In the absence of uncertainty about µ (that is, if µ is commonly known to the sender

and the receiver) the disclosure game is a case of the games studied by Grossman (1981) and

Milgrom (1981), in which unraveling occurs. The distribution of µ in our model, while assumed

to be nondegenerate, can be arbitrarily close to a point mass, and outcomes converge to the full-

information outcome as the receiver’s uncertainty about µ vanishes.

Claim 2. As V ar[µ] → 0, we have Pr(|ûj(µ)− θj | > ϵ) → 0 for all j.

This should be unsurprising: when the receiver knows µ quite well, any dataset with fewer-than-

expected observations is quite suspicious and is heavily discounted, and this limits the returns to

omitting data.

4.1 Complementarity with public information

Next, we show that public information can complement voluntary disclosure. As a preliminary,

observe that the receiver is worse off given uncertainty about either the payoff-relevant state, or

its relation to the experiment. Suppose that there are any two games G(Θ,D, β0, {fj}Jj=1, G) and

G′(Θ′,D, β′
0, {f ′

j′}Jj′=1, G) that have the same outcome space D and data-mass distribution G,14 but

describe different sets of possible states. If the receiver knows that the true state might be in Θ or

Θ′, but is uncertain of which and has prior α, 1 − α, respectively, of the likelihood of each case,

then they can be modeled as playing a third game, Guc, in which the set of states is Θuc = Θ
⋃
Θ′

with each state retaining its data-generating distribution. Their prior over Θuc is given by

βuc
0 (θj) = αβ0(θj) for θj ∈ Θ, βuc

0 (θ′j′) = (1− α)β0(θ
′
j′) for θ′j′ ∈ Θ′.

Claim 3. The receiver’s expected payoff in Guc conditional on θ ∈ Θ is less than their expected

payoff in G, and strictly so if there is a type of the sender with state in Θ for which the outcomes

differ in the two games.

Greater ex-ante uncertainty, in any of a number of dimensions, is generally worse for the receiver.

When the receiver suffers from not knowing whether the state is in Θ or Θ′, it is because a state

θj′ ∈ Θ′ differs from a state θj ∈ Θ for one or more of the following reasons:

1. Its numerical value is different;

14We prove the claim that follows in a more general setup, in which the the games need not have the same data-mass
distribution and the distribution of µ can be state-contingent, that is, the two games have state-contingent data mass
distributions {Gj}Jj=1, G

′
j′}J

′
j=1, respectively.
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2. The prior likelihood that the receiver assigns to it is different, β0(θj) ̸= β′
0(θj′);

3. The distribution of data it generates is different, fj ̸= f ′
j′ .

Applying Claim 3 to the first case shows that the receiver is worse off when they understand the

set of possible states of the world corresponding to different distributions of experimental outcomes,

but are uncertain about the optimal action to take even with full knowledge of the distribution of

the data. In the second case, we see that having an incorrect prior about the state of the world

cannot benefit the receiver in expectation.

The third case is perhaps the most interesting: it captures a receiver’s uncertainty about the

distribution of outcomes conditional on the true, payoff-relevant state. We illustrate how this could

play out in the context of our previous example (Ex. 2.2.1), by expanding the state space to

include not only Θ = {θH , θL}, but also Θ′ = {θH′ , θL′}, where θ′H and θ′L are analogous to θH and

θL, respectively, except the baseline rate at which an out-of-the-box prediction model accurately

predicts no rain is elevated (0.45 instead of 0.4). Suppose that this difference does not affect the

receiver’s optimal action, so θH′ = 1 and θL′ = 0.

j fj(1) fj(2) fj(3) fj(4)

H 0.6 0.2 0.1 0.1

L 0.4 0.2 0.3 0.1

H ′ 0.65 0.2 0.05 0.1

L′ 0.45 0.2 0.25 0.1

Table 3: The generating distribution of outcomes under states θH , θL, θH′ , and θL′ .
Recall outcome 1 is (predict no rain, no rain), outcome 2 is (predict rain, rain), outcome 3 is
(predict rain, no rain), and outcome 4 is (predict no rain, rain).

It is almost immediate to see that the receiver must make different inferences if they place

50% probability on the event that the state is in Θ′, relative to certainty that the state is in Θ –

for instance, they can no longer know that the true state is θH if the sender sends m = µfH for

µ ∈ (2/3, 3/4), because a sender with mass µ′ ∈ (8/9, 1) of data distributed like fL′ could also have

sent such a message. Since the equilibrium outcomes for the sender are not the same, we know that

the receiver’s uncertainty about the baseline accuracy of prediction models makes them strictly

worse off.

Strategic disclosure can also impair the receiver’s ability to extract information from the sender

that would make up for a lack of ex-ante knowledge. In a world with full disclosure, this could

be achieved in the above example by adding a “control” arm of the experiment that provides

statistics on the baseline performance of an out-of-the-box prediction model for comparison with

the performance of the sender’s preferred model. However, the same is not true under voluntary
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disclosure, because the sender can also omit data about the performance of the out-of-the-box

model.15

Put differently, the receiver can’t be hurt by observing a signal ϕ that tells them whether the

game is G or G′, and this is true of any finite public signal. A signal that is not informative about

θ per se may still be valuable alongside voluntarily disclosed data if it informs the receiver about

how to interpret the data, and the signal need not be fully informative about any aspect of the

experiment to yield a strict benefit.

Claim 4. Let ϕ be a finite-valued public signal that is only informative about D and {fj}Jj=1. It

strictly benefits the receiver for some prior β0 if and only if two distinct realizations ϕ̂ and ϕ̂′ induce

games G and G′ such that argmaxd
fk(d)
fj(d)

̸= argmaxd
f ′
k(d)

f ′
j(d)

for some k > j.

These kinds of signals complement disclosed data by making the receiver less susceptible to

manipulations of their auxiliary beliefs through data omission. They might pertain to any jointly

estimated covariates. In addition to base rates, voluntarily disclosed experimental data is more

useful in the presence of trustworthy information about the space of underlying (i.e., not cherry-

picked) outcomes, the likelihood of randomization to treatment or control (in the case of an RCT

or an A/B test), or the composition of the trial population (when experimental outcomes are

heterogeneous depending on group membership).

4.2 Impact of beliefs on the sender

When the receiver’s belief about the ex-ante probability of a given state θj increases relative to

others, the receiver’s skepticism weakly increases for all messages that yield a higher payoff to the

sender than full certainty of that state. The reverse is true of all messages that yield a lower payoff

than θj . An increase in the probability of θj therefore “pulls” the receiver’s action towards θj given

any message, which has the consequence of decreasing ex-post payoffs for all types of the sender

that would originally have achieved ûj(µ) ≥ θj , and increasing them if originally, ûj(µ) ≤ θj .

To formalize this, let G be a disclosure game with prior β0 about θ and G′ be a game that is

identical except for the prior β′
0 which differs from β0, with β′

0(θj) > β0(θj) and
β0(θk)
β0(θk′ )

=
β′
0(θk)

β′
0(θk′ )

for

all other k, k′.

Claim 5. Suppose that û, û′ are imitation equilibrium outcomes of G and G′, respectively. Then

ûj′(µ) ≥ ûj′(µ) whenever ûj′(µ) ≥ θj, and ûj′(µ) ≤ ûj′(µ) whenever ûj′(µ) ≤ θj.

Lastly, we point out that MLRP shifts in the receiver’s beliefs have a monotone impact on the

15Specifically, the experiment that randomizes a day’s weather to be predicted either with the standard prediction
model or the new one with 50-50 odds, which tracks additional outcomes 5, 6, 7, and 8 which are analogous to
outcomes 1, 2, 3, and 4 in the event the standard algorithm is used instead of the new one, does not change outcomes
relative to the experiment in Table 3.
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sender’s welfare. Simply put, every type of the sender benefits from a monotone likelihood ratio

shift in the receiver’s belief about the state, and suffers from a monotone likelihood ratio shift in

their belief about the data-mass distribution. Intuitively, an upwards shift in the prior distribution

in θ makes the receiver more willing to believe a claim that the state is high, and we show this

formally in Appendix B. Such a shift unambiguously benefits the sender both conditional their

realized dataset, and ex-ante. On the other hand, when the receiver expects µ to be greater, they

are more skeptical : they infer a greater likelihood that a given message may have been selected

from a larger dataset.16

Claim 6. If two disclosure games G and G′ are identical except for priors β0 ≤MLRP β′
0 and

g ≥MLRP g′, then

ûj(µ) ≤ û′j(µ) ∀µfj ∈ T .

5 Experimental design

Our results highlight that the quality of the information the receiver obtains depends on how

the data-generating process distinguishes states. This section focuses on interventions that aim to

maximize distinguishability, and proposes a framework for optimally designing experiments to allow

the receiver to extract payoff-relevant information from the sender through voluntary disclosure.

In our model, an experiment is the data-generating process that provides the sender with their raw

dataset, and is captured by a tuple E = (D, {fj}Jj=1) consisting of the space of reported outcomes

and the generating distribution of data over them. We assume that the remaining primitives of the

game – state space, payoffs, and priors – are fixed, and consider the effect of varying the experiment

that the sender observes.

A key fact is that whenever an experiment makes states pairwise more distinguishable, the

receiver’s welfare improves. Intuitively, increasing distinguishability allows higher-state types to

separate themselves more effectively from lower-state types who would imitate them. The resulting

equilibrium does not better separate every type from every other type – indeed there are types that

would play different messages under one experiment that would play the same message in the other,

in both directions – but, given the receiver’s single-peaked expected utility, the more distinguishing

experiment always makes the receiver better able to target the optimal action.17

16Rappoport (2022)’s result can be used to show that the latter holds in finite-data games viewed as an instance
of an abstract evidence game, and a similar argument shows that this is directly true in the continuum.

17The proof that distinguishability improves payoffs uses the fact that a mechanism designer that takes a sender’s
submitted dataset as a report is weakly more constrained by a sender’s ability to deviate to sending a false dataset
if the experiment has poor distinguishability. If the receiver does not have single-peaked preferences, then the
imitation equilibrium outcome and the outcome of the optimal mechanism do not necessarily coincide, and increasing
distinguishability may force the receiver to take a higher action after observing a message that few low-state types
can imitate, when they would instead like to commit to responding to it with a lower action.
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Proposition 4 (Improvement). Suppose two experiments E and E ′ yield imitation equilibrium

actions a and a′, respectively.

• If r′j(k) ≥ rj(k) for all k > j, then Ea,θ[ur(a)] ≤ Ea′,θ[ur(a
′)].

• If, in addition, r′j(k) > rj(k) for some j, k such that there is some µfj imitating µ̂fk under

the imitation equilibrium with experiment E, then Ea,θ[ur(a)] < Ea′,θ[ur(a
′)].

In fact, by making a state arbitrarily distinguishable from others, we can guarantee that a

sender under that state elicits at least their full-information action with high probability: the

imitation equilibrium guarantees that . In the limit as all states become highly distinguishable, the

receiver also approximately attains their full information payoff. On the other hand, if all states

are negligibly distinguishable, the receiver learns essentially nothing, even as the sender is fully

informed.

Claim 7. With very high and very low distinguishability, outcomes approach those under full in-

formation and no information, respectively: for all ϵ, δ > 0,

• There exists R < ∞ such that if rj(k) > R for all j < k, then Pr(|ûk(µ)− θk| > ϵ) < δ

• There exists R̄ > 1 such that if rj(k) < R̄ for all j < k, then Pr(|ûk(µ)− Eβ0 [θ]| > ϵ) < δ

where the likelihood is taken over realizations of µ.18

One way to better distinguish two states is to undertake a more detailed experiment. Without

changing the experimental technology – that is, the underlying likelihood of events under different

states – a researcher could investigate and record a more detailed set of outcomes in order to obtain

finer data. To formalize this, suppose there is an existing outcome space D, and consider a notion

of a more elaborate outcome space D′ that the researcher can obtain by splintering an existing

outcome into multiple sub-outcomes to track.

Definition 5.1. If there are two experiments E = (D, {fj}Jj=1) and E ′ = (D′, {f ′
j}Jj=1) and a

partition P = {Pd}d∈D of D′ such that ∑
d′∈Pd

f ′
j(d

′) = fj(d)

for all d in D, then E ′ splinters the outcome space of E and E merges the outcome space of E ′.

Immediately, we observe that for all θj and θk,

max
d′∈Pd

f ′
k(d

′)

f ′
j(d

′)
≥ fk(d)

fj(d)
,

18Despite the fact that R̄ < R, we use this notation because R̄ is an upper bound and R is a lower bound on the
distinguishability sufficient for each case.
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and so rj(k) ≥ r′j(k) whenever D′ splinters D.

Claim 8. Splintering the outcome space weakly improves the receiver’s expected payoff.

In some cases, there is a most elaborate possible experiment E∗, i.e., one that is a splintering

of every other possible experiment. Suppose that costs and constraints on gathering, storing,

and transmitting data are negligible. Then it is optimal for a designer who acts on behalf of

the receiver to choose the most elaborate possible experiment. If instead the sender chooses the

experiment, then the receiver should, if possible, incentivize the sender to choose the most detailed

experiment by committing to accept nothing else. Since they follow a simple rule of thumb, these

recommendations don’t require detailed knowledge of the true data-generating process, and would

be easy for even an uninformed designer to implement.

On the other hand, in practice there is often no binding limit to the number of ways that

an experiment can be refined and complicated, at ever increasing cost. Despite the fact it never

hurts, further splintering a dataset does not always strictly improve distinguishability. With precise

information about the data-generating process, Proposition 1 allows us to identify instances when

it is without loss to the receiver to merge outcomes relative to E∗.

Proposition 5 (Merging). Suppose that E∗ = (D∗, {f∗
j }Jj=1). Let S∗ =

⋃
j<k argmaxd

f∗
k (d)

f∗
j (d)

. Then

merging all outcomes in D∗ \ S∗ does not change the imitation equilibrium outcome.

The set S∗ consists of all outcomes that maximally distinguish one state from another. Mmerging

other outcomes is without loss because S∗ is sufficient to maximize every distinguishability factor

in {rj(k)}j<k. We are left, generically, with a minimal experiment that suffices to reveal as much

payoff-relevant information as possible to the receiver robustly over all possible priors.

Claim 9 (Minimality). Fix ur, Θ, and g, suppose that E is obtained from E∗ by merging S∗ and

that E ′ merges some outcomes in E, and suppose that argmaxd
f∗
k (d)

f∗
j (d)

is unique for all j < k.

Then there exists β0 such that the receiver is strictly better off with E than with E ′.

This simplification of the experiment can be quite drastic, and in some familiar cases, including

the case of a binary state space or an outcome space ordered by the monotone likelihood ratio

property (MLRP), S∗ is a singleton with only one “good news” outcome that maximally distin-

guishes higher states from lower ones, while all other outcomes in D∗ can be merged and essentially

ignored.19 Formally, we say that D∗ satisfies MLRP with respect to {f∗
j }Jj=1 if, for any j < k and

19The imitation equilibrium in these cases has the same outcome as a sanitation equilibrium (Shin (2003)) in which
the sender only reports observations of the outcome in S∗, and omits all others; however, it differs in that imitating
senders generally report a positive mass of observations of these outcomes anyways, with no impact on the receiver’s
inferences.
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d < d′,
f∗
k (d

′)

f∗
j (d

′)
>

f∗
k (d)

f∗
j (d)

.

It is straightforward to see that MLRP implies that S∗ comprises of the single maximal element in

D∗.

Even when J > 2, some degree of dimensionality reduction is often possible, especially if J <<

|D∗|. In general, |S∗| ≤ J(J−1)
2 . The 3-state example 2.2.2 gives an instance in which this bound is

tight because the maximizer, argmaxd
fk(d)
fj(d)

, is unique for all pairs j < k.

Corollary (to Prop. 5). The minimal optimal experiment tracks at most J(J−1)
2 +1 outcomes, and

furthermore, if D∗ satisfies MLRP with respect to {f∗
j }Jj=1, then a binary outcome space suffices.

6 Relationship to finite data

In the big picture, the purpose of modeling communication in this stylized, continuous-data dis-

closure game is to understand how senders will volunteer data in real-world disclosure settings, in

which datasets are always finite. The comparative statics of section 4 and the experimental design

implications of the previous section depend on the fact that datasets are well-described by µ and

fj , which is exactly true only in the continuum, but nearly true with large N in such a way that

those results approximately carry over. This section makes precise the finite-data settings that we

aim to approximate, and describes how the continuous-data model captures their regularities in

the limit.

We model a sender who has access to a finite dataset of n i.i.d. observations drawn from D
according to the state-contingent distribution fj . The size of the sender’s dataset is upper-bounded

by N , but the sender may have access to n < N observations as well, and the receiver is uninformed

about how much data the sender has. Nature’s sequence of moves in drawing the sender’s dataset

is: 1) draw the state, θj , according to prior β0; 2) draw the number of observations, n, from

distribution GN ; 3) for each of the n datapoints, draw their realized value i.i.d. from fθ. Call

the disclosure game with these parameters GN (Θ,D, β0, {fj}Jj=1, G). The data mass distributions

GN (·) capture the receiver’s uncertainty about how much raw evidence the sender has, prior to

selecting observations to reveal: for example, there may be uncertainty about the number of total

trials in an experiment, or the number of trials out of N attempted that survived the entire trial

period.

The sender’s dataset is the empirical probability mass function t = 1
N (t1, . . . , tD), where td is

the number of observations of outcome d and n(t) =
∑D

d=1 td is the number of observations they
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get. They are able to send any subset of their dataset as a message to the receiver, where

m⊆̃t ⇔ md ≤ td ∀d ∈ D.

In summary, the type space is TN =
⋃N

n=0Dn, with type distribution

qN (t) =
n(t)!

ΠD
d=1td!

∑
j′

β0(θj′)gN (n(t))ΠD
d=1fj′(d)

td ,

and the message space MN is identical to the space of types.

When datasets are finite, the sender’s dataset does not perfectly inform them about the state:

when fj all have full support, any state is possible after observing any dataset. The likelihood of

θj given that the raw dataset is t is

πN (θj |t) =
β0(θj)gN (n(t))ΠD

d=1fj(d)
td∑

j′ β0(θj′)gN (n(t))ΠD
d=1fj′(d)

td
,

and so, when the receiver observes a message and updates their belief about the sender’s type to

qN (t|m), their posterior about the state updates to

β(θj |m) =

∑
t∈TN qN (t|m)πN (θj |t)∑

t∈TN qN (t|m)
. (7)

We highlight that the distribution of datasets in the finite-data setting converges to the dis-

tribution of datasets in a continuous-data model. In particular, g(µ) represents the likelihood of

obtaining a fraction µ of total potential data under state j, and analogously, n
N is the fraction of

total data available to the sender in the finite-data game. We can study a sequence of games such

that as N increases, NGN ( n
N ) →unif. G(µ), and note that if so, the type distributions also converge

uniformly: qN →unif. q.

Definition 6.1. G(Θ,D, β0, {fj}Jj=1, G) is the limit game for a sequence of finite-data games

{GN (Θ,D, β0, {fj}Jj=1, GN )}∞N=1 if NGN ( n
N ) →unif. G(µ).

Despite the fact that the type distributions converge, the type space TN is drastically different

from T : in particular, TN ∼ MN and both approximately span a D-dimensional space of datasets

for large N , while T is only 2-dimensional, as every dataset is described by µ and θ. While

datasets far away from T , that have distributions unlike the data-generating distribution in any

state, become vanishingly unlikely as N grows large, they are never impossible except in the limit;

this is why the continuum model is much easier to work with.

It remains possible to describe an imitation equilibrium and a truth-leaning equilibrium in the
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finite-data setting. The finite-data model is a special case of the evidence model in Hart et al.

(2017) and Rappoport (2022). The former shows that truth-leaning equilibria exist and are unique

and receiver-optimal in the finite-type setting, and also that they are always outcome-equivalent

to imitation equilibria, although it does not guarantee that the strategies are equivalent. The

latter includes an iterative algorithm to compute these equilibria; the number of steps is, however,

exponential in |TN |, and as far as we can tell, there is no obvious way to obtain a significantly more

efficient closed-form solution.

We can instead establish that the imitation equilibrium of the continuous-data model gives a

perfect approximation to the limit outcome of communication in truth-leaning equilibria of finite-

data games as GN converge.20 To make the comparison, the notion of an outcome should be

extended across type spaces. There is a global data space [0, 1]×∆D, invariant to N , that contains

T1, . . . and T as long as they all share a space of observations. Recall that uσ∗(t), the outcome

of the game for type t, is their payoff from the best feasible message given equilibrium beliefs. If

t ∈ [0, 1]×∆D, it need not also be in the literal type set for the outcome to be well-defined, since

we can already infer whether t can feasibly send a message from the subset relation on [0, 1]×∆D.

The outcome to the hypothetical type can be understood as a thought experiment: “if the receiver

believes we are playing a game with equilibrium σ∗ or σ∗
N , and my dataset is t, what is the best

payoff I can attain, even if t is inconsistent with the receiver’s perceived game?”

Definition 6.2. A sequence of equilibria (σ1, σ2, . . .) of games {GN (Θ,D, β,{fj}Jj=1, GN )}∞N=1 has

outcomes that converge to the outcome of an equilibrium σ of the limit infinite-data game

G(Θ,D, β,{fj}Jj=1, G) if the payoffs uσ∗
N
(t) converge uniformly to uσ∗(t) over types in T .

Theorem 6. If G is the limit game for finite-data games G1,G2, . . . with N = 1, 2, . . . respectively,

then the truth-leaning equilibrium outcomes in G1,G2, . . . converge to the imitation equilibrium out-

come of G.

Outcome convergence shows that it’s reasonable to use the limit game to describe the distribution

of actions the receiver takes after the sender discloses a large dataset, as well as the mapping from

the truth to the receiver’s inferences. At a high level, the proof follows from the convergence of

type distributions TN to T , and from the separation theorem, which holds as well in truth-leaning

equilibria of finite-data games. Appendix E gives the formal argument and shows that the limit

equivalence result partially extends to strategies, in addition to outcomes.

In addition, outcome convergence shows that previous sections’ results on comparative statics

and experimental design hold approximately for large finite datasets. When the number of obser-

20We state the definition of convergence and the theorem below in terms of N = 1, 2, . . . rather than an arbitrary
sequence of dataset sizes N1, N2, . . . only for the sake of notational brevity. The theorem applies just as well to any
sequence of games {GNi}∞i=1 of increasing dataset size with uniformly convergent data distributions, since any such
sequence is a subsequence of a convergent sequence of games {GN}∞N=1.
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vations is finite, splintering the data always leads to a strict improvement in the receiver’s welfare,

even when the outcome space already contains S∗ and thus distinguishes the states as well as

possible. However, in this case, the magnitude of the improvement vanishes and is negligible for

large N . While merging non-distinguishing outcomes is only sharply optimal in the continuum,

the convergence result guarantees us that it remains an actionable recommendation, yielding, in

practice, nearly-optimal information to the receiver with minimally cumbersome datasets.

7 Conclusion

Inference under selective disclosure depends on an understanding of how data are generated, and

how senders report – or omit – it. This paper underscores the simplicity of a receiver-optimal

equilibrium reporting strategy for the sender: claim a possibly inflated state, and provide a large-

enough body of evidence that supports it by mimicking the distribution of data it implies. Given

their behavior, voluntary disclosure benefits precisely those senders who engage in strategic omission

– those with a large amount of data or a low state – and worsens outcomes for those who are imitated

– those who have less data, or a more desirable state to imitate.

Even when datasets are large enough to guarantee the sender is fully informed, strategic omission

and uncertainty about exactly how much data the sender had mean that only muddled information

will reach the receiver. However, in the absence of direct ways to monitor the sender’s true data,

a planner can nevertheless design the underlying experiment to elicit more informative disclosures.

For large-enough datasets, the quality of evidence an experiment provides to the receiver is contin-

gent only on how well its most informative outcomes distinguish one state from another state. In

many cases, this sharp fact of big data gives the designer a way to restrict to a lower-dimensional

dataset, without loss of efficiency.

This work suggests several compelling directions for future research. One concerns voluntary

disclosure with endogenous, costly data acquisition. For example, we would like to know how a

sender might acquire data in order to persuade through voluntary disclosures. We conjecture that,

if having more data benefits senders strategically regardless of its informational value, then data

might be systematically over-collected precisely when it is cheap and plentiful. Another direction

would consider the incentive effects of voluntary disclosure for agents: for example, some high-

value ideas may see little investment because it is hard to distinguish success in realizing those

ideas from success in other objectives based on evidence. Finally, there is a line of work that

brings these questions closer to the ground by considering how they manifest in the structured

data-generating processes commonly assumed in statistical or econometric models, for instance in

logit and probit treatment effects models, or in linear models with Gaussian error. Doing so could

help guide practitioners on what strategic omission looks like in those settings, and when it most

undermines the value of research.
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A Construction of the imitation equilibrium

We will prove that Theorem 2 holds in a more general case with potentially state-contingent,

rather than state-independent, data-mass distributions. Describe a game in this general setting by

G(Θ,D, β0, {fj}Jj=1, d{Gj}Jj=1) where Gj describes the distribution of µ under state j. The model

we describe in the main text corresponds to the case in which Gj = G for all j. We also note that

a restricted burden of proof function suffices to capture the strategic essence of the equilibrium.
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Theorem 7. Suppose that g1, . . . , gJ , the densities of µ under states θ1, . . . , θJ , respectively, are

continuous on R and supported on [0, 1]. There exists a unique imitation equilibrium outcome,

implemented by a (restricted) vector-valued burden of proof function µ̃(u) : [0, θJ ] → RJ−maxθj<u j

with inverse ũk(µ) such that

1. ũj(µ) is continuous and (weakly) increasing in µ for all j.

2. σ∗(µfj) is supported on {µ′fk : µ′ = µ̃k(ũk(µ/rj(k))) and θk ∈ Aj(µ)}.

To outline the argument, we first prove the existence of a imitation equilibrium by construction.

Then we prove the separation theorem, which we use to show uniqueness.

Recall that ûk(µ) is the equilibrium payoff to sending the message µfk.

We construct ûk(µ) that is monotone increasing in µ – this implies that it must be almost-

everywhere differentiable. Since it is also continuous, it is completely determined by its derivative

over the points at which the derivative exists. To avoid confusion, we focus on the left derivative

of ûk, which we denote by û−k and, analogously to the top-down construction of the finite-data

equilibrium, we construct the payoff function starting from the top down, starting from the frontier

v = θJ .

Recall that rj(k) = maxd∈D
fk(d)
fj(d)

is the ratio of the amount of data necessary to imitate a certain

amount of fk under state j to the amount necessary under state k, and

Aj(µ|µ̃) =
{
θk : k ∈ argmax

k>j
ûk

(
µ

rj(k)

)}
.

is the set of states that type µfj finds it weakly optimal to target given µ̂.

The range of ûk(µk) is [0, θk] since no type of higher state ever targets state θk, so payoffs to

targeting θk cannot exceed θk itself.

Define

S(v) = {θk : θk > v}

to be the set of states under which the receiver optimally takes an action that yields the sender a pay-

off greater than v. Then µ̂k(v) < ∞ iff θk ∈ S(v), and since play is supported on {µ̂k(uk(µ/rj(k)))fk :

θk ∈ Aj(µ|µ̃)} and σ(µ̂k(u)fk|µ̂k(u)fk) = 1, S(v) is exactly the set of states that are targeted by

some type under σ to obtain a payoff of v.

Given a partially-specified burden of proof vector µ̃(v) = (µ̂k(v))θk∈S(v), we can fully reconstruct

the full vector, as it is the frontier of all types that are just able to meet some component of µ̃(v)
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with no slack, that is, all types µ̂jfj such that

rj(k)µ̂j = µ̃k(v) for some θk ∈ S(v), and ̸ ∃θk′ ∈ S(v) s.t. rj(k
′)µ̂j > µ̃k′(v). (8)

Given a particular partial burden of proof function µ̃, the implied frontier for payoff v is µ̂(v|µ̃) =
(µ̂1, . . . , µ̂l−1, µ̃l(v), . . . , µ̃J(v)) if S(v) = {θl, . . . , θ̂J} where µ̂1, . . . , µ̂l−1 satisfy eq. 8.

Let the set of states under which some type of sender obtains payoff v and finds it weakly optimal

to target state θk be

τ optµ̃ (θk, v) = {θj : fk ∈ Aj(µ̂j(v|µ̃)|µ̃)

and let the set of states such that some type of sender obtains payoff v by targeting a state θk with

strictly positive probability under σ be

τ suppµ̃ (θk, v) = {θj : µ̂k(v)fk ∈ supp σ(·|µfj) for some µ}.

Of course, τ suppµ̃ (θk, v) ⊆ τ optµ̃ (θk, v).

For convenience of notation, we extend the definitions of these set-valued functions to any set

of inputs (rather than a single input) by letting the function of the set be the union of the function

applied to each individual element of the input set: thus for every set S of states, τ optµ̃ (S, v) =⋃
θk∈S τ optµ̃ (θk, v) and τ suppµ̃ (S, v) =

⋃
θk∈S τ suppµ̃ (θk, v), and for every set ω ⊆ [0, 1], we let Aj(ω) =⋃

µ∈ω Aj(µ|µ̃).

Additionally, we define the expectation of the state under the (receiver’s) belief that the the

sender is a type that receives v under µ̃ and finds it weakly optimal to target a state in S as follows.

Vµ̃(S, µ̃(v)) =

∑
θj∈τsuppµ̃ (S,v) β0(θj)θjg

j(µ̂j(v|µ̃))dµ̂j(v|µ̃)
dv∑

θj∈τsuppµ̃ (S,v) β0(θj)g
j(µ̂j(v|µ̃))dµ̂j(v|µ̃)

dv

.

In contrast, the expectation of the state under the receiver’s true belief over θ conditional on

knowing that the sender has sent some message that yields payoff v and targets a state in S is

Wµ̃(S, v|σ) =

∑
θj∈τoptµ̃ (S,v) β0(θj)θjg

j(µ̂j(v|µ̃))dµ̂j(v|µ̃)
dv σ({µ̃kfk}θk∈S |µ̂j(v|µ̃)fj)∑

θj∈τoptµ̃ (S,v) β0(θj)g
j(µ̂j(v|µ̃))dµ̂j(v|µ̃)

dv σ({µ̃kfk}θk∈S |µ̂j(v|µ̃)fj)
= v. (9)

For any partial strategy σ̂ that gives mixing probabilities between the messages µ̃k(v)fk, the

payoff Wµ̃(S, v|σ̂(v)) is always weakly greater than Vµ̃(S, v). The two are equal exactly when all

types obtaining payoff v that find it weakly optimal to target a state in M do so with probability

1.
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Fix a frontier µ̂(v), where θl−1 < v ≤ θl. It will be useful to define an undirected graph H(v)

on S(v) by adding an edge between θk and θk′ if and only if τ optµ̃ (θk, v)
⋂
τ optµ̃ (θk′ , v) ̸= ∅, that is,

if there is some type that finds it optimal to target either state θk or state θk′ , and is indifferent

between the two. Let C be the collection of connected components of H(v).

We use the following algorithm to partition S(v) at a given frontier µ̃(v).

Algorithm: This algorithm calculates the payoffs to targeting a state in S(v) at frontier µ̃(v)

when all types that do not obtain higher payoffs than v and who can target some µ̃k(v)fk, θk ∈ S(v)

target the highest-payoff of these messages among those that they can, and assigns states θk to the

same partition element if, across them, µ̃k(v)fk must result in the same payoff, and for α close to

1, αµ̃k(v)fk must also result in the same payoff, so that for states under which types at the frontier

are indifferent between such messages, they remain so for nearby frontiers.

First, note that if σ is such that, when there is a collection of states Σ ⊆ S(v) such that, over an

interval of payoffs, there always exists between any 2 states in Σ a path of other states in Σ such

that there are types that mix with interior probability between any two successive states, then for

all θk, θk′ ∈ Σ,

rj(k)

rj(k′)
=

µ̃k(u)

µ̃k′(u)
=

dµ̃k(u)
du

dµ̃k′ (u)
du

=

dûk′ (µ̃k′ (u))
dµ

dûk(µ̃k(u))
dµ

 (10)

for all u in the interval of payoffs and for all j that target some state in Σ at the frontier µ̃(u).

We define

∆n(Σ, α̂) =
dn

dαn

∑
θj∈τsuppµ̃ (Σ,v) β0(θj)θjg (αµ̂j(v|µ̃)) µ̂j(v|µ̃)∑
θj∈τsuppµ̃ (Σ,v) β0(θj)g (αµ̂j(v|µ̃)) µ̂j(v|µ̃)

∣∣∣∣∣
α=α̂

.

This is equal to the nth derivative of the payoff to the set of senders in states that target a state

in Σ with positive probability at frontier µ̃(v), that have an amount α̂µ̂j(v|µ̃) of data, when we

assume that eq. 10 holds over Σ.

Start with a collection of assigned partition elements, A0 = ∅, and a collection of sets of unas-

signed states, C0 = C. Given An and Cn, initialize An+1 = Cn+1 = ∅, and, taking each set S ∈ Cn
sequentially, proceed as follows:

1. Take all subsets Σ ⊆ S and calculate ∆0(Σ, 1). Tiebreak any with the same value by

∆1(Σ, 1),∆2(Σ, 1), . . ., successively, and take the largest subset Σ that is maximal. Label

it with τ suppµ̃ (Σ, v), and add it to An+1.

Note that this implies that duk(µ̃k(v))
dµk

= ∆1(Σ,1)
µ̃k(v)

when equation 10 holds for θk, θk′ ∈ Σ over

[v − ϵ, v], ϵ > 0.
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2. Take S \ Σ, and let C(S) be the collection of connected components of the graph on S

constructed analogously to H(v). Add C(S) to Cn+1 (i.e. augment Cn+1 as the union of

itself and C(S)).

3. Repeat on An+1 and Cn+1 until Cn+1 = ∅.

Putatively, if senders of types αµ̂j(v|µ̃)fj for some θj ∈ τ suppµ̃ (v) pooled with each other, then

payoffs are equal to

ûk(αµ̃k(v)) = vΣ(α, µ̃(v)) ≡

∑
θj∈τsuppµ̃ (Σ,v) β0(θj)θjg (αµ̂j(v|µ̃)) µ̂j(v|µ̃)∑
θj∈τsuppµ̃ (Σ,v) β0(θj)g (αµ̂j(v|µ̃)) µ̂j(v|µ̃)

∣∣∣∣∣
α=α̂

,

which is continuous in α because g is continuous everywhere in (0, 1].21 The burden-of-proof

function for v ≤ v is then given by

µput
Σ (v) ≡ {v−1

Σ (v, µ̃(v))µ̃k(v)fk}θk∈S(v),

where v−1
Σ (v, µ̃(v)) is the inverse of vΣ(·, µ̃(v)).

The reason that a partition element is a subset of targetable states in which all messages must

achieve the same payoff at the is that, since Σ is a maximal highest-value subset over those that

do not already have a higher value, it is either partitionable into smaller subsets, each of which

also achieves the same value, or not; but in either case, in each minimal subset that achieves

the maximal value, there is a path of messages between any two messages in the subset such

that, in the targeting strategy, some type mixes with strictly positive probability between any two

adjoining messages. The reason for this is that, for any smaller subset Σ′ ⊂ Σ̂, we have that

Vµ̃(Σ
′, µ̃(v)) < Vµ̃(Σ̂, µ̃(v)) if Σ is a minimal subset that achieves the maximal value. Since the

expectation of the state conditional on knowing the message played is in Σ̂ is at least Vµ̃(Σ̂, µ̃(v)),

there must be some message that yields payoff at least Vµ̃(Σ, µ̃(v)). But since there is no message,

and indeed no proper subset of messages in Σ̂ that achieve payoff Vµ̃(Σ, µ̃(v)) if all types that can

play one of them do, it must be that for any subset, there is a type that can play some message in

the subset but plays a message outside the subset with positive probability.

The reason the same holds true in frontiers to the left of µ̃(v) is that, if ∆0(Σ, 1) is uniquely

maximal, then ∆0(Σ, α) is still greater than ∆0(Σ
′, 1) for any Σ′ and α sufficiently close to 1. So,

in any state under which senders target a state in Σ at µ̃(v), it remains optimal for them to do so

for α close to 1, assuming the putative payoffs above. In addition, the putative payoffs are feasible,

because every subset of Σ has lower value. If tiebroken by ∆1,∆2, and so on, then although ∆0(Σ, 1)

is not uniquely maximal, Σ does maximize ∆(·, 1) immediately to the left of µ̃(v).

21It is important that g(1) = 0, since this ensures that gj is continuous at µ = 1.
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We will use the partition constructed by the algorithm to construct the equilibrium in chunks.

For consistency, we want the following condition:

Condition 1. The value of each partition element constructed using the algorithm is the same,

and is equal to v.

Under this condition, there is a partial strategy σ̂ on each partition element such thatWµ̃(θk, v|σ̂) =
v for all states θk in the partition element, and furthermore, there is no partial strategy on a subset

of messages in that partition element such that all messages in the subset result in the same payoff

that is greater than v.

If Condition 1 holds at µ̃(v) and Σ is the partition constructed using the algorithm at µ̃(v),

then there exists some ϵ > 0 such that, for all v ∈ [v − ϵ, v], Condition 1 holds for the frontier

{v−1
Σ (v, µ̃(v))µ̃k(v)fk}θk∈S(v). To show this, observe the following claim, which follows directly

from statement of the condition and from continuity of vΣ(α, µ̃(v)):

Claim 10. Let the set of types that target a state in Σ and achieve a payoff of v under µput
Σ be

τputΣ (v).

If Condition 1 holds at µ̃(v), then if there exists no v′ ∈ (v, v] such that either

1. There is a type t ∈ τputΣ (v′) such that t can imitate a higher-value state, i.e. there exists

partition element such that Σ′ v−1
Σ′ (v′′, µ̃(v))µ̃k(v)fk⊆̃t for some v′′ > v′

2. There is a partition element Σ with a subset Σ′ ⊆ Σ such that vΣ′(v−1
Σ (v′, µ̃(v)), µ̃(v)) > v′,

then Condition 1 continues to hold at v̂.

Note that, because for any partition element Σ′ ̸= Σ either v−1
Σ′ (v, µ̃(v))µ̃k(v)fk ˜̸⊆t, or ∆n(Σ

′, 1) <

∆n(Σ, 1) for some n such that ∆i(Σ
′, 1) = ∆i(Σ, 1) for all i < n, the continuity of vΣ(α, µ̃(v)) im-

plies that for v close to v (1) cannot not hold. Again by continuity, (2) cannot hold for v close to v

because for all Σ′ ⊆ Σ, vΣ′(v−1
Σ (v, µ̃(v)), µ̃(v)) ≤ v and ∆n(Σ

′, 1) < ∆n(Σ, 1) for some n such that

∆i(Σ
′, 1) = ∆i(Σ, 1) for all i < n.

We will use this to construct the equilibrium in segments over which Condition 1 holds, and

re-construct partitions using the algorithm in at most countably many points at which either (1)

or (2) holds. For every reasonable example we can think of, the number of such points (and thus

steps in the construction) is not just countable, but finite.

Now we turn to constructing larger pooling sets when there is a positive-measure set of types

that can achieve the frontier payoff. Given that types support their play on {µ̃k(uk(µ/rj(k)))fk :

θk ∈ Aj(µ|µ̃)}, and ûk(µk) is increasing, all types capable of sending a message in {µ̂j(v)fj}Jj=1

achieve a payoff of at least v. We define the set of types that are incapable of sending a message

in {µ̂j(v)fj}Jj=1, but capable of sending a message in set M , as T (v,M). We will denote the payoff
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to the sender of the receiver knowing they are one of a set of types that has positive probability

measure under the receiver’s prior as U(T ), and in particular,

U(T (v,M)) =

∑J
j=1 β0(θj)θj max(maxk≥l(G

j( µ̃k(v)
rj(k)

))−min{Gj(µ) : ∃m ∈ M s.t. m⊆̃µfj}, 0)∑J
j=1 β0(θj)max(maxk≥l(Gj( µ̃k(v)

rj(k)
))−min{Gj(µ) : ∃m ∈ M s.t. m⊆̃µfj}, 0)

.

Note that supM U(T (v,M)) ≥ v, because limα→1 U(T (v, αµ̃)) = v. If there is a positive-measure

type set T (v,M) that achieves the value supM U(T (v,M)), then take the largest such set and call

it T̂max
µ̃ (v). Then the following hold:

1. If there exists a set T (v,M) that achieves the value supM U(T (v,M)), then there is a unique

largest set that does so, and so T̂max
µ̃ (v) is well-defined.

2. Whenever T̂max
µ̃ (v) exists, there exist µl, . . . , µJ such that T̂max

µ̃ (v) = T (v, {µlfl, . . . , µJfJ}).

3. Whenever T̂max
µ̃ (v) exists, there exists a partial strategy σ̂ : T̂max

µ̃ (v) → M = {µlfl, . . . , µJfJ}
such that the payoff to any message m ∈ M given that senders in T̂max

µ̃ (v) play according to

σ̂ is Ûµ̃(v).

The first point follows from the fact that, unless the union of two such sets yields payoff at least

Ûµ̃(v), then their intersection – which corresponds to the pool of types implemented by a different

message set – yields strictly greater payoff. To see the 2nd point, simply take µk to be the minimum

amount of data distributed fk such that the dataset still contains a message in M , for each k ≥ l,

and note that the resulting set of types is a subset of T (v,M) that has a smaller mass of types

θj , j < l but the same mass of types θk, k ≥ l. Since U(T (v,M)) ≥ v ≥ θl−1, this can only

improve the payoff to the pool. The last point comes from the fact that, if T̂max
µ̃ (v) is a maximum-

payoff pool, then for each subset S ⊆ M , the payoff to the pool implemented by S is no greater

than U(T̂max
µ̃ (v)), which is sufficient to ensure that σ̂ exists. In addition, U(T (v,M)) is absolutely

continuous with respect to every component of µ̃(v) and each µk.

Lemma 8. If T̂max
µ̃ (v) exists, then Condition 1 is satisfied by the burden of proof vector M =

{µlfl, . . . , µJfJ} such that T̂max
µ̃ (v) = T (v,M).

Proof. Suppose not; then one of two cases is true:

1. There is a collection of states Σ ⊂ S(v) such that Vµ̃(Σ,M) > v.

Then, since Vµ̃(Σ, α(µkfk)
J
k=l) is continuous in α, there is α < 1 such that Vµ̃(Σ, α(µkfk)

J
k=l) >

v for all α ∈ [α, 1]. Consider an alternative type set, T (Mα,Σ, v) where Mα,Σ includes the

messages µkfk for θk ∈ S(v) \ Σ, and the messages αµkfk for θk ∈ Σ.

For α small enough, the set of types in T (Mα,Σ, v)\T (M,v) includes exactly those in frontiers

(αM)1α=α that find it weakly optimal to target a state in Σ. So, the expectation of the state
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given that the sender’s type is in T (Mα,Σ, v)\T (M, v) exceeds v, and so T (Mα,Σ, v) is higher-

payoff than T (M,v), contradicting that T (M, v) = T̂max
µ̃ (v).

2. There is a element of the partition, Σ′ ⊂ S(v), such that Vµ̃(Σ
′,M) > v.

Then WLOG let Σ′ be the lowest-value element of the partition. Similarly to the above, since

Vµ̃(Σ, α(µkfk)
J
k=l) is continuous in α, there is ᾱ > 1 such that Vµ̃(Σ, α(µkfk)

J
k=l) < v for all

α ∈ [1, ᾱ]. Consider an alternative type set, T (Mᾱ,Σ′ , v) where Mᾱ,Σ′ includes the messages

µkfk for θk ∈ S(v) \ Σ′, and the messages ᾱµkfk for θk ∈ Σ′.

For ᾱ small enough, the set of types in T (M,v)\T (Mᾱ,Σ
′) includes exactly those in frontiers

(αM)ᾱα=1 that find it weakly optimal to target a state in Σ. Then the expectation of the state

given that the sender’s type is in T (M,v) \T (Mᾱ,Σ
′) is less than v, so the expectation given

that the type is in T (Mᾱ,Σ
′) exceeds v, contradicting that T (M,v) = T̂max

µ̃ (v).

Since neither case is possible, M , taken as the payoff frontier corresponding to v, must satisfy

Condition 1.

The iterative algorithm to construct the equilibrium of 2 starts from the highest-potential-payoff

senders and creates payoff frontiers that satisfy Condition 1. It proceeds as follows:

1. Start with l = J and µ̃J(θJ) = 1.

2. For each l, construct frontiers µ̃k(v) as follows:

(a) Start at v = θl and burden-of-proof vector µ̃(θl), as constructed from the previous step.

For all v > θl, let µ̃(v) be as already constructed. Define

µ̌l(θl) = max{µ : ∃j < l s.t. µ̂j [µ̃(θl)] ≥ µ},

and rewrite µ̃(θl) = (µ̌l(θl), µ̃l+1(θl), . . . , µ̃J(θl)). Proceed as below to rewrite µ̃(v) for

v < θl:

(b) Fix S = {θk}Jk=l. Given the frontier µ̃(v), check if T̂max
µ̃ (v) exists, and if so, find

M = {µlfl, . . . , µJfJ} that implements T̂max
µ̃ (v) and rewrite µ̃(v) = M .

(c) At µ̃(v), using the algorithm, partition S into subsets of states, and calculate vΣ(α, µ̃(v))

for all α ∈ [0, 1] for each subset. Take the lowest-value frontier, µ̃(v′), under putative

payoffs vΣ(α, µ̃(v)) such that the conditions of Claim 10 are satisfied and such that

T̂max
µ̃ (v′′) does not exist for any v′′ ∈ (v′, v], and assign strategies according to Algorithm

2 between µ̃(v) and the new frontier µ̃(v′).

(d) Set v = v′ and set µ̃(v′) as the new frontier, and repeat the above 2 steps until v′ = 0.

3. Repeat the above steps for each l in descending order until l = 1, and fix the resulting µ̃.

38



The existence of an imitation equilibrium, and the monotonicity of ûk, follow directly from this

construction. Continuity of ûk also follows from this construction. The value of ûk is defined on

series of closed intervals on each of which it is continuous – vΣ(α, µ) is continuous in α, and ûk(µ)

is constant for µfk ∈ T (v,M). Together, these cover the domain of uk, that is, [0, 1], and they

overlap only at their endpoints, at which they coincide.

B Properties of σ∗

Here, we prove our main results about the structure of the imitation equilibrium. We begin by

showing the separation theorem holds, which we use to show that uσ∗ is unique. We then proceed

to give proofs of other results on selection (from section 2) and on comparative statics (from 4),

many of which rely on it.

B.1 Proof of separation theorem and uniqueness

First, we prove the separation theorem. It has 2 parts, which we will prove as lemmas. We start

by proving that upper pools are improving:

Lemma 9. If M is a collection of messages and {µ̂j(v)fj}Jj=1 is the frontier of types achieving a

payoff of at least v under σ∗, where θi < v ≤ θi+1, then

Eq[θ|t ∈ U({µ
j
fj}Jj=1) \ U(M)] ≥ v

whenever U({µ̂jfj}Jj=1) \ U(M) is nonempty.

Proof of Lemma. Denote T (v,M) = U({µ̂jfj}Jj=1) \ U(M). Let (µ̄1, . . . , µ̄i; µ̄i+1, . . . , µ̄J) be the

minimum masses of data distributed like f1, . . . , fi; fi+1, . . . , fJ , respectively, necessary to send

some message in M . Then

Eq[θ|t ∈ T (v,M)] =

∑J
j=1 β0(θj)θj(G

j(µ̄j)−Gj(µ̂j))∑J
j=1 β0(θj)(G

j(µ̄j)−Gj(µ̂j))
.

If (µ̄i+1, . . . , µ̄J) ≤ (µ̂i+1, . . . , µ̂J) pointwise, then T (v,M) is empty. Otherwise, let the states

j1, . . . , jA be the maximal set such that (µ̄j1 , . . . , µ̄jA) > (µ̂j1 , . . . , µ̂jA) pointwise. Call the set of

types that send µ′fja with positive probability under σ∗ by τ suppσ∗ (µ′fja), and let θ(t) refer to the

state corresponding to the distribution of dataset t. Denote by σ̂v the partial strategy, restricting

to types in T (v,M), where those types play as they do in σ∗, and assume that the receiver knows

the sender is in T (v,M) and playing according to this strategy.

Let ϕσ∗ be a joint density over types and messages induced by σ∗, so that for type t = µfj and
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message m = µ̃fj̃a , we can define

ϕ(t,m) = gj(µrj(j̃a))σ
∗(m|t)β0(θj)rθj (j

′)

to be the density on the event that the sender is type t and plays message m, when t plays m with

positive probability. In the case when payoffs under uσ∗ are strictly increasing at µ′fja , each sender

who plays µ′fja is randomizing between at most a finite number of messages in their mixed strategy,

one corresponding to each state that is weakly optimal for them to imitate. Thus, they play each

message in the support of their strategy with strictly positive probability, rather than randomizing

with some density over a continuum of messages; ϕ therefore fully captures the distribution of play

for senders playing µ′fja .

When payoffs are strictly increasing at µ′fja , we know that for every µ′fja that is in T (v,M)

and is on-path in σ∗, the receiver’s inference when they know the sender’s type is in T (v,M) in

addition to knowing they played message µ′fja is weakly better than if they only know µ′fja was

the message played. Formally,

Eq[θ|µ′fja ] =

∑
t∈τsupp

σ∗ (µ′fja )
⋂

T (v,M) θ(t)ϕ(t, µ
′fja))∑

t∈τsupp
σ∗ (µ′fja )

⋂
T (v,M) ϕ(t, µ

′fja)

≥

∑
t∈τsupp

σ∗ (µ′fja )
θ(t)ϕ(t, µ′fja)∑

t∈τsupp
σ∗ (µ′fja ))

ϕ(t, µ′fja)

≥ v

(11)

where the first inequality comes from the fact that θja ≥ v > θ(t) whenever θ(t) ̸= θja , and

µ′fja ∈ T (v,M) only if all types that play it under σ∗ are also in T (v,M).

Since, of course, payoffs under uσ∗ may not be strictly increasing at every µ′fja in T (v,M),

we have to separately consider the case in which they are constant, i.e. the case where there are

positive-measure pools T of senders achieving the same payoff v′ > v under σ∗ with T
⋂
T (v,M)

nonempty. Then let M ′ be the set of messages that implements the pool, and

Eσ̂v [θ|m ∈ M ′] = Eσ̂v [θ|t ∈ T
⋂

T (v,M)].

The value of T \ T (v,M) is equal to the value of T
⋂
U(M), which is no more than v′ since

T = T̂max
µ̂ (v′), and so it contains no subsets of higher value. Therefore, Eσ̂v [v(θ)|t ∈ T

⋂
T (v,M)] ≥

v′ ≥ v.

Then, taking the total expectation over both cases, the expectation of θ given that the sender’s

type is in T (v,M) is a weighted average of Eσ̂v [θ|µ′fja ] over on-path messages µ′fja in T (v,M) in

which the payoff is strictly decreasing; and the value over positive-measure sets of equal payoff.
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We have shown that each component is no less than v, and so the weighted average is also at least

v.

Next we prove that the imitation equilibrium we construct has worsening lower pools. This is

relatively simple.

Lemma 10. If M is a collection of messages and {µ̂j(v)fj}Jj=1 is the frontier of types achieving a

payoff of at least v under σ∗, where θi < v ≤ θi+1, then

Eq[θ|t ∈ U(M) \ U({µ̂jfj}Jj=1)] < v

whenever U(M) \ U({µ̂jfj}Jj=1) is nonempty.

Proof. If there was a payoff frontier µ̂(v) that had a nonempty, weakly improving lower pool lower-

bounded by messages M , then there is a frontier µ̂(w) ̸= M for some w ≥ v such that

upool(U(M) \ U(µ̂(w))) = w.

The construction algorithm rules this out, because if indeed the payoff frontiers above µ̂(w) are

correctly constructed, then it would next set µ̂(w) = M .

Finally, we show that the constructed equilibrium outcome is the only imitation equilibrium

outcome, and thus that the imitation equilibrium outcome is unique.

Proof. Let the constructed equilibrium be σ∗, and let σ be an alternative equilibrium, with a

different outcome. We aim to show that σ∗ does not have improving upper pools, and therefore

cannot be an imitation equilibrium.

To see this, let M represent the frontier of messages that are used to achieve payoff v in σ.

Worsening lower pools under σ∗ imply that upool(U(M) \ U(µ̂(v))) ≤ v, implying that M has a

worsening upper pool. Since M is a payoff frontier of σ, the alternative equilibrium σ does not

have improving upper pools, and is therefore not an imitation equilibrium.

B.2 Proof of results in Section 2

Next, we formally show that the imitation equilibrium satisfies the 3 selection criteria that we dis-

cuss in Section 2: credible inclusive announcement-proofness, truth-leaning, and receiver-optimality.

First we discuss a way in which the imitation equilibrium outcome arises from optimal behavior

for the sender. The concept of optimality we use, inclusive announcement-proofness, refines PBE

by requiring that there is no self-separating set of sender types who could weakly improve their
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payoffs by announcing a strategy that uses some set of messages differently than they are used in

the baseline equilibrium.

Definition B.1. Given an outcome uσ∗, a set of types T has a credible inclusive announcement

that they will play a strategy σ̂M supported over message set M for payoff v if

• σ̂M : M × T → R is such that
∑

t∈T σ̂M (m|t) = 1 for all m ∈ M ,
∑

m∈M σ̂M (m|t) = 1 for all

t ∈ T , and Eβσ̂M
(·|m)[θ] = v for all m ∈ M .

• T = {t ∈ U(M) : uσ∗(t)}, and there is some t ∈ T with uσ(t) < v.

A very closely-related notion, that we take the name from, is the idea of a credible announce-

ment, from Matthews et al. (1991). There is, however, a subtle difference, which is that in a credible

announcement, T = {t ∈ U(M) : uσ∗(t) ≤ v}
⋃
S where S ⊆ {t ∈ U(M) : uσ∗(t) = v}. Thus what

we use is an “inclusive” notion of a credible announcement in that the set of announcing types

must include all who weakly prefer to participate; it is stronger to claim there exists an credible

inclusive announcement than that there exists a credible announcement, and correspondingly, in-

clusive announcement-proofness is weaker than announcement-proofness. In fact, there may exist

no announcement-proof equilibrium at all in the game we study, while there always exists exactly

one inclusive announcement-proof equilibrium outcome.

Claim 11. In G, the unique inclusive announcement-proof equilibrium outcome is the imitation

equilibrium outcome.

Proof. For any equilibrium σ with a different outcome than the imitation-equilibrium outcome σ∗,

there is some v such that the v-payoff frontier under σ differs from that under σ∗, and such that

some types that achieve a payoff of v or greater under σ∗ achieve a payoff no more than v under

σ. Lemma 9 ensures that when all such types pool, the expected value of the state is at least v.

Then, from the continuity of ûj(µ), there exists some v′ < v such that when the set of all types

that achieve a payoff of at least v′ under σ∗, but a payoff of no more than v under σ, is pooled,

the expected value of the state is exactly v. Starting from equilibrium σ, this set of types has a

credible inclusive announcement that yields a payoff of v to each type, and so σ is not inclusive

announcement-proof.

On the other hand, any credible announcement relative to baseline equilibrium σ∗ requires the

existence of some v and set of messages M such that there exists a pool of types

T = {t ∈ U(M) : uσ∗(t) ≤ v}

such that E[θ|t ∈ T ] = v, with at least one type t′ ∈ T such that uσ∗(t′) < v. Since T contains all

types t⊃̃t′ with uσ∗(t) ≤ v, we know T is a set of positive measure. The construction algorithm for

σ∗, however, rules out the presence of any such set T , since if all frontiers for payoffs in (v, θJ ] are

42



correctly constructed, then all types in T must be pooled under σ∗ and must obtain a payoff of v

exactly.

We prove that truth-leaning equilibria and imitation equilibria coincide in G, that the imita-

tion equilibrium outcome is unique, and that it is the optimal outcome of communication under

commitment for the receiver.

Claim 12. Every imitation equilibrium of G is a truth-leaning equilibrium of G.

Proof. We take the 2 perturbations separately. First, perturb the likelihood of honest commitment

types by a sequence with ϵkt|t = ϵk → 0. There exists an equilibrium uσ∗
ϵk

of Gϵk in which strategies

of non-commitment types are identical to the imitation equilibrium strategies in a game G̃ϵk under

which

q(µfj) =


β0(θj)(g(µ)−ϵk)

1−ϵk
∑

i βi(1−Gi(µ̂i(θi))
, µ ≥ µ̂j(θj)

β0(θi)g(µ)
1−ϵk

∑
i βi(1−Gi(µ̂j(θi))

, µ < µ̂j(θj).

Under the metric induced by the L2 norm, the set of equilibrium strategies is compact, and payoffs

in G̃ϵ are continuous in ϵ, so the limit point as k → ∞ of the imitation equilibria of G̃ϵk must also

be an equilibrium of G. It is easy to verify that it must also satisfy the conditions in 2.1, so it is

the imitation equilibrium of G.

Now, for fixed ϵk, consider in addition the perturbation of payoffs by an additional payoff bump

ν to a truthful report. When ν < minj,k |θk−θj |, there exists an equilibrium σ∗
ϵk,ν

that is identical to

the equilibrium uσ∗
ϵk

specified above, except for types µfj with uσ∗
ϵk

∈ (θj , θj +ν), who instead play

the truth with positive probability. In particular, for a given message µ′fk that yields a payoff in

(θj , θj+ν) and is played by µfj under σ
∗
ϵk
, the probability that it is played by µfj in the equilibrium

of the further-perturbed game is 0 if the expected state over types playing µ′fk for whom the state

is not θj is no greater than θj +ν, and otherwise, the probability that µfj plays µfk is exactly such

that the payoff to playing µfk is θj +ν, so that µfj is indifferent between playing message µ′fk and

revealing all their data. As ν → 0, the set of affected types shrinks towards a measure-0 set, and

so these equilibria converge to uσ∗
ϵk

as ν → 0.

Finally, given the equilibria {σ∗
ϵk,νj

} for ϵk → 0, νj → 0, diagonalize by taking, for every

k, some jk such that ||σ∗
ϵk,νjk

− σ∗
ϵk
|| < 1

k , and observe that then the sequence of perturbations

(ϵt|t = ϵk∀t, ϵt = νjk∀t)∞k=1 yields equilibria that converge to σ∗.

Claim 13. Every truth-leaning equilibrium in G is an imitation equilibrium of G.

Proof. Let us break down the definition of the imitation equilibrium into 3 parts:

Observation. (σ∗, β∗) is an imitation equilibrium if it is an equilibrium, and under σ∗,
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a. Every on-path message is in T ,

b. Type t = µfj ’s dataset is off-path if θj < maxm⊆t Eβσ∗ (·|m)[θ]

c. Type t = µfj is always truthful if θj ≥ maxm⊆t Eβσ∗ (·|m)[θ].

For part a), note that if a messagem is on-path in σ, then there existsK1 such that for all k > K1,

m is on-path in σ∗
ϵk
. For every k, however, all on-path messages are in T , since if m is on-path and

m ̸∈ T , then there is a type t = µfj with θj > uσ∗
ϵk
(m) that plays m, and t itself is not played as

a message on path by any non-commitment types. But then Eβσ∗
ϵk

(·|t)[θ] = Eπ(·|t)[θ] ≥ Eβσ∗
ϵk

(·|m)[θ],

leading to a contradiction. Hence, all on-path m must be in T .

To prove that a truth-leaning equilibrium messaging strategy satisfies c), suppose there is t such

that Eπ(·|t)[θ] > maxm⊆̃t Eβσ(·|m)[θ] but σ(t|t) < 1.

. We will show that there is no sequence of perturbations {ϵkt , ϵkt|t}
∞
k=1 → 0 such that equilibria of

the associated perturbed games Gk converge to σ. Start by supposing for the sake of contradiction

that there is. First, we know t must be on path in σ. If σk is an equilibrium of game Gk with

ϵkt > 0, there cannot t′ ̸= t such that σk(t|t′) > 0, otherwise Eβ
σk (·|t)[θ] ≥ maxt′⊂̃t Eβ

σk (·|t′)[θ] and so

Eβ
σk (·|t)[θ] + ϵkt > maxt′⊂̃t Eβ

σk (·|t′)[θ] and we would have to have σk(t|t) = 1. Then, likewise, in the

limit σ, we must have σ(t|t′) = 0 for all t′. Since t is on-path in σ, it must be that σ(t|t) ∈ (0, 1).

Take a type t′′ ̸= t such that σ(t′′|t) > 0. We know that there exists K such that for all k > K,

σk(t′′|t) > 0 as well. Then whenever k > K, Eπ(·|t) + ϵkt = Eβ
σk (·|t′′)[θ]. Because σk → σ, we have

that

lim
k→∞

Eβ
σk (·|t′′)[θ] = Eβσ(·|t′′)[θ] = max

m⊆̃t
Eβσ(·|m)[θ].

But this contradicts that Eπ(·|t)[θ] > maxm⊆̃t Eβσ(·|m)[θ] and

lim
k→∞

Eβ
σk (·|t′′)[θ] = lim

k→∞
Eπ(·|t) + ϵkt = Eπ(·|t).

To show that b) holds, note that for any k, if t is on-path and played by some t′ ̸= t, then

σk(t|t) = 1. By c), Eπ(·|t′) ≤ Eβ
σk (·|t), but if t also plays t and Eπ(·|t) < Eβ

σk (·|t), then the receiver

cannot Bayesian. On the other hand, if t is on-path and only t plays t, then we must have

Eπ(·|t) = Eβ
σk (·|t).

Finally, closely following the idea in Hart et al. (2017), we show that the imitation equilibrium

outcome is the outcome of the optimal deterministic mechanism, that is, the best outcome the

receiver can achieve when they can commit to a pure action as a response to the message the

sender sends. The revelation principle shows that it suffices to look at direct mechanisms, in which

the sender truthfully reports their type and the receiver commits to a deterministic response to the
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sender’s reported type.

A mechanism under which type t elicits the action a(t) is implementable if it satisfies IC:

t⊆̃t′ ⇒ a(t′) ≥ a(t). (IC)

Claim 14. The imitation equilibrium outcome is the optimal outcome for the receiver under com-

mitment to deterministic actions.

To prove this claim, first define Tµfk be the set of types that imitate µfk under σ∗, including

µfk itself. We start with a lemma.

Lemma 11. There always exists an imitation equilibrium σ∗ such that Tµfk is finite for every

µfk ∈ T .

Proof of Lemma 11. First, for any imitation equilibrium, if {t : uσ∗(t) = uσ∗(µfk)} is a measure-0

set, since then it is necessarily true that at most one type under each state lies in the same payoff

frontier as µfk under σ∗, and thus at most one type under each state imitates it.

Now consider the case in which there is a positive-measure set of senders who achieve the payoff

u∗ = uσ∗(µfk), where we have θl ≤ uσ∗(µfk) < θl+1. We know that there exists a way to divide

the types by which state they imitate, and with what probability, given by sets Sl+1, . . . , SJ and

any imitation equilibrium σ∗, such that∑
t∈Sj

θ(t)q(t)
∫ infv>u∗ µ̂j(v)

µ̂j(u∗) σ∗(µfj |t)dµ∑
t∈Sj

q(t)
∫ infv>u∗ µ̂j(v)

µ̂j(u∗) σ∗(µfj |t)dµ
= u∗

and for all µ∗ ∈ (µ̂j(u
∗), infv>u∗ µ̂j(v)),∑

t∈Sj :t⊇̃µ∗ θ(t)q(t)
∫ infv>u∗ µ̂j(v)

µ̂j(u∗) σ∗(µfj |t)dµ∑
t∈Sj :t⊃̃µ∗ q(t)

∫ infv>u∗ µ̂j(v)

µ̂j(u∗) σ∗(µfj |t)dµ
≤ u∗.

But it is always feasible to reorder the imitation strategy to construct σ∗∗ such that Sl+1, . . . , SJ

are unchanged, but if µ1fj imitates µ′
1fi and µ2fj imitates µ′

2fi, with µ1 > µ2, then µ′
1 > µ′

2 also.

That is, conditional on imitating the same state, higher-data senders always imitate types with

more data under σ∗∗. Then any type is imitated by either a single type or an interval of types

under any other state; the latter is ruled out by the fact that it would result in a payoff no more

than θl to the message. Once again, since there is a finite set of states, this ensures that each type

is imitated by at most a finite set of other types.

Proof of Claim 14. Suppose A to be the subset of types in T that are imitated under the imitation
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equilibrium σ∗, and suppose that σ∗ is an imitation equilibrium in which each type is imitated by

a finite set of other types, which exists by the previous lemma. Given µfj ∈ A, let Tµfj be the set

of types that play µfj under σ∗, including µfj itself. Define a distribution over Tµfj ,

qµfj (t) =
q(t)σ(µfj |t)∑

t∈Tµfj
q(t)σ(µfj |t)

,

which is the probability of type t conditional on the message µfj .

Call the optimal direct mechanism a∗, that responds with the action a∗(t) after receiving the

report t. It must satisfy IC across any subset of types, T ⊆ T , but let us consider instead w, the

solution to a relaxed local problem where we impose that IC must hold only between t, t′ ∈ Tµfj

when types are distributed according to qµfj . We will show that for all t ∈ Tµfj , we have w(t) =

Eqµfj
[θ], and that taking this solution across all µfj ∈ A assigns a response for the receiver to all

t ∈ T while preserving global IC, and therefore gives the optimal direct mechanism.

We know that w(µfj) ≤ w(t) for all t ∈ Tµfj . Let Sµfj = {t ∈ Tµfj : w(t) = w(µfj)}. First, note
that if Sµfj = Tµfj , then we optimally have w(t) = Eqµfj

[θ] for all t ∈ T . This leaves us to rule out

that w(t) ̸= w(t′) for some t, t′ ∈ Tµfj .

We rule out that w(µfj) ≥ Eqµfj
[θ] and w(t) ̸= w(µfj) for some t ∈ Tµfj , due to the fact that

the receiver can then improve their payoff while preserving IC by instead responding to every type

with w(µfj). Next, we rule out that w(µfj) < Eqµfj
[θ] and w(t) ̸= v(µfj) for some t ∈ Tµfj , since

then it is possible to instead respond to every t such that w(t) = w(µfj) with mint∈Tµfj
\S w(t),

and, by single-peakedness of the receiver’s payoff function, this improves the receiver’s payoff.

This suffices to show that w corresponds exactly to the outcome of the imitation equilibrium

for all t ∈ Tµfj , regardless of the choice of µfj ∈ A. As w optimizes the receiver’s payoff under a

weaker set of IC constraints than a∗, we know that the imitation equilibrium outcome is at least

as good as a∗ for the receiver; the reverse statement is immediate since every equilibrium outcome

is implementable with commitment, and so the two are identical.

Corollary (to Claim 14). The imitation equilibrium outcome is the receiver-optimal equilibrium

outcome.

Proof. In every equilibrium σ, the receiver has a unique best response to each message, given by

the action

ar(β(·|m))) = Eβ(·|m)[θ].

Any type of the sender therefore has an optimal feasible message to send that results in a unique

optimal action that they can induce the receiver to take given the receiver’s inference function. Any
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equilibrium outcome can therefore be implemented by the receiver through a direct mechanism that

responds to every type with a deterministic message, and so there is no equilibrium that increases

the receiver’s payoff relative to the optimal outcome of a deterministic mechanism that is equivalent

to the imitation equilibrium outcome.

B.3 Proof of results in section 4

B.3.1 Convergence to full-information outcome as V ar(g) → 0

Proof of Claim 2. We show that given any infinite sequence of games with data-mass distributions

g1, g2, . . . on [0, 1] with a fixed mean and variances V ar1, V ar2, . . . → 0, that are identical in the set

of states and their ex-ante distribution, the payoff to a sender conditional on the state converges

in probability to their full-information payoff.

In order to do so, we show that for any δ and ϵ, there exists L such that for all l ≥ L, the

distribution gl is such that Pr[uσ∗(µ, θk) < θk − δ] < ϵ under every state.

Define the mean of µ to be µ̄, and

B = max
j ̸=k

1

rj(k)

so that for any two states j and k, the difference between the amount of the state-k distribution

that the mean type under state k has and the amount the mean type under state j has is µ̄(1−B).

Suppose that the variance of µ under density gL is less than ∆2ϵ2, where ∆ > 0 is an arbitrary

parameter. Then there can be at most a probability ϵ2 that the state is k and the sender has

less than µ̄ − ∆ data distributed like fk. A sender under state j has more than µ̄−∆
B data with

probability no more than ∆2ϵ2B2

(µ̄(1−B)−∆)2
.

Recall that whenever uσ∗(µ, θ) < θ, the type with dataset µfθ is truthful in equilibrium. So,

if under state θk we have Pr[uσ∗(µ, θ) < θ − δ] ≥ ϵ, then the type with µ = G−1(ϵ) must obtain

payoff less than θ − δ, and so must all types with less data, and all such types must be truthful.

But the total mass of all types not in state k that can pool with types with µ ∈ [G−1(ϵ2), G−1(ϵ)]

cannot exceed

(J − 1)(1− β0(θk))
∆2ϵ2B2

(µ̄(1−B)−∆)2

and so the payoff to type G−1(ϵ)fk cannot be less than

ϵ(1− ϵ)θk

ϵ(1− ϵ) + (J − 1)(1− β0(θk))
∆2ϵ2B2

(µ̄(1−B)−∆)2

which, for small enough ∆, must be at least θk − δ. Since there is always L large enough that
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V arL < ϵ2∆2, we are done.

All that remains is to note that, since the ex-ante expected payoff must always be Eβ0 [θ],

this lower bound on the probability of payoffs less than the full-information payoffs implies a

corresponding upper bound on payoffs exceeding the full-information payoffs, and so we obtain

convergence of the distribution of payoffs, state-by-state, to those in the outcome where the receiver

knows the truth.

Next we show that the receiver is at least weakly better off knowing more about the state of the

world, in a very general sense.

Proof of Claim 3. We can denote the distinguishability factors by

rj(k
′) = max

d

f ′
k′(d)

fj(d)

for θj ∈ Θ, θk′ ∈ Θ′ and

r′j′(k) = max
d

fk(d)

f ′
j′(d)

for θj′ ∈ Θ′, θk ∈ Θ.

The imitation equilibrium outcome in Guc is the outcome of the optimal determministic mech-

anism given the same setup. In other words, it is the welfare-maximizing outcome for the receiver

that respects the IC constraints,

vuc(µ1fj) ≥ vuc(µ2fj) ∀j, µ1 > µ2. (IC-mon)

vuc(µfj) ≥ vuc(
µ

rj(k)
fk) ∀µ ∈ [0, 1] and θj , θk ∈ Θ, (IC-im, Θ)

vuc(µf ′
j′) ≥ vuc(

µ

r′j′(k
′)
f ′
k′) ∀µ ∈ [0, 1] and θ′j′ , θ

′
k′ ∈ Θ′, (IC-im, Θ′)

vuc(µfj) ≥ vuc(
µ

rj(k′)
f ′
k′) ∀µ ∈ [0, 1] and θj ∈ Θ, θ′k′ ∈ Θ′; (IC-im, Θ-to-Θ′)

vuc(µf ′
j′) ≥ vuc(

µ

r′j′(k)
fk) ∀µ ∈ [0, 1] and θ′j′ ∈ Θ′, θk ∈ Θ. (IC-im, Θ′-to-Θ)

Now consider a case when the receiver knows the true state of the world is in Θ vs. a case in

which they do not know this (but it is true). In the former case, their welfare is given by the optimal

deterministic mechanism subject only to IC-mon and IC-im, Θ. In the latter case, however, the

latter 3 incentive compatibility conditions also apply (note that IC-im, Θ′ may affect the optimal

assignment of values to types in Θ indirectly), and furthermore, the equilibrium gives the same
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outcome as a mechanism that also optimizes the assignment of values to types in Θ′ – neither of

these can improve the receiver’s outcome conditional on θ ∈ Θ, but they can worsen it (i.e. if

cross-IC constraints bind).

B.3.2 Comparative statics of welfare

First, we give a proof of the comparative statics of welfare with respect to β0(θj).

Proof of Claim 5. First, let µ̂(v) be the frontier of types that attain payoff v under G and let µ̂′(v)

be the frontier of types that do so under G′. Let q be the distribution of types in G and q′ be the

type distribution for G′.

Let v ≥ θj . Suppose for the sake of contradiction that U(µ̂′(v)) \U(µ̂) is nonempty. By Lemma

9, in the game G′,

Eq′ [θ|t ∈ U(µ̂′(v)) \ U(µ̂(v))] ≥ v.

But we also have Eq[θ|t ∈ U(µ̂′(v))\U(µ̂(v))] ≥ Eq′ [θ|t ∈ U(µ̂′(v))\U(µ̂)]. The separation theorem

then cannot hold for µ̂(v) and µ̂′(v) simultaneously.

Similarly, let v ≤ θj . As with the above, we observe that if U(µ̂(v))\U(µ̂′(v)) is nonempty, then

Eq[θ|t ∈ U(µ̂(v)) \ U(µ̂′(v))] ≥ v,

but since Eq′ [θ|t ∈ U(µ̂(v)) \ U(µ̂′(v)] ≥ Eq[θ|t ∈ U(µ̂(v)) \ U(µ̂′(v))], it is likewise impossible for

both to satisfy the separation theorem.

Finally, we give the proof of the effect of an MLRP shift in β0 or g.

Proof of Claim 6. We treat the two shifts pertaining to β0 and g separately. Both follow similarly

to the above claim from the separation theorem.

We start by showing the first part, that an MLRP upward shift of the state distribution weakly

increases payoffs for all types. Suppose that G and G′ satisfy the assumptions of the claim but only

differ in β0, not g. Let µ̂(v) be the frontier of types that attain payoff v under G and let µ̂′(v) be

the frontier of types that do so under G′. If U(µ̂(v)) \ U(µ̂′(v)) is nonempty, then

Eq′ [U(µ̂(v)) \ U(µ̂′(v))] =

∑
j β

′
0(j)(µ̂

′
j(v)− µ̂j(v))θj∑

j β0(j)(µ̂
′
j(v)− µ̂j(v))

>

∑
j β0(j)(µ̂

′
j(v)− µ̂j(v))θj∑

j β0(j)(µ̂
′
j(v)− µ̂j(v))

= Eq[U(µ̂(v)) \ U(µ̂′(v))]

(12)
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because, among this same set of datasets, q′ places a greater relative likelihood on higher states.

But then, once again, the separation theorem cannot simultaneously hold for both frontiers.

To show the second part, that an MLRP downward shift of the receiver’s perception of the

distribution of µ weakly improves payoffs for all types, assume instead that G and G′ satisfy the

assumptions of the claim but only differ in g, with g ≥MLRP g′, and that play follows imitation

equilibria σ∗ and σ∗′ in each, respectively. We know that for every message µfk sent on-path in G,
there is a single high-value type that plays it, µfk itself, and then a number of worse types that

imitate it, all with an original amount of data greater than µ. The MLRP shift implies that the

relative probability of every one of the imitators, compared to µfk itself, is decreased in G′ relative

to G. Therefore, if the set of types T = U(µ̂(v)) \ U(µ̂′(v)) is nonempty, then

Eq′ [T ] =

∑
m∈T :m on path in T Eq′ [θ|m,σ∗]Prq′(σ

∗(t) = m|t ∈ T )

q′(T )

>

∑
m∈T :m on path in T Eq[θ|m,σ∗]Prq(σ

∗(t) = m|t ∈ T ))

q(T )

= Eq[U(µ̂(v)) \ U(µ̂′(v))],

(13)

which is once again incompatible with the separation theorem.

C Results on experimental design

Here, we give proofs of the results in our application to experimental design.

First, we prove the sufficiency theorem, which is almost immediate from the structure of imita-

tion equilibrium discussed in Section 3.

Proof of Prop. 1. Consider an abstract game with type space T and type distribution q in which we

restrict senders to imitating other types, that is, playing messages in T , and only either reporting

their own type or those of types for which the state is higher. The type given by state, data-mass

pair (θj , µ), can imitate the type given by another state, data-mass pair (θk, µ
′) if k > j and

µ

rj(k)
≥ µ′.

We can also identify the imitation equilibrium in this game, which is simply any equilibrium of

this game that satisfies Def. 2.1b, and is equivalent to the imitation equilibrium of the unrestricted

game. Note that {fj}Jj=1 are not directly involved in the set of types that are feasible to imitate,

once {rj(k)} are accounted for. We have shown that our game can be abstractly described with

only {rj(k)}j<k in the place of {fj}Jj=1 while leaving the imitation equilibrium outcome uniquely

determined, and so any perturbation of the latter that leaves the former unchanged does not affect
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the imitation equilibrium outcome.

Next, we prove that increasing distinguishability improves the receiver’s welfare.

Proposition 12. Suppose that two games G and G′ are identical except for their space of outcomes

D and D′ and the generating distributions of data under each state, {fj}Jj=1 and {f ′
j}Jj=1, and let

σ∗ and σ∗′ be their respective imitation equilibria.

If the rj(k) ≥ r′j(k) for all j, k, then the receiver’s payoff is greater under σ∗ than under σ∗′.

Proof of Prop. 4. Let G and G′ be the implied games, and σ∗ and σ∗′ be the imitation equilibria,

under experiments E and E ′, respectively.

Under game G, there exists a (pure-strategy) mechanism that implements the outcome of σ∗′ .

To see this, note that the outcome of σ∗′ is also the outcome of v′, the optimal mechanism for the

receiver under G′, which respects the IC constraints that can be rewritten as imitation constraints

v′(µfj) ≥ v′(
µ

r′j(k)
fk) ∀µ (IC-im-j, k, G′)

for each j < k, and monotonicity constraint

v′(µ1fj) ≥ v′(µ2fj) ∀j, µ1 > µ2. (IC-mon, G′)

On the other hand, in order to be implementable in G, v′ need only respect the IC constraints

v′(µfj) ≥ v′(
µ

rj(k)
fk) ∀µ (IC-im-j, k, G)

for each j < k, as well as the same monotonicity constraint. Each of these imitation constraints is

weaker, and so v′ remains possible to implement.

Since v′ is implementable in G, the outcome of the optimal mechanism, and therefore the imi-

tation equilibrium, in G gives at least a weak improvement over v′ for the receiver.

To show the second part, observe that whenever any type under state j imitates some µfk in

G′, then IC-im-j, k binds in G′. Then relaxing the constraint yields a strict improvement in the

outcome of the optimal mechanism, and so the receiver-optimal equilibrium outcome in G is strictly

better than that in G′.

Along with the improvement theorem, Section 5 establishes some simple benchmarks that in the

corners as rj(k) → ∞ or rj(k) → 1 for all j < k, the outcome approximates the full information

and no information outcomes, respectively.
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Proof of Claim 7. The first part is quite simple to show: simply note that if µ > 1
rj(k)

for all j < k,

then the type µfk is not imitable and therefore is able to at least separate and obtain a payoff of

θk. Therefore, there are at most G( 1
R) types that obtain a payoff less than their full-information

payoff θj . Bayes plausibility – the fact that Eµ,j [ûj(µ)] = Eβ0 [θ] then implies that at most a fraction
[θJ−θ1]

Rϵ of types obtain a payoff greater than θk + ϵ. Therefore, any R with

δ > G(
1

R
) +

[θJ − θ1]

Rϵ

suffices as a uniform lower bound on rj(k) to ensure that no more than a fraction δ of all types

obtain an outcome that differs from their full-information one by more than ϵ.

Next, let us consider when rj(k) is close to 1. Let R̄ = 1 + η where η is positive, and let

b̄ = maxµ g(µ).

Suppose a given type t = µfj obtains payoff v. We have that the average value of types that lie

below µ̂(v), i.e. in T \ U( ˆµ(v)), is lower-bounded by[∑
j′<v G((1 + η)µ)θj′

]
+
[∑

k>v G( 1
1+ηµ)θk

]
[∑

j′<v G((1 + η)µ)
]
+
[∑

k>v G( 1
1+ηµ)

] ≥

[∑
j′<v G((1 + η)µ)θj′

]
+
[∑

k>v G((1− η)µ)θk
][∑

j′<v G((1 + η)µ)
]
+
[∑

k>v G((1− η)µ)
]

≥ Eβ0 [θ]−
bµηEβ0 [θ] + b(1 + η)[θJ − θ1]

G(µ)

≡ LB(η, µ).

(14)

For the above lower bound, we make use of the fact that 1
(1+x) > (1− x).

An upper bound for the average value of types that lie above µ̂(v), i.e. in U( ˆµ(v)), is[∑
j′<v(1−G( 1

1+ηµ))θj′
]
+
[∑

k>v(1−G((1 + η)µ))θk
][∑

j′<v(1−G( 1
1+ηµ))

]
+
[∑

k>v(1−G((1 + η)µ))
]

≤

[∑
j′<v(1−G((1− η)µ))θj′

]
+
[∑

k>v(1−G((1 + η)µ))θk
][∑

j′<v(1−G((1− η)µ))
]
+
[∑

k>v(1−G((1 + η)µ))
]

≤ Eβ0 [θ] +
bµηEβ0 [θ] + b(1− η)[θJ − θ1]

1−G(µ)

≡ UB(η, µ).

(15)

The separation theorem tells us that LB(η, µ) ≤ v ≤ UB(η, µ). Then for any δ > 0 and ϵ > 0,

there is η small enough that for all µ ∈ [G−1( δ2), G
−1(1 − δ

2)], we have LB(µ, η) > Eβ0 [θ] − ϵ and
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UB(µ, η) < Eβ0 [θ] + ϵ. Then whenever rj(k) < 1 + η for all j < k, we have |ûj(µ) − Eβ0 [θ]| ≥ ϵ

with probability no more than δ.

Finally, we prove that S∗ is a minimal set of outcomes to robustly support optimal communi-

cation when β0 is unknown.

Proof of 9. The assumption that every maximizer of fk(d)
fj(d)

is unique allows us to assert that merging

any d ∈ S∗ with any other outcome strictly decreases rj(k) for some j < k. It is generically satisfied,

with respect to uniformly chosen, independent fj ∈ ∆D.

From the improvement proposition, we know that as long as some µfj imitates some µ′fk under

experiment E∗, then such a strict decrease in rj(k) strictly worsens the receiver’s payoff. Indeed,

we can guarantee that this happens when β0(θk) is very large and β0(θj′) for j
′ ̸= j, k is very small.

To see this, normalize θ1 = 0, and consider the case in which

β0(θk) = 1− ϵ, β0(θj) = (1− η)ϵ,
∑
j′ ̸=j,k

β0(θ
′
j) = ηϵ.

Let b̄ be an upper bound on g(µ) over µ ∈ [0, 1], and let b(ξ) be a lower bound on g(µ) over

µ ∈ [ 1
rj(k)

(1 − ξ),maxj′ ̸=k
1

rj′ (k)
]. The type with µ = 1− ξ and dataset fj would be able to obtain

a payoff of at least

B1(ϵ, ξ) =
(1− ϵ)bθk

(1− ϵ)b(ξ) + ϵb̄maxj′ rj′(k)

by imitating 1
rj(k)

, as this is a lower bound on the receiver’s inference after observing 1
rj(k)

(1− ξ)fk

if types under all other states only consider imitating fk. We have

B1(ϵ, ξ) → θk

as ϵ → 0 for any ξ, and in particular, for small-enough ϵ, we have B1(ϵ, ξ) >
θj+θk

2 .

In addition, we have a bound on the payoff that type (1− ξ)fj could obtain from imitating any

combination of other fj′ but not fk, given by

B2(η, ξ) =
ηb̄max j′ ̸= k(θj′) + minx≤(1−ξ)

[
G(1−ξ)−G(x)

1−ξ−x

]
θj

ηb̄+minx≤(1−ξ)

[
G(1−ξ)−G(x)

1−ξ−x

]
for which we have

B2(η, ξ) → θj

as η → 0 for any ξ, and in particular, for small-enough η, B2(η, ξ) <
θj+θk

2 .
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We have shown that for small enough η and ϵ, the imitation equilibrium must involve (1− ξ)fj

imitating fk with positive probability. Therefore, a strict decrease in rj(k) strictly worsens the

receiver’s welfare under the associated β0.

D Properties of truth-leaning equilibria with finite data

First, we establish a few known facts. From Hart et al. (2017), we know that the truth-leaning

equilibrium is equivalent (i.e. in outcome) to one that satisfies the properties of imitation. We also

know that it is receiver-optimal with and without commitment to pure actions. It remains to prove

that it gives the unique inclusive announcement-proof equilibrium outcome, and that it satisfies

the separation theorem.

Claim 15. In any finite-data game GN , the unique inclusive announcement-proof equilibrium out-

come is the truth-leaning equilibrium outcome.

To show that the truth-leaning equilibrium outcome is inclusive announcement-proof in finite-

data games, I construct it, using the algorithm from Rappoport, which I summarize here. In short,

the equilibrium is constructed by iteratively choosing a frontier of types such that the set of types

“above” the frontier, in the sense of being able to imitate some frontier type, yields as favorable a

belief as possible.

Algorithm (Finite N). First, define for any type set T the subset of types T+(M) = T
⋂
U(M)

as the set of types in T that are capable of sending some message in message set M , and define

upool(T ) to be the payoff to the sender if the receiver knows only that their type must be in T .

1. Let T1 = TN , and find the set of messages M1 ⊆ T1 that maximizes the payoff to a pool

consisting of the set of senders in T1 who can send at least one message in it:

M1 ∈ arg max
M⊆T1

upool(T
+
1 (M)).

If there are multiple such pools, then we take their union, which is also such a pool.

2. For s = 2 onwards, restrict the set of types to Ts = Ts−1 \ T+
s−1(Ms−1), and find (the union

of)

Ms ∈ arg max
M∈Ts

upool(T
+
s (M)).

3. Continue until Ts \ T+
s (Ms) = ∅. Given each set Ms, there always exists a mixed strategy

profile σM
pool defined over types in T+

1 (M) such that each message in M yields the same payoff

under the receiver’s induced beliefs from σM
pool.

22 Define σ∗ by σ∗(m|t) = σ̂Ms
pool(m|t) where

22Otherwise, the worst possible payoff to particular message in M over all strategy profiles over Ms is better than
the best possible payoff to some other message; then there always exists M ⊂ Ms such that T+

s (M) > T+
s (Ms).
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Ms is the pool containing m.

Proof. (Unique credible inclusive announcement-proof outcome). By construction, there is no cred-

ible inclusive announcement, since such an announcement would constitute a better set of types

than the one constructed at some step of the algorithm; this violates the optimality of the pool of

types constructed in each step. No other outcome is immune: if uσ∗
alt

̸= uσ∗ , then there exists a v

such that the set of pools achieving a payoff greater than v is identical in uσ∗
alt

and uσ∗ , but the

pool of types T achieving payoff v under uσ∗ is a strict superset of that under uσ∗
alt
. Then types in

T can make a credible inclusive announcement that they will play as they do in σ∗.

Next, we show that the separation theorem continues to hold for the truth-leaning equilibrium

σ∗
N . To do so, consider the frontier

M̂N (v) = {t ∈ TN : uσ∗
N
(t) ≥ v, ̸ ∃t′ ∈ TN w/ t′⊂̂t and uσ∗

N
(t′) ≥ v}.

We can define upper and lower pools completely analogously to the main case:

Definition D.1. An upper pool of payoff frontier M̂(v) is a set

T̄ = U(M̂(v)) \ U(M)

for some collection of messages M .

Definition D.2. A lower pool of of payoff frontier M̂(v) is a set

T = U(M) \ U(M̂(v))

for some collection of messages M .

Claim 16 (Separation for finite N). For any nonempty upper pool T̄ and lower pool T of M̂(v),

upool(T̄ ) ≥ v > upool(T ).

Proof. It is clear that v > upool(T ) from the construction algorithm: if not, then when constructing

the lowest-payoff pool of senders who obtain value at least v, the algorithm could not have chosen

the payoff-maximizing upper pool, as adding T would have strictly increased the payoff to the pool.

To show that upool(T̄ ) ≥ v, note that if not, then similarly, if the lowest-payoff pool of senders

who obtain value at least v is Tv, then we could instead take

T ′
v = Tv

⋃
U(M)
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at the step that Tv was constructed. We find that this is a strictly higher-payoff upper pool, which

rules out upool(T̄ ) < v.

E Proof of convergence to imitation equilibrium as N → ∞

Here, we first use the separation theorem to prove that outcomes uσ∗
N
converge to uσ∗ in a convergent

sequence of games; then, we state a corresponding result that describes the extent to which the

sender’s messaging strategy also converges, and we give a proof.

To prove Theorem 6, we first introduce some notation. Let payoff frontiers in GN under a

truth-leaning equilibrium σ∗
N be given by M̂N (v) — that is,

M̂N (v) = {t ∈ TN : uσ∗
N
(t) ≥ v, ̸ ∃t′ ∈ TN w/ t′⊂̂t and uσ∗

N
(t′) ≥ v}.

Let a translation of MN (v) to the restricted limit type space T be µ̂N (v), where

µ̂N
j (v) = {µ ∈ [0, 1] : uσ∗

N
(µfj) ≥ v, and uσ∗

N
(µ′fj) < v ∀µ′ < µ}.

Finally, let

upool,N (T ) =

∑
t∈T qN (t)Eπ(·|t)[θ]∑

t∈T qN (t)

be the analog of upool for finite game GN . We first give a lemma that shows that average values in

the finite game converge to those in the continuous-µ game within upper and lower pools.

Lemma 13. Fix some ϵ > 0 and δ > 0. We aim to show that there exists large-enough N̂(ϵ, δ)

such that for N > N̂(ϵ, δ), we can ensure that neither U(µ̂(v+ ϵ)) \UN (M̂N (v)) nor UN (M̂N (v)) \
U(µ̂(v − ϵ)) contain more than a measure δ of types in T .

Proof of Lemma 13. Fix an integer n. The Glivenko-Cantelli theorem implies that there is a bound

on the probability that supd |
∑d

x=1 t(x) −
n
NFj(d)| > η conditional on |t| = n and the true state

being θj that decreases to 0 for large n, irrespective of N . Because data have a discrete distribution,

this implies a similar bound on the empirical probability mass function. Before proceeding further,

we formalize the implications for the problem at hand.

It is helpful to formally define a neighborhood of {µfj : µ ∈ [0, 1]} in TN . For η > 0, define

Sj
N (η) = {t ∈ TN : ∃θ s.t. sup

d
|t(d)− |t|fθ(d)| ≤ η}.

This is the set of datasets in TN that differ from some type in T for which the state is θj by no

more than a fraction η of observations of each outcome. Furthermore, taking any lower bound
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k∗ ∈ (0, 1], let Sj
N (η, k∗) be the set Sj

N (η)
⋂
{t : |t| ≥ Nk∗} of all datasets in the neighborhood that

contain at least a fraction k∗ of total possible observations.

We can ensure that, if we know that the state is θ = thetaj and the number of observations of

the data the sender observes is n > Nk∗, then the likelihood that their type lies in Sj
N (η, k∗) is

close to 1 for all η as long as N is sufficiently large. Furthermore, if η is small enough for a given

value of k∗, then Sj
N (η, k∗) are disjoint. There is a sufficient upper-bound to the value of η that

achieves this, η̃(k∗) = minj,j′ maxd k
fj(d)−fj′ (d)

2 .

For any desired likelihoods l1 > 0 and l2 > 0, and any error rates ξ1 > 0 and ξ2 > 0, there exists

a uniform bound Ñ(k∗, η, l1, l2, ξ1, ξ2) such that as long as k > k∗ and N > Ñ(k∗, η, l1, l2, ξ1, ξ2),

with η ≤ η̃(k∗),

a) Pr(t ∈ Sj
N (η, k∗)|θ = θj , n = Nk) ≥ 1− l1

b) Pr(t ∈ Sj
N (η, k∗)|θ ̸= θj , n = Nk) < l2 for any k > k∗

c) |EπN (·|t)[θ]− θj | ≤ ξ1 for all t ∈ Sj
N (η, k∗)

d) |(GN (Nk)−GN (Nk′))− (G(k)−G(k′))| < ξ2| for all 0 ≤ k′ ≤ k ≤ 1.

Part (a) follows directly from the Glivenko-Cantelli theorem. Part (b) follows from applying part

(a) to j′ ̸= j, although the bound could certainly be tightened more. Part (c) follows from both

the previous parts and the fact that the set of possible values of θ is finite. Part (d) follows from

the convergence of G1, . . . , to G.

Now we can bound the average value of U(µ̂(v + ϵ)) \ UN (M̂(v)) in TN .

Let us start with types in Sj
N (η, k)

⋂
U(µ̂(v + ϵ)) \ UN (M̂(v)). In T , we know that U(µ̂(v +

ϵ)) \ UN (M̂(v)) contains µfj for µ ∈ [µ̂j(v + ϵ), µ̂N
j (v)]. Recall that |D| = D, and define R =

maxj,d,d′
fj(d)
fj(d′)

. We know that for all k ∈ [µ̂j(v + ϵ) + DRη, µ̂N
j (v) − DRη], if t ∈ Sj

N (η, k) and

|t| = Nk then t ∈ Sj
N (η, k)

⋂
U(µ̂(v + ϵ)) \ UN (M̂N (v)). This is true because:

• If t ∈ Sj
N (η, k), then the nearest type µfj ∈ T differs by adding or deleting at most a mass η

of observations of each outcome.

• As a result, the type (k +DRη)fj can imitate t, and the type (k −DRη)fj can be imitated

by t.

• Therefore, if, in addition, k ∈ [µ̂j(v + ϵ) + RDη, µ̂N
j (v) − RDη], then t ∈ U(µ̂(v + ϵ)) \

UN (M̂N (v)).

Likewise, unless k ∈ [µ̂j(v + ϵ) − DRη, µ̂N
j (v) + DRη], if t ∈ Sj

N (η, k) and |t| = Nk then t ̸∈
Sj
N (η, k)

⋂
U(µ̂(v + ϵ)) \ UN (M̂N (v)).
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The probability that the raw dataset in GN lies in U(µ̂(v + ϵ)) \ UN (M̂N (v)) is therefore lower-

bounded by

β0(θj)(1− l1)[G(µ̂N
j (v) +RDη(k∗))−G(µ̂j(v + ϵ)−RDη(k∗))− 2ξ2]−GN (k∗N)

and upper-bounded by

β0(θj)[G(µ̂N
j (v)−RDη(k∗))−G(µ̂j(v + ϵ) +RDη(k∗)) + 2ξ2] + l2

whenever N > Ñ(k∗, η, l1, l2, ξ1, ξ2).

In addition, we can define the upper bound b̄ = maxµ g(µ) because g is continuous on a compact

interval. Then if
J∑

j=1

[G(µ̂N
j (v))−G(µ̂j(v + ϵ))] ≥ δ,

a crude lower bound on the average value of types in U(µ̂(v+ϵ))\UN (M̂N (v)) under the finite-game

type distribution qN is∑J
j=1[β0(θj)(1− l1)[G(µ̂N

j (v) +RDη)−G(µ̂j(v + ϵ)−RDη)− 2ξ2]−G(k)− ξ2](θj − ξ)

β0(θj)[G(µ̂N
j (v)−RDη)−G(µ̂j(v + ϵ) +RDη) + 2ξ2] + l2

≤ δ(v − ξ)− l1 − 2b̄RDη −G(k)− 3ξ2
δ + l2 + l1 + 2b̄RDη + 2ξ2

≡ LB(k∗, η, l1, l2, ξ1, ξ2|δ)

(16)

as long as N > Ñ(k∗, η, l1, l2, ξ1, ξ2). Note that this bound is independent of v, that is, it applies

uniformly to all payoff frontiers.

We have that

lim
N→∞

min
k∗,η,l1,l2,ξ1,ξ2:

Ñ(k∗,η,l1,l2,ξ1,ξ2)≤N

LB(η, k∗, l1, l2, ξ1, ξ2|δ) =
∑J

j=1[G(µ̂N
j (v))−G(µ̂j(v + ϵ))]θj∑J

j=1[G(µ̂N
j (v))−G(µ̂j(v + ϵ))]

≥ v + ϵ,

by the separation theorem applied to types in U(µ̂(v+ ϵ)) \UN (M̂N (v)) under the continuous-data

type distribution q. But we also know by applying the separation theorem that the average value

of types in U(µ̂(v+ ϵ)) \UN (M̂N (v)) under the finite-game type distribution qN is no more than v.

Then there exists large-enough N̂+(ϵ, δ) such that for N > N̂+(ϵ, δ), the above bound ensures that

for any v, the set U(µ̂(v+ ϵ)) \UN (M̂N (v)) does not contain more than a measure δ of types in T .

We can show, using a completely symmetric argument, that there also exists large-enough

N̂−(ϵ, δ) such that for N > N̂−(ϵ, δ), the set UN (M̂N (v))\U(µ̂(v−ϵ)) does not contain more than a
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measure δ of types in T , regardless of v. Rather than lower-bounding the average value of all types

in UN (M̂N (v)) \U(µ̂(v− ϵ)) under qN , we upper-bound it and show that given fixed δ, for large N

it is less than ϵ greater than the value of the same set of types evaluated under type distribution

q. This shows that it has average value less than v, and fails the separation theorem for the finite

game.

Next, we use the the lemma to prove the theorem.

Proof of Theorem 6. There is an upper bound ∆̄ = maxµ,j
dûj(µ)
dµ on the rate of change of payoffs

in µ under σ∗.

In addition, for every y > 0, there is some C(y) = minµ,j β0(θj)(G(µ) − G(µ − y)) > 0 with

limx→0C
−1(x) = 0, which shows that upper-bounding the measure of an interval [µ − y, µ] of

measures of types under state θj with respect to prior distribution q also upper-bounds y itself.

From Lemma 13, we know that for every payoff frontier v associated with the payoff of type

µfj ∈ T in the imitation equilibrium of GN , the frontier associated with type (µ − C−1(δ)fj)

represents a payoff no more than v+ ϵ under G for all N > N̂(ϵ, δ), since more than a fraction δ of

types lie in U(µ̂(v + ϵ)) \ UN (M̂N (v)). Then we know that for N > N̂(ϵ, δ),

uσ∗
N
(µfj) ≥ uσ∗((µ− C−1δ)fj)− ϵ ≥ uσ∗(µfj)− C−1(δ)∆̄− ϵ,

and likewise,

uσ∗
N
(µfj) ≤ uσ∗((µ+ C−1δ)fj) + ϵ ≤ uσ∗(µfj) + C−1(δ)∆̄ + ϵ.

We can take

min
δ,ϵ:N>N̂(ϵ,δ)

C−1(δ)∆̄ + ϵ

to be the bound on the difference between uσ∗(t)− u∗σ∗
N
(t), and it shrinks to 0 as N → ∞.

E.1 Strategic convergence

Proposition 14. Suppose that {GN}∞N=1 converge to G∞. Then for all p∗, ρ, η > 0, there is N(p∗, η)

such that for all N > N(p∗, η), conditional on |uσ∗
N
(t)−θk| > η for all k, there is at least probability

1−p∗ that t sends a message with (sup norm) distance at most δ from some t∞ ∈ T∞ that is on-path

in σ∗
∞ and such that |uσ∗

N
(t)− uσ∗

∞(t∞)| ≤ ρ.

This is a partial characterization of large-N equilibrium strategies, saying that among types

that obtain payoff bounded away by an arbitrarily small amount from the rewards to certainty

about any particular state, the likelihood of playing a message close to their optimal message under

limit-game beliefs is very high when there is plentiful access to data. In other words, these types
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play imitation-like strategies. This follows from the convergence theorem, since in truth-leaning

equilibrium a type that receives payoff less than its full-information payoff always discloses its full

dataset, so types with uσ∗
N
(t) << Eπ(·|t)[θ] tell the truth; convergence of outcomes implies that they

receive payoffs similar to those obtained by nearby types in T∞ under βσ∗
∞ , and convergence of the

type distribution implies that most such senders are indeed near some type in T∞. In aggregate a

similar set of imitators must pool with such senders as the set of imitators pooling with better-state

senders in σ∗
∞, which means that types with uσ∗

N
(t) >> Eπ(·|t)[θ] play messages close to T∞ with

high probability.

The caveat is that when |Eβσ∗
N
(·|m)[θ]− θk| is small for some k, then there may be no significant

mass of senders playing m to earn a payoff much greater or much less than their full-information

payoff, which makes it hard to apply the technique of matching imitators to the imitated, though

we do not have a counterexample for this case. From Corollary 4, we know that there is a positive-

measure set of types that receive payoffs close to their full-information payoffs in σ∗
∞, and the

proposition does not pin down the large-N limit of equilibrium strategies of types close to them,

but generically, besides these, the set of types excluded from the proposition is measure-0.23

Proof of Prop. 14. Define mσ∗
N
(t) to be the realization of the message played when the sender’s

type is t – formally, mσ∗
N
(t) is a random variable with outcomes in MN whose distribution is given

by the equilibrium strategy σ∗
N (·|t).

Define AN (x,∆; ϵ) to be the set of types t ∈ TN
⋂
T (ϵ) such that uσ∗

N
(t) > Eπ(·|t)[θ], and

uσ∗
N
(t) ∈ (x, x+∆].

Define BN (x,∆; ϵ) to be the set of types t′ ∈ TN
⋂
T (ϵ) with uσ∗

N
(t′) < Eπ(·|t)[θ], and uσ∗

N
(t′) ∈

(x, x+∆].

Define X(η, ξ, ω) = {x ∈
[
maxj ûj(ξ) + ω, uσ∗(fθJ )

)
: mink |uσ∗

N
(t)− θk| > η}.

For small enough η, ξ and ω, X(η, ξ, ω) is nonempty. On the other hand, AN (x,∆; ϵ) and

BN (x,∆; ϵ) may be empty, in particular for small N . However, for x ∈ X(η, ξ, ω), there is large-

enough N∗ so that they are nonempty for all N > N∗. Continuity of uσ∗(µfj) ensures there is

positive-measure set of types in T with uσ∗
infty

(t) ∈ [x, x + ∆]; the bound away from θk for all k

ensures that some such types have uσ∗
infty

(t)−Eπ(·|t)[θ] ≥ η and some have uσ∗
i nfty

(t) ≤ Eπ(·|t)[θ] <

−η, and so there is a positive-measure set of types nearby with the same properties under σ∗
N in

TN for large-enough N .

We first prove a claim.

23Genericity here can be with respect to perturbations in β0 or θ1, . . . , θJ .
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Claim 17. If {σ∗
N}∞N=1 are truth-leaning equilibria of games GN that converge to limit game G

with imitation equilibrium σ∗, then for any η > 0, ξ > 0, ω > 0 and p > 0, there exists ϵ̄ > 0

and ∆̄ > 0 such that, for all x ∈ X(η, ξ, ω), the probability conditional on t ∈ AN (x,∆; ϵ) that

mσ∗
N
(t) ∈ BN (x,∆; ϵ) is at least 1− p in the limit as N → 0 for all ϵ < ϵ̄ and ∆ < ∆̄.

Proof of Claim 17. Expanding out the realization of mσ∗
N
(t), this is equivalent to saying that for

given η > 0, ξ > 0, ω > 0, p > 0, there exists ∆̄ > 0 and ϵ̄ > 0 so that for all ∆ < ∆̄ and ϵ < ϵ̄,

lim
N→∞

∑
t∈AN (x,∆;ϵ)

[
qN (t)

∑
t′∈BN (x,∆;ϵ) σ

∗
N (t′|t)

]
∑

t∈AN (x,∆;ϵ) qN (t)
≥ 1− p.

for all x ∈ X(η, ξ, ω).

We have that for any ξ > 0, ω > 0,

lim
ϵ→0

lim
N→∞

min
θj

max
t∈TN

⋂
T (ϵ):uσ∗

N
(t)≥maxj ûj(ξ)+ω

|θj − Eπ(·|t)[θ]| = 0.

Thus for any ν > 0, ω > 0 and ξ > 0, there exist small-enough ϵ̄(ν, ξ, ω) > 0 and large-enough

N(ν, ξ, ω, ϵ) defined for ϵ < ϵ̄(ν, ξ) such that minθj maxt∈TN
⋂

T (ϵ):uσ∗
N
(t)≥maxj ûj(ξ)+ω |θj−Eπ(·|t)| < ν

for all ϵ < ϵ̄(ν, ξ, ω), N > N(ν, ξ, ω, ϵ).

If we take ∆ < η/3 and ν < η/3, then whenever |θk − Eπ(·|t)| < ν for some k and uσ∗
N
(t) ∈

[x, x+∆] for x in X(η, ξ, ω), we have that |uσ∗
N
(t)− Eπ(·|t)| > η/3. In particular, uσ∗

N
(t) ̸= Eπ(·|t),

so, for any x ∈ X(η, ξ, ω), and for any ∆, ν < η/3 and any ξ, ω and ϵ < ϵ̄(ν, ξ, ω), N > N(ν, ξ, ω, ϵ),

AN (x,∆; ϵ)
⋃

BN (x,∆; ϵ) = {t ∈ T (ϵ)
⋂

TN : uσ∗
N
(t) ∈ (x, x+∆]}.

In addition, the uniform convergence of outcomes on T and of the type distribution conditional

on each state ensures that for all ϵ, ξ,∆, and for all x ≥ maxj ûj(ξ) + ω,

lim
N→∞

∑
t∈AN (x,∆;ϵ)

q(t)Eπ(·|t)[θ] =
∑
θj<θk

θjβ0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))] (17)

and

lim
N→∞

∑
t∈AN (x,∆;ϵ)

q(t) =
∑
θj<θk

β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))] (18)

and likewise

lim
N→∞

∑
t∈BN (x,∆;ϵ)

q(t)Eπ(·|t)[θ] =
∑
θj>θk

θjβ0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))] (19)
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and

lim
N→∞

∑
t∈BN (x,∆;ϵ)

q(t) =
∑
θj>θk

β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]. (20)

Supposing that x ∈ X(η, ξ, ω) for some θk, and ϵ < ϵ̄(ν, ξ, ω), and ∆, ν < η/3, we know from the

above that

x ≤
∑

θj
θjβ0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]∑

θj
β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]

= lim
N→∞

∑
t∈BN (x,∆;ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈AN (x,∆;ϵ) q(t)Eπ(·|t)[θ]∑

t∈BN (x,∆;ϵ) q(t) +
∑

t∈AN (x,∆;ϵ) q(t)

(21)

On the other hand,

x+∆

≥ lim
N→∞

∑
t∈BN (x,∆;ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈AN (x,∆;ϵ)

[
q(t)Eπ(·|t)[θ]

∑
t′∈BN (x,∆;ϵ) σ

∗
N (t′|t)

]
∑

t∈BN (x,∆;ϵ) q(t) +
∑

t∈AN (x,∆;ϵ)

[
q(t)

∑
t′∈BN (x,∆;ϵ) σ

∗
N (t′|t)

]
= lim

N→∞

∑
θj
θjβ0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]−

∑
t∈AN (x,∆;ϵ) q(t)Eπ(·|t)[θ]

∑
t′∈BN (x,∆;ϵ)(1− σ∗

N (t|t′))∑
θj
β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]−

∑
t∈AN (x,∆;ϵ) q(t)

∑
t′∈BN (x,∆;ϵ)(1− σ∗

N (t|t′))
.

(22)

But, we know that Eπ(·|t)[θ] < uσ∗
N
(t)−η/3 ≤ x+∆−η/3 for any t ∈ AN (x,∆; ϵ). Then, combining,

we have

0 ≤(x+∆)

∑
θj

β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]− lim
N→∞

∑
t∈AN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N (t|t′))


− x

∑
θj

β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]

− lim
N→∞

∑
t∈AN (x,∆;ϵ)

q(t)Eπ(·|t)[θ]
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N (t|t′))

≤∆

∑
θj

β0(θj)[G(µ̂j(x+∆))−G(µ̂j(x))]


− [(x+∆)− (x+∆− η/3)] lim

N→∞

∑
t∈AN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N (t|t′))

= lim
N→∞

∆

 ∑
t∈AN (x,∆;ϵ)

⋃
BN (x,∆;ϵ)

q(t)

− η

3
lim

N→∞

∑
t∈AN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N (t|t′)).

(23)
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Finally, since

lim
N→∞

∑
t∈AN (x,∆;ϵ)

⋃
BN (x,∆;ϵ) Eπ(·|t)[θ]q(t)∑

t∈AN (x,∆;ϵ)
⋃

BN (x,∆;ϵ) q(t)
≤ x+∆,

we have ∑
t∈BN (x,∆;ϵ)

(θk+1 − x−∆)q(t) ≤
∑

t∈AN (x,∆;ϵ)

(x+∆− θ1)q(t)

and so ∑
t∈AN (x,∆;ϵ) q(t)∑
t∈BN (x,∆;ϵ) q(t)

≥ η/3

θJ
.

From the above and eq. 23, we have

lim
N→∞

∑
t∈AN (x,∆;ϵ)

[
qN (t)

∑
t′∈BN (x,∆;ϵ)(1− σ∗

N (t′|t))
]

∑
t∈AN (x,∆;ϵ) qN (t)

≤ ∆(θJ + η)

(η/3)2
.

Then for given p, ξ, ω, η, and ν < η/3 and ϵ < ϵ̄(ν, ξ, ω), as long as ∆ ≤ pη2

9(θJ+η) , we have

lim
N→∞

∑
t∈AN (x,∆;ϵ,ξ)

[
qN (t)

∑
t′∈BN (x,∆;ϵ,ξ) σ

∗
N (t′|t)

]
∑

t∈AN (x,∆;ϵ,ξ) qN (t)
≥ 1− p

and this bound is independent of x. So, letting ϵ̄ = ϵ̄(η/3, ξ, ω) and ∆̄ = pη2

9(θJ+η) , we have proven

the claim.

Next, let u = ûj(0), where the choice of j for the definition does not matter. Suppose the

following condition holds for some positive η:

Condition 1. mink |θk − u| > η and there is ξ̃ > 0 such that G(ξ̃) > 0 for all j, and ûj(ξ̃) = u for

some j.

This says that a sender with a positive amount ξ̃ of distribution fj gets the same payoff as the

sender with no data, and that that payoff is bounded away from any θj by η. When showing that

senders must play similarly under σ∗
N in the limit as the average dataset becomes large, we consider

separately the small fraction of senders that, by chance, receive very little data, i.e. those with

|t| ≤ ξ, and in this case

lim
ξ→0

lim
ω→0

min{µ : ∃j s.t. ûj(µ) > ξ + ω} > 0,

and there is a positive-measure set of types that may be pooled with those low-data senders.

Let us prove a similar claim to the previous one.
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Claim 18. If there exists η such that condition 1 holds, then for given p > 0, there exists ϵ̄ > 0

such that for ϵ < ϵ̄, if we define

S(ξ, ω, ϵ) = {t ∈ TN
⋂

T (ϵ) : |t| ≤ ξ and uσ∗
N
(t) ∈ (x, x+∆]},

then letting aN (ξ, ω, ϵ) = AN (u−ω, 2ω; ϵ)\S(ξ, ω, ϵ) and bN (ξ, ω, ϵ) = BN (u−ω, 2ω; ϵ)
⋃
S(ξ, ω, ϵ),

we have

lim
ξ→0

lim
ω→0

lim
N→∞

∑
t∈aN (ξ,ω,ϵ)

[
qN (t)

∑
t′∈bN (ξ,ω,ϵ) σ

∗
N (t′|t)

]
∑

t∈aN (ξ,ω,ϵ) qN (t)
≥ 1− p.

Proof of Claim 18. To start, note that in this case, we have for all ξ > 0 that

lim
ϵ→0

lim
N→0

min
θj

max
t:|t|≤ξ

|θj − Eπ(·|t)[θ]| = 0.

Then for all t ∈ aN (ξ, ω, ϵ), there is some ϵ̄′(η, ξ) and N ′(η, ξ, ϵ) so that for all ϵ < ϵ̄′(η, ξ) and

N > N ′(η, ξ, ϵ), we have uσ∗
N
(t)− Eπ(·|t)[θ] ≥ η/3.

We know that

u− ω ≤ lim
N→∞

∑
t∈bN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈aN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ]∑

t∈bN (ξ,ω,ϵ) q(t) +
∑

t∈aN (ξ,ω,ϵ) q(t)

=

∑
θj
θjβ0(θj)G(µ̂j(u+ ω))∑

θj
β0(θj)G(µ̂j(u+ ω))

(24)

and

u+ ω ≥ lim
N→∞

∑
t∈bN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ] +

∑
t∈aN (ξ,ω,ϵ)

[
q(t)Eπ(·|t)[θ]

∑
t′∈bN (ξ,ω,ϵ) σ

∗
N (t′|t)

]
∑

t∈bN (ξ,ω,ϵ) q(t) +
∑

t∈aN (ξ,ω,ϵ)

[
q(t)

∑
t′∈bN (ξ,ω,ϵ) σ

∗
N (t′|t)

]
= lim

N→∞

∑
θj
θjβ0(θj)G(µ̂j(u+ ω))−

∑
t∈aN (ξ,ω,ϵ) q(t)Eπ(·|t)[θ]

∑
t′∈bN (ξ,ω,ϵ)(1− σ∗

N (t|t′))∑
θj
β0(θj)G(µ̂j(u+ ω))−

∑
t∈aN (ξ,ω,ϵ) q(t)

∑
t′∈bN (ξ,ω,ϵ)(1− σ∗

N (t|t′))
.

(25)

Then, just as in eq. 23, we have when ϵ < ϵ̄′(η, ξ, ω) that

lim
N→∞

2ω

 ∑
t∈aN (ξ,ω,ϵ)

⋃
bN (ξ,ω,ϵ)

q(t)

− η

3
lim

N→∞

∑
t∈aN (x,∆;ϵ)

q(t)
∑

t′∈BN (x,∆;ϵ)

(1− σ∗
N (t|t′)) ≥ 0.
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Since there is some j such that ûj(ξ̃) = u, we have the bound

lim
N→∞

∑
t∈aN (ξ,ω,ϵ)

qN (t) ≥ β0(θj)[G(ξ̃)−G(ξ)].

So, we have that

lim
N→∞

∑
t∈aN (ξ,ω,ϵ)

[
qN (t)

∑
t′∈bN (ξ,ω,ϵ)(1− σ∗

N (t′|t))
]

∑
t∈aN (ξ,ω,ϵ) qN (t)

≤ 2ω(1 + β0(θj)[G(ξ̃)−G(ξ)])

β0(θj)[G(ξ̃)−G(ξ)]η/3
.

This implies the claim.

Finally, we use these claims to prove the proposition.

For any δ and ρ, there are ξ∗, ϵ∗ > 0 and N∗ such that for all ξ < ξ∗, ϵ < ϵ∗, N > N∗(ϵ, ξ), and

ω > 0, any t′ is in either BN (x,∆; ϵ) for some ∆ and x > ξ + ω, or in bN (ξ, ω, ϵ) if it is at most a

distance δ away from some t ∈ T with |uσ∗(t)− uσ∗
N
(t′)| ≤ ρ.

In particular, find l such that θl ≤ ū < θl+1, and then for any K we can construct the collection

of sets {
BN

(
ξ + ω + k

θl − (ξ + ω)

K
,
θl − (ξ + ω)

K
; ϵ

)}K−1

k=0

and {
BN

(
θj−1 + η + k

θj − η − (θj−1 + η)

K
,
θj − η − (θj−1 + η)

K
; ϵ

)}K

k=0

, for all j > l,

essentially partitioning the imitated senders by the payoffs they receive, into intervals that are

disjoint, cover all attained payoffs except [0, ξ+ω] and the intervals [θj−η, θj+η) and are arbitrarily

small as K → ∞.

Let C(N,K, ξ, ω, η; ϵ) be the collection that is the union of these collections, and also in-

cludes, if condition 1 holds for η, the set bN (ξ, ω, ϵ). Call the elements of C(N,K, ξ, ω, η; ϵ) by

C1(N,K, ξ, ω, η; ϵ), . . . , CI(N,K, ξ, ω, η; ϵ).

Likewise, we can construct the collection of sets{
AN

(
ξ + ω + k

θl − (ξ + ω)

K
,
θl − (ξ + ω)

K
; ϵ

)}K−1

k=0

and {
AN

(
θj−1 + η + k

θj − η − (θj−1 + η)

K
,
θj − η − (θj−1 + η)

K
; ϵ

)}K

k=0

, for all j > l,
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which are corresponding sets of imitating types; let D(N,K, ξ, ω, η; ϵ) be the collection containing

these as well as aN (ξ, ω, ϵ) if condition 1 holds for η. Call the elements of D(N,K, ξ, ω, η; ϵ) by

D1(N,K, ξ, ω, η; ϵ), . . . , DI(N,K, ξ, ω, η; ϵ).

The proposition follows from proving that the ex-ante probability that the sender imitates some

t′ that is in an element of C(N,K, ξ, ω, η; ϵ) converges to 1 in the large N limit and in the limit as

K → ∞ and ϵ, ω, ξ, η → 0.

To see this, first observe that, from the above two claims, if we define

LB(N,K, ξ, ω, η; ϵ) = min
i

Pr(mσ∗
N
(t) ∈ Ci(N,K, ξ, ω, η; ϵ)|t ∈ Di(N,K, ξ, ω, η; ϵ)),

then limξ→0 limω→0 limK→∞ limϵ→0 limN→∞ UB(N,K, ξ, ω, η; ϵ) = 1; note that this is a uniform

bound over all i.

Then, letting T denote a set of types that is an element of C(N,K, ξ, ω, η; ϵ), we have

Pr

mσ∗
N
(t) ∈ [

⋃
CN (K,ξ,ω,η;ϵ)

T ]

∣∣∣∣min
k

|uσ∗
N
(t)− θk| > η


≥

I∑
i=1

[
Pr

(
t ∈ Di(N,K, ξ, ω, η; ϵ)|min

k
|uσ∗

N
(t)− θk| > η

)
· Pr(mσ∗

N
(t) ∈ Ci(N,K, ξ, ω, η; ϵ)|t ∈ Di(N,K, ξ, ω, η; ϵ))

+ Pr(mσ∗
N
(t) ∈ Ci(N,K, ξ, ω, η; ϵ)

∣∣∣∣min
k

|uσ∗
N
(t)− θk| > η)

]

≥
Pr(t ∈

⋃
iDi(N,K, ξ, ω, η; ϵ))LB(N,K, ξ, ω, η; ϵ) + Pr(t ∈

⋃
iCi(N,K, ξ, ω, η; ϵ))

Pr(mink |uσ∗
N
(t)− θk| > η)

.

(26)

Since limξ→0 limω→0 limK→∞ limϵ→0 limN→∞ PR(t ∈
⋃

i[Di(N,K, ξ, ω, η; ϵ)
⋃
Di(N,K, ξ, ω, η; ϵ)]) =

Pr(mink |uσ∗
N
(t)− θk > η), we have

lim
ξ→0

lim
ω→0

lim
K→∞

lim
ϵ→0

lim
N→∞

Pr(t ∈
⋃

iDi(N,K, ξ, ω, η; ϵ))LB(N,K, ξ, ω, η; ϵ) + Pr(t ∈
⋃

iCi(N,K, ξ, ω, η; ϵ))

Pr(mink |uσ∗
N
(t)− θk| > η)

= 1

(27)

for all η, thus proving the proposition.
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