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Abstract

We consider the welfare implications of buyer’s information in a monopoly pricing

setting, where the seller privately observes a signal for the buyer’s value. The seller can

commit to any mechanism that depends on the realizations of the seller’s signal and

the buyer’s reported message. The buyer privately observes a signal about their own

value, and then makes a participation decision and reports a message in the mechanism

if participating. We characterize the buyer signals that maximizes the buyer’s surplus.

This buyer optimal signal is (i) privacy-preserving. Namely, it is independent of the

seller’s signal, so that the buyer is immune to any form of price discrimination; and

(ii) unit-elastic, so that any posted price mechanism with prices in the support of the

distribution of the buyer’s posterior expected value is optimal for the seller. We further

use these signals to characterize the welfare outcomes that can be induced by some

buyer signal, and show that the set of feasible welfare outcomes becomes smaller as the

seller’s signal becomes Blackwell more informative.
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1 Introduction

Advancements of information technology facilitates information revelation to buyers and sell-

ers prior to trading. Buyers have many sources of information, such as product ratings and

platforms’ product recommendation, which allow them to obtain product information and to

be better-informed about their values. Meanwhile, sellers can receive information about buy-

ers’ values by collecting or purchasing consumer data, which contains buyers’ characteristics

and purchase histories that are informative about their tastes. The information structure

between a buyer and a seller shapes their incentives, and thus the welfare outcomes, in many

ways. One the one hand, buyers’ information allow them to be more informed when making

purchasing decisions, but at the same time changes the demand elasticity and thus the seller’s

pricing strategy. On the other hand, sellers’ information about the buyer allows them to price

discriminate and extract more surplus, which may or may not benefit the buyers. Moreover,

the correlation between buyers’ and sellers’ information could further affect the degree in

which buyers are price discriminated and how much information rent they can retain.

Specifically, consider a monopoly pricing setting where a buyer and a seller trade a single

product. The buyer is risk-neutral with a quasi-linear preference, and has a unit demand

while the seller has zero marginal cost. Suppose that a seller has access to certain consumer

data (e.g., each consumer’s website browsing history)—and hence some information about

the buyer’s value—and suppose that the seller can commit to any selling mechanism to

use this information. From the buyer’s perspective, the information they have about the

product—and hence their own value—could affect the seller’s mechanism in various ways.

For example, the seller could potentially use their information to engage in price discrim-

ination. The degree of price discrimination depends on the type of information the buyer

has about their value. If the buyer knows exactly what the seller knows, the seller can per-

fectly price discriminate them and extract all the surplus. If the buyer knows more than

the seller does, the seller can still price discriminate but would sometimes leave the buyer

some information rent. However, if the buyer’s and the seller’s signals are correlated in a

certain way, the seller can again extract (almost) all the surplus (Crémer and McLean 1988;

McAfee and Reny 1992). In the meantime, if the buyer is completely uninformed, then there

is no need for the seller to price discriminate, but the seller can still fully extract surplus

by simply charging a posted price that equals the buyer’s expected value. In addition, the
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buyer’s information determines the distribution of their posterior expected value, which in

turn determines the demand elasticity and hence the prices charged by the seller. Given the

various ways in which the buyer’s information could affect the seller’s mechanism, and hence

the welfare outcome, it is thus natural to ask what kind of information is the best for the

buyer, and more generally, what are the implications of the buyer’s information on welfare

outcomes when the seller is informed about the buyer’s value.

The main result (Theorem 1) of this paper shows that a certain class of buyer information

performs particularly well. We say that a signal for the buyer is privacy-preserving if the

buyer’s signal, as a random variable, is independent of the seller’s signal. Under any privacy-

preserving signal, (almost) full surplus extraction in the sense of Crémer and McLean (1988)

and McAfee and Reny (1992) is impossible, as there is no correlation between the buyer’s

posterior expected value and the buyer’s private signal. Moreover, it is optimal for the

seller to use a uniform posted price mechanism without any form of price discrimination. In

other words, privacy-preserving signals allow the buyer to be “immune” to any form of price

discrimination, as well as the Crémer-McLean-McAfee-Reny type surplus extraction. This is

because realizations of seller’s signal, despite being informative about the buyer’s true value,

is not informative at all about the buyer’s posteriors expected values. Furthermore, under a

privacy-preserving signal, the buyer’s incentives under any given mechanism does not depend

on the seller’s private signal either, as the seller’s private signal is independent of the buyer’s

signal. Risk neutrality of the buyer then implies that it is without loss for the seller to use a

mechanism that only depends on the buyer’s reported expected value, which in turn implies

that a posted mechanism is always optimal.

Theorem 1, together with a characterization of distributions of posterior expected values

induced by privacy-preserving signal, which is given by Theorem 3 of Strack and Yang (2023),

then allows us to completely characterize the buyer’s optimal signal (Proposition 1), as well as

the set of feasible welfare outcomes (Proposition 2). The buyer’s optimal signal is a privacy-

preserving signal that induces a distribution of posterior expected values corresponding to

a unit-elastic demand curve, so that the seller is indifferent in charging any posted prices

in the support. By selecting the smallest posted price, the seller’s profit is minimized, and

trade occurs with probability one, which implies that the buyer’s surplus is maximized.

Proposition 2 further exploits the unit-elastic nature to generate a privacy-preserving signal

that induces any welfare outcome where the seller’s profit is above the minimized profit
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identified by Proposition 1, and the sum of the buyer’s surplus and the seller’s profit is at

most the total surplus. Finally, Theorem 3 shows that the seller’s minimized profit increases—

and hence the set of feasible welfare outcomes shrinks—as the seller’s signal becomes more

informative.

Related Literature This paper is related to multiple streams of literature. In a monopoly

setting,1 several recent papers have explored the welfare implications of the information

structure between the seller and the buyer. Bergemann, Brooks and Morris (2015) study the

seller’s signal about the buyer’s value, assuming the buyer is fully informed, and characterizes

welfare outcomes that can arise under all seller signals. Roesler and Szentes (2017) study

the buyer’s signals about their own values, assuming the seller is completely uninformed, and

characterize welfare outcomes that can arise under all buyer signals. In contrast, we consider

the welfare implications of the buyer’s signal with an arbitrarily fixed seller signal.2 In a set-

ting that features second-degree price discrimination (Mussa and Rosen 1978), Yang (2021)

studies the welfare frontier among all buyer signal, assuming that the seller is completely un-

informed and that the value is binary. Bergemann, Heumann and Morris (2023) characterize

the buyer signal that maximizes the seller’s profit. Bergemann, Heumann and Wang (2024)

study the welfare implication of the seller’s signal, assuming that the buyer is fully informed.

In a general multi-product monopoly setting, Haghpanah and Siegel (2022) and Haghpanah

and Siegel (2023) study the welfare implications of the seller’s signal, assuming the buyer is

fully informed. Deb and Roesler (forthcoming) study the max-min mechanism for the seller

playing against the Nature who chooses a buyer signal to minimize the seller’s profit.

An important feature of our setting is that some buyer signal might be correlated with the

seller’s signal. If these signals are correlated in a way that satisfies the conditions identified

by Crémer and McLean (1988) and McAfee and Reny (1992), the the buyer’s surplus can

1See Elliott, Galeotti, Koh and Li (2023) and Armstrong and Zhou (2022) for the same types of questions
in an oligopoly setting.

2There are two other natural questions to be considered here. The first is the feasible welfare outcomes
under all information structures, including both the buyer’s and the seller’s signals. This follows from the
result of Roesler and Szentes (2017), as for any information structure, the seller’s profit must be bounded
below by the worst profit in the setting of Roesler and Szentes and the buyer’s surplus must be bounded
above by the best surplus in the setting of Roesler and Szentes, and the information structures that yields
these outcomes are feasible. The second related question is the feasible outcome induced by all seller’s signal
for a fixed buyer signal. This can be characterized using analogous methods developed by Bergemann et al.
(2015).
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be fully extracted. In this regard, the result that privacy-preserving signals are optimal for

the buyer is thus of the same flavor as the min-max information structure in a informally

robust auction setting characterized by Brooks and Du (2021), in which the bidders’ signals

are independent of each other to avoid full surplus extraction.

Our results are built upon the characterization of privacy-preserving signals, which is

due to Strack and Yang (2023). Relatedly, He, Sandomirskiy and Tamuz (2023) also study

information structures where agents’ signals are independent, which they call private private

information structure. Our comparative statics result is based on a connection between the

Blackwell order and the majorization order among the expected quantile functions, which in

turn is based on Strassen’s theorem (Strassen 1965) and is related to the majorization theory

of Lorenz (1949), and, in particular Gutmann, Kemperman, Reeds and Shepp (1991).

Outline The rest of this paper is organized as follows. Section 2 sets up the model. Sec-

tion 3 uses an example to illustrate the main trade-off of the problem. Section 4 character-

izes the buyer optimal signal while Section 5 characterizes the feasible welfare outcomes and

presents a comparative statics. Section 6 concludes.

2 Model

A monopolist sells a single object to a buyer with unit demand. The buyer’s payoff is quasi-

linear, so that their payoff is pv− t when the probability of obtaining the product is p ∈ [0,1],
the payment to the seller is t, and the value is v ∈ [0,1] =∶ V .

Signals Both the buyer and the seller are informed about v through some private signals.

A signal is a random variable defined on the probability space (V × [0,1],B,P), where B is

the Borel σ-algebra on V × [0,1] and P is a product of some probability measure with CDF

F and the Lebesgue measure. The first component of the state (v, r) ∈ V × [0,1] denotes the
buyer’s value, whereas the second component is a randomization device. The buyer and the

seller privately observe a signal for the buyer’s value v. The buyer’s signal is denoted by s̃

and the seller’s signal is denoted by θ̃. Since V is a Polish space, so is the set of posteriors

∆(V ) over V (under the weak-* topology). It is thus without loss to assume that s̃ and θ̃
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take values in [0,1]. A class of buyer signals will be of particular importance for our results,

which we define below.

Definition 1. Fix a seller signal θ̃. A buyer signal s̃ is said to be privacy-preserving if s̃ is

independent of θ̃.

A privacy-preserving signal s̃ allows the buyer to obtain information about v in a way

that the seller cannot make any inferences about. For example, the fully informative signal

is in general not privacy-preserving, as that signal must be correlated with the seller’s signal

θ̃, unless θ̃ is completely uninformative. In contrast, a completely uninformative signal is

privacy-preserving. Furthermore, as shown in Strack and Yang (2023), the quantile signal

q̃ ∶= rF (v ∣ θ̃) + (1 − r)F −(v ∣ θ̃) (1)

is privacy-preserving and reveals the buyer some information about v, where F (⋅ ∣ θ) is the
conditional distribution of v given the seller’s signal realization θ, and F −(⋅ ∣ θ) is its left-limit.

Let F be the distribution of the buyer’s posterior expected value induced by the quantile

signal q̃:

F (x) ∶= inf{y ∈ [0,1] ∶ E[F −1(y ∣ θ)] ≥ y} ,

for all x ∈ [0,1].

Mechanisms Prior to observing the realization of θ̃, the seller commits to a mechanism.

By the revelation principle, it is without loss to restrict attention to incentive compatible and

individually rational direct mechanisms, which asks the buyer to report the signal realization

they observes and, conditional on the seller’s signal realization, decides the probability of

allocation the object and the transfer. That is, a mechanism is a pair (p, t), where p ∶
[0,1]2 → [0,1] and t ∶ [0,1]2 → R, so that the probability of selling the object equals p(θ, s) if
the buyer’s report is s and the seller’s signal realization is θ, whereas the amount of transfer

is t(θ, s) when the buyer’s report is s and the seller’s signal realization is θ.

A mechanism is incentive compatible if reporting the signal realization truthfully is opti-

mal for the buyer. That is,

E[p(θ̃, s) ∣ s] ⋅ E[v ∣ s] − E[t(θ̃, s) ∣ s] ≥ E[p(θ̃, s′) ∣ s] ⋅ E[v ∣ s] − E[t(θ̃, s′) ∣ s]
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for all s, s′ ∈ [0,1], and is individually rational if

E[p(θ̃, s) ∣ s] ⋅ E[v ∣ s] − E[t(θ̃, s) ∣ s] ≥ 0 ,

for all s ≥ 0.

3 An Example

In what follows, we use a simple example to illustrate the nature of various types of the

buyer’s signals. Suppose that the buyer’s value v is uniformly distributed on [0,1], and

suppose that the seller receives a binary signal θ̃ ∶= 1{v > 1/2}. Suppose first that the buyer’s

signal equals the seller’s signal, so that the buyer also observes (and only observes) θ̃. Then

the seller can fully extract the buyer’s surplus via perfect price discrimination. That is, the

seller can charge a price of 1/4 when θ̃ = 0, and charge a price of 3/4 when θ̃ = 1.

0

0

1

1

θ̃ = 0 θ̃ = 1

s̃ = 0 s̃ = 1

1/2

4/5

Figure 1: Signals θ̃ and s̃1

In the meantime, consider another signal s̃ for the buyer, where s̃ ∶= 1{v > 4/5}. Note that
under this buyer signal, E[v ∣ s̃ = 0] = 2/5 and E[v ∣ s̃ = 1] = 9/10. Moreover, according to the

buyer’s posterior beliefs, P[θ̃ = 1 ∣ s̃ = 0] = 5/8, and P[θ̃ = 1 ∣ s̃ = 1] = 1. This signal is illustrated
by Figure 1. Note that the full-surplus extraction condition in Crémer and McLean (1988)

is satisfied under this signal, and hence the buyer’s surplus is zero under any seller-optimal
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mechanism.3

To avoid surplus extraction, one could consider a buyer signal (s̃, θ̃), where the buyer

combines to two aforementioned signals together. In this case, the seller’s private signal θ̃

becomes public, and thus the full surplus extraction mechanism is not incentive compatible.

Moreover, the buyer knows more than the seller does and thus the seller cannot perfectly price

discriminate. Given this buyer signal, the seller’s optimal mechanism is simply choosing an

optimal posted price for each realized θ̃. Note that P[s̃ = 1 ∣ θ̃ = 0] = 0, and P[s̃1 ∣ θ̃ = 1] = 1/5.
Therefore, when θ̃ = 0, the seller optimally charges the buyer’s expected value conditional on

s̃ = 0, which leaves the buyer zero surplus; whereas when θ̃ = 1, the seller optimally charges

a price of 2/5, so that trade occurs with probability 1, which leaves the buyer a surplus of

1/5⋅(9/10−2/5) = 1/10. Therefore, the buyer’s total surplus equals P[θ̃ = 0]⋅0+P[θ̃ = 1]⋅1/10 = 1/20 > 0
when their signal is (θ̃, s̃).

The buyer can do better. Consider the signal that fully informs the buyer, so that the

buyer learns v. Under this signal, the buyer is also fully informed about the seller’s signal θ̃.

This becomes a standard price discrimination problem, where the seller chooses an optimal

posted price conditional on each realization of θ̃. When θ̃ = 0, the buyer’s value is uniformly

distributed on [0, 1/2], and the seller’s optimal price is 1/4. When θ̃ = 1, the buyer’s value is

uniformly distributed on [1/2,1], and the seller’s optimal price is 1/2. Together, the buyer’s

surplus is 1/2 ⋅ 1/16 + 1/2 ⋅ 1/4 = 5/32 > 1/20.
Since the seller essentially engages in third-degree price discrimination, and charges op-

timal posted prices separately when the buyer is fully informed, the buyer’s surplus can be

further improved by garbling v conditional on θ̃. Conditional on θ̃ = 0, one can garble v using

the method developed by Roesler and Szentes (2017), which leads to a signal under which

trade occurs with probability 1, and the seller’s optimal price is approximately 0.102. The

buyer’s surplus is thus approximately 1/4 − 0.102 = 0.148. Together, the buyer’s surplus is

1/2 ⋅ 0.148 + 1/2 ⋅ 1/4 ≈ 0.198 > 5/32.
3More precisely, let p(θ, s) = 1, for all θ, s ∈ {0,1}2 and let

t(θ, s = 0) =

⎧
⎪⎪
⎨
⎪⎪
⎩

−
5
8
, if θ = 0

3
8
, if θ = 1

+

2

5
, and t(θ, s = 1) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0, if θ = 0

−1, if θ = 1
+

9

10
.

It then follows that (p, t) is incentive compatible and individually rational when the buyer’s signal is s̃, and
E[t(θ̃, s̃)] = 1/2.

8



In fact, the buyer’s can completely avoid price discrimination and induces the seller to

charge a uniform posted price. Consider a signal q̃, which is the quantile signal defined by

(1). That is, q̃ = v if θ̃ = 0 and q̃4 = v + 1/2 if θ̃ = 1. In this case, the buyer’s signal is privacy-

preserving, and the seller’s private signal θ̃ becomes useless. The seller’s optimal mechanism

is therefore a uniform posted price, and thus the seller does not price discriminate at all under

the signal q̃. Nonetheless, the buyer’s surplus would be lower under signal q̃ than under the

previous signal obtained by garbling v conditional on θ̃. The optimal posted price under

signal q̃ is determined by the distribution of the buyer’s posterior expected value F , which

is a uniform distribution on [1/4, 3/4]. Therefore, under signal q̃, the seller optimally charges

a price of 3/8, and the buyer’s surplus is 9/64 < 0.198.
Nonetheless, the seller can do better by garbling the signal q̃. Since the distribution of

posterior expected values under signal q̃ is uniform on [1/4, 3/4], we can again apply the method

of Roesler and Szentes (2017) and garble this signal so that the demand becomes unit-elastic.

The garbled signal, call it s⋆, induces trade with probability one, and gives a seller profit of

approximately 0.274, and gives the buyer approximately a surplus of 1/2−0.274 = 0.225 > 0.198.
Thus, the buyer’s surplus is even higher under s̃4. In fact, our main results implies that this

is a signal that maximizes the buyer’s surplus.

4 Buyer-Optimal Signal

Since the seller’s signal θ̃ might be informative about v, buyer’s signal s̃ could be correlated

with θ̃. Existing results on monopoly pricing with a private value buyer may not apply.

However, when the buyer’s signal is privacy-preserving, standard results can be restored. In

particular, as Lemma 1 below shows, whenever the buyer’s signal s̃ is privacy-preserving,

there exists a posted price mechanism that is optimal for the seller.

Lemma 1. For any buyer signal s̃ that is privacy-preserving, there exists a posted price

mechanism that maximizes the seller’s profit.

Proof. Consider any privacy-preserving signal s̃ for the buyer and consider any incentive

compatible and individually rational mechanism (p, t). Let p̄ and t̄ be defined as

p̄(s) ∶= E[p(θ̃, s)] and t̄(s) ∶= E[t(θ̃, s)] ,
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for all s ∈ [0,1]. Note that (p̄, t̄) is also a mechanism. Since s̃ is privacy-preserving, for any

s, s′ ∈ [0,1],

E[p(θ̃, s′) ∣ s] ⋅ E[v ∣ s] − E[t(θ̃, s′)] = E[p(θ̃, s′)] ⋅ E[v ∣ s] − E[t(θ̃, s′)] = p̄(s′) ⋅ E[v ∣ s] − t̄(s′).

Therefore, the mechanism (p̄, t̄) is incentive compatible and individually rational if and only if

(p, t) is incentive compatible and individually rational. Moreover, since (p̄, t̄) depends only on

the buyer’s reported signal realization, and since the buyer’s payoff only depends on the true

signal realization s through E[v ∣ s] given the reports, any incentive compatibility implies that

(p̄, t̄) must only depend on the buyer’s expected posterior value E[v ∣ s]. The seller’s problem
is then equivalent to finding an incentive compatible and individually rational mechanism

(p̃, t̃) that only asks the buyer to report their posterior expected value E[v ∣ s] to maximize

revenue. Standard arguments (see, for instance Myerson 1981; Riley and Zeckhauser 1983;

Börgers 2015) then imply that there exists a posted price mechanism that is optimal.

From Lemma 1, it follows that the seller would optimally choose not to price discriminate

the buyer using their private signal, if the buyer’s signal is privacy-preserving. In particular,

while it is possible in general that the buyer’s signal s̃ and the seller’s signal θ̃ might be

correlated in a way that satisfies the condition identified by Crémer and McLean (1988) and

McAfee and Reny (1992), and hence allow the seller to (almost) fully extract the buyer’s sur-

plus, this is not possible if the buyer’s signal is privacy-preserving. More generally speaking,

Lemma 1 highlights a particular benefit of privacy-preserving signals: they allow the buyer

to be immune to price discrimination. In fact, as shown by Theorem 1 below, this implies

that privacy-preserving signals are optimal for the buyer.

Theorem 1. For any buyer signal s̃ and any seller-optimal mechanism (p, t), there exists

another buyer signal s∗ that is privacy-preserving, as well as a seller-optimal mechanism

(p∗, t∗) under which the buyer’s surplus is weakly higher and the seller’s profit is weakly

lower.

Proof. Consider any signal s̃ and any optimal mechanism (p, t) for the seller, let π(s̃)
and σ(s̃) be the seller’s profit and the buyer’s expected surplus under this signal and this

mechanism, respectively. We show that for any signal s̃, there exists a privacy-preserving

signal s∗ and a seller-optimal mechanism (p∗, t∗) such that σ(s∗) ≥ σ(s̃) and π(s∗) ≤ π(s̃)
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Let G(⋅ ∣ θ) be the distribution of posterior means E[v ∣ s̃] conditional on the realization

θ of θ̃, it then follows that G(⋅ ∣ θ) must be a mean-preserving contraction of F (⋅ ∣ θ),4
and hence, G−1(⋅ ∣ θ) is majorized by F −1(⋅ ∣ θ), for all θ ∈ [0,1] (see, e.g., Shaked and

Shanthikumar 2007, Section 3.A). Let G
−1

be defined as G
−1(q) ∶= E[G−1(q ∣ θ̃)], for all

q ∈ [0,1]. Together with Fubini’s theorem, it follows that G
−1

is majorized by F
−1
, and thus

G is a mean-preserving contraction of F .

Meanwhile, note that the seller’s profit under any mechanism must be bounded from below

by the profit induced by choosing an optimal posted price conditional on each realization of

θ. That is,

π(s̃) ≥ E [max
p≥0 p(1 −G−(p ∣ θ))] ,

Moreover, for each realization θ̂ of θ, choosing an optimal posted price is equivalent to

choosing an optimal quantity, and therefore,

π(s̃) ≥ E [max
p≥0 p(1 −G−(p ∣ θ))] = E [max

q∈[0,1]
qG−1(1 − q ∣ θ)] ≥ max

q∈[0,1]
qE[G−1(1 − q ∣ θ)]

= max
q∈[0,1]

qG
−1(1 − q)

=max
p≥0 p(1 −G−(p))

=∶π

Now consider the family distributions {Gb
π}, defined as

Gb
π(z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if z ≤ π
1 − π

z , if z ∈ [π, b)
1, if z ∈ [b,1]

,

for all z ∈ [0,1], for all π ∈ [0,1], and for all b ∈ [π,1]. Since π = maxp≥0 p(1 − G
−(p)), it

follows that G1
π(z) ≤ G(z) for all z ∈ [0,1]. Therefore, there exists a unique b ∈ [π,1], such

that Gb
π is a mean-preserving contraction of G, and thus is a mean-preserving contraction of

4To see this, note that for any realization θ of θ̃, the distribution G(⋅ ∣ θ) of E[v ∣ s̃] is a mean-preserving
contraction of the distribution of E[v ∣ θ, s̃], which in turn is a mean-preserving contraction of the distribution
F (⋅ ∣ θ) of v, conditional on θ.
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F . As a result, by Theorem 3 of Strack and Yang (2023), there exists a privacy-preserving

signal s∗ such that G is the distribution of E[v ∣ s∗]. Furthermore, by Lemma 1, a posted

price mechanism is optimal, and, in particular, charging a posted price p = π is an optimal

mechanism for the seller, under which the outcome is efficient and hence σ(s∗) = E[v] − π
and π(s∗) = π ≤ π(s̃).

Together,

σ(s̃) ≤ E[v] − π(s̃) ≤ E[v] − π = σ(s∗) ,

as desired.

From Theorem 1, the problem of finding the buyer-optimal signal can then be reduced to

finding the buyer-optimal privacy-preserving signals. Using the characterization of distribu-

tion of posterior expected values given by Strack and Yang (2023), which we state below in

Theorem 2 for completion, this problem becomes very tractable.

Theorem 2. Fix any seller signal θ̃, a CDF G is the distribution of the buyer’s posterior

expected value E[v ∣ s̃] under some privacy-preserving signal s̃ if and only if G is a mean-

preserving contraction of F .

According to Theorem 1 and Theorem 2, finding the buyer-optimal signal is thus equiv-

alent to finding a mean-preserving contraction G of F to maximize the buyer’s surplus

∫
1

p(G)
(1 −G(x))dx

under the posted price mechanism with price p(G), where p(G) is the smallest optimal

posted price for the seller when the buyer’s distribution of posterior expected value equals

G. Note that this problem has the same structure as the uninformed-seller problem analyzed

by Roesler and Szentes (2017), except that the mean-preserving spread upper bound is F

instead of F . As a result, we obtain the following:

Proposition 1 (Buyer-Optimal Signal). Consider any privacy-preserving signal s∗ under
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which the distribution of the buyer’s posterior expected value E [v ∣ s∗] is given by

Gb⋆

π⋆(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if z < π∗

1 − π∗

z , if z ∈ [π∗, b∗)
1, if z > b∗

,

where π∗ is the smallest π such that Gb
π ⪯MPS F for some b ≥ π, and b⋆ is the unique b for

which Gb
π⋆ ⪯MPS F . A posted price mechanism with a price π∗ is optimal for the seller. Under

this mechanism, trade occurs with probability 1 and the buyer’s surplus is higher than under

any buyer signal and any seller-optimal mechanism.

Proof. Consider any buyer signal s̃ and any seller-optimal mechanism. Let σ(s̃) be the

buyer’s surplus under this signal and this mechanism. Theorem 1 implies that there exists

a privacy-preserving signal ŝ such that the buyer’s surplus is higher under ŝ than under s̃.

Let G be the distribution of the buyer’s posterior expected value under signal ŝ. Since ŝ is

privacy-preserving, Theorem 2 implies thatG ⪯MPS F . Since ŝ is privacy-preserving, Lemma 1

implies that a posted price mechanism is optimal for the seller. Let π ∶=maxp≥0 p(1−G−(p))
be the seller’s optimal profit given that the buyer’s signal is ŝ. Then note that G1

π(p) ≤ G(p)
for all p ∈ [0,1], and thus there exists a unique b ∈ [0,1] such that Gb

π ⪯MPS G ⪯MPS F . By

the definition of π∗, it then follows that π∗ ≤ π.
Moreover, by Theorem 2 again, since Gb∗

π∗ ⪯MPS F , there exists a privacy-preserving signal

s∗ under which the buyer’s posterior expected value E[v ∣ s∗] is distributed according to

Gb∗

π∗ . Lemma 1 then implies that a posted price mechanism is optimal for the seller when the

buyer’s signal is π∗. Furthermore, since

π∗ = π∗(1 −Gb∗−
π∗ (π∗)) ≥ p(1 −Gb∗−

π∗ (p)) ,

for all p ∈ [0,1], a posted price mechanism with price π∗ is optimal for the seller. Under this

mechanism, trade occurs with probability 1, and thus the buyer’s surplus equals

E[v] − π∗ ≥ E[v] − π ≥ σ(s̃) .

Therefore, the signal s∗ is optimal.
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Proposition 1 characterizes the buyer-optimal signals. According to Proposition 1, this

buyer-optimal signal induces a distribution of posterior expected values under which the

seller is indifferent in charging any posted prices p ∈ [π∗, b∗]. If the seller chooses the smallest

optimal posted price π∗ under this signal, then the buyer’s payoff is maximized. If the seller

chooses the highest posted price b∗, the the buyer’s surplus is zero.

In the example discussed in Section 3, F (x) = 2(x − 1/4) for all x ∈ [1/4, 3/4]. In this case

π∗ ≈ 0.274, b∗ ≈ 0.625, the seller’s optimal posted price is π∗ and the buyer’s surplus is

approximately E[v] − π∗ ≈ 0.225.

5 Feasible Welfare Outcomes

With Proposition 1, we could further characterize the set of feasible welfare outcomes that

can be induced by a buyer signal s̃ for any fixed seller signal θ̃. A welfare outcome is a pair

(σ,π), where σ denotes the buyer’s surplus and π denotes the seller’s profit. For any fixed

seller signal θ̃, a welfare outcome (σ,π) is said to be feasible if there exists a buyer signal s̃

and an optimal mechanism (p, t) for the seller, such that

σ = E[p(θ̃, s̃)v − t(θ̃, s̃)] and π = E[t(θ̃, s̃)] .

Proposition 2 below characterizes the feasible welfare outcomes.

Proposition 2 (Feasible Welfare Outcomes). A pair (σ,π) ∈ [0,1]2 is a feasible welfare

outcome if and only if π ≥ π∗ and σ + π ≤ E[v].

Proof. For any buyer signal s̃ and for any seller-optimal mechanism, let σ(s̃) be the buyer’s
surplus and π(s̃) be the seller’s profit. By Proposition 2, it must be that π(s̃) ≥ π∗. Moreover,

since total surplus is E[v], it must be that π(s̃) + σ(s̃) ≤ E[v].
Conversely, for any (σ,π) such that π ≥ π∗ and σ+π ≤ E[v]. By the definition of π∗, there

exists b ≥ π such that Gb
π ⪯MPS F , and hence, by Theorem 2, there exists a privacy-preserving

signal s∗ such that the buyer’s posterior expected value E[v ∣ s∗] equals Gb
π under signal s∗.

Lemma 1 then implies that a posted price mechanism is optimal for the seller. Then, by the

definition of Gb
π, any p ∈ [π, b] is an optimal posted price for the seller and the seller’s profit
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is π. Thus, π(s∗) = π. Moreover, since any posted price p ∈ [π, b] is optimal for the seller, any

σ ∈ [0,E[v] − π] can be induced by some seller-optimal mechanism under the signal s∗.

From Proposition 2, any pair (σ,π) ∈ [0,1]2 such that π ≥ π∗ and σ+π ≤ E[v] is a feasible

welfare outcome. Compared to Corollary 1 of Roesler and Szentes (2017), when the seller

is completely uninformed, the feasible welfare outcomes becomes smaller when the seller is

informed by some signal θ̃. In particular, the smallest possible seller profit π∗ when the

seller is informed by a private signal θ̃ is higher than the smallest profit π when the seller is

uninformed. In the example in Section 3, the lowest possible seller profit is π∗ = 1/4 when the

seller receives signal θ̃, whereas the lowest possible seller profit π when the seller is completely

uninformed, according to Roesler and Szentes (2017), is approximately 1/5.
In fact, it is generally the case that when the seller’s signal θ̃ becomes more informative

in Blackwell’s sense, the profit lower bound π∗ increases, as shown by Theorem 3 below.

Theorem 3. Consider any pair of seller signals θ̃1 and θ̃2, where θ̃2 Blackwell dominates θ̃1.

Let

F i(x) ∶= inf{y ∈ [0,1] ∶ E[F −1(y ∣ θ̃i)] ≥ x} ,

for all x ∈ [0,1] and for all i ∈ {1,2} be the distribution of the buyer’s posterior belief induced

by the quantile signal

q̃i ∶= rF (v ∣ θ̃i) + (1 − r)F −(v ∣ θ̃i) ,

for i ∈ {1,2}, respectively. Then
F 2 ⪯MPS F 1 .

Proof. Let F (⋅ ∣ θi) be the conditional distribution of v conditional on the realization θi

of θ̃i, for i ∈ {1,2}. Since θ̃2 Blackwell dominates θ̃1, by Strassen’s theorem (Strassen 1965,

,Theorem 3),

F (x ∣ θ1) = E[F (x ∣ θ̃2) ∣ θ1] ,

for all x ∈ [0,1] and for all θ1 ∈ [0,1]. Now let

q̃ ∶= rF (v ∣ θ̃2) + (1 − r)F −(v ∣ θ̃2)

be the quantile signal for θ̃2. By Lemma 3 of Strack and Yang (2023), q̃ is independent of θ̃2.

Proposition 1 of Strack and Yang (2023), since θ̃2 Blackwell dominates θ̃1, q̃ is independent
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of θ̃1 as well. Then, conditional on any realization of θ1 of θ̃1 and any realization q of q̃, the

posterior expected value upon observing (q, θ1) is given by

E[F −1(q ∣ θ̃2) ∣ θ1] .

Therefore, the distribution of E[F −1(q̃ ∣ θ̃2) ∣ θ1] must be a mean-preserving contraction of

F (⋅ ∣ θ1), for all θ1 ∈ [0,1], which in turn implies that (see, e.g., Shaked and Shanthikumar

2007, Section 3.A),

∫
q

0
E[F −1(z ∣ θ̃2) ∣ θ1]dz ≥ ∫

q

0
F −1(z ∣ θ1)dz ,

for all q ∈ [0,1] and for all θ1 ∈ [0,1], which in turn implies that

∫
q

0
E[E[F −1(z ∣ θ̃2) ∣ θ̃1]]dz ≤ ∫

q

0
E[F −1(z ∣ θ̃1)]d, .

Moreover, by the law of iterated expectation, E[E[F −1(q ∣ θ̃2) ∣ θ̃1]] = E[F −1(q ∣ θ̃2)] for
all q ∈ [0,1]. Together, F

−1
2 majorizes F

−1
1 , which implies that F 2 is a mean-preserving

contraction of F 1.

From Theorem 3 and Theorem 1, it immediately follows that the seller’s profit lower

bound is higher when the seller’s signal is Blackwell-more informative, as summarized below.

Corollary 1. Consider any pair of seller signals θ̃1 and θ̃2, where θ̃2 Blackwell dominates

θ̃1. Let π∗1 , π
∗
2 be the seller’s lowest feasible profit given by Proposition 2 under signals θ̃1 and

θ̃2, respectively. Then π∗1 ≤ π∗2 .

To illustrate, consider a numerical example where v is uniformly distributed on [0,1].
The seller’s signal θ̃p equals v with probability p ∈ [0,1], and equals ε with probability 1 − p,
where ε is independently and uniformly drawn from [0,1].

In this setting, the seller’s signal θ̃p is increasing in p under the Blackwell order, where

the seller fully learns the buyer’s value when p = 1, and learns nothing when p = 0. The

distribution F is given by

F (z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − p)(1 −
√
1 − 2z), if z ∈ [0, 1/2)

p + (1 − p)
√
2z − 1, if z ∈ [1/2,1]

,
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Figure 2: Feasible Welfare Outcomes

if p > 1/2, and

F (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p)(1 −
√
1 − 2z), if z ∈ [0, 12 (1 −

(1−2p)2
(1−p)2 ))

(1−p)2z− 1
2
p2

1−2p , if z ∈ [12 (1 −
(1−2p)2
(1−p)2 ) , 12 (1 +

(1−2p)2
(1−p)2 ))

p + (1 − p)
√
2z − 1, if z ∈ [12 (1 +

(1−2p)2
(1−p)2 ) ,1]

,

if p < 1/2.
Figure 2 plots the feasible welfare outcomes for p ∈ {0,0.6,0.8}. When p = 0, the feasible

welfare outcomes is the set characterized by Roesler and Szentes (2017). As demonstrated

by Figure 2, as p increases, the feasible welfare set becomes smaller. As p → 1, the feasible

welfare outcome converges to the full-surplus extraction outcome.

6 Conclusion

We study the welfare implications of information in a monopoly pricing setting. The seller

privately observes a signal for the buyer’s value, which the mechanism can condition upon.
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The buyer privately observes a signal, makes participation decisions, and reports messages in

the mechanism if participating. For a fixed seller signal, a buyer signal may be correlated with

the seller’s signal in a way that allows for (almost) full surplus extraction. In addition, even

without being fully extracted, the seller’s signal potentially allows them to price discriminate

the buyer. We show that the buyer’s optimal signal must thus be privacy-preserving signal,

under which the seller’s signal becomes useless, and the buyer can be immune to price dis-

crimination. We further characterize the buyer-optimal signal, as well as the feasible welfare

outcomes for an arbitrarily fixed seller signal.

Several questions naturally follow after establish the aforementioned results. First, the

buyer is allowed to be completely uninformed here. A natural question would be about

the buyer-optimal signal when the buyer cannot choose to be completely uninformed and

must receive some signal. Secondly, it is also relevant to explore a setting that feature

competition. Finally, exploring the implications of information received by some agents

while fixing information of other agents in other settings could also be economically relevant.
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