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Abstract

We propose a framework for studying the optimal design of rights relating
to the control of an economic resource, which we broadly refer to as property
rights. An agent makes an investment decision affecting her valuation for the
resource, and then participates in a trading mechanism chosen by a principal
in a sequentially rational way, leading to a hold-up problem. A designer—who
would like to incentivize efficient investment and whose preferences may differ
from those of the principal—can endow the agent with a menu of rights that
determine the agent’s outside options in the interaction with the principal. We
characterize the optimal menu of rights as a function of the designer’s and
the principal’s objectives, and the investment technology. The optimal menu
requires at most two types of rights, including an option-to-own that grants
the agent control over the resource upon paying a pre-specified price.
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1 Introduction

The assignment of property rights has important implications for the distribution of

surplus within society and—in the presence of transaction costs—economic efficiency

(Coase, 1960, Williamson, 1979). Consequently, there are trade-offs associated with

the design of these rights. Awarding a full property right over an economic resource

incentivizes the owner to make efficient investment decisions related to its use. How-

ever, when transaction costs (such as bargaining frictions) are present, strong property

rights may inhibit the future reallocation of economic resources to the agents who can

utilize them most efficiently. Moreover, the assignment of property rights may give

rise to market power or conflict with society’s distributive objectives.

One example that highlights the trade-offs involved in the design of property rights

is the design of radio spectrum licenses. As the Federal Communications Commission

(FCC)—which regulates the use of spectrum in the US—has noted, if radio spec-

trum licenses grant holders full property rights over the underlying spectrum, this

incentivizes investment in the costly infrastructure that enables individual holders to

efficiently utilize their spectrum. However, due to the high transaction costs associ-

ated with the market-wide reassignment of spectrum, awarding spectrum licenses that

endow holders with such strong property rights may impede the efficient reallocation

of spectrum in response to technological progress, and this may in turn dampen incen-

tives for innovation and entry. This raises a natural question: How should spectrum

licenses—and property rights more generally—be optimally designed?

In this paper we adopt a mechanism design approach to characterize optimal

property rights. We accomplish this by focusing on a specific channel through which

property rights affect economic outcomes: They give the holder the authority to uni-

laterally implement certain outcomes pertaining to an underlying economic resource

in their economic interactions with other agents. For example, a full property right

gives the owner the right to use or generate income from the resource without incur-

ring any liability against other agents. In our framework property rights therefore

determine the holder’s outside options in economic interactions with other agents;

they do not directly regulate these interactions or the resulting outcomes.

Our framework highlights the key trade-offs involved in the optimal design of

property rights by recasting this problem as a dynamic contracting problem between
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a designer, a principal and an agent. The designer is responsible for determining

the agent’s property rights over an economic resource. The agent then makes an

investment decision that affects her valuation for the resource. We model investment

as a simple binary choice for the agent: If she pays a cost, her value is drawn from

a distribution that first-order stochastically dominates the default distribution. Fol-

lowing the agent’s investment decision, a public state that pins down the principal’s

opportunity cost for allocating the resource to the agent is realized. The principal

then chooses a trading mechanism (with transfers) that screens the agent’s private

information concerning her valuation and determines the final allocation.

Our key assumption is that the designer cannot force the principal to commit to

a specific trading mechanism, and this gives rise to two frictions. Conditional on the

realization of the state, the mechanism is chosen in a sequentially rational fashion by

the principal to maximize an objective function that need not represent the designer’s

ex-ante preferences. We refer to this friction as ex-post inefficiency.1 Lack of com-

mitment also results in a hold-up problem: The agent may fail to undertake efficient

investments if the subsequent trading mechanism extracts the resulting surplus.

The designer can alleviate these frictions by endowing the agent with certain im-

mutable rights to the resource. We allow these property rights to be flexibly designed.

For example, they can cede full control over the resource to the agent, thereby guar-

anteeing the agent the option to keep the object regardless of the realization of the

state. They can also give the agent conditional rights, such as an option to demand

a monetary payment from the designer in exchange for relinquishing control over the

resource, or an option to acquire control over the resource conditional on paying a pre-

specified price. By strengthening the agent’s rights, the designer affects the agent’s

investment incentives as well as the principal’s flexibility at the stage of choosing a

trading mechanism (since the mechanism must respect agent’s rights).

Before giving an overview of our results, we emphasize two (implicit) simplifying

assumptions made within our framework. First, by studying a setting with a single

agent, we abstract away from the problem of how to select the agent who should

have property rights to the resource. In the language of mechanism design, we depart

1In some of the applications we consider the principal and the designer are the same entity and
the principal should therefore be thought of as “future self” of the designer; ex-post inefficiency can
then be understood as a form of time inconsistency for the designer.
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from the traditional focus on how to allocate a given good to agents differing in

their values, and instead focus on the problem of designing the good itself—here,

understood as designing the set of rights to the underlying economic resource. Second,

we abstract away from the potential impact of property rights on the distribution of

bargaining power. That is, we assume that it is always the principal who chooses the

trading mechanism, even if the agent holds full property rights. This is in line with

our focus on modeling property rights as determining outside options of the holder.

The assumption narrows down the set of applications of our framework but holds in

environments in which the principal represents a government or a market regulator.

Our main finding is that the optimal property right is relatively simple but more

flexible than a full property right. Specifically, in our framework, regardless of the

designer’s preferences, optimality can be achieved by endowing the agent with a

menu of at most two types of rights. One of the rights takes the form of an option-to-

own. An option-to-own gives the agent the right to retain control over the resource

conditional on paying a pre-specified price. The designer can vary the strength of

the option-to-own by adjusting the price. For example, setting the price to zero is

equivalent to a full property right, while setting a sufficiently high price is equivalent

to giving no right to the agent. The second type of right in the optimal menu is

only required if the agent’s cost of investing is sufficiently high and its form depends

on whether the designer can make the agent’s rights contingent on investment. If

investment is observable (and contractible), then the second right takes the form of

a cash payment for undertaking the investment. If investment is not observable (and

hence non-contractible), then under additional conditions2 the second right takes the

form of a partial property right that awards the agent control over a fraction of the

resource (or, equivalently, gives the resource to the agent with some probability).

From a methodological perspective, property rights in our framework give rise

to a flexible set of outside options available to the agent in the interaction with the

principal. Thus, the principal solves an instance of a mechanism-design problem with

type-dependent outside options, as in the work of Lewis and Sappington (1989) and

Jullien (2000). We derive a novel solution technique for such problems based on an

extension of the classical ironing technique due to Myerson (1981). The designer’s

2These conditions require that the agent’s type distribution satisfies a regularity condition, and
that the designer’s objective function is increasing in the agent’s value.
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problem is then to choose the optimal type-dependent reservation utility function for

an agent who participates in a screening mechanism. We characterize solutions to

this problem by exploiting the linear dependence of the principal’s optimal mechanism

on the agent’s outside option function that our ironing procedure uncovers. These

techniques are portable to other settings involving type-dependent outside options

and may thereby be useful beyond the analysis of optimal property rights.

We illustrate the usefulness and flexibility of our framework by considering five

examples. First, motivated by applications such as the allocation of electromagnetic

spectrum and mining rights, we study a dynamic resource allocation problem in which

a regulator cannot commit to future trading mechanisms (e.g. spectrum auctions) but

can design the resource use license. When designing the license, the regulator trades

off incentives for the license holder to undertake value-increasing investments against

the ease with which control over the resource can be reassigned in the future if new

efficient uses of the resource emerge. We find that the optimal license typically takes

the form of a renewable lease that gives the license holder the opportunity to retain

control conditional on paying a pre-specified price. Second, we consider the problem

of how to optimally regulate a private rental market. In this application, we interpret

the designer and the principal as separate economic agents: The designer is a market

regulator concerned with efficiency, while the principal is a private rental company

maximizing profits. We provide conditions under which optimal market regulation

provides tenants with a right to renew their lease at a price tied to the market

rental rate—a form of regulation that is frequently seen in practice. Third, inspired

by a classic problem in economics, we discuss how a regulator might reward and

incentivize innovation by committing to an appropriate patent policy. Specifically,

we use a stylized model to illustrate why it may be optimal for the regulator to

commit its patent office to a certain “review standard” that is independent of product

profitability. We also discuss cases in which direct cash prizes or charging fees for

granting patents may emerge as optimal tools. Our fourth example casts light on the

optimal design of a contract between the government and a private producer. Inspired

by applications such as vaccine development, we provide an optimality foundation for

the practice of offering advanced market commitments. Finally, we investigate the

classical ratchet effect by studying the optimal form of contractual rights between a
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large firm and a small supplier. In this context, the optimal menu of rights involves

the large firm committing to a two-price purchase scheme.

The remainder of this paper is organized as follows. We provide an overview of

the related literature in Section 1.1. Section 2 introduces and discusses the model. In

Section 3 we state and prove our main result (Theorem 1), which characterizes the

optimal menu of rights. The proofs of all auxiliary results can be found in Appendix

A. Section 4 introduces and analyzes each of our five examples. We conclude with a

discussion of future research directions in Section 5.

1.1 Related literature

Building on the seminal contribution of Coase (1960) and Williamson (1979), the

economic literature concerning property rights has largely focused on two forms of

transaction costs: private information and hold-up problems. Options-to-own have

been proposed as potential solutions to both frictions. However, to the best of our

knowledge, we are first to demonstrate that options-to-own are part of an optimal

solution when property rights can be chosen from a large non-parametric class. The

flexible approach to modeling property rights resonates with the legal literature, which

considers other forms of property rights beyond the simple, unconditional property

rights most commonly studied in the economics literature.3

In the context of private information as a type of transaction cost, Myerson and

Satterthwaite (1983) first pointed out that there may be no bargaining procedure that

results in efficient outcomes when contracting parties possess private information but

property rights are assigned exclusively to one of the parties. Cramton, Gibbons, and

Klemperer (1987) further clarified the importance of the initial allocation of prop-

erty rights by showing that efficiency may be attainable if the involved parties have

sufficiently balanced ownership shares. Most closely related to our work are papers

analyzing the second-best design of property rights in this context. In particular, Che

(2006) showed that using an option-to-own allows the designer to decrease the subsidy

needed to implement the first-best outcome. Segal and Whinston (2016) unified much

of this literature by studying the subsidy-minimizing choice of property rights from

a relatively large parametric class; they also characterized the option-to-own that

3See Calabresi and Melamed (1972) and the related discussion in Segal and Whinston (2016).
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maximizes surplus subject to maintaining budget balance in the mechanism. Even

without the hold-up problem, our framework and results would be different: The

designer-preferred outcome in our setting (which need not be allocative efficiency) is

prevented not by multi-sided private information but by the fact that the designer

cannot commit to the mechanism that is optimal given her ex-ante preferences. This

difference simplifies the analysis, and in particular allows us to characterize the opti-

mal property right. Without the investment stage (and hence the hold-up problem),

the optimal right always takes the form of an option-to-own in our setting.

The incomplete-contracts literature—initiated by the seminal work of Grossman

and Hart (1986) and Hart and Moore (1990)—focused instead on frictions due to

relationship-specific investments that must be taken prior to trading, without the

possibility of signing complete contracts. Several solutions to the resulting hold-up

problem have been proposed in the literature. Aghion et al. (1994) argued that in-

vestment efficiency can be recovered by allowing for contracts that make appropriate

provisions regarding renegotiation. The beneficial role of options-to-own have also

been investigated. Hart (1995) showed that a price contract can improve upon a

simple ownership structure, and Nöldeke and Schmidt (1995, 1998) identified settings

in which options-to-own can restore first-best levels of investment. By studying a

setting with a single agent, we shift focus away from the problem of optimal realloca-

tion of residual rights of control among multiple parties, and towards the problem of

the optimal design of these rights. This perspective allows us to characterize optimal

rights even though the first best is typically not implementable in our setting, which

features private information at the trading stage.4 Despite these difference, we find

that options-to-own play an important role even if the designer can choose from a

non-parametric set of property rights. The optimal property right for addressing the

hold-up problem may sometimes be more complicated: Depending on the observ-

ability (and contractibility) of investment, it may be necessary to complement an

option-to-own with either a monetary transfer or a partial property right that grants

control over a fraction of the resource (or the entire resource with some probability).

4Matouschek (2004) and Baliga and Sjöström (2018) allow for private information at the con-
tracting stage but do not consider the investment problem. As in our model, the property rights in
Baliga and Sjöström (2018) lead to type-dependent outside options; however, Baliga and Sjöström
(2018) focus on parameters for which the first best is implementable.
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In some of our applications, the property right chosen by the designer imposes re-

strictions on the private parties’ contracting space—this perspective was explored by

Hermalin and Katz (1993) who asked whether courts could improve private contract-

ing in this way; they find a mostly negative answer due to private contracting being

efficient in their framework in most cases.5

The problem of efficient investment has also been studied within the more tra-

ditional mechanism-design literature. In particular, Rogerson (1992) showed that

the Vickrey-Clarke-Groves (VCG) mechanism ensures efficient pre-mechanism invest-

ments because it makes participants internalize the social gains from changes in their

valuations.6 In contrast to these papers, our designer cannot directly control the

mechanism—the mechanism is chosen by the principal (whose preferences may differ

from those of designer) in a sequentially rational way. Instead, the designer in our

model affects investment incentives indirectly by endowing the agent with property

rights. That being said, we recover a version of Rogerson’s insight by showing that if

both the principal and the designer are interested in maximizing efficiency (and in-

vestment only affects the private value of the resource), then it is optimal to allocate

no rights to the agent. Moreover, in the special case of our model with no uncertainty

about the public state, the designer may sometimes be able to “force” the principal

to implement a VCG mechanism by using an option-to-own with a price equal to the

(social) opportunity cost of the resource.

A VCG mechanism may fail to induce efficient investments in the common value

of the resource. Weyl and Zhang (2022) consider the trade-off between common-value

investment incentives and allocative efficiency; they propose a new form of a partial

property right—a depreciating license—that outperforms both a full property right

and a short-term lease contract. Our model of investment is simpler but it can capture

a common-value component in a reduced form way. Despite differences in modeling

assumptions and our focus on optimal rights, we similarly find that a partial property

right—in particular one that involves a notion of a price—may be preferred to classical

5Recently, Hitzig and Niswonger (2023) study a similar question in a different setting, with
application to regulation of platform labor contracts.

6Several extensions of this result have been examined in the literature: Bergemann and Välimäki
(2002) analyzed efficient information acquisition, Hatfield et al. (2019) clarified the link between
ex-ante efficient investment, ex-post efficiency and strategy-proofness, and Akbarpour et al. (2023)
studied investment incentives in a setting where the mechanism must be computationally tractable.
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property rights. In Section 4, we review applications of our framework and comment

on how the policy prescriptions we derive agree or differ from those formulated in

more applied literatures on license design and optimal patent protection.

2 Model

Overview. We consider a model involving three time periods and three players: a

designer, a principal, and an agent. At time t = 0, the designer chooses a menu

of rights that determines the agent’s outside options (pertaining to the control of

an economic resource being traded at t = 2). At time t = 1, the agent decides

whether to undertake a costly investment. This investment decision determines the

joint distribution of the agent’s type and a public state. At time t = 2, the agent’s

private type and the state are realized, and the principal chooses a trading mechanism

in a sequentially rational manner, respecting the rights that the designer endowed the

agent with at time t = 0. An overview of the model is presented in Figure 1.

Figure 1: Model overview and timeline.

Menu of rights. At time t = 0, the designer chooses a menu of rights M held by the
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agent in subsequent periods. Specifically, we allow for any menu of the form

M = {(xi, ti)}i∈I ,

where xi ∈ [0, 1] denotes an allocation, ti ∈ R denotes a payment made by the agent

to the principal in period t = 2, and the set I is arbitrary. We assume that M is a

compact subset of [0, 1]×R. Any right in the menu M can be executed by the agent

at t = 2, in the sense that any (xi, ti) ∈M constitutes an outside option available to

the agent when contracting with the principal.

Investment. At time t = 1, the agent takes a binary investment decision. Investing

is associated with a (sunk) cost c > 0. The investment decision determines the joint

distribution of the agent’s type θ ∈ Θ := [θ, θ] ⊂ R and the public state ω ∈ Ω ⊂ R.

If the agent invests, the public state is drawn from a distribution G, and the agent’s

type is drawn from a conditional distribution Fω.7 If the agent does not invest, the

respective distributions are denoted G and F ω. We assume that, for every ω, Fω and

F ω admit absolutely continuous densities on Θ (denoted fω and f
ω
, respectively).

For every ω, Fω first-order stochastically dominates F ω, so that the primary role of

investment is that it increases the agent’s type.

Trading Mechanisms. At time t = 2, the agent’s private type θ and the public state

ω are realized (the state ω is observed both by the agent and the principal). The

principal then chooses a trading mechanism, which—by the revelation principle—

we can take to be a direct revelation mechanism satisfying appropriate incentive-

compatibility and individual-rationality constraints. Formally, for every realized ω,

the principal chooses a mechanism 〈xω, tω〉, where xω : Θ→ [0, 1] denotes the alloca-

tion rule and tω : Θ→ R denotes the transfer rule.

We assume the agent’s utility is linear in the allocation x (interpreted as either

a probability or quantity) and the transfer t, with the type θ normalized to equal

the agent’s marginal value for the allocation. An agent with type θ who receives an

allocation x ∈ [0, 1] and makes a payment t ∈ R then obtains utility θx − t. Given

7For all variables in our model that depend on ω, we assume that they are measurable functions
of ω.
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a direct mechanism 〈xω, tω〉, incentive-compatibility requires that, for all θ, θ′ ∈ Θ,

and ω ∈ Ω,

Uω(θ) := θxω(θ)− tω(θ) ≥ θxω(θ′)− tω(θ′). (IC)

The agent’s outside option in the absence of rights is normalized to 0. However, the

menu M chosen by the designer gives rise to an endogenous type-dependent outside

option determined by the agent’s optimal choice of a right from M at time t = 2.

The principal is able to replicate all outcomes in which the agent executes some

outside option from the menu M within her mechanism. Consequently, it is without

loss of generality to assume that the mechanism chosen by the principal ensures

participation; hence, for every θ ∈ Θ and ω ∈ Ω, we require

Uω(θ) ≥ max{0, max
i∈I
{θxi − ti}}. (IR)

Principal’s problem. Given a realized state ω, the principal solves the problem

max
〈xω , tω〉

∫
Θ

[Vω(θ)xω(θ) + αtω(θ)] dFω(θ) (P)

s.t. (IC), (IR),

where Vω : Θ → R is upper semi-continuous in θ, and α > 0 is the weight that the

principal places on revenue. We denote by 〈x?ω(θ ; M), t?ω(θ ; M)〉 the optimal mecha-

nism for the principal when the participation constraint (IR) is induced by menu M .

The optimal mechanism is generically unique; in case of indifference by the principal

our proofs utilize a particular tie-breaking rule that simplifies exposition. Our results

continue to hold under a large class of tie-breaking rules, including designer-preferred

selection, as explained in Appendix A.6.

Agent’s problem. We can now formally state the agent’s problem; the agent will invest

if and only if ∫
Ω

∫
Θ

(θx?ω(θ; M)− t?ω(θ; M)) dFω(θ)dG(ω)− c ≥ U, (I-OB)
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where U ≥ 0 captures the agent’s expected payoff from not investing. We will consider

two cases of our model depending on whether the investment decision of the agent is

observable (and contractible). In the non-contractible case, we set

U =

∫
Ω

∫
Θ

(θx?ω(θ; M)− t?ω(θ; M)) dF ω(θ; M)dG(ω),

capturing the idea that the agent enjoys her rights M and faces the same mechanism

whether or not she invested. In the contractible case, we set

U =

∫
Ω

∫
Θ

(θx?ω(θ; ∅)− t?ω(θ; ∅)) dF ω(θ)dG(ω),

where 〈x?ω(θ ; ∅), t?ω(θ ; ∅)〉 is the principal’s optimal mechanism assuming that M = ∅
and the agent’s type θ is drawn from F ω given the realized ω. That is, if the agent

does not invest, she does not enjoy the rights assigned by the designer; moreover, the

principal knows that the agent’s type is drawn from a lower distribution.

Designer’s problem. The designer’s problem is then

max
M

∫
Ω

∫
Θ

[V ?
ω (θ)x?ω(θ; M) + α?t?ω(θ; M)] dFω(θ)dG(ω) (D)

s.t. (I-OB),

where V ?
ω : Θ → R is continuous in θ, and α? ≥ 0 is the weight that the designer

places on transferring a unit of money from the agent to the principal. Unless stated

otherwise, we assume: (i) the designer prefers to induce investment (which is why

we included the investment-obedience constraint in the designer’s problem), (ii) there

exists some menu M that satisfies (I-OB), but (iii) the agent does not invest if M = ∅.

2.1 Discussion

Our setting is purposefully kept abstract to capture a wide range of applications. We

discuss some of our modeling assumptions and their interpretations below.

Property rights. Modeling the rights held by the agent in terms of a menu M =
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{(xi, ti)}i∈I yields a flexible framework that includes a rich set of possibilities:

• M = {(1, 0)} captures a conventional (unconditional) property right: The agent

holds residual rights of control over the resource and can select the x = 1

allocation at no cost (while being free to relinquish control if offered sufficient

monetary compensation).

• M = {(0,−p)} captures a right whereby the agent can demand a monetary

transfer p from the principal (who then has full control over the period t = 2

allocation);

• M = {(1, 0), (0,−p)} captures a standard property right for the agent along

with a resale option that allows the agent to sell the resource back to the

principal at a price p;

• M = {(1, p)} represents a renewable lease or an option-to-own, giving the agent

the right to acquire control over the resource conditional on paying the principal

a fixed price p;

• M = {(y, 0)} with y ∈ (0, 1) captures a “partial property right.” The inter-

pretation of partial property rights will vary depending on the application. If

y represents a probability, then the right can be implemented by conditioning

ownership on some exogenous future event such as a court decision; the de-

signer can adjust y by varying how difficult it is to contest the right in front of

a court.8 If y represents a quantity traded, then a partial right applies only to

some fraction of the total available volume. Finally, in a reduced-form way, y

can capture geographic or temporal restrictions on the property right.

• M = {(s, p(s)}s∈[0,1], for some function p : (0, 1)→ R+, is a flexible menu then

allows the agent to purchase their preferred partial property right s ∈ [0, 1] at

a price p(s).

The investment stage. Our model is agnostic about the interpretation of the al-

location, and whether or not the agent controls the underlying economic resource

8For example, there is variation across jurisdictions in the degree of protection of intellectual
property rights that determines the ex-ante probability of retaining de facto ownership.
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when making the investment decision. One possibility is that the agent makes a

relationship-specific investment prior to trading with the principal at t = 2 and the

property rights assignment represents an underlying legal framework; another is that

the agent is allocated a good at t = 0 along with a legal contract specifying what

rights the agents has with regard to extending her control over the good to the second

period. Our applications explore both possibilities.

We modeled investment as a binary decision to highlight the key forces in our

framework in the simplest possible way. However, our results extend—in an appro-

priate sense that we explain later—to richer environments in which the agent decides

how much to invest.

The trading stage. Our modeling of the trading stage differs from the typical incom-

plete contracts framework: We assumed that the agent has private information and

there is a principal who chooses an incentive-compatible mechanism with transfers.

This has several implications. First, there exists an ex-post efficient mechanism but

it need not be selected by the principal. The key assumption is that the principal

selects the mechanism at time t = 2 in a sequentially rational way to maximize her

payoff, which may in general differ from the social optimum, as represented by the

designer’s preferences. The principal may represent a third party or a “future self”

of the designer (exhibiting a form of time-inconsistency). Second, our framework

assumes a separation between the notion of property rights and bargaining power:

The principal enjoys full bargaining power—in the sense that she chooses the trading

mechanism—regardless of the rights M held by the agent. However, as long as the

principal attaches a positive weight α to revenue (which we have assumed), the choice

of M does affect the eventual split of surplus between the agent and the principal.

Property rights would be economically ineffective in the case α = 0; the principal

would simply “buy out” any rights in M with a sufficiently large cash payment.

Model Frictions. Our framework features two fundamental frictions. The first one

is a hold-up problem created by the assumption that the principal cannot commit to

her mechanism in order to incentivize the agent’s investment. The second one, which

we refer to as ex-post inefficiency, is the possible divergence between the preferences
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of the designer and the principal, resulting in socially suboptimal allocation in the

second-period mechanism.9 Property rights are a tool used by the designer to address

both of these frictions, by shifting rents to the agent and affecting the mechanism

selected by the principal. We will occasionally “turn off” one of the frictions (by

either removing the investment stage from the game, or by aligning the designer’s

and the principal’s preferences) to obtain sharper predictions.

Except for special cases, the effectiveness of property rights in our framework is

limited. This is in part due to the fact that we have built in an incomplete-contracts

friction by assuming that property rights cannot be conditioned on the realization

of the state ω, even though the state is publicly observed. This assumption seems

realistic for most applications and captures the idea that property rights endow the

holder with robust guarantees that are not contingent on circumstances that would

be difficult to verify in front of a court. That being said, our methods and results

extend to the case of state-contingent rights, as we explain in Section 5.

3 Analysis and results

We begin by stating the main result of the paper that characterizes the structure of

the optimal menu of rights M? chosen by the designer.

Theorem 1. There exists an optimal menu that takes the form M? = {(1, p), (y, p′)}
for some p, p′ ∈ R and y ∈ [0, 1).

As Theorem 1 shows, the optimal menu M takes a simple and economically in-

terpretable form. The menu consists of at most two types of rights, including an

option-to-own (1, p) which gives the agent the right to control the resource by paying

a pre-specified price p. The second item in the menu takes the form of either a partial

property right—giving the agent partial control over the resource at a lower price,

possibly for free—or a cash payment to the agent (when y = 0 and p′ < 0). We later

show that the form of the second item in the menu depends crucially on whether

investment is observable or not.

9Here, we use the word “efficiency” broadly to refer to the designer’s objective, representing a
socially desirable outcome. We are not assuming that the designer maximizes allocative efficiency
in the narrow sense, even though we will often study this case in applications.
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Note that Theorem 1 does not preclude the possibility that the optimal menu gives

the agent no choice over which right to execute (or even no rights whatsoever)—this

is because one (or both) of the options in the menu could have a sufficiently high

price that the agent never wants to execute it. We will show that a number of

configurations can emerge as optimal in applications—the optimal menu could be

a singleton containing an option-to-own (1, p), a cash transfer (0, −p), or a partial

right allocated for free (y, 0).

In the remainder of this section, we sketch the proof of Theorem 1 (proofs of

several technical steps are relegated to Appendix A). The proof overview casts some

light on how the parameters p, p′, y characterizing the optimal menu are pinned down

by the primitives of the model. We will further explore the economic implications

of our characterization in Subsection 3.3, where we derive tighter predictions under

additional regularity conditions, and in Section 4, where we study applications.

3.1 Proof of Theorem 1

We proceed backwards, by first solving the principal’s problem in period t = 2, then

considering the agent’s investment problem in period t = 1, and finally solving the

designer’s problem in period t = 0.

Step 1: Formulating the principal’s problem

We first focus on solving the principal’s problem, given an arbitrary menu of rights M

and a realization ω ∈ Ω of the public state. For ease of exposition, we drop any explicit

dependence of the principal’s objective function and the choice of mechanism on these

variables. We reformulate the principal’s problem by expressing the consequences of

any menu of rights M that the agent may hold as a type-dependent outside option.

Lemma 1. A choice of menu M by the designer is equivalent to choosing an outside

option function R : Θ → R for the agent in the second-period mechanism, where R

is non-negative, non-decreasing, convex, with a right derivative that is bounded above

by 1.

Lemma 1 shows that the principal’s problem reduces to maximizing over the set of

type-dependent outside option functions R. The proof follows from the observation
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that given a menu M = {(xi, ti)}i∈I , we can set

R(θ) = max{0,max
i∈I
{xiθ − ti}}.

Applying the envelope theorem shows that a direct mechanism 〈x, t〉 chosen by

the principal is incentive-compatible if and only if x is a non-decreasing function and,

for any θ ∈ Θ, the agent’s utility under truthful reporting is given by

U(θ) = u+

∫ θ

θ

x(τ) dτ, (1)

where u ∈ R denotes the utility of the lowest type θ. This implies that U is a convex

function with U ′(θ) = x(θ) almost everywhere. Moreover, for all θ ∈ Θ, we have

t(θ) = θx(θ)−
∫ θ

θ

x(τ) dτ − u.

After standard transformations, this yields∫
Θ

[V (θ)x(θ) + αt(θ)] dF (θ) =

∫
Θ

[V (θ) + αB(θ)]x(θ)dF (θ)− αu,

where B(θ) := θ− (1−F (θ))/f(θ) is the virtual value function. Combining this with

Lemma 1, the principal’s problem (P) can be rewritten as

max
x:Θ→[0,1], u≥0

∫ θ

θ

W (θ)x(θ)dθ − αu (P′)

s.t. x is non-decreasing, and U(θ) = u+

∫ θ

θ

x(τ) dτ ≥ R(θ), ∀θ ∈ Θ,

where W (θ) := (V (θ) + αB(θ)) f(θ). We will refer to the constraint U(θ) ≥ R(θ) as

the outside option constraint.

Step 2: Solving the principal’s problem

The problem of the form (P′) has been analyzed in the literature, most notably by

Jullien (2000), who uses weak duality to derive a solution under additional mono-

tonicity assumptions. We develop a new method to solve problem (P′) that is based
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on an appropriate generalization of the ironing procedure of Myerson (1981). For the

case of linear utilities that we study, our method is simpler, in that it does not require

“guessing” the correct Lagrange multiplier, and more powerful, in that it does not re-

quire additional regularity assumptions. To emphasize the portability of the method

to other applications involving type-dependent outside options, we solve problem (P′)

for a generic upper semi-continuous objective W (θ), and an outside option function

R such that R(θ) = u0 +
∫ θ
θ
x0(τ)dτ for some u0 ≥ 0 and non-decreasing allocation

rule x0 : Θ→ [0, 1].10

The following “ironing procedure” allows us to construct a solution to prob-

lem (P′). First, for all θ ∈ Θ, we define

W(θ) :=

∫ θ

θ

W (τ) dτ and W := co(W),

where co is an operator that returns the concave closure of a given function. Next,

we define

θ? := sup{{θ ∈ Θ :W ′(θ) ≥ α} ∪ {θ}},

θ
?

:= inf{{θ ∈ Θ :W ′(θ) ≤ 0} ∪ {θ}}.

These definitions are illustrated in Figure 2. Informally, θ? is the type at which the

slope ofW is equal to α (or the lowest type θ if the slope is always below α). Similarly,

θ
?

is the type at which the slope ofW is equal to 0 (or the highest type θ if the slope is

always above 0). Equivalently, θ
?

is a global maximizer of W . The formal definitions

handle the possibility that multiple types may satisfy these conditions and the fact

that W may be non-differentiable at some (countably many) points. Because W is

concave, we have θ? ≤ θ
?
.

Let I be the (at most countable) collection of maximal open intervals (a, b) within

(θ?, θ
?
) with the property thatW lies strictly belowW on (a, b).11 (In Figure 2, there

is a single such interval.) Let Ic be the complement collection of maximal (relatively)

closed intervals [a, b] within (θ?, θ
?
) with the property that W coincides with W on

10This last assumption is called homogeneity by Jullien (2000) and is crucial for our method to
work. Lemma 1 guarantees that we can write the function R this way for any choice of M .

11By maximality we mean that such an interval (a, b) cannot be strictly contained in another
interval (a′, b′) with the same property.
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Figure 2: An illustration of the ironing procedure (top panel) and the mapping from
the ironing procedure to the optimal indirect utility function U∗ (bottom panel).

[a, b]. Intuitively, the allocation rule must be “ironed” on each (a, b) ∈ I. Formally,

we define

u? = R(θ?) and x?(θ) =



0 θ ≤ θ?,∫ b
a R
′(τ)dτ

b−a θ ∈ (a, b) for some (a, b) ∈ I,

R′(θ) θ ∈ [a, b] for some [a, b] ∈ Ic,

1 θ ≥ θ
?
.

(2)

The allocation rule x? is equal to 0 below θ? and 1 above θ
?
. By the choice of the

payment u?, the outside option constraint binds at θ = θ?. Then, within the inter-

val [θ?, θ
?
], x? coincides with R′(θ) on “non-ironing intervals” (the outside option

constraint binds everywhere in such intervals), and is constant on “ironing intervals”

(the outside option constraint binds only at the endpoints of such intervals). Figure
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2 illustrates with an example.

The following lemma states that the ironing procedure defined above characterizes

the solution to the principal’s problem.

Lemma 2. The pair (x?, u?) as defined in (2) solves problem (P′).

For illustration and intuition, consider first the simplest case in which the objective

function W is non-decreasing. In this case, W is concave, and hence W =W . Thus,

I = ∅, and ironing is not needed. Furthermore, θ? is defined by W (θ?) = −α, and θ
?

is defined by W (θ
?
) = 0 (assuming such solutions exist). For θ ≥ θ

?
, the principal’s

objective is positive, so she chooses the maximal allocation 1, and the outside option

constraint is slack. For θ ≤ θ
?
, the principal’s objective is negative, so she would

like to choose the minimal allocation 0; however, that could be in conflict with the

outside option constraint. The optimal solution in this region is thus the “cheapest”

way for the principal to satisfy the constraint. Recall that α is the principal’s value

for money; if W (θ) < −α, it becomes “cheaper” for the principal to satisfy the

outside option constraint with a monetary transfer than with the allocation. Thus,

the principal optimally sets x?(θ) = 0 for types below θ?, and she uses the lump-

sum payment u? = R(θ?) to satisfy the outside option constraint for all these types.

For the remaining types θ ∈ [θ?, θ
?
], the principal uses the outside option allocation

x0 ≡ R′ to satisfy the constraint; she sets x?(θ) = R′(θ) which makes the outside

option constraint hold with equality everywhere in that interval. The corresponding

indirect utility function U of the agent is constant (equal to u?) below θ?, coincides

with R(θ) on [θ?, θ
?
], and has slope 1 above θ

?
.

The case of a non-monotone W is analogous, except that we must first “iron” W (θ)

into its monotone version −W ′(θ). Ironing is accomplished by first concavifying the

integral of W , and then differentiating it to identify the intervals I on which the ironed

objective is constant. Intuitively, suppose that U(θ) is set to its lowest feasible level

R(θ) in the interval [θ?, θ
?
] (i.e., the outside option constraint holds with equality

everywhere). This makes the corresponding allocation rule x strictly increasing as

long as the outside option is strictly increasing. If the principal’s objective function

W is decreasing around some type within [θ?, θ
?
], the principal can do better by

making the allocation flat around that type. The new allocation should still be as

low as possible, and thus the endpoints of the ironing interval will satisfy the outside
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option constraint with equality (while the constraint may be slack in the interior).

Mathematically, we rely on the observation that—if we view allocation rules as

CDFs—the outside option constraint takes a form similar to second-order stochastic

dominance of the candidate distribution x by the fixed distribution x0 defining the

outside option.12 The ironing procedure makes the allocation rule x flat on “ironing

intervals”—this operation corresponds to taking a mean-preserving spread of the dis-

tribution x0, and thus preserves the constraint that x is second-order stochastically

dominated by x0.

Remark 1. The objective function W in problem (P′) incorporates the density of

types f . This implies that the properties of the solution—in particular the struc-

ture of the ironing intervals—depends on the monotonicity of the original objective

multiplied by the density. This is a consequence of the fact that the outside option

constraint does not depend on the distribution of types (unlike, for example, a supply

constraint).

While the solution to problem (P′) is of independent interest, the key observation

that we will need to prove Theorem 1 is as follows.

Corollary 1. The optimal solution (x?, u?) to problem (P′) defined in (2) depends

linearly on the outside option R.13

Corollary 1 is a consequence of the ironing procedure: The collection of ironing

intervals I, and the cutoff types θ? and θ
?

depend only on the principal’s objective

function and the distribution of types; they do not depend on R. Intuitively, the

principal can determine the set of types at which the outside option constraint binds

before she knows what the outside option of each type is. Of course, the optimal

mechanism (x?, u?) ultimately depends on R but only through a linear transformation

applied within each of the intervals identified by the ironing procedure.

12Our constraint differs from a standard second-order stochastic dominance constraint by the
presence of the constants u0 and u—this complicates our proof but does not pose a substantial
challenge. See Kleiner et al. (2021) for a general theory of optimization subject to second-order
stochastic dominance constraints. Our approach to the ironing procedure resembles most closely the
one described in Akbarpour r© al. (2023).

13Formally, if (x?i , u
?
i ) is the solution to problem (P′) under outside option Ri, for i ∈ {1, 2},

then (x?, u?) = λ(x?1, u
?
1) + (1 − λ)(x?2, u

?
2) is a solution to problem (P′) under outside option

R = λR1 + (1− λR2), for any λ ∈ (0, 1).
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Step 3: Solving the designer’s problem

Given the solution to the principal’s problem derived in the previous step, we can

simplify the formulation of the designer’s problem. Instead of optimizing over feasible

functions R, the designer can optimize over u ≥ 0 and a non-decreasing allocation

rule x that together define R(θ) ≡ u +
∫ θ
θ
x(τ)dτ—this reparameterization preserves

all conditions that a feasible function R must satisfy by Lemma 1. A consequence of

Corollary 1 is that the designer’s problem is linear in u and x:

Lemma 3. The designer’s problem of choosing the optimal menu M is equivalent to

solving the problem

max
x non-decreasing,

u≥0

∫ θ̄

θ

Φ(θ)dx(θ)−α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) + 1cont ·u ≥ c̃, (3)

for some constant c̃ ≥ 0 and functions Φ, Ψ : Θ → R, where 1cont is an indicator

function that is 1 in the contractible case, and 0 in the non-contractible case.

By Corollary 1, the allocation rule selected by the principal is linear in the outside

option R. Because both the designer’s and the agent’s payoffs are linear in the final

allocation, it follows that the designer’s problem is also linear in R (with a linear

constraint corresponding to the agent’s investment-obedience constraint). Given this

observation and the change of variables described previously, Lemma 3 is a matter

of bookkeeping: The functions Φ and Ψ are derived by taking expectations over ω

and integrating by parts so that the allocation x enters the designer’s objective as a

measure against which Φ and Ψ are integrated.

Problem (3) consists of maximizing a linear functional subject to a single linear

constraint over a non-negative number and a non-decreasing function. It follows that

there exists an optimal allocation rule that is a convex combination of at most two

extreme points of the set of non-decreasing functions.14

Lemma 4. Problem (3) admits a solution (x?, u?) such that either (i) u? = 0 and x?

14This result follows from an infinite-dimensional extension of Carathéodory’s theorem found in
Kang (2023) and has many analogs in recent papers in mechanism design (see, for example, Fuchs
and Skrzypacz, 2015; Bergemann et al., 2018; Loertscher and Muir, 2023) and information design
(see, for example, Le Treust and Tomala, 2019; Doval and Skreta, 2022).
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takes on at most one value other than 0 or 1, or (ii) u? > 0 and x?(θ) ∈ {0, 1} for

all θ ∈ Θ.

Lemma 4 implies Theorem 1: In each case described in the lemma, the optimal

outside option function R is spanned by a menu containing at most two elements.

Whenever u? > 0, one of the elements is a cash payment, (0, −u?). In remaining cases,

the non-zero values taken by x? and the cutoff types at which x? jumps determine

the options of the form (y, p′). In particular, one of the two elements in the optimal

menu can be taken to be an option-to-own (1, p) (possibly with a price p that makes

it redundant).

3.2 Discussion

Theorem 1 predicts that the optimal menu for the designer takes a relatively simple

form: It suffices to offer the agent two types of rights in the optimal menu, and one of

these rights is an option-to-own. Economically, an option-to-own is attractive because

it allows the designer to incentivize investment in a flexible way. If the price is set

to be low, an option-to-own behaves almost like a full property right and provides

high incentives to invest; it also forces the principal to either allocate the good to

the agent with high probability or compensate her with monetary transfers. Thus,

a low price will be used when the cost of investment is high, or when the designer

has a stronger preference than the principal to allocate the good to the agent. If,

instead, the price is set to be high, an option-to-own does not alter the allocation in

the principal’s mechanism too much, and provides only a small “nudge” to invest.

Thus, a high price might be used when investment is relatively easy to induce.

Mathematically, an option-to-own is special because it is an extreme point of the

set of feasible outside option functions R that the designer can induce by assigning

rights to the agent. As the proof of Theorem 1 demonstrates, the designer’s problem

is linear in the outside option R. Because the problem features a single (linear) con-

straint, there exists an optimal solution that is a convex combination of at most two

extreme points. A simple corollary of the proof of Theorem 1 is that a single option-

to-own would be optimal in the absence of the investment-obedience constraint:

Corollary 2. If the investment-obedience constraint is slack at the optimal solution,
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then there exists an optimal solution to the designer’s problem that takes the form of

an option-to-own: M? = {(1, p)} for some p ∈ R.

In a version of our model without an investment-obedience constraint, the designer

sets the price p in the option-to-own in a way that maximally aligns the principal’s

mechanism with the designer’s preferences. Even if the investment-obedience con-

straint is present, it may be slack at the optimal solution if the misalignment of the

designer’s and principal’s preferences is sufficiently large. For example, if the principal

maximizes revenue while the designer puts sufficient weight on the agent’s welfare,

she may choose to offer an option-to-own with a low price to shift more rents to the

agent. As a by-product, the agent may have a strict incentive to invest.

In light of Corollary 2, it is the presence of a binding investment-obedience con-

straint that can lead to the necessity of including a second option in the optimal menu.

Unsurprisingly then, the form of the second option in the optimal menu depends on

the whether investment is observable.

Corollary 3. Suppose that the investment cost c is sufficiently high. In the non-

contractible case, there exists an optimal menu M? = {(1, p), (y, p′)} with y > 0

and p′/y ∈ [θ, θ̄]. In the contractible case, there exists an optimal menu M? =

{(1, p), (0, −T )} with T > 0.

Corollary 3 reveals a key difference between the cases when investment is observ-

able (and contractible) and when it is not. In the contractible case, the optimal menu

consists of an option-to-own and an option-to-sell—the agent either keeps the good

by paying a price p or relinquishes control in exchange for a monetary payment T .

For intuition, it is useful to observe that offering the menu {(1, p), (0, −T )} (from

which the agent selects a single option) is equivalent to paying the agent a lump-sum

payment T and offering an option-to-own with price p + T , conditional on invest-

ment. (In the remainder of the paper, we will use the term “lump-sum payment”

to refer to this alternative interpretation under which the cash payment is always

given to the agent, regardless of other options selected from the menu.) Thus, in

the contractible case, the designer can incentivize investment with cash. In contrast,

when investment is not observable (or not contractible), offering a lump-sum pay-

ment to the agent is ineffective in incentivizing investment because the agent collects
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the lump-sum payment regardless of the investment decision. Instead, the designer

incentivizes investment by leveraging the fact that investment increases the agent’s

value—the optimal menu increases the rents of higher types relative to lower types

by only including options in which the agent obtains the good with strictly positive

probability.

The simplicity of the optimal menu relies on our simplifying assumption that

the agent takes a binary investment decision. However, the proof of Theorem 1

easily extends to the case when more (linear) constraints are added. If there are K

constraints—for example because the agent has K alternative levels of investment

to which she can deviate—at most K + 1 options are needed in the optimal menu

offered by the designer (and an option-to-own is one of them). However, such a bound

will typically not be tight. What matters is the number of binding constraints. For

example, if investment is modeled as a continuous choice and the socially-efficient

level of investment is pinned down by a first-order condition, then a single linear

equation may be sufficient to capture the agent’s obedience constraint, and Theorem

1 applies verbatim.15

Our methods did not rely on the fact that the linear constraint captured in-

vestment incentives. Any constraint that is linear in the allocation of the period-2

mechanism leads to the same mathematical conclusions. The constraint could cap-

ture other frictions, like the ones resulting from the agent’s information acquisition

as in Bergemann and Välimäki (2002).

3.3 The monotone case

In this subsection, we analyze the structure of the optimal property right under ad-

ditional regularity conditions. Suppose that, for any ω ∈ Ω, the principal’s objective

function Vω(θ) is non-decreasing in θ. Furthermore, suppose that the virtual surplus

functions Bω(θ) := −(1−Fω(θ))/fω(θ) and Sω(θ) := θ+Fω(θ)/fω(θ) (which are usu-

ally associated with buyers and sellers, respectively, in mechanism design problems)

15For a concrete example, suppose that the agent makes a continuous choice of effort e ∈ [0, 1]
subject to a strictly convex cost c(e); the agent’s type θ is drawn from Fω with probability e, and
from Fω with probability 1 − e. Then, the first-order condition for some target level of investment
e? is sufficient to guarantee that e? is chosen by the agent, and the optimal menu has at most two
items.
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are strictly increasing, and that the density fω(θ) is continuously differentiable.

Proposition 1. In the monotone case, for any outside option R, and conditional

on any ω ∈ Ω, the principal chooses an optimal mechanism that induces an indirect

utility

Uω(θ) =


R(θ?ω) θ < θ?ω,

R(θ) θ ∈ [θ?ω, θ
?

ω],

R(θ
?

ω) + θ − θ?ω θ ≥ θ
?

ω,

where θ?ω ≤ θ
?

ω are defined by

Vω(θ?ω) + αSω(θ?ω) = 0 and Vω(θ
?

ω) + αBω(θ
?

ω) = 0,

whenever an interior solution [θ?ω, θ
?

ω] ⊂ Θ exists.

In the monotone case, the principal’s problem admits a simple and intuitive so-

lution: The outside option constraint binds at an “intermediate” interval of types

[θ?ω, θ
?

ω]; the principal buys out rights using a cash payment for types θ ≤ θ?ω, and

she allocates with probability one to types θ ≥ θ
?

ω. This is a direct consequence of

the “ironing procedure” that we developed in Section 3.1.16 Intuitively, the principal

wants to maximize the allocation for types higher than θ
?

ω and minimize the allocation

for types lower than θ
?

ω. Thus, the outside option constraint is slack for θ ≥ θ
?

ω. On

the remainder of the type space, the principal uses the allocation rule to satisfy the

outside option constraint for types above θ?ω, and the monetary payment to satisfy

the outside option constraint for types below θ?ω. This intuition is embedded in the

definitions of θ?ω and θ
?

ω from Proposition 1: The upper threshold θ
?

ω is the cutoff

type above which the principal would like to sell the resource to the agent, taking

into account both the allocative effect and the revenue; the lower threshold θ?ω is the

cutoff type below which the principal would prefer to buy the resource from the agent.

Studying the monotone case allows us to provide more intuitions about the price

used in the option-to-own included in the optimal menu (see Appendix A.8 for sup-

porting calculations). For the rest of this section, we assume that the distribution of

16While Proposition 1 follows immediately from our ironing procedure, we could also derive it
using weak duality based on Jullien (2000) because the dual variable takes a simple form in the
monotone case.
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the public state ω does not depend on the agent’s investment decision (G = G).

The contractible case. In case investment is observable, as long as the hold-up

problem is sufficiently severe, we know from Corollary 3 that the optimal menu can be

implemented by awarding the agent a lump-sum payment T conditional on investment

and letting her execute an option-to-own with some price p. Under standard regularity

conditions guaranteeing the validity of first-order conditions, the price p must satisfy

Eω∼G
[

(V ?
ω (p) + α?p)fω(p) | p ∈ [θ?ω, θ

?

ω]
]

= 0, (4)

as long as p is interior; p = θ is optimal if the left-hand side of equation (4) is always

positive, and p = θ̄ is optimal if the left-hand side of equation (4) is always negative.

The expectation in expression (4) is taken conditional on the event that p lies between

θ?ω and θ
?

ω given the realization of ω, which guarantees that the option-to-own affects

the final allocation of the resource. If p is below θ?ω, the principal will buy out the

agent’s option-to-own, and hence p will not affect the allocation. Similarly, if p is

above θ
?

ω, the principal will offer a better price to the agent within the mechanism.

For intuition, recall that, in the contractible case, the designer incentivizes in-

vestment with a combination of a lump-sum payment and an option-to-own, offered

conditional on investing. If the designer uses both tools, optimality requires that she

cannot benefit by slightly lowering the price p in the option-to-own—thus relaxing

the investment-obedience constraint—and then slightly lowering the lump-sum pay-

ment to make it bind again. Lowering the price p in the option-to-own increases

the allocation in the mechanism for nearby types—the designer values this change

at V ?
ω (p)—but it also affects the revenue. Normally, the effect on revenue would

be captured by the virtual surplus term, Bω(p). However, the binding investment-

obedience constraint pins down the agent’s expected information rents conditional on

investment, and hence the incremental net revenue—after adjusting the lump-sum

payment—excludes the information rent term: The net revenue from selling to type

p is simply p. Because the designer values revenue at α?, the net effect is given by

V ?
ω (p) + α?p. The optimal price p in the option-to-own makes the net effect zero in

expectation. An interesting corollary is that the optimal price in formula (4) does not

depend on the parameters of the agent’s investment problem (such as the cost c). In
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a sense, the designer uses the option-to-own to achieve the desired physical allocation

in the second stage, and then adjusts the lump-sum payment to make sure that the

agent undertakes investment.

The non-contractible case. In the non-contractible case, by Corollary 3, the op-

timal menu may include two options, M? = {(1, p), (y, p′)}, with two different prices

p and p′. Unlike in the case of observable investment, it is difficult to separate the

effects of the two options on the investment incentives. However, we can provide some

intuition if we explicitly introduce a Lagrange multiplier γ ≥ 0 on the investment-

obedience constraint in problem (3). While the multiplier γ is endogenous, it must

be non-decreasing in the cost of investment c, and is hence intuitively related to the

severity of the hold-up problem.

Suppose fist that it is optimal to offer a singleton menu with an option-to-own

(1, p). Then, p must satisfy the following first-order condition (assuming an interior

solution):

α?
Pω∼G(p < θ?ω)

Pω∼G(p ∈ [θ?ω, θ
?

ω])
− Eω∼G

[
(V ?

ω (p) + α?Bω(p)) fω(p) | p ∈ [θ?ω, θ
?

ω]
]

−γEω∼G
[
F ω(p)− Fω(p) | p ∈ [θ?ω, θ

?

ω]
]

= 0. (5)

To understand the expression, consider first the case when the designer does not care

about revenue, α? = 0, and there is no hold-up problem, γ = 0. In this case, the

designer’s first-best allocation in the second stage, assuming monotonicity of V ?
ω (θ),

is to allocate to all agent’s types above the threshold θ?ω such that Vω(θ?ω) = 0. Thus,

the designer sets the price p to achieve her optimal allocation on average across ω,

conditional on ω in the range in which the option-to-own has bite. Suppose now

that α? > 0. In this case, the designer would like to allocate to types for which

V ?
ω (θ) + α?Bω(θ) is positive. However, there is a second, more subtle, effect captured

by the first term in equation (5). Whenever ω is such that p < θ?ω, the principal will

buy out the agent’s right with a monetary payment that is decreasing in p (the more

attractive the option-to-own, the higher the compensation the principal must offer

to the agent). Thus, in this region, a lower price p has no effect on the allocation

but it decreases the principal’s revenue, which the designer values at α?. This effect
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will push the designer to choose a higher price p in the optimal menu, in particular

implying that a full property right will be suboptimal if θ?ω is bounded away from

θ (across ω). Finally, suppose that γ > 0, implying that the investment-obedience

constraint binds. By assumption, the distribution of agent’s values increases in the

first-order stochastic dominance order after investing: F ω(p) ≥ Fω(p). Thus, the

last term in expression (5) will tend to make the optimal price p lower—the designer

increases the incentives to invest by expanding the region in which the agent is the

residual claimant. Once again, however, providing incentives to invest through an

option-to-own is only effective when the price p falls in the region [θ?ω, θ
?

ω] where it

affects the final allocation of the resource.

In Appendix A.8, we show that equation (5) captures the relevant trade-offs also

when it is optimal to offer two options in the menu. Mathematically, two options

are offered when the Lagrangian is non-monotone and has more than one global

maximum, implying multiple solutions to the first-order condition (5). In that case,

the solutions to equation (5) pin down the optimal cutoff types at which the agent

switches between executing different outside options—prices p and p′ can then be

calculated from these cutoff types. Economically, non-monotonicity of the Lagrangian

can arise due to the conflict between incentivizing investment (which pushes prices

p and p′ to be lower) and giving the principal more flexibility at the trading stage

(which pushes prices p and p′ to be higher).

4 Applications

In this section, we discuss several application of our framework, and illustrate the

results with simple numeral examples.17 Our goal is to provide an overview of how

our framework could be mapped into various economic environments and how our

results relate to previous analyses of these environments; a detailed analysis of policy

implications in each environment is beyond the scope of this paper.

17Supporting calculations for these applications can be found in Appendix B.
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4.1 Dynamic resource allocation

A regulator (who is both the designer and the principal) allocates a scarce resource

(e.g., electromagnetic spectrum or access to an oil tract) in a dynamic environment.

The agent is assumed to control the resource initially. (In Section 5, we comment on

how our framework could be extended to model the problem of the initial allocation

of the optimally-designed property rights.) The agent decides in t = 1 whether

to invest in infrastructure that determines her value θ for keeping the resource in

t = 2. The state ω is the value for the regulator of allocating the resource to some

alternative use in t = 2. The regulator is concerned with allocative efficiency, in that

V ?
ω (θ) = Vω(θ) = θ − ω. Additionally, the regulator cares about revenue, and may

attach a higher weight to revenue at t = 2, that is, α ≥ α? ≥ 0.

In this application, the agent is subject to a hold-up problem; additionally, the

regulator suffers from time-inconsistency (if α > α?). Time inconsistency could be,

for example, the result of political pressure to raise a certain amount of revenue when

reallocating scarce public resources.18 The menu of rights selected by the regulator

corresponds to the design of a license determining the agent’s future rights to the

resource.

Assuming regular distributions of types and a relatively high cost of investment,

we can apply the analysis from Section 3.3. We first assume that investment is

contractible—resource use licenses sometimes include explicit clauses requiring proper

maintenance or investment, such as “prudent operator standards” in oil and gas leases,

or minimal coverage requirements in spectrum licenses. In this case, the optimal

property right takes the form of an option-to-own combined with an option-to-sell.

The option-to-own can be implemented as a renewable lease: As the lease termination

date approaches, the current lessee may choose to pay the renewal fee p to keep the

license for another term. The option-to-sell additionally gives the lessee the right to

require monetary compensation for relinquishing control. Both rights are conditional

on meeting the required investment level.

There is a high-level similarity between our optimal license and the “self-assessment

mechanism” (and its variants) analyzed by Posner and Weyl (2017), Milgrom et al.

18For example, the design goals for the “Incentive Auction” reallocating spectrum from TV broad-
casters to mobile broadband operators included an explicit revenue target to cover FCC’s costs and
subsidize the federal budget; see Milgrom et al. (2012).
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(2017), and Weyl and Zhang (2022).19 Both designs replace a rigid property right

with a type of price mechanism that attempts to provide investment incentives for the

current license holder conditional on a high value for keeping the resource. The right

is less valuable to the license holder conditional on having a low value for the resource,

which permits more efficient reallocation. The details of these designs, however, are

different. In the case of the self-assessment mechanism, it is the license holder that

names a price P ; she then pays a fraction β of the price P to the regulator while

committing to sell the license to anyone willing to offer P for it.20 In our case, a price

p is pre-specified, and it is the agent deciding whether to keep the license by paying p

to the regulator (if she doesn’t pay the price p, she may still keep the license but only

if the state ω is low enough). In essence, our property right gives the agent an option

to guarantee control over the resource but sacrifices some aspect of price discovery

since the price p is fixed; in contrast, the self-assessment mechanism always exposes

the current holder to some risk of losing control over the resource and uses that threat

to extract more revenue from the holder conditional on having a high value. While

our paper is the first to derive the optimal license design, the framework we propose

does not include the self-assessment mechanism as a special case—leaving open the

question of comparing the two designs more formally.21

In practice, it could be difficult to assess the extent to which an efficient level

of investment is undertaken. Thus, we next turn to the case when investment is

not contractible. The optimal property right may become more complicated. By

Corollary 3, the license may give two types of rights to the agent: an option-to-

own with some price p, and a partial right that results in a full property right with

probability y. In this case, as the lease termination date approaches, the current lessee

either pays the renewal fee p to keep the license or submits a request for renewal at

a lower fee p′; the request is then approved with probability y. While the regulator

most likely could not commit to explicit randomization, she could instead commit to

19Early proponents of the self-assessment mechanism include Harberger (1965) and Tideman
(1969).

20Weyl and Zhang (2022) propose a version of the self-assessment mechanism in which the price
P is instead determined in a second price auction held between the incumbent and the entrants.

21Implementing the self-assessment mechanism requires a certain level of commitment to future
trading mechanisms that we have ruled out by assumption. However, it is not clear how to formalize
such partial commitment (full commitment makes any property right obsolete). We return to this
issue in Section 5.
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a review standard determining the average likelihood of a favorable decision.

It turns out, however, that under additional assumptions the optimal license may

be simpler—we illustrate this with a numerical example that further sheds light on

the trade-offs involved in the optimal license design.

Numerical example. Assume that both the state ω and the agent’s type θ (conditional

on investment) are independent random variables that are distributed uniformly on

[0, 1], and that the resource is useless to the agent (θ = 0) absent investment.

By Proposition 1, at time t = 2, the regulator allocates the resource to all agent

types above ω+α
1+2α

, buys back any rights from agent types below ω
1+2α

by offering them

a cash payment, and lets the remaining types execute their optimal right.

There exist cutoffs c and c satisfying 0 < c < c̄ such that: If c ≤ c, then investment

takes place even when the agent has no rights; and if c = c̄, then only a full property

right incentivizes investment. We assume that c ∈ [c, c̄] and analyze the optimal

property rights in three cases.

Case α = α? = 1: When the regulator maximizes the sum of allocative efficiency

and revenue in both periods, the optimal license is simply a renewable lease with a

price p. The optimal price p makes the agent indifferent between investing or not.

Case α = 1, α? = 0: When the regulator is concerned with efficiency ex-ante but

attaches a positive weight to t = 2 revenue, the optimal license takes the form of

assigning a full property right with probability y that makes that agent indifferent

between investing or not.

Case α = α? = 0: In this case, the regulator maximizes efficiency in both peri-

ods.22 The optimal mechanism at t = 2 takes the form of allocating the good to agent

types above ω and buying out any rights for the remaining types—which reduces to a

standard VCG mechanism when the agent has no rights. Thus, by Rogerson (1992),

it is optimal for the regulator to assign no rights to the agent in this case.

The numerical example illustrates how the form of the optimal property right

varies with the regulator’s ex-ante and ex-post preferences over revenue. If there’s no

time inconsistency and the regulator is only concerned with efficiency, it is optimal to

allocate no rights to the agent because the VCG mechanism employed to reallocate

22Formally, since we assumed α > 0, we consider the limit of solutions as α→ 0.
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resources at t = 2 ensures efficient investment incentives.23 When the regulator cares

about revenue at the ex-post stage but not at the ex-ante stage, it is optimal to

provide investment incentives through a partial property right. Intuitively, a full

property right is the most effective way of inducing investment when investment is

not observable, as it makes the agent fully internalize its benefits. However, a full

property right would typically make the investment-obedience constraint slack while

distorting the efficient ex-post reallocation of the resource. Indeed, when the agent

holds a full property right, the regulator chooses to sacrifice allocative efficiency at

the reallocation stage for some realizations of ω in order to decrease the monetary

compensation paid to the agent. Thus, at the ex-ante stage, the regulator specifies

a contract that awards the agent a full property right with just enough probability

to make the investment-obedience constraint bind. Finally, when the regulator cares

about revenue at the ex-ante stage as well, she wants to design property rights so as

to increase the revenue from the reallocation mechanism. She thus optimally switches

from incentivizing investment via a partial property right (that yields no revenue at

t = 2) to a renewable lease which generates revenue through the renewal fee p. The

renewable lease is still effective at inducing investment (provided that p is sufficiently

low) because it makes the agent internalize the benefits from investment conditional

on realizing a high value for the resource.

4.2 Regulating a rental market

Next, we introduce an application in which the designer and the principal are two

separate entities with conflicting objectives. The designer is a policymaker and the

principal is a company leasing a rental unit to an agent (who could be a residential

tenant or a business owner). The agent occupies the unit at time t = 0, and decides

whether to invest in it (e.g., whether to take good care of the apartment or install

specialized equipment in the office space). We assume that investment results in

a higher value θ for staying in the unit for another lease term t = 2, but is not

23This case does not arise in the analysis of Weyl and Zhang (2022) because investment in their
model creates a common value. We can capture investments in the common value of the resource
by assuming that the distribution G of the regulator’s opportunity cost first-order stochastically
dominates the corresponding distribution G conditional on no investment. Under that assumption,
there exists a region in the parameter space in which the VCG mechanism would not lead to the
efficient investment level, and the agent would be optimally assigned a non-trivial property right.
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observable. The state ω is the price the rental company could get by leasing to

a new tenant (the market rental price). The rental company maximizes revenue:

Vω(θ) = −ω and α = 1. The designer, on the other hand, is concerned with efficiency:

V ?
ω (θ) = θ − ω and α? = 0.

In this application, the menu of rights chosen by the policymaker captures regu-

lation of a private rental market. The rental company has monopoly power over the

tenant, since the tenant makes a sunk investment (and moving is implicitly assumed

to be costly). This introduces a potential inefficiency, as the rental company might

dictate prices above the market rate, which could further disincentivize investment.

A full property right is interpreted in this context as mandating a long-term lease;

other feasible regulations take the form of rent control or giving the tenant the right

to stay by paying a pre-specified rent to the rental company.

Theorem 1 and Proposition 1 predict an important role for the renewable lease

contract. To derive tighter predictions, let us further assume that, absent investment,

the agent’s value for staying in the rental unit is drawn from uniform distribution

on [0, 1], investing increases the value by a constant ∆ > 0, and that supp(G) ⊆
[∆, 1−∆].

As a benchmark, consider first the case when ω is known ex-ante. Then, the

optimal regulation takes the form of a renewable lease at a price p = ω−γ∆, where γ

is the Lagrange multiplier on the agent’s investment-obedience constraint. This means

that the agent is allowed to renew the lease at a price that is (potentially) discounted

relative to the market price, and that the discount is larger when investment is more

difficult to incentivize. If we restrict attention to parameters for which the agent’s

investment is socially efficient, then γ = 0—the renewable-lease price is in fact equal

to the market price which allows the designer to induce the VCG mechanism. The

regulation has bite because the rental company would charge a higher price to the

agent, exploiting its monopoly position.

If ω is initially unknown (and possibly correlated with θ), then the first-order

condition determining the optimal price in the renewable-lease contract is

p = E[ω | p ∈ [θ?ω, θ
?

ω]]− γ∆.

Thus, the designer is trying to achieve a similar outcome but this time targeting the
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expected market rental rate, where the expectation is conditional on the market price

ω being in a certain range that is endogenous to the choice of p. In particular, if the

market rental rate ω is high, then p < θ?ω holds and the rental company will prefer

to pay the agent to leave, rather than forgoing the market rental rate. Similarly, if ω

is low, then p > θ
?

ω holds and the company will offer to renew the agent’s lease at a

price strictly below p. Thus, the price p set by the designer only has bite when the

market rental rate is in the intermediate region. In general, it is no longer the case

that γ = 0 when investment is socially efficient.

It is worth noting that regulation similar to the one described here is often used

in practice. For example, in the United Kingdom, the Landlord and Tenant Act

1954 provides commercial tenants with the right to renew any lease pertaining to a

premises that it occupies for business purposes. In terms of residential leases, rent-

control policies that are common in large cities around the world impose bounds on

how much rent can increase from period to period, although they do not typically

give the tenant the right to stay. However, in many countries rent control is combined

with some degree of protection against eviction, which to some extent approximates

a renewable-lease contract.

4.3 Patent policy

A classical economic question is how to reward and incentivize innovation and sci-

entific discoveries. For example, Wright (1983) analyzed the choice between patents,

prizes, and direct contracting, and showed that each of these alternatives can be an

effective intervention depending on information available to a regulator. Other pa-

pers (see, for example, Klemperer, 1990; Gilbert and Shapiro, 1990; Gallini, 1992)

studied the trade-off between the length and breadth of patents. While our baseline

model cannot capture the notion of patent length, we can ask how the designer can

optimally use patent breadth (allocation x in our model) and monetary payments

(transfer t in our model) to induce socially efficient investment.

In this application, the agent is a firm making a costly investment at t = 1 in a new

technology. The principal is a patent office deciding whether the agent should have

monopoly rights to the invention. The designer corresponds to a regulator designing

patent policy. Let k be the marginal cost of production for the firm conditional
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on investment, and—for simplicity—suppose that market demand for the product is

given by D(p) = 1−p. If the firm is a monopolist, it chooses to produce (1−k)/2, the

price is (1 + k)/2, and the profit is (1− k)2/4. If the firm is not granted a monopoly,

we assume there is perfect competition at the marginal cost k; the firm will not make

profits, total production will be 1−k, and the price will be k. Thus, the utility of the

agent from obtaining a monopoly at t = 2 is θ ≡ (1 − k)2/4. The designer attempts

to maximize total surplus given by the sum of consumer surplus and firm profits,

while the principal places a potentially higher weight ω ≥ 1 on consumer surplus.24

A simple calculation shows that this scenario corresponds to Vω(θ) ≡ θ(1 − (3/2)ω)

and V ?
ω (θ) ≡ V1(θ), for all ω ∈ Ω.

A property right in this application gives the innovator full monopoly power in the

market for the invention. However, this hurts consumer surplus. In particular, the

principal’s objective Vω(θ) is decreasing in θ. This is because granting a monopoly

right to the firm is particularly inefficient when the costs of production are low (θ

is high). Our question in this context is whether investment can be incentivized by

giving the innovator a partial right; an intermediate x ∈ (0, 1) can be interpreted

either as awarding the monopoly right with some probability (e.g., the regulator sets

a review standard for patent applications) or as the patent breadth (e.g., the degree

of protection against substitute products).25 Additionally, if investment is observable,

then the regulator can offer a direct cash prize for the innovation. To simplify our

analysis, we assume that the distribution of costs is uncorrelated with ω, and that

the density of θ is differentiable and non-decreasing.26

First, we suppose that the patent office has access to a transparent and credible

way of assessing the usefulness of the invention—corresponding to our assumption

that investment is observable and contractible. Then—as long as the weight on

revenue is not too high—the optimal property right will include a cash prize for the

24For example, the principal could have redistributive preferences as in Dworczak r© al. (2021).
25This also resonates with previous work demonstrating how the flexible allocation of market

power and monopoly rights can improve innovation policy relative to simply awarding innovators
full monopoly rights in the form of a patent (see, in particular, Hopenhayn et al., 2006 and Weyl
and Tirole, 2012).

26For large enough ω, Vω(θ) is negative and decreasing; in light of Remark 1, we need the assump-
tion of non-decreasing density to ensure that Vω(θ)f(θ) preserves that property. Economically, this
means that the principal is mostly concerned about granting monopoly rights to a firm with low
costs (which would not be the case if having low costs is statistically unlikely).
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discovery. Furthermore, if the support of ω is lower bounded by (4/3)α + (2/3)—

that is, if the principal puts sufficiently more weight on consumer surplus than on

revenue—she will always prefer to buy out any rights of the innovator with cash.27

In that case, the optimal property right is a cash payment conditional on investment.

While cash prizes have been historically used to incentivize major discoveries,28 in

many cases regulators cannot verify whether an innovation is socially useful. More-

over, paying for discoveries could induce moral-hazard problems.29 From now on we

suppose that investment is not observable and that the patent office cannot pay the

firm.

Under the same assumption that the support of ω is lower bounded by (4/3)α +

(2/3), the optimal contract takes the form of allocating a monopoly right free of charge

with some fixed probability y (or with breadth y) that makes the investment-obedience

constraint bind. Intuitively, when ω is high, conditional on the new technology being

already developed, the patent office would prefer not to grant a monopoly right, and

she is particularly reluctant to grant it when costs of production are low (because

consumer surplus under perfect competition is particularly high in this case). How-

ever, it is firms with low production costs that have a higher willingness to pay for

obtaining the monopoly right; hence, the best the patent office can do is allocate the

monopoly right with a probability that does not depend on production costs.

When the principal puts a sufficiently high weight on revenue (relative to the

realized ω), or when the density of θ is decreasing, it might become optimal to “sell”

the monopoly rights to firms with low costs. In that case, the optimal regulation may

take a more complicated form, potentially specifying a fee that a firm applying for

a patent may choose to increase the probability of obtaining the patent (a type of

“fast track” procedure). Allowing the firm to purchase a patent may be the cheapest

way to incentivize investment because it promises the innovator a higher probability

27See Kremer (1998) for historical cases of patent buyouts and a detailed analysis of how govern-
ments can determine the buyout price.

28For example, The Longitude Act 1714 passed by the British Government offered a prize of
20,000 pounds (several million in purchasing power parity today) for invention of a clock that could
operate with accuracy at sea. The Millennium Prize Problems selected by the Clay Institute serve
as a modern-day example.

29Kremer (1998) describes the possibility of bribery and rent-seeking, while Cohen et al. (2019)
document the problem of “patent trolls” that would be exacerbated by offering an additional financial
incentives for “fake” discoveries.
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of obtaining monopoly rights precisely when these monopoly rights are most valuable

(costs are low).

4.4 Vaccine development

Next, we consider an application in which investment is observed and commissioned

by a regulator who acts as both the designer and the principal. The agent is a

pharmaceutical company developing a vaccine at t = 1, during a pandemic. There

is a unit mass of patients, and x represents the number of units purchased by the

government at t = 2. Suppose that k is the marginal cost of production conditional

on successful discovery of the vaccine. Let ω be the social value of vaccinating a single

patient (which we assume is independent of k) that may depend, for example, on the

severity of the pandemic. We set θ ≡ −k. If the regulator cares exclusively about

patient welfare, then V ?
ω (θ) = Vω(θ) = ω. Additionally, we let 1 = α ≥ α?.

In this application, our framework casts light on the optimal design of a contract

between the government and a private producer. The friction is that—in the absence

of a contract—the government may not be interested in purchasing the product after

the investment costs have been sunk by the firm. However, the government can reward

the investment with a cash transfer or a guaranteed sale price for all or some of the

developed products. Note that it is natural to assume that these quantities should not

depend on the state ω—while the severity of the pandemic may be publicly observed,

it would be difficult to enforce such dependence in a legal contract. In this case, the

optimal contract can essentially be thought of as an advanced market commitment.30

We assume that investment is observable (the government can verify that the

vaccine is effective). By the analysis in Section 3.3 (and under the same regularity

assumptions), as long as the cost of investment is sufficiently high, the optimal con-

tract can be implemented as a lump-sum payment (for developing the vaccine) plus

a guaranteed unit purchase price

p =
E[ω | ω ∈ [ωp, ωp]]

α?
,

30There has been a recent upsurge of interest in advanced market commitments among economists,
particularly in relation to the use of these contracts as means to incentivize the production of vaccines
(see, for example, Kremer et al., 2020a,b; Athey et al., 2020).
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for some functions ωp, ωp, assuming that p belongs to the support of the costs (oth-

erwise, it coincides with one of the bounds). Intuitively, when ω < ωp (the pandemic

is not severe), the principal prefers to compensate the producer in cash, rather than

buying the vaccines at the price p. When ω > ωp (the pandemic is severe), the prin-

cipal will offer a higher price than p to the producer to increase the production of

vaccines. Thus, only in the intermediate range of ω can the price p set by the contract

affect the t = 2 allocation.

Consistent with our discussion of the contractible case in Section 3.3, the optimal

price does not depend on the exact cost of investment and the distribution of marginal

costs—these factors only influence the size of the lump-sum payment. When α? = 0,

that is, when the government is not concerned about revenue at the stage of signing

the contact, p will be equal to the upper bound of the distribution of costs—it is

optimal to commit to purchasing all vaccines. When α? = 1, so that the govern-

ment has time-consistent preferences, the optimal price is the same as the regulator

would choose if she wanted to implement the VCG mechanism. This is surprising,

because the government was not assumed to maximize total surplus. The reason is

related to the discussion of the optimal price in the contractible case given in Section

3.3: In the optimal contract, on the margin, the government must be indifferent be-

tween incentivizing investment using a slightly higher lump-sum payment or a slightly

higher guaranteed purchase price—it thus behaves as if it was fully internalizing the

producer’s marginal costs (i.e., as if it was maximizing total surplus).

4.5 Supply chain contracting

Finally, we exploit the possible correlation between θ and ω to capture an application

with the classical ratchet effect. There is a large firm (playing both the role of the

designer and the principal) buying some amount x of customized inputs from a small

supplier (the agent). The supplier can invest at time t = 1 in relationship-specific

technology to produce the inputs at marginal cost k ≡ −θ. The firm maximizes

profits and has a constant marginal value of 1 for each unit of the input. That is, we

have Vω(θ) = 1 and α = 1. Through the close interaction with the supplier, the firm

can learn the supplier’s costs; the state ω is a noisy signal of θ. Setting V ?
ω (θ) = 1

and α? = 1 corresponds to the firm proposing a contract to the supplier.
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In this application, we can investigate the optimal form of contractual rights

between two firms, similar to the problem considered by the incomplete-contracts

literature. Firms can freely bargain given the realized information in the future, or

effectively merge by having the large firm purchase the entire future production of

the supplier. Intermediate arrangements are also possible, such as the commitment

by the large firm to buy a certain number of inputs at a pre-specified price.

Theorem 1 predicts the form of the optimal contract for the large firm. If in-

vestment by the small supplier is not observable (e.g., the large firm cannot verify

the quality of the inputs prior to assembling the final product), the large firm will in

general commit to a two-price scheme, committing to buy up to y units at some price

p′, and any number of units at some lower price p. If investment by the small supplier

is observable, assuming the cost of investment is high enough, the large firm will offer

an upfront payment for setting up production and then a guaranteed purchase price

for any number of units.

The presence of private information at the trading stage (as well as the ratchet

effect) make this application distinct from the typical setting in the incomplete-

contracts literature. Without private information, Nöldeke and Schmidt (1995) find

that the first-best outcome can be implemented (without relying on renegotiation,

as in Aghion et al., 1994) by using an option contract that guarantees the seller a

base price (lump-sum cash payment) plus an option price for delivery. Interestingly,

if investment is observable and the conditions imposed in Section 3.3 hold, we arrive

at the same conclusion, despite differences in the model and the fact that our optimal

contract does not achieve the first best.31 However, the role of prices is different in

the two results. In Nöldeke and Schmidt (1995), the option price is pinned down by a

condition ensuring efficient investment by the seller, while the base price can be freely

adjusted to affect the split of surplus between the two parties. In our framework, with

observable investment, both the cash payment and the option price affect the seller’s

incentive to invest—the option price is used to lower the cost of incentivizing invest-

ment by making sure that the seller captures some of the benefits from increasing her

type (lowering her costs). With unobservable investment (which is in fact closer to

the setting of Nöldeke and Schmidt, 1995), our optimal contract is potentially more

31The comparison would not be affected if we assumed that the seller maximizes total surplus—
rather than her own profit—when choosing the initial contract.
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complicated and features an additional price for delivering a fraction of the seller’s

production capacity.

5 Concluding remarks

In this paper, we studied the design of property rights in an environment in which

the designer cannot commit to future trading mechanisms, giving rise to ex-post

inefficiency and a hold-up problem. We modeled property rights as a set of outside

options available to the agent. This perspective allowed us to employ a mechanism-

design approach to characterize the optimal property right. The optimal right is more

flexible than a full property right, and often allows the agent to retain control over the

economic resource conditional on paying a pre-specified price. We investigated several

applications of our results, including the design of spectrum licenses, the regulation

of private rental markets, patent policy and procurement contracting by governments

and large firms. In this section, we briefly review extensions of our framework, and

comment on future research directions.

Property rights as a form of partial commitment. The frictions in our framework

result from the inability of the designer to commit to future trading mechanisms.

From this perspective, property rights are partly restoring the designer’s control over

future allocations by specifying outside options that must be made available to the

agent. There are other natural assumptions one could make about the degree of

commitment. For example, we could allow agent’s rights to be state-contingent—this

would not affect our theoretical results significantly but would make property rights

a more powerful tool for the designer, and could lead to new insights in applications.

Another possibility, commonly encountered in practice, is that the designer might be

able to ban certain outcomes (for example, rent control restricts the set of prices a

landlord can charge to a tenant). In the model, this would correspond to specifying

a set of outcomes that cannot be offered in the mechanism run by the principal. If

the designer can flexibly ban certain outcome, mandate others, and condition these

restrictions on the state, then she can effectively commit to the future mechanism. It

is an interesting direction for future research to investigate how the strength of the
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designer’s commitment power affects the form of optimal property rights.

State-contingent property rights. We assumed throughout that the state ω is publicly

observable but not contractible. As discussed in the preceding paragraph, a model

in which rights can be made contingent on ω would give more power to the designer.

Even when ω is not contractible, the designer may be able to condition rights on

ω indirectly by delegating the choice of the menu of rights to the principal. That

is, the designer could design a menu of (sub)menus : At time t = 2, the principal

first chooses a submenu from the menu, and then the agent can execute an outside

option from the submenu. As long as the menu is constructed in such a way that the

principal’s relative preferences between submenus depend on the realized state ω, the

designer can implement the dependence of the agent’s outside option function on the

state. Formally, the design problem is then one of choosing a state-contingent outside

option for the agent but subject to an additional incentive-compatibility constraint for

the principal.32 It is easy to show, by means of examples, that this extra flexibility

may benefit the designer. Beyond theoretical curiosity, we find this research direction

interesting because it could provide an optimality foundation for state-contingent

property rights such as eminent domain.

Property rights versus bargaining power. One of the key assumptions of our framework

was that property rights affect outside options but not bargaining power. It is then

natural to model the trading stage as the problem of optimal mechanism design

by a principal. However, in the classical incomplete-contracts literature (Grossman

and Hart, 1986; Hart and Moore, 1990), property rights were often associated with

bargaining power. A natural extension of our “one-sided” framework is to symmetrize

the positions of the principal and the agent by endowing both of them with private

information and endogenizing the bargaining power. The trading stage could be

modeled as a third party running an incentive-compatible mechanism á la Loertscher

and Marx (2022) with type-dependent outside options and welfare weights reflecting

the agents’ relative bargaining power. The designer would then choose a menu of

rights for both agents together with the bargaining weights. Our techniques, including

32This extension of our model would bear some similarity to the critique of the incomplete-
contracts model offered by Maskin and Tirole (1999).
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the ironing approach to type-dependent outside options, could be helpful in analyzing

this more general problem. On a conceptual level, this extension would allow a richer

analysis of property rights, including the question of whose rights take precedence in

case of conflict, as well as the role of abatement and easement.

Optimal allocation of optimal property rights. In this paper, we abstracted away from

the problem of how to allocate optimally-designed rights by focusing on a single-

agent setting and assuming that the agent simply holds the rights from the outset.

This approach highlights the role of property rights in affecting future economic in-

teractions. For example, it makes sense to think about the problem of designing a

spectrum license separately from the problem of designing a spectrum auction. This

is in part because—once the license is designed—allocating it to one of several agents

is a standard mechanism design problem.

A direct extension of our framework would feature N agents with private signals,

realized at t = 0, about their values conditional on having control over the resource

in the future and undertaking investment. The designer would then have to take into

account how the design of property rights affects the outcomes of the mechanism run

at time t = 0 to allocate these right to one of the agents. If the designer were only

concerned with the efficiency of the allocation, we conjecture that under appropriate

single-crossing assumptions (higher signal realization are associated with a higher

distribution of future values), our characterization of optimal property rights would

apply with minimal modifications. The reason is that a standard second price auction

would allocate the rights to the agent with the highest signal realization regardless of

the exact design of these rights. However, if the designer were additionally concerned

with the revenue raised at t = 0, the optimal design of property rights would interact

non-trivially with the optimal design of the mechanism to allocate them.33 The

primary link would be willingness to pay; for example, by designing stronger spectrum

licenses, the designer could increase the bidders’ values in the auction allocating them,

but at the cost of lowering the revenue from future auctions. We leave this direction

for future research.

33Similar interactions have been analyzed in the literature on bidding with securities (see, for
example, DeMarzo et al., 2005).

43



References

Aghion, P., M. Dewatripont, and P. Rey (1994): “Renegotiation Design with

Unverifiable Information,” Econometrica, 62, 257–282.

Akbarpour, M., K. Li, S. Li, S. D. Kominers, and P. Milgrom (2023):

“Algorithmic Mechanism Design with Investment,” Econometrica (forthcoming).

Akbarpour, M. r© P. Dworczak r© S. D. Kominers (2023): “Redistributive

Allocation Mechanisms,” Journal of Political Economy (forthcoming).

Athey, S., M. Kremer, C. Snyder, and A. Tabarrok (2020): “In the Race

for a Coronavirus Vaccine, We Must Go Big. Really, Really Big.” New York Times.

Baliga, S. and T. Sjöström (2018): “A Theory of the Firm Based on Haggling,

Coordination, and Rent-Seeking,” Working paper.

Bauer, H. (1958): “Minimalstellen von Funktionen und Extremalpunkte,”

Archivder Mathematik, 9, 389–393.

Bergemann, D., A. Bonatti, and A. Smolin (2018): “The Design and Price of

Information,” American Economic Review, 108, 1–48.
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Szapiel, W. (1975): “Points Extrémaux dans les Ensembles Convexes(I). Théorie
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A Proofs

A.1 Proof of Lemma 1

Given a menu of rights M = {(xi, ti)}i∈I , let R(θ) = max{0,maxi∈I{θxi− ti}}. Since

R is constructed by maximizing over a family of affine functions, this implies that R is

convex and admits a right derivative. Moreover, since each affine function θxi− ti has

a non-negative gradient xi ∈ [0, 1], this implies that R is non-decreasing in θ and that

|∂+R(θ)| ∈ [0, 1], where ∂+R denotes the right derivative of R. Conversely, suppose

that we have a type-dependent outside option function R that is non-negative, non-

decreasing and convex, and admits a right derivative that is bounded above by 1.

Then, for all θ ∈ Θ, we can set y(θ) = ∂+R(θ) and s(θ) = θ∂+R(θ)− R(θ). Since R

is convex, the allocation rule y is non-decreasing. The envelope theorem then implies

that the menu M = {(y(θ), s(θ))}θ∈Θ implements the reservation utility function R

and is such that R(θ) = max{0,maxθ′∈Θ{θy(θ′)− s(θ′)}} as required.

A.2 Proof of Lemma 2

Consider first an auxiliary problem in which we fix u at some level weakly above u0.

Note that our assumption that the principal’s objective function W is upper semi-

continuous in θ implies that it is without loss of generality to restrict attention to

right-continuous allocation rules. We will treat the allocation rule x as a CDF by

extending it to the real line and assuming that x(θ) = 0 for all θ < θ, and x(θ) = 1

for all θ ≥ θ̄.34 Applying Leibniz’s rule, integrating by parts, and using W(θ) = 0

and limθ↗θ x(θ) = 0:

∫ θ̄

θ

W (θ)x(θ)dθ = −
∫ θ̄

θ

x(θ)d

(∫ θ̄

θ

W (τ)dτ

)
=

∫ θ̄

θ

W(θ)dx(θ).

The problem is now to choose a CDF x to maximize

∫ θ̄

θ

W(θ)dx(θ) subject to

∫ θ

θ

x(τ)dτ ≥ (u0 − u) +

∫ θ

θ

x0(τ)dτ, ∀θ.

34While the optimal mechanism might have x(θ̄) < 1, imposing x(θ̄) = 1 is without loss of
generality since it is not affecting the principal’s expected payoff and preserves all the constraints.
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Up to the constant term u0 − u, the constraint states that x must be second-order

stochastically dominated by x0. In particular, if W is non-decreasing and concave,

then the optimal x must satisfy the inequality as an equality (whenever this is feasi-

ble). Formally, define

x̄(θ) := x0(θ)1θ≥θ0 ,

where θ0 is defined by

u0 − u+

∫ θ0

θ

x0(τ)dτ = 0 (and θ0 = θ if there is no solution). (6)

The allocation x̄ is feasible by construction. IfW is non-decreasing and concave, then

any feasible x yields a lower objective than x̄ because x̄ second-order stochastically

dominates any feasible x. Moreover, if a monotone x is second-order stochastically

dominated by x̄, then x is feasible.

The key idea of the proof (mimicking the logic behind classical “ironing”) is to

define a relaxed problem in which the objective is concave non-decreasing, and then

show that the value of the relaxed problem can be achieved in the original problem.

Let W be the concave closure of W , and let W+ be the non-decreasing concave

closure of W . Note that W+ differs from W only in that W+(θ) is constant—equal

to the global maximum W(θ
?
)—for all θ ≥ θ

?
, where θ

?
is defined as in the main

text. Clearly, W ≤ W+ and W+ is non-decreasing and concave. By our previous

argument, we have obtained an upper bound on the value of the problem equal to

∫ θ̄

θ

W+(θ)dx̄(θ).

We will now construct an allocation rule x? that is feasible in the original problem

and achieves this upper bound. Define I ′ to be the (at most countable) collection

of maximal open intervals (a, b) within (θ, θ
?
) with the property that W lies strictly

below W on (a, b). Note that the definition of I ′ differs from the definition of I in

the main text only in that the former is defined on (θ, θ
?
), and the latter on (θ?, θ

?
).
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Define

x?(θ) =


∫ b
a x̄(τ)dθ

b−a θ ∈ (a, b) for some (a, b) ∈ I ′,

x̄(θ) θ ∈ (θ, θ
?
) \
⋃
I ′,

1 θ ≥ θ
?
.

Intuitively, x? (viewed as a CDF) only attaches probability mass to types θ at which

the objectiveW coincides with the concavified objectiveW+. Note that x? is feasible.

It is non-decreasing because x̄ is non-decreasing. Moreover, it is second-order stochas-

tically dominated by x̄ because it is obtained from x̄ by a series of mean-preserving

spreads within (θ, θ
?
), and by a single first-order stochastic dominance shift above

θ
?
—this suffices for feasibility, as noted previously.

We now argue that x? achieves the upper bound of the value function. Let x?−(θ
?

ω)

denote the left limit of x? at θ
?

ω. Then,

∫ θ̄

θ

W(θ)dx?(θ) =

∫
(θ, θ

?
)\
⋃
I′
W(θ)dx?(θ) +W(θ

?
)(1− x?−(θ

?
))

=

∫
(θ, θ

?
)\
⋃
I′
W(θ)dx?(θ) +W(θ

?
)(1− x?−(θ

?
)) =

∫ θ̄

θ

W+(θ)dx̄(θ), (7)

where the first equality follows from the fact that x? puts no mass on types in the set⋃
I ′ and types above θ

?
; the second equality follows from the fact that, by construc-

tion, W = W on the support of x? within (θ, θ
?
), while the equality at θ

?
follows

because W and W must coincide at the global maximum; and the third equality

follows by linearity ofW+ in intervals (a, b) belonging to I ′ and the fact that in such

intervals x? is a mean-preserving spread of x̄, as well as from the fact that W+ is

constant above θ
?
. This proves that x? is optimal.

In the last step of the proof, we maximize over u. Note that—given the above

derivation—the problem of choosing the optimal u can be written as

max
u≥u0

{
W+(θ0(u))x0(θ0(u)) +

∫
(θ0(u), θ̄]

W+(θ)dx0(θ)− αu
}
,

where θ0(u) is defined as in (6), now with the dependence on u made explicit in the

notation. Given that α > 0, it is never optimal to choose u such that the equation

u0−u+
∫ θ0
θ
x0(τ)dτ = 0 defining θ0(u) does not have a solution, since this would make
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the outside option constraint slack everywhere. Given that u0−u+
∫ θ0(u)

θ
x0(τ)dτ = 0

must hold, we can maximize over the cutoff type θ0 directly:

max
θ0

{
W+(θ0)x0(θ0) +

∫
(θ0, θ̄]

W+(θ)dx0(θ)− α
∫ θ0

θ

x0(τ)dτ − αu0

}
.

Integration by parts yields∫ θ0

θ

x0(τ)dτ = θ0x0(θ0)−
∫ θ0

θ

τdx0(τ).

Additionally, we have∫
(θ0, θ̄]

W+(θ)dx0(θ) =

∫
[θ, θ̄]

W+(θ)dx0(θ)−
∫

[θ, θ0]

W+(θ)dx0(θ).

Omitting terms that do not depend on θ0 and rearranging, we obtain an equivalent

representation of the problem:

max
θ0≥θ

{
(W+(θ0)− αθ0)x0(θ0)−

∫
[θ, θ0]

(W+(θ)− αθ)dx0(θ)

}
.

Integrating the second term by parts yields another equivalent representation:

max
θ0≥θ

{∫
[θ, θ0]

(W ′+(θ)− α)x0(θ)dθ

}
. (8)

The function W+(θ) is concave, and hence differentiable almost everywhere, with

a decreasing derivative. Thus, the optimal θ0 is the supremum over types θ such

that W ′+(θ) ≥ α (with θ0 = θ if the derivative is always below α). Note that

W(θ) = W+(θ) for all θ such that W ′+(θ) ≥ α, and hence the optimal θ0 coincides

with the definition of θ? given in the main text.

Finally, we can plug the optimal θ0 = θ? into the definition of x̄ to obtain

x?(θ) =


∫ b
a x0(τ)1τ≥θ?dτ

b−a θ ∈ (a, b) for some (a, b) ∈ I ′,

x0(θ)1θ≥θ? θ ∈ (θ, θ
?
) \
⋃
I ′,

1 θ ≥ θ
?
.
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Notice that θ? cannot belong to the interior of any interval (a, b) ∈ I ′ because, by

definition, W is linear on any such (a, b). Thus, x?(θ) must be 0 for any θ ≤ θ?, and

we can define I to be the intersection of I ′ with (θ?, θ
?
)—this gives us the definition

of I from the main text. Finally, by noting that x0(θ) = R′(θ) almost everywhere,

and that u? = R(θ?), we can verify that the optimal (x?, u?) defined above coincide

with those defined by equation (2).

A.3 Proof of Lemma 3

In the proof, we separately address the contractible and the non-contractible case

(with respect to the investment decision of the agent). To streamline exposition, we

first cover the non-contractible case, and then explain how to modify the proof to

cover the contractible case.

When analyzing the designer’s problem, we must take into account that the solu-

tion to the principal’s problem depends both on the induced outside option function

R and on the public state ω—we will make that dependence explicit in our notation.

In particular, let u?ω(R) := R(θ?ω), and let 〈x?ω(θ; R), t?ω(θ; R)〉 denote the mechanism

chosen by the principal conditional on ω and R.

We begin with the agent’s obedience constraint (I-OB). Using the envelope for-

mula to pin down transfers used by the principal, we can write the agent’s expected

payoff from participating in the stage t = 2 mechanism as

∫
Ω

(
u?ω(R) +

∫ θ
?
ω

θ?ω

x?ω(θ; R)(1− F̃ω(θ))dθ +

∫ θ̄

θ
?
ω

(θ − θ?ω)dF̃ω(θ)

)
G̃(ω),

where F̃ω = Fω and G̃ = G if the agent invested, and F̃ω = F ω and G̃ = G otherwise.

In particular, when the agent has no rights (R ≡ 0), the principal allocates the good

with probability one to types θ ≥ θ
?

ω (and with probability zero otherwise). Define

c̃ := c−

(∫
Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dFω(θ)dG(ω)−
∫

Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dF ω(θ)dG(ω)

)

as the cost of investment net of the agent’s benefit from investing in the absence of

any rights. By the assumption that the agent does not invest if she is not allocated

52



any rights, c̃ > 0. We can now write the agent’s obedience constraint as

∫
Ω

R(θ?ω) +
∑

(a, b)∈Iω

∫ b
a R
′(τ)dτ

b−a

∫ b

a
(1− Fω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

R′(θ)(1− Fω(θ))dθ

 dG(ω)− c̃

≥
∫

Ω

R(θ?ω) +
∑

(a, b)∈Iω

∫ b
a R
′(τ)dτ

b−a

∫ b

a
(1− Fω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

R′(θ)(1− Fω(θ))dθ

 dG(ω).

Next, denoting by W ?
ω(θ) := (V ?

ω (θ) + α?Bω(θ))fω(θ) the designer’s objective multi-

plied by the density of types, we can write her expected payoff conditional on choosing

an outside option function R (and conditional on the agent investing) as

∫
Ω

−α?R(θ?ω) +
∑

(a, b)∈Iω

∫ b
a
R′(τ)dτ

b− a

∫ b

a

W ?
ω(θ)dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

R′(θ)W ?
ω(θ)dθ

 dG(ω),

where we have omitted the term
∫

Ω
(
∫ θ̄
θ
?
ω
W ?
ω(θ)dθ)dG(ω) that does not depend on the

chosen R.

We can now change variables by letting R(θ) = u +
∫ θ
θ
x(τ)dτ, for some u ≥ 0,

and non-decreasing allocation rule x. This gives rise to the following optimization

problem for the designer: maximize over x and u ≥ 0

−α?u+

∫
Ω

−α? ∫ θ?ω

θ

x(θ) dθ +
∑

(a, b)∈Iω

∫ b
a
x(τ) dτ

b− a

∫ b

a

W ?
ω(θ) dθ +

∫
(θ?ω, θ

?
ω)

\
⋃
Iω

x(θ)W ?
ω(θ) dθ

 dG(ω)

subject to

∫
Ω

∫ θ?ω

θ

x(θ)dθ +
∑

(a, b)∈Iω

∫ b
a
x(τ)dτ

b− a

∫ b

a

(1− Fω(θ))dθ +

∫
(θ?ω, θ

?
ω)

\
⋃
Iω

x(θ)(1− Fω(θ))dθ

 dG(ω)− c̃

≥
∫

Ω

∫ θ?ω

θ

x(θ)dθ +
∑

(a, b)∈Iω

∫ b
a
x(τ)dτ

b− a

∫ b

a

(1− Fω(θ))dθ +

∫
(θ?ω, θ

?
ω)

\
⋃
Iω

x(θ)(1− Fω(θ))dθ

 dG(ω).

Since both the objective and the constraints are linear in x(θ), using integration by
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parts,35 we can rewrite the problem as

max
x(θ), u≥0

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) ≥ c̃, (9)

where

Φ(θ) =

∫
Ω

−α? (θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
W ?
ω(θ)dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
W ?
ω(τ)dτ

) dG(ω),

and

Ψ(θ) =

∫
Ω

(θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
(1− Fω(θ))dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
(1− Fω(τ))dτ

) dG(ω)

−
∫

Ω

(θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
(1− F ω(θ))dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
(1− F ω(τ))dτ

) dG(ω).

Thus, we have represented the designer’s problem as maximizing a linear functional

subject to a single linear constraint.

The contractible case. In the contractible case, the transformations are analogous

but notation is further complicated by the fact that, conditional on no investment,

the principal’s mechanism is designed optimally for the distribution F ω of the agent’s

type. We define the cost of investment net of the agent’s benefit from investing in

35In particular, we use the fact that
∫ b
a
g(θ)x(θ)dθ =

∫ θ̄
θ
1{θ≤b}

(∫ b
max{a, θ} g(τ)dτ

)
dx(θ).
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the absence of any rights as

c̃ := c−

(∫
Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dFω(θ)dG(ω)−
∫

Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dF ω(θ)dG(ω)

)
,

where θ
?

ω denotes the analog of θ
?

ω obtained by replacing Fω with F ω in its definition.

The agent’s obedience constraint in the designer’s problem becomes

∫
Ω

u+

∫ θ?ω

θ

x(θ)dθ +
∑

(a, b)∈Iω

∫ b
a
x(τ)dτ

b−a

∫ b

a

(1− Fω(θ))dθ +

∫
(θ?ω, θ

?
ω)

\
⋃
Iω

x(θ)(1− Fω(θ))dθ

 dG(ω) ≥ c̃.

Finally, we can write the designer’s problem as

max
x(θ), u≥0

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) + u ≥ c̃, (10)

where Φ(θ) is defined as in the non-contractible case, and

Ψ(θ) =

∫
Ω

(θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
(1− Fω(θ))dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
(1− Fω(τ))dτ

) dG(ω).

By using the indicator function 1cont, we obtain the unified statement of Lemma 3

covering both the contractible and non-contractible case.

A.4 Proof of Lemma 4

By Lemma 3, the designer’s problem is to maximize a linear functional subject to a

single linear constraint. Thus, there exists a solution that is a convex combination

of at most two extreme points.36 Extreme points in the space of (non-decreasing)

allocation rules are cutoff functions of the form 1θ≥θ? . Thus, the optimal x can be

written as a two-step function, and in particular its image may contain at most one

36Formally, this follows from the results of Bauer (1958) and Szapiel (1975), as summarized by
Kang (2023), which can be seen as a version of Carathéodory’s theorem for an infinite-dimensional
linear space.
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value other than 0 or 1.

In the non-contractible case, it is clear that it is optimal to set u = 0. This

corresponds to case (i) in Lemma 4. The same conclusion is true in the contractible

case when u = 0 in the optimal solution.

Suppose that u > 0 in the optimal solution in the contractible case. Observe that

the optimal solution must maximize the Lagrangian, with Lagrange multiplier γ,37

∫ θ̄

θ

(Φ(θ) + γΨ(θ)) dx(θ) + (γ − α)u,

and that in case u > 0 is optimal, we must have γ = α?. Indeed, α? ≤ γ as otherwise

the unique optimal choice would be u = 0, and α? ≥ γ as otherwise the Lagrangian

would not have a maximum. But if γ = α?, then any u ≥ 0 maximizes the Lagrangian.

Thus, we can pick a cutoff allocation rule x(θ) maximizing
∫ θ̄
θ

(Φ(θ) + α?Ψ(θ)) dx(θ)

that does not satisfy the obedience constraint when paired with u = 0,38 and then

satisfy the obedience constraint by picking u ≥ 0, so that
∫ θ̄
θ

Ψ(θ)dx(θ) +u = c̃. This

corresponds to case (ii) in Lemma 4.

A.5 Proofs of Corollaries 1, 2, and 3

Corollary 1 follows by direct inspection of the solution derived in Lemma 2. Corollary

2 follows from the proof of Lemma 4 by observing that if the investment-obedience

constraint is dropped from the designer’s optimization problem, then the optimum is

attained by an extreme point x(θ) = 1θ≥θ? and u = 0. This corresponds to offering

the agent an option-to-own. Finally, Corollary 3 follows from the proof of Lemma 4

and two observations. In the non-contractible case, the conclusion that u = 0 implies

that y > 0 in the corresponding optimal menu M?. Moreover, if p′/y did not belong

to [θ, θ̄], it would never be chosen by any type of the agent (hence, it could be replaced

by (y, yθ̄) without affecting the designer’s payoff). In the contractible case, if c is

high enough, no R with R(θ) = 0 satisfies the investment-obedience constraint. Thus,

it must be that u > 0 in the solution to the designer’s problem, which corresponds to

including the option (0, −T ), with T > 0, in the optimal menu.

37Existence of a Lagrange multiplier follows from Theorem 2.165 in Bonnans and Shapiro (2000).
38Such an x must exist, as otherwise we could not have a solution with u > 0.
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A.6 Remark about tie-breaking rules

In the proof of Theorem 1, we have assumed a particular tie-breaking rule in case of

principal’s indifference, implicit in how we defined the cutoffs θ?, θ
?

as well as the

ironing intervals I in the proof of Lemma 2. However, the proof of Lemma 2 allows

us to characterize all solutions to the principal’s problem. Indeed, any solution x?

must satisfy the string of equalities (A.2), and any optimal θ? must solve problem

(8). It follows that all solutions to problem (P′) can be obtained by modifying our

baseline solution (x?, u?) in the following ways:

1. θ
?

can be taken to be any global maximum of W (not necessarily the smallest

one);

2. IfW =W is affine on some interval [a, b], then we can take any mean-preserving

spread of x? in that interval (in the baseline solution, x?(θ) = R′(θ) on [a, b]);

3. θ? can be taken to be any type θ with the property α = W ′(θ) if there are

multiple such θ (not necessarily the largest one).

We will call a tie-breaking rule consistent if it breaks the principal’s indifference by

maximizing an auxiliary objective function
∫ θ
θ
φ(θ)x?(θ)dθ − βu?, where φ : Θ → R

is continuous. Clearly, maximizing or minimizing the designer’s payoffs are both

consistent tie-breaking rules.

We claim that the solution picked by a consistent tie-breaking rule is linear in R,

as in Corollary 1. The reason is that the optimal choice of θ
?

and θ? will be invariant

to R; moreover, maximizing
∫ θ
θ
φ(θ)x?(θ)dθ over mean-preserving spreads of R′(θ)

in some interval [a, b] can be solved by applying an ironing procedure analogous

to the one that we used to solve the principal’s problem. As we have shown, this

procedure results in an R−invariant partition of [a, b] into (at most countably many)

subintervals on which either (i) the optimal x?(θ) is equal to R′(θ), in which case the

subinterval can be included in the collection Ic, or (ii) the optimal x?(θ) is constant,

in which case the subinterval can be included in the collection I. Overall, a consistent

tie-breaking rule results in a solution whose structure is the same as in the proof of

Lemma 2, except that the R-invariant cutoff types θ? and θ
?
, as well as the R-invariant

collection of ironing intervals, may be different. Thus, the solution is still linear in R.
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A.7 Proof of Proposition 1

We begin with a technical lemma.

Lemma A.1. Under the assumptions of Proposition 1, (i) Wω = Wω on [θ?ω, θ
?

ω],

(ii) W ′ω(θ) ≤ α for all θ ≤ θ?ω, with equality at θ = θ?ω, and (iii) θ
?

ω is the global

maximum of Wω.

Proof of Lemma A.1. We drop the subscript ω to simplify the exposition. We first

prove that W (θ) = (V (θ) + αB(θ))f(θ) is non-decreasing on [θ?, θ
?
]. It suffices to

show that, for all θ ∈ [θ?, θ
?
],

V ′(θ) + 2α

α
f(θ) +

V (θ) + αθ

α
f ′(θ) ≥ 0.

Using the definition of θ? and θ
?

given in Proposition 1, for all θ ∈ [θ?, θ
?
], we have

1− F (θ)

f(θ)
≥ V (θ) + αθ

α
≥ −F (θ)

f(θ)
.

If f ′(θ) is negative, we have

V ′(θ) + 2α

α
f(θ) +

V (θ) + αθ

α
f ′(θ) ≥ 2f(θ)− F (θ)

f(θ)
f ′(θ) ≥ 0,

where the second inequality follows from the monotonicity of the seller virtual surplus.

When f ′(θ) is positive, we have

V ′(θ) + 2α

α
f(θ) +

V (θ) + αθ

α
f ′(θ) ≥ 2f(θ) +

1− F (θ)

f(θ)
f ′(θ) ≥ 0,

where the second inequality follows from the monotonicity of the buyer virtual surplus.

Next, we prove that W (θ) ≤ −α for θ ≤ θ?, that is,[
V (θ) + α

(
θ − 1− F (θ)

f(θ)

)]
f(θ) ≤ −α.
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Indeed, we have[
V (θ) + α

(
θ − 1− F (θ)

f(θ)

)]
f(θ) =

[
V (θ) + α

(
θ +

F (θ)

f(θ)

)]
︸ ︷︷ ︸

≤0

f(θ)− α ≤ −α.

The same calculation shows that W (θ?) = −α, and W (θ) ≥ −α for θ ≥ θ?.

Overall, we have shown that W(θ) =
∫ θ̄
θ
W (τ)dτ has a slope higher than α for

θ ≤ θ? and lower than α for θ ≥ θ?, is concave on [θ?, θ
?
], and has a global maximum

at θ
?

(since W (θ) crosses zero once from below at θ
?
). It follows that W is equal

to its concave closure on [θ?, θ
?
]. Moreover, W ′(θ) ≤ α for θ ≤ θ?, with equality at

θ = θ?. Finally, θ? and θ
?
, as defined in Proposition 1, correspond to the θ? and θ

?

defined in Section 3.1.

Given Lemma A.1, the first part of Proposition 1 follows directly from Lemma 2.

The collection Iω is empty, so there are no ironing intervals: Uω(θ) coincides with

R(θ) on [θ?ω, θ
?

ω]. Below θ?ω, x?ω = 0, so Uω is constant, equal to R(θ?ω). And above θ
?

ω,

x?ω = 1, giving the expression for Uω from Proposition 1.

A.8 Supplementary material for Section 3.3

Following the proof of Theorem 1, and relying on Proposition 1 to simplify the de-

signer’s problem, we obtain

max
x(θ), u

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) + 1cont · u ≥ c̃,

where

Φ(θ) :=

∫
Ω

(
−α? (θ?ω − θ)+ + 1{θ≤θ?ω}

∫ θ
?
ω

max{θ?ω, θ}
[V ?ω (τ) + α?Bω(τ)]dFω(τ)

)
dG(ω) ≡ Eω∼G[Φω(θ)],

and, given the assumption G = G,

Ψ(θ) :=

∫
Ω

(
1{θ≤θ?ω}

(∫ θ
?
ω

max{θ?ω , θ}
(F ω(τ)− Fω(τ))dτ

))
dG(ω) ≡ Eω∼G[Ψω(θ)]

59



in the non-contractible case, while

Ψ(θ) :=

∫
Ω

(
(θ?ω − θ)+ + 1{θ≤θ?ω}

∫ θ
?
ω

max{θ?ω , θ}
(1− Fω(τ))dτ

)
dG(ω) ≡ Eω∼G[Ψω(θ)]

in the contractible case.

As in the proof of Theorem 1, we can study the behavior of the Lagrangian

∫ θ̄

θ

(Φ(θ) + γΨ(θ)) dx(θ) + (1cont · γ − α)u,

where γ is the Lagrange multiplier on the investment-obedience constraint.

In the contractible case, we know from the proof of Theorem 1 that when u > 0

(which is necessarily true in the optimal mechanism when the cost of investment is

high enough), we must have γ = α?. We also know that x(θ) = 1θ≥θ? , and since the

optimal x maximizes the Lagrangian that has one-sided derivatives everywhere, the

optimal θ? must satisfy the generalized first-order condition

Φ′(θ?) + α?Ψ′(θ?)
(FOC)

= 0, (11)

where
(FOC)

= is short-hand notation for equality at interior points at which the left-

hand side is differentiable, and for the appropriate weak inequalities at boundary

points θ and θ̄; at points of non-differentiability, with slight abuse of notation, we can

interpret the condition as saying that the left derivative of the left-hand side must

be non-negative while the right derivative of the left-hand side must be non-positive.

Since we have

Φ′ω(θ) + α?Ψ′ω(θ) =


0 θ < θ?ω,

− [V ?
ω (θ, ω) + α?θ] fω(θ) θ ∈ (θ?ω, θ

?

ω),

0 θ > θ
?

ω.

the first-order condition becomes

−Eω∼G
[
1{θ?∈[θ?ω , θ

?
ω ]} (V ?

ω (θ?) + α?θ?) fω(θ?)
]

(FOC)
= 0.
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It is without loss of generality to restrict the set of candidate θ? to the closure of the set

{θ? ∈ Θ : Pω∼G(θ? ∈ [θ?ω, θ
?

ω]) > 0} since the Lagrangian is constant in θ? outside this

range. If u > 0 is interpreted as a lump-sum payment, then setting the price p = θ?

in the option-to-own implements the outside option function R(θ) = u +
∫ θ
θ
x(τ)dτ .

A straightforward transformation of the first-order condition yields formula (4).

In the non-contractible case, we know that u = 0 and the optimal x takes the form

x(θ) =


0 θ < θ?1,

y θ?1 ≤ θ < θ?2,

1 θ ≥ θ?2.

Since the optimal x must maximize the Lagrangian, both θ?1 and θ?2 must satisfy the

first-order condition (11). Since we have

Φ′ω(θ) + γΨ′ω(θ) =


α? θ < θ?ω,

−
[
V ?
ω (θ) + α?Bω(θ) + γ

Fω(θ)−Fω(θ)

fω(θ)

]
fω(θ) θ ∈ (θ?ω, θ

?

ω),

0 θ > θ
?

ω,

the first-order condition is

α?Pω∼G(θ? < θ?ω)−Eω∼G
[(
V ?
ω (θ?) + α?Bω(θ?) + γ

Fω(θ?)−Fω(θ?)
fω(θ?)

)
fω(θ)1θ?∈[θ?ω , θ

?
ω ]

]
(FOC)

= 0.

It is again without loss of generality to restrict the set of candidate θ? to the closure

of the set {θ? ∈ Θ : Pω∼G(θ? ∈ [θ?ω, θ
?

ω]) > 0}; in particular, if Pω∼G(θ? ≥ θ?ω) = 0 for

θ? below some threshold, then θ? below that threshold cannot be optimal (since the

Lagrangian is increasing in that region). Thus, we can rewrite the condition as

α?
Pω∼G(θ?<θ?ω)

Pω∼G(θ?∈[θ?ω , θ
?
ω ])
− Eω∼G

[
(V ?

ω (θ?) + α?Bω(θ?)) fω(θ?) | θ? ∈ [θ?ω, θ
?

ω]
]

−γEω∼G
[
F ω(θ?)− Fω(θ?) | θ? ∈ [θ?ω, θ

?

ω]
]

(FOC)
= 0.

If there is only a single point θ? satisfying the first-order condition, then offering a sin-

gleton menu with option-to-own with price p = θ? is optimal. This gives us condition

(5). If instead the optimal menu contains two options, then θ?1 < θ?2 must both satisfy
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the first-order condition, while prices in the optimal menu M? = {(1, p), (y, p′)} are

given by p′ = yθ?1 and p = θ?2 − y(θ?2 − θ?1).

B Supporting calculations for Section 4

B.1 Calculations for Subsection 4.1

Using the result derived in Proposition 1, we can explicitly calculate the interval

[θ?ω, θ
?

ω] on which the outside option constraint binds:

θ?ω =
ω

1 + 2α
and θ

?

ω =
ω + α

1 + 2α
.

Let us determine the bounds c̄ and c. When no rights are assigned to the agent,

investment is taken when∫ 1

0

(∫ 1

ω+α
1+2α

(
θ − ω + α

1 + 2α

)
dθ

)
dω ≥ c,

or, equivalently,

c :=
1

6
(1 + 2α)

[(
1 + α

1 + 2α

)3

−
(

α

1 + 2α

)3
]
≥ c.

Under a full property right, investment is taken when

∫ 1

0

(∫ 1

ω
1+2α

(
θ − ω

1 + 2α

)
dθ

)
dω ≥ c,

or, equivalently,

c̄ :=
1

6
(1 + 2α)

[
1−

(
2α

1 + 2α

)3
]
≥ c.

Notice that in the case α = 0, the principal uses a VCG mechanism (since θ?ω =

θ
?

ω = ω), which proves the claim for the case α = α? = 0. From now on, we assume

that α = 1.
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Using the notation from Appendix A.8, we have

Φ′ω(θ) + γΨ′ω(θ) =


α? θ < ω

3
,

(γ − 1− 2α?) θ + ω + α? − γ θ ∈
(
ω
3
, ω+1

3

)
,

0 θ > ω+1
3
.

Therefore, using the assumption that G is uniform on [0, 1],

∫ 1

0

[Φ′ω(θ) + γΨ′ω(θ)] dG(ω) =


∫ 3θ

0
[(γ − 1− 2α?) θ + ω + α? − γ] dω + α?(1− 3θ) θ < 1/3,∫ 1

3θ−1
[(γ − 1− 2α?) θ + ω + α? − γ] dω θ ∈ (1/3, 2/3),

0 θ > 2/3,

and

∫ 1

0

[Φ′′ω(θ) + γΨ′′ω(θ)] dG(ω) =


θ (6γ − 12α? + 3)− 3γ θ < 1/3,

−θ (6γ − 12α? + 3) + 1− 7α? + 5γ θ ∈ (1/3, 2/3),

0 θ > 2/3.

From now on, we will take a look at the two cases, α? = 1 and α? = 0, separately.

Case α? = 1. In this case, we have

∫ 1

0

[
Φ′ω(θ) + γΨ′ω(θ)

]
dG(ω) =


∫ 3θ

0 [(γ − 3) θ + ω + 1− γ] dω + 1− 3θ θ < 1/3,∫ 1
3θ−1 [(γ − 3) θ + ω + 1− γ] dω θ ∈ (1/3, 2/3),

0 θ > 2/3,

and

∫ 1

0

[Φ′′ω(θ) + γΨ′′ω(θ)] dG(ω) =


θ (6γ − 9)− 3γ θ < 1/3,

−θ (6γ − 9)− 6 + 5γ θ ∈ (1/3, 2/3),

0 θ > 2/3.

In the interval [0, 1/3], the function is concave and its derivative is strictly positive

at 0. The derivative at θ = 1/3 is 1/2 − (2/3)γ. Then, on [1/3, 2/3], the second
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derivative changes from 3γ− 3 to γ. The first derivative at 2/3 is 0. If γ is above 3/4,

then the derivative at 1/3 is negative, and it must remain negative for all θ ≥ 1/3

because it must be 0 at 2/3. Thus, in this case, we have a global maximum that lies

in (0, 1/3]. If γ is below 3/4, then since the function is concave in [0, 1/3], the first

derivative must be positive on that interval. And since the derivative is positive at

1/3 but zero at 2/3, while the function changes from concave to convex, we must have

now a unique global maximum that lies in [1/3, 2/3]. Thus, we have shown that, in

all cases, an option-to-own is optimal. As γ changes from 0 to ∞, the optimal price

takes all values between 0 and 2/3 (note also that if a price 2/3 is optimal, then any

price between 2/3 and 1 is also optimal). Of course, the optimal price p must then

satisfy the investment-obedience constraint with equality, that is,

(1−G(3p)) c̄+

∫ 3p

3p−1

∫ 1

p

(θ − p)+ dθ dG(ω) +G(3p− 1) c = c.

As p varies from 0 to 2/3, the left-hand side takes on any value between c and c̄.

Case α? = 0. In this case, the derivatives are given by

∫ 1

0

[Φ′ω(θ) + γΨ′ω(θ)] dG(ω) =


(
3γ + 3

2

)
θ2 − 3θγ θ < 1/3,

−
(
3γ + 3

2

)
θ2 + (5γ + 1) θ − 2γ θ ∈ (1/3, 2/3),

0 θ > 2/3,

∫ 1

0

[Φ′′ω(θ) + γΨ′′ω(θ)] dG(ω) =


θ (6γ + 3)− 3γ θ < 1/3,

−θ (6γ + 3) + 1 + 5γ θ ∈ (1/3, 2/3),

0 θ > 2/3.

If γ ≥ 1, then on [0, 1/3] the function is concave, and thus decreasing. On

[1/3, 2/3], the function is convex, and the first derivative is negative. Thus, the

function is globally decreasing. It is thus optimal to give a full property right. How-

ever, except for the case c = c̄, this would make the investment-obedience constraint

slack, requiring γ to be 0.

If γ ∈ [1/4, 1), then the first derivative at 1/3 is still negative. On [0, 1/3],

the function is first concave and then convex, starting with a zero derivative, and
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ending with a negative derivative. Thus, the function is decreasing in this region.

On [1/3, 2/3], the function is first convex and then concave, starting with a negative

derivative, and ending with a zero derivative. We conclude that there are two local

maxima: one at 0 and one at 2/3.

Finally, suppose that γ < 1/4, so that the first derivative at 1/3 is positive.

Now, on [0, 1/3], the function is first concave and then convex, starting with a zero

derivative, and ending with a positive derivative. Thus, the function is first decreasing

and then increasing in this region. On [1/3, 2/3], the function is first convex and then

concave, starting with a positive derivative, and ending with a zero derivative. Thus,

we conclude again that there are two local maxima: one at 0 and one at 2/3.

Because the function is constant on [2/3, 1], whenever 2/3 is optimal, so is 1. We

conclude that, regardless of the value of γ, the function is maximized either at 0 or

at 1; however, this will not allow us to satisfy the investment-obedience constraint

except for the boundary cases c = c and c = c̄. Thus, in all other cases, it must be that

γ takes a value that makes both 0 and 1 global maxima, in which case the designer

can satisfy the investment-obedience constraint with equality by randomizing over

full right and no property right with some probability y :

yc̄+ (1− y)c = c.

This concludes the proof for this case.

B.2 Calculations for Subsection 4.2

Using Proposition 1, we can pin down the interval [θ?ω, θ
?

ω] on which the outside option

constraint binds:

ω = θ?ω +
F (θ?ω)

f(θ?ω)
and ω = θ

?

ω −
1− F (θ

?

ω)

f(θ
?

ω)
.

Due to our assumption that supp(G) ⊆ [∆, 1 −∆], we have that ∆ ≤ θ?ω ≤ θ
?

ω ≤ 1.

This in turn implies that F (θ)− F (θ) = ∆ for all θ ∈ [θ?ω, θ
?

ω].
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Suppose first that ω is known. Then,

Φ′ω(θ) + γΨ′ω(θ) =


0 θ < θ?ω,

− [θ − ω + γ∆] θ ∈ (θ?ω, θ
?

ω),

0 θ > θ
?

ω.

We thus have a unique maximum at

θ? = ω − γ∆.

By Rogerson (1992), if investment is socially efficient, then setting γ = 0 will incen-

tivize the agent to invest, and hence an option-to-own with price ω must be optimal.

Now let us suppose that ω ∼ G. Then,

Φ′ω(θ) + γΨ′ω(θ) = −1{θ?ω≤θ≤θ?ω} [θ − ω + γ∆] .

Thus, the optimal p must satisfy the first-order condition:

p = Eω
[
ω | p ∈ [θ?ω, θ

?

ω]
]
− γ∆.

B.3 Calculations for Subsection 4.3

First, we make a general observation. Dropping the dependence on ω in the notation,

suppose that

W(θ) ≤ θ̄ − θ
θ̄ − θ

W(0).

That is, suppose that W lies everywhere below its concave closure. Following the

proof of Lemma 2, we can then conclude that there are three cases:

1. If W(0) =
∫ θ̄
θ
W (τ)dτ < −α, then x?(θ) ≡ 0, and u? = R(θ̄), that is, the

principal buys out all rights with money.

2. IfW(0) ∈ [−α, 0], then x?(θ) = R(θ̄)−R(θ)

θ̄−θ , and u? = R(θ), that is, the allocation

rule is constant.

3. If W(0) > 0, then x?(θ) ≡ 1, and u? = R(θ), that is, the agent always gets the
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good.

Note also that it is easy to modify our methods to handle the case in which the prin-

cipal is not allowed to pay the agent (assuming that the designer is then constrained

to choose R(θ) = 0). We simply set u to 0 in the proof of Theorem 1, which means

that θ?ω = θ, for any ω. Then, case 1 above becomes case 2.

Let us now apply this observation to the application from Section 4.3. We have

Vω(θ) = θ(1− 3
2
ω), V ?

ω (θ) = −1
2
θ. To simplify notation, let βω := −(1− 3

2
ω). Recall

also that θ ≡ 1
4
(1− k)2 so we can assume that θ is distributed on [0, 1/4]. To verify

that W(θ) ≤ θ̄−θ
θ̄−θW(0), as in the observation we made above, we have to check that,

for all θ ∈ [0, 1/4],

∫ 1
4

θ

[−βωτ + αB(τ)] dF (τ) ≤ −(1− 4θ)βωE[θ].

Rewriting, we obtain,

βω

∫ 1
4

θ
τdF (τ)− (1− 4θ)E[θ]

θ(1− F (θ))
≥ α.

The bound ω̄ can be defined by solving

βω̄ inf
θ∈[0,1/4]

{∫ 1
4

θ
τdF (τ)− (1− 4θ)E[θ]

θ(1− F (θ))

}
= α.

To obtain an explicit upper bound on ω̄, we observe that a sufficient condition is that

W (θ) ≡ −βωθf(θ) + αB(θ)f(θ)

is decreasing. The derivative of this expression is

(2α− βω)f(θ) + (α− βω)θf ′(θ) ≤ (2α− βω)f(θ),

which is negative if βω ≥ 2α (where we used the fact that f ′ ≥ 0). This means that

ω̄ ≤ (4/3)α + (2/3).

Summarizing, if the lower bound of the support of ω lies above (4/3)α + (2/3),
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whatever the outside option is, the principal will either offer a cash payment to buy

out the rights (when this is allowed), or offer a constant probability y of allocating

the monopoly right for free. In both cases, the principal will make sure that the

highest type is getting exactly her outside option. This implies that the designer’s

problem reduces to choosing an outside option for the highest type that is just high

enough to induce investment. In case monetary payments are allowed and investment

is observable, the designer can achieve that via a cash payment; in case monetary

payments are not allowed and the investment is not observable, the designer can

achieve that by choosing a probability y of granting the monopoly right.

B.4 Calculations for Subsection 4.4

In this application, we have negative types: θ ≡ −k. Moreover, Vω(θ) = ω, V ?
ω (θ) = ω,

α = 1, and α? ≤ 1.

By Proposition 1, we have the thresholds

ω + θ?ω +
F (θ?ω)

f(θ?ω)
= 0 and ω + θ

?

ω −
1− F (θ

?

ω)

f(θ
?

ω)
= 0,

assuming they fall within [θ, θ̄] (otherwise, they are equal to one of the bounds).

Following the derivation in Appendix A.8, we have

Φ′ω(θ) + α?Ψ′ω(θ) =


0 θ < θ?ω,

− [ω + α?θ] f(θ) θ ∈ (θ?ω, θ
?

ω),

0 θ > θ
?

ω.

Rewriting the first-order condition from Appendix A.8 yields that a necessary condi-

tion for optimality is

θ? =
E [ω|ω ∈ [ωθ? , ω̄θ? ]]

α?
,

with θ? = θ̄ if the right-hand side expression is above θ̄, and θ? = θ if the right-

hand side expression is below θ, where the bounds in the condition ω ∈ [ωθ? , ω̄θ? ] are

defined implicitly by θ? ∈ [θ?ω, θ
?

ω].
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B.5 Calculations for Subsection 4.5

The conclusions follow directly from Theorem 1.
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