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ABSTRACT
We provide an organizational economics foundation for commitment to information structures in per-
suasion. An uninformed principal faces a joint screening-and-persuasion problem: she wants to influ-
ence a receiver’s beliefs about a payoff-relevant state using information elicited from a privately informed
agent. The principal cannot act as an intermediary that commits to an optimal garbling of the agent’s pri-
vate communications; instead, the agent’s messages are publicly observed by the receiver. We show that
the principal can still (indirectly) implement the optimal unconstrained intermediation scheme. Com-
mitment to an employment contract with the agent alone suffices for optimal persuasion of the receiver.
We apply our result to the context of a brokerage contracting with a sell-side analyst, where private com-
munication is constrained by conflict-of-interest regulations. We show that a public communication
scheme—which closely corresponds to the investment ratings schemes observed inpractice—can sidestep
these regulations.
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1. INTRODUCTION

Bayesian persuasion problems consider a sender’s manipulation of information to induce a receiver to
take some action. In these models, the sender communicates via commitment to an information struc-
ture (equivalently, to a statistical experiment or to a state-dependent, possibly mixed, action recommen-
dation). Similarly, in contract theory and mechanism design, it is typically assumed that the principal
can commit to contractual terms—inmoral hazard problems, commitment is to output-contingent pay-
ments, while in adverse selectionproblems, the principal commits to the actions that follow the revelation
of private information. This commitment assumption is mostly uncontroversial in these latter contexts
and is frequentlymotivated bymapping it to codified ruleswithin an organization via, for example, its hu-
man resource policies. Unlike in contract theory andmechanism design however, commitment is harder
to justify in the context of strategic communication and persuasion.1 Indeed, as Kamenica, Kim, and Za-
pechelnyuk (2021) observe: “Optimal information structures can be infeasible or difficult to implement
in practice. A commitment to randomized messages is difficult to verify and enforce…”

In this paper, we provide an organizational economicsmicrofoundation for the commitment assumption
in communication. Unlike standardmodels of Bayesian persuasion that followKamenica andGentzkow
(2011), our setting is not one of an informed sender with unfettered access to information structures or
statistical experiments. Instead, we consider an uninformed principal and a strategic agent with private
information. In particular, the agent has private information about both the state and their own under-
lying ability, and is purely concerned with the employment terms they receive from the principal. The
principal’s payoffdepends on both their employment relationshipwith the agent and the action of an un-
informed receiver. Further, motivated by applications, we assume that any communication by the agent
must be public; that is, the agent’s messagesmust be observed by both the principal and the receiver. The
principal therefore faces a novel joint screening-and-persuasion problem: they need to design a contract
in which the agent’s public messages permit the principal to optimally manage the employment relation-
ship and persuade the receiver.

To contextualize our results, consider first a natural benchmark where the principal can freely intermedi-
ate between the agent and the receiver. In this case, the principal could employ a direct mechanism that
incentivizes the agent to truthfully report her information privately to the principal. The mechanism
specifies, based on this report, the agent’s contractual outcome; it also garbles the agent’s information
and transmits it directly to the receiver. The principal can thus separately solve the agency and persua-
sion problems. In particular, this implies that if the principal had direct access to the agent’s private
information (and did not need to elicit it), she would persuade the receiver in exactly the same way as in
this benchmark.

Our main result shows that the outcome of the private communication benchmark described above can
always be achieved, even when the principal is restricted to using mechanisms that specify contractual
terms based only on public communication by the agent. This implies that optimal persuasion of the
receiver is obtainable by commitment to a standard employment contract without also requiring com-
mitment to arbitrary information structures. Instead, the optimal contract leads the agent to internalize
the principal’s objective. This result allows us to interpret the commitment assumption in Bayesian per-
suasion as a reduced-form stand-in for an informed intermediary facing optimal incentivizes designed by

1Some recent papers use ideas from repeated games and reputation to provide foundations for this commitment assumption:
see, for example, Best and Quigley (2022) andMathevet, Pearce, and Stacchetti (2022).
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their employer.

We apply this insight to the market for sell-side financial research. This application both motivates key
features of our model and also delivers a surprising economic take away that we view to be of indepen-
dent interest. Sell-side financial analysts are the preeminent financial market information intermediaries.
They gather and analyze information, and then produce forecasts and recommendations for the invest-
ment community.2 These analysts are employed by investment banks and brokerages who thus face a
conflict of interest: they have an employment relationship with the analyst to manage (deciding, for in-
stance, whether to promote or dismiss analysts based on ability), but also wish to persuade the investors
to take actions that may benefit the bank (via commissions, brokerage fees, and the like). Consequently,
this industry is highly regulated: startingwithNASDRule 2711 in 2002 and culminatingwithMiFID II
in 2018, direct interaction between banks’ research and investment arms is prohibited. (See Section 2.1
for additional institutional detail.) This is precisely what is captured by our assumption of public com-
munication by the agent (analyst): analysts are not allowed to communicate privately with the banks that
employ them. An immediate consequence of our main result is that such regulation can be rendered in-
effective by a bank that appropriately designs its analysts’ employment contracts. Interestingly, we also
show that the bank-optimal implementation takes a natural form in which the analyst’s recommenda-
tions correspond to the commonly observed five-point asset rating scale (typically “strong buy,” “buy,”
“hold,” “sell,” and “strong sell”). Finally, we provide conditions under which a regulatory intervention
that eliminates uncertainty about the interpretation of analyst recommendations can strictly increase
client welfare.

While our main application is to financial analysts, it is worth emphasizing that similar issues arise in any
organization that hires experts to provide information and advise clients. As with financial analysts, the
advice experts choose to provide is determined by their career incentives; these preferences may not align
with those of their employer; and, critically, the employer may not be able to directly control the advice
provided. For instance, consulting firms cannot directly control what information their consultants con-
vey to clients during site visits. A prosecutor wishing to convince a judge that a defendant is guilty (as in
Kamenica and Gentzkow’s (2011) canonical example) may hire an independent investigator to uncover
evidence but then cannot control what the investigator finds and reports to the judge. Such strategic
information intermediaries are ubiquitous.

1.1. SUMMARY OF MODEL AND RESULTS

Before proceeding, we first describe our model and the main result in slightly more detail, and provide
some intuition.

In our model, there are three parties: a principal, an agent, and a receiver. The principal and the receiver
have no private information. The agent has private information about the state and also about their
underlying ability; in keeping with standard mechanism design practice, we refer to the totality of the
agent’s private information as simply their type.3 The agent’s utility depends only on theunderlying state,

2There is a vast and thorough empirical literature in finance analyzing various aspects of analysts. Bradshaw, Ertimur, and
O’Brien (2017) is an excellent recent survey that describes what analysts do and how they have been affected by regulation, yet
there is a paucity of theoretical work aimed at understanding how recommendations are influenced by career incentives and
how banks that employ analysts provide these incentives.
3In our concluding remarks (Section 4), we also discuss an extension of our model where, instead of simply being endowed
with it, the agent must take a costly action to acquire her private information.
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their type, and their bilateral employment terms with the principal, while the receiver’s utility depends
on the state and their action. The principal’s payoff depends on all the model parameters—that state,
the agent’s type, the employment terms, and the receiver’s action—but it is separable in the variables that
govern the interaction with the agent and the receiver respectively. Importantly, any communication by
the agent must be publicly observed by both the principal and the receiver. In particular, this rules out
secret messages from the agent to the principal.

As we described above, if the agent could secretly communicate with the principal, a standard revela-
tion principle applies. The principal could commit to a direct mechanism in which the agent reports
their type privately to the principal. Based on this report, the mechanism specifies both the employment
terms between the principal and agent, and the distribution fromwhich the action that the agent should
recommended to the receiver realizes. Incentives to the agent are provided via the employment terms
(for instance, bonus payments or whether or not the agent is promoted or fired). Because the principal’s
payoff is separable and the agent’s payoff does not depend on the receiver’s action, the principal can thus
separately solve the agency and persuasion problems. In other words, if the principal had direct access to
the agent’s private information (without needing to elicit it), they would persuade the receiver in exactly
the same way as in the optimal direct mechanism when this information is privately held by the agent.

Now let us consider our setting where anymessage from the agentmust be public. We consider a game in
which the principal is restricted to (indirect) public communicationmechanisms. Formally, the gamewe
study proceeds as follows. The principal first publicly selects a message space and a set of contracts that
are observed by both the agent and the receiver. The principal then chooses, and commits to, a contract
from this set. Only the agent observes the selected contract—the receiver does not. The contract specifies
the terms of the agent’s employment as a function of her public messages. The agent publicly announces
a message from the message space; this message is observed by all players. After observing the agent’s
message, the receiver updates their belief about the underlying state and, finally, chooses an action.

This class of public communicationmechanismshas at least three desirable properties. First, the principal
only commits to a standard employment contract and not to an information structure: as we argued
above, the former is well-understood and -motivated, while the latter is less so. Second, in keeping with
real-world regulations, there is no private communication from the agent to the principal as the agent’s
message is public. Third, as we discuss below, such mechanisms are commonly observed in practice.

Our main result shows that the outcome of any principal optimal direct mechanism (that requires pri-
vate communication from the agent) can always be achieved as an equilibrium of the game in which the
principal employs public communication mechanisms. In particular, this implies that optimal persua-
sion is obtainable by standard commitment to an employment contract without requiring commitment
to an information structure. More broadly, our result permits us to reinterpret the commitment assump-
tion in Bayesian persuasion as a reduced-form implementation of optimal employment incentives for an
information intermediary.

To understand the tension, recall that when the message from the agent is private, the principal can solve
the screening and persuasion portions of their problem “separately.” But when communication by the
agent must be public, a potential conflict arises: the agent’s public message influences both their em-
ployment terms and the receiver’s action. Therefore, one might imagine that the principal would face a
tradeoff between screening and persuasion. For example, optimal screening might require the agent to
publicly reveal “more” (or “more precise”) information than is optimal for persuading the receiver.
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Our construction leverages the fact that the receiver observes the agent’s publicmessage but not the prin-
cipal’s choice of mechanism. In particular, when the principal follows a mixed strategy, the agent knows
the realized mapping from messages to employment terms but the receiver does not. This uncertainty
prevents the receiver from inverting the agent’s strategy and essentially serves as a method of publicly
garbling the agent’s information while preserving its private meaning. We show that an appropriately
chosen randomization over public communicationmechanisms by the principal allows for both optimal
screening of the agent and optimal persuasion of the receiver. Thus, the deliberate introduction of vague
language is often necessary for indirect persuasion to be optimal.

1.2. RELATED LITERATURE

The closest papers within the Bayesian persuasion literature are Lipnowski, Ravid, and Shishkin (2022)
and Min (2021).4 These papers examine a setting where the sender initially commits to an information
structure but, with an exogenously given probability, is released from her commitment after observing
the state and can send any other message. As in our setting, this implies that the receiver must interpret
messages while accounting for the sender’s partial commitment. In this vein, Nguyen and Tan (2021)
consider a sender who first commits to an information structure but then privately observes the message
(generated by the information structure) which she canmanipulate at a cost. Bizzotto, Perez-Richet, and
Vigier (2021) also consider mediated communication, but in a setting where a principal commits to an
information structure and uses monetary transfers to induce a third party to effectively communicate it
to a receiver. We take a different view by assuming that direct commitment to an information structure
is not possible but that standard organizational contracts can instead suffice for optimal persuasion.

The resulting optimal indirect mechanism we construct makes use of deliberately “vague” public com-
munication to generate uncertainty and persuade the receiver. A similar idea appears in the literature
on mechanism design and communication with ambiguity-averse agents. For example, Bose and Renou
(2014) show that the deliberate introduction of ambiguity intomediated communication can enlarge the
set of implementable social choice functions. Beauchêne, Li, and Li (2019) also use “synonymous” mes-
sages to generate uncertainty and manipulate an ambiguity-averse receiver into taking a sender-preferred
action. A recent sequence of papers—Krähmer (2020), Krähmer (2021), and Ivanov (2022)—also look
at settings (without ambiguity aversion) where randomization over information structures can expand
the set of outcomes in communication games. Similar to our work, private randomization whose real-
ization is not observed by a relevant decision maker is a key ingredient; in stark contrast to our result,
however, these works require commitment to the (randomization over the) information design.

In ourmodel, the contracting terms offeredby the principal serve dual functions: in addition to indirectly
persuading the receiver, they also screen the agent.5 The persuasion motive is akin to that in Inderst
and Ottaviani (2012), who study how the design of commissions can influence financial advisors and
steer their recommendations. These competing incentives also appear in Jackson (2005), who analyzes
a reputational cheap-talk model of sell-side analyst communication with career concerns—but sets aside
the bank’s organizational design problem and simply takes analyst incentives to be exogenously fixed.

Meanwhile, the principal’s screening motive connects our work to the comparatively small literature
studying how strategic experts should be evaluated. There is an extensive literature on the statistical
4The excellent surveys of Bergemann andMorris (2019) and Kamenica (2019) describe the broader literature.
5A similar tension arises in the context of dynamic mechanism design without commitment; see Doval and Skreta (2022),
who reinterpret sequential rationality as a principal’s persuasion of their future self.
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evaluation of forecasting models (see the work cited in Elliott and Timmermann (2016), for instance),
but relatively less work examining the incentives faced by strategic experts who are potentially influenced
by market or career incentives (see Marinovic, Ottaviani, and Sørensen (2013) for a survey of this litera-
ture). Whilemanyof the theoretical contributions in this latter area—Ottaviani andSørensen (2006a,b,c)
are particularly prominent examples—study environments where the experts’ incentives are exogenously
(and often suboptimally) given, we follow our earlier work in Deb, Pai, and Said (2018) and focus on the
design problem faced by a principal that wants to separate a skilled from unskilled agent. Though this is
a secondary goal of the paper, the characterization of the optimal screening contract in our application
(Theorem 2) may be of independent interest.

Lastly, our work builds on and contributes to the extensive finance literature studying sell-side analysts;
the aforementioned Bradshaw, Ertimur, and O’Brien (2017) surveys much of this research. We will dis-
cuss the other related work in this literature throughout the body of the paper wherever relevant.

1.3. STRUCTURE OF THE PAPER

We first present the application to financial analysts in Section 2. This serves the dual purpose of mo-
tivating the environment and highlighting the key intuition that underlies our main result. Then, in
Section 3, we define the general model and present the main theorem. These sections are intended to be
self-contained. A reader who is interested in the application but not in the full generality can proceed to
the concluding remarks in Section 4 after reading Section 2; conversely, readers interested in the general
result can skip straight to Section 3.

2. APPLICATION: REGULATING FINANCIAL ANALYSTS

We consider a game with three players: a bank (the principal), an analyst (the agent), and a representative
client meant to capture the “market” (the receiver). These three players interact in the following stylized
setting that captures key features of the market for sell-side investment research. Section 3 makes clear
that our “punchline” carries over to substantially more general models.

The state: There is a binary and unobserved state ω ∈ Ω := {b, s} of the world, either buy or sell. The
prior probability that the state is ω is given by πω ∈ (0, 1)where πb + πs = 1.

The state captures the unknown value of an asset, with b referring to whether the asset is of high value
(in which case the client should buy), and s low value (in which case the client should sell or go short).
The state is publicly revealed after the client makes their trading decision.

Analyst ability: The analyst has a privately known ability θ ∈ Θ := {h, l} which is either high or
low; this type captures her skill. The likelihood that the analyst is ability θ is given by µθ ∈ (0, 1) with
µh + µl = 1.

Analyst information: The analyst learns about the state by observing an informative signal. We do
not explicitly model this signal; instead we describe the analyst’s information via the distribution of the
possible posterior beliefs that can arise by Bayesian updating upon observing signal realizations. Since the
state is binary, the posterior belief can be summarized by a probability p ∈ [0, 1] that the state is ω = b.

We denote the (cumulative) distribution of posterior beliefs for the ability-θ analyst byFθ, andwe assume
that this distributionhasmeanπb (since the expectationof theposteriorsmust equal theprior) and admits
a density fθ. Note that we do not impose any additional structure on these distributions other than that
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they differ, so that Fh ̸= Fl. In particular, while it may be natural to assume that the high-ability analyst
has “better” information (whether in the sense of Blackwell (1953) or some other stochastic order), our
result does not require such an assumption.

Public communication mechanisms: A public communication mechanism is a pair (M, x) consisting
of a finite public message spaceM for the analyst and a retention rule x : M× Ω → [0, 1]. The message
space should be interpreted as the set of possible public recommendations (for instance, “buy,” “sell,” or
“hold”) that the analyst can issue. The retention rule specifies the probability x(m,ω) with which the
analyst is retained after sending messagem ∈ Mwhen state ω ∈ Ω is realized.

Note that a public communicationmechanism (M, x) is an indirectmechanism and not a directmecha-
nism asmight be employedupon invocation of the revelation principle. This is because (i) the publicmes-
sage spaceM need not correspond to the analyst’s private informationΘ× [0, 1]; (ii) messagesm ∈ M
are publicly observed, so the analyst cannot privately communicate information to the bank (consistent
with the prohibitions imposed by conflict-of-interest regulations in the real world); and (iii) the mech-
anism only specifies contractual terms x with the analyst and not action recommendations provided by
the bank to the client.

Bank strategy: The bank chooses a finite public message spaceM, a finite set of public communication
mechanismsM ⊂ [0, 1]M×Ω, and a distribution ρ ∈ ∆(M) on this set.6 We assume that the message
space M and the set of mechanisms M are publicly observed by both the analyst and the client, while
the bank’s chosen distribution ρ is private and unobservable. In particular, the analyst only observes
the realization of the bank’s (mixed) strategy. Thus, there is common knowledge of the set of possible
contracts, but only the bank and analyst knowwhich specific contract governs their relationship. In other
words, this assumption amounts to the client knowing the set of possible contracts that might be offered
to financial analysts that work at the bank but not the exact contract that is offered to any particular
analyst.

Analyst preferences: The analyst wants to maximize the probability that she is retained. Formally, this
implies that the analyst’s utility fromchoosing amessagem ∈ Mwhen stateω realizes is simplyx(m,ω).
Therefore, when her information is p ∈ [0, 1], her expected utility frommessagem is

px(m, b) + (1− p)x(m, s).

Note that this payoff only depends on the analyst’s information but not on her ability. Since trading
commissions accrue to the bank, the analyst’s payoff also does not depend on the client’s actions.

Analyst strategy: After observing the set of possible mechanisms M and realized public communica-
tion mechanism (M, x) resulting from the bank’s strategy, the analyst chooses a message. The ability-θ
analyst’s strategy or recommendation is denoted by σθ(x, p) ∈ ∆(M). In words, when the bank selects
the mechanism (M, x) and the analyst’s posterior belief is p, the analyst chooses a (potentially mixed)
recommendationσθ(x, p). (Note that we suppress the dependence of the analyst’s strategy on the bank’s
choice ofM andM to simplify notation.)

The client: The client updates their belief q : M → [0, 1] about the state after observing the bank’s set

6We impose the restriction to finite messages and a finite set of mechanisms for two reasons. First, it makes our result starker:
finite mechanisms suffice to implement the full-commitment solution even though the analyst’s private information is con-
tinuous. Second, it obviates the need for the additional measure-theoretic formalism required to define mixed strategies.
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of possible mechanismsM and the analyst’s recommendationm ∈ M. (As with the analyst strategy, we
suppress the dependence on the former for ease of notation.) We denote the client’s belief that the state
is ω = b following a recommendationm by q(m) ∈ [0, 1].

The client uses this belief to determine whether to trade and, if so, in which direction. Formally, the
client picks an action a from the set A := {φ, b, s}; here φ denotes no trade whereas b and s denote
buying and selling, respectively. The notation overload with the state is deliberate; as we describe next,
the client wants to match their action to the state.

The client’s payoff from choosing an action a is given by

Eq(m)

[
1{a = ω}(v − c) + 1{a ̸= ω, a ̸= φ}(−v − c)

]
.

In words, the client trades at a transaction cost c > 0. If the action a matches the state ω, they earn a
payoff v > c. If the action amismatchesω, they incur a loss−v. The payoff fromnot trading and taking
action φ is 0. The expectation in the above expression is taken with respect to the client’s updated belief
q(m) following a messagem.

The client’s action strategy is amapping from each history to the setA. The relevant history for the client
is the message spaceM and set of mechanismsM chosen by the bank followed by the messagem ∈ M
reported by the analyst. For brevity, we suppress the dependence on the former and define the client’s
action strategy

α : M → A

as a mapping from the set of messages to the set of actions. Note that this definition restricts the client
to follow a pure strategy, but this is without loss since we will examine the equilibrium that leads to
the highest payoff for the bank. In any such equilibrium, we can simply break ties in favor of the bank
whenever the client is indifferent.

Observe that, given these preferences, the client has a cutoff belief q ∈
(
1
2
, 1
)
such that it is optimal for

them to choose b whenever q(m) ≥ q and s whenever q(m) ≤ 1 − q. This captures the fact that the
client only wants to trade when they are sufficiently confident that the asset’s value will either appreciate
or depreciate. Therefore, if the prior πb lies in (1 − q, q), the client will not trade absent sufficiently
informative analyst recommendations.

Bank preferences: The bank has dual objectives: it wants to determine the ability of the analyst so that
only the high-ability type is retained, but it also wants the analyst to provide recommendations that in-
duce trade and thereby generate commissions.

Formally, the payoff of the bank from offering a public communication mechanism (M, x) is

Π(M, x, σ, α) = µh

∫ 1

0

Eσh(x,p) [κ1{α(m) ̸= φ}+ (px(m, b) + (1− p)x(m, s))] dFh(p)

+ µl

∫ 1

0

Eσl(x,p) [κ1{α(m) ̸= φ} − γ (px(m, b) + (1− p)x(m, s))] dFl(p).

The first Eσθ(x,p)[κ1{α(m) ̸= φ}] term in each integral captures the likelihood that the client trades
based on the analyst’s recommendation; the expectation is takenwith respect to the analyst’s (potentially
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mixed) strategy that governs the distribution of messagesm. Thus, this term reflects the volume of trade
and the bank’s commissions from trading activity, where the constant parameter κ > 0 captures the
weight placed on this objective. Equivalently, this term can be interpreted as the bank’s desire for infor-
mative analyst recommendations that push the client’s posterior outside the no-trade range (1− q, q).

The second term in each integral reflects the fact that thebankonlywants to retain thehigh-ability analyst.
Formally, the bank receives a payoff of 1 and −γ whenever the bank retains the high- and low-ability
analyst, respectively, and a payoff of 0 if the analyst is fired.

Equilibrium: We analyze perfect Bayesian equilibria in this game. These consist of strategies for the
client, analyst, and bank, alongwith consistent beliefs, that satisfy the following properties: (i) the client’s
action strategy prescribes a best response to their beliefs which are, in turn, derived by Bayes’ rule for all
on-path messages sent by the analyst; (ii) the analyst’s recommendation is a best response to the (on- or
off-path)mechanism offered by the bank; and (iii) the bank’s strategy is a best response to the client’s and
analyst’s strategies.

A bank-optimal equilibrium yields the bank its maximal payoff across all perfect Bayesian equilibria.

As mentioned above, perfect Bayesian equilibrium requires the analyst to best respond to any public
communicationmechanism offered by the bank. This does not, however, restrict the client’s beliefs after
off-path play—for instance, after a deviation by the bank to a different message space or set of mech-
anisms, or by the analyst to a message that does not lie in the support of her strategy. As will shortly
become clear, however, our main insight and results do not hinge on a particular or unrealistic choice of
off-path beliefs for the client.

To make the timing explicit, Figure 1 presents a flow chart describing the public communication game.

Nature draws
state ω ∈ {b, s};

Bank publicly chooses a
message space M and
a set of mechanisms
M ⊂ [0, 1]M×Ω; and

“privately” chooses x ∈ M;

Analyst learns
ability θ ∈ {h, l} and
information p ∼ Fθ;

observes chosen x ∈ M;
and announces public

message m ∈ M;

Client updates
beliefs q(m),

makes a trade
a ∈ {φ, b, s};

State ω
publicly
realized;

Retention
decision
x(m,ω)

implemented;

Payoffs
realized.

Figure 1: Timing of the public communication game.

2.1. MAPPING THE MODEL TO THE APPLICATION

Despite our (deliberate) simplifications, the main features of the model closely align with our applica-
tion, and the analysis that follows is an independent contribution to the financial economics literature
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on analysts. The bank-optimal equilibrium from this simple model has qualitative features that are ob-
served in practice, and the results have important implications for the role of regulation in the industry
for financial advice.

Recall that in the class of mechanisms we consider, there is no private communication from the analyst
to the bank. This is motivated by several conflict-of-interest regulations enacted by the Securities and
Exchange Commission starting with NASD Rule 2711 (Research Analysts and Research Reports) in
2002. The goal of these regulations is to ensure that analysts’ stock recommendations reflect their actual
opinions about the investment potential of subject companies and are not influenced by incentives to
generate investment bankingbusiness and commission revenues. In ourmodel, the bankdoes not control
the analyst’s recommendations, and its retention policy only depends on the analyst’s accuracy (captured
by the relationship between the message and the realized state). The assumption that the retention rule
is unobserved by the client corresponds to the privacy of employment terms and contracts in practice.

We assume that the bank incentivizes the analyst via her retention decision but not by tying financial
compensation to the accuracy of the recommendation. This mirrors empirical evidence that shows that
forecast accuracy is not driven by compensation incentives but is instead by the threat of termination.
The recent survey of the literature on financial analysts by Kothari, So, and Verdi (2016) (with further
relevant references found therein) concludes that “the evidence suggests that small deviations in accuracy
have aminimal impact on analyst compensation, but large (negative) forecast inaccuracy can affect analyst
wealth by increasing the probability of dismissal.” That said, as we show in the next section, our main
insight remains unchanged ifwewere to include financial compensation as part of the bank’smechanism.

The fact that analysts differ in ability (see Crane and Crotty (2020) for recent evidence) and that the
bank only wants to retain those with higher abilities should be uncontroversial. This payoff captures,
in a simple reduced-form way, the long-term value of increasing the organization’s human capital. We
assume that analysts generate revenue for the bank via trading fees, and so analyst advice has to be suf-
ficiently informative to influence the market and increase the volume of trade. Therefore, investing in
human capital within the organization by retaining and promoting higher-skilled analysts can improve
the bank’s prospects for future persuasion. This is consistent with, for instance, Jackson’s (2005) results
showing that “analysts with better reputations generate significantly higher future trading volume” for
their brokerages, and that these reputations are indeed consistently linked to forecast accuracy.

Generating trading fees is a well-documented role of analysts and indeed is often cited as a potential con-
flict of interest; see, for example, the discussion in the survey by Bradshaw (2011). The simplification
we employ is that the client only decides on the direction (long or short) of the trade but not its size.
This can be easily generalized to allow the bank’s payoff to be a more complex function of client beliefs
that captures how the volume of trade depends on the degree of optimism or pessimism in the analyst’s
recommendation.

2.2. REGULATING COMMUNICATION IS INEFFECTIVE

If the principal had the ability to act as a Myersonian intermediary with full commitment to contracting
decisions and information structures, the revelation principle would apply and it would be without loss
to consider only incentive compatible direct revelation mechanisms. In terms of practical applicability,
a direct mechanism (fully defined and described below) has two undesirable features. First, the analyst
shares her private information with the bank, with the latter directly choosing its desired recommenda-
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tions to the client; as discussed above, this is explicitly illegal. Second, a direct mechanism will typically
require commitment to a mixed action recommendation as a function of the analyst’s information; as
discussed in the introduction, this may require an unrealistic level of commitment power. Despite these
potential shortcomings, the revelation principle implies that such mechanisms provide an upper bound
on the principal’s attainable payoffs—whichwewill show can be achieved evenwith partial commitment
only to contractual terms with the analyst that depend only on her public communications.

Formally, a direct mechanism is a pair (X,A) consisting of a retention rule

X : Θ× [0, 1]× Ω → [0, 1]

and an action recommendation
A : Θ× [0, 1] → ∆(A).

In words, the analyst reports her private ability and information to the bank. This determines both the
retention decision X (which also conditions on the eventual observation of the realized state) and the
(potentially stochastic) action recommendationA conveyed to the client.

If the bank could choose any direct mechanism, it would pick one that maximizes its payoff subject to
incentive compatibility constraints for the analyst and the client. In particular, incentive compatibility
requires the analyst to report her private information truthfully, so that

(θ, p) ∈ argmax
θ′,p′

{pX(θ′, p′, b) + (1− p)X(θ′, p′, s)} (IC-A)

for all θ ∈ Θ and p ∈ [0, 1]. (Since the analyst only cares about the retention decision, the recommended
action does not enter this constraint.) Likewise, incentive compatibility for the client requires them to
optimally follow all recommended actions: a recommendation a in the support of A must be optimal
with respect to the client’s updated posterior belief q(a), so that

a ∈ argmax
a′∈A

{
Eq(a)

[
1{a′ = ω}(v − c) + 1{a′ ̸= ω, a′ ̸= φ}(−v − c)

]}
. (IC-C)

Thus, the optimal direct mechanism (X∗, A∗) solves the “full-commitment” problem

max
X,A



∫ 1

0

[
µh (pX(h, p, b) + (1− p)X(h, p, s)) dFh(p)

−µlγ (pX(l, p, b) + (1− p)X(l, p, s)) dFl(p)
]

+ κ

∫ 1

0

[
µh Pr[A(h, p) ̸= φ]dFh(p) + µl Pr[A(l, p) ̸= φ]dFl(p)

]


subject to (IC-A) and (IC-C).

(FC)

Here, the first integral represents the payoff from analyst retention while the second is that from trading
commissions (where Pr[A(θ, p) ̸= φ] is the probability the mechanism recommends—and obediently
induces via (IC-C)—trading). Observe that the bank’s problem is separable. Only the first integral in
the bank’s payoff in (FC) depends on the retention decision X , so the analyst incentive compatibility
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condition (IC-A) only constrains these terms. Likewise, the action recommendation A only enters the
second integral, and so the client incentive compatibility constraint (IC-C) only constrains these terms
of the bank’s payoff. It is worth emphasizing that this implies that the optimal direct mechanism’s action
recommendation A∗ is identical to what the bank would choose if it had direct access to the analyst’s
information p and its only goal was maximizing trading commissions.

Our first result characterizes the optimal direct mechanism (X∗, A∗) that solves the full-commitment
problem (FC). To streamline the statement of the result, we use the shorthand notationX∗(θ, p, ·) to
denote the vector (X∗(θ, p, b), X∗(θ, p, s)).

THEOREM 1. The optimal retention ruleX∗ that solves problem (FC) is such that either

(i) it is optimal to not screen and always retain the analyst, soX∗(θ, p, ·) = (1, 1) for all p ∈ [0, 1]
and θ ∈ Θ;

(ii) it is optimal to not screen and always fire the analyst, soX∗(θ, p, ·) = (0, 0) for all p ∈ [0, 1] and
θ ∈ Θ; or

(iii) it is optimal to nontrivially screen, in which case there exist cutoffs p̃∗ ≤ 1/2 ≤ p̃∗ such that the
retention rules take one of the following forms:

(a) X∗(θ, p, ·) =

{(
0, p̃∗

1−p̃∗

)
if p < p̃∗,

(1, 0) if p ≥ p̃∗;

(b) X∗(θ, p, ·) =

{
(0, 1) if p ≤ p̃∗,(

1−p̃∗

p̃∗
, 0
)

if p > p̃∗;
or

(c) X∗(θ, p, ·) =


(0, 1) if p < p̃∗,

(x̃b, x̃s) if p ∈ [p̃∗, p̃
∗],

(1, 0) if p > p̃∗,

where x̃b :=
(1−p̃∗)(2p̃∗−1)

p̃∗−p̃∗
and x̃s :=

p̃∗(1−2p̃∗)
p̃∗−p̃∗

.

In addition, there are cutoffs q̃∗ ≥ q̃∗ such that the optimal action recommendationA∗ solving (FC) is

A∗(h, p) = A∗(l, p) =


b if p > q̃∗,

s if p < q̃∗,

φ otherwise.

Before proceeding to the main result of this section—that regulation constraining communications be-
tween the bank and the analyst is ineffective—we briefly discuss and provide some intuition for the struc-
ture of the optimal direct mechanism.

The retention ruleX∗ either involves no screening as in cases (i) and (ii), or screening is nontrivial and
takes a simple cutoff form as in case (iii). In case (i), the analyst is always retained regardless of private
information; this can be optimal when the analyst is very likely to be high ability (so µh is close to 1)
or the cost γ of hiring the low-ability analyst is small. Similarly, in case (ii), the analyst is never retained
regardless of private information; this can be optimal when the analyst is very likely to be low ability
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(so µh is close to 0) or the cost γ of hiring the low-ability analyst is large. Effective screening may also
be impossible if the low-ability analyst has “better” information—a counterintuitive scenario that our
model permits but which is unrealistic in the context of the application.

Even when nontrivial screening is beneficial for the bank, as in case (iii), the optimal retention rule does
not depend on the analyst’s reported private ability. To see why, note that the analyst’s interim payoff—
given her information p—does not depend on her ability θ. Therefore, any incentive compatible reten-
tion rule must offer the same probability of retention to an agent as a function of p, regardless of her
ability. Thus, it is not possible to screen on the ability dimension of the analyst’s private information,
and the principal must rely on the accuracy of the analyst’s recommendations in order to indirectly eval-
uate and screen ability.

More specifically, the principal must reward the analyst via retention for information that is sufficiently
accurate while punishing inaccuracy with termination. The cutoff p̃∗ is thus chosen to maximally sep-
arate types based on their relative likelihood of possessing information in favor of state b: reporting a
posterior belief p > p̃∗ that is ultimately corroborated when state b is realized serves as evidence that the
analyst is indeed accurate and of high ability, while a contradictory realization of state s is evidence that
the analyst is inaccurate and of low ability. Likewise, the cutoff p̃∗ is chosen to maximally separate types
based on their relative likelihood of possessing information in favor of state s.

The optimal action recommendationA∗ is designed to induce maximal trade. Recall that the client en-
gages in trade only when they are sufficiently confident; that is, only when their posterior belief leaves
the interval (1 − q, q). So suppose the bank were to recommend action b only when p > q (regardless
of the analyst’s ability θ). This yields a posterior belief q > q, and it is clearly optimal for the client to
obey this “naive” buy recommendation. But the bank can induce a greater volume of trade by lowering
the threshold value of p above which buy recommendations are made. The cutoff q̃∗ is chosen to push
the client’s posterior belief down as close to possible to q, so that the client is just indifferent to buying
when action b is recommended. A symmetric intuition applies to the cutoff q̃∗ and s recommendations.
(Note that, for some parameters, it is possible to have q̃∗ = q̃∗, in which case the bank induces trade with
probability one.) Note that both the optimal retention rule and optimal action recommendation are ef-
fectively finite; this feature appears in the outcome-equivalent equilibrium of the public communication
game (in which the bank chooses a finite message space and a finite set of mechanisms).

The characterization ofX∗ may be of independent interest, as the bank’s screening problem constitutes
a novel instance of a “mechanism design without transfers” setting.7 Conversely, the derivation of the
action recommendationA∗ in Theorem 1 follows from standard Bayesian persuasion arguments.

We are now in a position to present the main result of this section: regulation is toothless, and the bank
can generate exactly the same trading activity using a public communication mechanism as it could if it
directly observed the analyst’s private information.

THEOREM 2. Let (X∗, A∗) be an optimal direct mechanism that solves (FC). There is a perfect Bayesian
equilibrium of the public communication game that is outcome-equivalent to (X∗, A∗); that is, there is a

7Local incentive compatibility does not suffice to characterize the optimal retention rule, and so the argument employs a
combination of ironing and Lagrangian methods to incorporate a global incentive constraint. See Appendix A.1 for a self-
contained analysis of this problem.
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bank-optimal equilibrium in which, for every (θ, p) ∈ Θ × [0, 1], the action distribution chosen by the
client isA∗(θ, p) and the probability of analyst retention in each state ω ∈ Ω isX∗(θ, p, ω).

When the optimal screening ruleX∗ is as in Theorem 1’s cases (i) or (ii), so there is no screening and the
analyst is either always retainedor always fired, she canbe trivially induced to garble informationonbehalf
of the bank (since she would be indifferent between all messages). The more surprising cases are when
the optimal screening rule is as in case (iii) and the bank engages in nontrivial screening. The underlying
intuition for Theorem 2 is demonstrated most clearly by considering the special case where the optimal
direct mechanism (X∗, A∗) is as described in case (iii).(c) of Theorem 1: the optimal retention ruleX∗

is piecewise constant with cutoffs p̃∗ < p̃∗, and the optimal action recommendation ruleA∗ is piecewise
constant with cutoffs q̃∗ ≥ q̃∗.

The taxation principle implies that there is no loss in the screening problem from allowing the analyst to
directly choose her preferred retention probabilities from the range ofX∗; by implication, there is no loss
in coarsening the principal’s information about the agent (relative to the full revelation of a direct mech-
anism) to the partition induced by the cutoffs p̃∗ and p̃∗. Meanwhile, the client information structure
generated by the action recommendation ruleA∗ is itself partitional. Thus, for a public communication
mechanism to achieve the same outcomes and payoffs as the optimal direct mechanism, it must be the
case that it generates an information partition that is mutually compatible with both the principal’s and
the client’s partitions.

This mutual compatibility is relatively easy to achieve when q̃∗ < p̃∗ and q̃∗ > p̃∗ (so the cutoffs corre-
sponding to (X∗, A∗) are as displayed inFigure 2): themeet of theprincipal’s and the client’s information
partitions changes neither the retention probabilities nor the actions. To see this latter point, note that
sinceA∗ is optimal, standard Bayesian persuasion arguments imply that q̃∗ < q and q̃∗ > 1− q. There-
fore, any refinement of the client’s partition when the analyst’s information lies in (A∗)−1(φ) = [q̃∗, q̃

∗]
will continue to yield posterior beliefs in the “no-trade” inaction region (1− q, q).

0 1/2 1q̃∗q̃∗ p̃∗p̃∗

A∗(θ, p) = bA∗(θ, p) = φA∗(θ, p) = s

X∗(θ, p, ·) = (1, 0)X∗(θ, p, ·) = (x̃b, x̃s)X∗(θ, p, ·) = (0, 1)

Figure 2: Optimal direct mechanism when q̃∗ < p̃∗ and q̃∗ > p̃∗.

With this in mind, define the message spaceM∗ = {B, b, φ, s, S} and a public communication mech-
anism x∗ : M∗ × Ω → [0, 1] such that

• x∗ pools messages in {B, b} and treats them as reports of p > p̃∗;

• x∗ treats the message φ as a report of p ∈ [p̃∗, p̃
∗]; and

• x∗ pools messages in {s, S} and treats them as reports of p < p̃∗.

Since messagesB and b are identical in terms of their implications for retention, the analyst is indifferent
between these two reports; therefore, by publicly reportingB only when her information is p > q̃∗ and
publicly reporting b when her information is p ∈ (p̃∗, q̃∗], the analyst induces the client to trade only
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on the more “extreme” recommendation B.8 A symmetric argument applies for the messages s and S,
implying that this (indirect) public communicationmechanism (depicted inFigure 3) exactly implements
the optimal direct mechanism.

0 1/2 1q̃∗q̃∗ p̃∗p̃∗

x∗(b, ·) = x∗(B, ·) = (1, 0)x∗(φ, ·) = (x̃b, x̃s)x∗(S, ·) = x∗(s, ·) = (0, 1)

σ∗
θ(x

∗, p) = Bσ∗
θ(x

∗, p) = bσ∗
θ(x

∗, p) = φσ∗
θ(x

∗, p) = sσ∗
θ(x

∗, p) = S

α∗(B) = bα∗(s) = α∗(φ) = α∗(b) = φα∗(S) = s

Figure 3: Bank-optimal equilibrium when q̃∗ < p̃∗ and q̃∗ > p̃∗.

Note that the message space M∗ above has more elements than just the three actions available to the
client. This is in contrast to “standard” Bayesian persuasion settings, where one typically requires only
as many messages as on-path actions. But because the communication here is multivalent and directed
towards multiple audiences, a richer language is necessary. Moreover, each message inM∗ has a natural
interpretation: messagesB and b can be interpreted as “strong buy” and “weak buy” recommendations,
messageφ is a “hold” or neutral recommendation; andmessages s and S are “weak sell” and “strong sell”
recommendations. Thus, optimal public communication in our environment corresponds directly to
the traditional five-point rating scales employed by sell-side analysts.

Critical to our construction above is the fact that the client’s action is, in a sense, more sensitive than the
principal’s screening to changes in the analyst’s information, and so itwas possible to refine the principal’s
information partition while maintaining the client’s incentives. But in other cases—for instance, when
q̃∗ < p̃∗ < q, as in Figure 4—the intuition above no longer applies. In order to implement the optimal

0 1/2 1q̃∗q̃∗ p̃∗p̃∗ q

X∗(θ, p, ·) = (1, 0)X∗(θ, p, ·) = (x̃b, x̃s)X∗(θ, p, ·) = (0, 1)

A∗(θ, p) = bA∗(θ, p) = φA∗(θ, p) = s

Figure 4: Optimal direct mechanism when q̃∗ < p̃∗ and q̃∗ < p̃∗ < q.

screening ruleX∗, the principal must be able to identify when the analyst’s information p is just above
or just below the screening cutoff p̃∗; that is, for all sufficiently small ε > 0, the analyst’s message when
p = p̃∗ + ε must be distinct from that when p = p̃∗ − ε. But if the public messaging strategy is
deterministic, the client is also able to distinguish between p = p̃∗ + ε and p = p̃∗ − ε. This reduces
themass of analyst types above q̃∗ that sendmessages resulting in trade, thereby decreasing the principal’s
payoff from persuasion.

How then can the optimal directmechanismbe implementedwith public communication? More specif-
ically, how is it possible for the analyst topublicly report distinctmessageswhenp = p̃∗+ε andp = p̃∗−ε
without the client distinguishing between them?
8The analyst’s indifference is not critical here or in the argument that follows; her incentives can bemade strict at an arbitrarily
small payoff loss for the bank.
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The key is to note that persuading the client to always trade when p > q̃∗ does not require the analyst
to always report the same message when her information is sufficiently optimistic; it is sufficient for the
analyst to report using the same distribution of messages when her information is above the threshold
q̃∗. In particular, if the principal randomizes over private contracts, it is possible to induce the requisite
analyst randomization over public messages.

So consider the message spaceM∗ = {B, b, φ, s, S}, and suppose the principal privately randomizes
with equal probability between the two public communicationmechanisms x∗

1 : M∗ ×Ω → [0, 1] and
x∗
2 : M∗ × Ω → [0, 1] such that

• both x∗
1 and x∗

2 pool messages in {S, s} and treat them as reports of p < p̃∗;

• both x∗
1 and x∗

2 treat the message φ as a reports of p ∈ [p̃∗, q̃
∗];

• x∗
1 treats the message b as a report of p ∈ (q̃∗, p̃∗] and the messageB as a report of p > p̃∗; and

• x∗
2 treats the message b as a report of p > p̃∗ and the messageB as a report of p ∈ (q̃∗, p̃∗].

Since the analyst observes the realized retention rule, “sincere” reporting is optimal: it yields her the same
mapping from private information to retention probabilities. Meanwhile, since the client does not ob-
serve the principal’s realized choice of contract, they are unable to distinguish between messages b and
B, and so the two messages collectively generate the same posterior belief, and hence the same optimal
action, as whenA∗ = b (in Figure 4). Finally, it is clear that the bank has no incentive to deviate from its
strategy since the analyst’s and client’s best responses yield the bank-optimal outcome; thus, the indirect
mechanism (depicted in Figure 5) once again exactly implements the optimal direct mechanism.

0 1/2 1q̃∗q̃∗ p̃∗p̃∗ q

x∗1(B, ·) = (1, 0)
x∗2(b, ·) = (1, 0)

x∗1(φ, ·) = x∗1(b, ·) = (x̃b, x̃s)
x∗2(φ, ·) = x∗2(B, ·) = (x̃b, x̃s)

x∗1(S, ·) = x∗1(s, ·) = (0, 1)
x∗2(S, ·) = x∗2(s, ·) = (0, 1)

σ∗
θ(x

∗
1, p) = B

σ∗
θ(x

∗
2, p) = b

σ∗
θ(x

∗
1, p) = b

σ∗
θ(x

∗
2, p) = B

σ∗
θ(x

∗
1, p) = φ

σ∗
θ(x

∗
2, p) = φ

σ∗
θ(x

∗
1, p) = s

σ∗
θ(x

∗
2, p) = s

σ∗
θ(x

∗
1, p) = S

σ∗
θ(x

∗
2, p) = S

α∗(b) = α∗(B) = bα∗(s) = α∗(φ) = φα∗(S) = s

Figure 5: Bank-optimal equilibrium when q̃∗ < p̃∗ and q̃∗ < p̃∗ < q.

The construction above for this more “tricky” case suggests that effective indirect persuasionmay require
the use of intentionally vague language: without uncertainty about the interpretation of messages, the
principal must compromise on either screening, persuasion, or both. This uncertainty is not unnatural:
in practice, there is a substantial lack of clarity about the interpretation of analyst ratings: what exactly
is the difference between a “strong buy” and a “weak buy” recommendation? And this vagueness is ex-
acerbated when, as is often the case, analysts resort to even more opaque language: is an “outperform”
rating better or worse than an “overweight” rating, and how do they both compare to a simple ”buy”
rating? Importantly, however, this uncertainty about the interpretation of language is one-sided. To
enable effective screening, the principal and agentmust have a shared understanding of how public mes-
sages will be privately interpreted. This shared understanding requires commitment to—and the privacy
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of—contractual terms. But, conversely, no ability whatsoever to commit to information structures is
required!

Theorem 2 deploys this general intuition beyond just the cases described above: the bank can always
privately randomize over contractual terms in order to make the client uncertain about the meaning of
public messages, thereby implementing its optimal outcome. The result also holds more generally than
under the conditions of the stylizedmodel above. In particular, we can allow formultiple states, multiple
analyst abilities, mechanisms that include transfers, and multiple actions for the client. We describe a
general abstract framework that encompasses these generalizations in Section 3.

2.3. THE WELFARE CONSEQUENCES OF TRANSPARENCY

The above discussion highlights the important role of private bank–analyst contractual terms in permit-
ting the bank-optimal equilibrium to implement the full-commitment outcome. Note that when the
cutoffs for the optimal action recommendation satisfy q̃∗ < q̃∗, the client’s expected utility is zero. It is
therefore natural to ask whether the client can benefit if the contractual terms offered by the bank to the
analyst are instead mandated to be public, and so all communication is transparent?

Clearly, making contractual terms publicwhen q̃∗ < q̃∗ cannot hurt the client, as they can always guaran-
tee themselves the (equilibrium) payoff of zero by not trading. Indeed, the next result shows that public
contracting can instead make the client strictly better off.

THEOREM 3. Suppose q̃∗ < q̃∗ and the cutoffs from every optimal retention ruleX∗ satisfy 0 < p̃∗ < q̃∗
or q̃∗ < p̃∗ < 1. Then, there is a cutoff κ > 0 such that, for any weight on trading and commissions κ < κ,
the client earns a positive payoff in every bank-optimal equilibrium with public contracting.

The intuition for this result is straightforward. Aswe illustrated in theprevious subsection,when p̃∗ < q̃∗
or q̃∗ < p̃∗, the bank cannot obtain the full-commitment profits without mixing over contractual terms
with the analyst.9 Moreover, mixing is effective only when those contractual terms are unobserved by the
client. Therefore, when contracting is public, the bank has to compromise on either the payoffs from
retention or the payoffs from trading commissions. When the weight κ on the latter is sufficiently low
relative to the former, trading commissions are sacrificed. The proof of Theorem 3 shows that, in this
case, every bank-optimal equilibrium with public contracting features cutoffs ps ≤ q̃∗ < q̃∗ ≤ pb (with
at least one of the inequalities being strict) such that the client is induced to take action a = s only
when the analyst’s information type is p ≤ ps, and likewise is induced to take action a = b only when
p ≥ p

b
. Since ps and pb are more “extreme” than the bank-optimal cutoffs q̃∗ and q̃∗, the client is no

longer indifferent between trading and holding, and so must have a strictly positive payoff.

The case where q̃∗ < q̃∗ is the case of more practical interest, as we generally should not expect analyst
recommendations to generate trade with probability one. However, and perhaps surprisingly, making
the bank–analyst contractual terms public can sometimes be detrimental to the client when q̃∗ = q̃∗. We
end this section with an example that demonstrates this.10

9When neither of these inequalities hold, mixing is not necessary and the bank simply chooses a single mechanism. A natural
sufficient condition for this is that the information environment is symmetric (so Fh and Fl are both symmetric about their
shared mean πb =

1
2 ) and Fh dominates Fl in the rotation order. A formal statement and proof are available on request.

10Wewill deliberately state this example in terms of its endogenous cutoffs for ease of exposition. Note, however, that it is easy
to construct primitives (distributions, probabilities, and costs) that yield cutoffs with the requisite properties.
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Suppose that the client’s cutoff belief for trading q is sufficiently close to 1
2
that they are “easily persuad-

able” and it is possible to induce trade with probability 1. When this is the case, there exists q̂− < 1
2
and

q̂+ > 1
2
such that any action recommendation rule with cutoffs q̃∗ = q̃∗ = q̂ ∈ [q̂−, q̂+] are optimal;

assume further that [q̂−, q̂+] ⊂ (1− q, q). Meanwhile, suppose that the optimal retention ruleX∗ cor-
responds to case (iii).(a) of Theorem 1 with a single cutoff satisfying p̃∗ ∈ [q̂−, 1

2
), so that the optimal

retention rule only depends on whether the analyst’s information type is above or below p̃∗.

It is easy to see that, among all action recommendation rules that always induce trade, the symmetric
one with q̃∗ = q̃∗ = 1

2
is client-optimal. Moreover, Theorem 2 implies that there is a bank-optimal

equilibrium—featuring randomization over contracts that is unobserved by the client—that implements
both the retention ruleX∗ and the (constrained) client-optimal action recommendation rule with q̃∗ =
q̃∗ = 1

2
. Note, however, that since p̃∗ ∈ [q̂−, 1

2
), there is also a bank-optimal equilibrium—with public

contracting—that implementsX∗ and the action recommendation rule with q̃∗ = q̃∗ = p̃∗. This is, of
course, strictly worse for the client than the symmetric recommendation rule implemented with private
contracts.

The existence of this latter public-contracting equilibrium implies that any other bank-optimal public-
contracting equilibrium must also implementX∗ and trade with probability 1. But implementingX∗

must involve the analyst sendingdifferentmessages above andbelow p̃∗, while implementing anyother ac-
tion recommendation rule that yields trade with probability 1 involves the analyst sending different mes-
sages above and below q̂ ̸= p̃∗, implying that analyst information types p ∈ (min{p̃∗, q̂},max{p̃∗, q̂})
are distinguishable by the client from those outside that interval. But this implies that no trade occurs
in this interval, as the client’s posterior belief will lie in the no-trade region (1 − q, q). Thus, the only
bank-optimal public-contracting equilibrium is that with q̃∗ = q̃∗ = p̃∗, leaving the client worse off
than with private contracting.

3. THE GENERAL MODEL

We now set aside the analyst framework and show that our result—a principal can indirectly implement
the optimal directmechanismwhile relying only on commitment to an employment contract and public
communication—applies much more generally. The structure of the presentation mirrors that of the
previous section. At the expense of repetition, this makes the mapping from the general model to the
application clearer from the outset although we discuss this in Section 3.1.

With this in mind, we consider a sequential game with three players: a principal, an agent, and a receiver.
The principal wants to elicit the agent’s private information, but must also incentivize the agent to com-
municate payoff-relevant information about the economic environment to the receiver.

Note that we will generally restrict attention to finite sets, an assumption that is not necessary for our
result but that greatly simplifies exposition and eliminates some technical complications.

The state: We denote by Ω the finite set of possible states of the world. These states are distributed
according to a commonly known prior distribution π ∈ ∆(Ω), where πω > 0 is the prior probability of
any given state ω ∈ Ω.

Agent’s private information: The agent’s type θ is drawn from a distribution µ(·|ω) ∈ ∆(Θ) that
depends on the state ω ∈ Ω, whereΘ is a finite set of possible types.

Once the agent observes her realized type θ, she forms a posterior belief about the state ω using the dis-
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tribution µ. Thus the agent’s private type is not only information that determines her value to the firm
(such as her ability or skill); it also implicitly contains information about the state that only the agent
possesses.

Public communication mechanisms: A public communication mechanism is a pair (M, x) consisting
of a finite message spaceM and a contract x : M → ∆(T ), where T is the set of contractible decisions.
Elements of the set T are the firm specific decisions that the principal can commit to; these might repre-
sent transfers, state-contingent retention probabilities, or some other general contractible outcomes.11

As in Section 2, a public communication mechanism (M, x) is an indirect mechanism: the public mes-
sage spaceM need not correspond to the agent’s private informationΘ; messagesm ∈ M are publicly
observed, so the agent cannot privately communicate information to the principal; and the mechanism
only specifies contractual terms xwith the agent and not action recommendations provided by the prin-
cipal to the receiver.

Principal’s strategy: The principal chooses a public finite message spaceM, a finite set of public com-
munication mechanisms M ⊂ ∆(T )M, and a distribution ρ ∈ ∆(M) on this set. We assume that
the message spaceM and the set of mechanismsM are publicly observed by both the agent and the re-
ceiver, while the principal’s chosen distribution ρ is private and unobservable. In particular, the agent
only observes the realization of this distribution. Thus, there is common knowledge of the set of possible
contracts, but only the principal and agent know which specific contract governs their relationship.

Agent’s strategy: After observing the set of possible mechanisms M and the selected public commu-
nication mechanism (M, x) and learning her type θ, the agent’s strategy is a distribution over possible
reports in the message spaceM.

Receiver: After observing the set of possible mechanisms M and the agent’s message m ∈ M, the
receiver updates their belief to q(m) ∈ ∆(Ω) and chooses an action a ∈ A, possibly as the realization of
a mixed strategy. (Note that the belief q(m)may also depend on the setM; our notation suppresses this
for convenience.)

Payoffs: All players are expected utility maximizers, with payoffs given by uP : Ω × Θ × T × A → R
for the principal, uA : Ω×Θ× T → R for the agent, and uR : Ω×A → R for the receiver.

The principal’s payoff depends on all parameters of the model: the state, the agent’s private information,
the contracted decision, and the receiver’s action. The agent’s and the receiver’s utilities only depend on
a subset of these parameters, however. The agent’s payoff is independent of the receiver’s action, while
the receiver’s payoff is, as in most cheap talk and persuasion settings, a function only of the underlying
state and their chosen action.

Importantly, we further assume that the principal’s payoff function is additively separable across her in-
teractions with the agent and the receiver, so that we can write

uP (ω, θ, t, a) = uA
P (ω, θ, t) + uR

P (ω, a).

Recall that our primary goal is to situate a “standard” persuasion problem in an organizational context

11The structure of the set T of contractible decisions may incorporate feasibility or resource constraints; we do not, however,
explicitly model such constraints, nor do we incorporate any participation constraints in our analysis. While these constraints
influence the form of any optimal contracts, they are orthogonal to our central insight and do not affect our main result.
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and show that the principal can optimally persuade the receiver using only commitment to a standard
employment contract with the agent (instead of commitment to arbitrary information structures). The
separability assumption, along with the structure of the agent’s and receiver’s preferences, ensure that a
principal with full commitment power couldmaximize their payoff by separately solving the contracting
problem with the agent and the persuasion problem with the receiver. In other words, in an optimal
direct mechanism, the principal persuades the receiver in exactly the same way she would if she knew θ
(and did not need to incentivize the agent to reveal it).

Suppose, instead, that the agent’s payoff depended on the receiver’s action. The optimal direct mecha-
nism would then have to account for these incentives, distorting the principal’s action recommendation
relative to an environment where the principal had direct access to the agent’s information. A similar
tradeoff arises when the receiver’s payoff depends on the agent’s type. We therefore rule out such envi-
ronments as they do not conform to the above mentioned primary goal.

Equilibrium: We analyze perfect Bayesian equilibria of the extensive form game described above. As
usual, perfect Bayesian equilibrium requires that the receiver’s strategy maximize their payoff subject to
beliefs that are derived using Bayes’ rule for on-path messages (and are unrestricted off-path); that the
agent’s strategymaximizes her payoff in all public communicationmechanisms (on- and off-path) offered
by the principal; and that the principal’s strategy be a best response to those of the receiver and agent.

To summarize and make the timing explicit, Figure 6 presents a flow chart depicting the more general
public communication game we study in this section.

Nature draws
state ω ∈ Ω;

Principal publicly chooses a
message space M and a

set of mechanisms
M ⊂ ∆(T )M; and

“privately” chooses x ∈ M;

Agent observes
type θ ∈ Θ

drawn from µ(·|ω);
observes chosen x ∈ M;

announces public
message m ∈ M;

Receiver updates
beliefs q(m),

chooses action a ∈ A;

Contractible
decision x(m)
implemented;

Payoffs
realized.

Figure 6: Timing of the general public communication game.

3.1. EMBEDDING THE APPLICATION IN THE GENERAL MODEL

Before describing the main result of the paper, we briefly map the analyst application from the previous
section into our general framework. Readers who skipped Section 2 can proceed directly to Section 3.2.

In the application, the agent’s private information was two-dimensional, with one dimension represent-
ing her ability and the other her information about the underlying state. Relative to the definitions of this
section, we employed slightly different notation in Section 2 that was more natural for the application.
In the present framework, the realization of the type θ determines, via Bayes’ rule and the distribution
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µ, the agent’s posterior over states. Since the type is private information, this posterior is also privately
known. Moreover, conveying information about θ to the principal and the receiver allow those two play-
ers to similarly infer information about the state. One additional difference is that the state information
p in the application to take continuous values in [0, 1]. This is not a substantive difference, however, and
the restriction to finite types in this section is simply for ease of exposition.

The mapping to the set of contractible decisions is a little more subtle since the public communication
mechanisms in Section 2 permit the principal to condition on the realized state, whereas we have not
explicitly allowed for this here. It is possible, however, to embed that framework within the present en-
vironment. Suppose the set of contractible decisions is T = [0, 1] × [0, 1], with the interpretation
that (tb, ts) ∈ T represents the probability tb of retaining the analyst when ω = b and the probability
ts of retaining her when ω = s. The analyst’s utility from any t ∈ T in state ω ∈ {b, s} is simply
uA(ω, θ, t) = tω and therefore, when her type θ has a posterior belief p for state b, her expected utility is
ptb + (1 − p)ts. Thus, the generality of the set of contractible decisions T allows us to incorporate the
state dependence of the mechanism.

Finally, the principal and the client map directly from the application into the general framework.

3.2. THE OPTIMALITY OF PUBLIC COMMUNICATION MECHANISMS

Our main insight is that the principal can achieve their full-commitment payoff using (indirect) public
communication mechanisms. To state this result, we need to define direct mechanisms.

A direct mechanism consists of a contracting rule X : Θ → ∆(T ) and an action recommendation
A : Θ → ∆(A). A direct mechanism (X,A) is incentive compatible if it satisfies the following two sets
of constraints:

• For any recommendation a ∈ A that lies in the support of A, it is incentive compatible for the
receiver to choose a over any alternative a′ ∈ A; that is, for all a in the support ofA and all a′ ∈ A,

Eq(a)[uR(ω, a)] ≥ Eq(a)[uR(ω, a
′)], (R-IC)

where the expectations are taken with respect to the receiver’s posterior belief q(a) (formed via
Bayes’ rule) after receiving action recommendation a.

• For any realized type θ ∈ Θ, it is incentive compatible for the agent to report her type truthfully
instead of misreporting it as some other θ′ ∈ Θ; that is, for all θ, θ′ ∈ Θ,

Eµ(·|θ),X(θ)[uA(ω, θ, t)] ≥ Eµ(·|θ),X(θ′)[uA(ω, θ, t)], (A-IC)

where the expectations are taken over the state ω ∈ Ω (distributed according to the conditional
distribution µ(ω|θ) derived from the primitives π and µ) and the contracting decision t ∈ T
(distributed according toX(·), which in turn depends on the agent’s report θ or θ′).

An optimal directmechanism (X∗, A∗)maximizes the principal’s payoff subject to the incentive compat-
ibility constraints (R-IC) and (A-IC).Note that the separability of the principal’s payoff implies that they
can separately chooseX to maximize uA

P (ω, θ, t) subject to (A-IC) andA to maximize uR
P (ω, a) subject

to (R-IC). In particular, the latter implies that the principal’s optimal action recommendationA∗ would
remain optimal if the principal directly observed—without frictions—the agent’s private information θ.
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We are now in a position to state our main result.

THEOREM 4. Fix an optimal direct mechanism (X∗, A∗). There is a perfect Bayesian equilibrium of the
public communication game that is outcome-equivalent to thismechanism: that is, for all agent types θ ∈ Θ,
the distribution of contractual outcomes isX∗(θ) and distribution of actions taken by the receiver isA∗(θ).

The proof of this result is in Appendix D, but its intuition is the same as that of the analogous result
(Theorem 2) for our application.12 In order to optimally screen according toX∗, the principal needs to
elicit the agent’s type—but optimal persuasion according toA∗ will not fully convey that information to
the receiver. However, the principal can mix over public communication mechanisms that correspond
to the same contracting rule while inducing uncertainty about the public meaning of each message. Be-
cause the agent observes the realized mechanism, she can always best respond, and optimal screening can
be implemented. Since the receiver does not observe the realized mechanism, they do not learn which
public communication mechanism the agent is best responding to. Appropriately mixing thus allows
the principal to indirectly garble the agent’s private information and achieve optimal persuasion as inA∗.

4. CONCLUDING REMARKS

Bayesian persuasion is a powerful theoretical framework that relies on the ability of a sender to commit
to arbitrary information structures, which may be an unrealistic assumption in practice. In this paper,
we instead model model the sender as two players—an uninformed principal and a privately informed
agent—and show that optimal persuasion can be achieved by partial commitment only to standard con-
tractual terms (and not to information structures). This serves as an organizational economics micro-
foundation for commitment in strategic communication.

Our main result, Theorem 4, applies to an environment with adverse selection. For certain applications,
itmight bemore appropriate to instead consider amodelwhere the agentmust exert a costly private effort
e ∈ E in order to learn her private type θ, which is drawn from a distribution µ(ω, e) ∈ ∆(Θ). A direct
mechanism here would need to provide incentives to ensure the agent obediently exerts the principal’s
desired effort and then reports her realized type truthfully. (Action recommendations to the receiver
would be akin to those in the “pure” adverse selection case.) It is straightforward to show (under similar
conditions on payoffs) that the principal’s optimal direct mechanism can be indirectly implemented as a
perfect Bayesian equilibrium of a public communication game (defined in analogous fashion to that of
Section 3). The intuition remains the same: the principal can mix over public communication mecha-
nisms, allowing a single public message from the agent to convey different meanings to the principal and
the receiver. Of course, in such settings, the moral hazard problem introduces an additional friction, as a
principal who “owns” the information acquisition process will typically choose a different level of effort
than that required of the agent in the optimal directmechanism. This caveat aside, the same intuition ap-
plies evenmore broadly to environments with multiple receivers, many agents, and dynamically evolving
private types.

12It is worth noting that, in order to simplify notation and exposition, the formal proof employs more randomization and
messages than is strictly necessary.
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A. PROOF OF THEOREM 1

We begin by noting that the principal’s full-commitment problem (FC) is separable inX andA. Fixing
any solution (X∗, A∗) to (FC), the retention ruleX∗ therefore solves

max
X


∫ 1

0

[
µh (pX(h, p, b) + (1− p)X(h, p, s)) dFh(p)

−µlγ (pX(l, p, b) + (1− p)X(l, p, s)) dFl(p)
]


subject to (IC-A),

(FCA)

while the recommendation ruleA∗ solves

max
A

{
κ

∫ 1

0

[
µh Pr[A(h, p) ̸= φ]dFh(p) + µl Pr[A(l, p) ̸= φ]dFl(p)

]}
subject to (IC-C).

(FCC)

We can therefore characterize the optimal retention ruleX∗ (Theorem A.1) and the optimal persuasion
ruleA∗ (Theorem A.2) independently; the two results jointly prove Theorem 1.

A.1. CHARACTERIZING THE OPTIMAL RETENTION RULE

Consider any direct revelation retention ruleX : Θ× [0, 1]×Ω → [0, 1]. We define the analyst’s utility
from reporting her type as (θ′, p′)when her true type is (θ, p) as

U(θ′, p′|θ, p) := pX(θ′, p′, b) + (1− p)X(θ′, p′, s).

Analyst incentive compatibility (IC-A) therefore requires thatU(θ, p|θ, p) ≥ U(θ′, p′|θ, p) for all types
(θ′, p′), (θ, p) ∈ Θ× [0, 1].

LEMMA A.1. Suppose the screening ruleX : Θ× [0, 1]× Ω → [0, 1] satisfies (IC-A). Then for almost all
p ∈ [0, 1],X(h, p, ω) = X(l, p, ω) for all ω ∈ Ω.

PROOF. Note first that (IC-A) implies that

U(h, p|h, p) ≥ U(l, p|h, p) and U(l, p|l, p) ≥ U(h, p|l, p) for all p ∈ [0, 1].

But notice that U(θ′, p′|θ, p) only depends on the analyst’s reported type θ′ and not on her true type θ,
so that

U(h, p|h, p) = U(h, p|l, p) and U(l, p|l, p) = U(l, p|h, p) for all p ∈ [0, 1].

This of course implies that U(h, p|h, p) = U(l, p|l, p) for all p ∈ [0, 1]: the expected utility of an
analyst who reports her private information truthfully is the same regardless of her ability (whether true
or reported) θ ∈ Θ.

Furthermore, since (IC-A) requires that U(θ, p|θ, p) ≥ U(θ, p′|θ, p) for all p, p′ ∈ [0, 1] and all θ ∈
Θ, standard arguments (see Milgrom and Segal (2002), for instance) imply that U(θ, p|θ, p) is almost
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everywhere differentiable in p, and that we can write

U(θ, p|θ, p) = U(θ, 0|θ, 0) +
∫ p

0

[X(θ, z, b)−X(θ, z, s)]dz for all p ∈ [0, 1].

Thus,X(h, p, b)−X(h, p, s) = X(l, p, b)−X(l, p, s) for almost all p ∈ [0, 1]. But we can write

X(h, p, s) = U(h, p|h, p)− p[X(h, p, b)−X(h, p, s)]

= U(l, p|l, p)− p[X(l, p, b)−X(l, p, s)] = X(l, p, s)

for almost all p ∈ [0, 1]. This immediately implies that the retention rules are identical (almost every-
where) across the two abilities h and l. ■
As a consequence of Lemma A.1 above, we can simplify our notation and define a retention rule to be a
pair of functions

xb : [0, 1] → [0, 1] and xs : [0, 1] → [0, 1],

wherexω(p) is the probability that the analyst is retainedwhen she reports information p and the realized
state is ω. The incentive compatibility constraint (IC-A) rewritten with this simplified notation is then

U(p′, p) := pxb(p
′) + (1− p)xs(p

′) ≤ U(p, p) for all p′, p ∈ [0, 1]. (IC-p)

Thus, we can rewrite the bank’s screening problem (FCA) as

max
xb,xs

{∫ 1

0

U(p, p) d[Fh(p)− βFl(p)]

}
subject to (IC-p) and xb(p), xs(p) ∈ [0, 1],

(PA)

where we have renormalized the principal’s screening payoff by µh, and so

β :=
µl

µh

γ.

We are now in a position to state the result characterizing the optimal retention rule.

THEOREM A.1. The optimal retention rule solving (PA) is such that either

(i) it is optimal to not screen and always retain the analyst, so x∗
b(p) = x∗

s(p) = 1 for all p ∈ [0, 1];

(ii) it is optimal to not screen and always fire the analyst, so x∗
b(p) = x∗

s(p) = 0 for all p ∈ [0, 1]; or

(iii) it is optimal to nontrivially screen, and there exist cutoffs p̃∗ ≤ 1/2 ≤ p̃∗ such that x∗
b and x∗

s take
one of the following forms:

(a) x∗
b(p) =

{
0 if p < p̃∗,

1 if p ≥ p̃∗,
and x∗

s(p) =

{
p̃∗

1−p̃∗
if p < p̃∗,

0 if p ≥ p̃∗;
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(b) x∗
b(p) =

{
0 if p ≤ p̃∗,
1−p̃∗

p̃∗
if p > p̃∗,

and x∗
s(p) =

{
1 if p ≤ p̃∗,

0 if p > p̃∗;
or

(c) x∗
b(p) =


0 if p < p̃∗,
(1−p̃∗)(2p̃∗−1)

p̃∗−p̃∗
if p ∈ [p̃∗, p̃

∗],

1 if p > p̃∗,

and x∗
s(p) =


1 if p < p̃∗,
p̃∗(1−2p̃∗)
p̃∗−p̃∗

if p ∈ [p̃∗, p̃
∗],

0 if p > p̃∗.

In the next subsection, wewill prove this result. It is worthmentioning that, in the proof, wewill provide
sufficient conditions under which it is optimal for the bank not to screen. Moreover, wewill bemore pre-
cise about how the cutoffs p̃∗ and p̃∗ are defined. We elide these details here since the simplified statement
above conveys the main qualitative features of the optimal retention rule.

A.2. PROOF OF THEOREM A.1

Standard arguments from quasilinear mechanism design with transfers imply that the incentive compat-
ibility constraint (IC-p) is equivalent to an envelope and a monotonicity condition. Formally, these are

U(p, p) = pxb(p) + (1− p)xs(p) = U(q, q) +

∫ p

q

∆(z)dz for all p, q, and (ENV)

∆(p) := xb(p)− xs(p) is nondecreasing in p, (MON)

respectively. We now use condition (ENV) to reformulate the objective in the brokerage’s problem (PA).
Integration by parts yields∫ 1

0

U(p, p)d[Fh(p)− βFl(p)] =
[
U(p, p)[Fh(p)− βFl(p)]

]1
p=0

−
∫ 1

0

∆(p)[Fh(p)− βFl(p)]dp

=

∫ 1

0

∆(p)[βFl(p)− Fh(p)]dp+ (1− β)xb(1),

where we have made use of the fact that Fh(1) = Fl(1) = 1 and Fh(0) = Fl(0) = 0. In addition, note
that the integral condition in (ENV), evaluated at p = 1 and q = 0, becomes∫ 1

0

∆(z)dz = xb(1)− xs(0). (INT)

Finally, note that the feasibility constraints on xb and xs combine with (MON) to imply that

∆(p) ∈ [−xs(0), xb(1)] for all p ∈ [0, 1] and xb(1), xs(0) ∈ [0, 1]. (FEAS)

We now define the following relaxed problem:

max
∆,xs(0),xb(1)

{∫ 1

0

∆(p)[βFl(p)− Fh(p)]dp+ (1− β)xb(1)

}
subject to (INT), (MON), and (FEAS).

(RA)

Notice that we have replaced the envelope constraint (ENV) (which must hold for all p, q ∈ [0, 1]) with
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the weaker constraint (INT), which is simply the envelope condition (ENV) evaluated at a specific pair
p = 1 and q = 0. Wewill solve problem (RA) and show that it admits a solution that satisfies the stronger
constraint (ENV), and therefore also maximizes (PA).

Beforeproceeding, it isworthmentioning aminordetail left implicit in the above. Recall thatweoptimize
over retention rules xb and xs in problem (PA), while optimization in the relaxed problem (RA) is over
∆, xs(0), and xb(1). However, the retention rule xb and xs corresponding to any ∆ that satisfies the
envelope condition (ENV) is fully determined given xs(0). This is because, for any p ∈ [0, 1], we have

xs(p) = U(p, p)− p∆(p) = U(0, 0) +

∫ p

0

∆(z)dz − p∆(p) = xs(0) +

∫ p

0

∆(z)dz − p∆(p)

and
xb(p) = xs(p) + ∆(p) = xs(0) +

∫ p

0

∆(z)dz + (1− p)∆(p).

Define the shorthand notation u0 := xs(0) and u1 := xb(1), and let

L(∆|u0, u1, λ) :=

∫ 1

0

[∆(p)[βFl(p)− Fh(p)] + (1− β)u1 + λ(u1 − u0 −∆(p))] dp

be the Lagrangian corresponding to the objective function of (RA) and the integral constraint (INT),
where λ ∈ R is the multiplier on that constraint.

Let
∆∗

u0,u1,λ
∈ argmax

∆

{L(∆|u0, u1, λ)} subject to (FEAS) and (MON);

that is, the function∆∗
u0,u1,λ

maximizesL(∆|u0, u1, λ), subject to (FEAS) and (MON), for some fixed
values of u0, u1 ∈ [0, 1] and λ ∈ R.

We will solve (RA) as follows. Consider values of u0, u1, and λ such that there is a maximizer∆∗
u0,u1,λ

of the above problem that additionally satisfies the integral constraint (INT). Among all such values of
u0, u1, and λ, we then pick u∗

0, u∗
1, and λ∗ that, jointly with their corresponding maximizer ∆∗

u∗
0,u

∗
1,λ

∗

satisfying (INT), yield the highest value of the objective function in (RA). In other words,∆∗
u∗
0,u

∗
1,λ

∗ , u∗
0

and u∗
1 solve the relaxed problem.13

Wewill employ the ironing procedure inToikka (2011) to derive∆∗
u0,u1,λ

. But first, we unavoidably need
to define some additional notation.14 Let

h(p) := βFl(p)− Fh(p) andH(p) :=

∫ p

0

h(z)dz,

and let
G := convH

13As this is a linear program, the validity of our Lagrangian approach follows from Theorems 8.3.1 and 8.4.1 of Luenberger
(1969).
14An aside to the well-versed reader: note that the integral in the objective function in (RA) is taken with respect to the
uniform measure (since it is the difference of expected utilities across the two analyst types). Therefore, there is no implicit
change of variables in the definitions that follow.
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be the lower convex envelope ofH .15 Note that this implies

G(0) = H(0) = 0 andG(1) = H(1) = (β − 1)πs,

where the latter follows from the observation that
∫ 1

0
Fθ(p)dp = πs for all θ ∈ Θ. G is continuously

differentiable everywhere on (0, 1), as it is the convex hull of a (by definition) differentiable function. So
for all p ∈ (0, 1), let

g(p) := G′(p),

and extend g to the rest of [0, 1] by continuity; the convexity ofG implies that g is nondecreasing.

Applying Toikka (2011)’s Theorem 3.7, the function∆∗
u0,u1,λ

solves

sup
∆

{L(∆|u0, u1, λ)} subject to (FEAS) and (MON)

if, and only if,∆∗
u0,u1,λ

is a pointwise optimizer of the Lagrangian, so

∆∗
u0,u1,λ

(p) ∈ argmax
∆(p)∈[−u0,u1]

{∆(p)g(p) + (1− β)u1 + λ(u1 − u0 −∆(p))} almost everywhere;

∆∗
u0,u1,λ

is monotone (which can be guaranteed since the objective has, by construction, increasing dif-
ferences); and, finally,∆∗

u0,u1,λ
satisfies the “pooling property” (which requires∆∗

u0,u1,λ
be constant on all

open intervals I ⊂ [0, 1] for whichG(p) < H(p) for all p ∈ I).

Pointwise optimization of [∆(p)g(p) + (1− β)u1 + λ(u1 − u0 −∆(p))] for each p ∈ [0, 1] yields

∆∗
u0,u1,λ

(p)


= −u0 if g(p) < λ,

∈ [−u0, u1] if g(p) = λ,

= u1 if g(p) > λ.

(OPT)

The first lemma derives a simple sufficient condition under which it is optimal for the bank to not screen.
We will see shortly that this condition is also necessary whenever β ≤ 1; the condition is not tight,
however, when β > 1.

LEMMA A.2. SupposeH(p) ≥ pH(1) for all p ∈ [0, 1]. Then the optimal mechanism involves no screen-
ing, so either x∗

b(p) = x∗
s(p) = 0 for all p ∈ [0, 1] or x∗

b(p) = x∗
s(p) = 1 for all p ∈ [0, 1].

PROOF. For any p ∈ [0, 1] and any (ζ, p1, p2) ∈ [0, 1]3 such that ζp1 + (1− ζ)p2 = p, we have

ζH(p1) + (1− ζ)H(p2) ≥ ζp1H(1) + (1− ζ)p2H(1) = pH(1).

This in turn implies

G(p) = min{ζH(p1) + (1− ζ)H(p2)|(ζ, p1, p2) ∈ [0, 1]3 and ζp1 + (1− ζ)p2 = p} ≥ pH(1).

But letting ζ = p, p1 = 1, and p2 = 0 in the above, we see that the lower bound pH(1) is actually

15Formally,G(p) := min{ζH(p1) + (1− ζ)H(p2) | (ζ, p1, p2) ∈ [0, 1]3 and ζp1 + (1− ζ)p2 = p} for all p ∈ [0, 1].
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achievable, and soG(p) = pH(1). Thus,H(p) ≥ pH(1) for all p ∈ [0, 1] implies thatG(p) = pH(1)
and g(p) = H(1) for all p ∈ [0, 1].

We cannot, however, haveH(p) = pH(1) for all p ∈ (0, 1) as well. If this were true, it would imply that

βFl(p)− Fh(p) = h(p) = H(1) = (β − 1)πs for all p ∈ [0, 1],

which is clearly not possible when β ̸= 1 since Fl(0) = Fh(0) = 0. If β = 1, then this means
that Fl(p) = Fh(p) for all p, contradicting the assumption that the two analyst types receive different
information. Thus, we must haveH(p) ≥ pH(1) for all p ∈ [0, 1], with strict inequality for some p.

Now since g(p) is a constant, we set λ∗ = g(p) and note that any constant function

∆∗
u0,u1,λ∗(p) = ∆̄ ∈ [−u0, u1]

is a pointwise optimizer (OPT). Note that this∆∗
u0,u1,λ∗ is monotone and trivially satisfies the pooling

property.

In order for this∆∗
u0,u1,λ∗ to satisfy the integral constraint (INT), we need that

∆̄ =

∫ 1

0

∆∗
u0,u1,λ∗(z)dz = u1 − u0,

and so the value of the objective function in (RA) is∫ 1

0

∆̄h(p)dp+ (1− β)u1 = (u1 − u0)H(1) + (1− β)u1 = (1− β) [πbu1 + πsu0] .

If β < 1, optimizing over u0 and u1 yields u∗
0 = u∗

1 = 1 (that, the analyst is always retained) and a payoff
of (1− β) > 0. Conversely, if β > 1, optimizing over u0 and u1 yields u∗

0 = u∗
1 = 0 (that is, the analyst

is always fired) and a payoff of 0. Lastly, if β = 1, then the payoff is 0 for any values of u0 and u1. ■
To summarize, whenH(p) ≥ pH(1) for all p ∈ [0, 1], the optimalmechanism never screens the analyst:
it always retains her if β < 1 (and the odds and costs of retaining type l are low), it always fires her if
β > 1 (and the odds and costs of retaining type l are high), and it is indifferent if β = 1. (In this latter
case, H(p) ≥ pH(1) = 0 for all p implies that Fl is a mean-preserving spread of Fh and so type l is
better-informed than type h. This informational advantage implies type l cannot be screened out.)

Henceforth, we will therefore assume that

H(p) < pH(1) for some p ∈ (0, 1),

and so effective screening might be possible.

LEMMA A.3. Suppose (∆∗
u∗
0,u

∗
1,λ

∗ , u∗
0, u

∗
1) solves problem (RA) and that u∗

0 + u∗
1 > 0. Then

(i) max{u∗
0, u

∗
1} = 1;

(ii) λ∗ = g
(

u∗
0

u∗
0+u∗

1

)
; and
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(iii) the value of the objective is−G
(

u∗
0

u∗
0+u∗

1

)
(u∗

0 + u∗
1) + (1− β)πbu

∗
1.

PROOF. Consider a solution (∆∗
u∗
0,u

∗
1,λ

∗ , u∗
0, u

∗
1) to (RA) in which u∗

0 + u∗
1 > 0.

Suppose first that λ∗ > g(1) ≥ g(p) for all p ∈ [0, 1]. Pointwise maximization and condition (OPT)
imply that∆∗

u∗
0,u

∗
1,λ

∗(p) = −u∗
0 for all p ∈ [0, 1]. In addition, note that condition (INT) implies that∫ 1

0

(−u∗
0)dz = u∗

1 − u∗
0, and so u

∗
0 > u∗

1 = 0.

Thus, the value of the Lagrangian is∫ 1

0

−u∗
0h(p)dp+ (1− β)u∗

1 = −u∗
0H(1) = (1− β)πsu

∗
0.

Ifβ > 1, this value is negative—but the principal can guarantee a payoffof zero by always firing the agent.
Ifβ < 1, then this value is positive, but it is less than the payoff (1−β) the principal can achieve by always
retaining the agent. And finally, if β = 1, this value is zero—but it is easy to see that there are feasible
candidate solutions with strictly positive objective values.16 Thus, for any β we have a contradiction of
optimality, and so we must have λ∗ ≤ g(1).

Similarly, suppose that λ∗ < g(0) ≤ g(p) for all p ∈ [0, 1]. Pointwise maximization and condition
(OPT) imply that∆∗

u∗
0,u

∗
1,λ

∗(p) = u∗
1 for all p ∈ [0, 1]. In addition, note that condition (INT) implies

that ∫ 1

0

(u∗
1)dz = u∗

1 − u∗
0, and so u

∗
1 > u∗

0 = 0.

Thus, the value of the Lagrangian is∫ 1

0

u∗
1h(p)dp+ (1− β)u∗

1 = (β − 1)(1− πb)u
∗
1 + (1− β)u∗

1 = (1− β)πbu
∗
1.

This again contradicts the supposed optimality. If β > 1, this value is negative—but the principal can
guarantee a payoff of zero by always firing the agent. If β < 1, then this value is positive, but it is less
than the payoff (1−β) the principal can achieve by always retaining the agent. And finally, if β = 1, this
value is zero and thus worse than the feasible candidate solutions (akin to the retention rule in footnote
16) with strictly positive objective values.

Therefore, we must have λ∗ ∈ [g(0), g(1)]. Let

p0 := min{p | g(p) = λ∗} and p1 := max{p | g(p) = λ∗}.

Pointwise maximization and condition (OPT) imply that∆∗
u∗
0,u

∗
1,λ

∗(p) = −u∗
0 for any p < p0, and that

16Fix any p ∈ (0, 1) withH(p) < 0. If p < 1
2 , the retention rule given by∆(z) = −1 below p and∆(z) = p

1−p above is
feasible, incentive compatible, and yields a payoff−H(p)

1−p > 0. If p ≥ 1
2 , the retention rule given by∆(z) = − 1−p

p below p

and∆(z) = 1 above is feasible, incentive compatible, and yields a payoff−H(p)
p > 0.
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∆∗
u∗
0,u

∗
1,λ

∗(p) = u∗
1 for any p > p1. The integral constraint (INT) then implies that

u∗
1 − u∗

0 =

∫ p0

0

(−u∗
0)dz +

∫ p1

p0

∆∗
u∗
0,u

∗
1,λ

∗(z)dz +

∫ 1

p1

(u∗
1)dz

≤
∫ p0

0

(−u∗
0)dz +

∫ 1

p0

(u∗
1)dz = −p0u

∗
0 + (1− p0)u

∗
1.

Consequently, we must have p0 ≤ u∗
0

u∗
0+u∗

1
. Likewise, we must also have p1 ≥ u∗

0

u∗
0+u∗

1
, since

u∗
1 − u∗

0 =

∫ p0

0

(−u∗
0)dz +

∫ p1

p0

∆∗
u∗
0,u

∗
1,λ

∗(z)dz +

∫ 1

p1

(u∗
1)dz

≥
∫ p1

0

(−u∗
0)dz +

∫ 1

p1

(u∗
1)dz = −p1u

∗
0 + (1− p1)u

∗
1.

Since g is continuous andmonotone, we can conclude thatλ∗ = g(p̂) in any solution,where p̂ :=
u∗
0

u∗
0+u∗

1
;

this also implies thatG(·) is linear on [p0, p1].

The integral constraint (INT) then implies that∫ p1

p0

∆∗
u∗
0,u

∗
1,λ

∗(z)dz = u∗
1 − u∗

0 −
∫ p0

0

(−u∗
0)dz −

∫ 1

p1

(u∗
1)dz = p1u

∗
1 − (1− p0)u

∗
0.

Applying Toikka (2011)’s Theorem 4.4, the value of the Lagrangian L(∆∗
u∗
0,u

∗
1,λ

∗ |u∗
0, u

∗
1, λ

∗) evaluated
at this solution is equal to the value of its “ironed” counterpart where we replace hwith g; thus,

L(∆∗
u∗
0,u

∗
1,λ

∗ |u∗
0, u

∗
1, λ

∗)

=

∫ p0

0

(−u∗
0)g(z)dz +

∫ p1

p0

∆∗
u∗
0,u

∗
1,λ

∗(z)g(z)dz +

∫ 1

p1

(u∗
1)g(z)dz + (1− β)u∗

1

= −G(p0)u
∗
0 + g(p̂)(p1u

∗
1 − (1− p0)u

∗
0) + (G(1)−G(p1))u

∗
1 + (1− β)u∗

1

= −(G(p̂) + g(p̂)(p0 − p̂))u∗
0 + g(p̂)(p1u

∗
1 − (1− p0)u

∗
0)

− (G(p̂) + g(p̂)(p1 − p̂))u∗
1 + (1− β)πbu

∗
1

= −G(p̂)(u∗
0 + u∗

1) + g(p̂)(p̂u∗
1 − (1− p̂)u∗

0) + (1− β)πbu
∗
1

= −G(p̂)(u∗
0 + u∗

1) + (1− β)πbu
∗
1.

Notice that in the first line, there is no termcorresponding to the (INT) constraint due to complementary
slackness; the second equality follows from the fact that g(z) = λ∗ = g(p̂) for all z ∈ [p0, p1]; the third
equality follows by rewriting G(p0) and G(p1) using the linearity of G on [p0, p1]; and the remaining
equalities follow by applying the definition of p̂.

Finally, suppose that ū := max{u∗
0, u

∗
1} < 1. Then define u′

0 := u∗
0/ū and u′

1 := u∗
1/ū, and define

∆′(p) :=
∆∗

u∗
0,u

∗
1,λ

∗(p)

ū
for all p ∈ [0, 1].
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It is straightforward to note that ∆′, u′
0, u′

1 and λ∗ jointly satisfy the constraints (INT), (MON), and
(FEAS) since∆, u∗

0, and u∗
1 were assumed to have done so (and have merely been scaled up by the same

constant). Moreover, note that u′
0

u′
0+u′

1
= p̂, so that (OPT) is also satisfied; finally, the pooling property

also continues to be satisfied since we have only made a scalar transformation. Thus, the value of the
LagrangianL(∆′|u′

0, u
′
1, λ

∗) evaluated at this new candidate solution is

L(∆′|u′
0, u

′
1, λ

∗) =

∫ 1

0

∆′(z)g(z)dz + (1− β)u′
1

=
L(∆∗

u∗
0,u

∗
1,λ

∗ |u∗
0, u

∗
1, λ

∗)

ū
> L(∆∗

u∗
0,u

∗
1,λ

∗ |u∗
0, u

∗
1, λ

∗),

contradicting the claimed optimality of the original solution. Thus, ū := max{u∗
0, u

∗
1} = 1. ■

Now consider the expression −G
(

u0

u0+u1

)
(u0 + u1) + (1 − β)πbu1 from part (iii) of Lemma A.3,

but evaluated at arbitrary (and not necessarily optimal) values u0, u1 ∈ [0, 1]. For any u0 and u1 such
that max{u0, u1} = 1, there is a unique corresponding p = u0

u0+u1
(where p ≤ 1

2
corresponds to

u0 ≤ u1 = 1 and p ≥ 1
2
corresponds to u1 ≤ u0 = 1). Thus, we can rewrite the expression above as a

function ξ : [0, 1] → R given by

ξ(p) :=

{
−G(p)

1−p
+ (1− β)πb if p ≤ 1

2
,

−G(p)
p

+ (1− β)πb
1−p
p

if p > 1
2
.

(A.1)

The next lemma completes the proof of Theorem A.1 by showing that the maximizers of π correspond
to solutions of the relaxed problem (RA), and moreover that these solutions are feasible in the original
screening problem (PA). It also derives the qualitative properties of the solution as described in the theo-
rem; indeed, the lemma is more detailed than the statement of theorem in that it characterizes the cutoffs
and provides conditions under which each case corresponds to the optimal retention rule.

LEMMA A.4. Suppose there exists q ∈ [0, 1] such that ξ(q) > 0, and let p∗ := max{argmaxp{ξ(p)}} and
p∗ := min{argmaxp{ξ(p)}}.

(i) If p∗ < 1
2
, then (PA) is solved by

x∗
b(p) =

{
0 if p < p∗,

1 if p ≥ p∗,
and x∗

s(p) =

{
p∗

1−p∗
if p < p∗,

0 if p ≥ p∗.
(A.2)

(ii) If instead p∗ > 1
2
, then (PA) is solved by

x∗
b(p) =

{
0 if p ≤ p∗,
1−p∗
p∗

if p > p∗,
and x∗

s(p) =

{
1 if p ≤ p∗,

0 if p > p∗.
(A.3)
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(iii) Finally, if p∗ ≤ 1
2
≤ p∗, then 1

2
∈ argmaxp{ξ(p)} and (PA) is solved by

x∗
b(p) =


0 if p < p̄∗,
(1−p̄∗)(2p̄∗−1)

p̄∗−p̄∗
if p ∈ [p̄∗, p̄

∗],

1 if p > p̄∗,

and x∗
s(p) =


1 if p < p̄∗,
p̄∗(1−2p̄∗)
p̄∗−p̄∗

if p ∈ [p̄∗, p̄
∗],

0 if p > p̄∗,

(A.4)

where p̄∗ := min{p ≥ 1/2 |H(p) = G(p)}, p̄∗ := max{p ≤ 1/2 |H(p) = G(p)}, and we
define x∗

b(1/2) = 0, x∗
s(1/2) = 1 when p̄∗ = p̄∗ = 1/2.

PROOF. We begin by considering the case where p∗ < 1
2
. Suppose first that G(p∗) < H(p∗), so G is

linear on the interval [p∗− ε, p∗+ ε] for ε > 0 sufficiently small (in particular, we can choose ε such that
ε < 1

2
− p∗). Then

ξ(p∗)− ξ(p∗ + ε) =
G(p∗ + ε)

1− p∗ − ε
− G(p∗)

1− p∗

=
(G(p∗) + εg(p∗))(1− p∗)−G(p∗)(1− p∗ − ε)

(1− p∗)(1− p∗ − ε)

= ε
G(p∗) + (1− p∗)g(p∗)

(1− p∗)(1− p∗ − ε)
.

But note that since p∗ ∈ argmaxp{ξ(p)} is interior, the first order condition ξ
′(p∗) = 0 is satisfied; that

is, since p∗ < 1
2
,

ξ′(p∗) = G(p∗) + (1− p∗)g(p∗) = 0.

This implies that ξ(p∗ + ε) = ξ(p∗), contradicting the definition of p∗ as the largest maximizer of π.
Thus, we must haveG(p∗) = H(p∗).

Now let λ∗ := g(p∗), u∗
0 :=

p∗

1−p∗
, u∗

1 := 1, and∆∗
u∗
0,u

∗
1,λ

∗(p) := x∗
b(p)− x∗

s(p), where x∗
b and x∗

s are as
defined in (A.2). It is straightforward to see that this proposed solution satisfies constraints (FEAS) and
(MON). In addition, note that∫ 1

0

∆∗
u∗
0,u

∗
1,λ

∗(z)dz =

∫ p∗

0

− p∗

1− p∗
dz +

∫ 1

p∗
1dz =

−(p∗)2 + (1− p∗)2

1− p∗
=

1− 2p∗

1− p∗
= u∗

1 − u∗
0,

implying that (INT) is satisfied. Finally, note that this proposed solution satisfies the “pooling property”
since it is constant both above and below p∗ (where we have shown thatG andH coincide). Thus, as p∗
is a maximizer of π, it solves problem (RA).

Finally, note that we can write

U(p, p) =

{
p∗(1−p)
1−p∗

if p < p∗,

p if p ≥ p∗.

It is trivial to see at this point that the “full” envelope condition (ENV) is satisfied, and so the proposed
solution is incentive compatible. Since it solves the relaxed problem (RA), it must therefore also solve the
original problem (PA).
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Now consider the case where p∗ > 1
2
. Suppose first thatG(p∗) < H(p∗), soG is linear on some interval

[p∗ − ε, p∗ + ε] for ε > 0 sufficiently small (in particular, we can choose ε such that ε < p∗ − 1
2
). Then

ξ(p∗)− ξ(p∗ − ε) =
G(p∗ − ε)

p∗ − ε
− G(p∗)

p∗
+ (1− β)πb

(
1− p∗
p∗

− 1− p∗ + ε

p∗ − ε

)
=

(G(p∗)− εg(p∗))p∗ −G(p∗)(p∗ − ε)

p∗(p∗ − ε)

+ (1− β)πb
(1− p∗)(p∗ − ε)− (1− p∗ + ε)p∗

p∗(p∗ − ε)

= ε
G(p∗)− p∗g(p∗)− (1− β)πb

p∗(p∗ − ε)
.

But note that since p∗ ∈ argmaxp{ξ(p)} is interior, the first order condition ξ
′(p∗) = 0 is satisfied; that

is, since p∗ > 1
2
,

ξ′(p∗) = G(p∗)− p∗g(p∗)− (1− β)πb = 0.

This implies that ξ(p∗− ε) = ξ(p∗), contradicting the definition of p∗ as the smallest maximizer of ξ(·).
Thus, we must haveG(p∗) = H(p∗).

Now let λ∗ := g(p∗), u∗
0 := 1, u∗

1 :=
1−p∗
p∗

, and∆∗
u∗
0,u

∗
1,λ

∗(p) := xb(p)− xs(p), where xb and xs are as
defined in (A.3). It is straightforward to see that this proposed solution satisfies constraints (FEAS) and
(MON). In addition, note that∫ 1

0

∆∗
u∗
0,u

∗
1,λ

∗(z)dz =

∫ p∗

0

−1dz +

∫ 1

p∗

1− p∗
p∗

dz =
−(p∗)

2 + (1− p∗)
2

p∗
=

1− 2p∗
p∗

= u∗
1 − u∗

0,

implying that (INT) is satisfied. Finally, note that this proposed solution satisfies the “pooling property”
since it is constant both above and below p∗ (where we have shown thatG andH coincide). Thus, as p∗
is a maximizer of π, it solves problem (RA).

Finally, note that we can write

U(p, p) =

{
1− p if p < p∗,
p(1−p∗)

p∗
if p ≥ p∗.

As before, the “full” envelope condition (ENV) is satisfied, implying that the proposed solution is incen-
tive compatible. As it solves the relaxed problem (RA), it must also solve the original problem (PA).

Finally, we turn to the case where p∗ ≤ 1/2 ≤ p∗. Suppose first that 1/2 is not amaximizer of π, so both
inequalities are strict. This of course implies that the first-order conditions ξ′(p∗) = 0 and ξ′(p∗) = 0
hold, implying that

g(p∗) = −G(p∗)

1− p∗
and g(p∗) =

G(p∗)− (1− β)πb

p∗
.
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Note, however, that we can write

ξ(p∗) + ξ(p∗) =

(
−G(p∗)

1− p∗
+ (1− β)πb

)
+

(
−G(p∗)

p∗
+ (1− β)πb

1− p∗

p∗

)
= g(p∗)− g(p∗) ≤ 0,

where the final inequality follows from the convexity ofG. But of course this implies thatmaxp{ξ(p)} ≤
0, contradicting the assumption that ξ(q) > 0 for some q ∈ [0, 1]. Thus, 1/2 ∈ argmaxp{ξ(p)}.

Now let λ∗ := g(1/2), u∗
0 := 1, u∗

1 := 1, and∆∗(p) := xb(p)− xs(p), where x∗
b and x∗

s are as defined
in (A.4). (Note that if G(1/2) = H(1/2), then p̄∗ = p̄∗ = 1/2, and so by convention we can take
x∗
b(1/2) = 0, x∗

s(1/2) = 1.) It is straightforward to see that this proposed solution satisfies constraints
(FEAS) and (MON). In addition, note that∫ 1

0

∆∗
u∗
0,u

∗
1,λ

∗(z)dz =

∫ p̄∗

0

−1dz +

∫ p̄∗

p̄∗

p̄∗ + p̄∗ − 1

p̄∗ − p̄∗
dz +

∫ 1

p̄∗
1dz

= −p̄∗ + (p̄∗ + p̄∗ − 1) + (1− p̄∗) = 0 = u∗
1 − u∗

0,

implying that (INT) is satisfied. Finally, note that since G and H coincide (by definition) at both p̄∗

and p̄∗ and this proposed solution is constant on [0, p̄∗), [p̄∗, p̄∗], and (p̄∗, 1], then it satisfies the pooling
property. Thus, as 1/2 is a maximizer of π, it solves problem (RA).

Finally, note that we can write

U(p, p) =


1− p if p < p̄∗,
(p̄∗+p̄∗−1)p−(1−2p̄∗)p̄∗

p̄∗−p̄∗
if p ∈ [p̄∗, p̄

∗],

p if p > p̄∗.

The “full” envelope condition (ENV) is clearly satisfied, implying that this proposed solution is indeed
incentive compatible. Moreover, it must also be a solution to the original problem (PA) as it solves the
relaxed problem (RA). ■

A.3. CHARACTERIZING OPTIMAL PERSUASION

In order to characterize the solution to the principal’s persuasion problem (FCC), it is helpful to first
define the thresholds

p∗ := min
{
p ∈ [0, 1]

∣∣∣∣∫ 1

p

z
µhfh(z) + µlfl(z)

µh(1− Fh(p)) + µl(1− Fl(p))
dz ≥ q

}
(A.5)

and
p∗ := max

{
p ∈ [0, 1]

∣∣∣∣∫ p

0

z
µhfh(z) + µlfl(z)

µhFh(p) + µlFl(p)
dz ≤ 1− q

}
. (A.6)

We can interpret p∗ as the lowest analyst posterior such that, when pooled with all p > p∗ regardless of
the analyst’s ability, leads the client to buy; likewise, p∗ is the largest analyst posterior such that, when
pooled with all p < p∗ regardless of the analyst’s ability, leads the client to sell.
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THEOREM A.2. The principal’s full-commitment persuasion problem (FCC) is solved by the deterministic
action recommendation rule

A∗(h, p) = A∗(l, p) =


b if p > q̃∗,

s if p < q̃∗,

φ otherwise,

where q̃∗ = p∗ and q̃∗ = p∗ if p∗ ≥ p∗, and q̃∗ = q̃∗ = p̄ for arbitrary p̄ ∈ [p∗, p∗] if p∗ < p∗.

PROOF. Webeginby rewriting thebank’s persuasionproblem(FCC) in termsof theprobabilitiesB(θ, p)
andS(θ, p)with which the bank recommends the client chooses actions b and s, respectively. (It is with-
out loss to consider only a single message recommending either b or s; if multiple such messages induced
the desired action, “merging” them would induce it as well.) Rescaling the objective by 1/κ > 0, this
problem can be written as

max
B,S

 ∑
θ∈{h,l}

µθ

∫ 1

0

(B(θ, p) + S(θ, p)) dFθ(p)


subject to

∑
θ∈{h,l}

µθ

∫ 1

0

(p− q)B(θ, p)dFθ(p) ≥ 0,

∑
θ∈{h,l}

µθ

∫ 1

0

(1− q − p)S(θ, p)dFθ(p) ≥ 0,

µθfθ(p)B(θ, p) ≥ 0, µθfθ(p)S(θ, p) ≥ 0, and
µθfθ(p) (1− B(θ, p)− S(θ, p)) ≥ 0 for all θ ∈ {h, l} and p ∈ [0, 1].

Notice that the first two constraints are simply the “obedience” constraints (IC-C) rewritten using Bayes’
rule (and multiplying through each by its denominator). The remaining constraints ensure feasibility of
any potential recommendations, and have been normalized by µθfθ(p) ≥ 0 for all θ and p. (Note that
if µθfθ(p) = 0 for some type (θ, p), that type’s contribution to the expected payoff is zero, and so the
normalization is without loss.)

This is a well-defined linear optimization problem, and can therefore be solved using Lagrangian meth-
ods. Thus, letting λB , λS , ηB(θ, p), ηS(θ, p), and ηφ(θ, p) denote the (nonnegative) multipliers on each
of the constraints above, a solution is characterized by the first-order conditions

µθfθ(p) (1 + λB(p− q) + ηB(θ, p)− ηφ(θ, p)) = 0 and
µθfθ(p) (1 + λS(1− q − p) + ηS(θ, p)− ηφ(θ, p)) = 0,

as well as the usual complementary slackness conditions. (See Theorems 8.3.1 and 8.4.1 in Luenberger
(1969) establishing necessity and sufficiency, respectively.) With this in mind, letB∗(θ, p) and S∗(θ, p)
correspond to the proposed solution in Theorem A.2; that is,

B∗(θ, p) :=

{
0 if p ≤ q̃∗,

1 if p > q̃∗,
and S∗(θ, p) :=

{
1 if p < q̃∗,

0 if p ≥ q̃∗,
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where we let q̃∗ = p∗ and q̃∗ = p∗ if p∗ ≥ p∗, and q̃∗ = q̃∗ = p̄ for arbitrary p̄ ∈ [p∗, p∗] if p∗ < p∗,
with p∗ and p∗ as defined in (A.5) and (A.6).

Notice that if p∗ < p∗, then the proposed solution (where q̃∗ = q̃∗ = p̄ for an arbitrary p̄ ∈ [p∗, p∗])
yields client posterior beliefs that are always either above q or below 1 − q, and so trade is induced with
probability 1. By observation, this trivially achieves the optimum and solves (FCC).

If, on the other hand, q̃∗ = p∗ ≥ p∗ = q̃∗, we can further define

λ∗
B :=

1

q − q̃∗
and λ∗

S :=
1

q̃∗ − (1− q)

as the multipliers on the rewritten “obedience” constraints, and

η∗B(θ, p) :=


q̃∗−p
q−q̃∗

+ q̃∗−p
q̃∗−(1−q)

if p < q̃∗,
q̃∗−p
q−q̃∗

if p ∈ [q̃∗, q̃
∗],

0 if p > q̃∗,

η∗S(θ, p) :=


0 if p < q̃∗,

p−q̃∗
q̃∗−(1−q)

if p ∈ [q̃∗, q̃
∗],

p−q̃∗

q−q̃∗
+ p−q̃∗

q̃∗−(1−q)
if p > q̃∗,

and η∗φ(θ, p) :=


q̃∗−p

q̃∗−(1−q)
if p < q̃∗,

0 if p ∈ [q̃∗, q̃
∗],

p−q̃∗

q−q̃∗
if p > q̃∗,

as the multipliers on the feasibility constraints.

With these in hand, for all θ ∈ {h, l} and p ∈ [0, 1], it is straightforward to verify that

1 + λ∗
B(p− q) + η∗B(θ, p)− η∗φ(θ, p) = 0 and 1 + λ∗

S(1− q − p) + η∗S(θ, p)− η∗φ(θ, p) = 0.

Therefore, the first-order conditions from above are satisfied, as are the complementary slackness condi-
tions. Thus, the proposed solution is indeed a bank-optimal trading recommendation. ■

B. PROOF OF THEOREM 2

The result follows from the more general Theorem 4, making use of Section 3.1’s embedding of the
analyst application into the general model.

The only caveat is that the type space Θ × [0, 1] is infinite, whereas Theorem 4 is for a setting with
finite types. Note, however, that the optimal direct retention ruleX∗ that solves (FC) has a finite range
X∗(Θ× [0, 1]); its inverse therefore defines a finite partitionΘX ofΘ× [0, 1] such thatX∗ is constant
on each element of ΘX . Likewise, the optimal direct action recommendation rule A∗ that solves (FC)
has a finite rangeA∗(Θ× [0, 1]); its inverse therefore defines a finite partitionΘA ofΘ× [0, 1] such that
A∗ is constant on each element ofΘA.

Let Λ := ΘX ∧ ΘA be the meet of the two partitions ΘX and ΘA. By construction, Λ is finite, and

35



moreoverX∗ andA∗ are both constant on each element ofΛ—this partition of the type spaceΘ× [0, 1]
conveys all the information about the analyst’s typenecessary to implement theoptimal directmechanism
(X∗, A∗). TreatingΛ as the underlying (finite) type space, Theorem 4 applies immediately. ■

C. PROOF OF THEOREM 3

Consider a bank-optimal equilibriumwith public contracting inwhich the bank chooses a finitemessage
spaceM along with a retention rule x; the analyst chooses a reporting strategy σθ; and the client chooses
an action strategy α.

For each client action a = b, s, we define

Ma :=

{
m ∈ M

∣∣∣∣∣∑
θ∈Θ

µθ

∫ 1

0

σθ(x, p)(m)dFθ(p) > 0 and α(m) = a

}

to be the set of all messages reported by the analyst with positive probability such that the client chooses
action a as a best response. Moreover, let

pa := sup

{
p

∣∣∣∣∣∑
θ∈Θ

µθσθ(x, p)(m) > 0 for somem ∈ Ma

}
and

pa := inf

{
p

∣∣∣∣∣∑
θ∈Θ

µθσθ(x, p)(m) > 0 for somem ∈ Ma

}

be the largest and smallest analyst information types that announce a message inMa with positive prob-
ability.

The proof proceeds in two steps.

STEP 1: Consider a bank-optimal equilibrium in which the bank publicly chooses contractual terms
(M, x), the analyst best responds with strategy σθ and the client’s expected payoff in this equilibrium is
zero. Then, there exist cutoffs pb ≥ q̃∗ and ps ≤ q̃∗ such that, for both θ ∈ Θ, the analyst’s strategy
satisfies σθ(x, p) ∈ ∆(Mb) and p ∈ [pb, 1] and σθ(x, p) ∈ ∆(Ms) for p ∈ [0, ps].

We prove the statement in this step via a series of lemmata.

LEMMA C.1. For anym,m ∈ Ma, a ∈ {b, s}, we have x(m, b) = x(m, b) and x(m, s) = x(m, s).
Moreover, for a ∈ {b, s} anym ∈ Ma is a best response for the analyst for all beliefs p ∈ [pa, pa].

PROOF. Consider any m ∈ Mb. Since the client’s expected payoff is zero, they must be indifferent
between actions b and φ upon observing messagem, and so their posterior on observingm is exactly q.
BecauseFθ has no atoms andm is reported by the analyst with positive probability, this implies that there
exists p and p, with p > q > p, such that

∑
θ∈Θ µθσθ(x, p)(m) > 0 and

∑
θ∈Θ µθσθ(x, p)(m) > 0.

Now fix any p′ ∈ (p, p), and suppose that there exists somemessagem′ ∈ M that is strictly preferred by
the analyst with information p′ over messagem, implying that

p′x(m, b) + (1− p′)x(m, s) < p′x(m′, b) + (1− p′)x(m′, s). (C.1)
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But sincem is an optimal message for information type p, we have

px(m, b) + (1− p)x(m, s) ≥ px(m′, b) + (1− p)x(m′, s).

Subtracting (C.1) from this inequality and dividing by (p− p′) > 0, we have

x(m, b)− x(m, s) > x(m′, b)− x(m′, s). (C.2)

Likewise, sincem is an optimal message for information type p, we have

px(m, b) + (1− p)x(m, s) ≥ px(m′, b) + (1− p)x(m′, s).

Subtracting (C.1) from this inequality and dividing by (p− p′) < 0, we have

x(m, b)− x(m, s) < x(m′, b)− x(m′, s). (C.3)

Since (C.2) and (C.3) cannot simultaneously hold, it must be the case that messagem is optimal for all
p′ ∈ [p, p].

Likewise, consider any otherm ∈ Mb. Again, since the client’s expected payoff is zero, they must be in-
different between actions b andφ upon observing messagem, and therefore their posterior on observing
m is exactly q. This implies that there exists some p < q with

∑
θ∈Θ µθσθ(x, p)(m) > 0 and some other

p > q with
∑

θ∈Θ µθσθ(x, p)(m) > 0. An identical argument to that above implies that messagem is
optimal for all information types p′ ∈ [p, p].

Note, however, that p > q > p. Thus, information types p ∈ (p, p) must be indifferent between
messagesm andm. The indifference betweenm andm is possible throughout this interval if, and only
if, x(m,ω) = x(m,ω) for both ω ∈ Ω. Finally, the optimality of these messages for all p ∈ [pb, pb]

follows by choosingm andm so that p = pb and p = pb.

A symmetric argument (where 1 − q plays the role of q in the above) applies to messages in Ms that
induce action s. ■

LEMMA C.2.Wemust havemax{pb, ps} = 1 andmin{pb, ps} = 0.

PROOF. Let p := max{pb, ps} and first observe that p ≥ pb ≥ q. The latter inequality must hold as
otherwise α(m) = b cannot be a best response form ∈ Mb.

Suppose p < 1. Let m ∈ M be any message such that
∑

θ∈Θ µθ

∫ 1

p
σθ(x, p)(m)dFθ(p) > 0 or, in

words,m is a message reported by a positive measure of types above p. Clearly, since p ≥ q, the client
must best respond by choosing α(m) = bwhich, in turn, implies pb > p, a contradiction.

We can conclude that min{pb, ps} = 0 using a symmetric argument. ■

LEMMA C.3.Wemust have pb ≥ ps.

PROOF. Fix anymb ∈ Mb, and note that by Lemma C.1,mb is optimal for all p ∈ [pb, pb]. Likewise,
fix anyms ∈ Ms, and note thatms is optimal for all p ∈ [ps, ps].
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Suppose, for purposes of contradiction, that pb < ps. Then both mb and ms are optimal for all p ∈
[pb, ps]; that is,

pbx(mb, b) + (1− pb)x(mb, s) = pbx(ms, b) + (1− pb)x(ms, s) and
psx(mb, b) + (1− ps)x(mb, s) = psx(ms, b) + (1− ps)x(ms, s).

Combining these twoequations immediately implies thatx(mb, b) = x(ms, b) andx(mb, s) = x(ms, s);
therefore, the bank is (for screening purposes) pooling all information types in both [pb, pb] and [ps, ps]
by offering them the same retention terms. Since, by assumption, these two intervals overlap, LemmaC.2
implies that all analyst information types in [0, 1] are offered the same retention terms.

But since all information types are indifferent between all messages (so the bank is not screening the an-
alyst), the optimality of (M, x) implies that the bank must be generating the highest possible trading
commissions (obtained from the unique optimal action recommendation A∗). But this implies ps =
q̃∗ < q̃∗ = pb which provides the requisite contradiction. ■

LEMMA C.4.Wemust have pb ≥ q̃∗ and ps ≤ q̃∗. Moreover,
∑

m∈Mb σθ(x, p)(m) = 1 for all p ≥ pb

and
∑

m∈Ms σθ(x, p)(m) = 1 for all p ≤ ps.

PROOF. The probability with which the client chooses action b is given by

∑
m∈Mb

∑
θ∈{h,l}

µθ

∫ 1

0

σθ(x, p)(m)dFθ(p) =
∑

θ∈{h,l}

µθ

∫ 1

pb

∑
m∈Mb

σθ(x, p)(m)dFθ(p).

Since σθ(x, p)(m) ≤ 1 for all (θ, p) ∈ {h, l} × [0, 1] and allm ∈ M, there exists some p ≥ pb such
that ∑

θ∈{h,l}

µθ

∫ 1

p

1dFθ(p) =
∑

θ∈{h,l}

µθ

∫ 1

pb

∑
m∈Mb

σθ(x, p)(m)dFθ(p).

Suppose that p > pb; equivalently, suppose that there is a positive measure of analyst information types
such that

0 <
∑

θ∈{h,l}

µθ

∑
m∈Mb

σθ(x, p)(m) < 1.

We can then fix somem ∈ Mb and consider the alternative mechanism (M′, x′), whereM′ := M∪
{m′,m′′} and x′ is defined by

x′(m,ω) :=

{
x(m,ω) ifm ∈ M,

x(m,ω) ifm ∈ {m′,m′′}.

Since Lemma C.1 established that all types with p ∈ [pb, 1] are indifferent between anym ∈ Mb, it is
clear that the analyst strategy given by

σ′
θ(x

′, p)(m) := σθ(x, p)(m) for allm ∈ M and p < pb, and
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σ′
θ(x

′, p)(m) :=


1 ifm = m′ and p ≥ p− ε,

1 ifm = m′′ and p ∈ [pb, p− ε),

0 otherwise

is a best-response for any ε ∈ [0, p− pb].

When ε = 0, the client’s posterior belief q′(m′) upon observingmessagem′ (from reporting strategy σ′
θ)

is strictly higher than their lowest posterior belief minm∈Mb q(m) from anymessage in the setMb (from
reporting strategyσθ). Therefore, for ε > 0 sufficiently small,α′(m′) = b is a best response for the client
tomessagem′ (from reporting strategy σ′

θ). In other words, themechanism (M′, x′) and analyst report-
ing strategy σ′

θ induces the client to choose action b with strictly higher probability—without affecting
the probability of action s or the bank’s payoff from analyst retention. This contradicts the assumption
that (M, x) is bank-optimal and hence we must have p = pb.

This in turn implies that pb ≥ q̃∗, as otherwise α(m) = b would not be a best response for the client to
messagesm ∈ Mb.

A symmetric argument immediately delivers the desired conclusions formessages inducing action s. ■
This last lemma completes the proof of Step 1.

STEP 2: There is a cutoff κ > 0 such that, for all κ < κ, the client achieves a positive payoff in every
bank-optimal equilibrium with public contracting.

Consider the public communication mechanism (M, x) where the message spaceM = {b, φ, s} has
three messages, and a retention rule

x(m, ·) = X∗(θ, p(m), ·), where p(m)


> p̃∗ ifm = b,

∈ [p̃∗, p̃
∗] ifm = φ,

< p̃∗ ifm = s

that implements the optimal retention ruleX∗. Given (M, x), it is easy to see that

σθ(x, p)(m) =


1 ifm = b and p > p̃∗,

1 ifm = φ and p ∈ [p̃∗, p̃
∗],

1 ifm = s and p < p̃∗,

0 otherwise

is a best response for the analyst.

LetΠ∗
R be the bank’s payoff from analyst retention given this reporting strategy. Note that, by construc-

tion, the bank cannot get a higher retention payoff from any public communicationmechanism. Let the
ΠT ≥ 0 be the bank’s payoff from trading commissions for some client best response α to the analyst’s
reporting strategy. Note that the bank’s total payoff is given by

Π(M, x, σ, α) = Π∗
R + κΠT .
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Now suppose, for the sake of contradiction, that for any κ > 0, there exists a κ ∈ (0, κ) such that
there is a bank-optimal equilibrium in which the analyst’s best response satisfies pb = q̃∗ and ps = q̃∗.
Note that, from Step 1, only a bank-optimal equilibrium of this form results in a payoff of zero for the
client. By assumption, this mechanism yields the same trading commissionΠ∗

T as that from the optimal
action recommendationA∗. Moreover, there is an ε (that does not depend on κ) such that the payoffΠR

from analyst retention in this equilibrium satisfiesΠR < Π∗
R − ε. The latter inequality follows from the

assumption that, either 0 < p̃∗ < q̃∗ or q̃∗ < p̃∗ < 1 and so the bank’s payoff with public contracting is
bounded away from the full-commitment payoff.

But there exists a κ > 0 such that
Π∗

R > Π∗
R − ε+ κΠ∗

T

for all κ < κ. This in turn implies that, with public contracting and any κ ∈ (0, κ), there cannot be a
bank-optimal equilibrium with an analyst best response (satisfying pb = q̃∗ and ps = q̃∗) that induces
themaximal trading commissionsΠ∗

T . This is because there would then be another equilibrium inwhich
the bank offered (M, x) (keeping off-path behavior of the analyst and client the same as the purported
bank-optimal equilibrium) and get a strictly higher payoffΠ(M, x, σ, α).

This completes the proof of the theorem. ■

D. PROOF OF THEOREM 4

The proof is constructive. Fix an optimal direct mechanism (X∗, A∗) ∈ (∆(T )×∆(A))Θ. By defini-
tion, it satisfies the incentive compatibility constraints (R-IC) and (A-IC).

Let supp(A∗(θ)) denote the support of A∗(θ), and let Ā := ∪θ∈Θ supp(A(θ)) be the set of all action
recommendations that might realize. Since Θ is finite, we can enumerate its elements by writing Θ :=
{θ1, . . . , θN}, where N := |Θ|. We then define the message spaceM := {ma,i}a∈Ā,i=1,...,N , and for
each j = 1, . . . , N , define the contract xj : M → ∆(T ) by

xj(ma,i) := X∗(θk), where k = 1 + ((i− 1) + (j − 1)) mod N.

The set of messagesM consists ofN “publicly synonymous” copies of each action: for anyma,i ∈ M,
the receiver interprets the message as a recommendation to take action a while the principal interprets
the message as report of type θk, where k is the “cyclic” permutation defined above.

Now consider the following strategies for each player:

• the principal announces the message spaceM and the set of public communication mechanisms
M = {(M, xj)}j=1,...,N , randomizes uniformly over this set, and then privately communicates
the realization (M, xĵ) to the agent;

• in response, the agent of type θi ∈ Θ publicly announces messagema,k ∈ M with probability
A∗(θi)[a], where k = 1 +

(
(i− 1) + (ĵ − 1)

)
mod N ; and

• after observing the publicly realized messagemâ,k, the receiver takes action â.

Conversely, suppose the principal deviates and announces any other finitemessage spaceM′ alongwith a
finite set of public communication mechanismsM′ ⊂ (M′)∆(T ). We may arbitrarily choose any strate-
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gies that constitute a sequential equilibrium for this subgame, where existence of such a selection is guar-
anteed because all players pick from finite action sets; see Kreps andWilson (1982).

Wewill now establish that these strategies constitute a perfect Bayesian equilibriumof the public commu-
nication game and that the equilibrium outcome coincides with that of the optimal direct mechanism.

We begin by examining the responses to the principal’s on-path play starting with the receiver’s action
choice. After observing public messagemâ,k, the receiver’s posterior belief that the state of the world is
ω ∈ Ω is, by Bayes’ rule, given by

π(ω)
∑

θ
1
N
µ(θ|ω)A∗(θ)[â]∑

ω′ π(ω′)
∑

θ
1
N
µ(θ|ω′)A∗(θ)[â]

=
π(ω)

∑
θ µ(θ|ω)A∗(θ)[â]∑

ω′ π(ω′)
∑

θ µ(θ|ω′)A∗(θ)[â]
,

where the right-hand side is precisely the receiver’s posterior belief after observing action recommenda-
tion â from the direct mechanism. Since that latter satisfies (R-IC), it must therefore be the case that
taking action â remains a best response in the public communication game.

Now consider the agent’s message announcement decision, fixing an arbitrary type θi ∈ Θ and a real-
ization ĵ of the principal’s randomization over public communication mechanisms {(M, xj)}j=1,...,n.
Since the image of xĵ is the same as the image of X∗ and the latter satisfies (A-IC), the agent’s pay-
off is maximized by sending any message ma,j ∈ x−1

ĵ
(X∗(θi)). Given the definition of xĵ (and the

fact that it does not condition on the recommended action), this implies that all messages ma,j with
j = 1 + ((i − 1) + (ĵ − 1)) mod N are best responses for the agent. Moreover, since the agent is
indifferent across all messages in {ma,j}a∈Ā, mixing with the distributionA∗(θi) is optimal.

Finally, note that the principal is indifferent between offering the agent any public communicationmech-
anism from the set M = {(M, xj)}j=1,...,N . In particular, the agent’s contractual outcome does not
depend on the realization; because the receiver does not observe the realization, their action is also inde-
pendent of the realization. Thus, uniform randomization is optimal for the principal and on-path play
results in the identical outcomes as the optimal direct mechanism.

We complete the proof by observing that the principal has no incentive to deviate since a perfect Bayesian
equilibrium of any subgame (following the deviation) must deliver a lower payoff than that from full
commitment. ■
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