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Abstract

A decision maker (DM), who will take a binary decision, cares about his reputation

for being “good”, i.e., wanting to accord his action choice with public evidence, as op-

posed to being “bad”, i.e., having a fixed partisan agenda regardless of the evidence.

While the decision is taken after evidence is realized, the DM has the option to take a

“stand” beforehand, i.e., to communicate his intentions via a cheap-talk message. A

wide range of equilibria exist and are characterized by how much the good DM re-

veals about his standards at this initial communication stage. The most informative of

these is ex-ante signaling which sees the DM effectively commit to a contingent plan as a

function of the realized evidence. Our main theorem states that ex-ante signaling mini-

mizes the probability that the DM follows his partisan agenda across all equilibria. We

also consider how the design of the investigation—the distribution of evidence—affects

outcomes in the presence of communication prior to its realization. The investigation

mitigates the DM’s partisan behavior more when the distribution of evidence is “un-

predictable” as this hinders the DM in targeting his announced contingent plan.

1. Introduction

Across a wide array of institutions, individuals’ decisions are scrutinized for whether
they align with public objectives. This often comes down to whether the decision accords
with some public evidence as opposed to the potentially biased agenda of the decision
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maker. While, the decision is only made after the evidence is made public, in many con-
texts, it takes time for the evidence to be realized. This gives the opportunity for the de-
cision maker to “take a stand”, or state their intentions, before the uncertainty is resolved.
Our paper explores how such “ex-ante” signaling efforts affect the choices of these reputa-
tionally concerned agents. To make this concrete, consider the following examples.

1. Political scandals often initiate investigations which are then followed by a decision
to censure, impeach, or expel the involved politician. Moderate representatives care
about their reputation for integrity, i.e., wanting to decide based on the objective evi-
dence instead of partisan objectives. Before the investigation concludes, these repre-
sentatives can make informative statements about how they will decide or defer and
only signal with their eventual decision. An example is the impeachment inquiry ini-
tiated by Speaker of the House Pelosi in September 2019 concerning a call between
President Trump of the United States and President Zelensky of Ukraine.1 Despite
the inquiry being ongoing, various pivotal senators were interviewed and asked to
weigh in about their intended impeachment votes.2

2. Many government organizations such as the Federal Trade Commission (FTC) or
Food and Drug Administration (FDA) are tasked with approval decisions. The of-
ficials involved may have their idiosyncratic preferences about each issue, but also
have a desire to project integrity rather than appearing to seek a particular outcome
regardless of the specifics. These organizations can declare their standards for ap-
proval up front or decide on a case-by-case basis after observing the evidence. For
example, in 2020, national drug regulatory agencies were eager to approve a safe
COVID-19 vaccine but faced credibility worries that they were rushing the process.
The FDA laid out a specific efficacy threshold in clinical trials for approval, whereas
the European Union’s counterpart deliberately provided no such lower bound (Singh

1 A clear example of these politicians’ concern for appearing non-partisan is that the senate voted unani-
mously to release the transcript of the call and whistleblower complaint despite President Trump and many
Republican party operatives urging against it. (See Mcardle, Mairead (2019) “Senate GOP Unanimously Ap-
proves Dem Resolution Calling for Release of Whistleblower Complaint” National Review, September 24).
More broadly, politicians are frequently rewarded for appearing non-partisan, e.g., John Hickenlooper ben-
efited from taking bipartisan positions in the 2020 presidential election (see Bernstein, Jonathan (2013) “Un-
derstanding the importance of a reputation for bipartisainship,” Washington Post, July 24.)

2 Some made informative statements: Senator Romney reported that the transcript was “troubling” and
Senators Graham, Ernst, and Toomey reported their doubts that convincing evidence of a quid pro quo
would turn up. Others refused to comment: Senator Sasse criticized his colleagues for jumping to conclu-
sions, and pledged to wait and see until the investigation was concluded. See Costa, Roberts (2019) ”Cracks
emerge among Senate Republicans over Trump urging Ukrainian leader to investigate Biden” Washington
Post, September 25.
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and Upshur (2021)). Similar issues arise in the decisions of other government agen-
cies, such as the FTC deciding whether to approve a merger.

3. University admissions committees would like to appear as though their decisions
are based on academic potential despite being pressured to consider the legacy sta-
tuses, donations, or other non-academic features of their applicants. Many American
universities practice “holistic” admissions and will not give exact criteria for admis-
sion. The lack of transparency in holistic admissions has been criticized for facilitat-
ing higher admission rates for unqualified applicants.3 One alternative is to publicize
specific criteria for admission, a practice common in universities throughout Europe
and Asia.4,5

We study three important questions in such settings. First, how informative can commu-
nication be prior to the revelation of evidence, e.g., how much can politicians distinguish
their standards during an investigation? Second, how does informative communication
about hypothetical plans affect outcomes, e.g., would we expect that Republican senators
who indicate conditions for impeachment up front convict more or less than those who
wait and see, and would universities admit more donor applicants were they to publicize
admissions standards rather than use holistic admissions? Third, how does the type of
uncertainty about the evidence affect outcomes in the presence of communication? This
is important in settings where the investigation is the choice of some “investigator,” e.g.,
how should Speaker Pelosi conduct the impeachment inquiry to get the most Republican
senators to convict, and how should firms provide evidence about potential mergers to the
FTC to ensure the highest chance of approval?

Our model features a single decision maker (DM), and an inactive Bayesian observer.
The game consists of two stages: a communication stage and a decision stage. At the
communication stage, the DM, sends a cheap-talk message about his preferences.6 At the

3 Pinker, Steven (2014) “The Trouble With Harvard” The New Repbulic, September 4.
4 Frisancho and Krishna (2016) describes how admission to Delhi University is automatic if an applicant’s

exam score crosses a social group dependent cut-off.
5 Other examples abound. Many academic journals have required or offered preregistration (see Warren,

Matthew (2018) “First analysis of ‘pre-registered’ studies shows sharp rise in null findings,” Nature, October
24. ), i.e., specifying the design of the study and conditions for acceptance before the data is observed or
analyzed. While preregistration is often discussed in terms of its incentive effects on authors, it will also have
effects on which papers are selected by reputationally concerned editors.

6 While cheap-talk communication fits statements made by pivotal representatives during political inves-
tigations, our applications to regulatory agencies are better fit by endowing the DM with the ability to commit
to a contingent plan. As we show in Subsection 6.1, the focal equilibrium of our model with cheap talk also
prevails in the alternative model where the DM is endowed with commitment, and so our main results apply
to both cases.
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decision stage, the evidence e ∈ R is realized and the DM chooses a binary action, either a =

1 or a = 0. In addition to the evidence, the DM’s preferences over the action also depend
on his private type, which is either bad — a “partisan”— or good — a “non-partisan.” The
non-partisan would like to accord his action with the evidence and his privately known
leniency ℓ; more specifically he would like to take a = 1 more if e is higher or ℓ is lower.
On the other hand, the partisan does not care about taking the right decision and suffers
a constant disutility from taking a = 1 regardless of the evidence. The leniency can be
interpreted in two ways: (i) as idiosyncratic heterogeneity in standards for this particular
decision, e.g., different politicians have different views about the appropriate extent of
executive power while still maintaining integrity, or (ii) private non-verifiable information
about the “right” standard, e.g., FDA officials have specific expertise about the drug being
considered. Finally, the DM also cares about his reputation for being a non-partisan in the
eyes of the observer who sees the DM’s cheap-talk message, the realized evidence, and the
DM’s chosen action.

In the first part of our paper, we analyze the model for a fixed exogenous distribution of
evidence or “investigation”. In the second part, we introduce an investigator who specifies
the investigation subject to constraints. In our main specification, the investigator seeks to
maximize the probability of conviction.7

We first show that each equilibrium can be pinned down by how much information the
communication stage transmits about the leniency of the non-partisan type. Two salient
cases are the extremes: (i) when the communication stage involves babbling, and all sig-
naling is done at the decision stage, and (ii) when the communication stage perfectly com-
municates his leniency, and there is no additional signaling at the decision stage. We term
these equilibria ex-post and ex-ante signaling respectively. It turns out that ex-ante signal-
ing is tantamount to the DM committing to a contingent plan as a function of the evidence
revealed, e.g., stating “I will convict if the evidence meets ... standard”. Conversely, ex-post
signaling could be interpreted as the DM saying “I will not speculate on hypotheticals”.

It is not apparent how changing the equilibrium would affect outcomes: if anything, the
effective “commitment power” provided by ex-ante signaling would seem to benefit the
DM and perhaps allow the partisan choose his preferred action more frequently. However,
Theorem 1 shows that ex-ante signaling has the highest probability of a = 1 across all equi-
libria. In addition, ex-ante signaling delivers a higher probability of a = 1 than ex-post
signaling for every evidence realization. This means that politicians who answer interview-
ers’ questions will tend to break with their party more than those who successfully “dodge

7 Subsection 6.3 shows that many of our conclusions are robust to the case in which the investigator’s
preferences are evidence dependent.
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the cameras”; government agencies that specify approval criteria up-front will go against
their appointers’ political interests more than those who decide on a case-by-case basis;
and setting clear admissions criteria will lead to more meritocratic admissions decisions
relative to holistic admissions. The broad intuition is simple: before the realization of ev-
idence, the DM is willing to make stronger claims in order to attain a higher reputation
because there are many evidence realizations under which these stronger claims do not
require a different action than weaker ones. Conversely, under ex-post signaling, after a
“pivotal” evidence realization occurs, obtaining a high reputation requires taking the high
action with probability one. While this simple reasoning is sufficient to prove the result
with two leniency ℓ types, the full intuition revolves around the “convexity of reputation”
which we elaborate on in Subsection 4.2.

We then move to the investigator’s design problem. In our main specification we con-
sider the investigator flexibly choosing an information structure about a binary state, e.g.,
guilt or innocence of a politician. We focus on the ex-ante signaling equilibrium and char-
acterize the investigation that maximizes the probability of a = 1. Even in the absence of a
designer, our characterization speaks to how the distribution of evidence affects outcomes
when the DM takes informative stands, i.e., under ex-ante signaling.

One main takeaway is that the optimal investigation admits no mass points unlike that
seen in familiar Bayesian persuasion design problems. This is because the DM responds
to changes in the investigation by altering which leniency he claims at the communica-
tion stage. This is important from the investigator’s perspective: we show that, across
all investigations, the investigator’s interests (i.e. maximizing probability of conviction)
and partisan’s interest are exactly misaligned in equilibrium. The implication is that the in-
vestigator wants to imbue as little predictability as possible to avoid “targeting” from the
partisan, i.e., declaring thresholds just above where evidence is likely to be.

The layout of the paper is as follows. Section 2 describes our model. Section 3 de-
scribes basic properties of and categorizes all equilibria. Section 4 states our main results
comparing equilibria. Section 5 characterizes the investigator’s optimal investigation and
describes comparative statics. And lastly, Section 6 discusses equilibrium selection, alter-
native commitment and timing assumptions, and various robustness results.

1.1. Literature Review

We add to the literature studying the impact of reputation concerns (e.g., Holmström
(1999), Scharfstein and Stein (1990), Prendergast and Stole (1996)), in particular those pa-
pers that include cheap talk (e.g., Sobel (1985), Morris (2001), Ottaviani and Sorensen
(2006a), Ottaviani and Sorensen (2006b)). Our decision maker’s preferences are closest to
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those in Morris (2001). He studies an informed sender who seeks a reputation for being re-
sponsive to the state—similar to our non-partisan—rather than having a state-independent
preference—similar to our partisan. The main difference in our preferences is that we have
heterogeneity in the “good” type’s preferences, i.e., there is a non-degenerate distribution
of leniency types. Importantly, communication has no value in our model when the le-
niency type distribution is degenerate, but can otherwise change equilibrium outcomes in
a significant way.8

We are also connected to the costly signaling literature initiated by Spence (1973). As
in Bénabou and Tirole (2006), Esteban and Ray (2006), and Frankel and Kartik (2019), the
multidimensional type of the DM—namely preference heterogeneity of the non-partisan
in our model—precludes separating equilibria. Frankel and Kartik (2022) and Ball (2022),
among others bring a design perspective to such settings, studying how to design scoring
systems in the presence of strategic manipulation.9,10

Previous works in the signaling and communication literatures have studied the impact
of exogenous signals about a sender’s private type. Daley and Green (2014) study how,
in a Spence signaling model, the sender’s equilibrium actions are impacted by the revela-
tion of a informative signal on his type after his costly signaling action is chosen. Similar
models are studied by Kurlat and Scheuer (2021), who allow receivers to differ in the infor-
mativeness of their signal on the sender’s type, and Alós-Ferrer and Prat (2012), who allow
exogenous signals to be revealed over time via on-the-job learning about the sender’s type.
Chen (2012) studies how the timing of cheap-talk communication by a privately informed
sender relative to an informative signal shapes what is communicated and compares out-
comes when communication before the public signal to when it occurs after.

Our results also speak to the literature on the impacts of transparency in the presence
of reputational concerns. Papers such as Prat (2005) and Levy (2007) study how a (purely)
reputationally motivated agent’s action changes when they know their action will be re-
vealed relative to the action being hidden (i.e., transparency increases). Our paper instead

8 Other papers study different reputation incentives with related interpretations. The advisor in Durbin
and Iyer (2009) seeks a reputation for being “incorruptible” (i.e., valuing bribes relatively less as compared
with outcomes). Olszewski (2004) and Acemoglu et al. (2013) study a sender who prefers to be seen as honest.
In settings with a biased advisor (i.e., one who does not make decisions), a positive reputation for competence
(e.g., as in Prendergast (1993), Prat (2005), and Li (2007)) induces a preference for different actions to be taken
based on the state or evidence.

9 Rappoport (2022) considers designing optimal delegation policies for agents engaged in costly signaling.
10 Ali and Bénabou (2020) considers a costly signaling model where there is a common and, more or less,

public variable that affects signaling incentives, but there is no communication prior to its revelation. Kartik
and Van Weelden (2018) also features communication before the revelation of uncertainty and subsequent
costly signaling, but considers different material and reputation incentives of the DM.
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studies how communicating the decision maker’s strategy impacts actions choices when
the decision maker has both material and reputational concerns and actions are always
revealed. Increased transparency in our model corresponds to more informative commu-
nication about the agent’s strategy (i.e., do they specify their strategy before evidence is
realized).11

Our study of optimal investigations ties the model to the information design literature
started by Kamenica and Gentzkow (2011). The impact of uncertainty over the receiver’s
type on information disclosure, which Kamenica and Gentzkow (2011) show can be han-
dled using their concavication approach, has also been studied in papers such as Alonso
and Câmara (2016), Kolotilin et al. (2017) and Kolotilin (2018). We differ from these previ-
ous papers by considering how the design of information impacts the DM’s choices prior
to evidence being realized. Recent papers such as Boleslavsky and Kim (2018) and Za-
pechelnyuk (2020) study information design in the presence of moral hazard problem
while Hörner and Lambert (2020) study feedback design in a dynamic career concerns
model. Boleslavsky and Kim (2018) develop concavification techniques analogous to those
used in Kamenica and Gentzkow (2011) in the presence of moral hazard. Our model, in
contrast, looks at the impact of the investigation on communication strategies (and their
subsequent impact on action choices). The impact of information disclosure where agents
are concerned with beliefs on their type also arises in mechanism design models with lim-
ited commitment (e.g., Doval and Skreta (2022)).

Lastly, there is of course a broad political economy literature concerning partisanship
and partisan reputations. In these models (e.g., in Maskin and Tirole (2004), Acemoglu
et al. (2013), Kartik and Van Weelden (2018), and Agranov (2016)) electoral incentives push
against appearing “partisan,” in the sense of having extreme policy preferences relative
to the median voter. This reputation incentive could be included in our framework by
encoding higher reputation payoffs for some leniency types, namely those close to the
median voter, without changing many of our main intuitions (see Section 6). Fox and Van
Weelden (2010) models partisans as politicians who want to prop up the reputation of other
officials in their own party in addition to their own. Bussing and Pomirchy (2022) consider
a similar definition of partisan reputations to our paper in the context of political oversight
and checks and balances, but among other differences, do not focus on communication.

11 Our comparison between ex-ante signaling, which specifies a complete contingent plan, and ex-post sig-
naling, which waits until the evidence is realized echoes themes from the literature on incomplete contracts
initiated by Grossman and Hart (1986) and Hart and Moore (1988). There it is assumed to be arbitrarily costly
to specify complete contracts/contingent plans. Subsequent papers (e.g., Aghion et al. (1994)) have studied
the design of more complex contracts to avoid the inefficiencies caused by contractual incompleteness; our
results complement these by highlighting how communication and high reputation incentives can overcome
the inability to commit to fully specified contingent plans.
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Related incentives also arise in models of the media (e.g., Shapiro (2016)) where journalists
want to appear “objective.”

2. Model

Overview There are three players: an investigator, a decision maker (DM), and a Bayesian
observer. The DM eventually chooses a = 1 or a = 0. His preferences over this decision
depend on his privately known type θ ∈ Θ and the realized evidence e ∈ E ≡ R. The DM
also values his reputation in the eyes of the observer.

The timing is as follows. In the initial communication stage, the evidence is unknown
and the DM only knows its CDF F ; we assume

∫
E
edF (e) is well-defined and finite. The

DM sends a cheap-talk message m ∈ M to the observer, where M is some sufficiently large
metrizeable space.12 After the message is sent, the decision stage begins: the evidence e

is publicly revealed and then the DM chooses an action a. The observer sees the DM’s
message and action choice in addition to the realized evidence and forms beliefs, after
which payoffs are realized.

Our paper is broken into two main parts. The first part of the paper analyzes the case
where the investigation F is exogenous and arbitrary, i.e., the investigator is inactive. The
second part of the paper considers an investigator who can design F , with restrictions, to
suit his interests.

Preferences The DM can either be a partisan (P ) or a non-partisan (N ). The prior proba-
bility of N types is q ∈ (0, 1). Non-partisan DMs have heterogeneous and privately known
leniency ℓ ∈ R. Conditional on being a non-partisan, the distribution of ℓ has CDF G with
L ≡ Supp(G). We assume for expositional convenience that either F or G is atomless. We
will refer to non-partisans with leniency ℓ as “ℓ types.” Accordingly, the set of types is
Θ = L ∪ {P} with prior distribution ν0 ∈ ∆(Θ).13 The DM also values his reputation in
the eyes of the observer of being an N type. The utility of type θ ∈ Θ from taking action a,
given evidence e, and public belief µ that he is type N is given by

u(θ, e, a, µ) ≡

−ac+ ρµ if θ = P,

a(e− ℓ) + ρµ if θ = ℓ,

12 We will assume |∆(Θ)| ≤ |M | where, for a metrizable space Y , we let ∆(Y ) denote the set of all Borel
probability measures over Y , endowed with the weak∗ topology.

13 Then q = ν0(L) = 1− ν0(P ) and G(ℓ) = ν0({ℓ′ : ℓ′ ≤ ℓ}|θ ∈ L).
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Partisan DMs always want to choose a = 0 and their disutility c > 0 from a = 1 is
independent of the evidence realization. N types prefer a = 0 more if (i) the evidence is less
convincing (e is lower), or (ii) they are more lenient (ℓ is higher).14 Subsection 2.1 elaborates,
but our leading interpretation of leniency is that it is private non-verifiable information
about the “correct” evidence threshold for action a = 1. This also justifies the absence of
ℓ in the P type’s utility for the same reason that e does not appear: the P type does not
care about taking the right decision.15 The weight ρ > 0 parameterizes how much the
DM values reputation. We refer to the first component of the payoff that depends on the
action as the material payoff and ρµ as the reputation payoff. We assume that reputation
incentives are strong in the following sense.

Assumption 1. ρ > 2max{ c
q
, c
1−q

}.

Broadly, this assumption guarantees that the reputation incentives can be strong enough
to convince P to choose a = 1. Note that if ρ < c, then P will never choose a = 1. As-
sumption 1 is stronger and, as we will show, ensures that, given any public history, P will
choose a = 1 with positive probability if some ℓ types do as well.

For our main specification, the investigator maximizes the probability of a = 1, namely
his utility is equal to a. In Subsection 6.3 we extend many of our main takeaways to a
model where the investigator’s preferences over a depend on e.

Strategies and Equilibrium We study perfect Bayesian equilibria with an additional re-
finement formalized below—hereafter, simply equilibria. An equilibrium E consists of a
communication-stage strategy σ : Θ → ∆(M), a decision-stage strategy ζ : M × E × Θ →
{0, 1}, an interim belief after the messaging stage ν1 : M → ∆(Θ), and a final belief after
the decision stage ν2 : M × A× E → ∆(Θ), such that for all θ ∈ Θ, m ∈ M and e ∈ E,

1. ν1 is obtained from σ using Bayes rule.16

14 The utility function over actions of N types is assumed to be a(e − ℓ) for convenience. Our results
still hold (with notational tweaks) if the utility difference between a = 1 and a = 0 is increasing in e and
decreasing in ℓ.

15 Nonetheless this introduces an asymmetry between N types and P types in our model in that only
N types have privately observed heterogeneity in their preferences. One could envision a model that also
endowed P with unobserved heterogeneity in his disutility from taking a = 1 denoted c. Such heterogeneity
tends to place limits on the amount of informative communication at the communication stage. For example,
if there is only one ℓ type, and many c types, one can show that the unique equilibrium involves babbling at
the communication stage. Thus, our model omits heterogeneity in c in order to most parsimoniously study
pre-play communication.

16 That is, for all Borel Θ̂ ⊆ Θ and M̂ ⊆ M ,
∫
Θ̂
σ(M̂ |θ)dν0(θ) =

∫
M̂

ν1(Θ̂|m)
∫
Θ
dσ(m|θ)dν0(θ)
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2. ν2 is obtained from ζ using Bayes rule with prior ν1(·|m).17

3. σ(Mθ|θ) = 1 where Mθ ≡ argmaxm∈M
∫
E

(
maxa∈{0,1} u(θ, e, a, ν2(L|m, e, a))

)
dF (e).

4. ζ(Aθ,m,e|θ,m, e) = 1 where Aθ,m,e ≡ argmaxa u(θ, e, a, ν2(L|m, e, a)).

In addition, we impose a version of the D1 refinement à la Cho and Kreps (1987) and
Ramey (1996). Let Θm ≡ Supp(ν1(·|m)) ⊆ Θ be the support of the interim belief on the DM’s
type following message m but before an action is chosen. We impose the D1 refinement at
the decision stage, after evidence has been realized and message m has been sent, where
the type space is Θm.18 In our framework this refinement simplifies to the following: if,
after sending message m and observing evidence e, the DM takes an off-path action, the
observer believes the DM to be the type(s) in Θm who would benefit the most in terms of
their material payoff from this deviation relative to their equilibrium payoffs.19

We begin by defining some useful notation. Let UE
θ (F ) be the expected utility of type

θ given investigation F and equilibrium E .20 Let vE(e, F ) be the probability of action
a = 1 given evidence realization e, investigation F , and equilibrium E , and let V E(F ) ≡∫
E
vE(e, F )dF (e) be the associated ex-ante probability of a = 1 (i.e., the investigator’s ex-

pected utility).

The equilibrium outcomes associated with equilibrium E are the profile of type-dependent
expected utilities and probability of action a = 1 as a function of the evidence, i.e., given
by ({UE

θ (F )}θ∈Θ, {vE(e, F )}e∈E). Two equilibrium outcomes are equivalent if {U (·)
θ (F )}θ∈Θ

and {v(·)(e, F )}e∈E are the same for a probability one set of types and evidence realizations
respectively. With some abuse of terminology, we say a set of equilibria admit a unique
equilibrium outcome if the associated set of equilibrium outcomes are all equivalent to
each other.

17 That is, for all Borel Θ̂ ⊆ Supp(ν1(·|m)) ,
∫
Θ̂
ζ(a|θ,m, e)dν1(θ|m) = ν2(Θ̂|m, e, a)

∫
Θ
ζ(a|θ,m, e)dν1(θ|m)

and Supp(ν2(·|m, e, a)) ⊆ Supp(ν1(·|m)).
18 Because our game consists of a communication stage prior to the revelation of an uncertain e, it does not

fit in the static signaling games studied in the literature. We are not aware of existing notions that formalize
this natural “ex-interim D1” refinement. Another alternative would be to use an “ex-ante D1” refinement,
i.e., with the full type space Θ. One can show that in our model this approach yields a less expositionally
convenient but essentially identical set of equilibria: every ex-ante D1 equilibrium is also an ex-interim D1
equilibrium, and every ex-interim D1 equilibrium outcome is the limit of some sequence of ex-ante D1 equi-
librium outcomes.

19 We provide the formal definition of D1 in the context of our game in the Appendix.
20 While our outcome variables depend on all model parameters, the dependence on the investigation F

and equilibrium E is made explicit for expositional clarity.
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2.1. Discussion

Partisan Preferences: It is important to note that even though a high ℓ type and P both
prefer the a = 0 for “essentially” all evidence realizations, this does not mean their pref-
erences are equivalent. This perspective ignores the main tradeoff the DM faces between
reputational and material payoffs, a tradeoff that makes the intensity of preferences over
actions important. If we instead modeled the “bad” P type as a very high ℓ type, then this
would mean P prefers to take action a = 0 much more than he values reputation. Indeed,
this is the interpretation of bad types in the canonical Spence (1973) education model: bad
types have a higher cost of education or, equivalently and indistinguishably, a lower value for
reputation. Most of our applications do not fit well with this interpretation, e.g., it does
not seem appropriate to model partisan politicians as being defined by their lack of office
motivation, or a corrupt FTC official as not caring about being fired.

Instead, as mentioned earlier, our preferences mirror those in Morris (2001). The distinc-
tion between good and bad types is that good types care more about getting the decision
“right” than bad types. For extreme evidence realizations, non-partisan types care more
about stakes of the decision, whereas partisans care more about reputation. However, for
middling evidence realizations, where the stakes of the decision are low for a non-partisan
type, this comparison is flipped. Of course, what counts as high-stakes versus low-stakes
evidence depends on ℓ, which is the DM’s private information.

Reputation for Leniency: We assume that reputational payoffs are purely determined by
the observer’s belief that θ ∈ L rather than their beliefs about which ℓ type the DM may be.
This assumption streamlines our exposition and is natural in applications in which ℓ repre-
sents the DM’s transitory private information or idiosyncratic preferences that are only rel-
evant for the decision at hand. For example, a politician may possess classified information
about the relevant scandal. However, in some settings the DM may have have competing
reputation concerns to appear as different leniency types; for example, a politician may
value appearing to have positions closer to the median voter in addition to appearing non-
partisan. In Section 6, we show that, under a modified version of Assumption 1, all of our
results extend to a model in which the reputation payoff from the observer holding belief
µ ∈ ∆(Θ) is given by E[r(θ)|θ ∼ µ] for some function r(·) such that r(ℓ) > 0 = r(P ) ∀ℓ.

Commitment Versus Cheap Talk: We assume that the communication stage involves the
DM sending a cheap-talk message. However, in many of our motivating examples the DM
may have the option or obligation to commit to a contingent plan before the evidence is
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realized. For example, the FDA can mandate that its officials specify approval criteria prior
to the start of clinical trials and university admissions committees can have a policy of pre-
specifying admissions criteria prior to receiving applications. In addition, agents may be
able to “opt to commit,” even when they are not forced to, by verifiably delegating the
decision or making publicly enforceable statements. As Section 3 elaborates, the current
cheap-talk model admits an equilibrium where the DM effectively commits at the commu-
nication stage to a contingent plan as a function of the realized evidence. Subsection 6.1
shows that the unique equilibrium outcomes will be the same as this most informative
cheap-talk equilibrium when he has access to commitment power.

3. Equilibrium Characterization

This section characterizes equilibrium behavior. First we establish properties that must
hold across all equilibria in Lemma 1. Then we taxonomize the set of equilibria in Lemma 2.
It will be useful to make statements in terms of induced mappings from evidence to actions,
i.e., x ∈ X ≡ {x′ : E → {0, 1}}. Define thresholds ẽℓ ≡ ℓ − c and the threshold contingent
plan xℓ(e) ≡ 1(e ≥ ẽℓ).

Lemma 1. For any equilibrium E , the following hold:

1. The P type positively mixes over all messages sent by N types, i.e., σ(·|P ) and ΣN(·) ≡∫
L
σ(·|ℓ)dG(ℓ) are mutually absolutely continuous.

2. N types choose actions consistent with xℓ with probability one, i.e.,∫
E

∫
L

∫
M

ζ(xℓ(e)|ℓ,m, e)dσ(m|ℓ)dG(ℓ)dF (e) = 1.

3. After sending message m, the P type positively mixes over the action choices of ℓ types who
also send m, i.e.,

∀m ∈ MP , ν1(L|m) > 0 and ∀e, a,
∫
L

ζ(a|ℓ,m, e)dν1(ℓ|m, θ ∈ L) > 0 ⇐⇒ ζ(a|P,m, e) > 0.

The interpretation of the 1st and 3rd point is that P cannot be distinguished from N

following any “on-path” history. A key implication is that P is indifferent across mimicking
the behavior of any ℓ type, at both the communication and decision stages. These points
follow from the high reputation incentives. If a message is sent only by P then it yields an
equilibrium reputation and utility of 0 for P . However, P can obtain an expected utility
of at least ρq − c by mimicking the strategy of some ℓ type, which is strictly preferred by
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Assumption 1. Conversely, a message that is sent only by ℓ types yields a reputation of
1, so P ’s equilibrium utility must be at least ρ − c. However, P gets at most an expected
reputation payoff, and thereby also utility, of ρq from following the equilibrium strategy,21

which is strictly less than ρ−c again by Assumption 1. The argument for why, after sending
message m, P mixes over the actions chosen by ℓ types who also send m is similar, but has
to contend with the subtlety that the relevant utility bounds are now dependent on ν1(L|m)

instead of the prior q. The proof shows that any equilibrium ν1(L|m) is close enough to q

such that the above argument goes through.

The second point says the ℓ type’s action choice as a function of the evidence (almost
surely) follows the fixed rule xℓ(e).22 To avoid probability one caveats, going forward we
refer to the outcome equivalent equilibria where N ’s actions correspond with xℓ(e) every-
where, i.e., ∀e ∈ E, ℓ ∈ L. The ℓ type’s action choice is not only constant across equilibria
and messages, but also across parameters of the model such as the investigation and the
type distribution of the DM. This independence should not be misunderstood as arising
because the ℓ types choose their ideal action unaffected by reputation incentives. Indeed, ℓ
types engage in “political correctness” (Morris (2001)): in order to signal non-partisanship
they select the partisan’s dis-preferred action a = 1 for e ∈ (ℓ−c, ℓ) where they prefer a = 0.
Instead, xℓ is distinguished by the fact that it provides the highest signaling value to the ℓ

type: xℓ maximizes the utility difference between ℓ and P types across all contingent plans
x ∈ X .

The intuition behind point 2 is as follows. Suppose first that both actions are on path
following some evidence realization e. This implies that P mixes over a = 1 and a = 0.
However, the type ℓ̃ ≡ e + c has the same preferences as P given e, i.e., he has the same
trade off between the cost of a = 1 and reputation. Combined with the fact that N ’s utility
for a = 1 is decreasing in ℓ, all ℓ > ℓ̃ must choose a = 0 and ℓ < ℓ̃ must choose a = 1, i.e.,
ℓ types choose actions consistent with xℓ. Alternatively, if a = 0 (respectively a = 1) is off
path, then it must be that ℓ > ℓ̃ (respectively ℓ < ℓ̃) for every ℓ ∈ Supp(ν1(·|m)); otherwise,
by D1, the off-path action would be interpreted as originating from the ℓ type that violates
these inequalities, and this off-path action would be a profitable deviation for P .

We next identify and categorize the set of equilibrium outcomes. For any equilibrium,
the communication stage conveys information about the leniency of the DM conditional

21 This follows from corollary 2 in Hart and Rinott (2020) which shows that, for any signal structure, and
for any state ω, the expected posterior belief of ω conditional on state ω is higher than the prior probability of
ω.

22 The reason for the almost surely caveat is that action choices are not pinned down for evidence-leniency
pairs where e = ẽℓ. However, this set has zero probability given our assumption that either F or G are
atomless. Indeed, this is our only reason for making this assumption.
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on them being a non-partisan. We call this induced Bayes plausible information structure
Λ ∈ ∆(∆(L)) the Leniency Information Structure (LIS) associated with the equilibrium
E .23 This is formally defined as, for each Borel H ⊂ ∆(L), Λ(H) =

∫
m∈M 1

(
ν1(·|m, θ ∈ L) ∈

H
)
dΣN(m).

Lemma 2. For each LIS, the set of associated equilibria admit a unique equilibrium outcome.

There are two main takeaways from the lemma. First, equilibrium outcomes can be
uniquely described by the associated information the communication stage conveys about
the leniency of the DM. Second, every LIS is associated with an (potentially different) equi-
librium outcome. That is, unlike familiar cheap-talk models (e.g., Crawford and Sobel
(1982)), there is no monotonicity restriction on the equilibrium strategies of ℓ types. More
importantly, this permissiveness means that in equilibrium the communication-stage mes-
sage can convey a wide range of information about ℓ, from the perfectly informative LIS
where each ℓ sends a different message to the perfectly uninformative LIS where all DM
types send the same message. At the beginning of the next section, we further inspect these
salient extreme cases.

Lemma 1 and Lemma 2 provide an effective blueprint for constructing an equilibrium.
An equilibrium outcome is pinned down by its LIS which can be directly imputed to the
messaging strategies of the ℓ types at the communication stage. Each of these ℓ types follow
up with xℓ at the decision stage no matter which message they initially chose. P mixes
over all messages sent by the ℓ types at the communication stage and all on-path follow up
contingent plans at the decision stage in order to ensure their own indifference.

The above heuristic for constructing equilibrium strategies is valid because of the fol-
lowing property: if, for some candidate equilibrium strategies, the P type is indifferent
across messages, then each ℓ type’s incentive are ensured as well. Figure 1 displays the
reasoning. Consider ℓ < ℓ who send different messages m and m respectively. Suppose
the P type is indifferent between sending m and following up with xℓ (i.e., using threshold
ẽℓ), and sending m and following up with xℓ (i.e., using threshold ẽℓ). This means that the
expected reputational difference between the latter and the former strategy must be equal
to the material utility difference from switching their action choice for e ∈ (ẽℓ, ẽℓ), i.e., the
absolute value of the area R1 + R2 measured according to the distribution of evidence F .
But notice that if type ℓ considers deviating from m and xℓ to m and xℓ, they only gain the
absolute value of R1 in material utility which does not compensate them for the reputa-
tional loss of R1 + R2. Analogously if ℓ considers deviating from m followed by xℓ to m

23 Formally, Bayes-plausibility is satisfied if for all Borel L̃ ⊂ L, ν0(L̃) =
∫
µ∈∆(L)

µ(L̃)dΛ(µ).
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Figure 1: Difference in material utility between a = 1 and a = 0 for different DM types as a
function of evidence.

followed by xℓ they lose the absolute value of R1+R2+R3 in material utility from using the
lower threshold, which is greater than the reputational gain R1+R2. Thus, P ’s indifference
ensures each ℓ type’s incentives.24

4. The Effects of Informative Stands

In light of Lemma 2, we refer to equilibria by their associated LIS. We describe the two
salient extreme cases below.

Ex-Ante and Ex-Post Signaling: We refer to the equilibrium associated with the perfectly
informative LIS as ex-ante signaling and denote it as equilibrium α. Under ex-ante sig-
naling, each ℓ type sends a different message mℓ. Consistent with Lemma 1, P positively
mixes over these messages. After sending mℓ, the DM follows xℓ at the decision stage. In
other words, sending mℓ is tantamount to committing to a contingent plan, i.e., saying “I
will take action a = 1 if and only if e ≥ ẽℓ”. While there is still uncertainty about the DM’s
partisanship following message mℓ, the equilibrium has no residual strategic uncertainty:
there does not exist a positive probability set of m, e for which both actions are on-path
after message m and evidence e is realized.

At the other extreme is the equilibrium associated with the uninformative LIS which
we term ex-post signaling and denote as equilibrium β. Under ex-post signaling the DM

24 Of course, each ℓ type can consider other follow up contingent plans after deviating at the communica-
tion stage. The generalization of the point above is that xℓ maximizes the expected utility difference between
type ℓ and type P across all contingent plans. The proof of Lemma 2 uses this to show that if P is disincen-
tivized from such deviations then so is ℓ.
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“babbles,” e.g., regardless of his type, he sends the same message interpreted as “I will
wait and see until the investigation concludes.” Ex-post signaling admits residual strategic
uncertainty under the weak condition that there exist two leniency types ℓ′, ℓ′′ such that
F (ẽℓ′) ̸= F (ẽℓ′′). A unique feature of ex-post signaling is that because the communication
stage is uninformative, given an evidence realization e, outcomes do not depend on the
investigation F , i.e., vβ(e, F ) ≡ vβ(e) is independent of F (and so we drop the associated
dependence).

The above description highlights the extent to which the DM can take “informative
stands” before the evidence realizes; under ex-ante signaling, he can effectively publicly
commit to his contingent plan. Alternatively, the DM can decide on a case-by-case basis
obviating the communication stage. Our main result looks at how different communica-
tion protocols impact the probability of taking the action. First, we introduce one more
technical condition. We say there is mild agreement if for every pair ℓ′, ℓ′′ ∈ Supp(G),
∃e ∈ Supp(F ) such that xℓ′(e) = xℓ′′(e), i.e. no two ℓ types always choose different actions
in equilibrium.

Theorem 1. Ex-ante signaling delivers the highest probability of a = 1 among all equilibria, i.e.,
V α(F ) ≥ V E(F ) ∀E . This comparison is strict if E ̸= α has residual strategic uncertainty and
there is mild agreement.

The two actions are only differentiated in the model by the partisan’s bias towards
a = 0. Highlighting the comparison with ex-post signaling, Theorem 1 shows the DM
goes against his partisan interests more when he takes the “most informative stands”, i.e.,
pre-specifies his contingent plan, rather than deciding on a case-by-case basis. In terms
of the applications, the politician who answers interviewers’ questions will tend to break
with party more, and universities will admit more donor or legacy applicants when using
holistic admissions. Beyond predictive implications, in many contexts it is plausible that
whether ex-ante or ex-post signaling outcomes prevail is a design decision which can be
informed by Theorem 1. Subsection 6.1 and Subsection 6.2 elaborate, showing how ex-ante
signaling outcomes can be achieved.

Depending on the parameters, certain LIS may correspond to the same equilibrium out-
comes as ex-ante signaling; for example, all equilibria have the same outcomes if the dis-
tribution of evidence is degenerate. However, if equilibrium actions are not completely
predictable at the decision stage, then the equilibrium delivers different outcomes than
ex-ante signaling; in particular, a strictly lower probability of a = 1. All imperfectly in-
formative LIS are associated with an equilibrium with residual strategic uncertainty if and
only if each ℓ type’s threshold results in a different probability of a = 1 (i.e., 1− F (ẽℓ)). An
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example is the case where F has full support over R. This also guarantees mild agreement.

Given that a = 1 is taken most often under ex-ante signaling, a natural follow up ques-
tion is whether the same comparison holds for each evidence realization. While it is diffi-
cult to make this comparison for arbitrary equilibria, we show such a ranking does indeed
hold when comparing ex-ante signaling to ex-post signaling.

Proposition 1. For a probability one E ′ ⊆ E, vα(e, F ) ≥ vβ(e) for all e ∈ E ′.

It is worth noting that there is nothing “mechanical” about ex-ante signaling that leads
to a higher probability of a = 1. It is also not clear whether ex-ante or ex-post signaling
provides higher reputation incentives to take a = 1, and why this shouldn’t depend on
the parameters. Under ex-post signaling, following evidence realization e, P considers
whether to choose a = 1 and pool with ℓ > e + c, or to choose a = 0 and pool with
ℓ < e + c, while under ex-ante signaling, P can directly target any specific leniency type
and effectively commit to that leniency type’s threshold. That is, vβ(e) depends only on
G(e + c) whereas vα(e, F ) depends on the whole distribution G and the investigation F .
The next subsections develop intuition for why the broad comparison in Theorem 1 holds.

4.1. Intuition for Theorem 1 with Binary Leniency Types

Suppose G is supported on two leniency types ℓ < ℓ, F has full support on R (which
guarantees mild agreement), and, for notational convenience, c = 1. Now let us compare
the probability of a = 1 for each evidence realization between ex-post and ex-ante signal-
ing, i.e., vα(e, F ) to vβ(e). If e < ẽℓ or e > ẽℓ, then Lemma 1 implies that all DM types
take the same action—a = 0 and a = 1 respectively—under all equilibria. In addition, by
Lemma 1, the N types action choices do not depend on the equilibrium. Thus the compar-
ison turns on P ’s decision given pivotal evidence realizations e ∈ [ẽℓ, ẽℓ).

Consider such a pivotal evidence realization e. Under ex-ante signaling, P will mix
between mℓ and mℓ, and follow through with xℓ and xℓ respectively. Thus, the probability
that P takes a = 1 after e is the probability that he mimics the ℓ at the communication stage,
which is pinned down by P ’s indifference across messages:

ρ

(
να
1 (L|mℓ)− να

1 (L|mℓ)

)
= F (ẽℓ)− F (ẽℓ).

That is, the difference in reputation at mℓ relative to mℓ is proportional to the difference in
probability with which ℓ takes a = 1 relative to ℓ.

Under ex-post signaling, every DM type chooses the same message m0 ∈ M at the com-
munication stage. Given evidence realization e at the decision stage, P similarly chooses
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Figure 2: Reputation as a function of the partisan’s strategy in the binary example where
vEP is a shorthand for the probability P takes a = 1 given e ∈ (ẽℓ, ẽℓ) under equilibrium E .

a = 1 with the probability that he mimics the ℓ type, which is determined by

ρ

(
νβ
2 (L|m0, 1, e)− νβ

2 (L|m0, 0, e)

)
= 1.

Figure 2 illustrates how P shifts his strategy so that the reputation incentives compensate
him for the difference in material loss between mimicking ℓ and ℓ. Under ex-post signaling,
conditional on evidence e, the difference in P(a = 1) from pooling with ℓ or ℓ is 1, compared
with F (ẽℓ) − F (ẽℓ) < 1 under ex-ante signaling. In order to create a higher reputation
difference in the ex-post case, P must mimic ℓ less frequently, which in turn means they
choose a = 1 less frequently. This argument establishes that V α(F ) > V β(F ) in this binary-
type example.

The underlying force behind the above argument is that the P type is willing to promise
more ex-ante because this promise will only be called for a subset of evidence realizations.
Under ex-ante signaling, mimicking ℓ as compared to ℓ yields extra reputation regardless
of whether these two types take different decisions ex-post. In contrast, under ex-post
signaling, the extra reputation from mimicking ℓ as opposed to ℓ only realizes when these
types take different decisions.25

25 This intuition echoes discussions from the expressive voting literature (e.g., Brennan and Hamlin (1998))
which argue that in elections where the voter is unlikely to be pivotal, the inherent value of expressing certain
preferences dominates in their voting decision relative to the instrumental value of implementing a preferred
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While this intuition is compelling, it is difficult to extend this argument directly to show
a similar ranking holds with more leniency types or across other equilibria. Instead, we
now take a different approach, one that proves useful when studying optimal information
design and provides additional insights into the forces behind Theorem 1.

4.2. Proof Sketch of Theorem 1

We first establish an inverse relationship between P ’s equilibrium expected utility and
the equilibrium probability of a = 1. This result allows us to prove Theorem 1 by showing
that P ’s equilibrium expected utility is lowest under ex-ante signaling. We then show this
comparison can be seen from convexity of P ’s ex-ante signaling utility in the investigation
F . As we elaborate below, this convexity is driven by an underlying convexity property of
Bayesian updating.

Lemma 3 (Opposing Interests).
For every equilibrium E ,

V E(F ) =
1

c

(
ρq − UE

P (F )
)
.

We label this as opposing interests because the investigator’s interests oppose P ’s in-
terests in equilibrium. In particular, it says that P and the investigator cannot be made
simultaneously better off through equilibrium selection. This relationship may seem intu-
itive as P and the investigator have opposing interests concerning the decision. However,
the game is not one of opposing interests between the investigator and P because (i) there is
a third party—the N type—and (ii) even fixing N ’s equilibrium behavior, P ’s payoffs also
depend on reputation. That is, both the investigator and P could be made better off by P

choosing a strategy which provides him with a higher expected reputation and a higher
probability of a = 1. Lemma 3 shows that this is not possible in equilibrium.

Another notable feature of the relationship between V E(F ) and UE
P (F ) is its simplicity. In

particular, conditional on the value of UE
P (F ), V E(F ) does not depend on the investigation

F , or the distribution of leniency G. This feature makes the opposing interests lemma use-
ful in thinking about the investigator designing F in Section 5—they will seek to minimize
P ’s utility.

Given Lemma 3, we can focus on analyzing P ’s equilibrium utility UE
P (F ). We next

make two observations. First, note that all equilibria yield equivalent outcomes when F

is degenerate, as in this case, there is no difference between the decision stage and the

policy.
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communication stage. Second, note that Uβ
P (F ) is linear in F : by definition, nothing hap-

pens at the communication stage under ex-post signaling, so F only impacts the outcome
separably through the probability of evidence e. Putting these points together gives-

Uβ
P (F ) = E[Uβ

P (δe)|e ∼ F ] = E[Uα
P (δe)|e ∼ F ],

where δe denotes the degenerate distribution on e. Thus, the comparison that Uα
P (F ) ≤

Uβ
P (F ) holds if Uα

P (F ) is convex in F , which we establish in the next lemma.

Lemma 4. Uα
P (F ) is convex in the investigation F .

The intuition for Lemma 4 follows from a fundamental property about Bayesian updat-
ing: adding probability that a given type sends some signal changes the corresponding
conditional belief on that type less if they already send that signal with high probability.
In our setting, this means that the belief that the DM is an N type following any message
is convex in the probability that P sends that message. This convexity is illustrated in
Figure 2. To see how convexity of reputation relates to convexity of Uα

P (F ), consider two
investigations F1 and F2 with corresponding reputation functions Rα

1 and Rα
2 . For some

λ ∈ (0, 1), let Fλ = λF1 + (1 − λ)F2. P ’s material utility from sending any message mℓ is
linear in F : P chooses a = 1 under Fλ with probability equal to the average of that under
F1 and F2. However, P cannot achieve the “average reputation” at every mℓ because repu-
tation is convex in the rate at which he declares each message, which yields the convexity
of Uα

P (·).26

Ex-Ante Signaling vs. Other Equilibria: We have shown that ex-ante signaling has a
higher probability of a = 1 than ex-post signaling. However, Theorem 1 says that ex-ante
signaling delivers a higher conviction probability than any other equilibrium. Our proof
shows how to use the first comparison to prove the second.

The idea is as follows. Fix an equilibrium E . Note that P ’s expected utility conditional
on sending a message m ∈ MP is the ex-post signaling equilibrium utility with prior equal
to the interim belief ν1(·|m). Using the comparison between ex-post and ex-ante signaling,
we obtain that P ’s expected utility conditional on sending message m is higher than if one
were to instead conduct ex-ante signaling with prior ν1(·|m).

Now consider an alternative messaging strategy which first selects a message accord-
ing to the original equilibrium strategy under E and then sends a follow up message mℓ

26 In order to maintain the reputation λRα
1 (mℓ) + (1− λ)Rα

2 (mℓ), the convexity of the reputation implies P
would need to, for all ℓ ∈ L, declare mℓ at a rate less than the average across the equilibria induced by F1 and
F2. But this cannot be since the total measure of P ’s messages must equal one.
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according to the ex-ante signaling equilibrium given prior ν1(·|m). Conditional on send-
ing each initial message under this new strategy, the above logic implies that P ’s expected
utility is lower than under the original equilibrium E . The only remaining issue, is that
P may not be indifferent across messages. However, because this comparison holds for
every message, when P adjusts his strategy to reestablish indifference across all messages,
the resulting equilibrium is ex-ante signaling, and his new equilibrium expected utility is
still lower than in the original equilibrium.

4.3. Comparing the DM’s Utility

Combining the investigator’s preference for ex-ante signaling with the fact that his in-
terests oppose that of P immediately yields that ex-ante signalling is P ’s least favorite
equilibrium. However, the properties of equilibria in Lemma 1 facilitate extending this
comparison to all DM types.

Corollary 1. For any F and two equilibria E , E ′,

1. UE
θ (F )− UE ′

θ (F ) is constant across θ ∈ Θ.

2. Uα
θ (F ) ≤ UE

θ (F ) ∀θ ∈ Θ; this inequality is strict if E has residual strategic uncertainty and
there is mild agreement.

Given Theorem 1 and Lemma 3, the second point follows directly from the first. The first
point says that the difference in utility between any two equilibria is type independent. The
idea is that (i) each ℓ type chooses xℓ in every equilibrium, so their utility difference is just
given by the expected reputation difference, and (ii) P is indifferent between mimicking
any ℓ type, and so this expected utility difference must be constant across ℓ. This result
provides one rationalization for why politicians may “dodge the cameras” and admissions
committees may favor non-transparency—or, in our terminology, favor ex-post signaling.
This result also points to interesting questions about equilibrium selection issues, which
we address in Subsection 6.1.

5. Optimal Investigations

Having studied the impact of communication for an arbitrary fixed F , we now turn to
how the investigation affects the action choice of the DM. For the results in Section 3 and
Section 4, we can be relatively agnostic about what the evidence represents: while it is
natural to think that it represents a belief about or expected value of an unknown state,
nothing in our setup requires such an interpretation. We make this explicit in this section:
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we let e ∈ [0, 1] = E represent a posterior belief about a binary state ω ∈ {0, 1} with prior
e ∈ (0, 1), where each investigation represents an information structure about ω.27

The relationship between the investigation and outcomes depends on the equilibrium. It
is worth noting that under ex-post signaling, standard “concavification” techniques from
the information-design literature can be applied to understand this relationship. In this
case, conditional on the evidence realization, the outcome is independent of the investiga-
tion, so that V β(F ) =

∫
E
vβ(e)dF (e) is linear in F .

As elaborated further in Subsection 6.1, we view ex-ante signaling outcomes as focal
because they arise naturally as either the result of institutional design and commitment,
or as the uniquely selected equilibrium under a compelling refinement. In contrast to ex-
post signaling, outcomes depend on the investigation even conditional on the evidence
realization under ex-ante signaling, i.e., how P chooses which ℓ type to mimic at the com-
munication stage, and hence vα(e, F ), depends on F . Thus, the probability of a = 1 is not
linear in F . This invalidates the use of concavification techniques. In this section we ana-
lyze how the investigator chooses an investigation maximize the probability of a = 1 under
ex-ante signaling. This design framing is sometimes directly relevant to our applications;
an impeachment inquiry is often lead by a member of the opposing political party, and
the firm seeking a merger is responsible for disclosing information to the FTC. However,
beyond the direct design question, our results reveal comparative statics intuitions on how
the investigation affects outcomes that are novel and specific to the case in which DM takes
informative stands.

5.1. Characterization

For this section we assume the leniency distribution G admits a continuous density g

on its support with [c, 1 + c] ⊆ Supp(G). To calculate the investigator’s utility, we sum
the probability of a = 1 given message mℓ weighted by the probability that the DM sends
message mℓ. Letting F be the set of CDFs with support on [0, 1], the investigator’s design
problem is

max
F∈F

∫
L

(1− F (ẽℓ)) (qg(ℓ)dℓ+ (1− q)dσ(mℓ|P )) ,

such that
∫ 1

0

(1− F (e))de = e.

The constraint captures Bayes plausibility: the average posterior is the prior, i.e., F is an
information structure. In order to solve this problem, we use Lemma 3, which shows that

27 In Subsection 6.4, we discuss how our results extend to the case with more than two states.
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maximizing the investigator’s expected utility is equivalent to minimizing that of P . It is
straightforward to derive how F determines Uα

P (F ): we show in the proof of Lemma 4 that
Uα
P (F ) is given by the solution U to

∫
L

ρqg(ℓ)
U+c(1−F (ẽℓ))

dℓ = 1.28 These observations allow us to
rewrite the investigator’s problem as follows:

min
U≥0, F∈F

U , (1)

such that
∫
L

ρqg(ℓ)

U + c− cF (ẽℓ)
dℓ = 1,∫ 1

0

(1− F (e))de = e.

The extra constraint ensures the choice of U in (1) is equal to Uα
P (F ). We show that it is

without loss to relax both constraints to only hold as inequalities. This relaxed version of
the investigator’s problem minimizes a linear objective over a convex constraint set. We
can construct a Lagrangian which, with some standard ironing techniques, allows us to
solve for the optimal investigation.

Define H : E → R+ as H(e) ≡
∫ e

−∞ g(e′ + c)de′. Denote H as the concavification of H ,29

and h as its derivative in e, which is continuous because g is continuous.30

Theorem 2. For k, U ∈ R, define F̂ (e; k, U) ≡ U/c+ 1− k
√

h(e). The uniquely optimal investi-
gation is given, for e < 1, by

F ∗(e) =


0 if F̂ (e; k, U) < 0,

F̂ (e; k, U) if F̂ (e; k, U) ∈ [0, 1],

1 if F̂ (e; k, U) > 1,

with U = Uα
P (F

∗) as the partisan’s utility given F ∗ and some k > 0.

Because each ℓ type uses a fixed threshold, H captures the probability that non-partisans
choose a = 1 given evidence e. It is then well known that the curvature of H (or the mono-

28 The derivation of this equation uses the following logic. P ’s indifference across messages provides an
expression for ν1(L|mℓ) in terms of the probability of a = 1 at mℓ—namely, 1 − F (ẽℓ)—and Uα

P (F ). Because
g(ℓ)q

ν1(L|mℓ)
is equal to the probability or density of mℓ, the sum of this fraction over mℓ is equal to 1.

29 The concavification of H is the point-wise lowest function over all concave H̃ : E → R such that H̃(e) ≥
H(e) ∀e ∈ E.

30 There are two remaining parameters in the characterization in Theorem 2: Uα
P (F

∗) and k. These are
jointly pinned down by the two constraints in (1). While an explicit expression is not always feasible, solving
these two equations numerically is straightforward.
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and ρ = 3.

tonicity of h) captures the information provision incentives when the investigator faces
only non-partisans: providing information over regions where h is constant (decreasing)
increases (decreases) the probability that N chooses a = 1. Our characterization is also
in terms of h but these incentives are distorted by the fact that the investigator must also
persuade the partisan DM.

Figure 3 presents an example of an optimal investigation. In this example, the distri-
bution of non-partisan leniencies is single peaked, and so H is convex for small e, and
concave for large e, as illustrated in the left panel. Correspondingly, the concavification
of H is linear below ê and equal to H above ê, i.e., h is constant below ê and strictly de-
creasing above ê. From the right panel of Figure 3, we see that F ∗ provides information is
consistent with N ’s information incentives below ê, but in contrast, provides some infor-
mation, in a smooth way, above ê at the detriment of N ’s outcomes. We develop the sense
in which these properties are general in the two following immediate corollaries, stated
without proof.

Corollary 2. The optimal investigation admits a continuous density for e ∈ (0, 1); in particular,
F ∗ has no interior mass points.

Corollary 2 implies that the uninformative investigation is never optimal. This result is
counterintuitive, as uninformative experiments can be optimal in the Bayesian persuasion
literature (Kamenica and Gentzkow (2011)), in particular, when certain concavity condi-
tions on the distribution of thresholds are met. While given a fixed F , these conditions
can be satisfied in our model, the key difference is that the distribution of thresholds is en-
dogenous to the investigation: P will tend to respond to a high probability of a particular
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evidence level by feigning leniency that is just out of reach of such evidence. Given the op-
posing interests lemma, this response by P leads the investigator to minimize predictability
about the realized evidence. Notice that this tendency hinges on the communication stage
being informative. As we show in Appendix F, this “unpredictability” is not a feature of
the optimal investigation under ex-post signaling where an uninformative investigation
may be optimal.

Figure 4 provides intuition for the corollary. It depicts two investigations that differ only
around evidence e, with c = 1 for convenience. F has an (isolated) mass point of size ∆ at
evidence e, while F̃ equally splits this mass point on e to e + ε and e − ε. When ε > 0 is
small, because the density of ℓ types g is continuous, the change in P(a = 1) from ℓ types is
second order. However, P increases P(a = 1) in a first order sense when moving from F to
F̃ .

To see why, consider two types ℓ−, ℓ+ as illustrated in the left panel of the figure, with
e − ε < ẽℓ− < e < ẽℓ+ < e + ε. Under F , ℓ− chooses a = 1 with ∆ higher probability than
ℓ+, so, to preserve P ’s indifference, the equilibrium reputation payoff must be ∆ higher
from sending mℓ− than mℓ+ . In contrast, under F̃ , mℓ− and mℓ+ choose a = 1 with the same
probability and therefore must command the same reputation. The reputation for these
associated messages as a function of dσ(mℓ|P ) is illustrated in the right panel of Figure 4.
As highlighted in Subsection 4.2, this reputation is convex: as P increases dσ(mℓ|P ), the
marginal decrease in the reputation for mℓ becomes smaller. The right panel illustrates
that, because of this convexity, when P equalizes his strategy across mℓ+ and mℓ− , the
reputation payoff for mℓ− falls by more than ∆

2
and the reputation payoff for mℓ+ rises by

less than ∆
2

. That is, P ’s expected utility at these messages has fallen.31 Because of the
opposing interests lemma, this change benefits the investigator.

Corollary 3. The optimal investigation is fully informative if and only if h is constant.

This corollary is a direct implication of the fact that F ∗(e) ∈ (0, 1) is constant in e, equiv-
alently F ∗ is supported on {0, 1}, if and only if h is constant. To understand this result,
recall that the monotonicity of h captures the investigator’s design incentives when only
facing non-partisans. Therefore, an alternative statement of Corollary 3 is that the investi-
gator provides full information if and only if full information maximizes the investigator’s
objective among non-partisans. Because F ∗ balances design incentives between both types,
this means that the investigator’s design goals for P align with that for ℓ types when h is

31 There are other messages sent under ex-ante signaling, which now have higher utility for P . To restore
equilibrium, P would also have to reallocate some mass from {ℓ−, ℓ+} to these other messages. But this
would serve to decrease the reputation for these messages preserving the conclusion.
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constant, but are misaligned when h is decreasing.

At a high level, the intuition is as follows. All else equal, P benefits from correlating his
strategy with the ℓ types. When the investigator increases the probability of evidence in
an interval, i.e., increases F (ẽℓ)− F (ẽℓ) for ℓ > ℓ, P reallocates mass from mimicking types
below ℓ to types above ℓ. If g is increasing, in which case h is constant, then this response
by P further correlates his strategy with that of the ℓ types, and thereby tends to benefit P .
Conversely, if g is decreasing, this change in the investigation tends to miscorrelate P and
ℓ types’ strategies and thereby harm P . Given the opposing interests lemma, the former
change harms the investigator, while the latter change benefits them.

5.2. Comparative Statics

We next explore comparatives statics of the investigation design problem. We begin by
documenting some basic changes in the parameters that increase the probability of a = 1.

Proposition 2. Let G̃ be a distribution of ℓ that first-order stochastically dominates G. For any
fixed F , V α(F ) is higher under G than G′ and when ρ or q increases.32

Because these comparisons hold for a fixed investigation F , they also hold for the in-
vestigator’s value in the design problem. The intuition for these comparative statics is
straightforward as each change can be seen as increasing the alignment between the DM
and investigator. An increase in q decreases the probability of the P type whose prefer-
ences are at odds with the investigator’s. Similarly, a first-order stochastic decrease in G

32 One omitted parameter from this result is c. Although one might naturally conjecture that an increase
in c induces less conviction by P and therefore hurts the investigator, the probability of a = 1 from ℓ types
is increasing in c (as can easily been seen from Lemma 1). Either force can dominate, making comparative
statics on c ambiguous.

26



e

0.2 0.4 0.6 0.8 1.0
Evidence

H(e)

(a) Distribution of non-partisan commitments

ρ → ∞ ρ = 3

ρ = 3 /2

ee

0.0 0.2 0.4 0.6 0.8 1.0
Evidence

0.2

0.4

0.6

0.8

1.0
F*(e)

(b) Optimal Investigations

Figure 5: L = R, g(ℓ) is a standard logistic distribution with mean 1
2
, c = 1

4
, q = 1

2
, e = 3

10
.

means that the non-partisan prefers a = 1 more often. By increasing ρ, we are increasing
the importance of reputation relative to material payoffs in the DM’s utility. This change
then reduces the misalignment between the partisan and investigator.33

We next look at how the optimal investigation changes with the size of reputation in-
centives. We can interpret an increase in ρ as a decrease in the relative importance of the
decision at hand—i.e., the stakes of the decision are lower. Our next result charchterizes
how the informativeness of the investigation changes with the stakes of the decision.

Proposition 3. The optimal investigation F ∗ becomes less Blackwell informative as ρ or q increases.

We illustrate in Figure 5 how the optimal investigation changes with ρ in the example
from Figure 3. In the limiting case when ρ → ∞, P will fully mimic the distribution of ℓ
types’ messages, and so the distribution of thresholds is investigation independent. This
means that the optimal investigation converges to the Bayesian persuasion solution for the
problem of maximizing conviction from ℓ types: a point mass at 0 and at ê. As ρ decreases,
the optimal investigation maintains 0 mass on [0, ê) where h is flat, but spreads the point
mass on ê to evidence levels in [ê, 1).

To see the intuition for Proposition 3, note first that regardless of ρ and q, the optimal
investigation puts 0 mass on regions where h is increasing. When h is decreasing, the in-
vestigator balances two opposing incentives for the ℓ types and P : the investigator wants
to hedge against P ’s strategic “targeting” by spreading out the distribution of evidence,
but wants to contract the optimal investigation for the ℓ types because their distribution

33 Despite also affecting their signaling incentives, a change in ρ has no effect on the non-partisan’s strategy,
and thereby their probability of a = 1.
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over thresholds is concave. When q is large the contraction incentives for the ℓ types are
weighted more, and so the optimal investigation is less informative. When ρ is large, P
seeks to mimic the ℓ types more and is therefore less responsive to changes in the inves-
tigation. This makes the investigator’s hedging incentive with P less significant, again
leading to a less informative investigation.

Our final comparative statics looks at the impact of mean-preserving spreads of the dis-
tribution ℓ on the investigator’s utility. Such spreads can be interpreted as an increase in
the polarization of non-partisans. The comparative statics for mean-preserving spreads of ℓ
are, in general, ambiguous. However, some of this ambiguity is an artifact of our bounded
evidence space: The ℓ types above the support of F ∗ always take a = 0, and so a spread of
leniencies in this region can only increase the probability of a = 1. Our next result shows
that, under a regularity condition on g, and excluding these changes in “non-pivotal” ℓ

types, a spread in the distribution of ideologies harms the investigator, i.e., decreases the
probability of a = 1.

Let F ∗ be the optimal investigation given ℓ ∼ G. We say that G̃ (with associated density
g̃) is a pivotal mean-preserving contraction of G if G̃ is a mean-preserving contraction of G and
g(ℓ) = g̃(ℓ) for all ℓ such that ẽℓ ̸∈ Supp(F ∗). One simple type of pivotal mean-preserving
contraction is one that contracts probability locally around some ℓ such that F ∗(ẽℓ) ∈ (0, 1).

Proposition 4. Suppose that g is log-concave. If G̃ is a pivotal mean-preserving contraction of G,
then the investigator does better under G̃ than G.

The broad intuition is as follows. Consider spreading ℓ and ℓ so that they are further
away from each other. This spreads the material payoff difference from mimicking these
types for P as there are new evidence realizations between ẽℓ and ẽℓ. As a result the equilib-
rium reputation for mℓ and mℓ must also spread. However, because reputation is convex, a
similar logic to that in Subsection 4.2 shows that this increases the utility of P , and thereby
harms the investigator.

6. Discussion and Extensions

6.1. Commitment and Equilibrium Selection

Our framework admits a wide array of equilibrium outcomes—one for each LIS. Under
our focal equilibrium—ex-ante signaling—this cheap-talk communication is most infor-
mative about the eventual decision. Recall that under ex-ante signaling it is as if the DM
commits to a contingent plan even though he only has access to cheap talk. However, there
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are many natural ways in which exogenous commitment power can arise in our setting;
for example, the DM could publicly delegate the decision, put the decision plan in a legally
binding contract, or simply bear large lying costs (as in Kartik (2009)). In addition, such
commitment can be mandated externally; for example, government agencies and publicly
funded universities can be required to specify approval and admissions criteria respec-
tively. Motivated by this, we explore how endowing the DM with commitment power at
the communication stage affects outcomes in our model. We show that ex-ante signaling
outcomes are the unique equilibrium outcome if either (i) commitment is mandated, or (ii)
commitment is available and the DM has any uncertainty about their preferences at the
communication stage that is privately revealed at the decision stage.

The Commitment Model In the commitment model, the DM commits to a publicly ob-
served contingent plan x ∈ X instead of choosing a messaging and decision strategy. Fol-
lowing the commitment, evidence is realized, the action is taken according to x, and payoffs
are realized. The preferences of the DM are the same as that in Section 2. We maintain our
focus on equilibria that satisfy the D1 refinement.34

Proposition 5. The commitment model admits a unique equilibrium outcome that is equivalent to
that under ex-ante signaling.

In the proof, we show that there is an equilibrium in which each ℓ type chooses xℓ,
with P mixing over {xℓ}ℓ∈L, which then generates the same equilibrium outcome as in ex-
ante signaling. We then show that no other equilibria can be sustained; in particular, in
equilibrium N will, with probability one, never commit to a contingent plan that yields
different outcomes than xℓ. Both points follow from the fact that xℓ delivers the maximal
“signaling value” for type ℓ as formalized in (??).

The Optional Commitment Model The optional commitment model has two alterations
from our main model. First, at the communication stage, each DM has the option to commit
to an arbitrary contingent plan as a function of the evidence, x ∈ X . However, unlike in the
commitment model, the DM can abstain from commitment and send a cheap-talk message
instead, in which case the game proceeds as in our main model. We continue to apply the
D1 refinement.

Second, the preferences of the DM are perturbed as follows. The utility of the DM of type
θ, taking action a, given evidence realization e, and reputation µ is given by u(θ, e, a, µ) +

34 In the appendix, we provide a formal definition of equilibrium in the commitment model.
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εa where ε is a random variable that is mean 0, independent of other parameters, with
support equal to [−δ, δ], with δ > 0. The DM does not know ε at the communication
stage, but privately observes ε at the decision stage. The variable ε represents changing
conditions between the communication and decision stages: a politician may learn that
conviction is actually more or less favorable for their party than previously expected, or
the admissions officer may learn new revelations about a potential applicant. It can also
represent evidence from the investigation that is revealed privately to the DM but not to
the public. For example, certain findings of the Trump impeachment inquiry were redacted
for the public but revealed to senators making the impeachment decision.

Proposition 6. For any δ > 0 such that ρ > 2max{ δ
q
, δ
1−q

}, the optional commitment model
admits a unique equilibrium outcome equivalent to that under ex-ante signaling.

Notice that the proposition holds for arbitrarily small preference shocks, but also for
large ones modulated by the weight on reputation ρ.35 The intuition is as follows. Ex-ante
signaling is the unique equilibrium with no residual strategic uncertainty at the decision
stage. Because the DM does not know ε at the communication stage, equilibria with resid-
ual strategic uncertainty provide the benefit of being able to adjust the action choice to the
realization of ε at the decision stage. However, this benefit is greater for P than it is for ℓ

types. The reason is that ℓ will only take ε into account for pivotal evidence realizations, i.e.,
when e − ℓ is close to the difference in reputation between the two actions, while P , who
does not care about evidence, is responsive to ε at any evidence realization. Thus, if there
exists some ℓ who faces residual strategic uncertainty in equilibrium and xℓ goes unused,
then it will be given a reputation of 1, which is not possible given the assumed high value
of reputation. This captures the intuition by which “dodging the cameras” is interpreted
negatively: being vague about one’s standards at the communication-stage signals a desire
to be responsive to idiosyncratic partisan preferences (ε) rather than the evidence.36

6.2. Timing of Evidence Disclosure

In many settings, the timing of evidence disclosure is a choice of the investigator who
can choose to reveal some information before the DM has a chance to announce their con-
tingent plan: an investigation into a political scandal could leak details before the inquiry

35 When δ is large enough to violate the inequality in Proposition 6, the option value from acting on the
realization of ε could exceed the reputational gains from committing at the communication stage. In this
case, each xℓ commitment would still garner a reputation of 1 according to the D1 refinement, but could go
unused.

36 Committing to a policy ex-ante is also used for signaling value in Callander (2008). There, the policy
decision is a scalar rather than a function, however the intuition has similarity in that committing to extreme
policies signals a value for material payoff vs. reputation (in that paper, office motivation).
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is formally announced, or firms could publicly disclose financial records before submitting
their application for a merger to the FTC. When should the investigator release informa-
tion to the DM and, more broadly, how does the timing of disclosure affect equilibrium
outcomes?

To answer this question, we consider a version of our baseline model with two stages
of evidence disclosure. Before the DM sends a message, they observe an initial public
evidence state e0 ∼ F0. After the message is sent, the final evidence e1 ∼ F1(·|e0) is realized,
and an action is chosen. The preferences of the DM are the same as in Section 2 with only
the final evidence e1 being payoff relevant. Let F be the unconditional distribution of
e1.37 We maintain the focus on ex-ante signaling equilibria in each subgame following the
realization of e0, and so our timing results also apply to the commitment model.

Consider an investigator who can choose among different (F0, F1) with the same F . By
choosing different F0, he can span various timings of evidence disclosure. When F0 is de-
generate, all information is backloaded until after the DM communicates, in which case
equilibrium outcomes correspond to those under ex-ante signaling. When F1 is degener-
ate, all information is front-loaded to before communication, in which case equilibrium
outcomes correspond to those under ex-post signaling. That is, even though we focus on
the ex-ante signaling equilibrium conditional on e0, front-loading disclosure generates ex-
post signaling outcomes due to the fact that when the evidence distribution is degenerate,
ex-ante signaling and ex-post signaling are identical. Our next result shows that the inves-
tigator prefers to backload information relative to any other timing of disclosure.

Proposition 7. Among all F0 and F1 with the same F , F0 = F delivers the lowest P(a = 1), and
F1(·|·) = F delivers the highest P(a = 1).

This result follows from the convexity of Uα
P (·). Thus, delaying evidence disclosure

(while keeping the final distribution of e1 constant) hurts P and benefits the investigator.

6.3. State-Dependent Investigator Preferences

We have so far assumed that the investigator’s preferences are state independent—that
is, the investigator always prefers a = 1 and has a utility independent of e. While we
think this is a reasonable assumption (or approximation) in many settings, it is natural to
ask how our results on investigation design depend on this assumption. Indeed, we used
this assumption to establish the opposing interests lemma which greatly simplifies our
analysis. Nevertheless, many of our main insights continue to hold when the investigator
has state-dependent preferences.

37 More precisely, F (e1) =
∫
e0
F1(e1|e0)dF0(e0).
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We maintain that e ∈ [0, 1] represents a posterior belief about a binary state, and G

admits a continuous density. The investigator’s utility from action a and evidence e is
now given by (e − ℓI)a where ℓI < 1. We make the additional assumption that all ℓ types
can be persuaded by some evidence realization in equilibrium, i.e., that 0 < minℓ∈L ẽℓ <

maxℓ∈L ẽℓ < 1. Because of the high reputation incentives, this guarantees that P is also
persuadable in equilibrium.

Proposition 8. The investigator prefers ex-ante signaling to ex-post signaling. For sufficiently
high ρ, the optimal investigation under ex-ante signaling has no interior mass points.

Because the DM is responsive to evidence, there is no “effective” conflict of interest
when ℓI > 0, and the state is observed. Therefore, the investigator gets his first best utility
from full revelation. The interesting case is when ℓI < 0, i.e. when the investigator prefers
conviction in both states, but has stronger preferences in state 1. In this case, the fact that
the investigator prefers ex-ante signaling to ex-post signaling follows directly from Propo-
sition 1.

To see why the investigator still wants to ensure unpredictability, i.e. set an investiga-
tion with no mass points, recall that the intuition provided for Corollary 2 in Figure 4 used
a local perturbation. Introducing the investigator’s continuous evidence-dependent prefer-
ences affect the tradeoff from locally spreading an evidence mass point in a second order
way and so it remains beneficial. The one subtlety comes from the fact that P responds
by recalibrating the probability with which he mimics ℓ types with non-local thresholds
whose conviction probability is unaffected by the perturbation; and, because the opposing
interests lemma no longer holds, we cannot simply compare P ’s utility to determine the
investigator’s ranking. The proof shows that with high reputation incentives the positive
effect illustrated in Figure 4 dominates.

6.4. Optimal Investigations with Multiple States

While, in our main specification we consider an investigation about a binary state, many
of our results are robust to the case where the investigator specifies an information struc-
ture about a larger state space. As is well known, compactly describing the set of Bayes
plausible experiments quickly becomes intractable as the cardinality of the state space in-
creases. We therefore focus on the case where the ℓ types’ material preferences over actions
depend only the posterior mean about an unknown state. Here, we interpret the evidence
e ∈ E ≡ [0, 1] as the posterior mean about some state ω ∈ [0, 1],38 where the domain is [0, 1]

38 This means that the DM’s underlying objective is linear in ω.
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for expositional convenience. ω is distributed according to CDF K which has strictly pos-
itive density k. Using insights from Gentzkow and Kamenica (2016) and Kolotilin (2018),
a CDF over posterior means F : [0, 1] → [0, 1] is a feasible choice for the investigator if and
only if it satisfies the following Bayes plausibility constraints:∫ e

0

F (e′)de′ ≤
∫ e

0

K(e′)de′ ∀e ∈ E, and∫ 1

0

F (e′)de′ =

∫ 1

0

K(e′)de′. (2)

The investigator’s problem can then be written in the same manner as in (1) substituting the
constraints in (2) for the Bayes plausibility constraint. To avoid ironing complications, we
assume that g is strictly decreasing on [c, 1 + c]. We characterize the optimal investigation
in the Appendix (Proposition 9) and show that, despite the more complicated constraint
set, the main takeaways from Section 5 hold true.

Corollary 4. The optimal investigation has no mass points.

Corollary 5. If g(e+c)

(ρq+c(1−K(e)))2
is strictly increasing in e, then full information is uniquely optimal.

The first corollary shows that the investigator reduces the predictability of the investi-
gation by avoiding mass points. This is despite the fact that, because g is assumed to be
strictly decreasing, providing no information would yield the highest probability of a = 1

from ℓ types. The second corollary says that if the cost of providing information to non-
partisans is small, roughly that g decreases slowly (or more specifically, the condition in
Corollary 5), then full information is optimal.39

6.5. Reputation for Leniency

We now extend the model to allow the DM to differentially value his reputation for
appearing as specific leniency types and maintain the same material payoffs. For r : Θ →
R+, let ρ

∫
Θ
r(θ)dν(θ) be the reputation payoff when the public holds beliefs ν ∈ ∆(Θ). We

normalize r(P ) = 0.

We again focus on the case of high reputational concerns. Let r ≡ infℓ∈L r(ℓ) and r ≡
supℓ∈L r(ℓ). We adapt Assumption 1 as follows.

Assumption 2. ρ > max{ c(r+r)

r2−qr2
, c(r+r)

qr2
} and q < ( r

r
)2.

39 While the case in which g is non-monotonic is complicated, the case where g is increasing is tractable,
and it can be shown that full information is optimal as in Corollary 3 for the case of two states.
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Note that by setting r = r = 1 we recover our baseline model, in which case Assumption 2
is equivalent to Assumption 1. Roughly, Assumption 2 says that the difference between r

and r is not too large relative to the difference between r and r(P ) = 0, i.e., the difference in
reputational values for different leniency types does not trump the DMs reputational con-
cern to avoid appearing partisan. This is relatively flexible, e.g., it imposes no monotonicity
requirements on r(ℓ) with respect to ℓ.

The role of Assumption 2 is identical to that of our original Assumption 1 in our baseline
model. It ensures that neither the P type nor the ℓ type will ever fully reveal themselves
in equilibrium. In the former case the low reputational payoff is too costly relative to any
material gains he could accrue from deviation. In the latter case, it ensures that the min-
imum reputational gain the P type could access from mimicking such an ℓ type would
compensate for any material losses he may suffer.

Our appendix proves all our results in this more general environment under Assump-
tion 2. In particular, the statements of results from Section 3, Section 4, Subsection 6.1, and
Subsection 6.2 remain unchanged. Other than the comparative statics on G, all results in
Section 5, Subsection 6.3 and Subsection 6.4 go through with minor modifications. 40

7. Conclusion

We study a model of communication by a DM concerned with developing a reputation
for taking the right action. Our model sheds light on how communication in the presence
of uncertainty over what the right action is shape equilibrium actions. We find that a wide
range of communication strategies can be sustained in equilibrium, that the equilibrium in
which the DM announces his contingent plan in advance leads to the highest rate of taking
the action, and that such communication shapes the design of investigations in ways that
are qualitatively distinct from standard information-design problems.

A number of questions remain for future work. Our main results easily extend to the
case where ℓ types material payoffs are an arbitrary function strictly increasing in e and
decreasing in ℓ; however, whether Theorem 1 continues to hold under alternative specifi-
cations of P ’s utility or when the payoff from reputations is not separable from material
payoffs remains to be explored. Another natural extension is to allow for P ’s cost c to be
heterogeneous (and privately observed). In the extreme case where the distribution of ℓ is
degenerate, we can show that no informative communication can be sustained. Studying a

40 More specifically, to account for r(θ), when using assumptions on g(ℓ) (e.g., continuity or monotonicity)
in our baseline model, we impose analogous assumptions for r(ℓ)g(ℓ). We also slightly redefine h and the
assumptions used in Proposition 6 and, for Corollary 5, require r(e+c)g(e+c)

(ρq+c(1−K(e)))2 to be increasing.
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model with both heterogeneity in both ℓ and c could shed light on what is needed for repu-
tation to sustain informative communication. Finally, our main results have explored how
to maximize the probability of a = 1. A natural follow-up question is which equilibrium
minimizes the probability of a = 1. Although one might naturally conjecture that it would
be the least-informative equilibrium (i.e., ex-post signaling), we can construct an F such
that a partially-informative LIS yields a lower probability of a = 1. More generally, explor-
ing whether imposing regularity properties on F can generate clear comparative statics on
how the informativeness of the LIS impacts the probability of a = 1 is a promising direction
for future work.
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A. Preliminaries
We begin by defining some useful notation. Given an equilibrium, let qm ≡ ν1(L|m)

be the interim belief the DM is an ℓ type, q(m, e, a) ≡ ν2(L|m, e, a) be the posterior belief
that θ ∈ L after message m, action a and evidence e. To avoid unnecessary repetition, we
prove all of our results under the assumption of heterogeneous reputation for leniency—
i.e., the reputational payoff is R(m, e, a) ≡ E[r(θ)|m, e, a] =

∫
Θ
r(θ)dν2(θ|m, e, a), subject to

Assumption 2. If qm > 0, take Gm(ℓ) = ν1({ℓ′:ℓ′≤ℓ}|m)
ν1(L|m)

and Lm = Supp(Gm). For notational
simplicity, we will often drop dependence on F in UE

θ (F ) in the proofs for Section 3 as it is
held fixed. Let UE

θ,m be the equilibrium expected utility to θ from sending message m.

Our first result uses Assumption 2 to place bounds on the reputations that may arise in
equilibrium. We say a is off-path after m, e if

∫
Θm

ζ(a|θ,m, e)dν1(θ|m) = 0.41 We say that a is
on-path after m, e if it is not off-path.

Lemma 5. Take any e ∈ E. For all m ∈ M and a ∈ {0, 1}, qm ≤ ρqr+c
ρr

< 1 and q(m, e, a) < 1.
For all m ∈ MP and on-path a after m and e, qm > 0 and q(m, e, a) > 0.

Proof. First, we show that UE
P,m ∈ [−c + ρqmr, ρqmr] for all m ∈ M . By Corollary 2 of Hart

and Rinott (2020), conditional on m, e and θ = P , the expected public belief that θ ∈ L,
namely

∑
a∈{0,1} q(m, e, a)ζ(a|P,m, e), is at most qm. Using R(m, e, a) ≤ rq(m, e, a), we then

have

UE
P,m =

∫
E

( ∑
a∈{0,1}

(−ca+ ρR(m, e, a))ζ(a|P,m, e)

)
dF (e)

≤
∫
E

( ∑
a∈{0,1}

ρrq(m, e, a)ζ(a|P,m, e)

)
dF (e)

≤ ρqmr.

For each message m ∈ M and e, Bayes plausibility requires there exists an action ae such
that q(m, ae, e) ≥ qm. UE

P,m must do weakly better than choosing ae after each e, so UE
P,m ≥∫

E
(−cae + ρR(m, ae, e))dF (e). Using R(m, e, ae) ≥ q(m, e, ae)r ≥ qmr, we then have −c +

ρqmr ≤ UE
P,m.

We next derive similar bounds for the expected equilibrium payoff UE
P . Bayes plausibil-

ity implies that for some m ∈ MP , qm ≤ q. For m ∈ MP , UE
P = UE

P,m , which along with

41 This definition is slightly different than that used in Ramey (1996), who imposes an additional restriction
when defining an equilibrium, if

∫
Θm

ζ(a|θ,m, e)dν1(θ|m) = 0 but ζ(a|θ,m, e) > 0 for some θ ∈ ν1(·|m), then
Supp(ν2(·|m, e, a)) ⊆ {θ ∈ Θm : ζ(a|θ,m, e) > 0}. Our results would not change if we imposed this additional
condition and defined off-path to be such that ζ(a|θ,m, e) = 0 for all θ ∈ Supp(Θm).
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UE
P,m ≤ ρqmr ≤ ρqr gives our desired upper bound. Bayes plausibility also implies that

for some m′ ∈ M , qm′ ≥ q. Because UE
P ≥ UE

P,m′ , our desired lower bound follows from
UE
P,m′ ≥ −c+ ρqm′r ≥ −c+ ρqr.

Next, for any m ∈ M , we show qm ≤ ρqr+c
ρr

< 1. Using −c + ρqmr ≤ UE
P,m ≤ UE

P ≤ ρqr,
we have qm ≤ ρqr+c

ρr
. If ρqr+c

ρr
≥ 1, then ρ ≤ c

r−qr
, because r − qr > 0 per Assumption 2.

Using the same assumption ρ ≥ c(r+r)

r2−qr2
, so c

r−qr
≥ c(r+r)

r2−qr2
, which simplifies to 0 ≥ rr(1− q), a

contradiction.

Similarly, for any m ∈ MP , using −c + ρqr ≤ UE
P = UE

P,m ≤ ρqmr, we have ρqm ≥ ρqr−c
r

.
By Assumption 2, ρ ≥ c(r+r)

qr2
> c

qr
, so ρqr−c

r
> 0, which implies qm > 0.

For the sake of contradiction, suppose q(m, e, a) = 1 for some m ∈ M, e ∈ E, which
implies qm > 0. Because qm < 1, q(m, e, a) = 1 implies ζ(a|P,m, e) = 0. Then R(m, e, a) ≥ r

while, for a′ ̸= a, R(m, e, a′) ≤ qmr. For P not to have a profitable deviation to choose a, it
must be that −ca′ + ρqmr ≥ −ca+ ρr, which implies qm ≥ c(a′−a)+ρr

ρr
≥ ρr−c

ρr
. Combining this

inequality with qm ≤ ρqr+c
ρr

and simplifying, we conclude that ρ ≤ c(r+r)

r2−qr2
, a contradiction of

Assumption 2. We conclude that q(m, e, a) < 1.

Next, suppose q(m, e, a) = 0 for some on-path a and m ∈ MP , which implies ζ(a|P,m, e) >

0. P ’s utility from taking action a is then −ca ≤ 0. For a′ ̸= a, R(m, e, a′) ≥
∫
Θ
r(θ)dν1(θ|m) ≥

qmr. For a to be an equilibrium action for P , it must be that −ca′+ρqmr ≤ −ca; simplifying,
we get ρqm ≤ c(a′−a)

r
≤ c

r
. Combining this inequality with ρqm ≥ ρqr−c

r
and simplifying, we

have ρ ≤ c(r+r)
qr2

, a contradiction of Assumption 2. We conclude that q(m, e, a) > 0. Q.E.D.

Using Ramey (1996), we now define the D1 refinement formally in the context of our
game. Recall that we are imposing the D1 refinement on the signaling game following
message m ∈ M and evidence e with type space Θm.

Take any a that is off-path following some m, e (with a′ = 1− a). The reputation payoff
from a′ is then the interim reputation E[r(θ)|m] =

∫
Θ
r(θ)dν1(θ|m), so the equilibrium payoff

for each θ′ ∈ Θm following m, e is u(θ′, a′, e,E[r(θ)|m]).42 Suppose there exists non-empty
Θ′

m ⊂ Θm such that, for all θ′′ ∈ Θm\Θ′
m, there exists θ′ ∈ Θ′

m for which

{µ ∈ ∆(Θm) : u
(
θ′′, e, a,

∫
Θm

r(θ)dµ(θ)
)
> u

(
θ′′, e, a′,E[r(θ)|m]

)
} (3)

⊊ {µ ∈ ∆(Θm) : u
(
θ′, e, a,

∫
Θm

r(θ)dµ(θ)
)
> u

(
θ′, e, a′,E[r(θ)|m]

)
}.

42 One might be worried that there exists a measure zero set of θ ∈ Θm take the off-path action a
(which is allowed by our definition of off-path), in which case we cannot directly infer that their equilib-
rium payoff is u(θ′, a′, e,E[r(θ)|m]). However, these payoffs are continuous in the type θ and are equal to
u(θ′, a′, e,E[r(θ)|m]) on a measure one set of θ, so they must be equal for all θ.
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An equilibrium E violates D1 if the support of ν2(·|m, e, a) is not contained in Θ′
m; E satisfies

D1 if it does not violate D1.

We now show some implications of D1 on the equilibrium actions.

Lemma 6. Take any m ∈ M such that qm > 0. Let a be an off-path action following m, e and take
a′ = 1 − a. Then q(m, e, a) = 1 if (e − ẽℓ)(a

′ − a) < 0 for some ℓ ∈ Lm and q(m, e, a) = 0 if
(e− ẽℓ)(a

′ − a) > 0 for all ℓ ∈ Lm.

Proof. Let a be an off-path action following m, e. By qm > 0, Lm ̸= ∅. We note that

{µ ∈ ∆(Θm) : u(P, e, a,

∫
Θm

r(θ)dµ(θ)) > u(P, e, a′,E[r(θ)|m])} ≠ ∅

⇐⇒ ρ(max
ℓ∈Lm

r(ℓ)− E[r(θ)|m]) > c(a− a′).

The last inequality holds if ρ(r− qmr) > c, or equivalently qm < ρr−c
ρr

, which holds because,
by Lemma 5, qm < ρqr+c

ρr
and ρqr+c

ρr
< ρr−c

ρr
by ρ ≥ c(r+r)

r2−qr2
(Assumption 2).

D1 requires ν2(P |m, e, a) = 0 (which implies q(m, e, a) = 1) if (3) holds for θ′′ = P and
some θ′ ∈ Lm, which simplifies to (e − ẽℓ)(a

′ − a) < 0 for some ℓ ∈ Lm. Similarly, D1
requires ν2(Lm|m, e, a) = 0 (which implies q(m, e, a) = 0) if (3) holds for θ′ = P and all
θ′′ ∈ Lm, which simplifies to (e− ẽℓ)(a

′ − a) > 0 for all ℓ ∈ Lm. Q.E.D.

B. Proofs from Section 3

Proof of Lemma 1

Proof. First, we show point 1. For the sake of contradiction, suppose σ(·|P ) and ΣN are
not mutually absolutely continuous. Then there exists M ′ ⊂ M such that either σ(M ′|P ) >

ΣN(M
′) = 0 or ΣN(M

′) > σ(M ′|P ) = 0. In the first case, there exists m ∈ M ′ such that
qm = 0, contradicting Lemma 5. In the second case, there exists m ∈ M ′ such that qm = 1,
contradicting Lemma 5. Therefore, σ(·|P ) and ΣN(·) are mutually absolutely continuous.

Next, we prove point 2. Take any m ∈ M and ℓ ∈ Θm such that e ̸= ẽℓ. Let a = xℓ(e)

and a′ = 1 − a. Because a′ > a if and only if e < ẽℓ, (e − ẽℓ)(a
′ − a) < 0. For the sake of

contradiction, suppose ζ(a′|ℓ,m, e) > 0. Then ℓ (weakly) prefers a′ over a, so

(e− ℓ)a′ + ρR(m, e, a′) ≥ (e− ℓ)a+ ρR(m, e, a). (4)
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Suppose ζ(a|P,m, e) > 0. Then P (weakly) prefers a over a′, so

−ca+ ρR(m, e, a) ≥ −ca′ + ρR(m, e, a′). (5)

Adding (5) to (4) and simplifying yields (e − ẽℓ)(a
′ − a) ≥ 0, a contradiction. Therefore,

ζ(a|P,m, e) = 0. If a is on-path, then q(m, e, a) = 1. If a is off-path, then, by Lemma 6,
q(m, e, a) = 1 because (e−ẽℓ)(a

′−a) < 0. But q(m, e, a) = 1 contradicts Lemma 5. Therefore,
ζ(a′|ℓ,m, e) = 0, i.e., ζ(xℓ(e)|ℓ,m, e) = 1.

By definition of ν1, there cannot exist a positive probability set of ℓ ∈ L for which
σ({m ∈ M : ℓ ̸∈ Lm}|ℓ) > 0. Therefore, there exists L′ ⊆ L such that ν0(L

′|θ ∈ L) =

1 and each ℓ ∈ L′, with probability one, sends messages for which ℓ ∈ Lm (namely,
σ({m ∈ M : ℓ ∈ Lm|ℓ) = 1), for which we have shown ζ(xℓ(e)|ℓ,m, e) = 1 when e ̸= ẽℓ.
Because either F or G is atomless, the probability of (ℓ, e) such that e = ẽℓ is zero, so∫
E

∫
L

∫
M
ζ(xℓ(e)|ℓ,m, e)dσ(m|ℓ)dG(ℓ)dF (e) = 1.

Finally, we prove point 3. Take any arbitrary m ∈ MP and e, a. Then qm > 0 by Lemma 5.
If ζ(a|P,m, e) = 0 and

∫
L
ζ(a|ℓ,m, e)dGm(ℓ) > 0, then q(m, e, a) = 1, a contradiction of

Lemma 5. If
∫
L
ζ(a|ℓ,m, e)dGm(ℓ) = 0 and ζ(a|P,m, e) > 0, then q(m, e, a) = 0, a contradic-

tion of Lemma 5. Q.E.D.

Proof of Lemma 2

Take an arbitrary Λ ∈ ∆(∆(L)) that is Bayes plausible with respect to G. Parameterize
a subset M ′ ⊆ M by the induced belief on L, i.e., let mν ∈ M ′ be such that mν ̸= mν′ for
ν, ν ′ ∈ ∆(L) such that ν ̸= ν ′ and take MΛ = {mν : ν ∈ Supp(Λ))}. Define ΣN ∈ ∆(M ) as
∀M̃ ⊂ M, ΣN(M̃) ≡ Λ({ν : mν ∈ M̃}).

For q̃ ∈ (0, 1) and G̃ a CDF over L, define z(·; q̃, G̃) in the following way. For e such that
G̃(e+ c) ∈ (0, 1), let z(e; q̃, G̃) be the unique value of z ∈ [0, 1] such that

ρ
q̃
∫
L
r(ℓ)1(e ≥ ẽℓ)dG̃(ℓ)

q̃G̃(e+ c) + (1− q̃)z
− c = ρ

q̃
∫
L
r(ℓ)1(e < ẽℓ)dG̃(ℓ)

q̃(1− G̃(e+ c)) + (1− q̃)(1− z)
, (6)

if such a z exists. Otherwise, take z(e; q̃, G̃) = 0 if the left-hand side of (6) is lower for all z
and z(e; q̃, G̃) = 1 if the opposite holds. For e such that G̃(e+c) = 0, we set z(e; q̃, G̃) = 0 and
for e such that G̃(e + c) = 1, set z(e; q̃, G̃) = 1. Adopting the convention that 0

0
= 0, define

R̃1(e; q̃, G̃) ≡ q̃
∫
L r(ℓ)1(e≥ẽℓ)dG̃(ℓ)

q̃G̃(e+c)+(1−q̃)z(e;q̃,G̃)
and R̃0(e; q̃, G̃) ≡ q̃

∫
L r(ℓ)1(e<ẽℓ)dG̃(ℓ)

q̃(1−G̃(e+c))+(1−q̃)(1−z(e;q̃,G̃))
. It is immediate

that z(e; q̃, G̃) is continuous in q̃.
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For an arbitrary q̃ ∈ (0, 1) and CDF G̃ on L, define

w(e; q̃, G̃) =


ρq̃

∫
L
r(ℓ)dG̃(ℓ)− c if G̃(e+ c) = 1,

max{ρR̃1(e; q̃, G̃)− c, ρR̃0(e; q̃, G̃)} if G̃(e+ c) ∈ (0, 1),

ρq̃
∫
L
r(ℓ)dG̃(ℓ) if G̃(e+ c) = 0.

Given our constructed strategy, this will correspond to the P type’s utility after evidence
realization e and having induced interim beliefs associated with (q̃, G̃) at the messaging
stage. We then define the expected payoff from w as

W (q̃; G̃) ≡
∫
E

w(e; q̃, G̃)dF (e).

Our next result gives some properties of W .

Claim 1. W (q̃; G̃) is continuous and strictly increasing in q̃ with W (q̃; G̃) ∈ [ρq̃r − c, ρq̃r].

Proof. Continuity is easily seen from the fact that z(e) is continuous in q̃ (we will drop
dependence on q̃, G̃ in this proof). That W is increasing in q̃ follows from the fact that w is
strictly increasing in q̃ for all e.

We now show w(e) ∈ [ρq̃r − c, ρq̃r] (which immediately implies W respects the same
bounds). That this holds for w when G̃(e+ c) ∈ {0, 1} is obvious. We therefore focus on the
e such that G̃(e+ c) ∈ (0, 1).

Suppose z(e) ∈ (0, 1), so (6) holds with equality, which implies R̃1(e) > R̃0(e) and

R̃1(e) ≥ q̃

∫
L

r(ℓ)dG̃(ℓ) ≥ R̃0(e).

The above inequalities imply R̃1(e) ≥ q̃r and R̃0(e) ≤ q̃r. Thus, because w(e) = ρR̃0(e) =

ρR̃1(e)− c in this case, w(e) ∈ [ρq̃r − c, ρq̃r] immediately follows.

Now suppose z(e) = 0. Then w(e) = ρR̃0(e) ≥ ρR̃1(e)− c. That w(e) ≤ ρq̃r then follows
from

R̃0(e) ≤
q̃
∫∞
e+c

rdG̃(ℓ)

q̃(1− G̃(e+ c)) + (1− q̃)
= q̃

r(1− G̃(e+ c))

q̃(1− G̃(e+ c)) + (1− q̃)
≤ q̃r. (7)

That w(e) ≥ ρq̃r − c then follows from the fact that R̃1(e) =
∫ e+c
−∞ r(ℓ)dG̃(ℓ)

G̃(e+c)
≥ r ≥ q̃r.

Finally, suppose z(e) = 1. Then w(e) = ρR̃1(e) − c ≥ ρR̃0(e). That w(e) ≤ ρq̃r follows
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from the fact that, by analogous argument to that in (7), R̃1(e) ≤ q̃r. That w(e) ≥ ρq̃r − c

follows from R̃0(e) =
∫∞
e+c r(ℓ)dG̃(ℓ)

1−G̃(e+c)
≥ r ≥ q̃r when z(e) = 0. Q.E.D.

We construct P ’s messaging strategy by specifying a Radon-Nikodym derivative s(·)
and defining σ(·|P ) via σ(M̂ |P ) =

∫
M̂
s(m)dΣN(m) for any Borel M̂ ⊆ M . When such

strategies are used, what will be the interim belief qm for m ∈ MΛ is given by φ(s(m)) ≡
q

q+(1−q)s(m)
. These will correspond to “on-path” interim updates following m. For ν ∈ ∆(L),

we let Gν be the cdf over L corresponding to ν.

By Assumption 2, ρ > c(r+r)

r2−qr2
, which implies ρ > c

r−qr
, or equivalently ρr − c > ρqr.

Similarly, ρ > c(r+r)
qr2

implies ρ > c
qr

, or equivalently ρqr − c > 0. Using these bounds and
the bounds on W from Claim 1, we have

lim
s→0

W (φ(s), Gν) ≥ lim
s→0

ρφ(s)r − c = ρr − c > ρqr, (8)

lim
s→∞

W (φ(s), Gν) ≤ lim
s→∞

ρφ(s) = 0 < ρqr − c.

For U ∈ [ρqr − c, ρqr], define s∗(U ;mν) to be the value of s such that U = W (φ(s), Gν).
We note that such an s exists given (8) and the fact that W is continuous in its first argu-
ment. Also because W is continuous and strictly increasing in its first argument, and φ(·)
is continuous and strictly decreasing, s∗(U ;mν) is continuous and strictly decreasing in U .

Claim 2. There exists a unique U∗ ∈ [ρqr − c, ρqr] such that 1 =
∫
MΛ

s∗(U∗;mν)dΣN(mν).
Moreover, for mν ∈ MΛ, we have ρφ(s∗(U∗;mν))r − c ≥ 0 and z(e;φ(s∗(U∗;mν)), Gν) ∈ (0, 1)

whenever Gν(e+ c) ∈ (0, 1).

Proof. Take any mν ∈ MΛ. We note that φ(s) ⋚ q if and only if 1 ⋚ s. Let U = ρqr − c.
Because W (q̃;Gν) ≥ ρq̃r − c for all q̃, we have

ρqr − c = U = W (φ(s∗(U ;mν)), Gν) ≥ ρφ(s∗(U ;mν))r − c.

Thus, q ≥ φ(s∗(U ;mν)), which implies s∗(U ;mν) ≥ 1 and
∫
MΛ

s∗(U ;mν)dΣN(mν) ≥
∫
MΛ

dΣN(mν) =

1.

Let U ′ = ρqr. Because, W (q̃;Gν) ≤ ρq̃r, for all q̃ we have

ρqr = U ′ = W (φ(s∗(U ′;mν)), Gν) ≤ ρφ(s∗(U ′;mν))r.

Thus, q ≤ φ(s∗(U ′;mν)), which implies s∗(U ′;mν) ≤ 1 and
∫
MΛ

s∗(U ′;mν)dΣN(mν) ≤∫
MΛ

dΣN(mν) = 1. Because s(·;mν) is continuous and strictly decreasing, there exists a
unique U∗ ∈ [ρqr − c, ρqr] such that 1 =

∫
MΛ

s∗(U∗;mν)dΣN(mν).

44



Take any mν ∈ MΛ. Because not all s(U∗;mν) can be greater than one, there exists mν′ ∈
MΛ such that φ(s∗(U∗;mν′)) ≥ q. By Claim 1, ρqr − c ≤ ρφ(s∗(U∗;mν′))r − c ≤ U∗ ≤
ρφ(s∗(U∗;mν))r, which implies ρφ(s∗(U∗;mν)) ≥ ρqr−c

r
. Then ρφ(s∗(U∗;mν))r − c ≥ 0 if

ρqr−c
r

r ≥ c or ρ ≥ c(r+r)
qr2

, which holds by Assumption 2.

Finally, suppose Gν(e+c) ∈ (0, 1). If z(e;φ(s∗(U∗;mν)), Gν) = 0, then ρR̃0(e;φ(s
∗(U∗;mν)), Gν) ≥

ρR̃1(e;φ(s
∗(U∗;mν)), Gν)−c = ρ

∫ e+c
−∞ r(ℓ)dG̃(ℓ)

G̃(e+c)
−c ≥ ρr−c. Moreover, ρR̃0(e;φ(s

∗(U∗;mν)), Gν) ≤
ρφ(s∗(U∗;mν))r, so ρφ(s∗(U∗;mν)) ≥ ρr−c

r
. There exists mν′ ∈ MΛ such that φ(s∗(U∗;mν′)) ≤

q, so ρφ(s∗(U∗;mν))r − c ≤ U∗ ≤ ρφ(s∗(U∗;mν′))r ≤ ρqr, which implies ρφ(s∗(U∗;mν)) ≤
ρqr+c

r
. Thus, ρqr+c

r
≥ ρr−c

r
, or equivalently c(r+r)

r2−qr2
≥ ρ, a contradiction of Assumption 2.

An analogous argument rules out z(e;φ(s∗(U∗;mν)), Gν) = 1, so z(e;φ(s∗(U∗;mν)), Gν) ∈
(0, 1). Q.E.D.

We now construct an equilibrium E associated with the LIS Λ. As is well-known, for any
Bayes-plausible Λ, there exists a signal structure that induces it (Kamenica and Gentzkow
(2011)) which corresponds to a set of strategies {σ(·|ℓ)}ℓ∈L with support on MΛ such that
the posterior on L (conditional on θ ∈ L) after mν ∈ MΛ is ν. In particular σ(mν |ℓ) = 0 ∀ℓ /∈
Supp(ν). Define σ(·|P ) by dσ(·|P ) = s∗(U∗;m)dΣN(m). Let ν1 be defined as, for mν ∈ MΛ,

ν1(Θ̃|mν) = φ(s∗(U∗;mν))ν(Θ̃\{P}) + (1− φ(s∗(U∗;mν)))1(P ∈ Θ̃),

and ν1(P |m) = 1 if m ̸∈ MΛ.

The decision-stage strategies are given by

ζ(1|ℓ,m, e) =


xℓ(e) if m = mν ∈ MΛ, ℓ ∈ Lm,

1(1 ∈ argmaxa u(ℓ, e, a, R̃a(e; ν1(N |mν), Gν))) m = mν ∈ MΛ, ℓ ̸∈ Lm.

1(1 ∈ argmaxa u(ℓ, e, a, 0) m ̸∈ MΛ.

ζ(1|P,m, e) =

z(e;φ(s∗(U∗;mν), Gν) if m = mν ∈ MΛ,

0 else.

For mν ∈ MΛ and on-path a following mν , e, let ν2(·|m, e, a) be the Bayes update induced
by these strategies, i.e., ν2(Θ̃|mν , e, a) =

∫
Θ̃ ζ(a|θ,m,e)dν1(θ|mν)∫
Θ ζ(a|θ,m,e)dν1(θ|mν)

for all Θ̃ ⊂ Θ; otherwise, we

set ν2(P |m, e, a) = 1. This generates a reputation of R(m, e, a) = R̃a(e; ν1(N |mν), Gν) for
mν ∈ MΛ and 0 otherwise.

By construction these strategies generate an expected utility for P of U∗. Our next claim
verifies that E is an equilibrium.
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Claim 3. E is an equilibrium.

Proof. We start by verifying that P has no incentive to deviate. First, we consider the de-
cision stage. Take m ̸∈ MΛ. Then ν1(P |m) = 1, then reputation is 0 regardless of the action
so a = 0 is clearly optimal. Take mν ∈ MΛ. When Gν(e+ c) ∈ (0, 1), z(e;φ(s∗(U∗;mν), Gν) ∈
(0, 1) implies P is indifferent over actions by construction. P also clearly has no incentive
to deviate to a = 1 when Gν(e+ c) = 0 because it is worse from a material and reputational
perspective. Finally, P has no incentive to deviate to a = 0 when Gν(e+ c) = 1 as his payoff
from a = 1 is at least ρφ(s∗(U∗;mν)r− c > 0 and his payoff from a = 0 is zero. There is also
no incentive to deviate at the communication stage: P is indifferent across all mν ∈ MΛ by
construction and because U∗ ≥ ρqr − c > 0, strictly prefers the expected utility of U∗ from
any mν ∈ MΛ to the expected utility of 0 from sending m ̸∈ MΛ.

Next, we show that no ℓ type has an incentive to deviate at the decision stage following
m such that ℓ ∈ Supp(ν1(·|m)) (which implies m ∈ MΛ); that there is no incentive to deviate
after any other m follows immediately from the definition of ζ . Take an arbitrary mν ∈
MΛ, ℓ ∈ Lmν and e. Set a = xℓ(e) and a′ = 1− a. By the definition of xℓ, (e− ẽℓ)(a− a′) ≥ 0.
By the definition of z and Claim 2 xℓ(e) ∈ Supp(ζ(·|P,mν , e)), so P ’s incentive constraint
implies −ca+ ρR(mν , e, a) ≥ −ca′ + ρR(mν , e, a

′). If ℓ has a strict incentive to deviate to a′,
then (e− ℓ)a+ ρR(mν , e, a) < (e− ℓ)a′ + ρR(mν , e, a

′). Subtracting P ’s incentive constraint
and simplifying, we get (e− ẽℓ)(a− a′) < 0, a contradiction.

Next, we consider ℓ’s incentive to deviate at the communication stage. Because σ({mν ∈
MΛ : ℓ ∈ Lmν}|ℓ) = 1, it suffices to show that ℓ cannot do better than sending a message
mν ∈ MΛ such that ℓ ∈ Lmν . Take such an m and suppose ℓ has a profitable deviation to
announce message m′ and follow contingent plan x′ ∈ X , so that∫

E

((e− ℓ)x′(e) + ρR(m′, x′(e), e))dF (e) >

∫
E

((e− ℓ)xℓ(e) + ρR(mν , xℓ(e), e))dF (e).

Because P finds it optimal to send an arbitrary m̃ν ∈ MΛ and use strategy xℓ for ℓ ∈ Lm̃ν ,
this means that P prefers to send mν and follow with xℓ, than send m′ and follow with x′.∫

E

(−cxℓ(e) + ρR(mν , xℓ(e), e))dF (e) ≥
∫
E

(−cx′(e) + ρR(m,x′(e), e))dF (e).

Adding these inequalities together and simplifying, we get
∫
E
(c+e−ℓ)x′(e)dF (e) >

∫
E
(c+

e − ℓ)xℓ(e)dF (e), a contradiction of xℓ ∈ argmaxx∈X
∫
E
(c + e − ℓ)x(e)dF (e). Therefore, ℓ

must have no incentive to deviate at the communication stage.

Finally, we show that D1 is satisfied. It is trivially satisfied following m ̸∈ MΛ since
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ν1(P |m) = 1.43 Take mν ∈ MΛ. The only off-path actions following mν occur when Gν(e +

c) ∈ {0, 1} by construction and Claim 2. If Gν(e + c) = 1, then a = 0 is an off-path action.
There are two cases to consider: when e > maxℓ∈Lmν

ẽℓ and when e = maxℓ∈Lmν
ẽℓ. In the

first case, by Lemma 6, D1 requires ν2(P |mν , e, a) = 1 because e− ẽℓ > 0 for all ℓ ∈ Lm. For
the second case, we now show that ν2(P |mν , e, a) = 1 is consistent with D1. D1 requires no
weight be placed on any ℓ ∈ Θm whenever P has a larger incentive to deviate to a than ℓ,
namely

{µ ∈ ∆(Θmν ) : (e− ℓ)a′ + ρ

∫
Θmν

r(θ)dµ(θ) > (e− ℓ)a+ ρE[r(θ)|mν ]}

⊊ {µ ∈ ∆(Θmν ) : −ca′ + ρ

∫
Θmν

r(θ)dµ(θ) > −ca+ ρE[r(θ)|mν ]},

which rules out all ℓ < maxLmν when e = maxℓ∈Lmν
ẽℓ. However, the above sets are equal

for ℓ′ = maxLmν at such e, in which case any beliefs that ascribe probability only on ℓ′ and
P are consistent with D1. Thus, ν2(P |mν , e, a) = 1 is consistent with D1. An analogous
argument holds for when Gν(e+ c) = 0.

We know by Lemma 1 that the N ’s distribution over actions and evidence is unique
(and the same for all LIS) up to zero probability events. That P ’s equilibrium distribu-
tion is unique follows from the fact that that s∗(U∗;m) defines the unique messaging strat-
egy that leaves P indifferent across messages mν ∈ MΛ and z(e;φ(s∗(U∗;mν)), Gν) is the
unique mixture over equilibrium mixture over actions given interim beliefs (qm, Gm) =

(φ(s∗(U∗;mν)), Gν). While an equilibrium may feature multiple messages that induces the
same Gν contingent on θ ∈ L, P must mix over these messages with the same proba-
bility inducing the same interim belief φ(s∗(U∗;mν)) over all such messages; if not, one
would have a φ(s∗(U∗;mν)) higher than the others, which P would then strictly prefer.
Thus, in any equilibrium with an LIS of Λ, the equilibrium outcomes are unique. By
Lemma 1, P is indifferent between mimicking the strategy of each ℓ type. Therefore,
for each m ∈ Mℓ, U∗ =

∫
E
(−cxℓ(e) + ρR(m, e, xℓ(e)))dF (e), so ℓ’s equilibrium utility is∫ 1

0
(e − ℓ)xℓ(e) + ρR(m, e, xℓ(e)))dF (e) =

∫
E
(e − ℓ + c)xℓ(e)dF (e) + U∗. Thus, the expected

utility of ℓ is unique by the uniqueness of U∗. Q.E.D.
43 This triviality comes from the fact that our D1 refinement is specified for interim beliefs. Because

ν1(P |m) = 1 after m /∈ MΛ, there is no uncertainty at the interim stage, and so our D1 refinement has no
bite. In general, our D1 refinement cannot restrict the beliefs for actions following “off-path messages,” the
implication can also be shown for other “ex-ante” D1 refinements.

47



C. Proofs from Section 4

Lemma 7 (Opposing Interests).
For every equilibrium E , V E(F ) = 1

c

(
ρE[r(θ)]− UE

P (F )
)
.

Proof. Take any equilibrium E . Because of Lemma 1, after m ∈ MP , P is indifferent across
mimicking the strategy of a probability one set of leniency type ℓ ∈ Lm:

UE
P (F ) =

∫
E

(
− cζ(1|ℓ,m, e)

+ ρ{ζ(1|ℓ,m, e)R(m, e, 1) + ζ(0|ℓ,m, e)R(m, e, 0)}
)
dF (e)

The same equality holds if we replace ℓ with P . Taking expectations of both sides with
respect to ν1(·|m) and using the law of iterated expectations then yields

UE
P (F ) =

∫
L

{∫
E

(
− cζ(1|θ,m, e)

+ ρ{ζ(1|θ,m, e)R(m, e, 1) + ζ(0|θ,m, e)R(m, e, 0)}
)
dF (e)}dν1(θ|m)

= −cP(a = 1|m) + ρE[r(θ)|m].

Taking the ex-ante expectation of both sides over messages in MP (which is a probabil-
ity one set under σ(·|P ) and ΣN(·) by Lemma 1) and again applying the law of iterated
expectations then yields

UE
P (F ) =

∫
MP

(−cP(a = 1|m) + ρE[r(θ)|m])(qdσ(m|P ) + (1− q)dΣN(m))

= −cP(a = 1) + ρE[r(θ)]

Rearranging terms and using V E(F ) = P(a = 1) then yields our desired result. Q.E.D.

Proof of Lemma 4

Proof. We first derive an equation for determining Uα
P (F ). Because of the uniqueness in

Lemma 2, it is without loss to focus on our constructed equilibrium in the proof of that
lemma for the perfectly informative LIS. Under this equilibrium each message in MΛ is
associated with a single leniency type ℓ, denote it mℓ, in the sense that Lmℓ

= {ℓ}. Both
ℓ and P follow up each mℓ with xℓ. This means that R(mℓ, e, xℓ(e)). Because ΣN(·) and
σ(·|P ) are mutually absolutely continuous, we can describe P ’s messaging strategy by the
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Radon-Nikodym derivative s(mℓ) =
dσ(mℓ|P )
dΣN (mℓ)

so that σ(M̂ |P ) =
∫
M̂
s(mℓ)dΣN(mℓ) for each

M̂ ⊆ MΛ. Thus, by Bayes rule, R(mℓ, e, xℓ(e)) =
qr(ℓ)

q+(1−q)s(mℓ)
for all e. P ’s expected material

payoff from xℓ is −c(1− F (ẽℓ)) and so his utility is given by

Uα
P (F ) = −c(1− F (ẽℓ)) + ρ

qr(ℓ)

q + (1− q)s(mℓ)
∀ℓ ∈ L.

We then have q + (1 − q)s(mℓ) = ρqr(ℓ)
Uα
P (F )+c(1−F (ẽℓ))

. Taking the expectation over both sides
with respect to ℓ and using, by σ(mℓ|ℓ′) = 1(ℓ′ = ℓ),

∫
L
s(mℓ)dG(ℓ) =

∫
L
s(mℓ)dΣN(mℓ) =∫

MΛ
dσ(m|P ) = 1, we have

1 =

∫
L

ρqr(ℓ)dG(ℓ)

Uα
P (F ) + c− cF (ẽℓ)

. (9)

Take an arbitrary pair of CDFs F1, F2 and λ ∈ (0, 1) and define Fλ = λF1 + (1 − λ)F2.
Using (9), we then have∫

L

ρqr(ℓ)dG(ℓ)

Uα
P (Fλ) + c− cFλ(ẽℓ)

(10)

= λ

∫
L

ρqr(ℓ)dG(ℓ)

Uα
P (F1) + c− cF1(ẽℓ)

+ (1− λ)

∫
L

ρqr(ℓ)dG(ℓ)

Uα
P (F2) + c− cF2(ẽℓ)

≥
∫
L

ρqr(ℓ)dG(ℓ)

λUα
P (F1) + (1− λ)Uα

P (F2) + c− c(λF1(ẽℓ) + (1− λ)F2(ẽℓ))

=

∫
L

ρqr(ℓ)dG(ℓ)

λUα
P (F1) + (1− λ)Uα

P (F2) + c− cFλ(ẽℓ)
,

where the inequality follows from the fact that 1
y

is convex in y. This inequality implies
Uα
P (Fλ) ≤ λUα

P (F1) + (1− λ)Uα
P (F2). Q.E.D.

As discussed in the text, Uα
P (δe) = Uβ

P (δe) for all e, so Lemma 4 implies

Uα
P (F ) ≤

∫
E

Uα
P (δe)dF (e) =

∫
E

Uβ
P (δe)dF (e) = Uβ

P (F ). (11)

Note that the inequality in (10) is strict if there exists L′ ⊆ L such that
∫
L′ dG(ℓ) > 0 and

F1(ẽℓ) ̸= F2(ẽℓ) for all ℓ ∈ L′, in which case we have Uα
P (Fλ) < λUα

P (F1) + (1 − λ)Uα
P (F2).

In (11), we are taking a convex combination over δe, so the inequality is strict if there exists
L′, E ′ such that

∫
L′ dG(ℓ) > 0,

∫
E′ dF (e) > 0 and δe(ẽℓ) = 1(e ≥ ẽℓ) ̸= 1(e′ ≥ ẽℓ) = δe′(ẽℓ) for

all ℓ ∈ L′ and e, e′ ∈ E ′. Suppose β has residual strategic uncertainty and mild agreement
holds and, for the sake of contradiction, that no such L′, E ′ exist. Then for a probability
one set of ℓ types, either F (ẽℓ) = 0 or F (ẽℓ) = 1. If F (ẽℓ) = 0 for a probability one set of ℓ,
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then there is no residual strategic uncertainty, a contradiction. A similar argument holds if
F (ẽℓ) = 1 for a probability one set of ℓ. Therefore, there must exist a positive probability
set of ℓ′ such that F (ẽℓ′) = 0 and a positive probability set of ℓ′′ such that F (ẽℓ′′) = 1. But
then there is no e ∈ Supp(F ) for which xℓ′(e) = xℓ′′(e), a contradiction of mild agreement.
Thus, under mild agreement and residual strategic uncertainty for β, Uα

P (F ) < Uβ
P (F ). We

use this observation in the proof of Theorem 1 below.

Proof of Theorem 1

Proof. Take any equilibrium E with strategies {σ(·|θ)}θ∈Θ and recall that ΣN(·) =
∫
L
σ(·|ℓ)dG(ℓ).

By Lemma 3, it suffices to show UE
P (F ) ≥ Uα

P (F ), with a strict inequality if E has residual
strategic uncertainty and there is mild agreement.

Recall that Gm and qm are the interim beliefs associated after m ∈ MP in E and define
Uβ,m
P (F ) to be the ex-post signaling utility when ℓ ∼ Gm, P(θ ∈ L) = qm and e ∼ F . Note

that UE
P (F ) = Uβ,m

P (F ) ∀m ∈ MP . P ’s utility following message m and evidence e is given
by Uβ,m

P (δe).

Define Uα,m
P (F ) to be the (unique) value of U that solves

∫
L

ρqmr(ℓ)
U+c−cF (ẽℓ)

dGm(ℓ) = 1.44 We
now show Uβ,m

P (δe) = Uα,m
P (δe). It suffices to show

∫
L

ρqmr(ℓ)

Uβ,m
P (δe)+c−cδe(ẽℓ)

dGm(ℓ) = 1. Suppose
Gm(e+ c) ∈ (0, 1). Let z be the probability P selects a = 1 when evidence is e; by Lemma 1,
z ∈ (0, 1). Then a = 0 is an optimal action for P , so Uβ,m

P (δe) = ρ
qm

∫
L r(ℓ)1(e<ẽℓ)dGm(ℓ)

qm(1−Gm(e+c))+(1−qm)z
, which

implies qm(1−Gm(e+c))+(1−qm)z =
ρqm

∫
L r(ℓ)1(e<ẽℓ)dGm(ℓ)

Uβ,m
P (δe)

. Similarly, because a = 1 is also an

optimal action, Uβ,m
P (δe) = ρ

qm
∫
L r(ℓ)1(e≥ẽℓ)dGm(ℓ)

qmGm(e+c)+(1−qm)z
−c, which implies qmGm(e+c)+(1−qm)z =

ρqm
∫
L r(ℓ)1(e≥ẽℓ)dGm(ℓ)

Uβ,m
P (δe)+c

. Adding these together, we have

1 =
ρqm

∫
L
r(ℓ)1(e ≥ ẽℓ)dGm(ℓ)

Uβ,m
P (δe) + c

+
ρqm

∫
L
r(ℓ)1(e < ẽℓ)dGm(ℓ)

Uβ,m
P (δe)

=

∫
L

ρqmr(ℓ)

Uβ,m
P (δe) + c− c1(e < ẽℓ)

dGm(ℓ)

=

∫
L

ρqmr(ℓ)

Uβ,m
P (δe) + c− cδe(ẽℓ)

dGm(ℓ).

The argument when Gm(e+ c) ∈ {0, 1} is analogous.

44 That a unique solution exists follows from the following arguments. As shown in the proof of Lemma 5,
ρqmr > c which implies

∫
L

ρqmr(ℓ)
U+c−cF (ẽℓ)

dGm(ℓ) > 1 when U = 0. Because
∫
L

ρqmr(ℓ)
U+c−cF (ẽℓ)

dGm(ℓ) is strictly

decreasing in U with a limit of 0 as U → ∞, a unique solution to
∫
L

ρqmr(ℓ)
U+c−cF (ẽℓ)

dGm(ℓ) = 1 exists.
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By the arguments made in Lemma 4, Uα,m
P (·) is convex and so,45 for all m ∈ MP , we have

Uα,m
P (F ) ≤

∫
E

Uα,m
P (δe)dF (e) =

∫
E

Uβ,m
P (δe)dF (e) = Uβ,m

P (F ) = UE
P (F ). (12)

For the sake of contradiction, suppose Uα
P (F ) > UE

P (F ). Then, by (12), Uα
P (F ) > Uα,m

P (F )

for all m ∈ MP . By Lemma 1, ΣN(MP ) = σ(MP |P ) = 1, we can take the expectation over
m ∈ MP of both sides of

∫
L

ρqmr(ℓ)
Uα,m
P (F )+c−cF (ẽℓ)

dGm(ℓ) = 1 to get

1 =

∫
MP

[ ∫
L

ρqmr(ℓ)dGm(ℓ)

Uα,m
P (F ) + c− cF (ẽℓ)

]
(qdΣN(m) + (1− q)dσ(m|P )) (13)

=

∫
L

∫
MP

ρqr(ℓ)

Uα,m
P (F ) + c− cF (ẽℓ)

dσ(m|ℓ)dG(ℓ),

>

∫
L

∫
MP

ρqr(ℓ)

Uα
P (F ) + c− cF (ẽℓ)

dσ(m|ℓ)dG(ℓ)

=

∫
L

ρqr(ℓ)

Uα
P (F ) + c− cF (ẽℓ)

dG(ℓ)

= 1

where the second equality follows from Bayes rule, the inequality follows from Uα
P (F ) >

Uα,m
P (F ) and the final equality by (9) in the proof of Lemma 4, a contradiction. Therefore,

we conclude that Uα
P (F ) ≤ UE

P (F ).

Finally, suppose that Uα
P (F ) = UE

P (F ) when there is mild agreement and residual strate-
gic uncertainty in E . As we have shown after Lemma 4, mild agreement and residual
strategic uncertainty implies

∫
E
Uβ,m
P (δe)dF (e) > Uα,m

P (F ) so, by (12), Uα
P (F ) > Uα,m

P (F ) for
m ∈ MP . The same arguments as above in (13) lead to a contradiction. Therefore Uα

P (F ) <

UE
P (F ) when there is mild agreement and residual strategic uncertainty in E . Q.E.D.

Proof of Proposition 1

Proof. For notational simplicity, we drop dependence of vα on F . Let E ′ be the set of e ∈ E

such that G(e + c) has no mass-point (i.e., G is discontinuous at e); by our assumptions
that either F or G is atomless,

∫
E′ dF (e) = 1. Take any evidence level e ∈ E ′. The proof

is immediate if G(e + c) = 0 as vα(e) = vβ(e) = 0 or if G(e + c) = 1 as vα(e) = vβ(e) = 1.
Suppose G(e + c) ∈ (0, 1). Note that vα(e) =

∫
L
1(e ≥ ẽℓ)(qdG(ℓ) + (1 − q)dσ(mℓ|P )). Let

s(mℓ) = dσ(mℓ|P )
dΣN (mℓ)

be the Radon-Nikodym derivative as in the proof of Lemma 4. Using

45 The arguments in Lemma 4 showing Uα
P (F ) is convex only relied on the fact that Uα

P (F ) is the solution
to

∫
L

ρqr(ℓ)dG(ℓ)
U+c−cF (ẽℓ)

= 1, and so apply to Uα,m
P as well.
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the fact that σ(mℓ|ℓ′) = 1(ℓ = ℓ′) under ex-ante signaling, we have vα(e) =
∫ e+c

−∞ (q + (1 −
q)s(mℓ))dG(ℓ). As shown in the proof of Lemma 4, q + (1 − q)s(mℓ) = ρqr(ℓ)

Uα
P (F )+c−cF (ẽℓ)

, so

vα(e) =
∫
L

ρqr(ℓ)1(e≥ẽℓ)
Uα
P (F )+c−cF (ẽℓ)

dG(ℓ).

Let Gr(e) ≡
∫
L
r(ℓ)1(e ≥ ẽℓ)dG(ℓ) and G

r
(e) ≡

∫
L
r(ℓ)1(e < ẽℓ)dG(ℓ). It is straightfor-

ward to show that vβ(e) is the unique solution to

ρqGr(e)

vβ(e)
− c =

ρqG
r
(e)

1− vβ(e)
.

This means vβ(·) does not depend on F and only depends on (G, r) through Gr(·) and G
r
(·).

We show that vα(e)−vβ(e) ≥ 0 by showing that this inequality holds when we select the
distribution of ℓ and reputations (Ĝ, r̂) to minimize vα(e) while holding vβ(e) fixed. This
latter requirement is equivalent to requiring

∫
E
r̂(ℓ)1(e ≥ ẽℓ)dĜ(ℓ) = Gr(e) and

∫
L
r̂(ℓ)1(e <

ẽℓ)dĜ(ℓ) = G
r
(e) in which case we refer to (Ĝ(ℓ), r̂) as feasible.

It is without loss to focus on F such that Supp(F ) is contained in a compact interval.46

We then construct a feasible (Ĝ, r̂) where Ĝ has binary support and yields a lower vα(e)

than (G, r). Take some ℓ′′ < min Supp(F ) + c and ℓ′ > maxSupp(F ) + c. Define (Ĝ, r̂) by

(Ĝ(ℓ), r̂(ℓ)) =


(0, r(ℓ)) if ℓ < ℓ′′,

(G(e+ c), Gr(e)
G(e+c)

) if ℓ′′ ≤ ℓ < ℓ′,

(1, G
r
(e)

1−G(e+c)
) if ℓ ≥ ℓ′.

Let U and Û be the corresponding ex-ante signaling equilibrium expected utilities for P

under (G, r) and (Ĝ, r̂) respectively. We will show that the difference between vα(e) under
(G, r) and (Ĝ, r̂) given by∫

E

ρqr(ℓ)1(e ≥ ẽℓ)

U + c− cF (ẽℓ)
dG(ℓ)− ρqGr(e)

Û + c
≥ max

{
ρqGr(e)

U + c
− ρqGr(e)

Û + c
,
ρqG

r
(e)

Û
− ρqG

r
(e)

U

}
,

which is greater than 0 for any Û , U . To see the the LHS is greater than the first term on the

46 For any F with unbounded support, we can consider a version of F truncated at [−z, z] for some z ∈ R;
taking z → ∞, it is straightforward to show that the value of vα(e) under the truncated F will converge to
the value of vα(e) under the original F .
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RHS, ∫
L

ρqr(ℓ)1(e ≥ ẽℓ)

U + c− cF (ẽℓ)
dG(ℓ)− ρqGr(e)

Û + c
≥

∫
L

ρqr(ℓ)1(e ≥ ẽℓ)

U + c
dG(ℓ)− ρqGr(e)

Û + c

=
ρqGr(e)

U + c
− ρqGr(e)

Û + c
.

To see that the LHS is greater than the second term on the RHS, note that by the definition
of U and Û

∫
L

ρqr(ℓ)
U+c−cF (ẽℓ)

dG(ℓ) = 1 =
∫
L

ρqr̂(ℓ)

Û+c−cF (ẽℓ)
dĜ(ℓ), which implies

∫
L

ρqr(ℓ)

U + c− cF (ẽℓ)
dG(ℓ) =

ρqGr(e)

Û + c
+

ρqG
r
(e)

Û
.

Rearranging terms, we get∫
E

ρqr(ℓ)1(e ≥ ẽℓ)

U + c− cF (ẽℓ)
dG(ℓ)− ρqGr(e)

Û + c
=

ρqG
r
(e)

Û
−
∫
L

ρqr(ℓ)1(e < ẽℓ)

U + c− cF (ẽℓ)
dG(ℓ)

≥ ρqG
r
(e)

Û
−
∫
L

ρqr(ℓ)1(e < ẽℓ)

U
dG(ℓ)

=
ρqG

r
(e)

Û
− ρqG

r
(e)

U
.

We conclude that vα(e) is (weakly) smaller under (Ĝ, r̂). Thus, vα(e) is minimized using
a binary support Ĝ. For a binary support {ℓ, ℓ}, vα(e) − vβ(e) is zero for e ̸∈ [ẽℓ, ẽℓ), and
constant for e ∈ [ẽℓ, ẽℓ), so Theorem 1 establishes that vα(e)− vβ(e) ≥ 0. Q.E.D.

D. Proofs from Section 5

We will state the proof of Theorem 2 below for the model allowing for differential type
reputations. The results in this more general model are identical to those in our baseline
model after, abusing notation slightly, we redefine H(e) =

∫ e

−∞ r(e + c)g(e + c), h(e) =

r(e + c)g(e + c) and h(e) accordingly. We also assume that r(ℓ)g(ℓ) is continuous (rather
than just g being continuous).

Proof of Theorem 2

Proof. We first do a change of variables, noting that
∫
L

ρqr(ℓ)g(ℓ)
U+c−cF (ẽℓ)

dℓ =
∫
E

ρqh(e)
U+c−cF (e)

de. We
then solve a relaxed version of the investigator’s problem where we only require the con-
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straints to hold as inequalities:

min
U≥0,F∈F

U (14)

subject to
∫
E

ρqh(e)

U + c− cF (e)
de ≤ 1,∫ 1

0

(1− F (e))de ≤ e.

Both constraints are convex in U and F . By Theorem 1 (Chapter 8) of Luenberger (1997),
there exist multipliers η, λ ≥ 0 such that any solution U∗, F ∗ to (14) will solve47

min
U≥0,F∈F

U + η

[ ∫
E

ρqh(e)

U + c− cF (e)
de− 1

]
+ λ

[ ∫ 1

0

(1− F (e))de− e

]
.

Complementary slackness conditions imply each multiplier η, λ is strictly positive only
if its corresponding constraint binds; if both constraints bind, then the relaxation to in-
equality constraints is without loss. If η = 0, then U∗ = 0 is clearly optimal. However, for
any choice of F ∗, we have∫

E

ρqh(e)

U∗ + c− cF ∗(e)
de =

∫
E

ρqh(e)

c− cF ∗(e)
de ≥

∫
E

ρqh(e)

c
de ≥ ρqr

c
> 1

where the final equality follows from, by Assumption 2, ρ > c(r+r)
qr2

, which implies ρqr
c

>
r+r
r

> 1. Thus, U∗ = 0 is not feasible. Therefore, η > 0 and U∗ > 0.

Fixing the optimal value of U∗, the optimal investigation F ∗ must solve

min
F∈F

∫
E

(
ηρqh(e)

U∗ + c− cF (e)
− λF (e)

)
de− η + λ− λe. (15)

It is clear that λ > 0; otherwise F ∗(e) = 0 for all e, which violates
∫ 1

0
(1− F ∗(e))de ≤ e.

The restriction that F be a CDF requires the use of ironing techniques to solve (15). By
Theorem 3.1 of Toikka (2011), F ∗(e) = argminx∈[0,1]

ηh(e)ρq
U∗+c−cx

− λx. Taking the first-order
condition, whenever F ∗(e) ∈ (0, 1), we have

ηρqh(e)

(U∗ + c− cF ∗(e))2
− λ = 0.

47 This theorem requires a Slater condition hold, namely there exist U,F such that both constraints are
slack. Such U,F can be found by setting F (e) = 1 for all e > 0 and U > ρqr.
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Letting k =
√

ηρq
cλ

, a bit of algebra gives us F ∗(e) = U∗

c
+1−k

√
h(e) whenever F ∗(e) ∈ (0, 1).

F ∗(e) = 0 whenever ηh(e)ρq

c(U
∗
c
+1)2

−λ > 0; this condition simplifies to U∗

c
< k

√
h(e)−1. Similarly,

F ∗(e) = 1 whenever ηh(e)ρq

c(U
∗
c
)2
− λ < 0, or alternatively, when U∗

c
> k

√
h(e). That U∗ = Uα

P (F
∗)

follows from the fact that the first constraint in (14) holds with equality. Q.E.D.

We again derive the comparative results when reputational payoffs are
∫
Θ
r(θ)dν2(θ|m, a, e);

the results are identical to those presented in the text, with the exception of comparative
statics on G, where we maintain the assumptions of the baseline model (namely, r = r = 1).
In the proofs below, we will use the fact, as shown in the proof of Lemma 3, that Uα

P (F ) is
the unique U that solves

∫
L

ρqr(ℓ)
U+c−cF (ẽℓ)

dG(ℓ) = 1.

Proof of Proposition 2

Proof. Fix an investigation F and distribution G of ℓ. Taking the derivative of the expres-
sion in (9) with respect to ρ, we have

−dUα
P (F )

dρ

∫
L

ρqr(ℓ)

(Uα
P (F ) + c− cF (ẽℓ))2

dG(ℓ) +

∫
L

qr(ℓ)

Uα
P (F ) + c− cF (ẽℓ)

dG(ℓ) = 0.

After some simplification and using Jensen’s inequality, we get48

(
dUα

P (F )

dρ
)−1 = q

∫
L

r(ℓ)dG(ℓ)

∫
L

(
ρ2

(Uα
P (F ) + c− cF (ẽℓ))2

)
r(ℓ)dG(ℓ)∫

L
r(ℓ′)dG(ℓ′)

≥ q

∫
L

r(ℓ)dG(ℓ)

(∫
L

ρr(ℓ)dG(ℓ)

Uα
P (F ) + c− cF (ẽℓ)

· 1∫
L
r(ℓ′)dG(ℓ′)

)2

= q

∫
L

r(ℓ)dG(ℓ)

(
1

q
· 1∫

L
r(ℓ′)dG(ℓ′)

)2

=
1

q
∫
L
r(ℓ)dG(ℓ)

.

Thus, dUα
P (F )

dρ
≤ q

∫
L
r(ℓ)dG(ℓ) = E[r(θ)]. By Lemma 3, we have dV α(F )

dρ
= 1

c
[E[r(θ)]− dUα

P (F )

dρ
] ≥

0. An analogous argument holds for the comparative static on q.

Next, we look at first-order stochastic dominance shifts of the distribution of ℓ when r =

r = 1. By Lemma 3, it suffices to show that P ’s equilibrium expected utility is lower under
G than G̃. Let U and Ũ be P ’s equilibrium expected utility under G and G̃ respectively. For
the sake of contradiction, suppose U > Ũ . Because G̃ first-order stochastically dominates

48 Here we are using
∫
L

qr(ℓ)
Uα

P (F )+c−cF (ẽℓ)
dG(ℓ) = 1

ρ by (9).
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G, we have

1 =

∫
L

ρq

Ũ + c− cF (ẽℓ)
dG̃(ℓ) >

∫
L

ρq

U + c− cF (ẽℓ)
dG̃(ℓ) ≥

∫
L

ρq

U + c− cF (ẽℓ)
dG(ℓ),

which contradicts the fact that
∫
L

ρq
U+c−cF (ẽℓ)

dG(ℓ) = 1. Therefore, Ũ ≥ U . Q.E.D.

Proof of Proposition 3

Proof. Fix the value of q. Take ρ̃, ρ with ρ̃ > ρ and corresponding optimal investigations F̃
and F . Let Ũ and U be P ’s equilibrium expected utility for ρ̃, F̃ and ρ, F respectively.

We first show that Ũ ≥ U . For the sake of contradiction, suppose U > Ũ . Optimality
of F requires

∫
L

ρqr(ℓ)g(ℓ)
U+c−cF (ẽℓ)

dℓ ≤
∫
L

ρqr(ℓ)g(ℓ)

U+c−cF̃ (ẽℓ)
dℓ: if not, then the investigator could choose F ′

and some U ′′ < U such that
∫
L

ρqr(ℓ)g(ℓ)

U ′′+c−cF̃ (ẽℓ)
dℓ < 1, contradicting the optimality of U and F in

(1) when the weight on reputation is ρ. We then have

1 =

∫
L

ρqr(ℓ)g(ℓ)

U + c− cF (ẽℓ)
dℓ ≤

∫
L

ρqr(ℓ)g(ℓ)

U + c− cF̃ (ẽℓ)
dℓ <

∫
L

ρ̃qr(ℓ)g(ℓ)

U ′ + c− cF̃ (ẽℓ)
dℓ = 1,

a contradiction. Thus, Ũ ≥ U .

By Theorem 2, there exists k and k̃ such that F (e) = F (e; k, U) and F̃ (e) = F (e; k̃, Ũ).
F is first-order stochastically increasing in U and first-order stochastically decreasing in k,
with a similar comparative statics for F̃ with respect to U ′ and k′. Because Ũ ≥ U , Bayes
plausibility (namely,

∫ 1

0
(1 − F (e))de = e =

∫ 1

0
(1 − F̃ (e))de) then requires k̃ ≥ k, with strict

inequality if and only if Ũ > U .

The proposition trivially holds if F̃ = F . Suppose F̃ ̸= F . Then Ũ > U and k̃ > k.
We now argue that F̃ must cross F once and from below, which implies F second-order
stochastically dominates F . For the sake of contradiction, suppose F̃ crosses F from above
(which must occur if F̃ crosses F more than once). Then there exists e1 < e2 such that
F (e1) < F̃ (e1) and F̃ (e2) < F (e2). Because F̃ (e1) ≤ F̃ (e2), we then must have F̃ (e1), F̃ (e2) ∈
(0, 1), which implies

U

c
+ 1− k

√
h(e1) ≤ F (e1) < F̃ (e1) =

Ũ

c
+ 1− k̃

√
h(e1),

Ũ

c
+ 1− k̃

√
h(e2) = F̃ (e2) < F (e2) ≤

U

c
+ 1− k

√
h(e2).

Adding these inequalities together and simplifying, we get
√
h(e1) <

√
h(e2). But this

contradicts the fact that h is decreasing. Therefore, F̃ can cross F at most once and only
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from below. That F̃ must cross F follows from Bayes plausibility: if they did not cross and
F̃ ̸= F , then one distribution would strictly first-order stochastically dominate the other, a
contradiction of the fact that they both have the same mean by Bayes plausibility. Because
F and F̃ have the same mean and F second-order stochastically dominates F̃ , the optimal
investigation strategy under ρ̃ is less informative than under ρ. An analogous argument
shows that informativeness is decreasing in q holding ρ fixed. Q.E.D.

Proof of Proposition 4

Let g and g̃ be the densities corresponding to G and G̃ respectively and let F ∗ be the
optimal investigation under G. Take h(e) = g(e + c) and h̃(e) = g̃(e + c) for e ∈ (0, 1) and
let h be the ironed version of h. We first prove a useful result given the log concavity of g.

Lemma 8. If g is log concave, then 1√
h(e)

is convex.

Proof. We note that h is decreasing, strictly so on some interval only if h = h and h is
strictly decreasing on that interval; otherwise h is constant. Log concavity of g immediately
implies log concavity of h. Because h is log concave, it is single peaked and there exists a
cutoff ec such that h is constant on [0, ec] and decreasing on [ec, 1]. The derivative of 1√

h(e)
is

0 for e < ec and −h
′
(e)

2h(e)
3
2
≥ 0 for e > ec. To establish global convexity, it suffices to show that

−h
′
(e)

2h(e)
3
2

is increasing on (ec, 1].

For e > ec, h(e) = h(e). Our desired conclusion follows if d
de

−h′(e)

2h(e)
3
2
≥ 0, which holds if

and only if 3
2
h′(e)2 ≥ h′′(e)h(e). That this inequality holds follows from h′′(e)h(e) ≤ h′(e)2

(by log-concavity of h) and h′(e)2 ≤ 3
2
h′(e)2. Q.E.D.

With this result in hand, we turn to the proof of the proposition.

Proof. Let Uα
P (F ; g) and Uα

P (F ; g̃) be P equilibrium expected utility with investigation F

and distribution g and g̃ respectively. Take a distribution F ∗ which is optimal given g. By

Theorem 2, for some k ∈ R+, F ∗(e) =
Uα
P (F ∗;g)

c
+ 1 − k

√
h(e) when in (0, 1). We will show

Uα
P (F

∗; g) ≥ Uα
P (F

∗; g̃).

Let e∗ = min Supp(F ∗) and e∗ = max Supp(F ∗). Because g̃ is a pivotal mean-preserving
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contraction of g, h̃(e) = h(e) for all e ̸∈ (e∗, e∗), G̃(c) = G(c) and G̃(1 + c) = G(1 + c). Then

ρqG(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1−G(1 + c))

Uα
P (F

∗; g)

− ρqG̃(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1− G̃(1 + c))

Uα
P (F

∗; g)

=

∫ e∗

e∗

h(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de−

∫ e∗

e∗

h̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de

=

∫ e∗

e∗

h(e)

ck
√

h(e)
de−

∫ e∗

e∗

h̃(e)

ck
√
h(e)

de

≥ 0,

where the inequality follows because 1√
h(e)

is a convex function by Lemma 8 and g̃ is a

pivotal mean-preserving contraction of g.49

For the sake of contradiction, suppose Uα
P (F

∗; g) < Uα
P (F

∗; g̃). Then

1 =

∫
L

ρqg̃(ℓ)

Uα
P (F

∗; g̃) + c− cF ∗(ẽℓ)
dℓ

=
ρqG̃(c)

Uα
P (F

∗; g̃) + c
+

∫ 1

0

ρqh̃(e)

Uα
P (F

∗; g̃) + c− cF ∗(e)
de+

ρq(1− G̃(1 + c))

Uα
P (F

∗; g̃)

<
ρqG̃(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh̃(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1− G̃(1 + c))

Uα
P (F

∗; g)

≤ ρqG(c)

Uα
P (F

∗; g) + c
+

∫ 1

0

ρqh(e)

Uα
P (F

∗; g) + c− cF ∗(e)
de+

ρq(1−G(1 + c))

Uα
P (F

∗; g)

=

∫
L

ρqg(ℓ)

Uα
P (F

∗; g) + c− cF ∗(ẽℓ)
dℓ

which is a contradiction of
∫
L

ρqg(ℓ)
Uα
P (F ∗;g)+c−cF ∗(ẽℓ)

dℓ = 1. Therefore, Uα
P (F

∗; g) ≥ Uα
P (F

∗; g̃),
which, by Lemma 3, implies the investigator is better off under g̃ than g when holding
the investigation fixed at F ∗. Allowing the investigator to optimize the investigation after
moving to g̃ can only make the investigator better off. Q.E.D.

E. Proofs from Section 6
Before stating the proof of Proposition 5, we first formally define an equilibrium in the

commitment model. We let R(x) denote the reputation from choosing a particular com-

49 It is easy to see that h̃ is a a mean-preserving contraction of h if g̃ is a pivotal mean-preserving contraction
of g.
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mitment x ∈ X where we endow X with the metric d(x, x′) =
∫
E
|x(e) − x′(e)|dF (e).50 An

equilibrium is given by a strategy ξ : Θ → ∆(X ) and a belief system ν : X → ∆(Θ) such
that

1. ν is obtained from ξ using Bayes rule whenever possible with Supp(ν(·|x)) ⊆ {θ : x ∈
Supp(ξ(·|θ))} if {θ : x ∈ Supp(ξ(·|θ))} ≠ ∅,

2. ξ(X ∗
θ |θ) = 1 where X ∗

θ = argmaxx∈X
∫
E
u(θ, e, x(e),

∫
Θ
r(θ)dν(θ|x))dF (e).

We continue to impose the D1 refinement on equilibrium (as defined in Ramey (1996)). In
the context of our game, this is defined as follows. Let Uθ be type θ’s equilibrium payoff.
Take any x that is not in the support of ξ(·|θ) for any θ ∈ Θ. Suppose there exists Θ′ ⊆ Θ

such that, for each θ ̸∈ Θ′, there exists θ′ ∈ Θ′ such that

{µ ∈ ∆(Θ) :

∫
E

u(θ, e, x(e),

∫
Θ

r(θ)dµ(θ))dF (e) > Uθ}

⊊ {µ ∈ ∆(Θ) :

∫
E

u(θ′, e, x(e),

∫
Θ

r(θ)dµ(θ))dF (e) > Uθ′}.

Then an equilibrium with belief system ν violates D1 if the support of ν(·|x) is not contained
in Θ′. An equilibrium satisfies D1 if it does not violate D1.

Proof of Proposition 5

Proof. Throughout, we let R(x) =
∫
Θ
r(θ)dν(θ|x) wherever ν is clear and define Xℓ ≡

argmaxx
∫
E
(c+ e− ℓ)x(e)dF (e). We split the proof into several steps.

Step 1 (Equilibrium Construction): Let each ξ(xℓ|ℓ) = 1 for all ℓ ∈ L and define P ’s equi-
librium mixing strategy ξ(·|P ) ∈ ∆({xℓ}ℓ∈L) by dξ(xℓ|P ) = r(ℓ)dG(ℓ) q

1−q
[ ρ
Uα
P (F )+c−cF (ẽℓ)

−1].51

Set equilibrium beliefs ν(ℓ|x) =
Uα
P (F )+c−cF (ẽℓ)

ρ
, ν(P |x) = 1 − ν(ℓ|x) for x ∈ {xℓ}ℓ∈L, and

ν(P |x) = 1 otherwise; this leads to R(xℓ) = qr(ℓ)dG(ℓ)
qdG(ℓ)+(1−q)dξ(xℓ|P )

for ℓ ∈ L and R(x) = 0

otherwise. We note that Uα
P (F ) = −c

∫
E
xℓ(e)dF (e) + ρR(xℓ) for all ℓ ∈ L.

We note that these strategies generates the same outcomes as in ex-ante signaling.52 P is
indifferent across all {xℓ}ℓ∈L by construction and has no incentive to deviate to x ̸∈ {xℓ}ℓ∈L
as all such x generate an expected utility of at most 0, which is lower than his equilibrium
utility Uα

P (F ).53 By the arguments in Claim 3, no ℓ type has an incentive to deviate.

50 Formally, we take the DM’s choices to be an equivalence class of functions x that differ only on zero
probability events.

51 It is straightforward to check that
∫
L
ξ(xℓ|P ) = 1 given the definition of Uα

P (F ).
52 It is straightforward to verify that dξ(xℓ|P ) = dσα(mℓ|P ).
53 As shown in Lemma 2, Uα

P (F ) ≥ ρqr − c > 0.
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Finally, we show that the off-path reputations are consistent with D1. Take any x ̸∈
{xℓ}ℓ∈L. D1 rules out R(x) = 0 only if there exists an ℓ such that

{µ ∈ ∆(Θ) : −c

∫
E

x(e)dF (e) + ρ

∫
Θ

r(θ)dµ(θ) ≥ Uα
P (F )}

⊊ {µ ∈ ∆(µ) :

∫
E

(e− ℓ)x(e) + ρ

∫
Θ

r(θ)dµ(θ) ≥
∫
E

(e− ℓ)xℓ(e) + ρR(xℓ)}.

The left-hand side above is non-empty.54 Using the fact that Uα
P (F ) = −c

∫
E
xℓ(e)dF (e) +

ρR(xℓ), the above statement is equivalent to∫
E

(c+ e− ℓ)xℓ(e)dF (e) <

∫
E

(c+ e− ℓ)x(e)dF (e),

which contradicts xℓ ∈ Xℓ. Therefore, R(x) = 0 is consistent with D1.

Step Two (Outcome Equivalence): We show that all other equilibria are outcome equiv-
alent in two steps. Take any equilibrium with corresponding strategies {ξ(·|θ)}θ∈Θ and be-
lief system ν. First, we show that in any equilibrium ℓ types must only choose from Xℓ (i.e.,
ξ(Xℓ|ℓ) = 1). Second, we show ξ(Xℓ|P ) must take the form specified in Step One.

We first establish that, across all equilibria, a bound on the ex-post belief that θ ∈ L.

Claim 4. ν(L|x) < 1 for all x ∈ X .

Proof of Claim: For the sake of contradiction, suppose there exists x ∈ X such that
ν(L|x) = 1. Then R(x) ≥ r. By Bayes’ plausibility, there must exist x′ ∈ X ∗

P such that
ν(L|x′) ≤ q, which implies R(x′) ≤ qr. For x′ to be in X ∗

P , we must have

−c

∫
E

x′(e)dF (e) + ρR(x′) ≥ −c

∫
E

x(e)dF (e) + ρR(x). (16)

Because −c
∫
E
x′(e)dF (e) ≤ 0, −c

∫
E
x(e)dF (e) ≥ −c, R(x′) ≤ qr and R(x) ≥ r, (16) implies

−c+ ρr ≤ ρqr, or ρ ≤ c
r−qr

≤ c(r+r)

r2−qr2
, a contradiction of Assumption 2.

Next, we show X ∗
ℓ ⊆ Xℓ for all ℓ ∈ L. For the sake of contradiction, suppose there exists

x ∈ X ∗
ℓ \Xℓ for some ℓ. Fixing this ℓ and x, there are two cases to consider: cl(X ∗

P ) ∩ Xℓ ̸= ∅
and cl(X ∗

P ) ∩ Xℓ = ∅ where cl(X ∗
P ) is the closure of X ∗

P .

In the first case, where cl(X ∗
P ) ∩ Xℓ ̸= ∅, there exists a sequence of {x′

n}∞n=0 such that

54 Take x′ ∈ {xℓ}ℓ∈L such that ν(L|x′) ≤ q (such an x′ exists by Bayes plausibility), which implies Uα
P (F ) ≤

ρR(x′) ≤ ρqr. Setting µ with mass only on argmaxℓ∈L r(ℓ) is associated with a utility of at least ρr − c. If
the set on the left-hand side was empty, then ρr − c ≤ Uα

P (F ) ≤ ρqr or ρ ≤ c
r(1−q) , which contradicts (using

Assumption 2) ρ ≥ c(r+r)
r2−qr2

≥ c
r−qr ≥ c

r(1−q) .
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x′
n ∈ X ∗

P for all n and, for x′ = limn→∞ x′
n, x′ ∈ Xℓ. P then weakly prefers x′

n to x and ℓ

weakly prefers x to x′
n:

−
∫
E

cx′
n(e)dF (e) + ρR(x′

n) ≥ −
∫
E

cx(e)dF (e) + ρR(x),∫
E

(e− ℓ)x(e)dF (e) + ρR(x) ≥
∫
E

(e− ℓ)x′
n(e)dF (e) + ρR(x′

n).

Adding these inequalities and simplifying, we get
∫
E
(c+ e− ℓ)(x(e)− x′

n(e))dF (e) ≥ 0 for
all n. Taking the limit as n → ∞ yields

∫
E
(c+ e− ℓ)(x(e)− x′(e))dF (e) ≥ 0, a contradiction

to x′ ∈ Xℓ and x /∈ Xℓ.

Now consider the second case, when cl(X ∗
P ) ∩ Xℓ = ∅. Take any x′ ∈ X ∗

P . Because
xℓ ̸∈ cl(X ∗

P ), we have xℓ ̸∈ Supp(ξ(·|P )), so for ν(L|xℓ) < 1, it must be that {ℓ′ : xℓ ∈
Supp{ξ(·|ℓ′)}} = ∅. D1 then requires that ν(L|xℓ) = 1 if

{µ ∈ ∆(Θ) : −c

∫
E

xℓ(e)dF (e) + ρ

∫
Θ

r(θ)dµ(θ) > −c

∫
E

x′(e)dF (e) + ρR(x′)} (17)

⊊ {µ ∈ ∆(Θ) :

∫
E

(e− ℓ)xℓ(e) + ρ

∫
Θ

r(θ)dµ(θ) >

∫
E

(e− ℓ)x(e)dF (e) + ρR(x)}.

By analogous arguments to those in Step 1, the left-hand side of (17) is non-empty. Because
x′ ∈ X ∗

P , we have −c
∫
E
x′(e)dF (e)+ρR(x′) ≥ −c

∫
E
x(e)dF (e)+ρR(x). Therefore, (17) holds

if

{µ ∈ ∆(Θ) : −c

∫
E

xℓ(e)dF (e) + ρ

∫
Θ

r(θ)dµ(θ) > −c

∫
E

x(e)dF (e) + ρR(x)} (18)

⊊ {µ ∈ ∆(Θ) :

∫
E

(e− ℓ)xℓ(e) + ρ

∫
Θ

r(θ)dµ(θ) >

∫
E

(e− ℓ)x(e)dF (e) + ρR(x)}.

After some simplification, strict inclusion holds if
∫
E
(c + e − ℓ)(xℓ(e) − x(e))dF (e) > 0,

which holds because x /∈ Xℓ. Thus, ν(L|xℓ) = 1, which contradicts Claim 4. Therefore, we
conclude that X ∗

ℓ ⊆ Xℓ in any equilibrium. Thus, all equilibrium strategies for a probability
one set of ℓ types are outcome equivalent to xℓ with probability one (the only times they
may differ is when e = ẽℓ, which occurs with only for a probability zero set of (e, ℓ)).

Next, we argue that ξ(·|P ) and Ξ(·) ≡
∫
L
ξ(·|ℓ)dG(ℓ) must be mutually absolutely con-

tinuous. Claim 4 implies that Ξ(·) is absolutely continuous with respect to ξ(·|P ). For the
sake of contradiction, suppose ξ(·|P ) is not absolutely continuous with respect to Ξ(·). If
not, then because ξ(X ∗

P |P ) = 1, there exists X ′ ⊂ X ⊆ X ∗
P such that ξ(X ′|P ) > 0 = Ξ(X ′).

Then R(x) = 0 for some x ∈ X ′ and, because x ∈ X ∗
P , P ’s equilibrium expected utility is

−c
∫
E
x(e)dF (e). But, by Bayes plausibility, there exists x′ ∈ Supp(Ξ) such that ν(L|x′) ≥ q,
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which implies R(x′) ≥ qr, in which case P can achieve a utility of −c
∫
E
x′(e)dF (e) +

ρR(x′) ≥ ρqr − c > 0 ≥ −c
∫
E
x(e)dF (e). Thus, choosing x is strictly dominated by x′,

contradicting x ∈ X ∗
P . This argument also implies that R(x) > 0 for all x ∈ X ∗

P . Given that
all ℓ must choose only from Xℓ and, for probability one set of ℓ, all x ∈ Xℓ lead to equivalent
actions with probability one, the fact that P has a unique mixing strategy over Xℓ follows
from the same arguments as in Lemma 2. Q.E.D.

Next, we turn to the optional commitment model. Let λ ∈ ∆([−δ, δ]) be the distribution
over ε. An equilibrium consists of a strategy at the communication stage σ : Θ → ∆(X∪M),
a follow up strategy at the decision stage ζ : M × E × [−δ, δ] × Θ → ∆({0, 1}) and belief
systems ν1 : X ∪M → ∆(Θ), ν2 : (M × E × A) → ∆(Θ) such that

1. ν1 is obtained from Bayes rule whenever possible, with Supp(ν1(·|x)) ⊆ {θ : x ∈
Supp(σ(·|θ))} if {θ : x ∈ Supp(σ(·|θ))} ≠ ∅,

2. ν2(·|m, e, a) is obtained from Bayes rule whenever possible given prior ν1(·|m) for
m ∈ M ,

3. For each m, θ, e, ζ(A∗
m,e,ε,θ|m, e, ε, θ) = 1 where

A∗
m,e,ε,θ = arg max

a∈{0,1}
u(θ, e, a,

∫
Θ

r(θ)dν2(θ|m, e, a)) + εa,

4. For each θ, σ(Y∗
θ |θ) = 1 where

Y∗
θ =arg max

y∈M∪X

∫
E

[
1(y ∈ M)

{∫ δ

−δ

(
max
a∈{0,1}

u(θ, e, a,

∫
Θ

r(θ)dν2(θ|y, a, e)) + εa
)
dλ(ε)

}
+ 1(y ∈ X )u(θ, e, y(e),

∫
Θ

r(θ)dν1(θ|y))
]
dF (e),

where ε does not appear in the utility following y ∈ X because it is mean zero. Notice that
ζ only takes effect if a cheap-talk message is sent. We again impose the D1 refinement on
the choice of x ∈ X (as defined in the commitment model) and on the choice of a following
a cheap talk message (as defined in our baseline model).

Proof of Proposition 6

We prove the result under the differential type reputation model under the assumption
in addition to Assumption 2 that ρ ≥ max{2δ

qr
, δ
r−qr

}.
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Proof. Equilibrium existence follows by taking the same strategies (and beliefs following
x ∈ X ) as in the commitment model and setting ν(P |m) = 1 following any m ∈ M .
Moreover, by Proposition 5, this equilibrium yields the same outcome as ex-ante-signaling.
Therefore, we only need to prove that all equilibria are have outcomes that are equivalent
to ex-ante signaling.

Take an equilibrium E . If ΣN(M) = σ(·|M) = 0, then the same arguments as in Proposi-
tion 5 show that the equilibrium outcome is equivalent to ex-ante signaling. Suppose that
ΣN(M) > 0 or σ(M |P ) > 0. We first show σ(·|P ) and ΣN(·) =

∫
L
σ(·|ℓ)dG(ℓ) are mutually

absolutely continuous over M . Suppose there exists M ′ ⊆ M such that σ(M ′|P ) > 0 or
ΣN(M

′) > 0. If ΣN(M
′) = 0 < σ(M ′|P ), then for some m ∈ M ′, ν1(P |m) = 1 and the repu-

tation for m ∈ M ′ following any action at the decision stage is 0. If σ(M ′|P ) = 0 < ΣN(M
′),

then there exists m ∈ M ′ such that ν1(L|m) = 1 and the reputation is at least r for each
action at the decision stage. By Bayes plausibility, there exists an m′ or x with reputation
at most qr after each action. If the reputation after m is always at least r, then, m is a prof-
itable deviation from m′ or x for any type of DM as they can choose an optimal action for
each (e, ε) realization and still have a higher reputation as qr < r by Assumption 2. If the
reputation after m is always 0, P attains a maximum utility of max{−c + δ, 0} from doing
so. However, the P type can attain at least ρqr − c − δ by mimicking some ℓ type whose
expected equilibrium reputation is at least qr (such ℓ exist by Bayes plausibility). Because
ρ > 2δ

qr
and ρ > c(r+r)

qr2
by Assumption 2, this is a contradiction. Therefore, ΣN(M

′) > 0 if
and only if σ(M ′|P ) > 0 for all M ′ ⊆ M .

Take ℓ and m ∈ M such that m is an optimal message for ℓ (i.e., m ∈ Y∗
ℓ ) and take

R(m, e, a) =
∫
Θ
r(θ)dν2(θ|m, e, a). Now consider the difference in payoff between sending

message m in equilibrium and taking commitment xℓ for types ℓ and P as a function of e, ε.
For type ℓ, this is given by

max{e− ℓ+ ε+ ρR(m, e, 1), ρR(m, e, 0)} − (e− ℓ+ ε)1(e− ℓ ≥ −c)− ρR(xℓ), (19)

and for P , it is given by

max{−c+ ε+ ρR(m, e, 1), ρR(m, e, 0)} − (−c+ ε)1(e− ℓ ≥ −c)− ρR(xℓ). (20)

Notice that the expression for ℓ is weakly less than it is for P for every e, ε. The expression
is strictly less by e − ℓ + c if e − ℓ > −c and both ℓ and P choose a = 0 following (m, e, ε),
or by −(e − ℓ + c) if e − ℓ < −c and both ℓ and P choose a = 1 following (m, e, ε). If the
difference is strictly less for ℓ than it is for P , previous arguments imply that ν1(L|xℓ) = 1,
so R(xℓ) ≥ r and P ’s expected utility in equilibrium is at most max{−c+δ, 0}+ρqr. Because
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P ’s utility from xℓ is then at least −c + ρr, P would have a strict incentive to deviate to xℓ

if δ > c by ρ > δ
r−qr

and if δ ≤ c by ρ > c(r+r)

r2−qr2
> c

r−qr
.

Note that (19) and (20) are equal only if, for every ℓ sending m, both P and ℓ choose xℓ(e)

with probability 1 when e ̸= ẽℓ. Note that this can only occur if a single ℓ types sends m,
otherwise the evidence realizations that induce one ℓ type to choose a = 0 and the other ℓ
type to choose a = 1 would necessitate two different actions from P . This means that every
on-path message is sent by the P type and a single ℓ type, and this message is followed up
by xℓ. Thus, the DM either sends cheap-talk messages which lead to actions following xℓ

or chooses some commitment x ∈ X . As shown in the proof of Proposition 7, each ℓ type
can only choose commitment xℓ or something payoff equivalent (i.e., σ(Xℓ|ℓ) = 1), and the
set of optimal commitments for P is contained in the set ∪ℓ∈L Xℓ. This means, that at the
communication stage, each ℓ type identifies themselves among L and follows up with xℓ

at the decision stage, and the P type mixes over these options. Outcome equivalence to
ex-ante signaling follows from arguments in Lemma 2. Q.E.D.

Proof of Proposition 7

Proof. P ’s expected utility conditional on e0 is Uα
P (F1(·|e0)). By an analogous proof to that

in Lemma 3, P(a = 1|e0) =
ρE[r(θ)]−Uα

P (F1(·|e0))
c

. Thus, P(a = 1) =
∫
E
P(a = 1|e0)dF0(e0) =

1
c
[ρE[r(θ)] −

∫
E
Uα
P (F1(·|e0))dF0(e0)]. The proposition then follows immediately from con-

vexity of Uα
P (·). Q.E.D.

Proof of Proposition 8

For the differential type reputation model, we now require that r(ℓ)g(ℓ) be continuous
(rather than just g being continuous). For ℓI ∈ [0, 1), the investigator can achieve his first-
best payoff via full information disclosure: because 0 < minℓ∈L ẽℓ < maxℓ∈L ẽℓ < 1, e = 0

leads to a = 0 with probability one and e = 1 leads to a = 1 with probability one. Therefore,
let us focus on the case when ℓI < 0, that is, the investigator prefers a = 1 at all e ∈ [0, 1].

That the investigator prefers ex-ante to ex-post signaling follows immediately from
Proposition 1. The fact that no mass points are used is shown in the following Lemma.

Lemma 9. For sufficiently high ρ, the optimal investigation has no mass points in (0, 1).

Proof. Take any F with a mass point on ê ∈ (0, 1) and Uα
P (F ) > 0. Take some small

ε > 0. Suppose ê ≤ ℓI . Then because no DM type will choose a = 1 at e ∈ [ê − ε, ê + ε]

for sufficiently small ε, it is without loss to smooth out the mass point to be a continuous
density on [ê − ε, ê + ε] as doing so will not change the probability of a = 1 at such e. Let
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us therefore suppose ê > ℓI . Consider Fδ such that Fδ(e) = F (e) for all e ̸∈ (ê − ε, ê + ε)

and Fδ moves δ mass away from ê and splits it equally between ê − ε, ê + ε, so Fδ(e) =

F (e) + δ
2
1(e ∈ [ê− ε, ê))− δ

2
1(e ∈ [ê, ê+ ε]).

Take a distribution of evidence F and let η(ℓ;U, δ) = r(ℓ)dG(ℓ)qρ
U+c−cFδ(ẽℓ)

. As shown in the proof
of Lemma 3, the distribution of mℓ is qdG(ℓ) + (1− q)dσ(mℓ|P ) = ρqr(ℓ)dG(ℓ)

Uα
P (F )+c−cF (ẽℓ)

. The inves-
tigator’s utility is given by∫

E

(e− ℓI)

[ ∫
L

1(ẽℓ ≤ e)(qdG(ℓ) + (1− q)dσ(mℓ|P ))

]
dFδ(e)

=

∫
E

(e− ℓI)

[ ∫
L

1(ẽℓ ≤ e)η(ℓ;Uα
P (F ), δ)dℓ

]
dFδ(e). (21)

For notational ease, we let U = Uα
P (Fδ). Taking the derivative of (21) at F = Fδ with

respect to δ, we have

dU

dδ

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
∂η(ℓ;U, δ)

∂U
dℓdFδ(e) +

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
∂η(ℓ;U, δ)

∂δ
dℓdFδ(e)

+

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)η(ℓ;U, δ)dℓ
d

dδ
dFδ(e). (22)

We will show that this expression, for small ε and evaluated at δ = 0, is strictly positive.

We show the first term in (22) is positive. Because dη(ℓ;U,δ)
dU

≤ 0, it suffices to show dU
dδ

≤ 0.
Because Uα

P (Fδ) is characterized by
∫
L
η(ℓ;Uα

P (Fδ), δ)dℓ = 1, we have

0 =
dU

dδ

∫
L

∂η(ℓ;U, δ)

∂U
dℓ+

∫
L

∂η(ℓ;U, δ)

∂δ
dℓ.

Because ∂η(ℓ;U,δ)
∂U

≤ 0, strictly so when g(ℓ) > 0, dU
dδ

≤ 0 if and only if
∫
L

∂η(ℓ;U,δ)
∂δ

dℓ ≤ 0. Given
the form of Fδ, for sufficiently small ε we have∫

L

∂η(ℓ;U, δ)

∂δ
dℓ =

1

2

[ ∫
L

1(ẽℓ ∈ [ê− ε, ê))
cρqr(ℓ)g(ℓ)

(U + c− cFδ(ẽℓ))2
dℓ

−
∫
L

1(ẽℓ ∈ [ê, ê+ ε])
cρqr(ℓ)g(ℓ)

(U + c− cFδ(ẽℓ))2
dℓ

]
< 0,

where the inequality follows from the fact that, because Fδ has a mass point on ê, F (ẽℓ) is
discretely higher for ẽℓ > ê than for ẽℓ < ê. Thus, dU

dδ
≤ 0.

Next, we show that the second term in (22) is positive. Let ∆F be the size of mass point
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on ê. Next, we note that for small ε∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
∂η(ℓ;U, δ)

∂δ
dℓdFδ(e)

=

∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)
1

2

[
1(ẽℓ ∈ [ê− ε, ê))

cr(ℓ)g(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2

− 1(ẽℓ ∈ [ê, ê+ ε])
cr(ℓ)g(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2
]
dℓdFδ(e)

=
1

2

∫
L

[
1(ẽℓ ∈ [ê− ε, ê))

cr(ℓ)g(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2

∫ ∞

ẽℓ

(e− ℓI)dFδ(e)

− 1(ẽℓ ∈ [ê, ê+ ε])
cr(ℓ)g(ℓ)qρ

(U + c(1− Fδ(ẽℓ)))2

∫ ∞

ẽℓ

(e− ℓI)dFδ(e)
]
dℓ

≈ εcr(ê+ c)g(ê+ c)qρ

2

[
(ê− ℓI)∆F +

∫∞
ê+ε

(e− ℓI)dFδ(e)

(U + c(1− Fδ(ê) + ∆F ))2
−

[
∫∞
ê+ε

(e− ℓI)dFδ(e)

(U + c(1− Fδ(ê)))2

]
We claim the last line above is strictly positive for large enough ρ. Pulling out common
factors and the denominators and doing a bit of simplification, we get that the above ex-
pression is strictly positive if

0 <

∫ ∞

ê+ε

(e− ℓI)dFδ(e)[(U + c(1− Fδ(ê)))
2 − (U + c(1− Fδ(ê) + ∆F ))2]

+ (ê− ℓI)∆F (U + c(1− Fδ(ê)))
2

= ∆F [(ê− ℓI)(U + c− cF (ê))2 −
∫ ∞

ê+ε

(e− ℓI)dFδ(e)(2(U + c(1− Fδ(ê))) + c2∆F )].

Because ê− ℓI > 0 and U ≥ ρqr− c in equilibrium, the last line above is strictly positive for
sufficiency large ρ.
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Finally, we show the final term in (22) is positive. For small enough ε, we have∫
E

(e− ℓI)

∫
L

1(ẽℓ ≤ e)η(ℓ;U, δ)dℓ
d

dδ
dFδ(e)

=
1

2
(ê− ε− ℓI)

∫
L

1(ẽℓ < ê− ε)η(ℓ;U, δ)dℓ+
1

2
(ê+ ε− ℓI)

∫
L

1(ẽℓ < ê+ ε)η(ℓ;U, δ)dℓ

− (ê− ℓI)

∫
L

1(ẽℓ < ê)η(ℓ;U, δ)dℓ

=
1

2
(ê− ℓI)(

∫
L

1(ẽℓ ∈ [ê, ê+ ε])η(ℓ;U, δ)dℓ−
∫
L

1(ẽℓ ∈ [ê− ε, ê))η(ℓ;U, δ)dℓ)

+
1

2
ε(

∫
L

1(ẽℓ ∈ [ê− ε, ê+ ε])η(ℓ;U, δ)dℓ)

≥ 1

2
(ê− ℓI)(

∫
L

1(ẽℓ ∈ [ê, ê+ ε])η(ℓ;U, δ)dℓ−
∫
L

1(ẽℓ ∈ [ê− ε, ê))η(ℓ;U, δ)dℓ)

≥ 0,

where the final inequality follows from the fact that, for ℓ such that ẽℓ = ê, η(ℓ − z;U, δ) is
discretely lower than η(ℓ+ z;U, δ) for small z due to the mass point on ê.

Having shown that all terms in (22) are positive, we conclude that F can not have been
optimal as moving to Fδ for some δ > 0 strictly increases the investigator’s payoff. Q.E.D.

Optimal Investigation with Multiple States Proofs

Let M(F, e) ≡ r(e+c)g(e+c)ρq

(Uα
P (F )+c(1−F (e)))

2 , which gives the derivative of the density of the DM’s

declaration of mℓ for ℓ = e + c. Let (e, e) be the min and max over Supp(F ∗) respectively.
Analogously to our baseline model, we assume that r(ℓ)g(ℓ) is continuous and increasing
over [c, 1 + c].

Proposition 9. The optimal investigation F ∗ exists and must satisfy the following properties.

1. F ∗ is strictly increasing for e ∈ (e, e)

2. M(F ∗, e) is increasing on [e, e],

3. If
∫ e

0
(F (e′)−K(e′))de′ < 0 for e ∈ (e1, e2) ⊂ [e, e], then M(F ∗, e) is constant on [e1, e2]

Proof. Note that the optimum exists because the constraint set is compact and the objective
is continuous in (F,U). Let U = Uα

P (F
∗) for the optimal F ∗. Then

∫
L

ρqr(ℓ)g(ℓ)
U+c−cF ∗(ẽℓ)

dℓ = 1. The
optimal F ∗ must minimize

∫
L

ρqr(ℓ)g(ℓ)
U+c−cF (ẽℓ)

dℓ over feasible F ; if not, then the investigator
could choose an alternative F ′ such that

∫
L

ρqr(ℓ)g(ℓ)
U+c−cF ′(ẽℓ)

dℓ < 1, in which case Uα
P (F

′) <
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Uα
P (F

∗), a contradiction of the optimality of F ∗. The optimal investigation F ∗ must then
solve

min
F∈F

∫
L

ρqr(ℓ)g(ℓ)

U + c− cF (ẽℓ)
dℓ , (23)

such that BP :

∫ e

0

F (e′)de′ ≤
∫ e

0

K(e′)de′ ∀e ∈ E, and∫ 1

0

F (e′)de′ =

∫ 1

0

K(e′)de′.

First, suppose for the sake of contradiction that F ∗ is constant on some interval [e1, e2) =

{e : F ∗(e) = F ∗(e1)}. For ε > 0, consider a perturbation F̃ of F ∗ where

F̃ (e) =


F ∗(e) e < e1 − ε or e ≥ e2 + ε

F ∗(e1)− δ e ∈ [e1 − ε, (e1 + e2)/2],

F ∗(e1) + δ e ∈ [(e1 + e2)/2, e2 + ε],

.

where δ is taken small so that F̃ is a CDF. F̃ clearly satisfies the BP constraints. For suffi-
cently small ε, the impact of this perturbation value of this change on the objective in (23)
as δ → 0 is approximately

−
∫ (e1+e2)/2

e1

M(F ∗, e)de+

∫ e2

(e1+e2)/2

M(F ∗, e)de < 0,

where the inequality holds because g is strictly decreasing and F ∗ is constant on this inter-
val, contradicting the optimality of F ∗.

Next, suppose for the sake of contradiction that M(F ∗, e1) > M(F ∗, e2) for e ≤ e1 < e2 ≤
e. Take ε > 0. If e1 = e and F ∗(e) = 0 then, because M is right continuous, replace e1 with
e1 + ε so that the inequality on M still holds. Similarly if e = e2 and then replace e2 with
e2 − ε so the inequality on M still holds. Now take the perturbation F̃ of F ∗ given by

F̃ (e) =


F ∗(e) e /∈ [e1 − ε, e1 + ε) ∪ [e2 − ε, e2 + ε)

F ∗(e1)− δ e ∈ [e1 − ε, e1 + ε),

F ∗(e1) + δ e ∈ [e2 − ε, e2 + ε),

where δ is taken small so that F̃ is a CDF. F̃ clearly satisfies the BP constraints. For
small ε, the impact of this perturbation on the objective in (23) as δ → 0 is approximately
2ε(−M(F ∗, e1) +M(F ∗, e2)) < 0, contradicting the optimality of F ∗.
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Lastly take a region (e′, e′′) where the BP constraint does not bind, but the constraint
binds at e′ and e′′. Then both the perturbation above and its opposite are available for
e′ < e1 < e2 < e′′. This means that if M(F ∗, e) is not constant on this interval, F ∗ is not
optimal. Q.E.D.

Proof of Corollary 4

Proof. If F discontinuously jumps at some e, then the BP constraint must not be binding
around e. Because g is continuous, a discontinutity in F ∗ implies M(F ∗, e) is not constant
around e, a contradiction of Proposition 9. Q.E.D.

Proof of Corollary 5

Here, for the differential type reputation model we assume r(e+c)g(e+c)
(ρE[r(θ)]+c−cK(e))2

is strictly
increasing in e.

Proof. Take e where the BP constraint binds but does not bind for some region above e.
Note that the constraint always binds at e = 0, so such an e exists. Also at such an e,
K(e) = F ∗(e). This means that M(F ∗, e′) must be constant for e′ ∈ [e, e + ε) with ε suffi-
ciently small, and as long as the BP constraint continues to not bind. Note that the con-
dition that r(e′+c)g(e′+c)

(ρE[r(θ)]+c(1−K(e′)))2
is increasing and fact that Uα

P (F
∗) ≤ ρE[r(θ)]55 implies that

r(e′+c)g(e′+c)

(Uα
P (F ∗)+c(1−K(e′)))

2 is increasing in e′ on [e, e+ ε) which implies in this region that

r(e′ + c)g(e′ + c)

(Uα
P (F

∗) + c(1−K(e′)))2
> M(F ∗, e′). (24)

From (24), we conclude K(e′) > F ∗(e′). That is F ∗ grows slower than K, which means
the equality BP constraint cannot be satisfied at any higher evidence level violating the
equality constraint at e = 1. Q.E.D.

F. Optimal Design under Ex-Post Signaling

In this appendix we compare the optimal investigation under ex-ante signaling to that
under ex-post signaling. This comparison gives us insights into how the structure of opti-
mal investigations is shaped by the presence of communication, or alternatively, the timing
of the evidence realization. Note that because of Theorem 1, the investigator will always
prefer the investigation in Theorem 2 to the optimal investigation under ex-post signaling.

55 This inequality is implied by Lemma 3, because Uα
P (F

∗) > ρE[r(θ)] implies the probability of a = 1 is
negative.
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However, this does not say anything about the relative informativeness of these investiga-
tions, which is especially important in applications where the evidence may be important
beyond the DM’s choice, e.g., the information a firm submits to the Environmental Pro-
tection Agency about its environmental impact. In such settings a planner may want to
impose either ex-ante or ex-post signaling depending on which leads to a more informa-
tive investigation. We will show that the comparison in informativeness depends on the
investigator’s design incentives when facing only non-partisans.

Recall vβ(e) is the probability of conviction as a function of the evidence given ex-post
signaling. Due to the simplicity of ex-post signaling, we can explicitly derive this convic-
tion probability in baseline model where r = r as

vβ(e) =
1

2c

(
ρq + c−

√
(ρq + c)2 − 4ρqcG(e+ c)

)
.

Because the messaging strategy under ex-post signaling involves babbling, which is inde-
pendent of F , vβ(e) does not depend on F . We can write the investigator’s design problem
as

max
F∈F

∫ 1

0

vβ(e)dF (e),

such that
∫ 1

0

(1− F (e))de = e.

This design problem is a standard Bayesian persuasion problem and the following result
characterizing the optimal information structure follows immediately from Kamenica and
Gentzkow (2011).

Proposition 10. Let Cav(vβ) be the concavified value of vβ . There exists an optimal F with bi-
nary support if vβ(e) < Cav(vβ)(e) and an optimum with degenerate support on e if vβ(e) =

Cav(vβ)(e).

An immediate implication is that if vβ is strictly concave in e, then an uninformative
investigation is uniquely optimal. Because vβ is a convex transformation of G, it is not
quite sufficient for the investigator to want to withhold information from the non-partisan.
However, if the investigator is significantly harmed by providing information to the non-
partisan, i.e., G is “sufficiently concave”, then an uninformative investigation will be op-
timal under ex-post signaling.56 Note that in these cases (and in general), the optimal
investigation under ex-ante signaling provides some information; see Corollary 2. Thus,

56 An example is when the leniency is distributed according to the standard exponential distribution.
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there are cases, namely those in which ℓ types’ convicts significantly less when given infor-
mation, in which the optimal investigation under ex-ante signaling is more informative in
a Blackwell sense than that under ex-post signaling.

However, the comparison can also go the other way. Because vβ is a convex transfor-
mation of G, there will be examples where the ex-post signaling optimal investigation is
perfectly informative, but the investigator is harmed by providing information to non-
partisans. In these cases, because concave G implies h is decreasing in e, Theorem 2 says
that the optimal investigation under ex-ante signaling admits a positive density when F ∗

is interior, and is thereby imperfectly informative.

A unifying feature between ex-ante and ex-post signaling is that if information increases
the ℓ types’ conviction probability then full information is optimal under both regimes.
This means that, like under ex-ante signaling, P ’s behavior under ex-post signaling incen-
tivizes the investigator to provide more information.

Corollary 6. If r = r = 1 and G is convex on [c, 1 + c] then the optimal investigation is fully
informative under both ex-ante and ex-post signaling.
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