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Abstract

We develop a least squares regression theory for the empirical study of mod-

els of preference and individual decision-making. Our approach utilizes com-

mon invariance properties of various models to obtain cardinal measurements

of preference intensity. Our theory is widely applicable, and provides richer,

more granular insights into the drivers of a model’s predictive success or failure

than traditional revealed preference methods, while simultaneously remaining

computationally simple. We illustrate our methodology on common models of

preferences over consumption bundles, dated rewards, lotteries, consumption

streams, and Anscombe-Aumann acts.

1 Introduction

Dating back to at least Samuelson (1938), the study of the testable implications of

models of individual preference and decision making has occupied a central position

within both empirical and theoretical economics. In behavioral and decision theory,

experimental falsification, or the discovery of ‘paradoxes’ documenting widespread

empirical inconsistency with respect to various axioms, has been a long-standing
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driver of progress.1 Related puzzles in macroeconomics and finance (e.g. the equity

premium puzzle, see Mehra and Prescott 1985) have similarly led to the creation of

new theories of individual behavior (Epstein and Zin 1989; Constantinides 1990).

A core underlying question in each of these instances is how to evaluate whether

the predictions of a theory (e.g. the expected utility hypothesis or constant relative

risk aversion) are sufficiently consistent with the observed data. Any such theory

necessarily only describes individual behavior in a stylized fashion; because of this,

we expect that no theory will perfectly explain any sufficiently rich data set. Thus

it is critical to understand not only whether a model is consistent with the data, but

rather how best to quantify the degree of any observed inconsistency.

For consumption data, a seemingly natural approach is to use standard economet-

ric notions of loss (e.g. mean squared error) to quantify the magnitude of the deviation

between observed and predicted demands generated by some theory. However, Varian

(1990) argues that this approach (i.e. quantifying inconsistency via deviations between

choices) despite its tractability, reflects the statistical, rather than economic, signifi-

cance of violations, which may be unrelated. Instead, Varian argues, one should rely

on revealed preference type inconsistency indices, which admit a more natural eco-

nomic interpretation.2,3 Nonetheless, these are not without their own disadvantages:

such measures are at best imperfect proxies for economically meaningful quantities,

tend to be computationally difficult and, in the presence of noise or error, present

statistical challenges.4,5

This paper develops a powerful and widely applicable methodology for evaluating

the predictive accuracy of models of preference and individual decision-making. Our

approach applies to any theory which satisfies a common form of ‘invariance’ property.

It hinges on a novel generalization of the concept of numeraire commodity, which may

be defined for any such family. Using willingness-to-pay measurements denominated

1E.g., Allais (1953); Ellsberg (1961); Kahneman and Tversky (1979); Rabin (2000).
2For examples of such indices, see Afriat (1972); Houtman and Maks (1985); Varian (1990);

Echenique et al. (2011); Dean and Martin (2016).
3However, stronger interpretations than warranted are often attributed to these indices; see

Echenique (2021) for discussion of this point.
4There is a growing literature on the computational difficulty of computing various inconsistency

indices for revealed preference data, see Cherchye et al. (2015); Dean and Martin (2016); Smeulders

et al. (2013, 2014, 2021).
5E.g., Echenique et al. (2011).
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in such a ‘virtual numeraire,’ we are able to quantify the extent to which data deviates

from model predictions in a principled and transparent way.

Our approach enjoys a number of advantages over traditional revealed preference

methods. We show that any data vector in our setting can always be uniquely decom-

posed into a rationalizable component, and a sum of (cardinal) revealed preference

cycles. Many ordinal methods for trying to extract consistent rankings from choice

data require strong completeness assumptions to guarantee the existence (or reason-

ableness) of predictions.6 In contrast, our methodology provides a natural means of

distinguishing inconsistency from underlying rationalizable content for general data

sets, and without any further assumptions.

Our approach is also computationally simple, particularly in comparison to many

ordinal inconsistency indices.7 Quantifying deviation requires evaluating a standard

least squares program, subject to finitely many linear inequality constraints. Utilizing

our decomposition result, this minimization may be viewed as taking place over an

appropriate space of utilities, rather than relying on any notion of proximity between

choices. Halevy et al. (2018) describe Varian’s critique as arguing that loss ought to be

ideally quantified over “utility space” (p. 1561) — our theory achieves this first-best.

This allows us to provide a suite of tools for analyzing a variety of related questions,

often more tractably than existing ordinal methods. The solution to our least squares

program provides a best-fit estimator, which allows us to straightforwardly select the

‘most consistent’ preferences from some theory, even when none are fully compatible

with the data. For parametric models, this provides an economically meaningful way

of obtaining point estimates of parameters. However our approach retains all its

power and simplicity even when applied to more complex, non-parametric theories.

By examining which inequality constraints bind at our solution, we are also often

able to provide insight into which individual axioms of a theory are most (or least)

well-supported by the data. In Section 5, we illustrate how use this to compute

the ‘shadow price,’ in model fit terms, of Gilboa and Schmeidler (1989)’s ambiguity

aversion axiom.

Finally, in the presence of stochastic noise or measurement error, we provide a

general means of leveraging cross-sectional observations to construct distribution-free

6See, for example, Bernheim and Rangel (2009); Nishimura (2018).
7E.g., Echenique et al. (2011); Dean and Martin (2016); Smeulders et al. (2013, 2014, 2021).
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statistical tests of consistency. Our approach again remains equally valid for both

parametric and non-parametric theories.

To more concretely illustrate our approach, the following example considers the

simplest case of quasilinear preferences, where our notion of ‘virtual numeraire’ re-

duces to the numeraire commodity. This allows us to highlight how numeraire-

denominated measurements can be used to naturally measure deviations from a theory

in an economically meaningful fashion.

An illustrative example: Consider a subject who has preferences over bun-

dles of (say) money and apples, modelled as elements of (m, a) ∈ R2
+. Suppose we

wish to evaluate how consistent the subject’s behavior is with the maximization of a

quasilinear utility u : R2
+ → R of the form:

u(m, a) = v(a) +m, (1)

for some concave and increasing v : R+ → R. We consider data of the following

form: there is a collection of three bundles (m1, a1), (m2, a2), and (m3, a3), in general

position in R2
+, and the subject is presented with all three possible pairs of bundles

from this collection. For each pair of bundles, we observe both (i) which bundle

is preferred, and (ii) what quantity αij of numeraire (here, money) which must be

added to the less-preferred bundle i to make the subject indifferent between it and

the more-preferred j.

Our goal is to test the extent to which the data vector α is consistent with the

model. To be consistent with the representation (1), there must exist utilities ui for

each bundle such that ui = u(mi, ai) = v(ai) +mi for some fixed choice of v. The set

of (u1, u2, u3) that arise in this fashion is defined by a simple, finite system of linear

inequalities.

As the vector α is denominated in numeraire, by (1), it may be identified with a

vector of differences in utilities, under the null hypothesis of consistency. Hence it is

natural to quantify deviations from the predictions of our model by measuring the

distance from our vector α to the set of differences generated by vectors (u1, u2, u3)

consistent with the model. This corresponds to minimizing the mean squared error

between the observed and predicted utility differences, and requires only solving a

simple least squares problem, subject to a finite collection of linear inequality con-

straints.
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The solution to this program characterizes the set of convex, increasing, and quasi-

linear preferences which best fit the vector of observations. This allows us, for exam-

ple, to straightforwardly select a best-fitting preference from our model, even when

our vector of observations is inconsistent with every such preference.

In fact, a more granular analysis is possible. The mean squared error for our model

can be uniquely decomposed as the sum of errors attributable to (i) money failing

to be a numeraire for the subject, versus (ii) violations of the ‘shape constraints’

monotonicity and concavity. Moreover, by examining which constraints bind at our

solution, we can quantify how much fit would improve by relaxing the assumptions of

monotonicity or convexity (or both). This allows for far more refined feedback than

is typically available for, e.g., model selection exercises. ■

Perhaps surprisingly, quasilinearity turns out to be far from necessary to achieve

these results. Suppose instead we are interested in preferences on some abstract

consumption spaceX. We first introduce the notion of a ‘virtual commodity,’ formally

a collection {ϕα}α≥0 of transformations, each mappingX → X. For any alternative x,

we interpret ϕα(x) as representing x, plus α additional units of the virtual commodity.

To ensure consistency between these transformations, we require that ϕβ

(
ϕα(x)

)
=

ϕα+β(x). This simply says adding β units of the virtual commodity to the alternative

which already consists of x plus α units, must yield the same outcome as adding α+β

units to x all at once.

Given such a commodity, our first main result provides necessary and sufficient

conditions for every preference in some family to admit a representation satisfying

the system of functional equations:

u
(
ϕα(x)

)
= u(x) + α, (2)

for all x ∈ X and each α ≥ 0. If such a representation obtains for every preference,

we say that {ϕα}α≥0 defines a virtual numeraire commodity for the family. When

X consisted of bundles (m, a) ∈ R2
+ and each ϕα was the transformation that added

α extra dollars to any bundle, satisfaction of (2) was equivalent to quasilinearity in

money. However, many more general families of preference admit utilities satisfying

(2), for appropriately chosen families {ϕα}α≥0.

For example, suppose instead thatX consists of all lotteries over prizes {$1, $5, $10}
except δ$10, the lottery that pays $10 with probability one. For each α ≥ 0, define
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the transformation ϕα(p) = e−αp + (1 − e−α) δ$10. Here, ‘adding’ virtual commodity

to a lottery p corresponds to mixing p with δ$10. Given an increasing, expected utility

preference, its standard representation(s):

U(p) =
∑

i∈{$1,$5,$10}

pi v(i)

will not satisfy (2). However, the monotone transformation u(p) = − ln
[
c̄ − U(p)

]
,

where c̄ ≡ v($10) is a normalizing constant, does.

This provides a very general approach to obtaining measurements of preference

intensity for a variety of theories or models. We first select a family of transforma-

tions {ϕα}α≥0 that form a virtual numeraire for our theory. Using this choice, we

proceed analogously to the quasilinear case: for some collection of binary subsets

of X, we elicit (i) which alternative in the pair is preferred (e.g. x′ ≿ x), and (ii)

what quantity of additional, virtual numeraire must be added to the less-preferred

alternative to render the subject indifferent between it and the more-preferred (e.g.

for which α∗ ≥ 0 is ϕα∗(x) ∼ x′).8 Just as in the quasilinear case, compensation

measurements denominated in virtual numeraire form an exact proxy for the utility

difference between x′ and x, but now this difference is measured under any utility

satisfying (2).

The paper proceeds as follows. In Section 2 we review related work. Section 3

characterizes the existence of representations satisfying (2). We also provide explicit

examples of virtual numeraires {ϕα}α≥0 for many common classes of preferences over

commodity bundles, dated rewards, lotteries, consumption streams, and Anscombe-

Aumann acts. Section 4 develops our least-squares regression theory, illustrated above

in the context of quasilinear preferences, for general virtual numeraire-denominated

data. This requires a novel continuous extension theorem for invariant preferences,

which is our main workhorse result. Section 5 illustrates the power of our approach in

the context of the maxmin expected utility model, and Section 6 considers extensions

to the case of stochastic data.

8In Online Appendix E we provide a dominant strategy incentive-compatible mechanism for

truthfully eliciting such measurements, for general X and choice of {ϕα}α≥0.
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2 Related Literature

The revealed preference literature is too large to adequately survey here; for an ex-

cellent overview, see Chambers and Echenique (2016). Within that space, this paper

is related to the literature on inconsistency measures for revealed preference data.

Among the first to consider this was Afriat (1972) in the context of price-consumption

data. More recent contributions include Houtman and Maks (1985); Varian (1990);

Echenique et al. (2011) and Dean and Martin (2016). These papers provide econom-

ically natural measures of deviation from rational behavior; in contrast, this paper is

concerned with quantifying deviations from the predictions of specific models.9

Our concept of virtual numeraire relates to earlier work in measurement theory,

e.g. Krantz et al. (2007). Historically, this focused on the measurement of intensity

(including preference intensity) across various factors of a product space, and studied

which means of evaluating trade-offs across these factors led to additive represen-

tations (Debreu 1959; Wakker 1988). Our methodology, based around finding an

appropriate, exogenous scale {ϕα}α≥0 to obtain consistent measures of intensity, may

be viewed as a ‘coordinate-free’ generalization of this approach.10

Our theory has the advantage of computational simplicity. For many models,

computing our best-fit estimator requires solving a quadratic program with linear

inequality constraints.11 This is in stark contrast with the well-known computational

difficulties of most revealed preference inconsistency indices (e.g. Cherchye et al.

2015; Dean and Martin 2016; Smeulders et al. 2013, 2014, 2021).

A closely related body of work studies notions of distance over spaces of binary

relations (e.g. Nishimura and Ok 2022) and constructs distance-minimizing preference

estimators. Chambers et al. (2021) establishes consistency of an estimator which

selects a Kemeny distance-minimizing rational preference to a noisy data set, and

provides convergence rates. Halevy et al. (2018) use inconsistency indices to calibrate

various parametric models. They provide a decomposition of loss into components due

to inconsistency with rationality versus parametric misspecification. While we study a

different notion of loss, our Proposition 2 establishes an closely related decomposition

9See also Fudenberg and Liang (2020).
10For a formal statement of this interpretation, see Theorem 3.
11There exist computationally efficient algorithms for solving such problems, see e.g. Vavasis et al.

(2001).
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in our setting, for both parametric and non-parametric models.

In the context of stochastic data, a number of papers study the problem of statisti-

cally testing rationalizability for various models. Kitamura and Stoye (2018) provide

a non-parametric test for the random utility framework.12 Fudenberg et al. (2020)

provide a test of the drift-diffusion model, and Cattaneo et al. (2020) a model of

random attention filtering. Blundell et al. (2008) provide a test of the classical re-

vealed preference axioms for demand data. They observe that rationalizable demand

responses to price changes can be characterized by a system of moment inequalities.

In Section 6 we exploit similar structure to derive nonparametric statistical tests of

rationalizability for a wide variety of models.

Methodologically, our regression theory bears some similarity to techniques from

the production literature, e.g. Allon et al. (2007); Kuosmanen (2008). A standard

assumption in producer theory is that both input and output levels are observable.

While utility levels are generally not, our methodological contribution of measuring

compensation using ‘virtual’ numeraires allows observation of the utility differences

corresponding to a particular choice of representation.13 This allows us to apply

similar constrained-regression techniques (e.g. Seijo and Sen 2011) to the empirical

study of preferences.14

In the context of risk, Smith (1961) and Savage (1971) propose using the proba-

bility of a subject winning a given prize itself as a utility-linear unit of compensation

in incentive schemes for expected utility maximizers.15 Similarly, Roth and Malouf

(1981, 1982) feature an experimental design in which subjects bargain over probability

units to ensure constant marginal utility. Our usage of suitable families of transfor-

mations {ϕα}α≥0 to obtain utility-linear measurements generalizes these approaches,

and suggests natural applications beyond the problems considered here.

12Deb et al. (2018) use a similar approach to develop tests for a model in which consumers also

exhibit price preference.
13Namely, those which normalize utility to ‘virtual’ numeraire units, i.e. satisfy (2).
14See also the statistical literature on shape-constrained estimation. Johnson and Jiang (2018) is

a recent a survey.
15Smith cites Savage (1954) for the origin of this idea.
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3 A Measure of Intensity of Preference

Our objective in this section is to introduce a method of obtaining consistent, cardinal

measurements of preference intensity for a given family of preferences.

3.1 Virtual Commodities

Let X be a metric space of alternatives, or consumption space. A preference ≿ is a

complete and transitive binary relation on X. Given a preference ≿, we use ≻ and

∼ to denote the asymmetric and symmetric components, respectively. A preference

is continuous if {y : y ≿ x} and {y : x ≿ y} are closed for all x ∈ X.

A family of transformations {ϕα}α≥0, where ϕα : X → X for all α ≥ 0, defines

a virtual commodity if (i) for all x ∈ X, ϕ0(x) = x, and (ii) for all α, β ≥ 0 and

x ∈ X, ϕβ

(
ϕα(x)

)
= ϕα+β(x). We will always assume that any virtual commodity

is jointly continuous in α and x.16 We interpret the alternative ϕα(x) as x plus α

additional units of the virtual commodity. Property (i) requires that adding no units

of commodity does not alter any alternative. Property (ii) is a path-independence

condition that requires adding β units of commodity, to the alternative consisting of

x plus α units, be equivalent to adding α + β units to x at once.

Let M denote a family of continuous preference relations on X, or model. We

say that {ϕα}α≥0 is a virtual numeraire commodity for M if, for each ≿ ∈ M the

following conditions are satisfied:

(N.1) Invariance: For all α ≥ 0, x, x′ ∈ X:

x ≿ x′ ⇐⇒ ϕα(x) ≿ ϕα(x
′).

(N.2) Monotonicity: For all α ≥ 0, x ∈ X:

ϕα(x) ≿ x,

with indifference if and only if α = 0.

(N.3) Compensability: For all x, x′ ∈ X,

x′ ≿ x =⇒ ∃α ≥ 0 s.t. ϕα(x) ∼ x′.

16That is, the map (α, x) 7→ ϕα(x) is continuous in the product topology on R+ ×X.
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Invariance says that adding the same quantity of the commodity to two alternatives

does not affect the preference between them. It rules out ‘wealth’ effects, where

adding some common quantity of the commodity to two alternatives causes the pref-

erence between them to reverse. Monotonicity says the virtual commodity is a good.

Compensability is a richness condition; it rules out lexicographic-like behavior where

no amount of additional commodity could compensate an agent for receiving a less-

preferred alternative.

3.2 Consistent Measurement of Intensity

Given a virtual numereraire {ϕα}α≥0 for some modelM, we wish to use these transfor-

mations as a system of rulers, to obtain a systematic measure of preference intensity

across pairs of alternatives. Suppose, for some ≿∈ M, that x′ ≿ x. We define the

compensation difference between the less-preferred x and more-preferred x′ to be

the αxx′ ≥ 0 such that ϕαxx′
(x) ∼ x′. Such a quantity αxx′ ≥ 0 is guaranteed to exist

by (N.3) and is unique by (N.2). Symmetrically, the compensation difference from x′

to x is defined as −αxx′ .

To derive testable implications for compensation differences data, we will rely on

the following theorem, which is a generalization of standard results on quasilinear

representation.

Theorem 1. A virtual commodity {ϕα}α≥0 is a virtual numeraire for the model M
if and only if every preference ≿∈ M admits a continuous utility representation

u : X → R such that, for all x ∈ X and all α ≥ 0:

u
(
ϕα(x)

)
= u(x) + α. (3)

Such a representation is unique up to an additive constant; in particular its utility

differences are identified.

We term any utility satisfying (3) a ϕ-additive representation. Theorem 1 justifies

our use of the term ‘numeraire’ to describe any virtual commodity satisfying (N.1)

- (N.3). It guarantees that each transformation ϕα may be viewed as adding α utils

of benefit, for any preference in M, independently of the alternative to which it

is applied. This in turn ensures that observable willingness-to-pay measurements

denominated in ϕ provide an exact proxy for unobservable utility values.
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This identification yields testable implications for data. Suppose we observe com-

pensation differences data, measured using {ϕα}α≥0, over some collection of pairs of

alternatives. If a subject’s behavior is consistent with any preference satisfying (N.1)

- (N.3), Theorem 1 implies that for any sub-collection of pairs {x0, x1}, {x1, x2}, . . .,
{xL−1, x0}, we must have:

L−1∑
l=0

αxlxl+1
=

L−1∑
l=0

u(xl+1)− u(xl) = 0, (4)

where xL ≡ x0. Equation (4) is an ‘adding-up’ condition: it simply says that the

compensation difference between x0 and xL−1 must equal the sum of the compensa-

tion differences αx0x1 + αx1x2 + · · · + αxL−2xL−1
. In Section 4, we show that for any

natural experiment, these adding-up conditions in fact characterize consistency, and

we leverage this to construct our regression theory.

Theorem 1 also provides guidance for the process of finding virtual numeraires.

It highlights that the crucial property needed is that the preferences of our model

M be suitably invariant under the transformations {ϕα}α≥0. Such families are often

discernible either by inspection, or from existing axiomatic work. In Section 3.3,

we provide a number of examples of virtual numeraires for many common classes of

preference, across a variety of domains. Taken together, these examples illustrate

that while quasilinearity is commonly viewed as a simple, limited class of preferences,

analogous ‘quasilinear structure,’ as captured by Theorem 1, actually obtains in a far

wider range of settings and models.

3.3 Examples

In this section, we turn to a number of examples of virtual numeraires, for a variety

of models of economic interest. Our objective is to not only provide a ready-made list

of such numeraires for applied work, but also highlight that in practice, the problem

of finding a virtual numeraire for models is often straightforward.

Quasilinear Preferences

Let X = RL
+, and let M denote the collection of all continuous preferences that are

quasilinear with respect to the first commodity. Here, the numeraire commodity itself
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may be represented as a virtual numeraire forM, by defining ϕα(x) = x+(α, 0, . . . , 0).

The utility representation:

u(x) = v(x2, . . . , xL) + x1,

for any ≿∈ M is ϕ-additive, and by Theorem 1, every ϕ-additive utility is of this

form.

Stationary Preferences for Dated Rewards

Consider a decision maker who has preferences over prizes z ∈ Z, delivered at some

time t ∈ R+ in the future. Let X = R+ × Z. An element (t, z) ∈ X corresponds

to the ‘dated reward’ featuring the prize z being delivered to the decision-maker at

time t.17 Following Fishburn and Rubinstein (1982), let M denote those preferences

which admit an exponentially discounted utility:

û(t, z) = ρtv(z),

where 0 < ρ < 1 and v : Z → R++. To such a decision-maker, time is a ‘bad,’ as it

delays receipt of the desirable prize z. If we instead ask that (N.2) and (N.3) hold with

the opposite relations, to reflect impatience, and adapt the definition of ϕ-additivity

correspondingly, ϕα(t, z) = (t+α, z) defines a virtual numeraire for M.18 Compensa-

tion differences here reflect how long the receipt of a more-desirable dated prize must

be delayed to make the decision-maker indifferent with a less-preferred. While the

standard representation ρtv(z) is not ϕ-additive, a monotone transformation is:

u(t, z) =
−1

ln ρ
ln

[
ρtv(z)

]
=

ln v(z)

− ln ρ
− t.

Homothetic Preferences

Let X = RL
+\{0} and let M denote the collection of all preferences on X which admit

a continuous, strictly increasing, and positively homogeneous utility function.19 Then

17See also Ok and Masatlioglu (2007) for a complementary interpretation of preferences over X

as the commitment preferences of an agent.
18Formally, we ask that for all x ∈ X, and α > 0, ϕα(x) ≺ x, and if y ≻ x, there exists some

α > 0 such that ϕα(y) ∼ x. Correspondingly, we understand ϕ-additivity in this context to mean

u
(
ϕα(x)

)
= u(x)− α.

19A utility û is positively homogeneous if, for all λ > 0 and x ∈ X, û(λx) = λû(x). If û is

additionally strictly increasing, it must necessarily take strictly positive values on X.
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ϕα(x) = eα x defines a virtual numeraire for M. For this choice of {ϕα}α≥0, (N.1)

is equivalent to each ≿∈ M being homothetic.20 If û is a strictly increasing and

positively homogeneous representation for a preference in M, then the monotone

transformation:

u(x) = ln û(x)

is easily seen to be ϕ-additive. Moreover, by Theorem 1, every ϕ-additive represen-

tation of preferences in M is of this form, up to an additive constant. Compensation

differences here may be interpreted as the amount a less-preferred bundle must be

proportionally scaled to achieve indifference with a more-preferred.

Expected Utility Preferences

Let X = ∆
(
[0, 1]

)
\ {δ1} denote the space of all monetary lotteries over [0, 1] less δ1,

the point-mass at 1. Let M denote the space of all strictly increasing expected utility

(EU) preferences on X. Then ϕα(p) = e−αp+
(
1− e−α

)
δ1 defines a virtual numeraire

for M. For a given ≿∈ M, let:

û(p) =

∫
v dp

be a normalized expected utility representation, with v(1) = 0. Then:

u(p) = − ln
[
− û(p)

]
represents the same preference and may be seen to be ϕ-additive. By Theorem 1, all

ϕ-additive representations for preferences in M are of this form, up to an additive

constant. Here, compensation differences measure how much a less-preferred lottery

must be mixed with δ1 to achieve indifference with a more-preferred.21

Many common classes of EU preferences admit other natural choices of virtual

numeraire. If M consists of the collection of all constant absolute risk aversion

(CARA) EU preferences, then defining ϕα(p) as providing p plus α units of additional

guaranteed wealth yields a virtual numeraire.22 Here, the ϕ-additive representations

20A preference on X is homothetic if, for all x, y ∈ X and all λ > 0, x ≿ y ⇐⇒ λx ≿ λy.
21Note that in normalizing the Bernoulli utility v(1) = 0, we have used the additive degree of

freedom in the standard expected utility representation. The remaining multiplicative degree of

freedom then precisely becomes the additive degree of freedom in the ϕ-additive representation.
22Here, let X be e.g. the set of all finitely supported monetary lotteries, to ensure {ϕα}α≥0 is well

defined.
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are equal to the certainty equivalent, up to an additive constant. In fact, {ϕα}α≥0

is a virtual numeraire for a larger class of (not necessarily EU) preferences; see e.g.

Safra and Segal (1998); Mu et al. (2021). Analogous results obtain for the class of

constant relative risk aversion preferences.

Geometric & Quasi-hyperbolic Discounting

Let X denote the space of all bounded, infinite-horizon, discrete-time consumption

streams. Let M denote the collection of all quasi-hyperbolic preferences on X (e.g.

Laibson (1997), Olea and Strzalecki (2014)) with fixed continuous, strictly increasing,

and unbounded flow utility v : R+ → R+, i.e. those preferences admitting a utility of

the form:

u(x) = v(x0) + β
∞∑
t=1

δtv(xt),

where 0 < β ≤ 1 and 0 < δ < 1. When β = 1, this reduces to the standard geometric

discounting model, see Koopmans (1960). For all t > 0, define ϕα(x)t = xt, and for

t = 0, let ϕα(x)0 = v−1
(
v(x0) + α

)
.23 It follows immediately that every such u is

ϕ-additive, as is any utility of the form:

u(x) = v(x0) + w(x1, x2, ... ).

There are many other closely related virtual numeraires for M. For example, letting

ϕ′
α(x)t = v−1

(
v(xt)+α

)
for all periods in some set T , rather than just T = {0}, yields

a virtual numeraire as well.

Constant Absolute Ambiguity Aversion

Let S denote a finite set of states of the world, andX = RS denote the pure-ambiguity

domain of (risk-free) monetary acts. Let M denote the set of continuous preferences

on X that admit a utility representation of the form:

u(x) = w
(
v(x1), . . . , v(xS)

)
, (5)

where v : R → R is a fixed, strictly increasing, and unbounded-above state-contingent

utility, and w : RS → R is an increasing, translation-invariant utility functional, i.e.

satisfying:

w
(
y + α1S

)
= w(y) + α

23Here ϕα(x)t denotes the t-th component of ϕα(x).
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for all α ≥ 0, y ∈ RS, where 1S denotes the vector of all ones.24 M may be viewed as

encapsulating a wide range of ambiguity attitudes, given fixed risk attitude.25 It in-

cludes, for example, the subjective expected utility, Choquet expected utility, maxmin

expected utility, variational preference, and dual self expected utility models.26 Define

each ϕα component-wise via:

ϕα(x)s = v−1
(
v(xs) + α

)
.

Then every utility of the form (5) is ϕ-additive, and by Theorem 1 every ϕ-additive

representation of preferences in M is of this form.

This approach extends naturally to the full Anscombe-Aumann domain featuring

both risk and ambiguity. Suppose, for example, that X consists of all acts mapping

S → ∆
(
[0, 1]

)
\ {δ1}, and that preferences in M admit a representation satisfying

(5), where v is an expected utility representation over lotteries, and w is positive

homogeneous. Then ϕα(x)s = e−αxs + (1− e−α)δ1 defines a virtual numeraire.

3.4 Regularity Conditions

We conclude by briefly stating some basic regularity conditions needed for future

results. All these conditions are satisfied in every example in Section 3.3.

A virtual commodity {ϕα}α≥0 is said to be regular if is injective in x and α.27

An alternative x′ is obtainable from x, denoted x ⊴ x′ if there exists α ≥ 0 such

that x′ = ϕα(x). Define x ∼⊴ x′ if either x is obtainable from x′ or vice-versa. The

following are mild topological conditions on X and {ϕα}α≥0 which will be used in

subsequent results.

24Grant and Polak (2013) interpret translation-invariance over utility acts as reflecting constant

absolute ambiguity aversion.
25Viewing X as a subset of the larger Anscombe-Aumann domain featuring both ambiguity and

monetary risk, the common state-contingent utility vu can be viewed as being pinned down by the

expected utility risk preference of a subject on this larger domain. Thus studying which preference

in M best fits a given set of empirical data may be viewed as studying the subject’s ambiguity

attitude, given their prescribed risk preference.
26See Savage (1954) or Anscombe and Aumann (1963), Schmeidler (1989), Gilboa and Schmeidler

(1989), Maccheroni et al. (2006), and Chandrasekher et al. (2022).
27That is, if each transformation ϕα is an injective map X → X, and the map α 7→ ϕα(x) is an

injective map from R+ → X for each x ∈ X.
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(A.1) Cross Section: There exists a continuous map s : X → X, such that x ∼⊴ x′

implies s(x) = s(x′), and x ∼⊴ s(x) for all x ∈ X.

(A.2) No Accumulation: For all x ∈ X, there exists ε > 0 and T > 0 such that, for

all x′ ∈ Bε(x) and all α > T :

ϕα(x
′) ̸∈ Bε(x),

where Bε(x) denotes the ε-ball about x.

Condition (A.1) is a weak technical requirement. Roughly speaking, it ensures pref-

erences’ indifference sets are not substantially ‘less connected’ than X.28 Condition

(A.2) says that no alternative may be regarded as the limit of adding an infinite

amount of virtual commodity to any other.

4 Least Squares Theory

In this section, we develop a least squares theory for general models of preference.

Toward this end, our main theorem establishes a decomposition result. We show

that every data set, arising from any experiment, can be uniquely decomposed into

two orthogonal components: a rationalizable term, and a sum of cardinal revealed

preference cycles. Thus, unlike in the case of classical revealed preference data, we

obtain a canonical method of separating the data into consistent and inconsistent

parts.

4.1 Preliminaries

Fix a choice of consumption space X and regular virtual commodity {ϕα}α≥0. An

experiment is a finite collection E of pairs of elements of X. To avoid trivialities, we

assume that, for any {x, x′} ∈ E , it is not the case that ϕα(x) = x′ for some α ≥ 0 or

vice-versa.29 A data set consists of a compensation difference measurement for each

pair {x, x′} ∈ E (recall the compensation difference is equal to the unique α∗ that

28It rules out, for example, pathological fringe cases where every indifference set of every continuous

preference satisfying (N.1) - (N.3) is totally disconnected, even while X itself is connected.
29This serves only to rule out questions such as ‘how many units of ϕ are needed to achieve

indifference between x and x plus ten units of ϕ?’
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solves x ∼ ϕα∗(x′) if x ≿ x′, or x′ ∼ ϕα∗(x) if x′ ≿ x).30 We identify an experiment

E with the undirected graph whose vertex set V ≡ {x1, . . . , xK} consists of those

alternatives appearing in some pair in E , and whose edge set is E .

Given a graph (V , E), let E⃗ denote the set of oriented edges, E⃗ =
{
(xi, xj) ∈

X × X : {xi, xj} ∈ E
}
. A flow is a function F : E⃗ → R such that Fxixj

= −Fxjxi

for all (xi, xj) ∈ E⃗ .31 Let F denote the space of all flows on (V , E); it is a vector

space under coordinate-wise addition and scalar multiplication.32 It is precisely the

collection of possible compensation differences data sets that could arise from the

experiment (V , E).

Gradient Flows

Let U = RV denote the space of utility functions on V . By minor abuse of notation

we will write i for xi, ūi for ū(xi) and so forth. For any utility vector ū ∈ U , its
gradient is the flow whose value on an oriented edge is given by the signed difference

of the utility values at its endpoints:

(grad ū)ij = ūj − ūi,

for all (i, j) ∈ E⃗ , i < j. This defines a linear map grad : U → F . We say a flow is a

gradient flow if it is the gradient of some utility vector in U .

4.2 Rationalizability & Inconsistency

Let {ϕα}α≥0 be a regular virtual commodity, and Y ∈ F a ϕ-compensation differences

data set for some experiment (V , E). The data Y are ϕ-rationalizable if there exists a

continuous preference ≿ for which {ϕα}α≥0 is a virtual numeraire, and which satisfies:

Yij ≥ 0 ⇐⇒ ϕYij
(xi) ∼ xj (6)

for all {i, j} ∈ E (recall Yij denotes the observed compensation difference from xi

to xj). If such a preference exists, we say ≿ rationalizes Y . By Theorem 1, this is

30In Online Appendix E, we provide an incentive compatible mechanism for eliciting this data for

general choice of X and {ϕα}α≥0.
31For a pair {xi, xj} ∈ E , Fxixj denotes the flow from xi to xj .
32Formally, we endow it with basis {1(i,j)

}
{(i,j)∈E⃗ : i<j}, where 1(i,j) denotes the flow equal to one

on (i, j) (and hence minus one on (j, i)) and zero along every other oriented edge.

17



equivalent to the existence of a ϕ-additive representation u such that:

Yij = u(xj)− u(xi). (7)

Equation (7) implies that if Y is ϕ-rationalizable, it is necessarily a gradient flow, as

Y = gradu
∣∣
V , and hence it must satisfy the adding-up conditions (4). Conversely,

(4) are sufficient for the existence of some ū ∈ U such that Y = grad ū. However, it

is unclear whether this suffices for rationalizability, as a priori it is not obvious which

vectors ū ∈ U are the restrictions of continuous, ϕ-additive representations. Our next

theorem is the main structural result of this paper. It establishes that no matter the

choice of {ϕα}α≥0 or (V , E), every vector ū ∈ U is the restriction of some continuous

and ϕ-additive utility. Thus the adding-up conditions (4) are not only necessary,

but also sufficient for ϕ-rationalizability, no matter how complex the structure of the

environment, experiment, or virtual commodity may be.

Theorem 2. Let {ϕα}α≥0 be a regular virtual commodity which satisfies (A.1) and

(A.2). Then for every experiment (V , E), for any dataset Y ∈ F , the following are

equivalent:

(i) For every collection (i0, i1), (i1, i2), . . . , (iL−1, i0) ∈ E⃗,
L−1∑
l=0

Yilil+1
= 0,

where iL ≡ i0.

(ii) The data Y form a gradient flow.

(iii) The data are ϕ-rationalizable by a continuous preference.

Theorem 2 tells us that the rationalizable data sets always form a linear subspace

of F . This means that every data vector may be uniquely written as a sum of a

rationalizable vector, and an orthogonal, ‘pure inconsistency’ term. This residual

inconsistency vector also admits a particularly natural economic interpretation.

Call a flow C ∈ F a perfect cycle if Ci0i1 = Ci1,i2 = . . . = CiL−1i0 = c on some

collection of oriented edges (i0, i1), (i1, i2), . . . , (iL−1, i0) ∈ E⃗ , and C is equal to zero

everywhere else. Perfectly cyclic flows are cardinal analogues of revealed preference

cycles. If a perfect cycle with c > 0 was observed as data, it would mean:

ϕc(xil) ∼ xil+1
,
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for all l = 1, . . . , L−1, where xiL ≡ xi0 . This implies that for every l, the agent would

be willing to exchange xil , plus up to c units of numeraire, for xil+1
, and hence could

be exploited as a ‘numeraire pump’ by a savvy arbitrageur.33

It is a standard result in graph theory that a flow is orthogonal to every gradient

vector if and only if is a sum of perfect cycles.34 We summarize this below.

Proposition 1. For any flow R ∈ F , the following are equivalent:

(i) R is a sum of perfect cycles.

(ii) R is orthogonal to every gradient flow, i.e.:∑
{(i,j)∈E⃗ : i<j}

(
grad ū

)
ij
Rij = 0 (8)

for all ū ∈ U .

Thus every data set can be uniquely decomposed into two orthogonal terms: a ratio-

nalizable component, and a sum of cardinal revealed preference cycles. This highlights

a notable advantage of our approach: for ordinal choice data, it is difficult to sepa-

rate cyclic inconsistency from rationalizable material (e.g. Bernheim and Rangel 2009;

Nishimura 2018). On the other hand, Theorem 2 and Proposition 1 show that for any

type of compensation differences data, revealed preference cycles and rationalizable

content occupy complementary, orthogonal subspaces of F .

This suggests a natural notion of ‘best fitting’ rationalizable preferences given

data: a preference belongs to the best-fit set if its ϕ-additive utility differences are

exactly equal to the rationalizable component of the data vector. Our regression

theory operationalizes this idea. By minimizing a least-squares objective, we orthog-

onally project our data onto the rationalizable subspace, guaranteeing we purify away

only cyclic inconsistency, and leave behind the rationalizable content.

Rationalizability for General Models

Often, we wish to test whether a rationalizing preference can be found which, in

addition, belongs to a particular model M. When such a rationalizing preference

33By (N.2) this also implies xil ≺ xil+1
for all l, yielding an ordinal revealed preference cycle.

34This follows, e.g., by combining Theorem 1 in Jiang et al. (2011) and Corollary 14.2.3 of Godsil

and Royle (2001).
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exists, we will say the data Y are M-rationalizable. Theorem 2 characterizes M-

rationalizability of a number of models, such as the classes of quasilinear or homothetic

preferences, stationary preferences over dated rewards, or general CARA preferences

(see Section 3.3). In each of these instances, the set M coincides with the set of all

preferences for which the relevant ϕ is a virtual numeraire. However, many models of

interest are not fully characterized by (N.1) - (N.3) alone.

To test for M-rationalizability generally, Theorem 2 suggests finding the subset

KM ⊆ U of vectors that are the restrictions to V of the ϕ-additive representations

of M. These sets reflect the additional ‘shape’ restrictions that characterize which

ϕ-additive utilities represent preferences inM. These sets KM are frequently straight-

forward to compute, and often possess a highly tractable structure.

Example 1. Suppose X = RL
++, ϕα(x) = eαx and (V , E) is arbitrary. Let M denote

the collection of all Cobb-Douglas utilities on X. The ϕ-additive representations of

Cobb-Douglas preferences are all of the form:

u(x) =
L∑
l=1

κl lnxl + c.

Because the utility differences of any such u are independent of c, we may normalize

c to zero without loss. Thus a data vector Y is Cobb-Douglas rationalizable if and

only if Y = grad ū for some vector ū for which there exists κ ∈ RL such that:

ūi =
〈
κ, ℓ(xi)

〉
∀i = 1, . . . , K

⟨κ,1⟩ = 1

κ ≥ 0,

(9)

where ℓ : RL
++ → RL denotes the component-wise natural logarithm. Note that KM,

i.e. the set of such vectors ū, is defined by finitely many linear inequalities. ■

Example 2. Suppose now X = RL
+ and ϕα(x) = (x1 + α, x2, . . . , xL). Let M denote

the collection of preferences which admit an increasing, quasilinear, and quasiconcave

utility.35 It is straightforward to show ū ∈ KM if and only if there exist vectors

35By quasilinear, we mean with respect to the first commodity.
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π1, . . . , πK ∈ RL and scalars γ1, . . . , γL ∈ R such that:

ūi = ⟨πi, xi⟩+ γi ∀i = 1, . . . , K

⟨πi, xi⟩+ γi ≤ ⟨πj, xi⟩+ γj ∀i, j = 1, . . . , K

πi,1 = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

(10)

where πi,1 denotes the first component of the vector πi.
36 In particular, even though

the preferences of M cannot be described by any finite vector of parameters, KM is

still defined by a finite system of linear inequalities. ■

4.3 Least Squares Theory

Let us now fix a model M. Going forward, we will assume that (i) KM is convex, and

(ii) KM+ker(grad) is closed.37 These conditions ensure that grad(KM) ⊆ F is closed

and convex.38 Both conditions are automatically satisfied if KM is defined by a finite

set of linear inequalities. This stronger requirement is satisfied by both Example 1

and Example 2, and turns out to hold quite broadly; see Online Appendix G.

This enables us to evaluate the predictive accuracy of any such model by solving

a simple, constrained least squares problem:

min
ū∈KM

∥∥grad ū− Y
∥∥2

2
. (11)

Geometrically, solving (11) amounts to projecting the data vector Y onto the subset of

M-rationalizable flows, grad(KM). Since this set is closed and convex by hypothesis,

(11) admits a unique minimizer, which we denote by Y ∗
M. We term this flow the

best-fit estimator for the model M. It captures the preference(s) in M which

minimize the mean squared error between the observed compensation differences Y ,

and those predicted by the model. For parametric models such as in Example 1, Y ∗
M

will generally identify a unique preference. In such instances, (11) provides a natural

36See Online Appendix G for a formal proof.
37The kernel of the gradient, ker(grad), consists of vectors that are constant on the vertex sets

of each connected component of (V, E). In particular, when (V, E) is connected, it consists only of

vectors of the form (c, . . . , c), c ∈ R.
38See, e.g., Holmes (2012), Lemma 17.H.
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method for estimating model parameters from the data Y . When models are non-

parametric, as in Example 2, the estimator Y ∗
M will select for a set of preferences; see

also Section 5.2.

Economic Content of Mean Squared Error Minimization

Let Y ∗
Add denote the projection of Y onto the subspace of gradient flows.39 Our next

result says that for any Y ∈ F , solving (11) is equivalent to a two-stage least squares

procedure where Y is first projected onto the gradient flows, then the solution from

this fitting exercise, Y ∗
Add, is regressed on M.

Proposition 2. For any experiment (V , E), for every Y ∈ F ,

Y ∗
M = argmin

ū∈KM

∥∥grad ū− Y ∗
Add

∥∥2

2
.

In particular, ∥∥Y − Y ∗
M
∥∥2

2
=

∥∥Y − Y ∗
Add

∥∥2

2
+ ∥Y ∗

Add − Y ∗
M
∥∥2

2
. (12)

Proposition 2 provides an economic interpretation of our regression equation (11).

The flow Y ∗
Add is a gradient flow, hence by Theorem 2 is consistent with some invari-

ant preference; by Theorem 1, this is equivalent to Y ∗
Add behaving like a vector of

utility differences. Thus evaluating (11) amounts to first purifying away any (cardi-

nal) revealed preference cycles to obtain the best-fitting vector of utility differences

Y ∗
Add, then measuring how closely these utility measurements resemble those of the

ϕ-additive representations of M. Thus (11) precisely realizes the theoretical best-case

according to Varian’s critique.

Equation (12) says that the mean squared error associated with (11) is simply the

sum of the error attributable to the data not being a vector of utility differences, plus

error stemming purely from the best-fit utility differences not satisfying the shape

constraints of the model. This allows us to distinguish between error arising from

our assumption that our chosen {ϕα}α≥0 is indeed a virtual numeraire to the subject,

versus model-specific considerations.

39This may be computed as the gradient of any minimizer to (11), when the constraint set is taken

to be all of U . This solution is given by:

Y ∗
Add = grad [grad⊺grad]†grad⊺ Y,

where † denotes the the Moore-Penrose pseudoinverse of a matrix.
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Figure 1: A residual flow R = (R12, R13, R14, R23, R24, R34) satisfying (8), along with two decom-

positions into sums of perfect cycles. The lower bound of
∥∥R∥∥

1
= 14 is attained by the sum of the

money pump values of the bottom (though not the top) decomposition.

An Alternative First-Stage Criterion: The Money Pump

The first stage residual, Y − Y ∗
Add, admits a representation as a sum of cyclic flows,

capturing numeraire-valued arbitrage opportunities against the subject. This suggests

an analogue of the money pump index of Echenique et al. (2011) as an alternative

means of quantifying this deviation.40 Define the money pump value of a perfect

cycle C, where Ci0i1 = Ci1,i2 = . . . = CiL−1i0 = c on (i0, i1), (i1, i2), . . . , (iL−1, i0) ∈ E⃗
and is zero elsewhere, viaMP (C) = c L. This corresponds to the amount of numeraire

an arbitrageur could extract from the subject via a cyclic sequence of trades.

It is natural to seek to extendMP from pure cycles to general residuals R linearly,

by decomposing R as a sum of pure cycles then summing the associated money pump

values. However, such decompositions are non-unique; moreover, the sum of the

money pump values of different decompositions of the same residual will generally

differ, see Figure 1. Instead, we consider the most conservative extension.

Let C ⊊ F denote the set of pure cycles. For any R satisfying (8), let D(R)

denote the collection of all finite decompositions of R into pure cycles.41 We extend

40The money pump index was first studied by Echenique et al. (2011), in the context of price-

consumption data. Roughly speaking, it reflects the amount of money one could extract from a

consumer who violates the generalized axiom of revealed preference.
41That is, those collections {C1, . . . , CM} ⊆ C such that

∑
m Cm = R.
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MP : C → R to a function MP ∗ over all flows satisfying (8) via:

MP ∗(R) = inf
{C1,...,CM}∈D(R)

M∑
m=1

MP (Cm).

In other words, MP ∗ attributes as little inconsistency to the subject as possible, by

taking an infimum across all finite decompositions. In spite of its definition as a

value function, our next result asserts that MP ∗ is in fact simply the L1 norm. This

simplicity in our setting is notable, given the computational difficulty of calculating

the money pump index for price-consumption data (e.g. Smeulders et al. 2013).

Proposition 3. For all R ∈ F satisfying (8), the money pump value of R is equal

to its L1 norm:

MP ∗(R) = ∥R∥1.

Moreover, the infimum over D(R) is always attained.

While our focus is on L2 loss, Proposition 3 provides an economically compelling

alternative, particularly for models where KM = U . It also illustrates the economic

naturality of our numeraire-based approach, and provides another example of familiar

economic ideas taking on a far simpler, more tractable form in our setting.

5 Application: MEU Preferences

Let X = RS denote the pure ambiguity domain of monetary acts for a finite state

space S. We will be interested in the modelMMEU consisting of the maxmin expected

utility preferences featuring a fixed, known state-contingent utility of consumption

v : R → R.42 Such preferences are represented by a utility of the form:

u(x) = min
π∈C

Eπ

(
v(x)

)
= min

π∈C

∑
s∈S

πsv(xs), (13)

where C ⊆ ∆(S) is some compact, convex set of priors over states of the world.43

The function minπ∈C Eπ(·) is referred to as the utility functional. We assume that

42Practically speaking, v could be chosen either on the basis of theoretical considerations or first-

stage estimation of the subject’s risk preference.
43Note that there is a one-to-one correspondence between closed, convex sets of priors C and

preference in MMEU . We will freely identify such preferences with their sets of priors.

24



1

-1

10 F02

F12 F

(a) The extremal MEU preferences.

The simple nature of E implies every

flow is a gradient.
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Figure 2: The MEU-rationationalizable flows (violet triangle) arising from the experiment E ={
{0, x2}, {x1, x2}

}
. For each vertex of the triangle, the level set through the origin of the rationalizing

MEU functional (orange) and corresponding set of priors (cyan) are shown. Each face of the triangle

corresponds to a particular axiomatic constraint of the model: the top and left faces to monotonicity

of consumption in state one (resp. two), and the bottom-right to ambiguity aversion.

v is (i) continuous, (ii) strictly increasing, (iii) unbounded above, and (iv) normalized

so that v(0) = 0 and v(1) = 1. For any act x ∈ RS and α ≥ 0, we define the virtual

commodity ϕα(x)s = v−1
(
v(xs) + α

)
component-wise. Any utility of the form (13) is

ϕ-additive. In what follows, see Online Appendix F for omitted derivations.

5.1 Testing Ambiguity Aversion in a Two-State World

Suppose first that there are only two states of the world. Let x0 = (0, 0) denote the

zero act, and x1 = (1, 0) and x2 = (0, 1) the Arrow securities for states 1 and 2; we

will consider the experiment E =
{
{0, x2}, {x1, x2}

}
.

Figure 2 plots grad(KMEU), the set of MEU-rationalizable flows for this exper-

iment. The corners of the rationalizable triangle correspond to the preferences in

MMEU whose sets of priors are {δ1}, {δ2}, and ∆(S) respectively.44 Given data Y ,

the best-fit estimator Y ∗
MEU is obtained by projecting Y onto this triangle.

44Recall δs denotes the probability measuring assigning a mass of one to {s}.
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Figure 3: The set of MEU-rationalizable (violet) and CEU-rationalizable (violet or aquamarine)

vectors for E . Letting ΠMEU and ΠCEU denote the respective projections onto these sets, the

quantity
∥∥Y −ΠMEUY

∥∥2
2
−
∥∥Y −ΠCEUY

∥∥2
2
reflects the shadow price, in mean squared error terms,

of imposing ambiguity aversion, conditional upon requiring monotonicity, translation invariance, and

homotheticity.

The faces of the rationalizable triangle have natural axiomatic interpretation. The

preferences corresponding to flows along the top edge of grad(KMEU) are characterized

by the property that x0 ∼ x1. This inequality constraint represents the axiomatic

requirement that preferences in MMEU be non-decreasing in state-one consumption.

Analogously, the left face is characterized by the property that x0 ∼ x2 and hence

reflects monotonicity of consumption in state two. The flows along the bottom-right

face correspond to the subjective expected utility preferences. These are precisely the

ambiguity-neutral preferences inMMEU , hence this inequality captures the ambiguity

aversion axiom of Gilboa and Schmeidler (1989).45

Suppose Y ∗
MEU lies on the relative interior of the lower-right face of rationalizable

triangle. Then ambiguity aversion is the sole axiomatic constraint binding at the

45Any ϕ-additive utility may be written as u(x) = w
(
v(x1), . . . , v(xS)

)
, where w is a translation-

invariant utility functional (see Section 3.3). This representation is of the form (13) if and only if w

is additionally increasing, concave, and positively homogeneous; see, e.g., Ok (2011b) H.1.3 Lemma

2. Every data set arising from E is rationalizable by a ϕ-additive utility where w is additionally pos-

itively homogeneous. This leaves monotonicity and the concavity of w (corresponding to ambiguity

aversion) as the only falsifiable implications of the model for E .
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solution to (11). To quantify the gain in fit from relaxing ambiguity aversion, consider

the model obtained by dropping only ambiguity aversion from the MEU axioms. This

corresponds to the class of invariant biseparable preferences (see Ghirardato et al.,

2004; Chandrasekher et al., 2022). However, in our simplified setting, the testable

implications of this model coincide with the conceptually simpler Choquet expected

utility (CEU) theory of Schmeidler (1989). The CEU-rationalizable set is plotted

in Figure 3. By comparing the difference in value of (11) obtained under these two

nested constraint sets, one obtains a measure of the shadow price, in model fit terms,

of imposing specifically the ambiguity aversion axiom.

5.2 Identification with |S| > 2

Suppose now |S| > 2. As a consequence, a general compact, convex set of priors is no

longer describable by a finite set of parameters. For any experiment (V , E), evaluating
(11) for MMEU amounts to solving the following constrained least squares problem:

min
ū,π1,...,πK

∥∥grad ū− Y
∥∥2

2

subject to ūi = ⟨πi, vi⟩ ∀i = 1, . . . , K

⟨πi, vi⟩ ≤ ⟨πj, vi⟩ ∀i, j = 1, . . . , K

⟨πi,1S⟩ = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

(14)

where ū ∈ U , π1 . . . , πK ∈ RS, and K = |V|. Here vi =
(
v(xi,1), . . . v(xi,S)

)
is the

utility-act associated with xi ∈ V under v. Once again, in spite of MMEU being

fully non-parametric, the constraint set in (14) is still defined by a finite set of linear

inequality constraints.46

However, a solution to (14) no longer uniquely identifies a preference in MMEU .

Suppose (ū, π1, . . . , πK) is a feasible solution to (14). The vector ū, coupled with the

utility acts v1, . . . , vK , defines a family of hyperplanes Hvi,ūi
= {x ∈ RS : ⟨vi, x⟩ = ūi}.

Let H̄vi,ūi
denote the restrictions of these hyperplanes to the affine hull of ∆(S).

46In Online Appendix G we characterize the sets of shape constraints for invariant biseparable

preferences, as well as SEU, CEU, and variational preferences, allowing for the axiomatic analysis of

Section 5.1 to be carried out for general experiments and state spaces, as well as for model selection

exercises via Proposition 2.
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πi

C∗

H̄vi,ūi

s1 s2

s3

(a) The set of priors C∗ associated with

a preference in MMEU . The vector

(ū, π1, . . . , πK) is a solution to (14), as

for each vi, the hyperplane H̄vi,ūi
sup-

ports C∗ at πi.

C

C̄

H̄vi,ūi

(b) Every feasible solution to (14) de-

fines a polytope C̄ =
(
∩i H̄

+
vi,ūi

)
∩∆(S).

A set of priors C ⊆ C̄ defines a rational-

izing preference if and only if each facet

of C̄ contains some extremal point of C.

Figure 4: An experiment with V = {x1, . . . , x5} and a rationalizing utility vector ū define a system

of hyperplanes on the simplex. From these hyperplanes, we obtain upper and lower envelope sets of

priors C̄ and C. Every set of priors associated with a rationalizing preference in MMEU is contained

within C̄ and contains C.

The first and second sets of constraints in (14) imply that each H̄vi,ūi
supports

co{π1, . . . , πK} at πi. Thus co{π1, . . . , πK} is a set of priors defining a preference in

MMEU consistent with (ū, π1, . . . , πK). However, many other preferences in MMEU

are also consistent. Let:

C̄ =

( K⋂
i=1

H̄+
vi,ūi

)⋂
∆(S),

where H̄+
vi,ūi

denotes the i-th upper half-space. The following result characterizes the

identified set arising from each feasible solution to (14).

Proposition 4. Fix a feasible (ū, π1, . . . , πK). A closed, convex set of priors C ⊆
∆(S) corresponds to a preference in MMEU consistent with this vector if and only if:

(i) The set of priors C ⊆ C̄, and

(ii) Each hyperplane Hvi,ūi
contains some extremal point of C.

In particular, the identified set depends only upon ū.

28



It follows that C̄ is the unique largest set of priors consistent with (ū, π1, . . . , πK).
47

This provides bounds on the priors held by an individual, even absent full identifica-

tion: if Y = grad ū for ū ∈ KMEU , and π ̸∈ C̄, then π is not held by any preferences

in MMEU that rationalize Y .

Figure 4 shows the supporting hyperplanes for the preference in MMEU whose

set of priors is C∗. The upper envelope C̄ is simply the intersection of the associated

upper half-spaces. It also depicts C, the set of priors held by every rationalizing MEU

preference.48 Thus, while C∗ may be unknown, the vector u, along with V , allow one

to derive optimal upper and lower bounds, C ⊆ C∗ ⊆ C̄.

These bounds generate further economic predictions. For example, subjects with

risk averse MEU preferences engage in purely speculative trade if and only if they hold

no common priors (Billot et al. 2000, see also Rigotti et al. 2008). Thus observing

the sets C̄ for two agents are disjoint yields further, testable predictions about trade

behavior. Similarly, in an economy of MEU agents without aggregate uncertainty,

the Pareto frontier precisely corresponds to the set of full-insurance allocations if

and only if the agents share at least one common prior (Billot et al. 2000). Thus

observing the C sets of a population have non-empty intersection not only yields

welfare implications but in fact identifies the entire Pareto frontier, even while the

individual preferences themselves may remain unidentified.

6 Statistical Tests of M-Rationalizability

Suppose now we observe cross-sectional data {Y n}Nn=1, obtained by repeatedly sam-

pling noisy measurements of an individual’s compensation differences. Formally, for

all {x, x′} ∈ E we assume there exists a fixed, non-stochastic ‘true’ compensation

difference Y 0
xx′ = −Y 0

x′x. We assume the data {Y n}Nn=1 are a random sample of N

i.i.d. draws of the random flow Ỹ , where for each (i, j) ∈ E⃗ with i < j:

Ỹij = Y 0
ij + ϵij,

with (i) E(ϵij) = 0, and (ii) Var(ϵij) < +∞. We do not assume a priori that the the

noise shocks {ϵij} are uncorrelated or that they are distributed identically across E .
47Equivalently, it is the set of priors of the unique, most-ambiguity averse preference in the iden-

tified set.
48Note that generally C will not itself define an MEU preference which rationalizes u.
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We wish to test whether the vector of true compensation differences, Y 0, is M-

rationalizable against the full, multi-sided alternative:

H0 : Y
0 ∈ grad(KM), H1 : Y

0 ̸∈ grad(KM). (15)

In other words, we seek to test whether the vector of moments E(Ỹ ) belongs to the

closed, convex set grad(KM). Problems of this form have been well-studied in the

econometric literature (e.g. Chernozhukov et al. 2007; Andrews and Guggenberger

2009; Hong and Li 2018; Kitamura and Stoye 2018; Fang and Seo 2019) and off-the-

shelf techniques are available for obtaining test statistics and critical values.

Let Ȳ = 1
N

∑
n Y

n denote the sample average flow, and let ψ(Ỹ ) denote the

distance from a vector Ỹ to grad(KM).49 A generalization of the delta method due to

Fang and Santos (2019) guarantees that, under H0, the quantity
√
Nψ(Ȳ ) converges

in distribution to θ
(
N(0,Σ)

)
, where Σ is the covariance matrix of the shock vector

ϵ, and θ is a particular, non-linear function related to ψ.50 The numerical derivative

estimator of Hong and Li (2018) provides a convenient method for simulating this

distribution, without requiring further analytic calculations.

1. For b = 1, . . . , BN , let Z
∗(b) =

√
BN

(
Ȳ ∗(b) − Ȳ

)
, where Ȳ ∗(b) is a draw of the

bootstrapped sample mean Ȳ ∗, given the data {Y 1, . . . , Y N}.

2. For all b = 1, . . . , BN , compute:

θ̂N
(
Z∗(b)) ≡ ψ

(
Ȳ + δNZ

∗(b))− ψ
(
Ȳ
)

δN
,

for a choice of sequence of tuning parameters δN satisfying limN δN = 0, and

limN δN
√
BN → ∞.

Letting Z∗ =
√
BN(Ȳ

∗ − Ȳ ) denote the re-scaled bootstrap mean conditional upon

the data, Theorem 3.1 of Hong and Li (2018) establishes the consistency of θ̂(Z∗) for

the asymptotic distribution θ
(
N(0,Σ)

)
.

49That is,

ψ(Ỹ ) = min
F∈grad(KM)

∥∥Ỹ − F
∥∥
2
.

50Formally, θ is related to the Hadamard directional derivative of ψ evaluated at the true Y0; see

Fang and Santos (2019) for details.
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Theorem (Hong and Li 2018). Under the above hypotheses,

lim
N→∞

θ̂N(Z
∗)

P
⇝ θ

(
N(0,Σ)

)
,

where
P
⇝ denotes weak convergence in probability conditional upon the data.

An α-level test of (15) can then be constructed by comparing
√
Nψ(Ȳ ) to 1−α con-

ditional quantile of θ̂(Z∗). This can be approximated using the empirical distribution

of {θ̂N
(
Z∗(b))}BN

b=1.

When KM is polyhedral, as is often the case in practice, Fang and Santos (2019)

provide a consistent, alternative estimator for θ
(
N(0,Σ)

)
. Their approach exploits

the polyhedral structure of KM to directly estimate θ. Their alternative has the

added benefit of providing confidence regions for the set of binding constraints at the

true Y0,. This is valuable as these constraints often have an axiomatic interpretation

(e.g. Section 5.1). The interested reader is referred to Section 4.2 of Fang and Santos

(2019).

7 Conclusion

This paper provides a novel, powerful new approach to quantifying the predictive ac-

curacy of various models of preference and individual decision-making. Our approach

makes particular use of a common, underlying invariance property of various models

to obtain cardinal measurements of preference intensity. The fine structure of this

data forms the basis for the major recurring computational and economic advantages

of our approach enjoys over classical revealed preference techniques.

Given the theoretical foundations established in this paper, a natural follow-up

would be to take these techniques to the lab. Many common families of ambiguity

preferences share a common form of invariance, making them a natural candidate for

empirical study. Alternatively, while as a practical matter it is often straightforward

to obtain natural choices of virtual numeraire for a given model (see Section 3.3),

it would be of theoretical interest to characterize which sets of preferences admit a

virtual numeraire. Such results may be of interest beyond decision theory and experi-

ments. For example, in the context of mechanism design, such a result would charac-

terize which type spaces of non-quasilinear preferences could be viewed as quasilinear

under an appropriate change of coordinates.
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Finally, the computational tractability of our least squares theory makes it a

natural framework for considering asymptotic econometric problems. For example, it

would be interesting to establish consistency of our best-fit estimators in the presence

of noise as (V , E) gets large, in the vein of Seijo and Sen (2011) or Chambers et al.

(2021). Similarly it would be of interest to study the testing problem (15) as (V , E),
rather than the cross-sectional dimension, grows large in an appropriate sense.

Appendix A Proof of Theorem 1

Proof. Necessity is trivial. As such, let ≿∈ M be arbitrary, and suppose {ϕα}α≥0

satisfies (N.1) - (N.3) for ≿. Fix an alternative x ∈ X and define:

c(x) =

α∗ if x ≿ x and ϕα∗(x) ∼ x

−α∗ if x ≻ x and ϕα∗(x) ∼ x.

This is well-defined by (N.2) and (N.3). We first show that c is ϕ-additive. Consider

c
(
ϕα(x)

)
for some x ∈ X, α ≥ 0. If x ≿ x, then by (N.3) there exists αxx ≥ 0

such that x ∼ ϕαxx(x). By (N.1), ϕα(x) ∼ ϕα

(
ϕαxx(x)

)
= ϕαxx+α(x). By (N.2), both

ϕαxx+α(x) ≿ x and ϕαxx(x) ≿ x, hence:

c
(
ϕα(x)

)
= c

(
ϕαxx+α(x)

)
= αxx + α = c(x) + α.

Suppose instead x ≻ x. If |c(x)| ≥ α, then ϕ|c(x)|−α

(
ϕα(x)

)
∼ x, and hence c

(
ϕα(x)

)
=

−
(
|c(x)|−α

)
= c(x)+α. If instead α > |c(x)|, then by (N.1) ϕα(x) = ϕα−|c(x)|

(
ϕ|c(x)|(x)

)
∼

ϕα−|c(x)|(x), and thus c
(
ϕα(x)

)
= α − |c(x)| = c(x) + α. Thus for all x ∈ X, α ≥ 0,

c
(
ϕα(x)

)
= c(x) + α and we conclude c is ϕ-additive.

We now show c represents ≿. Let x ≿ x′. By (N.3) there exists αx′x ≥ 0 such

that ϕαx′x
(x′) ∼ x. By (N.2) αx′x > 0 if and only if x ≻ x′. But since we have already

shown c is ϕ-additive:

c(x) = c
(
ϕαx′x

(x′)
)
= c(x′) + αx′x.

Thus c(x) ≥ c(x′), with strict inequality whenever x ≻ x′, and hence c represents ≿.

We now show c is continuous. As ≿ is continuous and admits a utility repre-

sentation c, by the Open Gap Lemma (Debreu 1964), we conclude ≿ also admits a

32



continuous utility representation w : X → R.51 Suppose xn → x. By (N.2) and

(N.3), for some choice of α∗ ≥ 0 large enough, we have x̂n = ϕα∗(xn) ≿ x for all

n ∈ N, and x̂ = ϕα∗(x) ≿ x. By continuity, x̂n → x̂, and w(x̂n) → w(x̂). But

w(x̂n) = w
(
ϕc(x̂n)(x)

)
and w(x̂) = w

(
ϕc(x̂)(x)

)
. By definition of a virtual commodity,

the map (α, x) 7→ ϕα(x) is jointly continuous, thus so is the map θ : R+ → X defined

by θ(α) = ϕα(x). This implies w ◦ θ is continuous and, by (N.2), strictly increasing.

It follows that (w ◦θ)
(
c(x̂n)

)
→ (w ◦θ)

(
c(x̂)

)
implies that also c(x̂n) → c(x̂).52 Hence

c(xn) → c(x) too, by ϕ-additivity. As xn → x was arbitrary, we conclude that c is in

fact continuous.

Finally, it is immediate that for any pair x ≿ x′, any two ϕ-additive representations

c and c′ of ≿ must satisfy:

c(x)− c(x′) = αx′x = c′(x)− c′(x′),

where αx′x ≥ 0 is the unique non-negative scalar such that ϕαx′x
(x′) ∼ x guaranteed

by (N.2) and (N.3). Thus c and c′ differ by at most an additive constant.

Appendix B Proof of Theorem 2

B.1 Preliminaries

Let X be a metric space, and {ϕα}α≥0 a regular virtual commodity. A homeomor-

phism between topological spaces is a continuous bijection with continuous inverse. A

map is an embedding if it is a homeomorphism onto its image. Let H : R+×Y → X

for some metric space Y . We say that H is equivariant if:

H(α + β, y) = ϕβ

(
H(α, y)

)
for all y ∈ Y and α, β ≥ 0. Note that if u : X → R is ϕ-additive, then equivariance

of H implies:

u
(
H(α, y)

)
= u

(
ϕα

(
H(0, y)

))
= u

(
H(0, y)

)
+ α

= v(y) + α

51See also Chapter 9 Proposition 5.1 of Ok (2011a).
52A continuous, strictly increasing function R+ → R is a homeomorphism onto its image (by

invariance of domain; e.g. Munkres 1974) and hence admits a continuous left-inverse.
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where v(y) ≡ u
(
H(0, y)

)
. Thus any equivariant homeomorphism H renders every

ϕ-additive utility quasilinear.

To state our next result, we first require the following lemma. It says that the

binary relation ∼⊴, defined via x ∼⊴ y if and only if either x ⊴ y or y ⊴ x, is an

equivalence relation.53

Lemma 1. Let {ϕα}α≥0 be a regular virtual commodity. Then ∼⊴ is an equivalence

relation.

In light of Lemma 1, there is a well-defined quotient space X/∼⊴. We let q : X →
X/∼⊴ denote the associated quotient map, and in all that follows, we will consider

X/∼⊴ endowed with its quotient topology; see Munkres (1974) for definitions.

The following result is the central piece of technical machinery needed for the

proof of Theorem 2. A proof of this result may be found in Online Appendix D.

Theorem 3 (Embedding Theorem). Let {ϕα}α≥0 be a regular virtual commodity.

Then X and {ϕα}α≥0 satisfy (A.1) and (A.2) if and only if there exists an equivariant

embedding H : R+ ×X/∼⊴ → X such that

q ◦H
(
α, [x]

)
= [x]

for all [x] ∈ X/∼⊴. Moreover the range of H is closed in X.

B.1.1 Proof of Theorem 2

Proof. It is immediate that (ii) implies (i), and by Theorem 1, (iii) =⇒ (ii). Thus we

first will show that (i) =⇒ (ii). Without loss of generality, suppose (V , E) is connected,
and let (V , E ′) be a spanning tree.54 Then for all xk ∈ V there exists a unique sequence

{xj1 , xj2}, {xj2 , xj3}, . . . , xjMk−1
, xjMk

} ∈ E ′, where j1 = 1 and jMk
= k. Define:

ūk =

Mk−1∑
m=1

Yjkjk+1

It is straightforward that (i) implies ūk does not depend on the choice of spanning

tree: if two different choices yielded different values for some k, they must obtain

53Recall, x ⊴ y means that there exists some α ≥ 0 such that ϕα(x) = y.
54If (V, E) is not connected, our argument is valid applied to each connected component indepen-

dently.
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a value for xk by summing along different paths. But then the two paths from x1

to xk would define a loop around which the adding-up condition (i) fails. Thus ū is

well-defined, and it is immediate that grad ū = Y .

We now show (ii) =⇒ (iii). By Theorem 3, there exists an equivariant embedding

H : R+ × X/∼⊴ → X, whose range XH is closed in X, and intersects every ∼⊴-
equivalence class. Following the notation of the Online Appendix D, let (t, qH) :

XH → R+ ×X/∼⊴ denote the continuous inverse of H. Note that qH is simply the

restriction of the quotient map q : X → X/∼⊴ to XH .

Suppose now that Y ∈ F is a gradient flow. Then there exists a vector ū ∈ U such

that grad ū = Y . Since the gradient of any constant vector is zero, we may assume,

without loss of generality, that ū is component-wise positive. We may similarly assume

without loss that V ⊊ XH .
55 Define l : V → R+ via l(xi) = t(xi) +

(
∥ū∥∞ − ūi

)
. By

definition of an experiment, V and qH(V) are in one-to-one correspondence, hence we

may equivalently regard l as a map from qH(V) → R+.

By (A.1), there exists a cross section s for X and {ϕα}α≥0. By the universal

property of the quotient (e.g. Munkres 1974), there is a map s∗ : X/∼⊴ → X such

that s = s∗ ◦ q. By definition of a cross section, q ◦ s∗ = idX/∼⊴ , thus q is a left

inverse of s∗; since X/∼⊴ carries the quotient topology, q is continuous, hence s∗ is

open. Since s∗ is injective by definition of a cross section, it is a homeomorphism

from X/∼⊴ to a subspace of the metric space X, and therefore X/∼⊴ is metrizable,

which implies it is normal. The Tietze extension theorem, e.g. Munkres (1974), then

guarantees there exists a bounded, continuous function L : X/∼⊴ → R+ such that

L|q̄(V) = l.

Let epi(L) denote the epigraph of L, by minor abuse of notation regarded as a

subset of R+×X/∼⊴.56 We define a binary relation onX in three cases: first, if x, x′ ∈
H
(
epi(L)

)
⊆ XH , then let x ≿ x′ if and only if t(x)−t(x′) ≥ (L◦qH)(x)−(L◦qH)(x′).

If x but not x′ belong to H
(
epi(L)

)
, then let x ≻ x′. Finally, if neither x nor x′ belong

to H
(
epi(L)

)
, then let x ≿ x′ if and only if min{α ≥ 0 : ϕα(x

′) ∈ H
(
epi(L)

)
} ≥

55If it is not, since XH intersects every ∼⊴ equivalence class and V is finite, there exists some

α∗ > 0 such that ϕα∗(V) ⊆ XH , and we may equivalently just work with this set of ‘translates.’
56The epigraph of L is the set

{
([x], τ) ∈ X/∼⊴ × R+ : τ ≥ L([x])

}
. Here, we just reverse the

order of the coordinates.
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min{α ≥ 0 : ϕα(x) ∈ H
(
epi(L)

)
}.57

Clearly ≿ is complete. We now show that it is transitive and hence a preference

relation. Let x ≿ x′ and x′ ≿ x′′, and suppose first that x, x′, x′′ ∈ H
(
epi(L)

)
. Then:

t(x)− t(x′) ≥ (L ◦ qH)(x)− (L ◦ qH)(x′)

and

t(x′)− t(x′′) ≥ (L ◦ qH)(x′)− (L ◦ qH)(x′′).

By summing, we obtain:

t(x)− t(x′′) ≥ (L ◦ qH)(x)− (L ◦ qH)(x′′),

and thus x ≿ x′′. If instead x, x′ ∈ H
(
epi(L)

)
but x′′ is not, then it is immediate that

x ≿ x′′. Moreover, by construction it is impossible that x′, x′′ ∈ H
(
epi(L)

)
but x is

not, as x ≿ x′ by hypothesis. Thus finally suppose that x, x′, x′′ ̸∈ H
(
epi(L)

)
. But

then x ≿ x′′ by the transitivity of the usual order on R+. Thus ≿ is transitive and

hence a preference relation.

We now establish that ≿ is continuous. First, let x ∈ H
(
epi(L)

)
. If x′ ≿ x, then

x′ ∈ H
(
epi(L)

)
⊆ XH necessarily, and hence:

{x′ ∈ X : x′ ≿ x} =
{
x′ ∈ XH : t(x′)− t(x) ≥ (L ◦ qH)(x′)− (L ◦ qH)(x)

}
= H

(
epi(L+ η)

)
,

where the non-negative scalar η ≡ t(x) − (L ◦ qH)(x) ≥ 0. As L is continuous,

epi(L + η) is a closed subset of R+ ×X/∼⊴. As H is an embedding, H
(
epi(L + η)

)
is closed in XH ; by Theorem 3 XH is closed in X and hence H

(
epi(L+ η)

)
is closed

in X as well. Similarly,

{x′ ∈ X : x′ ≻ x} =
{
x′ ∈ XH : t(x′)− t(x) > (L ◦ qH)(x′)− (L ◦ qH)(x)

}
= H

(
int epi(L+ η)

)
,

is open in X̄. To show this set is open in X, we rely on the following claim.

Claim: The set
{
x ∈ X : x ⊴ H

(
0, q(x)

)}
is closed.

57As the range of H intersects every ∼⊴ equivalence class, both sets are non-empty, as well as

closed and bounded below, which ensures the right-hand inequality is well-defined.
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Proof. Suppose this is not the case. Then there exists xn → x, where

xn ⊴ H
(
0, q(xn)

)
for all n ∈ N, and x ▷ H

(
0, q(x)

)
.58 Thus for all

n ∈ N there exists αn ≥ 0 such that ϕαn(xn) = H
(
0, q(xn)

)
, and α > 0

such that ϕα

(
H
(
0, q(x)

))
= x. By equivariance of H, we have that

x = H
(
α, q(x)

)
and, for all n ∈ N, that ϕα+αn(xn) = H

(
α, q(xn)

)
. By

continuity, H
(
α, q(xn)

)
→ H(α, q(x)

)
and hence limn→∞ ϕα+αn(xn) = x.

If any subsequence of α + αn converges to some limit ᾱ ≥ α > 0,

then ϕᾱ(x) = x, violating regularity of the virtual commodity. Thus

α + αn → ∞, as it is bounded below. Then, for all ε > 0 there exists

Nε ∈ N such that, for all n ≥ Nε we have that both: (i) xn ∈ Bε(x) and

(ii) ϕα+αn(xn) ∈ Bε(x), where α + αn may be chosen to be arbitrarily

large. This violates (A.2), a contradiction.

In light of this claim, H
(
R++ × X/∼⊴

)
=

{
x ∈ X : x ⊴ H

(
0, q(x)

)}c
is open in

X, and since H
(
int epi(L + η)

)
⊆ H

(
R++ × X/∼⊴

)
, it too is open in X. Thus its

complement, {x′ ∈ X : x ≿ x′}, is closed.

Suppose now that x ̸∈ H
(
epi(L)

)
, and define αx ≡ min{α ≥ 0 : ϕα(x) ∈

H
(
epi(L)

)
}. Then ϕαx(x) = H

(
(L ◦ q)(x), q(x)

)
, hence:

{x′ ∈ X : x′ ≿ x} = {x′ ∈ H
(
epi(L)

)c
: x′ ≿ x} ∪H

(
epi(L)

)
= {x′ ∈ H

(
epi(L)

)c
: αx ≥ αx′} ∪H

(
epi(L)

)
=

{
x′ ∈ H

(
epi(L)

)c
: x′ ∈ ϕ−1

αx

(
H
(
epi(L)

))}
∪H

(
epi(L)

)
= ϕ−1

αx

(
H
(
epi(L)

))
,

where the third equality follows from the equivariance of H, and the fourth from

the fact that ϕ−1
αx

(
H
(
epi(L)

))
is closed under {ϕα}α≥0 (also by equivariance of H).

Since ϕαx is continuous and H
(
epi(L)

)
has already been shown to be closed, we

conclude {x′ ∈ X : x′ ≿ x} is closed. By an analogous argument, we obtain that

{x′ ∈ X : x′ ≻ x} is open, and hence {x′ ∈ X : x ≿ x′} is closed. Thus ≿ is

continuous.

58This last claim follows via Theorem 3 as it guarantees that q ◦H
(
α, q(x)

)
= q(x) for all x ∈ X,

α ≥ 0 and hence x ∼⊴ H
(
0, q(x)

)
but ¬ x ⊴ H

(
0, q(x)

)
.
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We now verify ≿ obeys (N.1) - (N.3). Suppose then that x ≿ x′, and let α ≥ 0.

If x, x′ ∈ H
(
epi(L)

)
, then, as ϕα(x) = ϕα+t(x)

(
H(0, q(x))

)
:

(t ◦ ϕα)(x)− (t ◦ ϕα)(x
′) = (t ◦ ϕα+t(x))

(
H(0, qH(x))

)
− (t ◦ ϕα+t(x′))

(
H(0, qH(x

′))
)

= (t ◦H)(α + t(x), qH(x))− (t ◦H)(α + t(x′), qH(x
′))

= t(x)− t(y)

≥ (L ◦ qH)(x)− (L ◦ qH)(y)

= (L ◦ qH ◦ ϕα)(x)− (L ◦ qH ◦ ϕα)(x
′)

where the inequality follows from x ≿ x′ with x, x′ ∈ H
(
epi(L)

)
. Thus ϕα(x) ≿

ϕα(x
′), as both belong to H

(
epi(L)

)
by equivariance of H. Suppose now x but not x′

belongs to H
(
epi(L)

)
, and thus that x ≻ x′. Then for all 0 ≤ α < αx′ , by definition

ϕα(x) ≻ ϕα(x
′). Suppose then that α ≥ αx′ . By Lemma 4 (t ◦ ϕα)(x) = t(x) + α,

where t(x) ≥ (L◦qH)(x). Similarly, since x′ ̸∈ H
(
epi(L)

)
, (t◦ϕα)(x

′) < (L◦q)(x′)+α.
Hence:

(t ◦ ϕα)(x)− (t ◦ ϕα)(x
′) = t(x) + α− (t ◦ ϕα)(x

′)

≥ (L ◦ qH)(x) + α− (t ◦ ϕα)(x
′)

> (L ◦ qH)(x)− (L ◦ q)(x′)

= (L ◦ qH ◦ ϕα)(x)− (L ◦ qH ◦ ϕα)(x
′),

and hence ϕα(x) ≻ ϕα(x
′). Finally, suppose neither x nor x′ belong to H

(
epi(L)

)
. Let

x ≿ x′ and hence αx′ ≥ αx. For any α < αx, if x̃ = ϕα(x), we have that αx̃ = αx − α,

hence for any such α, it follows that ϕα̃(x) ≿ ϕα̃(x
′). If α ≥ αx, then ϕα(x) ∈

H
(
epi(L)

)
; if ϕα(x

′) is not, then ϕα(x) ≻ ϕα(x
′) as desired. If ϕα(x

′) ∈ H
(
epi(L)

)
too, then:

(t ◦ ϕα)(x)− (t ◦ ϕα)(x
′) ≥ (t ◦ ϕα)(x)− (t ◦ ϕα)(x

′) + αx − αx′

= (L ◦ qH ◦ ϕα)(x)− (L ◦ qH ◦ ϕα)(x
′),

and thus ≿ satsifies (N.1). Property (N.2) holds by definition. Thus now suppose

x′ ≿ x. Then ϕαx(x), ϕαx(x
′) ∈ H

(
epi(L)

)
, thus, having verified (N.1) it suffices to

find some α such that ϕα+αx(x) ∼ ϕαx(x
′). Let α = (t◦ϕαx)(x

′)− (L◦ qH ◦ϕαx)(x
′).59

59Note this is well-defined as ϕαx(x
′) ∈ H

(
epi(L)

)
.
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Since (t ◦ ϕαx)(x) = (L ◦ qH ◦ ϕα+αx)(x), it follows that:

(t ◦ ϕα+αx)(x)− (t ◦ ϕαx)(x
′) = α + (t ◦ ϕαx)(x)− (t ◦ ϕαx)(x

′)

= α + (L ◦ qH ◦ ϕα+αx)(x)− (t ◦ ϕαx)(x
′)

= (L ◦ qH ◦ ϕα+αx)(x)− (L ◦ qH ◦ ϕαx)(x
′),

thus ϕα+αx(x) ∼ ϕαx(x
′) as desired, and we conclude ≿ satisfies (N.3).

We now verify that the compensation differences under ≿ for each pair in E
precisely corresponds to the observed data, our last outstanding claim. Let Yij ≥ 0.

Suppose first xi, xj ∈ H
(
epi(L)

)
. Since xi, xj ∈ V , by construction (L ◦ qH)(xi) =

l(xi) +
(
∥u∥∞ − ui

)
and likewise xj. Thus

t(xj)− (t ◦ ϕYij
)(xi) = t(xj)− t(xi)− Yij

= t(xj)− t(xi)− (uj − ui)

= (L ◦ qH)(xi)− (L ◦ qH ◦ ϕYij
)(xj)

and hence xi ∼ ϕYij
(xj). If xi or xj do not belong to H

(
epi(L)

)
, as ≿ satisfies (N.1),

it suffices to verify that:

ϕYij+max{αxi ,αxj }(xi) ∼ ϕmax{αxi ,αxj }(x).

However, by construction both these alternatives belong to H
(
epi(L)

)
, and hence the

preceding argument applies directly. Thus (i) =⇒ (ii). The theorem follows.

Appendix C Proposition Proofs

C.1 Proof of Proposition 2

Proof. By the Pythagorean theorem:∥∥Y − Y ∗
M
∥∥2

2
=

∥∥Y − Y ∗
Add

∥∥2

2
+ ∥Y ∗

Add − Y ∗
M
∥∥2

2
(16)

and, letting Πgrad(KM) denote L
2 projection onto grad(KM),∥∥Y − Πgrad(KM)Y

∗
Add

∥∥2

2
=

∥∥Y − Y ∗
Add

∥∥2

2
+ ∥Y ∗

Add − Πgrad(KM)Y
∗
Add

∥∥2

2
. (17)

As Y ∗
M is the nearest point in KM to Y , the fact Πgrad(K)Y

∗
Add ∈ grad(KM) implies:∥∥Y − Πgrad(KM)Y

∗
Add

∥∥2

2
≥

∥∥Y − Y ∗
M
∥∥2

2
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and hence by (16) and (17),

∥Y ∗
Add − Πgrad(KM)Y

∗
Add

∥∥2

2
≥ ∥Y ∗

Add − Y ∗
M
∥∥2

2
. (18)

But analogously, Πgrad(KM)Y
∗
Add must be the nearest point to Y ∗

Add in grad(KM),

hence (18) holds with equality. As the L2 norm is strictly convex, this means

Πgrad(KM)Y
∗
Add = Y ∗

M, and substituting into (16) yields the desired equation.

C.2 Proof of Proposition 3

Proof. For a pure cycle C,MP (C) = ∥C∥1. Thus ifR =
∑

l Cl for some {C1, . . . , CL} ∈
D(R), then by the triangle inequality:

∥R∥1 =
∥∥∥∥ L∑

l=1

Cl

∥∥∥∥
1

≤
L∑
l=1

∥∥Cl

∥∥
1
=

L∑
l=1

MP (Cl).

By taking infimums across all such decompositions, it follows ∥R∥1 ≤MP ∗(R). Thus

it suffices to show that there always exists a decomposition in D(R) attaining this

lower bound.

Without loss of generality, suppose R ≥ 0 componentwise.60 If R = 0 then trivially

MP ∗(R) = ∥R∥1 = 0, hence suppose R ̸= 0. Let E ′ denote the non-empty subset of

edges on which R ̸= 0, and let V ′ denote the set of vertices appearing in some edge

in E ′. Choose xi0 ∈ V ′ arbitrarily. Since xi0 ∈ V ′, by (8) there exists a neighboring

vertex xi1 such that Rxi0
xi1

> 0. Proceeding in this fashion, we may construct a

sequence of oriented edges in E⃗ ′ such that Rxil
xil+1

> 0. We terminate this process

when we choose a vertex that has appeared prior in the sequence.61 By possibly

throwing out some initial segment of this sequence and relabelling indices, we obtain

a sequence of oriented edges (xi0 , xi1), (xi1 , xi2), . . . , (xiL1
, xi0) such that Rxil

xil+1
> 0,

where iL ≡ i0. Let c1 = min{Rxi0
xi1
, Rxi1

xi2
, . . . , RxiL−1

xi0
}, and let C1 denote the

pure cycle
∑L

l=0 c11(xil
,xil+1

). Then 0 ≤ C1 ≤ R component-wise, and C1 is equal to

R on at least one component. Thus R1 = R−C1 also belongs to the positive cone of

the subspace satisfying (8); however it is non-zero on a proper subgraph of (V ′, E ′).

60This simply amounts to a choice of orientation of each edge forming our basis for F in the same

direction as the flow (if the flow is non-zero).
61This process necessarily terminates, as V ′ is finite.
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Thus repeating this process, we obtain a finite decomposition of R into pure cycles

C1 + · · ·+ CM , where for all m = 1, . . . ,M , Cm ≥ 0. This implies:

∥R∥1 =
∥∥∥∥ M∑

m

Cm

∥∥∥∥
1

=
M∑

m=1

∥∥Cm

∥∥
1
=

M∑
m=1

MP (Cm)

and hence the lower bound obtains.

C.3 Proof of Proposition 4

Proof. Any preference in MMEU may be uniquely identified with its set of priors

C ⊆ ∆(S). Given a closed, convex set of priors C satisfying (i) and (ii) for some

u, π1, . . . , πK , let π̂1, . . . , π̂K ∈ C denote selections of extremal points from C belong-

ing to the respective hyperplanes H̄ũi,ui
. Then trivially u, π̂1, . . . , π̂K belong to KMEU ,

and must be consistent with u, π1, . . . , πK as u is the same in both vectors.

Conversely, given some set of priors C that is consistent with u, π1, . . . , πK , sup-

pose for purposes of contraposition that there exists π∗ ∈ C, π∗ ̸∈ C̄, then for some

i:

⟨π∗, ũi⟩ < ui,

and hence ui ̸= U(ũi), where U is the MEU functional associated with C. Thus if C

is consistent with u, π1, . . . , πK , C must satisfy (i). For (ii), if for all i = 1, . . . , K:

ui = U(ũi) = min
π∈C

⟨π, ũi⟩,

then H̄ũi,ui
must be a supporting hyperplane for C and hence must contain some

extremal point.
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Online Appendix

Appendix D Proof of Theorem 3

Proof of Lemma 1

Proof. Clearly ∼⊴ is reflexive and symmetric, hence all that remains is to verify

transitivity. Suppose x ∼⊴ x′ and x′ ∼⊴ x′′. We proceed in three cases: first suppose

that only one of x and x′′ may be obtained from x′; without loss x ⊴ x′ ⊴ x′′.

Then there exists αxx′ , αx′x′′ ≥ 0 such that ϕαxx′
(x) = x′ and ϕαx′x′′

(x′) = x′′ then

clearly ϕαxx′+αx′x′′
(x) = x′′ and hence x ⊴ x′′. Thus suppose x′ ⊴ x and x′ ⊴

x′′. Then there exists αx′x, αx′x′′ ≥ 0 such that ϕαx′x
(x′) = x and ϕαx′x′′

(x′) = x′′.

Without loss of generality let αx′x ≤ αx′x′′ , so ϕαx′x′′−αx′x

(
ϕαx′x

(x′)
)
= x′′ and thus

ϕαx′x′′−αx′x
(x) = x′′, and we obtain x ∼⊴ x′′. Finally, suppose x ⊴ x′ and x′′ ⊴ x′.

Then there exists αxx′ , αx′′x′ ≥ 0 such that ϕαxx′
(x) = x′ = ϕαx′′x′

(x′′). Without

loss, let αxx′ ≤ αx′′x′ . Then x′ = ϕαx′′x′
(x′′) = ϕαxx′+(αx′′x′−αxx′ )

(x′′), which in turn

equals ϕαxx′

(
ϕαx′′x′−αxx′

(x′′)
)
. But, by regularity, the map ϕαxx′

is injective hence,

ϕαx′′x′−αxx′
(x′′) = x and therefore x ∼⊴ x′′.

In light of Lemma 1, there is a well-defined quotient space X/∼⊴. We let q : X →
X/∼⊴ denote the associated quotient map, and in all that follows, we will consider

X/∼⊴ endowed with its quotient topology; see Munkres (1974) for definitions.

Corollary 1. For all α ≥ 0, for all x ∈ X, q(x) = (q ◦ ϕα)(x).

The quotient map q has the property that if f : X → Z is any map that is

constant on each ∼⊴ equivalence class, then there is a uniquely determined map

f ∗ : X/∼⊴ → Z such that f ∗(q(x)) = f(x) for all x ∈ X.62 In particular, every cross

section s : X → X may equivalently be regarded as a map s : X/∼⊴ → X. Going

forward, whenever we refer to a cross section s we will mean it in this latter sense.

To conserve on notation, we will reserve the use of y to denote elements of X/∼⊴.

We now fix a regular virtual commodity {ϕα}α≥0 that satisfies (A.1) and (A.2),

and a choice of cross section s. Define H : R+×X/∼⊴ → X via H(α, y) = (ϕα◦s)(y),
62See Munkres (1974) for details.
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and let XH = range(H). We wish to show that H is an equivariant embedding. Note

that equivariance follows immediately from the definition of H:

ϕβ

(
H(α, y)

)
= ϕβ

(
(ϕα ◦ s)(y)

)
= (ϕβ+α ◦ s)(y)

= H(β + α, y).

Thus it remains to verify that H is indeed an embedding.

Lemma 2. Let qH : XH → X/∼⊴ be the restriction of q to XH . Then qH is an open

map.

Proof. Let U ⊂ XH be open. Then:

qH(U) =
{
y ∈ X/∼⊴ : ∃α ≥ 0 s.t. (ϕα ◦ s)(y) ∈ U

}
= s−1

(
{x ∈ range(s) : ∃α ≥ 0 s.t. ϕα(x) ∈ U}

)
= s−1

(
range(s) ∩

[
∪α≥0 ϕ

−1
α (U)

])
= s−1

(
∪α≥0 ϕ

−1
α (U)

)
.

But, s and {ϕα}α≥0 are continuous, hence qH(U) is open.

Lemma 3. H is injective.

Proof.

H(α, y) = H(α′, y′)

=⇒ (ϕα ◦ s)(y) = (ϕ′
α ◦ s)(y′)

=⇒ (q ◦ ϕα ◦ s)(y) = (q ◦ ϕ′
α ◦ s)(y′)

=⇒ (q ◦ s)(y) = (q ◦ s)(y′)

=⇒ s(y) = s(y′).

This implies that y = y′ as s is a cross section, and that α = α′ by regularity.

Define t : XH → R+ implicitly, as the unique solution to

H
(
t(x), qH(x)

)
= x.

It is well-defined in light of the equivariance of H and regularity of {ϕα}α≥0. By

definition, (t, qH) is the inverse of H. We now establish the regularity (i.e. continuity)

of solutions to the above class of topological implicit function problems (Lemma 5 -

Lemma 7).
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Lemma 4. For all x ∈ XH , α ≥ 0, the function t satisfies (t ◦ ϕα)(x) = t(x) + α.

Proof. Let x ∈ XH . By definition, H
(
t(x), qH(x)

)
= x, and by equivariance, H

(
t(x)+

α, qH(x)
)
= (ϕα ◦ H)(t(x), qH(x)) = ϕα(x). Hence (t ◦ ϕα)(x) = (t ◦ H)

(
t(x) +

α, qH(x)
)
= t(x) + α.

Lemma 5. For all x ∈ XH there exists a finite open cover {Nαi
}Ki=1 of H

(
[0, t(x)]×

{qH(x)}
)
with the following properties:

1. For all i ∈ {1, . . . , K}, the set {α : H(α, q̄(x)) ∈ Nαi
} is a relatively open

interval of [0,∞). For i > 1, denote this by (αi, ᾱi), and for i = 1, by [0, ᾱ1).

2. The indices {αi}Ki=1 satisfy 0 = α1 < α2 < · · · < αK = t(x), satisfy αi ∈ (αi, ᾱi),

and, for all i, j = 1, . . . , K, αi < αj implies (αi, ᾱi) ⪯SSO (αj, ᾱj), where ≺SSO

denotes the strong set order.

3. For all i, Nαi
satisfies the no accumulation property of (A.2).

Proof. Fix x ∈ XH . For all α ∈ [0, t(x)], define xα = H(α, qH(x)) = (ϕα ◦ s ◦ qH)(x).
By (A.2), for all α ∈ [0, t(x)], there exists εα, Tα > 0 such that, for all x′ ∈ Bεα(xα),

for all β > Tα, ϕβ(x
′) ̸∈ Bεα(xα). For each α, let Uα denote the connected component

of Bεα(xα) ∩ H
(
[0, t(x)] × {qH(x)}

)
that contains xα, and define Nα = Bεα(xα) \[

H
(
[0, t(x)] × {qH(x)}

)
\ Uα

]
. As [0, t(x)] × {qH(x)} is compact in R+ × X/∼⊴, by

continuity H
(
[0, t(x)]× {qH(x)}

)
is a compact and hence closed subset of XH . Uα is

a relatively open subset of H
(
[0, t(x)]× {qH(x)}

)
, hence H

(
[0, t(x)]× {qH(x)}

)
\ Uα

is relatively closed in s̄
(
[0, t(x)] × {q̄(x)}

)
and therefore also closed in X̄. Then for

all α, Nα is an open neighborhood of xα. By Lemma 3, H
(
· , qH(x)

)
is injective (and

continuous) hence for all α, {α′ : H
(
α′, qH(x)

)
∈ Nα} is an open interval in [0, t(x)].

As H
(
[0, t(x)]× {qH(x)}

)
is compact and covered by {Nα}α∈[0,t(x)], there exists a

finite set 0 = α1 < · · · < αK = t(x) such that {Nαi
}Ki=1 form a finite subcover. By

construction, for each i, αi ∈ (αi, ᾱi). Since properties (1.) and (3.) held for every

element of {Nα} they clearly hold for {Nαi
}. Finally, without loss of generality we

may suppose, for all i ̸= j, the intervals (αi, ᾱi) ̸⊆ (αj, ᾱj), as if not, then some proper

subcover does, and passing to this subcover preserves properties (1.) and (3.).

It remains only to verify {Nαi
} has the property that αi < αj implies (αi, ᾱi) ⪯SSO

(αj, ᾱj). Since neither interval contains the other, if αi < αj, then it must be that
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R+

s
(
X/∼⊴

)
XH

xx2

x1

Nα1

Nα2

Nα3

(a) An open cover of the path

H
(
[0, t(x)]× {qH(x)}

)
, here in aquama-

rine. This open cover satisfies all of the

properties of Lemma 5.

R+

s
(
X/∼⊴

)
XH

x

Nα1

Nα2

Nα3

V3

(b) The construction of the neighbor-

hood VK (here, K = 3) for x on

which t is bounded, from the open cover

{Nαi
}3i=1.

Figure 5: An illustration of the construction underpinning Lemma 6. We have implicitly drawn

the numeraire-paths of ϕ in X̄ as vertical translates of one another.

ᾱi < ᾱj, which implies (αi, ᾱi) ⪯SSO (αj, ᾱj) as desired.63 If instead αj < αi, then

ᾱj < ᾱi, in which case (αj, ᾱj) ⪯SSO (αi, ᾱi), and hence αi, αj ∈ (αi, ᾱi) ∩ (αj, ᾱj).

Thus swapping the labels of Nαi
and Nαj

preserves all salient properties but ‘fixes’

violations of property (2.). Repeating this process for each such pair cannot cycle (it

simply sorts the indices via the {αi}) and thus it terminates after some finite number

of label swaps, resulting in a cover satisfying (2.).

Lemma 6. For all x ∈ XH there exists an open neighborhood of x on which t is

bounded.

Proof. Fix x ∈ XH , and let {Nαi
}Ki=1 denote an open cover of H

(
[0, t(x)]× {qH(x)}

)
of the form guaranteed by Lemma 5. Without loss of generality, suppose that Nα1 is

the sole cover element to intersect H
(
{0} ×X/∼⊴

)
.64 Define V0 = H

(
{0} ×X/∼⊴

)
63Note that as no interval in the collection is a subset of any other, it can never be the case that

αi = αj or ᾱi = ᾱj , thus considering only strict inequalities suffices.
64For example, for all i > 1, redefine N ′

αi
= Nαi \ range(s). N ′

αi
is open as range(s) is closed:

let (xn) ∈ range(s) and suppose xn → x. Then q(xn) → q(x), and hence (s ◦ q)(xn) → (s ◦ q)(x)
by continuity. However, s is a cross-section thus, as xn ∈ range(s), xn must be the value s takes at

q(xn), hence (s ◦ q)(xn) = xn for all n. As X is metric and hence Hausdorff and as xn converges to

both x and (s ◦ q)(x), (s ◦ q)(x) must equal x, and thus x ∈ range(s).
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and, for all i = 1, . . . , K:

Vi = Nαi

⋂[(
q−1
H ◦ qH

)(⋃
j<i

Vj ∩Nαi

)]
,

see Figure 5. We first verify, for all i = 1, . . . , K, that Vi is open. Note that via

Lemma 2 and our assumption that Nα1 is the only element of the open cover to

intersect V0, it suffices to show that V1 is open. But V1 = Nα1 ∩
(
q−1
H ◦ qH

)
(V0 ∩Nα1),

and V0 ∩Nα1 = Nα1 ∩ range(s), and hence is relatively open in the range of s. As qH

is a left-inverse of s, qH(Nα1 ∩ V0) is open, and hence so too is V1.

We now establish that, for all i = 1, . . . , K, H
(
[0, ᾱi)×{qH(x)}

)
⊆

⋃
j≤i Vj, where

we recall that (αi, ᾱi) = {α ∈ [0, t(x)] : H(α, q̄(x)) ∈ Nαi
} for 1 < i < K, and [0, ᾱi)

is the analogue for i = 1.65 For all i = 1, . . . , K, let xαi
= H(αi, q̄(x)) and consider

the case of i = 1. By hypothesis, α1 = 0, hence xα1 = (s ◦ qH)(x) ∈ Nα1 ∩ V0. Then

Corollary 1 implies H
(
[0, t(x)]×{qH(x)}

)
⊆ (q−1

H ◦qH)(Nα1∩V0), and thus H
(
[0, ᾱ1)×

{qH(x)}
)
⊆ V1. Suppose now that, for all 1 ≤ i ≤ k, that H

(
[0, ᾱi) × {q̄(x)}

)
⊆⋃

j≤i Vj, but, for sake of contradiction, that H
(
[0, ᾱk+1)× {qH(x)}

)
̸⊆

⋃
j≤k+1 Vj. As

(αk+1, ᾱk+1) is an interval, if ᾱk ∈ (αk+1, ᾱk+1), the contradiction hypothesis would

be false, thus it must be that ᾱk ̸∈ (αk+1, ᾱk+1) and hence H(ᾱk, q̄(x)) ̸∈ Nαk+1
.

Then (αk, ᾱk) ∩ (αk+1, ᾱk+1) = ∅. But Lemma 5 guarantees that, for all l > k + 1,

αl > αk+1, and for all l < k, ᾱl < ᾱk, hence H(ᾱk, q̄(x)) ̸∈
⋃K

i=1Nαi
, contradicting

the fact that {Nαi
}Ki=1 is a cover for H

(
[0, t(x)] × {qH(x)}

)
. Thus by induction

H
(
[0, ᾱK)× {qH(x)}

)
⊆

⋃
j≤K Vj, and in particular x = xαK

∈ VK .

We now verify that t|Vi
is bounded for all i = 0, . . . , K; since x ∈ VK and VK is

open, this suffices to establish the claim. For i = 0 the claim is trivial as by definition,

t|V0 is uniformly 0. Thus consider i = 1, let x′ ∈ V1. By Lemma 4, for any x′ ∈ V1,

if ϕα(x
′) = x′, then t(x′) = α + t(x′). But since Nα1 has a no-loitering bound of

Tα1 , since both x′, x′ ∈ V1 ⊆ Nα1 , we have t(x′) < Tα1 + t(x′). However, if x′ ∈ V1,

then (s ◦ qH)(x′) ∈ V1, and by definition (t ◦ s ◦ qH)(x′) = 0. Thus for all x′ ∈ V1,

t(x′) < Tα1 . Suppose now that, for all i ≤ k, t|Vi
is bounded, and let x′ ∈ Vk+1. Then,

x′ ∈ Nαk+1
and there exists some x′′ ∼⊴ x′, where x′′ ∈ Nαk+1

∩ Vj where 1 ≤ j ≤ k.

65This set is indeed an interval by Lemma 5.
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Suppose x′′ ⊴ x′. Then:

t(x′) < t(x′′) + Tαk+1

< T̄j + Tαk+1

≤ max
i≤k

T̄i + Tαk+1
,

where Tαk+1
is a (A.2) bound for Nαk+1

, and T̄j is any upper bound on t|Vj
which

exists by the induction hypothesis. Note that if x′ ⊴ x′′, then t(x′) is bounded above

by the same quantity. Thus for all 1 ≤ i ≤ K, t|Vi
is bounded; as x ∈ VK and VK is

open, this establishes the claim.

Lemma 7. The map t is continuous.

Proof. Let x ∈ XH . By Lemma 6, there exists ε > 0 such that t|Bε(x) is bounded

above by some constant K. Define t∗ : Bε(x)⇒ R+ via

t∗(x′) = argmin
t̃∈[0,K]

dX
(
(ϕt̃ ◦ s ◦ qH)(x′), x′

)
,

for x′ ∈ Bε(x). Since t(x′) is the unique unconstrained minimizer of this objective

function, and t(x′) ∈ [0, K], it follows that t∗ = t|Bε(x) and hence t∗ is a singleton-

valued correspondence. But by the Theorem of the Maximum (Aliprantis and Border,

2006), t∗ is upper hemicontinuous and hence continuous as a function. Thus for

every x ∈ XH there is a neighborhood of x on which it is continuous, hence it is

continuous.

Corollary 2. Suppose {ϕα}α≥0 is a regular virtual commodity satisfying (A.1) and

(A.2). Then H is an equivariant embedding.

Proof of Theorem 3

Proof. By Corollary 2, H is an equivariant embedding and by definition, satisfies

the desired identity. Suppose then, for sake of contradiction, that XH is not closed

in X. Then there exists a convergent sequence xn ∈ range(H), xn → x with x ̸∈
range(H). By construction, for every x ∈ X, x ∼⊴ H

(
0, q(x)

)
= (s ◦ q)(x); since

H
(
0, q(x)

)
⊴ x implies x ∈ XH by equivariance, it follows that x ◁ H

(
0, q(x)

)
. Thus

there exists α∗ > 0 such that ϕα∗(x) = H
(
0, q(x)

)
. By continuity, ϕα∗(xn) → ϕα∗(x),

and thus (t ◦ ϕα∗)(xn) → (t ◦ ϕα∗)(x) = 0. By Lemma 4, for all n ∈ N, the sequence
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(t ◦ ϕα∗)(xn) = t(xn) + α∗, is bounded away from zero by α∗, a contradiction. Thus

XH is closed.

For necessity, suppose an equivariant embedding H with the requisite properties

exist. It is immediate that (A.2) holds for {ϕα}α≥0 and that H
(
0, q(·)

)
defines a cross

section.

Appendix E Dominant Strategy Elicitation of Com-

pensation Data

In this section we present a dominant-strategy incentive-compatible mechanism to

truthfully elicit compensation differences data. Our approach may be seen as a gen-

eralization of Becker et al. (1964). For simplicity, we will consider the elicitation

problem for a given observation; our results extend to full experiments straightfor-

wardly. Let {x, x′} ∈ E be an arbitrary pair of alternatives. We first define two

intermediate mechanisms: in the x-mechanism, the agent is offered the opportunity

to submit a non-negative ‘sell price’ in numeraire units for x, denoted s, to a com-

puterized buyer. The buyer simultaneously and blindly selects a non-negative ‘buy’

price b. If s > b, no trade occurs and the agent is awarded x. If b ≥ s, then a

trade occurs, and instead of x, the agent receives ϕ(b, y). We analogously define the

x′-mechanism. Compensation differences may be elicited by presenting the subject

with a choice: they are invited to submit a sell price in either the x- or y-mechanism,

but not both. However, in whichever mechanism they do not choose, a sell price of

0 will be submitted on their behalf. After the bids have been submitted, a coin is

flipped to select either x or y, and the associated mechanism’s reward is allocated to

the agent, regardless of which intermediate mechanism they chose to manually submit

a sell price for.

We model the agent’s decision problem using the states of the world formalism.

We do so to highlight that the incentive-compatibility of our mechanism does not

depend on the manner in which the subject handles probabilities. Suppose that

Ω = R2
+ × {x, x′} denotes the payoff-relevant states of the world; the tuple (bx, bx′ , z)

denotes the state in which the computer selects bids bx in the x-mechanism, bx′ in

the x′-mechanism, and the payoff-determining mechanism is z ∈ {x, x′}. A choice
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of action for the agent consists of a tuple in {x, x′} × R+, corresponding a choice of

which intermediate mechanism to participate in, and what sell price to submit there.

Let X∗ denote the set maps from Ω → X that are awarded by this mechanism. We

assume the agent has preferences ≿∗ over X∗ and say these are consistent with their

preference ≿ over X if, for all f, g ∈ X∗, f(ω) ≿ g(ω) for all ω ∈ Ω implies f ≿∗ g.

Theorem 4. Let {ϕα}α≥0 be a virtual commodity, and suppose an agent (i) has pref-

erences ≿ on X that satisfy (N.2) and (N.3), and (ii) preferences ≿∗ over X∗ that

are consistent with ≿. Then choosing to submit a bid equal to their true compen-

sation difference, in the mechanism corresponding to the ≿-preferred alternative, is

≿∗-optimal.

Proof. Suppose x ≿ x′, with true compensation difference given by α ≥ 0, ϕα(x
′) ∼ x.

Since ≿ satisfies (N.2) and (N.3), this α exists and is unique. Suppose first that the

subject chooses to participate in the x′-mechanism and submits a price of s. Then

their state-dependent payoff is the act:

fs(bx, bx′ , z) =


ϕbx(x

′) if z = x

ϕbx′
(x) if z = x′, bx′ ≥ s

x′ if z = x′, s > bx′ .

Similarly, if the agent instead submitted s in the x-mechanism, their reward would

be:

gs(bx, bx′ , z) =


ϕbx′

(x) if z = x′

ϕbx(x
′) if z = x, bx ≥ s

x if z = x, s > bx

Suppose s = α. By (N.2):

ϕbx(x
′) ≿ x ⇐⇒ bx ≥ α,

hence conditional upon z = x, the agent obtains max{ϕbx(x
′), x} from gα.

66 Now,

by (N.2), ϕby(x) ≿ x′ no matter the value of bx′ , hence by consistency of ≿∗ the

most-preferred f act resulting from a bid in the x′-mechanism is f0.
67 Thus we wish

to show gα ≿∗ f0. But conditional upon z = x′, both gα and f0 yield ϕbx′
(x), and

66The max here is understood in the ≿ sense.
67That is, from setting s = 0.
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conditional upon z = x, gα yields max{ϕbx(x
′), x} whereas f0 yields ϕbx(x

′). Thus by

consistency, gα ≿∗ f0. The final step is to show that gα ≿∗ gs for all other choices of s.

This follows from the standard argument characterizing weak optimality of truthful

bidding in Vickrey auctions, and we omit it.

The assumption that ≿∗ was a preference relation is not required for the result.

All that was needed was that ≿∗ was consistent with ≿. In principle ≿∗ could be

highly incomplete and nontransitive; so long as consistency is satisfied, Theorem 4

remains valid.

Appendix F Proofs Omitted from the Text

F.1 Omitted Arguments from Section 5.1

F.1.1 Positive Homogeneous & Translation Invariant Rationalizations

We first argue that any data set arising from (V , E) is rationalizable by a utility

function of the form:

w
(
v(x1), v(x2)

)
,

with w translation-invariant and positive homogeneous. Note that by translation-

invariance, it suffices to define the level set through 0 of w, as every other level set

must then be determined by this via translation along the diagonal. Firstly, note that

under v the monetary acts (0, 0), (1, 0), and (0, 1) correspond to the identical utility

acts. It will be more convenient to work in utility act space. Firstly, Y02 yields a

utility act v̄2 ∼ (0, 0); if the utility acts (0, 1) ≿ (0, 0) (i.e. Y02 ≥ 0), then the utility

act v̄2 = (−Y02, 1−Y02) ∼ 0. If Y02 < 0, then v̄2 = (Y02, 1+Y02) ∼ 0. Analogously, we

can find a utility act v̄1 ∼ (0, 0) by first finding a translation of (1, 0) that is indifferent

with (0, 1) and then subtracting Y02 from both components to obtain indifference with

(0, 0).68 Define the 0-level set of w to be the union of the rays from 0 through v̄1 and

v̄2 respectively, and extend to a functional on R2 via translation invariance. To see

this extension is also positive homogeneous, note that the restriction of w to the half

space above (resp. below) the diagonal is linear. Finally, note that any translation-

invariant and positive homogeneous rationalization must share the same 0-level set

68Note that v̄1 must lie below the diagonal of R2 as it a translation of (1, 0) parallel to the diagonal,

and similarly v̄2 must lie above.
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as w, and therefore must arise in this fashion. In particular, this means we do not

‘miss’ any possible rationalizations by considering this construction.

F.1.2 Relaxing Ambiguity Aversion

As noted above, every translation invariant functional on R2 may be identified with

its level set through 0; if the functional is additionally positive homogeneous, 0-level

set must be a union of two rays from 0. If the functional is monotone, these two rays

must lie in the second and fourth quadrants respectively; if it is also concave, the

upper contour set (i.e. the region bounded between these rays containing the positive

45-degree ray) must be convex. If we drop concavity of the functional, but require

monotonicity, translation-invariance and positive homogeneity, then this just requires

that v̄1 and v̄2 belong to the fourth and second quadrants of the plane respectively,

with no other constraint. Since these utility acts depend on Y , it is straightforward

to obtain the constraint rhombus in Figure 3. To see this coincides with CEU, note

that for any such pair of rays, there is a vector in ∆(S) normal to each, and w may

be viewed as integrating against the capacity that takes on one of these probability

measures depending on whether the integrand lies above or below the diagonal in the

space of utility acts.

Appendix G Constraint Set Characterizations

G.1 Quasilinear Increasing Concave Utility

Let KQIC denote the set of vectors in U that are restrictions of quasilinear (in the

first variable), increasing, and concave functions. For a general experiment (V , E),
evaluating (11) with K = KQIC is equivalent to solving:

min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨πi, xi⟩+ γi ∀i = 1, . . . , K

⟨πi, xi⟩+ γi ≤ ⟨πj, xi⟩+ γj ∀i, j = 1, . . . , K

πi,1 = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K

(19)
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for ū ∈ U and, for all i = 1, . . . , K, πi ∈ RL, γi ∈ R (where πi,1 denotes the first

component of πi).

Proof. Suppose first that u is a quasilinear (with linear term normalized to identity),

increasing, and concave utility. For all i = 1, . . . , K, define ūi = u(xi) and let πi

denote an arbitrary choice of supergradient of u at each xi. As u is increasing, it

follows πi ≥ 0 for each i. Define γi = ūi − ⟨πi, xi⟩. Then for all i = 1, . . . , K and all

x ∈ X:

u(x) ≤ u(xi) + ⟨πi, x− xi⟩.

Thus, in particular, ⟨πi, xi⟩+ γi ≤ ⟨πj, xi⟩+ γj for all i, j. Finally, as:

u
(
ϕα(xi)

)
≤ u(xi) + ⟨πi, (α, 0)⟩

it follows that:

α ≤ π1
i α

hence π1 ≥ 1. If xi is on the interior of R2
+ then there is some x̂ such that, for some

α > 0, ϕα(x̂) = xi. Thus u(x̂) = u(xi)− α, and:

u(x̂) ≤ u(xi) + ⟨πi, (−α, 0)⟩,

which yields −α ≤ −απ1
i and hence π1

i ≤ 1. Thus for all x in the interior of X, their

supergradients must have first component equal to 1. By the outer hemicontinuity of

the supergradient correspondence (Hiriart-Urruty and Lemaréchal (2004), Theorem

6.2.4) this remains true for those x on the boundary of X, and hence for all xi, πi is

of the form (1, π2
i ) as claimed.

Conversely, suppose ū, {πi}Ki=1, {γi}Ki=1 is a solution to (19). Define:

û(x) = min
i∈{1,...,K}

γi + ⟨x, πi⟩.

Then clearly û(xi) = ūi, and û is quasilinear, increasing, and concave.

G.2 Constant Absolute Ambiguity Aversion Preferences

Throughout, we abuse notation by writing v(x) for the vector
(
v(x1), . . . , v(xS)

)
, and

v̄i for the utility act
(
v(xi,1), . . . , v(xi,S)

)
. Finally we will assume that for all i ̸= j,

v̄i − v̄j is not a constant vector and that ϕα(x)s = v−1
(
v(xs + α)

)
.
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G.2.1 Subjective Expected Utility

A map u : X → R is said to be a subjective expected utility functional if it is of the

form:

u(x) = ⟨π, v(x)⟩,

for some π ∈ ∆(S). Define KSEU as the collection of ū ∈ U that are restrictions

of subjective expected utility representations. Then solving (11) with K = KSEU is

equivalent to solving:

min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨π, v̄i⟩ ∀i = 1, . . . , K

⟨π,1S⟩ = 1

π ≥ 0.

(20)

Proof. Trivial.

G.2.2 Choquet Expected Utility

Recall that a function ν : 2S → R is a capacity if (i) ν(∅) = 0, ν(S) = 1, and (ii)

for all A ⊆ B, ν(A) ≤ ν(B). By abuse of notation, let S = {1, . . . , S}, and let SS

denote the set of permutations on {1, . . . , S}. For each σ ∈ SS, define:

Cσ = {x ∈ RS : xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(S)}. (21)

The cones {Cσ}σ∈SS
cover RS. Note that if a functional w : RS → R corresponds to

Choquet integration with respect to ν, then for any σ, U |Cσ is linear, and indeed if

x ∈ Cσ, then:

w(x) =

∫
S

x dP σ,

where, for all i = 1, . . . , S, the probability measure P σ is defined by:

P σ(σ(i)) = ν
(
{σ(1), σ(2), . . . , σ(i)}

)
− ν

(
{σ(1), σ(2), . . . , σ(i− 1)}

)
. (22)

See Ghirardato et al. (2004) for more discussion. Finally, for notational simplicity,

define the shorthand Aσ
i for the set {σ(1), σ(2), . . . , σ(i)}.
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We say that u : X → R is a Choquet expected utility (CEU) representation if:

u(x) =

∫
S

v(x) dν,

where ν is a capacity and the integral denotes Choquet integration. Define KCEU as

the collection of u ∈ U that are restrictions of CEU representations. Then solving

(11) with K = KCEU is equivalent to solving:

min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨P σ, v̄i⟩ ∀σ ∈ SS,∀i = 1, . . . , K s.t. ũi ∈ Cσ

P σ
σ(j) = νAσ

j
− νAσ

j−1
∀σ ∈ SS,∀j = 1, . . . , S

νA ≤ νB ∀A,B ∈ 2S s.t. A ⊆ B

ν∅ = 0

νS = 1

(23)

Proof. Suppose u is a CEU representation. Then it corresponds to integration against

some capacity ν which by definition then satisfies the last three constraints of (23).

From the discussion, e.g., in Ghirardato et al. (2004) (see, in particular, Example

17), each v̄i belongs to at least one Cσ cone, and restricted to each, u simply amounts

to integration (i.e. a dot product) of v̄i with the measure P σ. Hence every CEU

functional corresponds to a solution to (23). Conversely, it follows trivially that

every solution to (23) defines a CEU functional.

G.2.3 Convex Choquet Expected Utility

A capacity ν : 2S → R is said to be a convex, if, for all A,B ⊆ S:

ν(A) + ν(B) ≤ ν(A ∩B) + ν(A ∪B).

A map U : X → R is said to be a convex Choquet expected utility (CCEU) repre-

sentation if it is of the form:

u(x) =

∫
S

v(x) dν,

for some convex capacity ν. Define KCCEU as the collection of u ∈ U that are restric-

tions of CCEU representations. Then, solving (11) with K = KCCEU is equivalent to

solving:
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min
ū∈U

∥∥(grad ū)− Y
∥∥2

2

subject to ūi = ⟨P σ, v̄i⟩ ∀σ ∈ SS,∀i = 1, . . . , K s.t. ũi ∈ Cσ

P σ
σ(j) = νAσ

j
− νAσ

j−1
∀σ ∈ SS,∀j = 1, . . . , S

νA ≤ νB ∀A,B ∈ 2S s.t. A ⊆ B

νA + νB ≤ νA∪B + νA∩B ∀A,B ∈ 2S

ν∅ = 0

νS = 1

(24)

Proof. Follows from CEU case, where additionally the supermodularity of ν is en-

forced.

G.2.4 Maxmin Expected Utility

A map u : X → R is said to be a maxmin expected utility (MEU) representation if

it is of the form:

U(x) = min
π∈P

⟨π, v(x)⟩,

for some compact, convex belief set P ⊆ ∆(S). Define KMEU as the collection of ū ∈ U
that are restrictions of MEU representations. Then solving (11) with K = KMEU is

equivalent to solving:

min
ū∈U

∥∥grad ū− Y
∥∥2

2

subject to ūi = ⟨πi, v̄i⟩ ∀i = 1, . . . , K

⟨πi, v̄i⟩ ≤ ⟨πj, v̄i⟩ ∀i, j = 1, . . . , K

⟨πi,1S⟩ = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

(25)

for π1 . . . , πK ∈ RS.

Proof. Suppose first that ū ∈ K is the restriction to {v̄1, . . . , v̄K} of some MEU

functional w. For i = 1, . . . , K, let πi ∈ ∂w(v̄i) denote an arbitrarily selection of

supergradients of w. As w(0) = 0, by homogeneity, w(v̄i) = ⟨πi, v̄i⟩ for all i =
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1, . . . , K. Furthermore, for all x ∈ RS and all vi ∈ V :

w(x) ≤ w(v̄i) + ⟨πi, x− v̄i⟩

= ⟨πi, v̄i⟩+ ⟨πi, x− v̄i⟩

= ⟨πi, x⟩,

hence for all v̄j ∈ v(V), ⟨πj, v̄j⟩ ≤ ⟨πi, v̄j⟩. As w is increasing, for each i, πi ≥ 0. Let

α ∈ R. Since w is translation-invariant, for all v̄i:

w(v̄i + α1S) ≤ w(v̄i) + ⟨πi, α1S⟩

hence

w(v̄i) + α ≤ w(v̄i) + ⟨πi, α1S⟩

and

α ≤ α⟨πi,1S⟩. (26)

If α > 0, 1 ≤ ⟨π,1S⟩, and if α < 0, 1 ≥ ⟨π,1S⟩. Since (28) holds for all α ∈ R, we
obtain ⟨πi,1S⟩ = 1.

Suppose now that for some collection π1, . . . , πK ∈ ∆(S), we have a vector ū ∈ U
satisfying (i) ūi = ⟨πi, v̄i⟩ and (ii) ⟨πi, v̄i⟩ ≤ ⟨πj, v̄i⟩. Define

û(x) = min
i∈{1,...,K}

⟨πi, v(x)⟩ = min
π∈co{π1,...,πK}

⟨π, v(x)⟩.

The latter equality follows from standard results on support functions see, e.g.,

Hiriart-Urruty and Lemaréchal (2004) Theorem 3.3.2. By construction, ūi = û(v̄i)

and û is a risk-neutral MEU representation.

G.2.5 Variational Preferences

A map u : X → R is said to be a variational preferences representation if it is of the

form:

U(x) = min
π∈∆(S)

⟨π, v(x)⟩+ c(π)

for some cost function c : ∆(S) → [0,∞] that is (i) convex, (ii) lower semicontinuous,

and (iii) grounded, i.e. attains 0 for some π ∈ ∆(S). Define KVAR as the collection

of ū ∈ U that are restrictions of variational utility representations.
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We assume that xK ∈ V is the zero act, and hence v̄K = 0. Then solving (11)

with K = KVAR is equivalent to solving:

min
ū∈U

∥∥grad ū− Y
∥∥2

2

subject to ūi = γi + ⟨πi, v̄i⟩ ∀i = 1, . . . , K

γi + ⟨πi, v̄i⟩ ≤ γj + ⟨πj, v̄i⟩ ∀i, j = 1, . . . , K

⟨πi,1S⟩ = 1 ∀i = 1, . . . , K

πi ≥ 0 ∀i = 1, . . . , K,

γK = 0,

(27)

for π1 . . . , πK ∈ RS and γ1, . . . , γK ∈ R.

Proof. Suppose first that ū ∈ K is the restriction to V of some risk-neutral variational

utility functional w. For i = 1, . . . , K, let πi ∈ ∂w(v̄i) be an arbitrary selection of

supergradients of w, one at each v̄i. For all i = 1, . . . K, let:

γi = ūi − ⟨πi, v̄i⟩.

Then, for all i, by construction ūi = γi + ⟨πi, v̄i⟩ and γK = 0 hence so too is ūK .

Moreover, for all x ∈ RS and all v̄j:

w(x) ≤ w(v̄j) + ⟨πj, x− v̄j⟩

= γj + ⟨πj, v̄j⟩+ ⟨πj, x− v̄j⟩

= γj + ⟨πj, x⟩,

hence in particular, for all v̄i, γi + ⟨πi, v̄i⟩ ≤ γj + ⟨πj, v̄i⟩. As w is increasing, for each

i, πi ≥ 0. Let α ∈ R. Since w is translation-invariant, for all v̄i:

w(v̄i + α1S) ≤ w(v̄i) + ⟨πi, α1S⟩

hence

w(v̄i) + α ≤ w(v̄i) + ⟨πi, α1S⟩

and

α ≤ α⟨πi,1S⟩. (28)

If α > 0, 1 ≤ ⟨π,1S⟩, and if α < 0, 1 ≥ ⟨π,1S⟩. Since (28) holds for all α ∈ R, we
obtain ⟨πi,1S⟩ = 1.
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Suppose now that for some collection π1, . . . , πK ∈ ∆(S) and γ1, . . . , γK ∈ R
with γK = 0, we have a vector ū ∈ U satisfying (i) ūi = γi + ⟨πi, v̄i⟩, and (ii)

γi + ⟨πi, v̄i⟩ ≤ γj + ⟨πj, v̄i⟩. Define

û(x) = min
i∈{1,...,K}

γi + ⟨πi, v(x)⟩

By construction, ūi = û(v̄i) and û is a (i) translation invariant, (ii) concave, (iii)

increasing, and (iv) normalized hence, by the results of Maccheroni et al. (2006),

corresponds to a variational utility representation.

G.2.6 Dual Self Expected Utility

A map u : X → R is said to be a dual-self utility representation if it is of the form:

u(x) = max
P∈P∗

min
π∈P

⟨π, v(x)⟩,

where P∗ is a Hausdorff-compact collection of compact, convex subsets of ∆(S).

Let (V , E) denote an experiment, where v̄K = 0. Let KDS denote the collection

of ū ∈ U that are restrictions of dual-self utility representations. Then solving (11)

with K = KDS is equivalent to solving:

min
ū∈U

∥∥grad ū− Y
∥∥2

2

subject to ui = ⟨πii, ũi⟩ ∀i = 1, . . . , K

⟨πii, v̄i⟩ ≤ ⟨πij, v̄i⟩ ∀i, j = 1, . . . , K

⟨πji, v̄i⟩ ≤ ⟨πii, v̄i⟩ ∀i, j = 1, . . . , K

⟨πij,1S⟩ = 1 ∀i, j = 1, . . . , K

πij ≥ 0 ∀i, j = 1, . . . , K,

(29)

for ū ∈ U , {πij}Ki,j=1 ∈ RS.

Proof. Suppose, first, that ū, {πij}Ki,j=1 is a solution to (29). Define, for each i =

1, . . . , K, the set Pi = co{πi,1, . . . , πi,K}. Clearly Pi ⊆ ∆(S) for each i. Let P∗ =

{Pi}Ki=1. We claim that:

û(x) = max
P∈P∗

min
π∈P

⟨π, x⟩
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defines a DSEU functional w whose restriction to v(V) is precisely ū. Firstly, as

⟨πii, v̄i⟩ ≤ ⟨πij, v̄i⟩ for all j = 1, . . . , K, it follows that:

ūi = ⟨πii, v̄i⟩ = min
π∈Pi

⟨π, v̄i⟩.

But, for all j = 1, . . . , K we have ⟨πji, v̄i⟩ ≤ ūi, hence:

ūi ≥ ⟨πji, v̄i⟩ ≥ min
π∈Pj

⟨π, v̄i⟩,

as πji ∈ Pj. Thus:

w(ũi) ≡ max
P∈P∗

min
π∈P

⟨π, v̄i⟩

= min
π∈Pi

⟨π, v̄i⟩

= ⟨πii, v̄i⟩

= ūi.

Conversely, suppose now that w(x) = maxP∈P∗ minπ∈P ⟨π, x⟩ is a DSEU functional

on RS. For i = 1, . . . , K, let Pi ∈ P∗ denote any belief set for which:

w(v̄i) = min
π∈Pi

⟨π, v̄i⟩,

and let πii ∈ Pi be any minimizer of the right-hand side.69 Define, for each i =

1, . . . , K, the utility value ūi = ⟨πii, v̄i⟩. Since Pj is an ‘active’ belief set at v̄j for

each j ̸= i, there exists, for each j, some πij ∈ Pi such that ⟨πij, v̄j⟩ ≤ ūj. Since

each πij ∈ Pi, then ūi ≤ ⟨πij, v̄i⟩ for each i. Then, as clearly every πij ∈ ∆(S), the

collection ū, {πij}Ki,j=1 is a solution to (29), as required.

G.2.7 Dual-Self Variational Utility

A map w : X → R is said to be a dual-self variational utility functional if it is of the

form:

U(x) = max
c∈C

min
π∈∆(S)

⟨π, x⟩+ c(π),

where C is a collection of convex cost functions c : ∆(S) → [0,∞] such that

max
c∈C

min
π∈∆(S)

c(π) = 0.

Such functionals are characterized by being (i) ϕ-additive, (ii) monotone, (iii) normal-

ized, i.e. U(1S) = 1, see Supplementary Appendix to Chandrasekher et al. (2022).

69Such a belief set exists as P∗ is compact (in the Hausdorff topology on the space of compact

subsets of ∆(S)), and minπ∈P ⟨π, x⟩ is continuous in P for each x.
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Let (V , E) denote an experiment. Let KDSV denote the collection of ū ∈ U that

are restrictions of dual-self variational utility representations. Then solving (11) with

K = KDSV is equivalent to solving:

min
ū∈U

∥∥grad ū− Ȳ
∥∥2

2

subject to ūi ≥ ūj ∀i, j s.t. v̄i ≥ v̄j

uK = 0,

(30)

where v̄i ≥ v̄j is understood in the product order on RS.

Proof. Firstly, suppose w is a dual-self variational functional. Then it clearly is

monotone, hence v̄i ≥ v̄j implies w(v̄i) ≥ w(v̄j). Moreover,

w(1S) = w
(
0 + 1S

)
= w(0) + 1,

hence U is normalized if and only if w(0) = 0. Thus clearly letting ūi = w(v̄i) satisfies

the constraints of (30).

Conversely, suppose ū is a solution to (30). In light of the characterization pro-

vided in Chandrasekher et al. (2022), it suffices to prove there exists an translation-

invariant and monotone extension from {v̄1, . . . , v̄K} to RS.70 However, note that

by hypothesis, no pair v̄i and v̄j lie on the same translate of the diagonal, thus ū is

trivially translation-invariant and by definition monotone on {v̄1, . . . , v̄K}. Hence by

Theorem 1 of Cerreia-Vioglio et al. (2014), there exists a ϕ-additive, monotone, and

normalized extension of ū, and hence by Chandrasekher et al. (2022) this corresponds

to some dual-self variational utility functional.
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