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Abstract

This paper studies talent recruiting in an incomplete-information environment with the ac-
ceptance deadline of an employer’s job offer being a strategic recruiting device. When the terms
of employment are invariable, increasing the acceptance deadline raises the chance of the em-
ployer hiring candidates with more promising outside options, but reduces the probability of
hiring those with less promising alternatives. The employer is more likely to choose extreme
deadlines, i.e., extend exploding offers, which require immediate responses, and open offers,
which have the longest deadline, when the candidate is more willing to postpone his acceptance
decision. Committing herself to a firm deadline is not optimal for the employer; allowing re-
quests for a deadline extension benefits the two parties. When incorporating the acceptance
deadline into the design of the job offer, the optimal design for the employer can be imple-
mented using a “bonus-for-early-acceptance” (BFEA) mechanism, which is widely applied in
practice. In a BFEA mechanism, the employer (i) specifies a date that her offer expires and
(ii) provides a salary bonus for accepting the offer, which is decreasing over time before the
offer expires. A candidate anticipating a better outside option takes a longer time to respond
and receives a lower bonus. Our result indicates that different BFEA mechanisms adopted in
various real-world labor markets reflect the level of competition faced by employers.
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1 Introduction

A job offer is usually attached with a deadline of accepting the offer, especially in labor markets
with defined hiring cycles. This is because after receiving an offer, a job candidate often prefers to
hold on to the offer and searches for better options. The employer extending the offer, however,
prefers to receive a prompt response: even if the quick response is a rejection, it gives the employer
plenty of time to recruit other good job candidates. The acceptance deadline, ranging from several
weeks to even a couple of minutes, is employed as a strategic recruiting device to manage the
conflicting incentives and influence the job choice decision of the potential employee.1

This paper is devoted to developing a simple dynamic framework of talent recruiting with
the goal of answering the following questions. Fixing the terms of employment stipulated in an
offer, what is optimal acceptance deadline optimizing the employer’s recruiting outcome? Should
the employer commit itself to a firm deadline or allow requests for a deadline extension? When
incorporating the acceptance deadline into job offer design, what is the optimal design of a job
offer?

We propose a partial-equilibrium framework to study these problems in an incomplete-
information environment. In the model, two qualified job candidates are available for an employer
to fill an open slot, with one of them being strictly preferred. The secondary candidate always
accepts the employer’s offer once receiving it, which is not the case for the preferred candidate.
The preferred candidate has a privately known outside option, which is an alternative offer from
a competing employer. The alternative offer, however, is uncertain: The candidate does not know
whether and when the offer will arrive. The candidate becomes increasingly pessimistic about get-
ting the alternative offer as the time of waiting for the offer elapses. The better the alternative
option is, the longer he wants to wait for the option before he is willing to accept the current
employer’s offer.

The employer (optimally) first extends an offer to the preferred candidate and sets a deadline
for the candidate to respond. The choice of acceptance deadline affects not only the chance of the
employer recruiting the preferred candidate, but also its chance of hiring the secondary candidate,
as the secondary candidate may also switch to other options anytime. The tradeoffs for the employer
to choose the deadline are as follows. If the deadline is short, the chance of hiring the preferred
candidate is low, because the preferred candidate accepts the offer only if his outside option is
not attractive. If the deadline is long, the employer risks giving the preferred candidate too much
time to explore the alternative option; even one willing to accept the employer’s offer under a
shorter deadline may find a better match during a longer period of consideration. Moreover, with
a long deadline, the employer has a low probability of recruiting the secondary candidate, as the
probability that he switches to other options during the period of waiting becomes high.

1The Career Centers of many universities in the U.S. advise the employers to set and the students to expect a
two-to-three week response deadline for a job offer. Roth and Xing (1994) document that in the matching market
between law clerks and judges, some judges extend offers that are only available during the phone calls of making
the offers.
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We first study the optimal acceptance deadline that optimizes the employer’s recruiting out-
come, when the terms of employment in the offer are fixed. In the literature on labor market
matching, the two types of offers with extreme deadlines, exploding offers and open offers, are the
most studied offer types. An open offer gives a candidate sufficient time to consider his alternative
options. An exploding offer is used to deter the receiver from waiting for his outside option in the
most aggressive form. In this paper, we show that if the preferred candidate always postpones his
acceptance decision until the deadline, the employer is more likely to extend offers with extreme
deadlines.

Given that the primary role of the acceptance deadline is to deter the candidate from delay,
whether the employer commits itself to a firm deadline potentially affects the recruiting outcome.
Many online career platforms (AngelList, The Muse, and JobHero, for example) and human resource
practitioners advise job seekers to ask for deadline extensions when they need more time to consider
their job offers. Allowing re-negotiation over the acceptance deadline undoubtedly benefits the
candidate, but it is not clear how it affects the payoffs of the employers. In this paper, we show
that allowing requests for a deadline extension benefits the employer. This result relies on the
existence of the secondary candidate. Upon reaching the deadline, if the employer learns that the
secondary candidate is gone, extending the deadline is ex post optimal. The ex post optimality
leads to ex ante optimality.

In the rest of the analysis, we allow the employer to coordinate the terms of employment
specified in the offer with the choice of deadline, that is, employer incorporates the choice of
acceptance deadline into the design of a job offer. The design of an offer in our model includes two
dimensions, monetary incentives and acceptance deadline. We use the mechanism design approach
to study this problem. A mechanism is a menu of job offers targeting the preferred candidate with
different outside options (henceforth, “types” of the candidate). When implementing a mechanism,
the candidate reports his type, and the employer provides an offer to the candidate based on the
report. According to the revelation principle, we focus on direct incentive feasible mechanisms, in
which the candidate reports his type truthfully. In an incentive feasible mechanism, for sufficiently
high types of the candidate, they may not be provided with an offer. For the types of the candidate
that the employer would like to recruit, a higher type always receives an offer with a (weakly)
longer deadline, but (weakly) less monetary incentives. This feature of the offer design arises from
the fact that the time to consider an offer is more valuable to a candidate with a better outside
option.

The optimal design of the mechanism depends on the value of the match between the employer
and the candidate, and also on the dynamics of the secondary candidate. If the preferred candidate
never holds on to an undesirable offer, the optimal mechanism can be implemented as a bonus-for-
early-acceptance (BFEA) mechanism. Different from a standard mechanism, which is a menu of
job offers, a BFEA mechanism is a single job offer with an evolving bonus paid to the candidate
for acceptance. Specifically, in a BFEA mechanism, the employer specifies (1) a date when the job
offer expires, and (2) a bonus rule describing how the bonus provided to the candidate decreases
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over time before the expiration date.
We characterize the optimal mechanisms in two cases. In the first case, the secondary candi-

date never disappears. This case resembles a labor market with abundant supply of qualified job
candidates. The payoff of the employer in this market from being rejected by the preferred candi-
date is not deteriorating significantly over time. In the second case, the secondary candidate may
disappear at any time. This case resembles a labor market where there is intensive competition
over limited supply of qualified candidates. The payoff of the employer in this market from being
rejected by the preferred candidate is deteriorating significantly over time. For the optimal BFEA
mechanism in the first case, a salary bonus is provided to the candidate only when he accepts
the offer immediately, i.e., the salary bonus jumps to zero whenever the candidate postpones his
decision. For the optimal BFEA mechanism in the second case, the salary bonus provided to the
candidate can be continuously decreasing before the expiration date, to create the high pressure
for early acceptance.

BFEA mechanisms have been widely adopted by firms in recruitment. However, the BFEA
mechanisms adopted in different labor markets differ in their bonus rules. Our finding regarding
the optimal mechanisms suggests that the distinctions in the bonus rules are potentially indicative
of the different conditions in those labor markets. Roth and Xing (1994) document that the job
offers of some big law firms include signing bonuses that could only be collected by the potential
employees if they accept the offers much earlier before the deadline.2 According to our finding,
it is likely that the labor market of law school graduates around 1994 features an oversupply of
good candidates. Lippman and Mamer (2012) point out that some consulting firms make the
signing bonuses included in their job offers drop by a certain amount each week until the potential
employees make an acceptance decision. Such offers usually have short acceptance deadlines (e.g.,
three weeks) as well. Neale and Bazerman (1991) describe that when recruiting graduates of
management schools, some firms make the salary drop every day before the candidate accepts the
offer. For the markets mentioned in these two papers, our finding suggests that the firms may face
fierce competition over their potential employees.

The rest of this paper is organized as follows. Section 2 reviews the related literature. Section 3
sets up the model. In Section 4, we consider the case where the employer chooses only the acceptance
deadline of a job offer. In Section 5, we allow the employer to vary the monetary incentives and
acceptance deadline of a job offer, and study the optimal design of a job offer. Section 6 concludes
the paper.

2 Related Literature

This paper is closely related to the literature that studies the acceptance deadlines of offers in search
models. In this literature, the offer receiver engages in a continuous-time search for alternative

2A signing bonus, which is also known as sign-on bonus, is a lump-sum payment from an employer to its new hire
when they sign an employment contract. The signing bonus is a traditional strategic recruitment device for employers
to attract talents.
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options, and the offer proposer chooses a deadline for the receiver to accept the offer. Different
from this paper, the papers in this literature focus on complete information settings, so they do
not examine how the proposer screens the receiver using job offer design, and also do not study
the impact of deadline re-negotiation. Tang et al. (2009) show that the strategy of the receiver is
characterized by a shortest acceptable deadline; the receiver accepts the offer if he fails to find a
better alternative offer before the deadline that is equal to or longer than the shortest acceptable
deadline. When facing uncertainty in the responder’s shortest acceptable deadline, the proposer
chooses a longer deadline when the uncertainty is larger. Our model setup reduces to that of Tang
et al. if we assume out the secondary candidate, which, however, is crucial for our analysis. Hu
and Tang (2018) extend the analysis of Tang et al. by (1) allowing the proposer to flexibly adjust
the payoff of the receiver from accepting the offer, or the size of the offer, and (2) generalizing the
search process of the receiver. They show that under certain conditions, making the search process
of the receiver more favorable will induce the proposer to extend an optimal offer with a smaller
size and a longer deadline, if the optimal offer is non-exploding. Zorc and Tsetlin (2016) further
allow the proposer to engage in a search for alternative options and choose the timing of making an
offer to the receiver. They provide the conditions under which an exploding offer is the equilibrium
strategy of the proposer. Apart from the papers above, Lippman and Mamer (2012) compare only
exploding offers and open offers. They demonstrate that the (exogenous) timing that the proposer
makes the offer is crucial for which offer to be optimal. In general, it is indeterminate how the
optimal offer type changes with the timing of making the offer.

Since the papers above focus on complete information environments, the bonus-for-early-
acceptance mechanisms extensively employed in practice do not arise in these papers. The seminal
paper of Armstrong and Zhou (2016) on search deterrence is closest to the current paper in this
aspect. Armstrong and Zhou consider a two-period model of consumer search with incomplete
information. The optimal selling mechanism characterized in their model is similar in spirit to the
optimal offer design in the current paper: the seller endogenously makes it more costly to buy
her product later than to buy immediately. However, since there are only two periods in their
setting, using only time-contingent prices constrains the ability of the seller to screen the buyer.
At optimum, the seller charges a deposit that entitles the buyer to transact later: a higher deposit
corresponds to a lower buy-later price. We do not allow the employer to charge the job candidate
in the current paper, but by considering a continuous-time model, the employer has great flexibility
in designing time-contingent offers to screen the candidate. Moreover, we assume that the proposer
has an outside option, the dynamics of which affects the optimal design of the offer.

In our paper, there is no bargaining between the employer and the candidate over how to divide
the matching surplus before the acceptance deadline; we focus on the role of an endogenous accep-
tance deadline in deterring a candidate from looking for alternative options. There is a literature
on bargaining and negotiation that assumes exogenous deadlines for reaching an agreement and in-
vestigates how the deadlines affect the timing of agreement and the outcomes of negotiation. Some
papers in the literature model negotiation as a war of attrition. Hendricks et al. (1988) analyze a
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complete-information war of attrition with a deadline. They characterize a set of mixed-strategy
equilibria in which the two bargaining parties do not concede at all in a period before the deadline,
but concede with positive probabilities at the deadline. Ponsati (1995) obtains a similar result to
that of Hendricks et al. under an incomplete information game. Damiano et al. (2012) consider
a dynamic collective decision-making problem modeled as a war of attrition. They show that ex-
tending the deadline of making the collective decision can facilitate information aggregation. Other
papers in the literature model negotiation as an alternating-offer bargaining game. Ma and Manove
(1993) explain that the bargainers tend to reach an agreement near the deadline when they can
strategically delay their offers and have imperfect control over the offer transmission time. Fersht-
man and Seidmann (1993) show that if the bargaining parties are sufficiently patient, they delay
their agreement until the deadline if they are committed to reject offers that are inferior to the
ones that they previously rejected. Yildiz (2004) demonstrates that the certainty of the deadline
is crucial for the delay in reaching an agreement; if the deadline is stochastic, an agreement can
be reached almost immediately under certain conditions. Unlike three papers above, which impose
common deadlines for the bargainers, Sandholm and Vulkan (1999) assume that each bargainer
has a private deadline for bargaining, and show that there is a sequential equilibrium in which the
players reach their agreement at the first deadline and the player with the longer deadline receives
the whole surplus. To our knowledge, Ozyurt (2015) is the only bargaining paper assuming an en-
dogenous deadline. He shows that a bargainer can improve her bargaining position if she controls
the deadline, and an agreement between the players can be reached immediately.

The literature on unraveling in labor markets is also related to the current paper. Labor-
market unraveling is the phenomenon that employment contracts are signed long before pertinent
information about the employment is fully available. It results in inefficient firm-worker matchings
and reduces labor mobility (Niederle and Roth, 2003). Starting from Roth and Xing (1994),
which documents the challenges faced by various matching markets in avoiding unraveling, the
literature has been investigating the reasons why some labor markets unravel. They find that
market unraveling can result from instability of matching outcomes (Roth, 1984, 1991; Mongell
and Roth, 1991; Roth and Xing, 1994; Kagel and Roth, 2000), risk aversion of market participants
(Li and Rosen, 1998; Li and Suen, 2000; Suen, 2000), costs for participating in each round of
a dynamic matching market (Damiano et al., 2005), information asymmetry about labor supply
(McKinney et al., 2005), similarity of market participants’ preferences (Halaburda, 2010), and
rigidity of monetary transfers between market participants (Du and Livne, 2016).

Unraveling is sometimes associated with exploding offers. Niederle and Roth (2009) and Pan
(2017) show through laboratory experiments and theory, respectively, that exploding offers with
binding acceptance can be a factor driving the market to unravel. Though exploding offers can
also arise in our model, the nature of the timing problem studied in the current paper is different
from the unraveling problem. In the models of unraveling, both employers and candidates prefer
early matching in equilibrium. In our model, the two parties have heterogeneous preferences over
the time of matching, and the deadline and monetary incentives are adopted by the employer to
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manage the conflicting interests.

3 Setup

Two qualified job candidates are available for an employer A to fill an open slot, with one being
preferred and the other being secondary. The payoffs of A from hiring the preferred and the
secondary candidates are respectively v and v, with v > v ≥ 0, so A would like to recruit the
preferred candidate whenever possible. Independent of his identify, the payoff of a candidate from
being hired by A is r ∈ (0, 1], which consists of the direct payoff included in a standard job offer of A
and various indirect benefits from working with A. The values of r, v, and v are public information.

An offer of A to a candidate will not for sure be accepted. To capture the candidates’ different
likelihood of accepting A’s offer, we assume that the secondary candidate always accepts A’s offer
once receiving it if he is still available. The preferred candidate, however, may reject A’s offer
because of a possible outside option, which is an offer that he may receive from some competing
employer. The payoff r̄ ∈ [0, 1] from the outside option is privately known to the candidate and has
distribution H over [0, 1] and continuously differentiable density h.

The outside option of the preferred candidate is not guaranteed; the candidate does not know
whether and when the competing offer will arrive. It is common knowledge that the preferred
candidate receives the competing offer with probability p0 ∈ (0, 1) (with probability (1 − p0), he
will never receive the competing offer), and conditional on that he will receive the offer, the offer
arrives with constant rate λ > 0 at each time point t ≥ 0, namely the arrival time of the competing
offer is distributed exponentially with PDF and CDF, respectively,

f(t) = λe−λt, F (t) = 1− e−λt. (1)

The parameter λ captures the labor market condition. A higher λ indicates a more competitive
market: the competitors of A in the market tend to make faster recruitment decisions. Both A and
the candidates do not discount the future.

When extending an offer to the preferred candidate, A may provide additional benefits, such
as salary bonuses and other fringe benefits, beyond those included in a standard offer and give
the candidate some time t̄ ≥ 0 to make the acceptance decision. We use τ ≥ 0 to denote the
monetary equivalent of the additional benefits. When τ is included in the offer, the payoffs of the
employer and the preferred candidate from being matched with each other become v− τ and r+ τ ,
respectively. We call t̄ the acceptance deadline of the job offer. Upon reaching the acceptance
deadline, the offer will be withdrawn if the candidate does not accept it.

The choice of acceptance deadline affects A’s chance of hiring the preferred candidate. If the
offer is an exploding offer, which has t̄ = 0, then the candidate accepts it only if

r̄ · p0 ≤ r + τ, (2)
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the left-hand side (LHS) of which is the expected payoff from rejecting A’s offer, and the right-hand
side (RHS) is the payoff from accepting A’s offer. If the offer is a non-exploding offer with t̄ > 0,
then the candidate with an outside option r̄ > r+τ will take the time to wait for the outside option.
In the case that he receives the competing offer before t̄, he rejects A’s offer. In the case that he
fails to receive the competing offer before t̄, his posterior belief pt̄ of receiving the competing offer
in the future is

pt̄ =
(1− F (t̄))p0

(1− F (t̄))p0 + (1− p0)
< p0, (3)

and he accepts A’s offer if and only if

r̄ · pt̄ ≤ r + τ. (4)

It is clear that pt̄ is decreasing in t̄. The comparison between (4) and (2) indicates that setting
t̄ > 0 allows A to recruit candidates with r̄ > (r + τ)/p0. However, the increased probability of
recruiting candidates with good market prospects comes with a cost: with a non-exploding offer,
the candidates with r̄ ∈ (r+τ, (r+τ)/p0], who accept A’s offer for sure when t̄ = 0, will be recruited
with probability less than 1.

The secondary candidate may not be always available. We assume that the secondary candidate
becomes unavailable at a constant rate δ ≥ 0 at each time point t ≥ 0. That is, the time t that
the secondary candidate becomes unavailable is also distributed exponentially with PDF and CDF,
respectively,

g(t) = δe−δt, G(t) = 1− e−δt. (5)

It is obvious that the longer the preferred candidate takes to consider A’s offer, the less likely that
A matches with the secondary candidate, when the preferred candidate rejects the offer.

In the rest of this paper, we analyze the strategic roles of the acceptance deadline t̄ of an
offer in two separate recruiting environments. In the first environment, the terms of employment
stipulated in the standard offer of A are unchangeable, so A cannot provide additional incentives τ
to the preferred candidate. This setting conforms many real world situations, because salaries and
other monetary incentives included in job offers are typically determined before recruiting and by
considering various factors, such as the income equity with existing employees, the internal policy
for the wage level of a specific position, and so on. In the second environment, A can change the
monetary incentives included in the offer, along with choosing the acceptance deadline. Equipped
with the two strategic recruiting devices, the employer can screen the preferred candidate. We
characterize the optimal design of the job offer.

For the convenience of discussion, we sometimes refer the preferred candidate as “the candidate”
in the rest of the analysis, as the job offer we are analyzing is just for him; the (non-strategic)
secondary candidate always accepts the standard offer when he is approached.
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4 Optimal Acceptance Deadline

In this section, we study the optimal acceptance deadline in the environments where the terms of
employment stipulated in the employer’s offer are invariable, namely τ is restricted to be 0. We
first illustrate the trade-offs of the employer in choosing the acceptance deadline and study how the
optimal deadline depends on the recruiting environment. Then, we examine how the response of
the candidate to the offer shapes the choice of deadline. We conclude this section by showing that
allowing for re-negotiating the deadline benefits not only the candidate, but also the employer.

4.1 Information Asymmetry and Optimal Deadline

To begin, we deviate from our setup and consider the simpler setting where the employer also
knows the possible outside option r̄ of the preferred candidate. Studying this public-information
setting serves two purposes: on the one hand, it provides preliminary results that will facilitate
analyzing the private-information setting; on the other hand, it helps to clarify how the asymmetry
of information changes the employer’s incentives in choosing the deadline.

In the public-information setting, the choice of deadline depends on the value of r̄. For the
convenience of discussion, we define

PN (t̄) = (1− F (t̄))p0 + (1− p0) and PR(t̄) = F (t̄)p0,

where PN (t̄) is the probability that the preferred candidate fails to receive the competing offer before
the deadline t̄, and PR(t̄) = 1− PN (t̄) is the probability that the candidate receives the competing
offer before t̄. (The subscripts N and R denote “Not Receive” and “Receive”, respectively.) Let
VA(t̄|r̄) denote the expected payoff of A when he chooses deadline t̄ for the candidate with r̄. It is
obvious that for r̄ ≤ r, we have VA(t̄|r̄) = v for any t̄, as the candidate always accepts A’s offer.
For r̄ > r, the choice of t̄ matters. We define t̄r(r̄) = min{t̄ ≥ 0 : r̄ · pt̄ ≤ r}, or equivalently,

t̄r(r̄) = min
{
1

λ
ln (r̄ − r)p0

r(1− p0)
, 0

}
, (6)

which is the shortest acceptance deadline that makes the candidate with r̄ willing to accept A’s
offer upon reaching the deadline. Then, we have that for r̄ > r, VA(t̄|r̄) = v if t̄ < t̄r(r̄), and

VA(t̄|r̄) = PN (t̄) · v +
∫ t̄

0

dPR(t)

dt
(1−G(t))dt · v

if t̄ ≥ t̄r(r̄). Note that VA(t̄|r̄) is decreasing in t̄ when t̄ ≥ t̄r(r̄). For r̄ ≤ r/p0, which is always
true when r ≥ p0, we have t̄r(r̄) = 0, so A optimally extends an exploding offer to the candidate
and gets payoff VA(t̄r(r̄))|r̄) = v. For r̄ > r/p0, A chooses t̄ ∈ {0, t̄r(r̄)} and gets expected payoff
max{v, VA(t̄r(r̄)|r̄)}, the result of which depends on the values of r̄ and r.3

3Note that when r̄ > r/p0, there is a positive probability
∫ t̄r(r̄)

0

dPR(t)
dt

G(t)dt > 0 that the employer fails to recruit
anyone to fill the open slot by choosing t̄r(r̄) > 0. Thus, it is possible that VA(t̄r(r̄)|r̄) < v.
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The proposition below illustrates how the choice of deadline changes with r̄ and r < p0. As
discussed above, if the preferred candidate has an outside option r̄ that is not very attractive,
namely r̄ ≤ r/p0, then A extends an exploding offer to the candidate. If the preferred candidate
has a sufficiently attractive outside option, the result depends on the payoff v of A from hiring the
secondary candidate. Henceforth, we regard v and v as the qualities of the secondary and preferred
candidates, respectively. When the quality of the secondary candidate is relatively low, in the sense
that condition (7) holds, A chooses the deadline t̄r(r̄) > 0 necessary for the preferred candidate to
consider the offer, and the deadline is increasing in r̄. When the quality of the secondary candidate
is high enough so that (7) does not hold, A switches from non-exploding offers to an exploding offer
when the preferred candidate is sufficiently hard to recruit due to a high r̄.

Proposition 1. For the recruiting problem with r̄ being public information, there exists cutoff
rP ∈ [0, p0) for the value of r, with rP = 0 if and only if

v

v
≤ 1− p0

1− λ
λ+δp0

, (7)

such that

1. if rP < r < p0, then for r̄ ≤ r/p0, the employer extends to the preferred candidate an exploding
offer, while for r̄ > r/p0, the employer extends a non-exploding offer with deadline t̄r(r̄);

2. if condition (7) is violated and 0 < r < rP , then there exists a cutoff r̄P (r) ∈ (r/p0, 1) such
that for r̄ ≤ r/p0 and r̄ > r̄P (r), the employer extends to the candidate an exploding offer,
while for r/p0 < r̄ < r̄P (r), the employer extends a non-exploding offer with deadline t̄r(r̄).

Now we return to the private-information setting, in which r̄ is only observable to the preferred
candidate. In this setting, it is without loss to restrict the choice of the optimal deadline to the set
[0, t̄max

r ], where t̄max
r = t̄r(1), because a deadline longer than t̄r(1) offers A no benefit, but reduces

the probability of acceptance. In the case r ≥ p0, t̄max
r = 0, the problem is trivial, so in the rest of

our analysis we focus on r < p0.
How the preferred candidate responds to the offer affects A’s incentives in choosing the deadline.

Note that when the deadline is t̄ < t̄max
r , the candidate may not accept A’s offer even if he fails to

receive the competing offer upon reaching the deadline. This is the case if r̄ > r̄(t̄), where

r̄(t̄) =
r

pt̄
(8)

is the maximum type of the candidate that A can recruit with a positive probability when the
deadline is t̄. For all candidates with r̄ > r̄(t̄), we assume, as a benchmark, that they will decline
A’s offer immediately. We discuss the consequence of relaxing this assumption later in this section.

Assumption 1. If a candidate expects that he will never accept a job offer with a known deadline,
he rejects the offer immediately.
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Under the above assumption, the expected payoff of A from choosing deadline t̄ is

UA(t̄|r) = H(r)v + (H(r̄(t̄))−H(r))VA(t̄|r̄(t̄)) + (1−H(r̄(t̄)))v.

The first term of UA(t̄|r) is the payoff of A when the candidate has r̄ ≤ r. The second term is the
expected payoff when r̄ ∈ (r, r̄(t̄)], as the candidate with such an r̄ accepts A’s offer only if he fails
to receive the alternative upon reaching the deadline t̄. The third term is the expected payoff when
r̄ > r̄(t̄), as under Assumption 1 such a candidate rejects A immediately. One objective of this
section is to illustrate the trade-offs of an employer in choosing the deadline when it faces multiple
qualified candidates. To this end, we take the derivative of UA(t̄|r) with respect to t̄ and obtain

dUA(t̄|r)
dt̄

=
dH(r̄(t̄))

dt̄
(VA(t̄|r̄(t̄))− v)︸ ︷︷ ︸

marginal benefit

− (H(r̄(t̄))−H(r))
dPR(t̄)

dt̄
[v − (1−G(t̄))v]︸ ︷︷ ︸

marginal cost

.

The first term of dUA(t̄|r)/dt̄ is the marginal benefit of increasing t̄. When A increases the deadline
from t̄ to t̄+dt̄, the chance that it hires the preferred candidate with r̄ ∈ (r̄(t̄), r̄(t̄+dt̄)] is raised from
0, which corresponds to payoff v, to PN (t̄+dt̄), i.e., the candidates with better market prospects are
now possible to accept A’s offer. The second term is the marginal cost of increasing the deadline:
increasing t̄ to t̄+ dt̄ reduces the probability of recruiting the types of the candidate in (r, r̄(t̄)], as
the increased deadline gives such candidates extra time dt̄ to explore their outside options. The
term [v − (1−G(t̄))v] is the expected payoff gain of A from successfully recruiting the preferred
candidate at deadline t̄.

What is the optimal deadline maximizing the employer’s expected payoff? In the literature on
labor market matching, exploding offers, which require candidates to respond immediately, draw
must attention, as they deter candidates from looking for alternative options in the most extreme
form. In the result below, we provide a sufficient condition under which an exploding offer will not
arise. The result depends on how the candidate handles offers. We show in the next subsection
that if replacing Assumption 1 by assuming that the candidate always holds on to the offer and
makes the acceptance decision until the deadline, then exploding offers and another type of offers
with extreme deadlines, open offers, will be observed more often. An open offer in our model has
deadline t̄max

r , and gives the candidate effectively sufficient time to wait for his outside option.

Observation 1. Under Assumption 1, the employer never extends an exploding offer to the preferred
candidate at optimum if

h(r̄(0)) >
H(r̄(0))−H(r)

r̄(0)− r
· p0, (9)

which is satisfied when H(r̄) is weakly convex in r̄.

To have A not extend an exploding offer at optimum, a sufficient condition is dUA(t̄ = 0|r)/dt̄ >
0. Note that at t̄ = 0, VA(t̄|r̄(t̄))− v = v − (1−G(t̄))v in the expression of dUA(t̄|r)/dt̄. It is then
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easy to verify that dUA(t̄ = 0|r)/dt̄ > 0 if and only if condition (9) holds. On the RHS of (9),
(H(r̄(0))−H(r)/(r̄(0)− r) measures the “average slope” of H over the interval [r, r̄(0)]. According
to the mean value theorem, there exists r̄′ ∈ (r, r̄(0)) such that H(r̄(0)) −H(r) = f(r̄′)(r̄(0) − r).
Thus, we can simplify (9) to h(r̄(0)) ≥ h(r̄′) · p0, which is clearly satisfied when H(r̄) is weakly
convex in r̄.

The (stochastic) outside options of the employer and the candidate shape the conflicting pref-
erences of the two parties over the timing of making the acceptance decision. In the proposition
below, we examine how the changes in outside options affect the choice of acceptance deadline.
Note that only the candidates with r̄ > r care about the deadline, so we will focus on the types
r̄ ∈ (r, 1] in the analysis below. For this reason, we define

Ĥ(r̄) =
H(r̄)−H(r)

1−H(r)
,

which is the conditional CDF of r̄ ∈ (r, 1]. We say that

Proposition 2. Under Assumption 1, for the optimal deadline t̄∗ maximizing the expected payoff
of the employer, we find that

1. t̄∗ is weakly decreasing in the outside option v of the employer;

2. if Ĥ ′(r̄) dominates Ĥ(r̄) in terms of the likelihood ratio given H ′(r) = H(r) fixed, then t̄∗ is
weakly higher under Ĥ ′(r̄) than under Ĥ(r̄).

How the value of r affects the choice of deadline is indeterminate.

Example 1. Suppose Assumption 1 holds. When H(r̄) is the uniform distribution over [0, 1], the
optimal acceptance deadline that maximizes A’s expected payoff is decreasing in r.

1. If condition (7) holds, then for r ∈ (0, p0), A chooses t̄ = t̄max
r ; for r > p0, A chooses t̄ = 0.

2. If condition (7) does not hold, then there exists ř, such that when r ≤ ř, A chooses

t̄ = − 1

λ+ δ
ln

(
1− (1− p0)(v − v)

p0v

(λ+ δ)

δ

)
≤ t̄max

r , (10)

which holds with equality at r = ř; when r ∈ (ř, p0), A chooses t̄ = t̄max
r ; when r > p0, A

chooses t̄ = 0.

This example shows that the impact of the candidate’s behavior on the choice of deadline
depends on r of A and how attractive the secondary candidate is. If the secondary candidate is
sufficiently unattractive so that condition (7) is satisfied, relaxing Assumption 1 has no impact
on the strategy of A. That is, A still chooses t̄max

r to recruit every type of the candidate with a
positive probability. If the secondary candidate has a sufficiently high ability violating condition
(7), then the strategies of A with r̄ < ř are different from those in Example 2. Specifically, for A
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with r ≤ r̂, it switches from an exploding offer to a non-exploding offer with deadline (10), namely
it increases the acceptance deadline; for A with r ∈ (r̂, ř), it switches from the longest deadline
t̄max
r to a shorter deadline (10). Therefore, the behavior of the candidate in dealing with A’s offer
has heterogeneous effects across A with different r.

4.2 Candidate Behavior and Optimal Deadline

In the analysis above, we adopted Assumption 1 that the preferred candidate will never immediately
decline a non-exploding offer of A, even he will never accept it. If we assume instead that before
reaching the acceptance deadline, the candidate declines A’s offer only if he receives a strictly
better alternative offer, how the acceptance deadline will change?4 We study this question in this
subsection.

The expected payoff of A from choosing deadline t̄ thus can be expressed as

ǓA(t̄|r) = H(r)v + (H(r̄(t̄))−H(r))VA(t̄|r̄(t̄))

+ (1−H(r̄(t̄)))

[
PN (t̄)(1−G(t̄))v +

∫ t̄

0

dPR(t)

dt
(1−G(t))v

]
. (11)

The first term of ǓA(t̄|r) is the payoff of A when the candidate has outside option r̄ ≤ r. The
second term is the expected payoff when the candidate has r̄ ∈ (r, r̄(t̄)] and he fails to receive the
alternative offer before t̄. The third term is the expected payoff when the candidate has r̄ > r̄(t̄),
in which case he may fails to receive the alternative offer before t̄, or receives the alternative offer
during [0, t̄].

The only difference between ǓA(t̄|r) and UA(t̄|r) lies in the expected payoff of A from the types
of the candidate in (r̄(t̄), 1]. When t̄ = 0 or t̄ = t̄max

r , ǓA(t̄|r) = UA(t̄|r). But when t̄ ∈ (0, t̄max
r ),

ǓA(t̄|r) < UA(t̄|r). Therefore, compared with the analysis under Assumption 1, employer A under
the new assumption is more likely to choose an extreme type of offer, namely an exploding offer
or an open offer. We provide a sufficient condition under which the employer chooses extreme
deadlines for its job offer.

To proceed, we define P (t̄|r) as the probability that A successfully recruits the preferred candi-
date when the deadline is t̄, and have

P (t̄|r) = H(r) + (H(r̄(t̄))−H(r))PN (t̄).

Then we can obtain

dǓA(t̄|r)
dt̄

=
dP (t̄|r)

dt̄
[v − (1−G(t̄))v]− (1−H(r̄(t̄)))PN (t̄)g(t̄)v. (12)

4This behavior of the candidate in the assumption can arise when there is a small probability ϵ that the candidate
receives a rejection from the competing employer. The current model corresponds to the limit case that ϵ → 0.
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Proposition 3. If P (t̄|r) is convex in t̄, then the optimal acceptance deadline is either 0 or t̄max
r .

That is, the employer provides the preferred candidate with either an exploding offer or an open
offer.

The above proposition provides a simple sufficient condition, which is independent of the outside
option of A, for the optimality of exploding offers and open offers. Example 2 below shows that
this condition is less restrictive than it seems. However, one point worth mentioning is that the
optimality of exploding offers and open offers not only relies on the primitives like P (t̄|r), but also
on how the job candidates respond to job offers. We can show that when Assumption 1 holds, some
types of A choose interior deadliness even if P (t̄|r) is convex in t̄.

We use the example that H(r̄) is uniform to illustrate Proposition 3, and also show how the
choice of deadline changes with the ranking and outside option of the employer. When H(r̄) is
uniform, P (t̄|r) is convex in t̄. Therefore, according to Proposition 3, the optimal deadline of A is
either t̄ = 0, namely A gives an exploding offer to the candidate, or t̄ = t̄max

r , i.e., A specifies a
long enough acceptance deadline such that even the candidate with the best market prospects will
accept its offer when he fails to get the offer from B.

Example 2. When H(r̄) is the uniform distribution over [0, 1], the optimal acceptance deadline
that maximizes A’s expected payoff weakly is decreasing in r ∈ (0, 1] if condition (7) holds. In
this case, when r ∈ (0, p0), A chooses t̄ = t̄1(r), which is decreasing in r, and when r ≥ p0, A
chooses t̄ = 0. However, if condition (7) is not satisfied, then the optimal acceptance deadline is
not monotonic in r. Specifically, there exists r̂ ∈ (0, p0), which satisfies

ǓA(0|r̂) = ǓA(t̄1(r̂)|r̂), (13)

such that when r ∈ (0, r̂] ∪ [p0, 1], A chooses to send an exploding offer, while when r ∈ (r̂, p0), A
chooses t̄ = t̄max

r .

The results in Example 2 are consistent with intuitions. If condition (7) holds, i.e., the employer
does not have a fairly good outside option, so it will give the top candidate a long deadline to
consider the offer. If condition (7) fails, employers with different attractiveness (i.e., r) differ in
their incentives to choose a short deadline. Less attractive employers are more likely to choose a
short deadline when facing a good secondary candidate. One should note that though in this case,
both unattractive employers with r ∈ (0, r̂] and highly attractive employers with r ∈ [p0, 1] send
exploding offers to the top candidate, their reasons are completely different. A highly attractive
employer knows that it is so appealing to the top candidate that the candidate would give up the
chance of getting the best alternative offer to accept its exploding offer. However, for an unattractive
employer, its unattractiveness makes the cost of recruiting the top candidate prohibitively high when
the secondary candidate is very good, so it would rather give the top candidate no time to consider
the offer.
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4.3 Deadline Renegotiation

As we discussed in the introduction, a primary role of the acceptance deadline of a job offer is to
deter the candidate from indefinitely postponing his acceptance decision. Whether the employer
commits itself to a firm deadline potentially affects the performance of the deterrence strategy.
Until now we have been implicitly assuming that employer A is fully committed to its acceptance
deadline, so the preferred candidate cannot negotiate with A for a deadline extension. Open offers
are immune to negotiation, as the deadline is long enough for every type of the top candidate to
consider the offer. Exploding offers are usually suggestive of no possibility of negotiation. Interior
deadlines, however, often leave room for the two parties to revise the initial deadline. Should
the employer allow for re-negotiation over the deadline? In the subsection below, we answer this
question and provide a main result of this paper.

In practice, it is very common that employers extend their job offer deadlines. Many online ca-
reer platforms (AngelList, The Muse, and JobHero, for example) and human resource practitioners
also advise job seekers to ask for deadline extensions when they need more time to consider their
job offers. Allowing re-negotiation over the acceptance deadline undoubtedly benefits the potential
employees, but it is not clear how it affects the payoffs of the employers.

In this subsection, we show that the allowing the preferred candidate to ask for a deadline
extension benefits the employer. This is because in our model, the employer learns new information
over time. Upon reaching the deadline, based on the information that it learns, extending the
deadline may be ex post optimal. The ex post optimality is shown to be ex ante optimal. This
result relies on the existence of a stochastic outside option for the employer, which is the secondary
candidate that can disappear over time. With no secondary candidate or a secondary candidate
that never disappears, the possibility of revising its deadline offers no benefit to the employer. With
a secondary candidate that can disappear, the employer has incentive to extends its initial deadline
if it learns that the secondary candidate is gone before the deadline.

Before stating the result formally, we describe the timing of the game with deadline re-
negotiation. At the beginning of the game, same as in the benchmark model, employer A chooses
a deadline t̄ ≥ 0 for its offer to the preferred candidate. Before reaching the deadline, employer
A learns privately whether the secondary candidate is gone or not. Upon reaching the deadline, if
the preferred candidate has not accepted an alternative offer, he can choose either to accept A’s
offer or to ask A for a deadline extension. The game ends if the candidate accepts A’s offer. If the
candidate asks for a deadline extension, then A decides whether to decline the request or to extend
the deadline by ∆t̄ > 0.5 If the request for a deadline extension is declined, the candidate has to
make the acceptance decision immediately. If the deadline is extended, the candidate makes the
final decision at time t̄+∆t̄. We use sequential equilibrium as the solution concept.

Proposition 4. Allowing the preferred candidate to ask for a deadline extension upon reaching the
initial deadline makes employer A (weakly) better off.

5In our setup, choosing ∆t̄ = 0 is equivalently to declining the candidate’s request for a deadline extension.
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The idea of the proof is as follows. Let t̄∗ < t̄max
r denote the deadline that maximizes UA(t̄|r).

In the full-commitment case, with deadline t̄∗, all the types of the candidate in [0, r̄(t̄∗)] accept A’s
offer when they fail to get an alternative offer before the deadline, and all the types in (r̄(t̄∗), 1]

reject A’s offer immediately. If we fix the deadline t̄∗ and allow for re-negotiation, A may get worse
off. This is because when the deadline is extendable, all the types in [0, r̄(t̄∗)] and a fraction of the
types in (r̄(t̄∗), 1] will hold on to the offer and ask for a deadline extension at the end of the initial
deadline, which may result in a lower expected payoff to A.

But remember that A has the freedom to choose the initial deadline. The employer can ensure
itself the optimal payoff UA(t̄

∗|r) in the full-commitment case by setting 0 deadline at the beginning
of the re-negotiation game, and then extend the deadline optimally to t̄∗. If there is a re-negotiation
equilibrium in which the employer gets an expected payoff that is strictly higher than UA(t̄

∗|r), then
it can play according to that equilibrium. Therefore, A gets (weakly) better offer from allowing
deadline re-negotiation, even if the candidate does not always hold on to the offer until the deadline.
How the candidate responds to an offer, however, does not affect A’s incentive to allow for re-
negotiation over the deadline. We prove this case in the appendix.

5 Optimal Job Offer Design

In this section, we allow A to discriminate different types of the candidate using two strategic
recruiting devices, acceptance deadline and monetary incentives. In our model, different types of
the preferred candidate value time differently: a longer acceptance deadline is more valuable to
a candidate with a better outside option. Employer A can take advantage of this single-crossing
property to customize its offers to different types of the preferred candidate and achieve a higher
expected payoff than setting a uniform acceptance deadline. We study the optimal design of job
offers that maximizes A’s expected payoff from recruitment. Same as in the previous section, we
focus on the non-trivial case that r < p0.

We model the screening problem as a mechanism design game, with A having full commitment
power. The timing of the game is as follows. At the beginning of the game, A proposes a mechanism
(M, (t̄, τ)), in which M is the set of messages that the candidate can report to A, and t̄ : M → R+

and τ : M → R+ are respectively the deadline rule and transfer rule. After observing the proposed
mechanism, the candidate chooses a message m in M and reports it to A. Upon receiving the
report m of the candidate, A sends a job offer (t̄(m), τ(m)) to the candidate, with t̄(m) being the
acceptance deadline of the offer and τ(m) being the transfer from A to the candidate included in
the offer. Then, the candidate decides whether to accept or decline the offer before t̄(m). Note
that different from standard mechanism design problems, τ is required to be non-negative, namely
we do not allow the employer to charge the candidate.

The revelation principle applies in this environment. Thus, in the rest of the analysis we focus
on direct incentive feasible mechanisms. A mechanism is direct if the message space M of the
mechanism is just the set including all possible values of r̄, i.e., M = [0, 1]. A direct mechanism
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is incentive feasible in our model if the deadline rule and transfer rule (t̄, τ) satisfy the feasibility
constraints

(F) t̄(r̄) ≥ 0 and τ(r̄) ≥ 0, for any r̄,

and the candidate report his outside option, or type, truthfully.
An important feature of the mechanism design problem is that it involves not only hidden

information, but also hidden actions, as A has no control over the acceptance decision of the
candidate after it extends the offer. Thus, when designing the mechanism, A should take into
account the response of the candidate.

We first formulate the incentive compatibility constraints. Let UC(r̄; t̄, τ) denote the expected
payoff that a candidate of type r̄ obtains from truthfully reporting his type under mechanism
(t̄, τ) and optimally responding to the offer provided by A. When reporting his type truthfully,
the type-r̄ candidate receives offer (t̄(r̄), τ(r̄)) from A. The candidate holds the offer until he
receives an alternative offer from the competing employer B or until the deadline t̄(r̄), depending
on which comes earlier. If the offer from B arrives before the deadline, which happens with
probability PR(t̄(r̄)), the candidate compares A’s offer, which gives him payoff r + τ(r̄), with the
competing offer, which gives him payoff r̄. He accepts the one with the higher payoff and gets
payoff max{r+ τ(r̄), r̄}. If the offer from B fails to arrive before the deadline, which happens with
probability PN (t̄(r̄)), the candidate decides whether to accept A’s offer or to keep waiting for the
competing offer at the end of the deadline. Thus, the payoff of the candidate when he fails to receive
the competing offer until the deadline is max{r + τ(r̄), r̄pt̄(r̄)}, where r̄pt̄(r̄) is the expected payoff
of the candidate from waiting for the competing offer. Therefore, the expected payoff UC(r̄; t̄, τ) of
the candidate is

UC(r̄; t̄, τ) = max{r + τ(r̄), r̄pt̄(r̄)} · PN (t̄(r̄)) +max{r + τ(r̄), r̄} · PR(t̄(r̄)). (14)

Since the candidate always can choose to wait for the competing offer, it is easy to verify that

UC(r̄; t̄, τ) ≥ r̄p0. (15)

To formulate the incentive compatibility constraints, we define UC(r̄, r̄
′; t̄, τ) as the expected payoff

that the candidate obtains under mechanism (t̄, τ) if his true type is r̄, but he reports type r̄′, so

UC(r̄, r̄
′; t̄, τ) = max{r + τ(r̄′), r̄pt̄(r̄′)}PN (t̄(r̄′)) +max{r + τ(r̄′), r̄}PR(t̄(r̄

′)). (16)

Incentive compatibility requires that the candidate have no incentive to misreport his type, that is,

(IC) UC(r̄; t̄, τ) ≥ UC(r̄, r̄
′; t̄, τ), for any r̄, r̄′.

An incentive feasible mechanism is a mechanism that satisfies constraints (F) and (IC).
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The (IC) constraints cannot be reformulated using the standard techniques of mechanism design.
We show in the following analysis how to simplify the constraints. Depending on the responses of
the candidate to the offer provided by A, we can reformulate UC(r̄; t̄, τ) into three different cases:

Case 1: r + τ(r̄) ≥ r̄

In this case, the type-r̄ candidate is provided with an offer that is more attractive than his outside
option, so the candidate accepts A’s offer regardless of whether he receives the alternative offer or
not. Therefore, we have max{r + τ(r̄), r̄} = r + τ(r̄) and max{r + τ(r̄), r̄pt̄(r̄)} = r + τ(r̄), and
UC(r̄; t̄, τ) is reduced to

UC(r̄; t̄, τ) = r + τ(r̄). (17)

Note that the deadline t̄(r̄) does not affect the payoff of the candidate, because no matter what
happens before the deadline, he prefers to accept the offer provided by A. We use s1(t̄, τ) to denote
the set of candidate types that always accept A’s offer under mechanism (t̄, τ) when they report
truthfully, i.e., s1(t̄, τ) = {r̄ : r + τ(r̄) ≥ r̄}.

Case 2: r̄ > r + τ(r̄) ≥ r̄pt̄(r̄)

In this case, A’s offer to the type-r̄ candidate is not as attractive as his alternative offer, i.e.,
r̄ > r + τ(r̄), so the candidate rejects A’s offer once he receives the alternative offer. But A

gives the candidate enough time to consider its offer, i.e., r + τ(r̄) ≥ r̄pt̄(r̄), so the candidate
accepts A’s offer as long as he receives no alternative offer before the deadline. Therefore, we have
max{r + τ(r̄), r̄} = r̄ and max{r + τ(r̄), r̄pt̄(r̄)} = r + τ(r̄), and UC(r̄; t̄, τ) is reduced to

UC(r̄; t̄, τ) = (r + τ(r̄))PN (t̄(r̄)) + r̄PR(t̄(r̄)). (18)

We use s2(t̄, τ) to denote the set of candidate types that fall into the current case under mechanism
(t̄, τ), i.e., s2(t̄, τ) = {r̄ : r̄ > r + τ(r̄) ≥ r̄pt̄(r̄)}.

Case 3: r̄pt̄(r̄) > r + τ(r̄)

In this case, the mechanism specifies an offer that is less attractive than the candidate’s outside
option and also does not give the candidate enough time of consideration, so the candidate rejects
the offer even if he has no alternative offer upon reaching the deadline. Therefore, we have max{r+
τ(r̄), r̄} = r̄ and max{r + τ(r̄), r̄pt̄(r̄)} = r̄pt̄(r̄), and UC(r̄; t̄, τ) is simplified to

UC(r̄; t̄, τ) = r̄p0, (19)

which is exactly the candidate’s ex ante expected payoff from his outside option r̄. Note that same as
in the first case, the payoff of the candidate in this case does not depend on deadline t̄(r̄). However,
the reason is different. In this case it is because that the acceptance deadline is too short, while in
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the first case it is because r+τ(r̄) is sufficiently high. We use s3(t̄, τ) to denote the set of candidate
types that always reject A’s offer under mechanism (t̄, τ), i.e., s3(t̄, τ) = {r̄ : r̄pt̄(r̄) > r + τ(r̄)}.

The design of the mechanism shapes the composition of s1(t̄, τ), s2(t̄, τ), and s3(t̄, τ), which
reflect how different types of the candidate respond to A’s offer differently. The (IC) constraints
impose a monotonic structure on the composition of s1(t̄, τ), s2(t̄, τ), and s3(t̄, τ). Specifically, the
types of the candidate included in s3(t̄, τ) (if s3(t̄, τ) ̸= ∅) are higher than any type of the candidate
included in s2(t̄, τ). The types of the candidates included in s2(t̄, τ) (if s2(t̄, τ) ̸= ∅) are higher
than any type of the candidate included in s1(t̄, τ). The proof of this result is included in the
appendix. Given the monotonic structure of {s1(t̄, τ), s2(t̄, τ), s3(t̄, τ)}, the problem of employer A
can be formulated as the following constrained optimization problem:

(P) max
(t̄,τ)

∫
s1(t̄,τ)

(v − τ(r̄))dH(r̄) +

∫
s2(t̄,τ)

{
(v − τ(r̄))PN (t̄(r̄)) +

∫ t̄(r̄)

0
p0f(t)(1−G(t))vdt

}
dH(r̄)

+

∫
s3(t̄,τ)

{
(1−G(t̄(r̄)))PN (t̄(r̄))v +

∫ t̄(r̄)

0
p0f(t)(1−G(t))vdt

}
dH(r̄),

subject to the (F) and (IC) constraints.
To simplify characterization of the optimal mechanism, we define

x(r̄) = 1− F (t̄(r̄)),

which is the probability that the type-r̄ candidate fails to receive the competing offer before the
deadline t̄(r̄), conditional on that B is interested in the candidate. The function x(r̄) is a negative
monotone transformation of t̄(r̄). Thus, we can use the tuple (x, τ) to represent all mechanisms.
For all r̄ ≥ r/p0, we further define

χ(r̄) =
r(1− p0)

(r̄ − r)p0
,

which is smaller than or equal to 1. When reformulating a (t̄, τ) mechanism into a (x, τ) mechanism,
t̄(r̄) = 0 corresponds to x(r̄) = 1, and the deadline t̄(r̄) satisfying condition r = r̄pt̄(r̄) for r̄ ≥ r/p0

corresponds to x(r̄) = χ(r̄). Thus, χ(r̄) represents the deadline at which the type-r̄ candidate is
indifferent between rejecting and accepting A’s offer when τ(r̄) = 0.

Proposition 5. An optimal mechanism (x∗, τ∗) features two cutoff values, r̄∗m and r̄∗M . For the
candidate with r̄ ≤ r̄∗m, the optimal mechanism specifies x∗(r̄) = 1 and τ∗(r̄) = r̄∗m − r, and the
candidate always accepts the offer. For the candidate with r̄ > r̄∗M , he receives no offer from the
employer. The values of r̄∗m and r̄∗M , and the function x∗ for r̄ ∈ [r̄∗m, r̄∗M ] solve the following
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constrained maximization problem:

(P∗) max
{r̄m,r̄M ,x(·)}

∫ r̄m

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r̄m

ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v,

where ΠA(x(r̄); r̄) is the expected payoff of the employer when the type of the candidate is r̄, with

ΠA(x(r̄); r̄) = (v + r) [x(r̄)p0 + (1− p0)]− J(r̄)x(r̄)p0 +
λ

λ+ δ

[
1− x(r̄)

(λ+δ)
λ

]
p0v,

and J(r̄) = r̄ +H(r̄)/h(r̄), subject to constraints

(C1∗) x(r̄) is decreasing in r̄ and bounded by 1 and χ(r̄M ), with r̄M ≥ r/p0;

(C2∗) r̄m(1− p0) =

∫ r̄M

r̄m

x(r̄)p0dr̄.

The function J(r̄) is the candidate’s virtual valuation of an outside option r̄. The termH(r̄)/h(r̄)

in J(r̄) captures the information rent to the type-r̄ candidate. Following the literature, we impose
the following regularity condition on J(r̄).

Assumption 2. The function J(r̄) is strictly increasing in r̄ ∈ [0, 1].

In the function ΠA(x(r̄); r̄), the first two terms are the payoffs of A from successfully recruiting
a type-r̄ candidate, and can be rewritten in terms of t̄(r̄) as

(v + r) [x(r̄)p0 + (1− p0)]− J(r̄)x(r̄)p0 =
[
(v + r)− J(r̄)pt̄(r̄)

]
PN (t̄(r̄)), (20)

in which [(v+r)−J(r̄)pt̄(r̄)] is the virtual matching surplus of A from recruiting the candidate using
deadline t̄(r̄). Setting a longer deadline t̄(r̄) for the type-r̄ candidate increases the virtual surplus
of A, but decreases PN (t̄(r̄)), which is the probability that the candidate accepts A’s offer. It is
not obvious how the choice of t̄(r̄) affects the expected payoff of A from recruiting the candidate.
Defining the function x(r̄) makes the effect transparent: the expected payoff (20) is linear in x(r̄).

With the presence of the secondary candidate, the choice of x(r̄) also affects the probability
that the employer recruits the secondary candidate. Thus, the third term of ΠA(x(r̄); r̄) appears.
In the two subsections below, we first characterize the optimal mechanism for the environment
δ = 0, that is, the secondary candidate of A is always available. Then, we consider the general
environment with δ > 0.

5.1 Deterministic Secondary Candidate

We first study the simple environment in which A faces no competition over the secondary can-
didate, that is, δ = 0. In this environment, the acceptance deadline of the offer to the preferred
candidate does not affect A’s expected payoff from recruiting the secondary candidate. The anal-
ysis in this case also applies to the environment where δ > 0 and v = 0, i.e., A has no secondary
candidate.
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When δ = 0, the expected payoff ΠA(x(r̄); r̄) of A is reduced to an affine function of x(r̄), with
the marginal payoff being

dΠA(x(r̄); r̄)

dx(r̄)
= [(v + r)− J(r̄)− v] p0,

which depends on r̄ through J(r̄). To facilitate the analysis, we ignore constraint (C2∗) and the
cutoff r̄m, and consider the following relaxed maximization problem:

max
{r̄M ,x(·)}

∫ r̄M

0
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v, subject to constraint (C1∗).

If (v + r) − v > J(r̄), the marginal payoff dΠA(x(r̄); r̄)/dx(r̄) is positive; it is optimal for the
employer to choose x(r̄) = 1, which is the upper bound of x(r̄) imposed by constraint (C1∗). If
(v + r)− v < J(r̄), the marginal payoff is negative; the employer optimally chooses x(r̄) = χ(r̄M ),
which is the lower bound of x(r̄) imposed by constraint (C1∗). Given Assumption 2, choosing x(r̄)

according to the marginal payoff ensures that x(r̄) satisfies the monotonicity condition of (C1∗).
The problem now is to pin point the optimal r̄M . Increasing r̄M , on the one hand, increases

ΠA(x(r̄M ); r̄) for any r̄ with (v+r)−v < J(r̄), but on the other hand, may decrease ΠA(x(r̄M ); r̄M )

and make it lower than v, which is the payoff of A from not recruiting the candidate. The optimal
r̄M is set to balance these two effects.

When taking into account constraint (C2∗) and r̄m in the original problem, the optimal mech-
anism differs from the solution to the relaxed problem above if and only if the marginal payoff
dΠA(x(r̄); r̄)/dx(r̄) ≤ 0 for r̄ ≤ r. We describe the optimal mechanisms formally in the proposition
below.

Proposition 6. The optimal mechanism (x∗, τ∗) of A depends on v, r, and v. When δ = 0, namely
the secondary candidate never disappears,

1. if (v + r)− v ≥ J(1), then x∗(r̄) = 1 and τ∗(r̄) = p0 − r for all r̄;

2. if there exists r̂∗ ∈ (r, 1) that satisfies (v + r) − v = J(r̂∗), then for r̄ ≤ r̂∗, x∗(r̄) = 1 and
τ∗(r̄) = (r̂∗ − r)(1− χ(r̄∗M ))p0; for r̄ ∈ (r̂∗, r̄∗M ], x∗(r̄) = χ(r̄∗M ) and τ∗(r̄) = 0, where

r̄∗M ∈ arg max
r̄M≥max{r/p0,r̂∗}

∫ r̄M

r̂∗
ΠA(x(r̄M ); r̄)dH(r̄) + (1−H(r̄M ))v; (21)

3. if (v+ r)− v ≤ J(r), then τ∗(r̄) = 0 for all r̄, x∗(r̄) = 0 for r̄ ∈ [0, r], and x∗(r̄) = χ(r̄∗M ) for
r̄ ∈ (r, r̄∗M ], where

r̄∗M ∈ arg max
r̄M≥r/p0

∫ r̄M

r
ΠA(x(r̄M ); r̄)dH(r̄) + (1−H(r̄M ))v. (22)

This proposition shows that the optimal mechanism depends on the total value (v + r) of
the match between A and the preferred candidate and the (virtual) value (v + J(r̄)) of their
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outside options. When their matching value is sufficiently large, compared with the values of their
outside options, A provides the candidate with an exploding offer featuring transfer τ∗(r̄) = p0− r,
regardless of the type of the candidate. All types of the candidate will accept the offer. When their
matching value is sufficiently small, A extends an exploding offer with no transfer to the types of
the candidate in [0, r] and a non-exploding offer with no transfer but a deadline

t̄ = − 1

λ
lnχ(r̄∗M ), (23)

to the types of the candidate in (r, r̄∗M ]. The non-exploding offer makes the type r̄ = r̄∗M candidate
indifferent between accepting and rejecting A’s offer when he fails to receive the competing offer
upon reaching the deadline. The optimal mechanism in this case is essentially equivalent to an offer
with a uniform deadline (23).

When (v + r) is intermediate, for the types of the candidate in (r̂∗, r̄∗M ], A chooses a non-
exploding offer with no transfer but the deadline (23). To the types of the candidate in [0, r̂∗],
A extends an exploding offer with a positive transfer that makes the type-r̂∗ candidate indifferent
between reporting his type truthfully and mimicking the higher types.

Following the revelation principle, we have been formulating a mechanism as a menu of job offers,
from which the candidate chooses one that he prefers. The relationship between the deadlines
and transfers of any incentive feasible mechanism (Lemma 3) suggests an indirect approach of
implementing the optimal mechanisms. In the new approach, instead of proposing a menu of job
offers, A extends to the candidate one offer that features (1) a date t̄ when the offer expires, and
(2) a bonus rule β : [0, t̄] → R+ that specifies the transfer (bonus) that the candidate will receive
if he accepts the offer at t ∈ [0, t̄]. When using the new approach to implement an optimal direct
mechanism, β(t) must be decreasing in t, due to incentive compatibility. We name the indirect
mechanisms (t̄,β) with the bonus being decreasing overtime as bonus-for-early-acceptance (BFEA)
mechanisms.

Corollary 1. When δ = 0, the optimal mechanisms (x∗, τ∗) can be implemented using the following
bonus-for-early-acceptance mechanisms (t̄∗,β∗):

1. if (v + r) − v ≥ J(1), then t̄∗ = 0 and β∗(0) = p0 − r, which means that the offer expires
immediately if it is not accepted;

2. if there exists r̂∗ ∈ (r, 1) that satisfies (v + r)− v = J(r̂∗), then t̄∗ = −(1/λ) lnχ(r̄∗M ), and

β∗(0) = (r̂∗ − r)
[
1− χ(r̄∗M )

]
p0 and β∗(t) = 0 for all t ∈ (0, t̄∗],

where r̄∗M satisfies (21);

3. if (v + r) − v ≤ J(r), then t̄∗ = −(1/λ) lnχ(r̄∗M ) and β∗(t) = 0 for all t ∈ [0, t̄∗], where r̄∗M
satisfies (22).
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In the two extreme cases, (v + r) − v ≥ J(1) and (v + r) − v ≤ J(r), the bonuses provided
to the candidate are constant. In the second case of the corollary, if r̄∗M ̸= r/p0, which is true
when r̂∗ > r/p0, the candidate receives a strictly positive bonus if and only if he accepts the offer
immediately. Learning from Proposition 6, we know that the types of the candidate that accept
the offer immediately are the ones with low outside options; the types of the candidate with high
outside options choose to postpone their decisions and receive no bonus when they accept the offer.

Formulating an optimal mechanism as a BFEA mechanism has a few advantages. First, the
relationship between the transfer and acceptance deadline are transparent in a BFEA mechanism.
In particular, the bonus rule β gives a direct representation of how the salary bonus decreases over
time. Second, it becomes clear that the optimal mechanisms are essentially the search-deterring
strategies studied in Armstrong and Zhou (2016). By making the salary bonuses decrease over
time, the mechanisms introduce endogenous costs for the candidate to wait for alternative options.

The recruitment strategies adopted by the employers in some labor markets, especially entry-
level markets, are BFEA mechanisms. Roth and Xing (1994) document that some big law firms
include signing bonuses in their job offers, but the bonuses could be collected by the potential
employees only if they accept the offers much earlier before the acceptance deadline. This recruit-
ment strategy is very close to the optimal BFEA mechanisms in the current subsection: there is no
continuous decrease in the salary bonus over time; a salary bonus is only provided for immediate
acceptance.

The BFEA mechanisms adopted in other industries for recruiting, however, feature continuously
decreasing salary bonuses. Lippman and Mamer (2012) state that some consulting firms make the
signing bonuses included in their job offers drop by a certain amount each week until the potential
employees make an acceptance decision. Such offers usually have short acceptance deadlines (e.g.,
three weeks) as well. Neale and Bazerman (1991) describe that when recruiting the graduates of
management schools, some firms make their salaries drop every day before the candidates accept
the offers. In the next subsection, we show that the competition over the secondary candidates is
essential for explaining the continuous decrease in the bonuses.

5.2 Stochastic Secondary Candidate

In this subsection, we study the environment with δ > 0 and v > 0, that is, A faces competition over
the secondary candidate. Compared with the subsection above, having δ > 0 does not affect the
constraints in Proposition 5, but renders the payoff function ΠA(x(r̄); r̄) in the objective function
(P∗) no longer an affine function of x(r̄).

It is easy to verify that when δ > 0, the payoff function ΠA(x(r̄); r̄) of A from the candidate is
concave in x(r̄), with the marginal payoff being

dΠA(x(r̄); r̄)

dx(r̄)
=

[
(v + r)− J(r̄)− x(r̄)

δ
λ v

]
p0. (24)
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When there is no constraint on x(r̄), the optimal x(r̄) maximizing ΠA(x(r̄); r̄) is

x̂(r̄) =


[
(v+r)−J(r̄)

v

]λ
δ
, if (v + r)− J(r̄) > 0;

0, if (v + r)− J(r̄) ≤ 0.
(25)

With the constraints (C1∗) and (C2∗) in Proposition 5, x∗(r̄) in the optimal mechanism in general
deviates from x̂(r̄) defined in (25). However, similar to the environment with δ = 0, when the
value of (v+ r) is very large or very small, only (C1∗) constraint is critical for characterizing x∗(r̄).
If (v + r) is sufficiently large such that (v + r) − v > J(1), which is similar to the first case in
Proposition 6, the marginal payoff (24) is positive for all x(r̄) ≤ 1. The optimal mechanism (x∗, τ∗)

has r̄∗M = 1, and x∗(r̄) = 1 for all r̄. If (v+r) is sufficiently small such that (v+r)−χ(1)
δ
λ v ≤ J(r),

which is similar to the third case in Proposition 6, the marginal payoff (24) is negative for all
r̄ ∈ [r, 1] when x(r̄) ≥ χ(1). The optimal mechanism (x∗, τ∗) has r̄∗m = r, and x∗(r̄) = χ(r̄∗M ) for
all r̄ ∈ (r̄∗m, r̄∗M ]. If the value of (v + r) is intermediate, the optimal mechanism in general differs
from that in the environment with δ = 0 in that the level of transfer is continuously decreasing in
r̄ for r̄ > r̄∗m. Below we present such a result in a case where (C2∗) does not constrain the choice
of the optimal mechanism. To proceed, we define a function

Q(r̄m, r̄M ) = r̄m(1− p0)−
∫ r̄M

r̄m

max{x̂(r̄), χ(r̄M )}p0dr̄.

This function is to indicate that given a pair of cutoffs r̄m, r̄M , whether (C2∗) holds or not when
we choose x(r̄) = max{x̂(r̄), χ(r̄M )}.6 If Q(r̄m, r̄M ) = 0, (C2∗) is satisfied. If Q(r̄m, r̄M ) ̸= 0, we
can possibly make (C2∗) satisfied by adjusting r̄m or r̄M .

Proposition 7. Suppose δ > 0 and there exists r̂∗ ∈ (r, 1) satisfying (v + r)− v = J(r̂∗). Let r̂∗M
be a solution to the following problem:

max
r̄M≥max{r/p0,r̂∗}

∫ r̄M

r̂∗
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v, (26)

subject to x(r̄) = max{x̂(r̄), χ(r̄M )}.
If Q(r̂∗, r̂∗M ) ≥ 0, then the optimal mechanism (x∗, τ∗) is characterized by r̄∗m = r̂∗ −Q(r̂∗, r̂∗M )

and r̄∗M = r̂∗M , and for r̄ ≤ r̂∗, x∗(r̄) = 1 and τ∗(r̄) = r̄∗m − r; for r̄ ∈ (r̂∗, r̄∗M ],

x∗(r̄) = max{x̂(r̄), χ(r̄∗M )} and τ∗(r̄) =

∫ r̄∗M
r̄ x∗(r̃)p0dr̃ + r̄x∗(r̄)p0

x∗(r̄)p0 + (1− p0)
− r.

In the above proposition, due to the condition Q(r̂∗, r̂∗M ) ≥ 0, constraint (C2∗) imposes no
effective restriction on choosing the optimal x(r̄) for r̄ ≤ r̄∗M ; (C2∗) helps to determine the transfer
rule τ∗ by pinning down r̄∗m. The optimal x∗(r̄) is obtained from x̂(r̄) by only incorporating the

6Note that the payoff function ΠA(x(r̄); r̄) is concave in x(r̄). Under the constraint x(r̄) ≥ χ(r̄∗M ), when x̂(r̄) <
χ(r̄∗M ), x(r̄) = χ(r̄∗M ) maximizes ΠA(x(r̄); r̄).
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boundary conditions in (C1∗).
In general, the constraint (C2∗) restricts the choice of the optimal mechanism. To give an explicit

characterization of the optimal design of the job offer in such cases, we consider the environment in
which v+ r ≥ v+ r̄ for all r̄, that is, the value of the match between the employer and its preferred
candidate is higher than the nominal values of their outside options.7

Proposition 8. Suppose δ > 0 and v + r ≥ v + r̄ for all r̄. If H(r̄) is concave, then there exists
µ∗ such that in the optimal mechanism (x∗, τ∗) with cutoffs r̄∗m, r̄∗M , for r̄ ≤ r̄∗M ,

x∗(r̄) =


1, if r̄ < r̄∗;

x̂(r̄;µ∗), if r̄∗ < r̄ < r̄∗∗;

χ(r̄∗M ), if r̄∗∗ < r̄,

where x̂(r̄;µ∗) =

[
(v + r)− J(r̄)− µ∗/h(r̄)

v

]λ
δ

, (27)

with r̄∗, r̄∗∗ ∈ [r̄∗m, r̄∗M ] and x∗(r̄) being decreasing in r̄, and

τ∗(r̄) =

∫ r̄∗M
r̄ x∗(r̃)p0dr̃ + r̄x∗(r̄)p0

x∗(r̄)p0 + (1− p0)
− r.

Similar to Proposition 7, the optimal x∗(r̄) in this proposition is continuously decreasing in r̄

almost everywhere. The value µ∗ is induced by constraint (C2∗). As presented in Proposition 7,
if (C2∗) does not constrain the choice of the optimal mechanism, then µ∗ = 0 and x∗(r̄) is derived
from x̂(r̄) by only taking into account the boundaries conditions. If (C2∗) constrains the choice of
the optimal mechanism, then µ∗ ̸= 0, and we adjust x̂(r̄) using µ∗ to derive the optimal x∗(r̄).

Same as in the environment with δ = 0, we can transform the optimal direct mechanisms into
BFEA mechanisms. The key step of the transformation is to represent the transfer rule τ∗(r̄),
which is a function of r̄, as a function of t̄. Consider the optimal mechanisms in Proposition 8.
Given that x(r̄) = 1− F (t̄(r̄)), we know that the optimal deadline rule is t̄∗(r̄) = −(1/λ) lnx∗(r̄).8

For the types of the candidate in (r̄∗, r̄∗∗), t̄∗(r̄) is strictly increasing. We define

t̂(r̄∗) = − 1

λ
ln x̂(r̄∗;µ∗),

and the inverse function r̄−1 : (t̂(r̄∗), t̄∗(r̄∗M )] → (r̄∗, r̄∗∗], with

t = − 1

λ
ln x̂(r̄−1(t);µ∗).

Corollary 2. Suppose δ > 0 and v + r ≥ v + r̄ for all r̄. If H(r̄) is concave, then the optimal
mechanism (x∗, τ∗) with cutoffs r̄∗, r̄∗∗ ∈ [r̄∗m, r̄∗M ] can be transformed in to the following bonus-for-

7Note that the nominal values v+ r̄ of the outside options are smaller than their virtual values v+ J(r). Thus, it
is possible that even v + r ≥ v + r̄ for all r̄, v + r < v + J(r).

8Regardless of whether r̄∗∗ is equal to 0 or not, we always have x∗(r̄∗∗) = x∗(r̄∗M ). This is obvious when r̄∗∗ = r̄∗M .
When r̄∗∗ < r̄∗M , then we have x̂(r̄∗∗;µ∗) = χ(r̄∗M ).
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early-acceptance mechanisms (t̄∗,β∗): t̄∗ = −(1/λ) lnx∗(r̄∗M ), and

β∗(t) =

r̄∗m − r, for 0 ≤ t ≤ t̂(r̄∗);∫ t̄∗
r̄−1(t)

(1−F (t̃))p0dr̄−1(t̃)+r̄−1(t)(1−F (t))p0

(1−F (t))p0+(1−p0)
− r, for t̂(r̄∗) < t ≤ t̄∗.

In the BFEA mechanism that represents the optimal direct mechanism, it is clear that if the
candidate accepts the offer before t̂(r̄∗), he receives bonus r̄∗m − r; if he chooses to accept the
offer after t̂(r̄∗), then the bonus is decreasing over time. Note that if t̂(r̄∗) > 0, then the BFEA
mechanism features a “peaceful period” (0, t̂(r̄∗)], during which the bonus received by the candidate
is constantly r̄∗m − r.

Different from the environment with δ = 0, implementing the optimal direct mechanism using
a BFEA mechanism in the current environment is not always without loss. Consider the scenario
that r̄∗M < 1. Under the optimal direct mechanism, if the type of the candidate is in (r̄∗M , 1], the
employer does not extend an offer to the candidate, which allows the employer to get payoff v by
recruiting the secondary candidate with probability 1. If the employer implements the optimal
direct mechanism using a BFEA mechanism and the types of the candidate in (r̄∗M , 1] may always
hold the offer until the expiration date unless they receive an alternative offer, then the employer
receives expected payoff

Π0
A(x(r̄

∗
M )) = x(r̄∗M )

δ
λ [x(r̄∗M )p0 + (1− p0)] v +

λ

λ+ δ

[
1− x(r̄∗M )

(λ+δ)
λ

]
p0v,

which is strictly smaller than v, unless x(r̄∗M ) = 0.
The employer can prevent this issue by introducing a communication stage in the BFEA mech-

anism. That is, A first asks the candidate to report whether his type is below or above r̄∗M . If it is
below r̄∗M , then A sends a BEFA offer; if it is above r̄∗M , then A provides no offer to the candidate.
It is incentive compatible for the types in (r̄∗M , 1] to report truthfully. If communication is not
possible, and A still wants to use a BFEA mechanism to deter the candidate from delay, then the
employer should replace (P∗) in Proposition 5 by the following objective function

(P′′) max
{r̄m,r̄M ,x(·)}

∫ r̄m

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r̄m

ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))Π0
A(x(r̄

∗
M )),

to characterize the optimal BFEA mechanism.

5.3 Empirical Implication

The differences between the BFEA mechanisms that represent the optimal direct mechanisms in the
environment with δ > 0 and in the environment with δ = 0 have important empirical implications.
The case with δ = 0 resembles a labor market in which there is an excessive supply of high quality
job candidates. An employer that fails to recruit its most preferred candidates can easily find
in the market a fairly good alternative candidate to recruit, that is, it has low risk of recruiting
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no acceptable ones in such a market. The case with δ > 0 represents the opposite labor market
condition, i.e., there is limited supply of high quality job candidates and the competition over the
good candidates is high. An employer in such a competitive market faces deteriorating outside
options.

Remember that when δ = 0, in the optimal BFEA mechanism a salary bonus, if exists, is
provided to the candidate only when he accepts the offer immediately. However, when δ > 0, if a
salary bonus is included in the optimal BFEA mechanism, the bonus may continuously decrease
before the expiration date. We do observe both of these mechanisms in practice. As mentioned in
Subsection 5.1, Roth and Xing (1994) provide an example of the optimal BFEA mechanism when
δ = 0. In Neale and Bazerman (1991) and Lippman and Mamer (2012), they provide examples of
BFEA mechanisms in which the bonuses provided in the job offers drop every week or even everyday.
These mechanisms can be taken as the discrete-time version of the optimal BFEA mechanisms in
the environment with δ > 0.

The results of this section imply that the types of BFEA offers adopted by the employers in
recruitment are informative about the labor market conditions. If one observes that the employers
in a market provide offers with fixed signing bonuses that can be collected by candidates in the
case of early acceptance, then it is likely that the market has a large pool of good candidates. If
one observes that the employers of a market provide offers that are very sensitive to the time that
the candidates accept the offer, then it indicates that the employers may face fierce competition
over the candidates in the market.

At the end of this section, we give two caveats for understanding the BFEA mechanisms. It is
clear that in the optimal BFEA mechanisms, a candidate with a more promising alternative option
will accept A’s offer later and receive lower bonuses. First, this result does not mean that the more
optimistic candidates receive lower payoffs. In fact, as shown in Proposition 9, candidates with
better outside options have higher expected payoffs in any incentive feasible mechanism, including
the optimal BFEA mechanisms. Second, this result does not imply that a candidate with a higher
quality tend to receive lower salary bonuses. In our model, the quality of a candidate is public
knowledge and is independent of how optimistic the candidate is. When fixing the outside option
of a candidate, we can show, using the results of Proposition 6 and Proposition 8, that a candidate
with a higher v receives a higher salary bonus.

6 Concluding Remarks

In this paper, we propose a simple model of talent recruiting in which the employer uses the job offer
acceptance deadline as a strategic recruiting device. The model is intended to capture the tradeoffs
of an employer in extending job offers in the entry-level labor markets with defined hiring cycles, but
is also applicable to study sporadic recruitment of seasoned job candidates. When receiving an offer,
a job candidate often prefers to postpone his acceptance decision to explore better possible options.
The acceptance deadline of the offer plays the role of deterring the candidate from postponing the
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decision indefinitely. The optimal deterrence can be in the most aggressive form, i.e., exploding
offers, or no deterrence at all, i.e., open offers, depending the market conditions. Contrary to
intuitions, we find that it is optimal for the employer to keep the deadline re-negotiable, given that
the outside option of the employer may get worse over time.

If the monetary incentives included in a job offer are flexible, then the employer can use this
traditional recruiting device jointly with the acceptance deadline to screen candidates with different
outside options. If a candidate never holds on to an unacceptable offer, the optimal job offer design
in this case can be implemented as a bonus-for-early-acceptance mechanism. We characterize the
optimal BFEA mechanisms, and show that they are indicative of the labor market conditions: the
optimal mechanism features a continuously decreasing bonus rule only if there is competition over
the secondary candidate, i.e., the employer has deteriorating outside options.

To make the analysis in this paper tractable, we adopt a partial-equilibrium framework, in which
the competition faced by the employer is modeled in a reduced form. This modelling approach allows
us to delineate the tradeoffs of an employer in choosing the acceptance deadline and analytically
characterize the optimal offer design, but, undoubtedly, ignores the strategic interactions between
employers in a market. As a future direction of research, it is interesting to investigate how the
employers behave in a general-equilibrium framework. Would all employers rush to request the
offer receivers to respond immediately? Is it still optimal for the employers to keep their deadlines
soft?

In our model, we also assume away the possibility that new job candidates enter into the market.
The consequence of this assumption is that the payoff of the employer from recruiting the outside
option is (weakly) decreasing over time; thus, extending an offer immediately is a dominant strategy.
With the arrival of new candidates, the employer may prefer to spend some time in searching for
better candidates before extending an offer. It is interesting to examine in this environment how
the employer chooses his search duration and acceptance deadline when facing competition from
other employers in the market.

It is worth mentioning that in this paper, we take a very narrow perspective in examining the
impact of the acceptance deadline on a candidate’s job choice decisions. In practice, the acceptance
deadline may not only affect a candidate’s chance of getting an alternative option, but also change
the post-hire attitudes of the potential employee, as studied in Lau et al. (2014), the turn-over rate
of the organization, and even the future pool of job applicants interested in the organization. A
comprehensive examination of the roles of acceptance deadline in recruitment should take these
post-hire effects into account.
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7 Appendix

Proof of Proposition 1

To begin, we fix the value of r and investigate how the optimal deadline changes with r̄. For
r̄ ≤ r/p0, the optimal deadline is 0, i.e., the employer extends an exploding offer to the candidate.
When r̄ > r/p0, A may choose 0 or t̄r(r̄) at optimum. If A chooses 0, then its offer will be rejected
by the preferred candidate and it gets payoff v. If A chooses t̄r(r̄), then it gets expected payoff

VA(t̄r(r̄)|r̄) = PN (t̄r(r̄)) · v +
∫ t̄r(r̄)

0

dPR(t)

dt
(1−G(t))dt · v

= (1− p0)
r̄

r̄ − r
v +

λ

λ+ δ

{
1−

[
(1− p0)r

p0(r̄ − r)

]λ+δ
λ

}
p0v.

It is easy to verify that VA(t̄r(r̄)|r̄) is decreasing in r̄, so minr̄{VA(t̄r(r̄)|r̄)} = VA(t̄r(1)|1). There-
fore, if VA(t̄r(1)|1) > v, A chooses t̄r(r̄) for any r̄ > r/p0. But if VA(t̄r(1)|1) < v, given that
limr̄→r/p0 VA(t̄r(r̄)|r̄) = v > v, there exists a cutoff r̄P (r) ∈ (r/p0, 1) satisfying VA(t̄r(r̄

P )|r̄P ) = v,
such that for r̄ < r̄P (r), A chooses deadline t̄r(r̄), while for r̄ > r̄P (r), A chooses 0 deadline.

The comparison between VA(t̄r(1)|1) and v depends on the value of r. It is easy to verify that
VA(t̄r(1)|1) is increasing in r and

lim
r→0+

VA(t̄r(1)|1) = (1− p0)v +
λ

λ+ δ
p0v ≥ v

if and only if (7) holds. We define rP = min {r| limr→0+ VA(t̄r(1)|1) ≥ v}, with rP = 0 if and only
if (7) is satisfied. When (7) is violated, for r < rP , we have VA(t̄r(1)|1) < v, then according to our
discussion above, there exists a cutoff r̄P (r) ∈ (r/p0, 1) such that A chooses 0 if r̄ > r̄P (r).

Proof of Proposition 3

Suppose that P (t̄|r) is convex in t̄, so dP (t̄|r)/dt̄ is increasing in t̄. We do the proof separately for
two different cases: (1) dP (t̄|r)/dt̄ ≥ 0 at t̄ = 0; (2) dP (t̄|r)/dt̄ < 0 at t̄ = 0.

Consider dP (t̄|r)/dt̄ ≥ 0 at t̄ = 0. Taking the derivative of dU(t̄|r)/dt̄ in (12) with respective
to t̄, we obtain

d2U(t̄|r)
dt̄2

=
d2P (t̄|r)

dt̄2
[v − (1−G(t̄))v] +

dP (t̄|r)
dt̄

g(t̄)v − d

dt̄
(1−H(r̄(t̄)))PN (t̄)g(t̄)v.

The last term of d2U(t̄|r)/dt̄2 is always negative, because (1 − H(r̄(t̄))), PN (t̄), and g(t̄) are de-
creasing in t̄. Given that P (t̄|r) is convex in t̄, the first term is always non-negative. The second
term is also non-negative, given that dP (t̄|r)/dt̄ ≥ 0 at t̄ = 0, which implies dP (t̄|r)/dt̄ ≥ 0 for all
t̄ given the convexity of P (t̄|r). Therefore, U(t̄|r) is convex in t̄ in this case. The optimal deadline
is thus either 0 or t̄max

r .
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Consider dP (t̄|r)/dt̄ < 0 at t̄ = 0. We prove by contradiction. Suppose that the optimal
deadline t̄∗ is interior. Then t̄∗ should satisfy dU(t̄∗|r)/dt̄ = 0, which implies that dP (t̄∗|r)/dt̄ > 0.
If so, however, d2U(t̄∗|r)/dt̄2 > 0, which means that the second order necessary condition for t̄∗ to
be a global max is violated. A contradiction. Thus, the optimal deadline must be corner solutions.

Proof of Example 1

For the convenience of analysis, we use r̄max ∈ [r/p0, 1] to denote r̄(t̄), which is the highest type of
the candidate that A can recruit with a positive probability using deadline t̄. Note that according
to the definition of r̄(t̄) in (8), there is a one-to-one relationship between r̄max and an acceptance
deadline, with r̄max = r/p0 corresponding to t̄ = 0 and r̄max = 1 corresponding to t̄ = t̄max

r . Using
this one-to-one relationship, we can reformulate ǓA(t̄|r) as a function of r̄max as follows,

ǓA(r̄max|r) = rv + (r̄max − r) [χ(r̄max|r)p0 + (1− p0)] v

+ (r̄max − r)
λ

(λ+ δ)

[
1− χ(r̄max|r)

(λ+δ)
λ

]
p0v + (1− r̄max)v, (28)

where χ(r̄max|r) = r(1 − p0)/(r̄max − r)p0. The function ǓA(r̄max|r) is concave in r̄max and has
derivative

dǓA(r̄max|r)
dr̄max

= (1− p0)(v − v)− δ

λ+ δ

[
1− χ(r̄max|r)

(λ+δ)
λ

]
p0v. (29)

Note that dǓA(r̄max|r)/dr̄max is increasing in χ(r̄max|r). When fixing r, the value χ(r̄max|r) is
decreasing in r̄max and takes values in [χ(1|r), 1], and χ(1|r) is increasing in r, with χ(1|r = 0) = 0

and χ(1|r = p0) = 1.
If condition (7) is satisfied, we have dǓA(1|0)/dr̄max ≥ 0. Therefore, given that

dǓA(r̄max|r)/dr̄max is decreasing in r̄max and increasing in r for all r > 0, we have

dǓA(r̄max|r)
dr̄max

>
dǓA(1|0)
dr̄max

≥ 0.

Thus, it is optimal for A with any r to choose r̄max = 1, which corresponds to the acceptance dead-
line t̄max

r . If condition (7) is not satisfied, given the monotonicity of χ(1|r) in r and dǓA(1|r)/dr̄max

in r, there exists ř ∈ (0, p0) such that dǓA(1|ř)/dr̄max = 0. Thus, given the concavity of ǓA(r̄max|r),
for all r > ř and all r̄max ∈ [r/p0, 1], we have

dǓA(r̄max|r)
dr̄max

≥ 0.

Therefore, it is optimal for A with ranking r > ř to choose t̄ = t̄max
r . For r < ř, we have

dǓA(1|r)/dr̄max < 0 and dǓA(r/p0|r)/dr̄max > 0. Thus, there exists an optimal r̄max ∈ (r/p0, 1)
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for each r such that dǓA(r̄max|r)/dr̄max = 0, or equivalently,

χ(r̄max|r) =
[
1− (1− p0)(v − v)

p0v

(λ+ δ)

δ

] λ
(λ+δ)

,

which is independent of r and corresponds to deadline

t̄ = − 1

λ+ δ
ln

(
1− (1− p0)(v − v)

p0v

(λ+ δ)

δ

)
= t̄1(ř).

Now we show that ř is larger than r̂ in Example 2. Note that r̂ satisfies UA(0|r̂)−UA(t̄1(r̂)|r̂).
Given that ǓA(t̄|r) satisfies

ǓA(0|r) = UA(0|r) and ǓA(t̄
max
r |r) = UA(t̄

max
r |r),

we have that for ǓA(r̄max|r̂), ǓA(r̂/p0|r̂)− ǓA(1|r̂) = 0. (Remember that r̄max = r̂/p0 corresponds
to t̄(0) and r̄max = 1 corresponds to t̄ = t̄1(r̂).) Given the concavity of ǓA(r̄max|r̂) in r̄max, it must
be that the optimal r̄max for r̂ is in the interior of [r̂/p0, 1], which implies that the optimal deadline
t̄ must be in the open interval (0, t̄1(r̂)). Given the definition of ř, it is clear that r̂ < ř.

Proof of Example 2

The proof for the case where r ≥ p0 is trivial, as employer A with such a ranking always sends an
exploding offer, which allows A to recruit the top candidate with probability 1. Any non-exploding
offer cannot outperform the exploding one. Therefore, for the rest of the proof, we focus on the
case where r ∈ (0, p0). According to the expression of UA(t̄|r) in (11), we have

UA(0|r) = r · v + (r̄(0)− r) · v + (1− r̄(0)) · v, (30)

UA(t̄
max
r |r) = r · v + (1− r)[(1− F (t̄max

r ))p0 + (1− p0)]v

+ (1− r)

∫ t̄max
r

0
f(t)p0 · (1−G(t)) · vdt. (31)

The choice of the acceptance deadline has no effect on the chance of recruiting any candidate
with r̄ ≤ r, but will affect the chance of being matched to the candidates with r̄ > r, and even
the chance of recruiting the secondary candidate. Compared with sending an exploding offer,
choosing t̄ = t̄max

r reduces the probability that A successfully recruit candidates with intermediate
market prospects, i.e., candidates with r̄ ∈ (r, r̄(0)), and increases its probability of recruiting
candidates with good prospects, i.e., candidates with r̄ > r̄(0). The increased probability of
recruiting optimistic candidates, however, is associated with another cost: if A fails to be matched
with these candidates, A’s probability of recruiting its secondary candidate is lower than that under
an exploding offer.
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To simplify notations, we define D(r) = UA(0|r)− UA(t̄
max
r |r), and

ρ =
v

v
and κ(r) =

r(1− p0)

(1− r)p0
.

Using the result that∫ t̄max
r

0
f(t)p0(1−G(t))vdt =

λ

(λ+ δ)

[
1− κ(r)

(λ+δ)
λ

]
p0v,

we can simplify D(r) as

D(r) =

{
η(1− κ(r))− λ

(λ+ δ)

[
1− κ(r)

(λ+δ)
λ

]}
v(1− r)p0, (32)

where η = [ρ− (1− p0)] /ρp0. Since we focus on the case where r ∈ (0, p0), it is always true that
0 < κ(r) < 1, which implies that 1− κ(r) < 1− κ(r)(λ+δ)/λ. If η ≤ λ/(λ+ δ), i.e.,

ρ ≤ 1− p0

1− λ
(λ+δ)p0

, (33)

then D(r) < 0, which means that it is always optimal for A to choose deadline t̄max
r , which allows A

to recruit any type of candidate with a positive probability. However, the value of t̄max
r is decreasing

in r, namely A with a higher ranking will choose a shorter deadline for the offer.
We now show that if condition (33) is violated, D(r) = 0 has only one solution r̂, with D(r) > 0

to the left of r̂ and D(r) < 0 to the right of r̂. We define the terms in the large bracket of D(r) as
L(κ(r)), which has the same sign as D(r) for any r ∈ (0, p0) and has derivative

dL(κ(r))

dκ(r)
= −η + κ(r)

δ
λ .

It is clear, according to dL(κ(r))/dκ(r), that for κ(r) ∈ (0, ηλ/δ), L(κ(r)) is decreasing in κ(r),
while for κ(r) ∈ (ηλ/δ, 1), L(κ(r)) is increasing in x(r). Since L(κ(r)) > 0 as κ(r) → 0+ and
L(κ(r)) < 0 as κ(r) → 1−, there exists a unique r̂, with κ(r̂) ∈ (0, ηλ/δ), such that L(κ(r̂)) = 0.
To the left of r̂, L(κ(r̂)) > 0, thus D(r) > 0, which implies that A with ranking r < r̂ optimally
chooses send an exploding offer. To the right of r̂, H(κ(r̂)) < 0, thus D(r) < 0, which implies that
A with ranking r > r̂ optimally sets t̄ = t̄max

r .

Proof of Proposition 4

To prove this proposition, we show that the expected payoff of the employer in an equilibrium
of the game with deadline re-negotiation is (weakly) higher than that in the benchmark model.
Note that for the preferred candidate with outside option r̄ ≤ r, time for considering the offer of
A has no value; for the candidate with r̄ > r, more consideration time is always desirable, so these
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types of the candidate request a deadline extension in any equilibrium with deadline extensions.
Therefore, without loss, we consider equilibria where the candidate always accepts A’s offer upon
reaching the initial deadline if r̄ ≤ r, and always requests an extension of the deadline if r̄ > r.

Suppose that the initial deadline is t̄. For expositional purposes, we define r̄(∆t̄|pt̄) as the
highest type of the preferred candidate that accepts A’s offer with a positive probability when the
posterior belief of receiving an alternative offer at the end of initial deadline is pt̄ and the deadline
extension is ∆t̄, and

PN (∆t̄|pt̄) = (1− F (∆t̄))pt̄ + (1− pt̄).

It is clear that r̄(∆t̄|pt̄) = r̄(∆t̄ + t̄), given that the candidate with r̄ > r always asks for an
extension, and PN (∆t̄ + t̄) = PN (∆t̄|pt̄)PN (t̄). At the end of the initial deadline t̄, when the
candidate requests a deadline extension, if the secondary candidate is still available, the expected
payoff of A from recruiting the types r̄ > r of the candidate by choosing ∆1t̄ is

Ũ1
A(∆1t̄|pt̄) = (H(r̄(∆1t̄|pt̄))−H(r))PN (∆1t̄|pt̄)v

+ (1−H(r̄(∆1t̄|pt̄)))PN (∆1t̄|pt̄)(1−G(∆1t̄))v + (1−H(r))

∫ ∆1 t̄

0
f(t)pt̄(1−G(t))vdt,

which is different from UA(t̄|r) by the constant H(r)v if we replace p0 and t̄ by pt̄ and ∆1t̄,
respectively. In equilibrium, the employer chooses ∆1t̄ that maximizes Ũ1

A(∆1t̄|pt̄). Note that
∆1t̄ = 0 is equivalent to rejecting the request of the candidate for a deadline extension.

If the secondary condition becomes unavailable at the end of t̄, the expected payoff of A from
recruiting the types r̄ > r of the candidate by choosing ∆0t̄ is

Ũ0
A(∆0t̄|pt̄) = (H(r̄(∆0t̄|pt̄))−H(r))PN (∆0t̄|pt̄)v.

The employer chooses ∆0t̄ that maximizes Ũ0
A(∆0t̄|pt̄) in equilibrium. The ex ante expected payoff

of A under (t̄,∆1t̄,∆0t̄) is

ŨA(t̄,∆1t̄,∆0t̄|r) = H(r)v + PN (t̄)
[
(1−G(t̄))Ũ1

A(∆1t̄|pt̄) +G(t̄)Ũ0
A(∆0t̄|pt̄)

]
+ (1−H(r))

∫ t̄

0
f(t)p0(1−G(t))vdt.

It is easy to show that the payoff ŨA(t̄,∆1t̄,∆0t̄|r) reduces to UA(t̄|r), the expected payoff of A
when it has full commitment power and chooses deadline t̄, when we restrict ∆1t̄ = ∆0t̄ = 0. It is
therefore clear that

max
t̄,∆1 t̄,∆0 t̄

ŨA(t̄,∆1t̄,∆0t̄|r) ≥ max
t̄

ŨA(t̄, 0, 0|r) = max
t̄

UA(t̄|r). (34)

The inequality in (35) holds as a strict inequality, i.e., the employer gets strictly better offer
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when allowing for deadline re-negotiation, if the optimal deadline in the full-commitment case is
interior. Suppose that the optimal deadline t̄∗ in the full-commitment case is in (0, t̄max

r ). Then
from (12), we can obtain that dP (t̄∗|r)/dt̄ > 0, which implies that dP (∆t̄ + t̄∗|r)/d∆t̄ > 0 at
∆t̄ = 0. Given that PN (∆t̄+ t̄) = PN (∆t̄|pt̄)PN (t̄), or equivalently PN (∆t̄|pt̄) = PN (∆t̄+ t̄)/PN (t̄)

for all t̄ and ∆t̄, we have at t̄ = t̄∗ and ∆0t̄ = 0,

dŨ0
A(∆0t̄|pt̄∗)
d∆0t̄

=
dP (∆0t̄+ t̄∗|r)

d∆0t̄

v

PN (t̄∗)
> 0.

That is, the employer has incentive to extend its deadline t̄∗ if the secondary candidate becomes
unavailable at the end of the deadline. This implies that (35) holds as a strict inequality, because

max
t̄,∆1 t̄,∆0 t̄

ŨA(t̄,∆1t̄,∆0t̄|r) ≥ max
∆0 t̄

ŨA(t̄
∗, 0,∆0t̄|r) > UA(t̄

∗|r). (35)

Proof of Lemma 1

To begin, we simplify the (IC) constraints. Define ÛC(r̄, r̄
′; t̄, τ) as the expected payoff of the

candidate if his true type is r̄ but he reports r̄′ and commits himself to accept the offer (t̄(r̄′), τ(r̄′))
provided by A when he receives no alternative offer before the acceptance deadline, so

ÛC(r̄, r̄
′; t̄, τ) = (r + τ(r̄′))PN (t̄(r̄′)) +max{r + τ(r̄′), r̄}PR(t̄(r̄

′)). (36)

It is clear that UC(r̄, r̄
′; t̄, τ) = max{r̄p0, ÛC(r̄, r̄

′; t̄, τ)}, so the (IC) constraints can be written as

UC(r̄; t̄, τ) ≥ max{r̄p0, ÛC(r̄, r̄
′; t̄, τ)},

for any r̄, r̄′ ∈ [0, 1]. Since UC(r̄; t̄, τ) ≥ r̄p0 always holds (condition (15)), the (IC) constraints can
be reduced to

(IC′) UC(r̄; t̄, τ) ≥ ÛC(r̄, r̄
′; t̄, τ), for any r̄, r̄′ ∈ [0, 1].

It is clear that s1(t̄, τ) is always non-empty: any r̄ ≤ r is included in s1(t̄, τ), given τ(r̄) ≥ 0.
This implies that for any incentive feasible mechanism (t̄, τ), there exists a r̄ such that

r + τ(r̄) > r̄pt̄(r̄), (37)

given that pt̄(r̄) ≤ p0. We now show that for any incentive compatibility of (t̄, τ), if r̄ satisfies (37),
then any r̄′ < r̄ also satisfies (37). From the (IC) constraints for r̄′, we have

UC(r̄
′; t̄, τ)− r̄′p0 ≥ ÛC(r̄

′, r̄; t̄, τ)− r̄′p0, (38)
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which is

max{r + τ(r̄′)− r̄′pt̄(r̄′), 0}PN (t̄(r̄′)) +max{r + τ(r̄′)− r̄′, 0}PR(t̄(r̄
′))

≥ (r + τ(r̄)− r̄′pt̄(r̄))PN (t̄(r̄)) +max{r + τ(r̄)− r̄′, 0}PR(t̄(r̄)). (39)

Since r̄ satisfies (37) and r̄′ < r̄, we have r+ τ(r̄)− r̄′pt̄(r̄) > 0 on the RHS of (39). Thus, the RHS
of (39) is positive. To have (39) hold, there must be

r + τ(r̄′)− r̄′pt̄(r̄′) > 0, (40)

namely r̄′ satisfies (37).
Define r̄∗∗sup as the supremum of all the types satisfying (37), i.e.,

r̄∗∗sup ≡ sup{r̄ ∈ [0, 1] : r + τ(r̄) > r̄pt̄(r̄)}. (41)

The arguments above imply that (37) holds for any r̄ < r̄∗∗sup. The value of r̄∗∗sup depends on the
mechanism. We suppress its dependence on (t̄, τ) to simplify notations.

We need only to prove the second and third scenarios in the lemma, given that the first scenario
is trivial. For the convenience of analysis, we start by proving the third scenario of the lemma. In
the proof of this scenario, we show that the non-emptiness of s3(t̄, τ) implies the non-emptiness of
s2(t̄, τ).

Scenario 3:

Suppose that s3(t̄, τ) is non-empty. First, we show that there exists r̄2 ≤ 1 such that s3(t̄, τ) ⊂ [r̄2, 1]

and UC(r̄2; t̄, τ) = r̄2p0. The r̄∗∗sup characterized in (41) is a natural candidate for r̄2. We have proved
above that (37) holds for any r̄ < r̄∗∗sup. Given that s3(t̄, τ) is non-empty and s3(t̄, τ)∩ [0, r̄∗∗sup) = ∅,
so there must be s3(t̄, τ) ⊂ [r̄∗∗sup, 1].

Next we prove that r + τ(r̄) ≥ r̄pt̄(r̄) for r̄ = r̄∗∗sup, which implies that UC(r̄
∗∗
sup; t̄, τ) = r̄∗∗supp0.

This must be true if r̄∗∗sup = 1, because otherwise s3(t̄, τ) is empty. For the case that r̄∗∗sup < 1, we
show that for r̄ > r̄∗∗sup,

r + τ(r̄) < r̄pt̄(r̄). (42)

The definition of r̄∗∗sup implies that for r̄ > r̄∗∗sup, there is r + τ(r̄) ≥ r̄pt̄(r̄). Suppose that there
exists r̄ > r̄∗∗sup such that r + τ(r̄) = r̄pt̄(r̄). Then the IC constraint requires that for r̄′ ∈ (r̄∗∗sup, r̄),
the inequality (38) must hold. The RHS of (39), which is derived from (38), will be positive,
because r + τ(r̄) − r̄′pt̄(r̄) = (r̄ − r̄′)pt̄(r̄) > 0. This implies that the LHS of (38) is positive, so
r + τ(r̄′) − r̄′pt̄(r̄′) > 0, which violates the definition of r̄∗∗sup. Hence, the inequality (42) must hold
for all r̄ > r̄∗∗sup. If we have r + τ(r̄∗∗sup) > r̄∗∗suppt̄(r̄∗∗sup), then for r̄ = r̄∗∗sup + ϵ, with ϵ > 0 being
sufficiently small, we will have r + τ(r̄∗∗sup) > r̄pt̄(r̄∗∗sup); thus, UC(r̄; t̄, τ) < ÛC(r̄, r̄

∗∗
sup; t̄, τ), which

violates the IC constraint for r̄. Therefore, r + τ(r̄∗∗sup) ≥ r̄∗∗suppt̄(r̄∗∗sup), and UC(r̄
∗∗
sup; t̄, τ) = r̄∗∗supp0.
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Now we show that there exists r̄1 < 1 such that s1(t̄, τ) = [0, r̄1] and r+ τ(r̄1) = r̄1. We already
know that s1(t̄, τ) is non-empty and bounded. Define

r̄∗sup ≡ sup{r̄ ∈ [0, 1] : r + τ(r̄) ≥ r̄}. (43)

It is easy to show that for r̄ < r̄∗sup, r+ τ(r̄) ≥ r̄. This is because if r+ τ(r̄) > r̄ for some r̄ < r̄∗sup,
then incentive compatibility requires that for all r̄′ ∈ (r̄, r̄∗sup), there should be r+ r̄′ < r̄ < r̄′. This
is a contradiction to the definition of r̄∗sup.

We prove by contradiction that r̄∗sup satisfies r + τ(r̄∗sup) = r̄∗sup. Based on the definition of
r̄∗sup, we have r + τ(r̄) < r̄ and UC(r̄; t̄, τ) < r̄. Suppose r + τ(r̄∗sup) < r̄∗sup, then we should have
r̄∗sup > UC(r̄

∗
sup; t̄, τ). In this case, the type-r̄∗sup candidate gets a higher payoff by mimicking a

lower type r̄ > UC(r̄
∗
sup; t̄, τ), given that for r̄ < r̄∗sup, r+ τ(r̄) ≥ r̄. Suppose r+ τ(r̄∗sup) > r̄∗sup, then

it must be that r̄∗sup < 1, because otherwise s3(t̄, τ) = ∅, a contradiction to our supposition of the
current scenario. Given that r̄∗sup < 1, for a type r̄ = r̄∗sup + ϵ with ϵ > 0 being sufficiently small,
mimicking type r̄∗sup can give this type a higher payoff r + τ(r̄∗sup) > r̄ > UC(r̄; t̄, τ). This violates
the IC constraints. Therefore, there should be r + τ(r̄∗sup) = r̄∗sup. The type r̄∗sup is the r̄1 in the
lemma.

To show that s2(t̄, τ) is non-empty, we prove that r̄1 < r̄2. The definitions of these two cutoff
types imply that r̄1 ≤ r̄2. For r̄ > r̄2, there should be UC(r̄; t̄, τ) = r̄p0. Suppose that r̄1 = r̄2. Then
a type r̄ = r̄2+ ϵ with ϵ > 0 being sufficiently small can be a higher payoff r̄2 > r̄p0 by reporting r̄2.
Therefore, we must have r̄1 < r̄2, which implies that s2(t̄, τ) is non-empty and s2(t̄, τ) ⊂ (r̄1, r̄2].

Scenario 2:

When s1(t̄, τ) and s2(t̄, τ) are the non-empty sets, it is obvious that r̄∗∗sup = 1. The proof above
regarding r̄1 directly applies here, so we can find a r̄1 satisfying r+τ(r̄1) = r̄1, with s1(t̄, τ) = [0, r̄1]

and s2(t̄, τ) = [0, 1] \ s1(t̄, τ) = (r̄1, 1].

Proof of Proposition 9

“Only If”:

All no-redundant-deadline incentive feasible mechanisms satisfy constraint (F). Thus, we only
show that the incentive compatibility of such mechanisms implies conditions (Cm), (CM), (C1),
(C2), (C3), and (C4).

We first consider no-redundant-deadline incentive feasible mechanisms with s3(t̄, τ) = ∅. If
s1(t̄, τ) is the only non-empty set, then we have UC(r̄; t̄, τ) = r+τ(r̄) ≥ r̄ for all r̄, so r̄m = r̄M = 1,
and (Cm), (CM) are satisfied. Given the definition of no-redundant-deadline mechanisms, t̄(r̄) = 0

for all r̄, so conditions (C1) and (C2) are trivially satisfied. The (IC) constraints imply that
τ(r̄) = τ(r̄M ) for all r̄, namely UC(r̄; t̄, τ) = UC(r̄M ; t̄, τ) = r+ τ(r̄M ). Therefore, condition (C3) is
also satisfied by such mechanisms, given PR(t̄(r̄)) = 0.
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If s1(t̄, τ) and s2(t̄, τ) are the non-empty sets, then according to Lemma 1, r̄M = 1 ∈ s2(t̄, τ)

and r̄m is equal to r̄1 defined in (44). (Cm) and (CM) are thus satisfied. We show that conditions
(C1), (C2), and (C3) are satisfied, given these two cutoff values. According to the definition of
no-redundant-deadline mechanisms, t̄(r̄) = 0 for all r̄ ≤ r̄m, so condition (C1) is satisfied. Consider
r̄ > r̄′ > r̄m. Incentive compatibility requires that UC(r̄; t̄, τ) ≥ ÛC(r̄, r̄

′; t̄, τ), which is defined in
(36), and UC(r̄

′; t̄, τ) ≥ ÛC(r̄
′, r̄; t̄, τ), which imply

0 ≤
(
UC(r̄; t̄, τ)− ÛC(r̄

′, r̄; t̄, τ)
)
−
(
ÛC(r̄, r̄

′; t̄, τ)− UC(r̄
′; t̄, τ)

)
= (r̄ − r̄′)

(
PR(t̄(r̄))− PR(t̄(r̄

′))
)
,

so t̄(r̄) ≥ t̄(r̄′) ≥ 0. Thus, condition (C2) holds for the mechanism. Now we prove condition (C3).
From the (IC) constraints, we have that for all r̄ ≤ r̄m, UC(r̄; t̄, τ) = UC(r̄m; t̄, τ) = r + τ(r̄m).
Consider r̄ > r̄′ ≥ 0. It is easy to verify that ÛC(r̄, r̄

′; t̄, τ) = UC(r̄
′; t̄, τ) + (r̄ − r̄′)PR(t̄(r̄

′)) and
ÛC(r̄

′, r̄; t̄, τ) = UC(r̄; t̄, τ)− (r̄ − r̄′)PR(t̄(r̄)). Thus, from the (IC) constraints, we obtain

(r̄ − r̄′)PR(t̄(r̄
′)) ≤ UC(r̄; t̄, τ)− UC(r̄

′; t̄, τ) ≤ (r̄ − r̄′)PR(t̄(r̄)).

Because t̄(r̄) was proved to be monotonically increasing, PR(t̄(r̄)) is Riemann integrable. We have

UC(r̄; t̄, τ)− UC(r̄
′; t̄, τ) =

∫ r̄′

r̄
PR(t̄(r̃))dr̃.

This completes the proof of condition (C3).
For mechanisms with s3(t̄, τ) being non-empty, according to Lemma 1, there are two cutoffs,

r̄1 and r̄2, such that s1(t̄, τ) = [0, r̄1], s2(t̄, τ) ⊂ (r̄1, r̄2], and s3(t̄, τ) ⊂ [r̄2, 1]. Because we assume
r̄2 ∈ s2(t̄, τ), we have r̄m = r̄1 and r̄M = r̄2. Given the fact that s3(t̄, τ) is non-empty, r̄M < 1. The
proof above for the case where s2(t̄, τ) ̸= ∅ directly carries over to the current case for r̄ ≤ r̄M , so
conditions (C1), (C2), and (C3) hold. Given that s3(t̄, τ) = (r̄M , 1], the definition of no-redundant-
deadline mechanisms implies that t̄(r̄) = 0 and UC(r̄; t̄, τ) = r̄p0 for any r̄ ∈ s3(t̄, τ), so condition
(C4) holds.

“If”:

We first show that for all r̄ < r̄M , UC(r̄; t̄, τ) > r̄p0. Suppose not, i.e., UC(r̄; t̄, τ) = r̄p0 for some
r̄ < r̄M . Then according to condition (C3) and the fact that UC(r̄M ; t̄, τ) ≥ r̄Mp0, we have

UC(r̄M ; t̄, τ)− UC(r̄; t̄, τ) =

∫ r̄M

r̄
PR(t̄(r̃))dr̃ ≥ (r̄M − r̄)p0,

or equivalently, ∫ r̄M

r̄
(PR(t̄(r̃))− p0) dr̃ ≥ 0.

Because PR(t̄(r̃)) ≤ p0, with PR(t̄(r̃)) = p0 only if t̄(r̃) = +∞, the inequality above implies
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that t̄ = +∞ for all the types in (r̄, r̄M ], due to the monotonicity of t̄ in condition (C2), and
also UC(r̄M ; t̄, τ) = r̄Mp0, due to condition (C3). However, if t̄(r̄M ) = +∞, there should be
UC(r̄M ; t̄, τ) > r̄Mp0, a contradiction. Therefore, for all r̄ < r̄M , there should be UC(r̄; t̄, τ) > r̄p0,
which implies that either UC(r̄; t̄, τ) = r + τ(r̄) or UC(r̄; t̄, τ) = (r + τ(r̄))PN (t̄(r̄)) + r̄PR(t̄(r̄)).

Case 1: r̄M = 1

To begin, we prove the case where r̄M = 1. In this case, given condition (CM) and the proof above
showing UC(r̄; t̄, τ) > r̄p0 for all r̄ < r̄M , we have s3(t̄, τ) = ∅. Regarding r̄m, because of condition
(Cm), we have s1(t̄, τ) = [0, r̄m]. According to condition (C1), t̄(r̄) = 0 for all r̄ ∈ s1(t̄, τ), so the
mechanism is a no-redundant-deadline mechanism. We show below that the mechanism is incentive
compatible.

Consider two arbitrary types r̄′′ < r̄′ ≤ r̄M . If r̄′ ≤ r̄m, then for any type r̄ ∈ [r̄′′, r̄′], condition
(C1) implies that t̄ = 0, and also UC(r̄; t̄, τ) = r + τ(r̄) ≥ r̄. From condition (C3), we have
UC(r̄

′′; t̄, τ) = UC(r̄
′; t̄, τ) = r+ τ(r̄′). That is, the two types r̄′′, r̄′ have no incentive to mimic each

other. The (IC) constraints hold for all types of the candidate in this case given that r̄′′, r̄′ are
arbitrary.

If r̄′ > r̄m, then the type-r̄′ candidate has expected payoff UC(r̄
′; t̄, τ) = (r + τ(r̄′))PN (t̄(r̄′)) +

r̄′PR(t̄(r̄
′)) < r̄′, according to (Cm). Then we have

UC(r̄
′; t̄, τ)− ÛC(r̄

′, r̄′′; t̄, τ) = UC(r̄
′; t̄, τ)− UC(r̄

′′; t̄, τ)− (r̄′ − r̄′′)PR(t̄(r̄
′′))

=

∫ r̄′

r̄′′

(
PR(t̄(r̃))− PR(t̄(r̄

′′))
)
dr̃ ≥ 0,

where the first equality is due to the definition of ÛC(r̄
′, r̄′′; t̄, τ) in (36), with t̄(r̄′′) = 0 if

UC(r̄
′′; t̄, τ) = r + τ(r̄′′); the second equality is from condition (C3); and the inequality is from

condition (C2). Thus, the type-r̄′ candidate has no incentive to report r̄′′.
For the type-r̄′′ candidate, his payoff ÛC(r̄

′′, r̄′; t̄, τ) is either (1) (r+τ(r̄′))PN (t̄(r̄′))+r̄′′PR(t̄(r̄
′))

if r+ τ(r̄′) ≤ r̄′′ or (2) r+ τ(r̄′) if r+ τ(r̄′) > r̄′′. If r+ τ(r̄′) ≤ r̄′′ , then from conditions (C3) and
(C2), we have

UC(r̄
′′; t̄, τ)− ÛC(r̄

′′, r̄′; t̄, τ) =

∫ r̄′

r̄′′

(
PR(t̄(r̄

′))− PR(t̄(r̃))
)
dr̃ ≥ 0,

so the type-r̄′′ candidate clearly has no incentive to report r̄′.
Suppose r + τ(r̄′) > r̄′′. Given that r + τ(r̄′) < r̄′, which is proved above, there exists ř ∈

(r̄′′, r̄′) such that ř = r + τ(r̄′). We show that there must be UC(ř; t̄, τ) ≥ ř. Suppose not, i.e.,
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UC(ř; t̄, τ) < ř, then from conditions (C3) and (C2), we have∫ r̄′

ř
PR(t̄(r̃))dr̃ = UC(r̄

′; t̄, τ)− UC(ř; t̄, τ)

=
[
(r + τ(r̄′))PN (t̄(r̄′)) + r̄′PR(t̄(r̄

′))
]
− UC(ř; t̄, τ)

= ř + (r̄′ − ř)PR(t̄(r̄
′))− UC(ř; t̄, τ)

> (r̄′ − ř)PR(t̄(r̄
′)),

where the first equality is directly from condition (C3), and the second equality is from the suppo-
sition of the current case that UC(r̄

′; t̄, τ) = (r + τ(r̄′))PN (t̄(r̄′)) + r̄′PR(t̄(r̄
′)). The third equality

is due to that ř = r + τ(r̄′). The inequality, which is obtained using UC(ř; t̄, τ) < ř, contradicts
condition (C2). Therefore, there must be UC(ř; t̄, τ) ≥ ř, and r̄′′ < ř < r̄m. In this case, conditions
(C1) and (C3) jointly imply that r+ τ(r̄′′) = r+ τ(ř) = r+ τ(r̄′), so the type-r̄′′ candidate clearly
has no incentive to report r̄′. Thus, the (IC) constraints are satisfied by the mechanism.

Case 2: r̄M < 1

In this case, given that r̄M ;t̄,τ) satisfies (CM), and UC(r̄; t̄, τ) > r̄p0 for all r̄ < r̄M , which is
proved at the beginning of the proof of this proposition, we have s3(t̄, τ) ⊂ (r̄M , 1]. Condition (C4)
ensures that all the types in s3(t̄, τ) have 0 deadline. At the beginning of Case 1, we have shown
that t̄(r̄) = 0 for r̄ ∈ s1(t̄, τ) = [0, r̄m], according to condition (C1). Thus, the mechanism is a
no-redundant-deadline mechanism. We show below that the mechanism is incentive compatible.

Using the proof above for the case r̄M = 1, we can show that any two types r̄′′ < r̄′ ≤ r̄M have
no incentive to mimic each other. Hence, we only need to show that (1) any type r̄′ ≤ r̄M has no
incentive to mimic a type r̄ > r̄M , and (2) any type r̄ > r̄M has no incentive to misreport.

For any type r̄′ ≤ r̄M , if he reports to be a type strictly higher than r̄M , he gets payoff r̄′p0. We
have shown above that UC(r̄

′; t̄, τ) ≥ r̄′p0. Thus, he has no incentive to mimic any type r̄ > r̄M .
Now suppose that the type of the candidate is r̄ > r̄M . Deviating to any other type in (r̄M , 1]

will given him the same expected payoff r̄p0, thus we only need to show that he has no incentive
to mimic any type r̄′ ≤ r̄M , that is,

UC(r̄; t̄, τ) ≥ ÛC(r̄, r̄
′; t̄, τ) = (r + τ(r̄′))PN (t̄(r̄′)) +max{r + τ(r̄′), r̄}PR(t̄(r̄

′)).

If r + τ(r̄′) ≥ r̄, which implies r + τ(r̄′) > r̄M , then the type r̄M has incentive to report r̄′, a
contradiction to our proof in the Case 1 above. Thus, there must be r + τ(r̄′) < r̄, i.e.,

ÛC(r̄, r̄
′; t̄, τ) = (r + τ(r̄′))PN (t̄(r̄′)) + r̄PR(t̄(r̄

′)) = UC(r̄
′; t̄, τ) + (r̄ − r̄′)PR(t̄(r̄

′)).
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Using condition 3 and the fact that UC(r̄; t̄, τ)− r̄p0,

UC(r̄; t̄, τ)− ÛC(r̄, r̄
′; t̄, τ) = r̄p0 −

[
(r + τ(r̄′))PN (t̄(r̄′)) + r̄PR(t̄(r̄

′))
]

= (r̄ − r̄M )
(
p0 − PR(t̄(r̄

′))
)
+

∫ r̄M

r̄′

(
PR(t̄(r̃))− PR(t̄(r̄

′))
)
dr̃ ≥ 0,

where the second equality is obtained using condition (C3), and the inequality is due to condition
(C2) and p0 − PR(t̄(r̄

′)) ≥ 0. Thus, the type r̄ has no incentive to report r̄′.
Combining with constraint (F), the mechanism is thus no-redundant-deadline incentive feasible

mechanism.

Proof of Proposition 5

*******************************************

Lemma 1. For any incentive feasible mechanism (t̄, τ), s1(t̄, τ) is always non-empty, and the
non-emptiness of s3(t̄, τ) implies the non-emptiness of s2(t̄, τ). The non-empty elements of
{s1(t̄, τ), s2(t̄, τ), s3(t̄, τ)} form a monotonic partition of the candidate’s type space. Specifically,

1. if s1(t̄, τ) is the only non-empty set, then s1(t̄, τ) = [0, 1], i.e., all types of the candidate accept
the offer provided by A with probability 1;

2. if s1(t̄, τ) and s2(t̄, τ) are the non-empty sets, there exists a type r̄1 satisfying

r + τ(r̄1) = r̄1 (44)

such that s1(t̄, τ) = [0, r̄1], s2(t̄, τ) = (r̄1, 1];

3. if s1(t̄, τ), s2(t̄, τ), and s3(t̄, τ) are all non-empty, then except r̄1 defined above, there exists
another type r̄2 satisfying

UC(r̄2; t̄, τ) = r̄2p0 (45)

such that s2(t̄, τ) ⊂ (r̄1, r̄2], s3(t̄, τ) ⊂ [r̄2, 1], and s2(t̄, τ) ∪ s3(t̄, τ) = (r̄1, 1].9

The non-emptiness of s1(t̄, τ) is obvious, as the candidate with outside option r̄ < r would
always accept A’s offer with probability 1. The monotonic structure of {s1(t̄, τ), s2(t̄, τ), s3(t̄, τ)}
reflects the monotonic relationship between the type of the candidate and the response of the
candidate to the offer provided by A. For any two different types of the candidate, if they are
provided the same offer, the lower type will accept the offer with a higher probability, as his outside
option is worse than that of the higher type. In an incentive feasible mechanism, A may give the

9It is not necessarily true that r + τ(r̄2) = r̄2p0. If r + τ(r̄2) = r̄2p0, then result indicates that r̄2 is the highest
type of the candidate that accepts A’s offer with positive probability. If r + τ(r̄2) ̸= r̄2p0, then r̄2 is the lowest type
of the candidate that rejects A’s offer for sure.

43



lower-type candidate an offer that is more attractive, from the lower-type candidate’s perspective,
than the higher-type candidate’s offer to deter the lower-type candidate from mimicking the higher-
type candidate, and induce the lower-type to accept the offer. Therefore, the lower-type candidate
never accepts A’s offer with a lower probability than does the higher type.

To illustrate the intuition more concretely, consider two types r̄ and r̄′ of the candidate, with
r̄ < r̄′. Under an incentive feasible mechanism (t̄, τ), if the type-r̄′ candidate always accepts the
offer (t̄(r̄′), τ(r̄′)) designed for his type and receives payoff r + τ(r̄′), namely r̄′ ∈ s1(t̄, τ), then the
type-r̄ candidate must also belong to s1(t̄, τ), i.e., he would also always accept the offer (t̄(r̄), τ(r̄))
designed for his type and get payoff r + τ(r̄), because otherwise, it must be that r + τ(r̄) < r̄, and
the type-r̄ candidate can receive a higher payoff r + τ(r̄′) by mimicking type-r̄′ candidate, given
r + τ(r̄′) ≥ r̄′ > r̄. Similar arguments can be extended to other cases.

Note that in the third scenario of Lemma 1, the cutoff type r̄2 can be included in s2(t̄, τ) or
s3(t̄, τ). It is easy to verify that two incentive feasible mechanisms that differ only in the response
of the type-r̄2 candidate give employer A and different types of the candidate the same expected
payoffs. To simplify discussion in the rest of the paper, we assume without loss that r̄2, if it exists,
belongs to s2(t̄, τ).

Given the monotonic structure of {s1(t̄, τ), s2(t̄, τ), s3(t̄, τ)}, the problem of employer A can be
formulated as the following constrained optimization problem:

(P) max
(t̄,τ)

∫
s1(t̄,τ)

(v − τ(r̄))dH(r̄) +

∫
s2(t̄,τ)

{
(v − τ(r̄))PN (t̄(r̄)) +

∫ t̄(r̄)

0
p0f(t)(1−G(t))vdt

}
dH(r̄)

+

∫
s3(t̄,τ)

{
(1−G(t̄(r̄)))PN (t̄(r̄))v +

∫ t̄(r̄)

0
p0f(t)(1−G(t))vdt

}
dH(r̄),

subject to the (F) and (IC) constraints.
Solving the employer’s problem directly is challenging, given the complexity of the (IC) con-

straints and the objective function (P). To simplify the problem, we first show in the following
lemma that to search for the mechanisms that maximize the employer’s expected payoff, we can
focus on the set of incentive feasible mechanisms that specify t̄(r̄) = 0 for the offers to the types
in s2(t̄, τ) and s3(t̄, τ). We call such incentive feasible mechanisms no-redundant-deadline (NRD)
incentive feasible mechanisms.

Lemma 2. For any incentive feasible mechanism (t̄, τ), there exists an incentive feasible mechanism
(t̄′, τ ′), which is the same as (t̄, τ), except that t̄′(r̄) = 0 for any type r̄ ∈ s1(t̄, τ)∪s3(t̄, τ), and gives
any type of the candidate the same expected payoffs as (t̄, τ) and gives A a (weakly) higher payoff
than (t̄, τ).

The proof of this result is simple. Under any incentive feasible mechanism (t̄, τ), if the candi-
date’s type is included in s1(t̄, τ) ∪ s3(t̄, τ), reducing the deadline of his offer to 0 does not change
his expected payoff, according to (17) and (19), so does not change his incentive to report truth-
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fully. At the same time, because of the reduced deadline, other types of the candidate have less
incentive to mimic this type. Therefore, the (IC) constraints still hold. If the candidate’s type in
s3(t̄, τ), we know that he always holds A’s offer until the deadline. Decreasing the deadline of such
a candidate thus can improve the expected payoff of A by increasing its chance of being matched
to the secondary candidate.

The set of NRD incentive feasible mechanism is characterized by (F), (IC), and the NRD
constraint that t̄(r̄) = 0 for any type r̄ ∈ s1(t̄, τ) ∪ s3(t̄, τ). Based on the monotonic structure of
{s1(t̄, τ), s2(t̄, τ), s3(t̄, τ)}, we can use the standard techniques to reformulate the (IC) and NRD
constraints.

Proposition 9. A mechanism (t̄, τ) is a no-redundant-deadline incentive feasible mechanism if and
only if it satisfies (F), and there exist r̄m ≤ r̄M satisfying

(Cm) r + τ(r̄) ≥ r̄ if and only if r̄ ≤ r̄m, and

(CM) r + τ(r̄M ) ≥ r̄Mpt̄(r̄M ),

such that for r̄ ≤ r̄M ,

(C1) t̄(r̄) = 0 if r̄ ≤ r̄m,

(C2) t̄(r̄) is increasing in r̄,

(C3) UC(r̄; t̄, τ) = UC(r̄M ; t̄, τ)−
∫ r̄M

r̄
PR(t̄(r̃))dr̃,

and if r̄M < 1, UC(r̄M ; t̄, τ) = r̄Mp0 and for r̄ > r̄M ,

(C4) t̄(r̄) = 0 and UC(r̄; t̄, τ) = r̄p0.

The cutoff type r̄m in the above proposition is the highest type of the candidate that accepts A’s
offer for sure. The cutoff type r̄M is the highest type of the candidate that employer A will recruit
with a positive probability. At optimum, employer A may choose a mechanism with r̄M < 1, i.e.,
A gives up the chance of recruiting the candidates with sufficiently high outside options. This is
because such a candidate requires an offer with attractive terms; if A tries to recruit such candidate
using an attractive offer, then A also needs to give the candidates with lower outside options more
information rent. In the rest of the analysis, without loss of generality, we say that employer A

provides no offer to the types of the candidate in (r̄M , 1] when r̄M < 1.
The (C2) and (C3) conditions in Proposition 9 are similar to the monotonicity condition and

envelope condition in standard mechanism design problems, respectively. In the current model,
t̄(r̄) determines the probability that the type-r̄ candidate r̄ receives his outside option: a larger
t̄(r̄) induces a higher PR(t̄(r̄)), as the candidate has more time to wait for his outside option. The
(C2) condition implies that the probability that the candidate gets his outside option is increasing
in the value r̄ of the outside option, when r̄ ≤ r̄M . The (C3) condition describes how the expected
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payoff of the candidate depends on his outside option and the probability PR(t̄(r̄)) for all r̄ ≤ r̄M .
These two conditions imply how the transfer τ(r̄) changes with r̄ and relates to t̄(r̄).

Corollary 3. For any no-redundant-deadline incentive feasible mechanism (t̄, τ), τ(r̄) is decreasing
in r̄ for r̄ ≤ r̄M . Therefore, τ(r̄) and t̄(r̄) move in the opposite directions when r̄ increases over
the region [0, r̄M ].

The reason for this corollary is intuitive. For any two different types r̄, r̄′ ∈ [0, r̄M ], with r̄ < r̄′

Proposition 9 indicates that t̄(r̄) ≤ t̄(r̄′). If there is τ(r̄) < τ(r̄′), then it is obvious that the type-r̄
candidate can get strictly better off by reporting that his outside option is r̄′.

Why the candidate with a better outside option is provided an offer with a longer deadline and
a lower transfer, instead of an offer with a shorter deadline and a higher transfer? This is resulted
from a single-crossing property of the candidate’s expected payoff: the candidate with a better
outside option values time more than does the candidate with a lower outside option. It is easy to
show that if A provides a lower-type candidate with an offer with a longer deadline and a lower
transfer so that he has no incentive to mimic a higher-type candidate, then a higher-type candidate
has incentive to pretend to be a lower-type candidate.

By replacing the (IC) and NRD constraints with the constraints from
(Cm) to (C4), we can simplify the optimization problem of the employer.
***********************************************************

For convenience, we define ∆UC(r̄; t̄, τ) = UC(r̄; t̄, τ)− r̄p0 as the surplus of the type-r̄ candidate
when he reports truthfully under mechanism (t̄, τ). The (C3) condition in Proposition 9 thus can
be reformulated as

∆UC(r̄; t̄, τ) = ∆UC(r̄M ; t̄, τ) +

∫ r̄M

r̄
(1− F (t̄(r̃)))p0dr̃. (46)

From (46), we solve out τ(r̄) for all r̄ ≤ r̄M . Specifically, for r̄ ∈ (r̄m, r̄M ], we obain

τ(r̄)PN (t̄(r̄)) = ∆UC(r̄M ; t̄, τ) +

∫ r̄M

r̄
(1− F (t̄(r̃)))p0dr̃ + r̄p0 − r̄PR(t̄(r̄))− rPN (t̄(r̄));

for r̄ ≤ r̄m, we have

τ(r̄) = ∆UC(r̄M ; t̄, τ) +

∫ r̄M

r̄m

(1− F (t̄(r̃)))p0dr̃ + r̄mp0 − r.

Using constraints (CM), (C1), (C4), and τ(r̄) obtained above using (C3), we can transform the
employer’s problem, using integration by parts, to the following simpler constrained maximization
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problem:

(P′)

∫ r̄m

0
[(v + r)− J(r̄)p0] dH(r̄) + (1−H(r̄M ))v −H(r̄M )∆UC(r̄M ; t̄, τ)

+

∫ r̄M

r̄m

{[
(v + r)− J(r̄)pt̄(r̄)

]
PN (t̄(r̄)) +

∫ t̄(r̄)

0
p0f(t)(1−G(t))vdt

}
dH(r̄),

subject to that (t̄, τ) satisfies constraints (F), (Cm), and (C2).
The following lemma shows that at optimum, A will never give any surplus to the type-r̄M

candidate, which is the most optimistic candidate that it would like to recruit with a positive
probability, i.e., ∆UC(r̄M ; t̄, τ) = 0.

Lemma 3. The no-redundant-deadline incentive feasible mechanism (t̄, τ) that solves (P ′) satisfies

1. ∆UC(r̄M ; t̄, τ) = 0, or equivalently, r + τ(r̄M ) = r̄Mpt̄(r̄M );

2. r + τ(r̄m) = r̄m.

Proof. We show that if ∆UC(r̄M ; t̄, τ) > 0, there exists another no-redundant-deadline incentive
feasible mechanism (t̄′, τ ′) that gives A a higher expected payoff.

Suppose that under mechanism (t̄, τ), we have ∆UC(r̄M ; t̄, τ) > 0. This implies that r̄M = 1

and

r + τ(r̄M ) > r̄Mpt̄(r̄M ).

For such a mechanism, if r ≤ r̄Mpt̄(r̄M ), we construct mechanism (t̄′, τ ′):

t̄′(r̄M ) = t̄(r̄M ), r + τ ′(r̄M ) = r̄Mpt̄′(r̄M ),

t̄′(r̄) = t̄(r̄), (τ(r̄)− τ ′(r̄))PN (t̄′(r̄)) = (τ(r̄M )− τ ′(r̄M ))PN (t̄′(r̄M )) for r̄ < r̄M . (47)

That is, compared with mechanism (t̄, τ), the new mechanism (t̄′, τ ′) gives each type of the candidate
the same acceptance deadline, but a lower transfer. In the new mechanism, r̄′m = r+ τ ′(r̄′m) < r̄m.

The newly constructed mechanism automatically satisfies (CM), (C1), (C2), and (C4). The
surplus of the type-r̄ candidate obtained under mechanism satisfies (46), which is the reformulated
(C3) in Proposition 9, because

∆UC(r̄; t̄
′, τ ′) = ∆UC(r̄; t̄, τ)− (τ(r̄)− τ ′(r̄))PN (t̄′(r̄))

= ∆UC(r̄M ; t̄, τ)− (τ(r̄)− τ ′(r̄))PN (t̄′(r̄)) +

∫ r̄M

r̄
(1− F (t̄(r̃)))p0dr̃

= ∆UC(r̄M ; t̄′, τ ′) +

∫ r̄M

r̄
(1− F (t̄′(r̃)))p0dr̃, (48)

where the second equality is based on (46), and the third equality is based on (47). The condition
(C3) and the fact that r̄′m = r + τ ′(r̄′m) < r̄m jointly imply that (Cm) is satisfied.
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If r > r̄Mpt̄(r̄M ), which means that we cannot reduce the surplus of type-r̄M candidate to 0
by solely reducing the transfer included in the offer, then we construct mechanism (t̄′, τ ′) with
τ ′(r̄M ) = 0 and t̄′(r̄M ) satisfying

r = r̄Mpt̄′(r̄M ), (49)

which makes ∆UC(r̄M ; t̄′, τ ′) = 0. Define ∆PR = PR(t̄(r̄M ))− PR(t̄
′(r̄M )). We have

∆UC(r̄M ; t̄, τ) = τ(r̄M )PN (t̄(r̄M )) + (r̄M − r)∆PR. (50)

For any r̄ < r̄M with PR(t̄(r̄)) ≥ ∆PR, (t̄′(r̄), τ ′(r̄)) satisfies

PR(t̄
′(r̄)) = PR(t̄(r̄))−∆PR, τ ′(r̄)PN (t̄′(r̄)) = τ(r̄)PN (t̄(r̄))− τ(r̄M )PN (t̄(r̄M )), (51)

and for r̄ < r̄M with PR(t̄(r̄)) < ∆PR, (t̄′(r̄), τ ′(r̄)) satisfies t̄′(r̄) = 0 and

τ ′(r̄) = τ(r̄)PN (t̄(r̄))− τ(r̄M )PN (t̄(r̄M ))

− (r̄M − r)∆PR + (r̄ − r)PR(t̄(r̄)) +

∫ r̄M

r̄
(PR(t̄(r̃))− PR(t̄

′(r̃)))dr̃. (52)

The construction of (t̄′, τ ′) clearly indicates that t̄′(r̄) ≤ t̄(r̄) for any r̄. Regarding the transfer
rule τ ′, it is obvious that τ ′(r̄M ) ≤ τ(r̄M ), and for r̄ < r̄M with PR(t̄(r̄)) ≥ ∆PR, since PN (t̄′(r̄) >

PN (t̄(r̄), according to (51) it is clear that 0 < τ ′(r̄) < τ(r̄). For r̄ < r̄M with PR(t̄(r̄)) < ∆PR,
since

(r̄ − r)PR(t̄(r̄)) +

∫ r̄M

r̄
(PR(t̄(r̃))− PR(t̄

′(r̃)))dr̃ < (r̄M − r)∆PR, (53)

we have τ ′(r̄) < τ(r̄) according to (52). Thus, A gets a higher expected payoff from the new
mechanism.

The newly mechanism still satisfies (CM), (C1), (C2), and (C4) by construction. For r̄ < r̄M

with PR(t̄(r̄)) ≥ ∆PR, we have

∆UC(r̄; t̄
′, τ ′) = ∆UC(r̄; t̄, τ)− τ(r̄M )PN (t̄(r̄M ))− (r̄ − r)∆PR

= ∆UC(r̄M ; t̄, τ) +

∫ r̄M

r̄
(1− F (t̄(r̃)))p0dr̃ − τ(r̄M )PN (t̄(r̄M ))− (r̄ − r)∆PR

= (r̄M − r)∆PR +

∫ r̄M

r̄
(1− F (t̄(r̃)))p0dr̃ − (r̄ − r)∆PR

= ∆UC(r̄M ; t̄′, τ ′) +

∫ r̄M

r̄
(1− F (t̄′(r̃)))p0dr̃,

where the second equality employs (46), the third equality is based on (50), and the fourth equality
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is based on the definition of ∆UC(r̄M ; t̄′, τ ′). For r̄ < r̄M with PR(t̄(r̄)) < ∆PR, we have

∆UC(r̄; t̄
′, τ ′) = (r + τ ′(r̄))− r̄p0

= ∆UC(r̄; t̄, τ)− τ(r̄M )PN (t̄(r̄M ))− (r̄M − r)∆PR

+

∫ r̄M

r̄
(PR(t̄(r̃))− PR(t̄

′(r̃)))dr̃

=

∫ r̄M

r̄
(1− F (t̄(r̃)))p0dr̃ +

∫ r̄M

r̄
(PR(t̄(r̃))− PR(t̄

′(r̃)))dr̃

= ∆UC(r̄M ; t̄′, τ ′) +

∫ r̄M

r̄
(1− F (t̄′(r̃)))p0dr̃,

where the first and second equalities are based on (52), the third equality is based on (46) and
(50), and the fourth equality is based on on the definition of ∆UC(r̄M ; t̄′, τ ′). Therefore, the
(C3) conditioon of Proposition 9 is also satisfied by the new mechanism. In the new mechanism,
r̄′m = r + τ ′(r̄′m) < r̄m. Combining with (C3), the condition (Cm) is satisfied by r̄′m.

Now we show the second part of this lemma. Given that ∆UC(r̄M ; t̄, τ) = 0 at optimum, we
know that s2(t̄, τ) ̸= ∅. Thus, according to Lemma 1, there must be

r + τ(r̄m) = r̄m. (54)

Lemma 3 introduces two new constraints on the solution to the employer’s problem: (1)
∆UC(r̄M ; t̄, τ) = 0, and (2) r + τ(r̄m) = r̄m. We use these constraints to further simplify the
problem of the employer. Given the definition of x(r̄), for any r̄ ∈ (r̄m, r̄M ] in problem (P′), we
have

[
(v + r)− J(r̄)pt̄(r̄)

]
PN (t̄(r̄)) = (v + r) [x(r̄)p0 + (1− p0)]− J(r̄)x(r̄)p0, (55)

and ∫ t̄(r̄)

0
p0f(t)(1−G(t))v =

λ

λ+ δ

[
1− x(r̄)

(λ+δ)
λ

]
p0v. (56)

Plugging these equations and the constraint ∆UC(r̄M ; t̄, τ) = 0 into the objective function (P′), we
can reformulate the employer’s problem as follows:

max
{r̄m,r̄M ,x(·)}

∫ r̄m

0
[(v + r)− J(r̄)p0]dH(r̄) + (1−H(r̄M ))v

+

∫ r̄M

r̄m

{
(v + r) [x(r̄)p0 + (1− p0)]− J(r̄)x(r̄)p0 +

λ

λ+ δ

[
1− x(r̄)

(λ+δ)
λ

]
p0v

}
dH(r̄),

which is the objective function (P′) in Proposition 5, subject to constraints (F), (Cm), (C2), and
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r + τ(r̄m) = r̄m.
We prove that the constraints (F), (Cm), (C2), and r + τ(r̄m) = r̄m can be replace by (C1∗)

and (C2∗). Given ∆UC(r̄M ; t̄, τ) = 0, i.e., r + τ(r̄M ) = r̄Mpt̄(r̄M ), (F) and (C2) are equivalent to
requiring that r̄M ≥ r/p0 and t̄(r̄) is increasing in r̄, but bounded between 0 and t̄r̄M (r), which
is exactly the constraint (C1∗). When (C1) and the envelope condition (C3) hold, the condition
r + τ(r̄m) = r̄m implies (Cm). Thus, we can drop (Cm) from the analysis. Using (C3), we can
transform r + τ(r̄m) = r̄m into (C2∗), which involves only r̄m, r̄M , and x.

Proof of Proposition 6

Ignoring constraint (C2∗) and the cutoff r̄m, the objective function (P∗) of the employer reduces to

max
{r̄M ,x(·)}

∫ r̄M

0
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v. (57)

Fixing the value of r̄M ≥ r/p0, the derivative of ΠA(x(r̄); r̄) with respect to x(r̄) is

dΠA(x(r̄); r̄)

dx(r̄)
= [(v + r)− J(r̄)− v] p0.

Case 1: (v + r)− v ≥ J(1)

In this case, given Assumption 2, we have dΠA(x(r̄); r̄)/dx(r̄) ≥ 0 for all r̄. Because x(r̄) is bounded
from above by 1 due to constraint (C1∗), it is optimal for A to choose x(r̄) = 1 for all r̄ ≤ r̄M .
Therefore, the optimal payoff of the employer for any fixed r̄M ≥ r/p0 is∫ r̄M

0
ΠA(1; r̄)dH(r̄) + (1−H(r̄M ))v =

∫ r̄M

0
[(v + r)− J(r̄)p0] dH(r̄) + (1−H(r̄M ))v.

Taking the derivative of this optimal payoff with respect to r̄M , we obtain

[(v + r)− J(r̄M )p0 − v]h(r̄M ) > 0,

for all r̄M ≤ 1, given that (v + r) − v ≥ J(1) in this case. Therefore, the objective function (57)

is maximized when r̄M = 1 and x(r̄) = 1 for all r̄ ∈ [0, 1]. The constraint (C1∗) is automatically
satisfied. If we choose r̄m = p0, then the constraint (C2∗) is satisfied, and the payoff of the employer
is unchanged. This optimal mechanism can be represented by (x, τ) with x(r̄) = 1 and τ(r̄) = p0−r

for all r̄.

Case 2: ∃r̂∗ ∈ (r, 1) such that (v + r)− v = J(r̂∗)

We still consider the relaxed maximization problem (57). Because there exists r̂∗ ∈ (r, 1) such that
(v + r)− v = J(r̂∗), it is optimal to choose x(r̄) = 1 for r̄ ≤ r̂∗ and x(r̄) = χ(r̄M ) for r̄ ∈ (r̂∗, r̄M ],
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given Assumption 2. Thus, the optimal payoff of the employer for any fixed r̄M ≥ r/p0 is∫ r̂∗

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r̂∗
ΠA(χ(r̄M ); r̄)dH(r̄) + (1−H(r̄M ))v.

The employer chooses r̄M ≥ max{r/p0, r̂∗} to maximize the payoff above, i.e.,

r̄∗M ∈ arg max
r̄M≥max{r/p0,r̂∗}

∫ r̄M

r̂∗
ΠA(χ(r̄M ); r̄)dH(r̄) + (1−H(r̄M ))v,

given that r̂∗ is independent of r̄M . The solution of the relaxed problem, x(r̄) = 1 for r̄ ≤ r̂∗ and
x(r̄) = χ(r̄∗M ) for r̄ ∈ (r̂∗, r̄∗M ], satisfies (C1∗). Constraint (C2∗) can be simplified to

r̄m(1− p0) = (r̂∗ − r̄m)p0 + (r̄∗M − r̂∗)χ(r̄∗M )p0.

There is always a unique r̄∗m ∈ [r, r̂∗) satisfying the constraint. Because r̄∗m < r̂∗, the solution to the
relaxed problem also maximizes the problem with constraint (C2∗). The optimal mechanism of A’s
original problem thus can be represented by (x, τ) with x∗(r̄) = 1 and τ∗(r̄) = (r̂∗−r)(1−χ(r̄∗M ))p0

for r̄ ≤ r̂∗; x∗(r̄) = χ(r̄∗M ) and τ∗(r̄) = 0 for r̄ ∈ (r̂∗, r̄∗M ]; x∗(r̄) = 1 and τ∗(r̄) = 0 for r̄ > r̄∗M .
It is worth mentioning that if r̂∗ ≥ r/p0, we have have r̄∗M ≥ r̂∗.

Case 3: (v + r)− v ≤ J(r)

Constraints (C1∗) and (C2∗) imply that r̄m ≥ r. Due to constraint (C1∗), we require x(r̄) ≥ χ(r̄M ).
Thus, to have (C2∗) satisfied, there should be

r̄m(1− p0) ≥
∫ r̄M

r̄m

χ(r̄M )p0 = (r̄M − r̄m)χ(r̄M )p0.

By definition, χ(r̄M ) = r(1− p0)/(r̄M − r)p0. Plugging this expression to the inequality above, we
can derive r̄m ≥ r. This implication means that for any r̄ ≥ r, there should always be x(r̄) = 1 in
any incentive feasible mechanism. We consider following payoff function

max
{r̄M ,x(·)}

∫ r

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v.

In the current case, because of Assumption 2, we have dΠA(x(r̄); r̄)/dx(r̄) < 0 for all r̄ > r.
Thus, it is optimal for the employer to choose x(r̄) = χ(r̄M ) for all r̄, to maximize the relaxed
object function above. Therefore, for any fixed r̄M ≥ r/p0, the optimal payoff of the employer is∫ r

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r
ΠA(χ(r̄M ); r̄)dH(r̄) + (1−H(r̄M ))v.
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The employer chooses r̄M to maximize the above payoff, i.e.,

r̄∗M ∈ arg max
r̄M≥r/p0

∫ r̄M

r
ΠA(χ(r̄M ); r̄)dH(r̄) + (1−H(r̄M ))v.

The constraint (C1∗) is automatically satisfied. If we choose r̄m = r, then the constraint (C2∗) is
also satisfied, and the payoff of the employer is unchanged. This mechanism can be represented by
(x, τ) with x(r̄) = 1 for r̄ ∈ [0, r] ∪ (r̄∗M , 1], x(r̄) = χ(r̄∗M ) for r̄ ∈ (r, r̄∗M ], and τ(r̄) = 0 for all r̄.

Proof of Proposition 7

Similar to the proof of Proposition 6, we first ignore (C2∗) and r̄m, and consider the following
relaxed maximization problem:

max
{r̄M ,x(·)}

∫ r̄M

0
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v, (58)

subject to constraint (C1∗).
Remember that without (C1∗), it is optimal to choose x(r̄) = x̂(r̄) defined in (25). Because

there exists r̂∗ ∈ (r, 1) such that (v+r)−v = J(r̂∗), we have x̂(r̄) ≥ 1 for all r̄ ≤ r̂∗. Thus, with the
constraint (C1∗), it is optimal to choose x(r̄) = 1 for all r̄ ≤ r̂∗, given that ΠA(x(r̄); r̄) is concave
in x(r̄). It is easy to verify that ΠA(1; r̄) = (v + r) − J(r̄)p0 > v for r̄ ≤ r̂∗. That is, recruiting
these types of the candidate using x(r̄) = 1 is better than giving them up, which gives the employer
payoff v. Thus, the optimal r̄M must be larger than r̂∗.

For the types of the candidate in (r̂∗, r̄M ] when r̂∗ < r̄M , it is optimal for the employer to choose
x(r̄) = max{x̂(r̄), χ(r̄M )}, because of constraint (C1∗). Thus, the optimal payoff of the employer
for any fixed r̄M ≥ max{r/p0, r̂∗} is∫ r̂∗

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r̂∗
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v,

with x(r̄) = max{x̂(r̄), χ(r̄M )}. The employer chooses r̂∗M that maximizes the payoff above, i.e.,

r̂∗M ∈ arg max
r̄M≥max{r/p0,r̂∗}

∫ r̄M

r̂∗
ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v,

subject to x(r̄) = max{x̂(r̄), χ(r̄M )}, given that r̂∗ is independent of r̄M . The solution of the
relaxed problem satisfies (C1∗), including the monotonicity condition.

Now we show that there exists a unique r̄∗m ∈ (r, r̂∗] making the solution to the relaxed problem
satisfy the constraint (C2∗). Suppose r̄m ≤ r̂∗. We plug the solution of the relaxed problem into
(C2∗), and obtain

r̄m(1− p0) = (r̂∗ − r̄m)p0 +

∫ r̂∗M

r̂∗
max{x̂(r̄), χ(r̂∗M )}p0dr̄.
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By reformulating the equation, we obtain r̄∗m = r̂∗ − Q(r̂∗, r̂∗M ), which is the value of r̄m that
makes (C2∗) hold. It is obvious that r̄∗m ≤ r̂∗, as Q(r̂∗, r̂∗M ) ≥ 0. Because r̂∗ > r and x(r̄) =

max{x̂(r̄), χ(r̄M )} ≥ χ(r̄M ), we have r̄∗m > r. Therefore, the optimal mechanism solving the
relaxed problem is also optimal to the original problem of the employer.

Proof of Proposition 8

Below we first consider the maximization problem in Proposition 5 with fixed r̄m and r̄M , that is,

max
x(·)

∫ r̄m

0
ΠA(1; r̄)dH(r̄) +

∫ r̄M

r̄m

ΠA(x(r̄); r̄)dH(r̄) + (1−H(r̄M ))v,

subject to constraints

(C1∗) x(r̄) is decreasing in r̄ and bounded by 1 and χ(r̄M ), with r̄M ≥ r/p0;

(C2∗) r̄m(1− p0) =

∫ r̄M

r̄m

x(r̄)p0dr̄.

We show that if x∗ : [r̄m, r̄M ] → R++ is a solution to the problem above, there exist two cutoffs
r̄∗, r̄∗∗ ∈ [r̄m, r̄M ] such that

x∗(r̄) =


1, if r̄ < r̄∗;[
(v+r)−J(r̄)−µ∗/h(r̄)

v

]λ
δ
, if r̄∗ < r̄ < r̄∗∗;

χ(r̄M ), if r̄∗∗ < r̄.

(59)

From the constraints (C1∗) and (C2∗), we know that r̄m ≥ r (see Case 3 in the proof of
Proposition 6) and r̄M ≥ r̄m/p0. If r̄m = r, then there must be x∗(r̄) = χ(r̄M ) for all r̄ ∈ (r̄m, r̄M ]

and all r̄M ≥ 1. In this case, r̄∗∗ = r̄m. If r̄M = r̄m/p0, then there must be x∗(r̄) = 1 for all
r̄ ∈ (r̄m, r̄M ]. In this case, r̄∗ = r̄M .

Below we consider r̄m > r and r̄M > r̄m/p0. We ignore the monotonicity constraint on x(r̄)

in (C1∗). According to the Lagrange theorem, if x∗ solves the above maximization problem, then
there exist µ∗(r̄m, r̄M ) ∈ R, µ∗

1 : [r̄m, r̄M ] → R, and µ∗
2 : [r̄m, r̄M ] → R such that x∗, µ∗(r̄m, r̄M ),

µ∗
1, and µ∗

2 are the solution to the following Lagrangian

L(x, µ, µ1, µ2)

=

∫ r̄M

r̄m

{
ΠA(x(r̄); r̄)h(r̄)− µ

[
x(r̄)p0 −

r̄m(1− p0)

r̄M − r̄m

]
− µ1(r̄) (x(r̄)− 1)− µ2(r̄)

(
χ(r̄M )− x(r̄)

)}
dr̄.
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The first order conditions are

∂L(x, µ, µ1, µ2)

∂x(r̄)

1

h(r̄)p0
=

[
(v + r)− J(r̄)− x(r̄)

δ
λ v − µ

h(r̄)

]
− µ1(r̄)

h(r̄)p0
+

µ2(r̄)

h(r̄)p0
= 0, (60)

∂L(x, µ, µ1, µ2)

∂µ
= −

∫ r̄M

r̄m

x(r̄)p0dr̄ + r̄m(1− p0) = 0, (61)

with the complementary slackness conditions: for all r̄ ∈ [r̄m, r̄M ],

µ1(r̄) (x(r̄)− 1) = 0, with µ1(r̄) ≥ 0 and x(r̄)− 1 ≤ 0,

µ2(r̄)
(
χ(r̄M )− x(r̄)

)
= 0, with µ2(r̄) ≥ 0 and x(r̄)− χ(r̄M ) ≥ 0.

To proceed, we neglect (61), and show that for any µ, the function x : [r̄m, r̄M ] → R++ that
satisfies (60) and the complementary slackness conditions is in the form of (59) and characterized
by two cutoffs r̄∗µ and r̄∗∗µ .

We define µ̄ as the value µ satisfying

(v + r)− J(r̄m)− χ(r̄M )
δ
λ v − µ̄

h(r̄m)
= 0. (62)

Since (v + r) ≥ v + r̄ for all r̄ ∈ [0, 1], there should be H(r̄m) + µ̄ > 0. Due to the concavity of
H(r̄), we have that for all r̄ > r̄m and all µ ≥ µ̄, (v+ r)−χ(r̄M )

δ
λ v < J(r̄)+µ/h(r̄). Thus, to have

(60) satisfied, x(r̄) = χ(r̄M ) for all r̄ > r̄m and µ ≥ µ̄. In this case, we have r̄∗∗µ = r̄m.
We define µ as the value µ satisfying

(v + r)− J(r̄M )− v −
µ

h(r̄M )
= 0. (63)

It is clear that µ < µ̄. For all µ ≤ µ, (v + r) − v > J(r̄) + µ/h(r̄) for all r̄ < r̄M . That is, when
µ ≤ µ, to have (60) satisfied, x(r̄) = 1 for all r̄ < r̄M . We prove this by contradiction. Suppose
that there exists some r̄′ < r̄M such that (v + r) − v ≤ J(r̄′) + µ/h(r̄′) for some µ ≤ µ. Since
(v + r) ≥ v + r̄ for all r̄, there should be H(r̄′) + µ > 0. Due to the concavity of H(r̄), there must
be (v + r)− v < J(r̄M ) + µ/h(r̄M ). A contradiction to (63). In this case, we have r̄∗µ = r̄M .

Now we consider µ ∈ (µ, µ̄). If there exists r̄ ∈ (r̄m, r̄M ) such that

(v + r)− J(r̄)− χ(r̄M )
δ
λ v − µ

h(r̄)
= 0, (64)

we define this r̄ as r̄∗∗µ . Given that (v + r) ≥ v + r̄ for all r̄, there should be H(r̄∗∗µ ) + µ > 0. Due
to the concavity of H(r̄), we have that (v+ r)− χ(r̄M )

δ
λ v < J(r̄) + µ/h(r̄) for all r̄ > r̄∗∗µ . That is,

x(r̄) = 1 for all r̄ > r̄∗∗µ . If no r̄ satisfies (64), then we define r̄∗∗µ = r̄M .
If there exists r̄ such that

(v + r)− J(r̄)− v − µ

h(r̄)
= 0, (65)
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we define this r̄ as r̄∗µ. There must be that (v + r) − v > J(r̄) + µ/h(r̄) for all r̄ < r̄∗µ. (This
implies that r̄∗µ < r̄∗∗µ .) We prove this by contradiction. Suppose that there exists some r̄′ such that
(v + r)− v < J(r̄′) + µ/h(r̄′). Then there should be H(r̄′) + µ > 0. Due to the concavity of H(r̄),
there must be (v + r)− v < J(r̄∗µ) + µ/h(r̄∗µ). A contradiction to that r̄∗µ satisfies (65). Therefore,
to have (60) satisfied, x(r̄) = 1 for all r̄ < r̄∗µ. If no r̄ satisfies (65), then we define r̄∗µ = r̄m.

For r̄ ∈ (r̄∗µ, r̄
∗∗
µ ), we have

(v + r)− v < J(r̄) + µ/h(r̄),

(v + r)− χ(r̄M )
δ
λ v > J(r̄) + µ/h(r̄).

According to the complementary slackness condition and (60), there should be x(r̄) ∈ (χ(r̄M ), 1),
µ1(r̄) = µ2(r̄) = 0, and

∂L(x, µ, µ1, µ2)

∂x(r̄)
= (v + r)− J(r̄)− x(r̄)

δ
λ v − µ

h(r̄)
= 0.

Therefore, we obtain, for r̄ ∈ (r̄∗µ, r̄
∗∗
µ ),

x(r̄) =

[
(v + r)− J(r̄)− µ/h(r̄)

v

]λ
δ

.

For all r̄ ∈ (r̄∗µ, r̄
∗∗
µ ), given that H(r̄) + µ > 0 and H(r̄) is concave, x(r̄) is strictly decreasing in r̄.

Therefore, for any µ, the function x(r̄) that satisfies (60) and the complementary slackness
conditions is in the form of (59). Moreover, x(r̄) is decreasing in r̄ ∈ [r̄m, r̄M ].

We plug x(r̄) into (61) to pin down the value of µ∗(r̄m, r̄M ). That is, µ∗(r̄m, r̄M ) is the solution
to equation

(r̄m − r̄∗µ)p0 +

∫ r̄∗∗µ

r̄∗µ

[
(v + r)− J(r̄)− µ/h(r̄)

v

]λ
δ

p0dr̄ + (r̄M − r̄∗∗µ )χ(r̄M )p0 − r̄m(1− p0) = 0.

There exists a unique µ∗(r̄m, r̄M ) satisfying the equation, because x(r̄) is continuously decreasing in
µ, given that r̄∗µ and r̄∗∗µ are continuous in µ. Moreover, µ∗(r̄m, r̄M ) is continuous in r̄m, r̄M . Because
the function x(r̄) for any µ is decreasing in r̄, the solution x∗(r̄) corresponding to µ∗(r̄m, r̄M ) satisfies
the monotonicity constraint in (C1∗).

To find the optimal r̄m and r̄M , we plug x∗(r̄) into the objective function (P∗) in Proposition
5. The derived objective function is continuous in r̄m and r̄M , and the set of feasible r̄m and r̄M is
compact. Thus, there exists a pair of r̄∗m and r̄∗M solving (P∗).
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