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Abstract

Strategic influencers send costly messages over time to persuade agents in a net-

work. Each influencer maximizes her total discounted payoff, which decreases in

the agents’ opinion deviations from her agenda. Agents update opinions by taking

weighted averages of neighbors’ opinions and messages from the influencers. In a

single influencer benchmark, early messages are more extreme to hasten agenda adop-

tion, followed by moderate messages to align opinions with her agenda. The single

influencer is worse off in networks where weights agents attach to their own opinions

are farther apart from the weights agents attach to their neighbors’ opinions because

such networks have uniformly larger eigenvalues than a more balanced network. With

multiple influencers, if they have the same impact on agents, consensus emerges in any

network as the average agenda of the influencers. If they have different impacts, in

symmetric networks, consensus still emerges but it is closer to the agenda of the more

impactful influencer. In asymmetric networks, asymmetric influencers often target
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different subgroups with differing intensity, generating perpetual disagreement and

polarization.

JEL: D85, D83, C73.

Keywords: optimal dynamic intervention in social networks, strategic competition

among influencers, consensus and perpetual disagreements, general non-zero sum

N -player LQ games.
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1 Introduction

Misinformation and disinformation are rampant in social networks, significantly influencing

the opinions of those exposed to them. According to global data, there were 5,613 dis-

tinct misinformation stories reported from the beginning of the Covid pandemic until the

end of December 2020.1 Twitter data from the 2016 US presidential campaign revealed

that Russian disinformation efforts followed a "firehose of falsehood" model, featuring

high-frequency, multi-channel, and continuous messages without regard to consistency.2

Fake online reviews have been employed to promote businesses, deceiving unsuspecting

consumers into purchasing inferior products. For instance, Tripadvisor’s 2021 report con-

cluded that nearly 1 million reviews (3.6%) on the site were fraudulent. The impact of

such misinformation and disinformation campaigns is tangible, as they influence people’s

decisions regarding vaccination, voting choices, purchasing behavior, and so on. This paper

studies how influencers compete to persuade a network of agents over time to adopt their

agendas, whether beneficial or harmful.

Two novel features set our model apart. First, influencers face a trade-off between short-term

and long-term outcomes as they seek to maximize their total discounted payoffs. They

send more extreme messages early on, despite their higher immediate cost, to accelerate

agenda adoption and increase long-term payoffs.3 Second, we study dynamic competition

among influencers, including both strategic ones and mechanical entities such as spam

bots. We find two sufficient conditions under which consensus among agents is sustained.

When influencers have equal impact on agents, the consensus is the average agenda of

all influencers. When influencers have different impact on agents, consensus closer to

the stronger influencer’s agenda emerges in symmetric networks. More generally, we

show perpetual disagreement and polarization often emerge when influencers have different

impacts and the network is asymmetric.

As a benchmark, we study how a single influencer sends messages to the agents in each

period to minimize the total (discounted) quadratic distance between agents’ opinions and

1See “Localized Misinformation in a Global Pandemic: Report on COVID-19 Narratives around the
World”, March 25, 2021.

2Rand: The Russian "Firehose of Falsehood" Propaganda Model: Why It Might Work and Options to
Counter It.

3This approach diverges from the large network learning literature, which primarily focuses on the long-run
outcomes (see DeMarzo, Vayanos, and Zwiebel (2003), Golub and Jackson (2010), among many others).
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her agenda. For example, a government tries to persuade agents that a vaccine is effective. In

addition to listening to the government’s messages, agents follow the DeGroot learning rule

by taking a weighted average of her neighbors’ opinions, and the weights form a network

matrix. We find that the government’s optimal message in each period is linear in the agents’

current opinions. She sends the most extreme—and most costly—messages initially to

push against the agents’ initial opinions. The messages become increasingly moderate

and converge to zero as opinions converge to her agenda. To obtain these results, we

present the government’s payoff as a quadratic function of initial opinions, weighted by an

endogenous matrix capturing her total discounted payoff given her optimal strategy.4 While

equilibrium characterization is obtained, the interdependence between the agents’ opinions

and the influencers’ messages complicates its economic interpretation. Methodologically,

we simplify the analysis by suitably decomposing the network matrix and transforming the

problem into one with independence among dimensions.5

Simple comparative statics follow our decomposition immediately. In symmetric networks,

the government’s early messages become more extreme, and later messages less so, if the

discount rate is higher, or if the cost is lower. Moreover, divergence of initial opinions from

her agenda such as the average opinion, and to a lesser extent, differences in initial opinions,

reduces her payoff. Higher eigenvalues of the network matrix lead to more persistent initial

opinions, which in turn diminish her payoff. For instance, consider an imbalanced network

in which the weights agents attach to their own opinions are far away from the weights they

attach to their neighbors. Then, either the agents are too stubborn that initial opinions persist,

or the agents are too impressionable that opinions fluctuate, both slowing down agenda

adaption and reducing the government’s payoff. The opposite is true in a balanced network.

Simple policy analysis also follows. We compare the government’s optimal messages and

payoffs across different interventions: one-shot intervention (initial message only), myopic

dynamic intervention (maximizing the next-period payoff, due to reelection pressure) and

optimal dynamic intervention. In symmetric networks, she sends the most extreme initial

message in one-shot intervention, followed by optimal dynamic intervention and then

myopic intervention. Her later messages are less moderate in optimal dynamic intervention

4Formally, this matrix is the solution to the influencer’s discrete-time algebraic Ricatti equation, a nonlinear
fixed point equation.

5Specifically, we use eigendecomposition for symmetric networks or singular value decomposition for
general networks, which is especially useful when a matrix has low ranks.
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than those in myopic intervention. Interestingly, myopic intervention always outperforms

one-shot intervention, with the difference being largest at intermediate cost levels.

Next, we examine strategic interactions among multiple influencers who have equal impacts,

as measured by the weight agents assign to an influencer’s messages. Remarkably, a

consensus emerges wherein all agents believe in the average agenda of the influencers,

even in asymmetric networks where some agents are more important than others. In this

scenario, each influencer’s strategy remains an affine function of the current opinions: the

slope determines opinion convergence speed while the constant term steers the opinions

toward an influencer’s agenda. Equal impact means that all influencers’ strategies share

the same slope, with only the constant terms differing based on their agendas. While the

influencers do target more important agents with more extreme messages, equal impacts

makes them do so uniformly. In the limit, their messages offset each other and their agendas

are equally weighted in the consensus. As a result, influencers with agendas closer to the

average get higher payoffs and vice versa. In our example, the government trying to persuade

agents about vaccine efficacy is unlikely to succeed despite paying a high cost if all other

influencers push extreme anti-vaccine agendas. But it may do well when facing a diverse

group of influencers with varied agendas.

Our result also shows why like-minded influencers may flock to the same network. In

the limit, messages from influencers whose agendas are on the same side of the average

agenda are strategic substitutes; otherwise, they are strategic complements. In the case when

all influencers have the same agenda, their messages are identical and serve as strategic

substitutes. Persuading the agents then becomes a public good, and each influencer wants

to free ride on the others. As the number of such influencers increases, everyone can send

less extreme (and cheaper) messages while accelerating opinion convergence, leading to a

higher payoff.

When influencers have different impacts, the influencer with a stronger impact adopts an

optimal strategy with a steeper slope, pushing harder against the agents’ opinions in each

period and accelerating convergence. In symmetric networks, opinions eventually reach a

consensus that aligns more closely with the agenda of the stronger influencer. As agents

are equally important in symmetric networks, they are treated equally by each influencer in

the limit, and the stronger influencer prevails. In contrast, consensus is often impossible to

achieve in general asymmetric networks, with agents disagreeing with each other and both

influencers. We demonstrate this result in a uniform opinion leader network, where every
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agent receives the same opinion weight from all agents, and the agent receiving the highest

weight is the opinion leader. In this scenario, the limit opinions of all agents align more

closely with the agenda of the stronger influencer, with the opinion leader being the closest.

The distance between an agent’s limit opinion and the stronger influencer’s agenda increases

as the agent becomes less important in the network. Intuitively, both influencers find it

optimal to send more extreme messages to the opinion leader, but the stronger influencer has

a comparative advantage in persuading him. Recognizing that competing with the stronger

influencer on the opinion leader is not optimal, the weaker influencer diverts more effort on

the opinion followers. As a result, the agents are deferentially "targeted" by the influencers,

leading to permanent disagreements. Such disagreement arises endogenously and does not

hinge on stubborn agents with fixed opinions.

Throughout this paper, we use the simplest model possible to highlight the economic insights

in the messaging game among influencers, in Appendix B, we explore a considerably more

general model that allows for asymmetric payoff functions and general impact matrices (not

just a scalar) for each influencer. In this extended analysis, we characterize the necessary

equilibrium conditions and derive the equations governing the evolution of opinions.

Our paper draws from and contributes to several large literature. Most closely related to our

model is the recent and growing literature on network intervention/targeting. Galeotti, Golub,

and Goyal (2020) consider a static game in which the social planner optimally intervenes

by changing agents’ private returns to investment, which exhibit strategic spillovers in a

network. Similarly, Jeong and Shin (2022) explore how a designer optimally implants initial

opinions to align the network’s limit opinions with her agenda. We differ from them by

considering dynamic intervention, allowing influencers to send messages to agents over

time. Grabisch, Mandel, Rusinowska, and Tanimura (2018) study two strategic agents, each

targeting one agent in a network to influence agents’ limit beliefs. Sadler (forthcoming)

examines influence campaigns within networks, and Vohra (2023) studies how two strategic

influencers, concerned about the network’s limit belief, choose the probabilities to influence

the agents. In contrast, in our model, each influencer aims to maximize her total discounted

payoff, caring about both short-term and long-term opinions. Galeotti and Goyal (2009)

investigate the intervention of a single strategic agent who knows only the distribution of

agents’ degrees in a network, while Bloch and Shabayek (2023) study optimal targeting when

the planner lacks knowledge of the identities of agents occupying different network positions.

In our model, the influencer possesses precise knowledge of the network’s structure and the
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agents’ identities, enabling her to target each agent with a different message.

Our paper is also related to both the classic literature on linear quadratic (LQ) optimal

control problems, as summarized by Anderson and Moore (1989) and Bertsekas (2017), and

the more recent literature on LQ network games. For instance, Ballester, Calvo-Armengol,

and Zenou (2006) demonstrate in a network game with LQ payoff functions that the Nash

equilibrium action of each player is proportional to her Bonacich centrality. In contrast, in our

model, the game is among the strategic influencers who are not part of the network. Various

papers, including Papavassilopoulos and Olsder (1984), Freiling, Jank, and Abou-Kandil

(1996), and Engwerda (1998), have studied two-player or zero-sum LQ games. However,

their focus is primarily on the existence of equilibrium and computation algorithms, rather

than exploring strategic interactions and economic implications as in our model.

In addition, our paper is related to the vast literature on learning in networks and opinion

dynamics. In our model, agents learn naively and update their opinions according to the

learning rule proposed by DeGroot (1974).6 Gale and Kariv (2003) and Mossel, Sly, and

Tamuz (2015) consider the theoretical benchmark of fully rational agents updating by Bayes’

rule, and many recent papers explore quasi-Bayesian learning rules in which agents are

boundedly rational.7 Since quasi-Bayesian learning can be cognitively and computationally

demanding, agents in lab and field experiments often exhibit very limited cognitive ability.8

Given that our focus is on how strategic influencers compete among themselves to influence

agents over time, we assume agents in the network learn naively for tractability.

2 A Model of Influencers

We introduce our main model and defer further discussions to Section 2.1. Agents are

connected in a network G = (N , A), where N = {1, . . . , N} represents the set of agents

and A = [Aij] is a real-valued N ×N row stochastic matrix. Each element Aij represents

6Variants of DeGroot learning has been analyzed by Friedkin and Johnsen (1990), DeMarzo, Vayanos, and
Zwiebel (2003), Golub and Jackson (2010), and Ghaderi and Srikant (2014). See Chapter 7 of Jackson (2008).

7See Bala and Goyal (1998), Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016), Molavi, Tahbaz-
Salehi, and Jadbabaie (2018), Levy and Razin (2018), Mueller-Frank and Neri (2019), Li and Tan (2020), Li
and Tan (2021), and Della Lena (2022), among many others.

8See Anderson and Holt (1997), Celen and Kariv (2004), Alevy, Haigh, and List (2007), Cai, Chen, and
Fang (2009), Mobius, Phan, and Szeidl (2015), Bai, Golosov, Qian, and Kai (2015), Enke and Zimmermann
(2019), Chandrasekhar, Larreguy, and Xandri (2020), and Grimm and Mengel (2020), among others.
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the weight assigned by agent i to the opinion of agent j. The weights satisfy 0 ≤ Aij ≤ 1

and
∑

j Aij = 1. Time is discrete: t = 0, . . . , T and T ≤ ∞, indicating that the time

horizon can be finite or infinite. Each agent holds an initial opinion xi
0 ∈ R at t = 0. In

every period t, the vector of all agents’ opinions is denoted by xt ∈ RN , where each element

xi
t is agent i’s opinion at period t.9 Agents are naive in that they update their opinions using

the classic DeGroot updating rule. Each agent, referred to generically as he throughout

the paper, updates opinions based on computing a weighted average of the opinions of the

agents he listens to, as represented by matrix A.

Moreover, each agent also listens to M ≥ 1 influencers from outside the network A denoted

by m ∈ {1, . . . ,M}. In period t, influencer m, referred to generically as she throughout

the paper, sends messages rmt =
(
rm,1
t , rm,2

t , . . . , rm,N
t

)′
∈ RN . Each element rm,i

t is the

(distinct) message influencer m sends to agent i in period t. Starting with any initial opinions

x0, the agents’ opinions are updated using both the opinions of all agents and the messages

from influencers such that

xt+1 = Axt + αm

M∑
m=1

rmt , (1)

where xt is the vector of opinions and rmt is the vector of influencer m’s messages at t.

The scalar αm > 0 captures the impact of influencer m’s messages. A higher value of αm

indicates greater impact. For simplicity, we assume that each influencer’s messages have a

uniform impact of αm on all agents.10

Our model studies the messenging game among M influencers, each with a known agenda

denoted as bm ∈ R, m = 1, . . . ,M . The influencers send costly messages to align the

agents’ opinions with their respective agendas, subject to agents updating opinions according

to (1). In each period t, influencer m’s stage payoff is given by

um
t (xt) = −(xt − bm)′(xt − bm)− c(rmt )

′rmt . (2)

Here, bm = bm1 is the vector with all entries equal to bm, and c(rmt )
′rmt represents the cost

9We use boldface lowercase for vectors and capital letters for matrices. All vectors are column vectors.
10We use the following rule to simplify notations: the time index t is always presented as a subscript; the

influencer index m is presented as a superscript (except for the impact αm, as it frequently appears squared);
and the agent index i is presented as a superscript when accompanied by t (e.g., rm,i

t ), and as a subscript when
accompanied by m but without t (e.g., bmi ).
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of sending messages.11 The discount rate is δ ∈ (0, 1), and influencer m maximizes her total

discounted payoff by choosing messages rmt in each period t.

We focus on T = ∞ to be succinct. When M ≥ 2, influencers choose messages (rmt for

influencer m) simultaneously and independently in each period t, leading to a dynamic game

of complete but imperfect information. Let rt = {r1t , . . . , rMt }. The history of the play at

period t ≥ 1 is ht = {x0, r0, . . . ,xt−1, rt−1}, and h0 = {x0}. Let Ht be the collection of

such histories at t. Then, influencer m’s strategy is a sequence of mappings (σm
t )

∞
t=0 where

σm
t : Ht → RN for all t ≥ 0. For any given ht, the continuation payoff of influencer m is

−
∞∑
τ=t

δτ ((xτ − bm)′(xτ − bm) + c(σm
τ (hτ ))

′σm
τ (hτ )) , (3)

where for all τ ≥ t, hτ+1 = {hτ ,xτ , (σ
j
τ (hτ ))

M
j=1} and xτ = Axτ−1 +

∑M
j=1 αjσ

j
τ (hτ ) are

iteratively defined from ht. A subgame perfect equilibrium is a profile of strategies (σm
t )

∞
t=0

such that for any ht, every influencer m’s strategy (σm
τ (hτ ))

∞
τ=t maximizes (3) given all

other influencers’ strategies and the opinion updating rule. Given our interest in network

influence, we restrict attention to strategies that depend only on the current opinions instead

of the entire history. Specifically, we look for Markov Perfect equilibrium (MPE), which is

a subgame perfect equilibrium where σm
t (ht) = σm

τ (h̃τ ) for every m, t, and τ such that the

two histories have the same state variable xt−1 = x̃τ−1.

2.1 Remarks on Model Assumptions

Agents’ opinion updating rule. Agents update their opinions using a combination of their

neighbors’ opinions and messages from influencers according to updating rule (1). This

rule differs from the classic DeGroot learning, where the agents’ opinions depend solely on

their neighbors’ opinions according to network A. In our model, influencers send strategic

messages in every period. We will show that these messages drive the limit opinions, which

depend on the network A and the influencers’ payoff parameters. The agents’ initial opinions

affect the influencers’ payoffs, but have no impact on the limit opinions.

Time horizon. The infinite-horizon problem shares many common features with the finite-

horizon problem, except that the optimal messages are time dependent in the latter problem.

11We use 1 for the vector in which every entry is 1 and ei for the basis in which the i-th entry is 1 and all
other entries are 0.
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To be succinct, we present the results for the infinite-horizon problem while using the

finite-horizon problem to explain intuitions due to its simplicity. Specifically, when T is

finite, influencer m maximizes her total discounted payoff by choosing messages rmt in

each period t < T , and no influencer sends messages in the terminal period. The history

of the play and the influencer strategies extend easily to the finite-horizon model. But the

finite horizon introduces non-stationary strategies which depends on the remaining time

periods. Therefore we require the influencers to choose the same strategies for the same

current opinions period by period, that is, σm
t (ht) = σm

t (h̃t) for every m, t such that the two

histories have the same state variable xt−1 = x̃t−1.

Can influencers reach all agents? The opinion updating rule (1) assumes that each

influencer m has the ability to send a message to every agent with the same impact αm. In

reality, however, some agents may be stubborn and discard these messages, while others may

be more receptive to like-minded influencers. In Appendix B, we present a more general

model that allows messages from influencer m to have different impacts on each agent.

When the impact on an agent is zero, it implies that influencer m cannot reach that particular

agent, but she may still influence that agent indirectly through his neighbors.

Linear quadratic payoffs with no uncertainty. Each influencer’s payoff is decreasing

and quadratic in the difference between agents’ opinions and her agenda. This payoff

structure, along with quadratic costs, leads to the optimal strategies being linear in agents’

opinions.12 Introducing small, independently distributed Gaussian noise into the opinion

updating process introduces uncertainty, but it adds only a variance term into the influencers’

strategies and does not affect our results qualitatively.

More general model. We use the simplest model possible in the text to highlight the

economic insights. In Appendix B, we extend the analysis to a more general multiple-

influencer model and establish the necessary conditions for the existence of a MPE. In

addition to incorporating the previously mentioned varying impacts, we introduce three

generalizations. First, each influencer’s payoff assigns a weight to the difference between

an agent’s opinion and her agenda, and this weight can vary across both influencers and

agents. Second, we include varying costs associated with sending messages to different

agents. Third, we allow each influencer to have a known initial position, and the cost of her

messages depends on their deviation from this position. The spirit of analysis is similar and

12Nonlinear models often necessitate linear approximations due to the absence of analytical solutions.
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the necessary conditions we derived can be used numerically to solve for the equilibrium.

3 Benchmark: Single Influencer

We begin with a single influencer who tries to persuade the agents, such as the government

promoting the effectiveness of vaccines. We normalize the government’s agenda to 0; this is

without loss because only the distance of each agent’s opinion from her agenda matters to

her payoff. We also drop the influencer index m and let α = 1 for simplicity. We use this

model to demonstrate our main solution method—eigen/singular decomposition of matrix A,

which simplifies analysis greatly. The same decomposition is used later to show existence

and uniqueness of equilibrium in the multiple-influencer model.

Denote the government’s optimal value at t = 0 as v(x0), which is the highest payoff

obtained when she chooses messages optimally. The continuation value from period t

onward is v(xt), and is well-defined and bounded (as proven later in Proposition 1). For all

t ≥ 0, by the principle of optimality, we have

v(xt) = max
rt

{−x′
txt − cr′trt + δv(Axt + rt)} .

The problem can be solved using standard optimal control method.13

3.1 Symmetric Network A

The Transformed Problem: Regaining Independence

Opinion evolution in the network is complicated because the agents’ opinions depend

on the government’s messages, which in turn depends on the agents’ opinions. This

high degree of interdependence hinders comparative statics study and policy analysis.

To gain economic insight, we transform the problem into one with independence across

dimensions of opinions by decomposing A. We begin with symmetric network A which

can be decomposed as A = UDU ′, where UU ′ = I and D is the diagonal matrix of A’s

eigenvalues, λ1 ≥ λ2 . . . ≥ λN . Each column of U is an eigenvector ui corresponding to

13See Anderson and Moore (1989) and Bertsekas (2017) among many others for details. This method has
been used extensively in Hansen and Sargent (2013) to study macroeconomics questions. But there are often
no simple analytical solutions. The decomposition method below allows us to perform comparative statics and
to do policy analysis much easily.
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Figure 1: Dimension transformation using eigendecomposition.

eigenvalue λi and thus AU = DU . Any real symmetric N ×N matrix has N independent

eigenvectors (whether the eigenvalues are repeated or not) which form an orthonormal basis,

that is, ∥ui∥= 1 and ui · uj = 0 for all i ̸= j. We then transform the variables under study

by letting x̃t = U ′xt and r̃t = U ′rt.14 Using the transformed variables, we can rewrite the

value function as

ṽ(x̃t) = max
r̃t

{−x̃′
tx̃t − cr̃′tr̃t + δṽ(Dx̃t + r̃t)} . (4)

We illustrate this decomposition in a two-agent network in Figure 1. Because u1 and u2 are

orthogonal, in the transformed problem, the projected opinions are located on the two axes.

Absent of the messages, the projected opinions evolve according to x̃t+1 = Dx̃t, and D is

diagonal. Thus, the projected opinions’ evolution is independent across dimensions.

Optimal Messages and Comparative Statics

The government’s value function in (4) can be written as a quadratic form:

ṽ(x̃t) = −x̃′
tK̃

∗x̃t,

14Specifically, x̃1
0 = u′

1x0 is the projection of x0 on u1, the first eigenvector of A, Similarly, r̃k0 = u′
kr0 is

the projection of r0 on eigenvector uk. To distinguish the transformed problem from the original problem, we
denote the variables in the transformed problem by using ỹ if the original variable is y.
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where K̃∗ is an endogenous matrix summarizing how her future payoff depends on current

opinions.15 Inserting the above value function form to (4), we have

ṽ(x̃t) = −x̃′
tK̃

∗x̃t = max
r̃t

{
−x̃′

tx̃t − cr̃′tr̃t − δ(Dx̃t + r̃t)
′K̃∗(Dx̃t + r̃t)

}
.

Because the government’s payoff is quadratic and concave in r̃t, her optimal message is

uniquely derived from the first-order condition and given by (6) in the proposition below.

Substituting the optimal r̃t in (6) back into the value function above, we can see the infinite-

horizon Ricatti matrix K̃∗ is the unique positive definite matrix that solves

K̃∗ = I + δc(δK̃∗ + cI)−1K̃∗D2. (5)

That is, K̃∗ is the solution to a fixed-point problem. Characterization of the agents’ opinions

follows immediately.

Proposition 1. Suppose A is symmetric and is decomposed as A = UDU ′. The influencer’s

optimal message is

r̃t = L̃∗x̃t = L̃∗(L̃∗ +D)tx̃0, (6)

where L̃∗ = −(δK̃∗ + cI)−1δK̃∗D and K̃∗ is the unique positive definite Ricatti matrix

defined by (5). All agents agree with the government’s agenda in the limit: x∞ = 0.

The government’s optimal strategy is linear in period-t opinions as described in (6),16 where

the slope L̃∗ measures how hard she pushes agents’ opinions towards her agenda 0. This

slope depends on the Ricatti matrix K̃∗, which is the solution to a nonlinear fixed-point

matrix equation and may not have a simple analytical form in general. When A is symmetric,

however, we show the unique solution of (5) is a diagonal matrix and we can solve each of

15For intuition about the quadratic form, consider a simple two-period model, where the value function
takes the form ṽt(x̃t) = −x̃′

tK̃tx̃t, t = 0, 1 where the matrix K̃t depends on the period t. The terminal value
is ṽ1(x̃1) = −x̃′

1x̃1 in which K̃1 = I . In period 0, the influencer chooses r̃0 to maximize her total payoff.
Substituting the optimal messages r̃0 = −δ/(δ + c)Dx̃0 back into the value function gives us K̃0 and a
quadratic value function ṽ0(x̃0). The infinite-horizon case is similar except that this matrix K̃∗ is constant.

16We say the influencer’s strategy is linear when r̃t = L̃∗x̃t and affine when r̃t = L̃∗x̃t + l̃∗, that is, the
latter allows for a non-zero constant term.
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the N dimensions separately.17 As a result, the slope L̃∗ is also diagonal and pd, where

L̃∗
jj = −

δK̃∗
jjλj

δK̃∗
jj + c

.

Moreover, because each diagonal entry of K̃∗
jj is increasing in |λj|, the government pushes

hardest against the first dimension of the projected opinions, second hardest against the

second dimension, and so on. Note that the projected opinions are related to the agents’

opinions in an interesting way.: x̃j
t = u′

jxt, where each uj is the normalized eigenvector

associated with the jth largest eigenvalue of A. Because A is stochastic, u1 = (1/
√
N)1,

and thus the first dimension of the projected opinion is proportional to the average opinion

in that period. Intuitively, this eigenvector implies that all agents’ opinions are equally

important in the long run, and thus the influencer pushes the hardest against the average

opinion. The other eigenvectors have descending importance, for example, in a two-agent

network, the second eigenvector is proportional to (1,−1)′ and thus the second dimension

of the projected opinion is the difference in agent’s opinions. That is, the influencer also

wants to reduce the dispersion of the agents’ opinions, which matters to the convergence

speed. Moreover, given the optimal message, we have

x̃t = Dx̃t−1 + r̃t−1 =
(
I − (δK̃∗ + cI)−1δK̃∗

)
Dx̃t−1 = c(δK̃∗ + cI)−1Dx̃t−1.

Iterate and we have x̃t = ct(δK̃∗ + cI)−tDtx̃0. Because c(δK̃∗ + cI)−1D is diagonal and

each diagonal entry is strictly smaller than 1 (in absolute value), in each dimension, |x̃j
t |

decreases strictly in t and all opinions converge to the government’s agenda 0.

We now show how the government’s messages and payoffs depend on several key parameters

such as δ, c and the agents’ initial opinions.

Proposition 2. Suppose A is symmetric and consider every transformed dimension j.

(1) If δ increases or if c decreases, the government sends more extreme messages initially

(
∣∣r̃j0∣∣ increases), but less extreme messages when t is sufficiently large (

∣∣r̃jt ∣∣ decreases). Her

messages are more extreme (
∣∣r̃jt ∣∣ increases for all t) if |x̃j

0| increases. (2) Her value ṽ(x̃0)

decreases in c, δ, and in each |x̃j
0|.

17While our proof applies directly to the infinite-horizon setting, the intuition can be seen clearly from
the finite-horizon case. Recall that K̃T = I is diagonal; when K̃t+1 is diagonal, K̃t = I + δc(δK̃t+1 +

cI)−1K̃t+1D
2 is also diagonal. The infinite-horizon Ricatti matrix K̃∗ is the limit of K̃T−t as t → ∞ and

inherits the properties of K̃t being diagonal.
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We use the absolute value of the government’s messages to measure how extreme these

messages are. In each dimension j,

∣∣r̃jt ∣∣ = ∣∣∣L̃∗
jj

∣∣∣ ∣∣x̃j
t

∣∣ = δK̃∗
jj|λj|

δK̃∗
jj + c

(
c|λj|

δK̃∗
jj + c

)t ∣∣x̃j
0

∣∣ . (7)

Clearly, for given parameters, her message always becomes less extreme as times go on

because the opinions converge to 0. But the trajectory of her messages responds differently

to the changes in parameters. First, her initial message becomes more extreme and later

messages become less extreme if δ increases or if c decreases, reflecting a trade off between

short term and long term payoffs. By the Envelope Theorem, it is easy to see that K̃∗
jj

increases in δ and c. That is, she is worse off if the future payoff is more important, or if

the cost is higher. We can also show that K̃jj/c decreases in c. It follows that the (absolute

value of) the slope increases in δ and decreases in c. Therefore the initial message, which

depends on the slope of the strategy, becomes more extreme as the future becomes more

important or as the cost decreases. Her later messages, however, have the opposite responses.

The second exponential term in (7), which measures the evolution of opinions, decreases

in δ and increases in c. That is, as δ increases, the slope is steeper and the initial message

becomes more extreme; as a result, the opinions converge to 0 faster and later messages are

less extreme. Similarly, if c increases, the initial message becomes less extreme, but the

opinions converge to 0 slower and she has to send more extreme messages later. Next, the

government’s optimal value ṽ(x̃0) decreases in x̃0, which represents the initial conditions,

because she has to overcome a lot of disagreement. As discussed above, if the average

opinion becomes farther away from her agenda, the influencer is worse off. This observation

is also true, to a lesser extent, when agents disagree with each other more.

How does the network structure affect the influencer? Let the spectrum of A be (λ1, . . . , λN).

Then we can ask two related questions. First, compare two networks that differ only in one

eigenvalue |λj|; second, if a network changes systematically.

Observation 1. Suppose A is symmetric. The government is worse off if any |λj| increases.

For ε > 0, consider perturbations of A: (1) Let A(ε) = (1− ε)A+ εJN/N , where JN is an

all one N ×N matrix. Then, the eigenvalues of A(ε) are (λ1, (1− ε)λ2, . . . , (1− ε)λN).

(2) Suppose A is positive definite. Consider another symmetric positive definite row stochas-

tic matrix P such that λP
N > λA

2 .18 Let A(ε) = (1− ε)A+ εP . Then, every eigenvalue of
18That is, the smallest eigenvalue of P is higher than the second largest eigenvalue of A.
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A(ε) is greater than the corresponding eigenvalue of A.

From (5), we can see each K̃∗
jj decreases in |λj|, and thus the influencer is worse off if

|λj| increases because dimension j’s opinion is more persistent, and convergence of agents’

opinions is slower. For instance, in any two-agent networks, the influencer gets a higher

payoff from the network with a smaller |λ2|. Similarly, any two networks differing in only

the magnitude of one single eigenvalue can be payoff ranked. This answer is incomplete,

however, because whenever network A changes, the entire set of eigenvalues changes

accordingly. To gain insight, we illustrate perturbations of A in which the magnitude of

every eigenvalue shifts in the same direction.

We call the first perturbation an “equalizing” perturbation, as it shifts each agent’s weight

on himself closer to those on his neighbors. Consider a simple two-agent network A.

If Aii > Aij , the introduction of J2/2 decreases Aii and increases Aij . Then, opinions

converge faster because every agent becomes less stubborn and opinions are less persistent.

Conversely, if Aii < Aij , the introduction of J2/2 increases Aii and decreases Aij , which

again accelerates the convergence of opinion. Before the perturbation, the agents listen

to their neighbors more than themselves, and thus the opinions fluctuate too much and

convergence takes longer. In either case, as Aii gets closer to Aij , the influencer’s optimal

payoff increases. We call the second perturbation a “polarizing” perturbation as it mixes

matrix A with a more persistent matrix; then, convergence takes longer. To begin with,

suppose A is combined with the identity matrix I , in which no agent listens to his neighbors;

all the diagonal terms increase and all the eigenvalues increase as well. As a result, the

influencer has to intervene more to persuade the agents in the perturbed network and gets a

lower payoff. This result also holds for any matrix P that is similar to A.19 Even for matrices

that are not similar to A, we can still find some conditions bounding the eigenvalues under

which this result holds, as shown in part (2) of Observation 1.

3.2 Comparing Common Intervention Policies

The government is often constrained in how she can send her messages for institutional

or practical reasons. For example, recent work by Galeotti, Golub, and Goyal (2020)

19If P is similar to A, then it can be diagonalized by the same eigenvector matrix, that is, A = UDU ′

and P = UDPU
′. Then if A > (<)P in the positive (negative) definite sense, the absolute value of every

eigenvalue of A(ε) is smaller (greater) than the corresponding eigenvalue of A.
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investigates optimal one-shot intervention where influencers can send one message only. In

network learning and formation games, Bala and Goyal (1998) and Watts (2001) consider

myopic strategies where influencers maximize their next period’s payoffs. Myopic strategy is

also a good proxy for a government facing reelection pressures. To enhance policy analysis

and differentiate our model from existing ones, we define and compare four interventions:

optimal dynamic intervention yielding payoff ṽ∗, one-shot intervention yielding payoff ṽos,

myopic (dynamic) intervention yielding payoff ṽmp, and no intervention yielding payoff ṽ∅.

Everything in this subsection follows the same superscript convention.

All these interventions can be analyzed easily in our framework. For myopic intervention,

the government’s optimal message is r̃mp
t = − δ

δ+c
Dx̃t, just as in a two-period model because

she maximizes only the next period’s payoff without considering any long-term effects.

Under no intervention, opinions evolve according to x̃t = Dtx̃0. If A is strongly connected

and aperiodic, then her total discounted payoff is −x̃′
0(I − δD2)−1x̃0.

20 In the long run, the

agents’ consensus is x̃1
0, which is the average initial opinions. In one-shot intervention, the

government is restricted to intervene only initially. The opinions then evolve without further

intervention, i.e., x̃1 = Dx̃0 + r̃0, and x̃t = Dx̃t−1 for t > 1. Hence, her total discounted

payoff resembles the no intervention case:

−x̃′
0x̃0 − cr̃′0r̃0 − δx̃′

1(I − δD2)−1x̃1.

Solving the FOC, we find that the optimal initial message for each dimension j is r̃os0,j =

− δλj

δ+c(1−δλ2
j )
x̃j
0. We now compare these intervention policies.

Proposition 3. Suppose A is symmetric, strongly connected and aperiodic. For any δ > 0,

c ∈ (0,∞) and x̃0, we have (1) the payoff ranking: ṽ∗ > ṽmp > ṽos > ṽ∅;

(2) the (absolute value of) message ranking: the government sends the most extreme initial

message in one-shot intervention, less in optimal dynamic intervention, and the least in

myopic intervention. After a cutoff period, the government sends less extreme messages in

optimal dynamic intervention than those in myopic intervention.

In extreme cases, active interventions yield the same payoff. For instance, when c = 0, all

agents agree with the influencer’s agenda in one period, and when c = ∞ or δ = 0, no

intervention occurs. In all other cases, interventions differ in messages and payoffs. Clearly,

20We need A to satisfy the additional assumptions so that opinions converge under no intervention, which is
not necessary when there are influencers.
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the government pushes the hardest in one-shot intervention, as she has only one chance to

influence the agents. The comparison of messages between dynamic intervention and myopic

intervention is more subtle. The initial messages are stronger in dynamic intervention,

while later messages are stronger in myopic intervention. Recall from Proposition 1 that

each message depends on both the slope and the current opinions. We can show that the

slope is always higher in dynamic intervention, because the influencer is willing to push

harder now to increase future payoffs. In the initial period, the opinions are the same

in both interventions, thus only the slope matters and the initial message is stronger in

dynamic intervention. As time goes on, the opinions converge faster to zero in dynamic

intervention. After a cutoff period, the effect of lower (absolute values of) opinions in

dynamic intervention outweighs the higher slope, and then the message becomes less

extreme in dynamic intervention.

In terms of payoffs, optimal dynamic intervention clearly leads to the highest payoff, while

no intervention leads to the lowest. The comparison between one-shot intervention and

myopic intervention is less clear. The former takes long-term effect into account but sends

only one message, and the latter focuses only on short-term payoffs but sends messages

in every period. Recall that when c = 0 or δ = 0, the influencer’s payoffs under all

interventions are the same. By the Envelope theorem, the influencer’s payoff under all

interventions decreases in δ and c. Our study reveals a positive and increasing payoff

difference between myopic and one-shot intervention as δ rises. Myopic intervention

ensures opinion convergence to the government’s agenda, unlike one-shot intervention.

The higher the δ, the lower is the payoff for opinions not converging to 0. In contrast, the

payoff difference is non-monotonic in c, peaking at an intermediate cost where one-shot

intervention cannot use extreme messages but myopic intervention can spread the cost

over many periods. Moreover, if we compare the cumulative payoffs from only the early

periods, myopic intervention may lead to a higher payoff than dynamic intervention where

the government pushes harder initially to speed up convergence and increase her long-term

payoff. As a result, myopic intervention may appeal to a government facing short-term

reelection considerations.

3.3 General network A

We extend the analysis beyond symmetric networks to characterize optimal dynamic in-

tervention more generally. As before, the government chooses a sequence of messages
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{r0, . . . , rt, . . .} to maximize her total discounted payoff: −
∑∞

0 δt(x′
txt + cr′trt). The

following result extends Proposition 1 to the general network.21

Proposition 4. The government’s optimal strategy is rt = L∗xt, in which L∗ = −(δK∗ +

cI)−1δK∗A and K∗ is the unique pd solution of

K∗ = I + δA′ (K∗ − δK∗(δK∗ + cI)−1K∗)A. (8)

Moreover, v(x0) = −x′
0K

∗x0. All opinions converge to the government’s agenda if δ is

sufficiently high.

The optimal messages are still linear in current opinions

xt = (A+ L∗)xt+1 = (I − (δK∗ + cI)−1δK∗)Axt−1 = c(δK∗ + cI)−1Axt−1.

Moreover, the value function is bounded because even under myopic strategy, rmp
t = δ

δ+c
A

and xmp
t = c

δ+c
Axmp

t−1. The transition matrix c
δ+c

A is stable since the absolute value of all

its eigenvalues are strictly smaller than 1. Therefore the opinions converge under myopic

strategy and the value v(xmp
t ) converges to zero as time goes on. The government must

do better under optimal strategy, and thus her value function is also bounded. When δ is

sufficiently high„ a unique solution to the Ricatti equation (5) exists because c(δK∗ + cI)−1

is a stable matrix and thus the opinions converge: limt→∞ xt → 0. Moreover, the initial

message under optimal strategy is still more extreme than under myopic strategy:

∥x1∥≤ ∥c(δK∗ + cI)−1∥∥Ax0∥< c/(c+ δ)∥Ax0∥= ∥xmp
1 ∥,

where the second inequality is true because the spectrum norm of a symmetric matrix

c(δK∗ + cI)−1 is equal to its largest eigenvalue, which is smaller than c/(δ + c).22

4 Multiple Influencers and Long-Run Consensus

Many influencers may push their (possibly different) agendas at the same time as in Section

2. In this section, we examine conditions under which long-run consensus among agents is
21Note that eigendecomposition does not work for asymmetric networks. For this part, we return to the

original problem; for example, opinions are xt instead of x̃t and the value function is v instead of ṽ.
22Because the dimensions are no longer independent, we cannot compare messages for each dimension as

in Section 3.2; instead we use the Euclidean norm to measure the strength of a (message or opinion) vector.
We also follow the convention of using spectrum norm for matrices.
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sustained, and scenarios with perpetual disagreements are studied in the next section. We

first show that a sufficient condition for consensus is equal impact among all influencers, that

is, agents attach the same weight to each influencer’s messages. Otherwise, when influencers

have different impacts, consensus is sustained when the network is symmetric.

4.1 Influencers with Equal Impact

When all influencers have equal impact on the agents, αm = α in equation (1). We begin with

symmetric network A and decompose it by A = UDU ′ as in Section 3.1. By multiplying

U ′ to all variables of updating equation (1), the opinion updating equation becomes

x̃t+1 = Dx̃t + α
M∑

m=1

r̃mt . (9)

Influencer m’s projected agenda is b̃m = U ′bm = U ′bm1 and her stage payoff in period t is

ũm
t (x̃t) = −(x̃t − b̃m)′(x̃t − b̃m)− c(r̃mt )

′r̃mt .

We conjecture (and later prove) that the continuation value for each influencer m in period t

has the form

ṽm(x̃t) = −(x̃t − k̃m)′K̃m(x̃t − k̃m)− κ̃m. (10)

This value function contains both quadratic and linear terms of x̃t, with new terms k̃m ∈ RN

and κ̃m ∈ R. All terms K̃m, k̃m and κ̃m are determined endogenously. Each influencer

chooses {r̃mt , t ≥ 0} to maximize her value function, given the strategies of other influencers.

First, we show that all influencers share the same Ricatti matrix K̃m = K̃∗ in the value

function (10). This result is easily seen from the two-period example. In the terminal period

T = 1, all K̃m
1 = I by assumption. In period t = 0, influencer m’s first-order condition

is simply cr̃m0 = −δαK̃m
1 (x̃1 − b̃m). Because influencers have the same cost c, impact α,

and period-1 Ricatti matrix K̃m
1 = I , their optimal messages have the same slope, and thus

their value functions have the same quadratic terms as captured by K̃m
0 . When T = ∞, we

show that there exists a unique diagonal and positive definite Ricatti matrix K̃∗ solving the

following fixed point equation for all influencers:

K̃∗ = I + cδK̃∗(cI + δα2K̃∗)(cI + δMα2K̃∗)−2D2, (11)
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which becomes the Ricatti equation (5) in the single-influencer model when M = 1.23 The

following result provides an equilibrium characterization.

Proposition 5. Suppose A is symmetric and invertible, and influencers’ impacts are αm = α.

(1) There exists a unique MPE. In this MPE, each influencer’s strategy is affine in the

opinions:

r̃mt = −δα

c
K̃∗

(
cHDx̃t + δHα2K̃∗

M∑
l=1

b̃l − k̃m

)
, (12)

where K̃∗ is the Ricatti matrix defined by (11) and H = (cI + δMα2K̃∗)−1.

(2) Agents form consensus in the limit: x∞ =
∑M

1 bm/M.

First, conditional on every other influencer plays a Markov strategy, each influencer’s

message is unique and affine in current opinions due to the quadratic stage payoff. Moreover,

from equation (12), every influencer’s message has the same slope because they have the

same Ricatti matrix. What sets each influencer apart is the term k̃m, which captures the

effect of their distinct agendas, leading to different constant terms in each influencer’s

message. We can think of k̃m as her dynamic agenda. As seen from value function (10),

each influencer’s payoff decreases in the distance between x̃t and k̃m, instead of the distance

between x̃t and b̃m as in her stage payoff. In equilibrium, k̃m can be expressed as:

(
K̃∗ − δDHK̃∗(δα2K̃∗ + cI)

)
k̃m = b̃m − (δDHK̃∗(δα2K̃∗ + cI))Hδα2K̃∗

M∑
1

b̃m.

The projected agenda has a particular form noted in the following observation.

Observation 2. When A is symmetric, for influencer m, b̃m = U ′bm1 = (bm/
√
N, 0, . . . , 0)′.

This observation follows from the fact that the first column of U is u1 = (1/
√
N)1′, and

all other columns are orthogonal to u1. By Observation 2 and the formula of k̃m, the jth

element of k̃m is zero unless j = 1, so we focus on the first dimension k̃m
1 below. Note

that the dynamic agenda k̃m grows linearly in influencer m’s agenda b̃m, implying that

influencer m has the highest dynamic agenda if she has the highest b̃m. Moreover, when the

average agenda of other influencers is exactly b̃m, then k̃m = b̃m. Otherwise, the average

agenda of the other influencers and k̃m lie on the opposite sides of b̃m. For instance, suppose

23The solution K̃∗ is diagonal because of the independence among dimensions in the transformed problem.
Moreover, there exists a unique solution in each dimension by the Intermediate Value Theorem.
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b̃m = 0, then if the average agenda of the other influencers is positive, then k̃m
1 < 0. As the

average agenda of the others increases, k̃m
1 further decreases. Intuitively, as other influencers

push for higher opinions, influencer m needs to pay a higher cost to keep opinions closer to

her agenda.

Second, we show that surprisingly, the agents still believe in the average agenda in the

limit even though influencers may use asymmetric strategies (due to k̃m) in the equilibrium.

This result arises from the identical slopes of the optimal strategies, indicating that each

influencer’s agenda carries equal weight in the limit opinion. It is worth noting that con-

vergence of opinions does not imply convergence of individual influencers’ messages to

zero. Instead, messages from the influencers counterbalance each other, resulting in the

aggregate message converging to zero:
∑M

1 r̃m∞ = 0. That is, to maintain this consensus

requires costly continuous intervention by every influencer.

We now examine the strategic interactions among influencers. In every period, the best

response of influencer m to the others’ messages is:

(cI + δα2K̃∗)r̃mt−1 = −δαK̃∗

(
Dx̃t−1 + α

∑
l ̸=m

r̃lt−1 − k̃m

)
. (13)

Clearly, each influencer’s message is decreasing in the sum of all other influencers’ messages.

Because each message may be positive or negative, we study how extreme each influencer’s

message is (its absolute value) in response to another influencer’s message.24 If both

messages have the same sign, their messages are strategic substitutes in that if one’s message

becomes more extreme, the others becomes more moderate. Conversely, if the messages

have opposite signs, then the messages become strategic complements: if one becomes more

extreme, so is the other.

When all influencers’ agendas are identical and normalized to 0,25 according to (13), their

messages are strategic substitutes. Intuitively, persuading the agents is a public good when

they share the same agenda. How significant is this strategic substitute effect? One way

is to study how each influencer’s payoff changes with M , the total number of influencers.

Another way is to compare their payoffs with that of a representative influencer who chooses

M messages in each period to maximize the sum of all influencers’ payoffs.
24We use the terms strategic substitutes and complements intuitively to talk about how influencers’ messages

in each period respond to each other even though they are often used in static games.
25If all influencers have agenda bm = b, then we can have a change of variable zt = xt − b1, such that

zt = Azt−1 + α
∑M

1 rmt . That is, it is without loss to assume that all influencers have agenda 0.
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Corollary 1. Suppose A is symmetric, αm = α and bm = 0 for all m.

(1) All influencers get the same payoff which increases in M . Moreover, every influencer

sends less extreme messages and the opinions converge faster as M increases.

(2) Compared to a representative influencer, the case with multiple influencers exhibits a

lower total payoff and slower opinion convergence.

Despite the free-riding effect, every influencer is better off as the number of influencers M

increases. The payoff gain comes from two sources: lower message cost and faster opinion

convergence. First, everyone pushes less against the current opinions as M increases:

r̃mt = −(δMK̃∗(M) + cI)−1δK̃∗(M)Dx̃t. (14)

The absolute value of the slope in (14) decreases in M , because we show in the proof

that K̃∗(M) decreases in M while MK̃∗(M) increases in M . So fix x̃t, influencer m

chooses a less extreme message r̃mt in period t and pays a lower cost. In addition, the

opinions become closer to their agenda 0, period by period, as M increases. Intuitively,

while each influencer pushes less, since there are more of them, the aggregate message is

more extreme and opinions converge faster to 0. The free-riding effect among influencers,

however, implies that the messages are too moderate and payoffs are too low comparing to

those of a representative influencer.

What if the influencers have different agendas? While the slope of the strategy is still

identical because all influencers have the same K̃∗, the dynamic agenda k̃m varies. By

Observation 2, we focus on the first dimension, the only dimension in which influencers

are asymmetric. Substituting the limit opinion into equation (12), we have influencer m’s

message in the first dimension,

r̃m1,∞ =
δα

c
K̃∗

11

(
b̃m1 −

M∑
1

b̃m1 /M

)
.

In the limit, the messages of influencers with agendas above and below the average agenda

are strategic complements, and messages of influencers with agendas all above (or all

below) the average agenda are strategic substitutes. Suppose the government is influencer

1 with agenda 0. If another influencer 2’s agenda becomes more negative (vaccines more

dangerous), then we can see in the limit, the government has to send a more positive message;

influencer 2 has to send a more negative message, and the consensus is more negative. In
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addition, payoffs are higher for influencers whose agendas are closer to the average agenda.

For instance, a government trying to convince a network of agents about the efficacy of

vaccines is unlikely to succeed despite paying a high cost if other influencers have extreme

agendas biased in the other direction. In contrast, the government will do better if the

network faces a more diverse and well-balanced group of influencers.

Lastly, the spirit of Proposition 5 extends to the case of any asymmetric network A. We

focus on a semi-symmetric equilibrium in which all influencers use affine strategies with

the same slope but possibly different constant terms, because the slope is determined by the

same Ricatti matrix K∗ while km differs due to their different agendas. We show that there

exists a semi-symmetric MPE with the same consensus among agents as before.

Proposition 6. Suppose A is invertible and αm = α for all m. If there exists a positive

definite solution to the Ricatti equation

K∗ = I + cδA′H ′K∗(δα2K∗ + cI)HA, (15)

where H = (cI + δMα2K∗)−1. Then there exists a semi-symmetric MPE in which all

influencers have the same Ricatti matrix K∗. In this MPE, agents form consensus in the

limit: x∞ =
∑M

1 bm/M .

When the network is asymmetric, the agents’ weights on their neighbors’ opinions are not

uniform; for instance, some agents are listened to with higher weights than others. But the

same impact α means that all influencers can affect each agent in the same way. In this

equilibrium (if it exists), they all send more extreme messages to more central agents and

less extreme messages to less central agents. In the limit, messages eventually offset each

other and the consensus remains the average agenda. Furthermore, this MPE is the unique

semi-symmetric MPE if matrix K∗ − (K∗ − I)A−1 is non-singular.26 Because K∗ is the

solution of a nonlinear fixed point equation of matrices, we cannot directly show such a

positive definite solution exists. But for any finite T , there exists a unique semi-symmetric

MPE with similar properties.

26We do not rule out the possibility of a MPE in which influencers use strategies that differ both in slope
and in constant term, that is, each influencer has her own Km and km, similar to the results in Proposition 7.
The existence of solutions to the coupled Ricatti equations is still an open question for a general network A, so
we focus on the semi-symmetric equilibrium.
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4.2 Influencers with Different Impacts

As before, we begin with symmetric network A and decompose it into A = UDU ′. In the

transformed problem, the opinions evolve according to (9) and influencer m’s value function

is given by (10). Notice that distinct values of αm indicate different marginal impacts of

influencers on agents’ opinions, resulting in distinct Ricatti matrices denoted by K̃m. To

gain tractability, we focus on the case of two asymmetric influencers with different αm and

leave the general analysis to Appendix B. Without loss, let α1 > α2, meaning that every

message of influencer 1 has a bigger impact on the next period’s opinion. The next result

illustrates that consensus is still sustained when the network is symmetric.

Proposition 7. Suppose A is symmetric and α1 > α2. (1) The Ricatti matrices satisfy

K̃1 > K̃2. In the unique MPE, the slope of influencer 1’s optimal strategy is steeper

than that of influencer 2. In the limit, influencer 1 intervenes no more than influencer 2:

|r̃1∞|≤ |r̃2∞| with inequality holds in the first dimension when b1 ̸= b2.

(2) Agents form consensus in the limit, which is a weighted average of the influencers’

agendas and is closer to b1 than to b2.

Recall that the optimal message for influencer m is affine in agents’ opinions, taking the

form r̃mt = L̃mx̃t + l̃m where L̃m is a diagonal matrix. Unlike Proposition 5, the slope

differs between the influencers, and part (1) shows that |L̃1
jj|> |L̃2

jj| for each dimension

j. Intuitively, as influencer 1 has a bigger impact on the agents’ opinions, her optimal

message features a steeper slope in every dimension which fastens convergence. Next, part

(1) compares the influencers’ limit messages, which depends on whether their agendas are

the same or not. If b1 = b2, then their messages converge to zero as the agents’ opinions

converge to their agenda. Otherwise, the stronger influencer 1 sends a less extreme message

than the weaker influencer 2 in the limit. Notice that the messages offset each other when

there is consensus (shown in part 2), which means that α1r̃
1
t +α2r̃

2
t → 0 as t → ∞. Because

α1 > α2, we have |r̃1t |< |r̃2t | dimension by dimension in the limit when they are not both

converging to zero.27 In terms of payoffs, when b1 = b2, influencer 1 sends more extreme

messages and gets a lower payoff than influencer 2 because of the free-riding effect discussed

in Corollary 1. When b1 ̸= b2, the payoff comparison is ambiguous. Influencer 1’s early

27This result also shows the property of the constant term l̃m in influencer m’s optimal message. Recall that
the slope of influencer 1’s optimal message is steeper, so the effect from the constant term must dominate the
slope effect so that influencer 1 sends a less extreme message in the limit than influencer 2.
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messages may be more extreme and costly due to steeper slopes, but her later messages are

less extreme due the property of the limit messages.

Part (2) of Proposition 7 shows in the limit, agents forms consensus, which is closer to b1

than to b2. In particular, the weight on each agenda is a nonlinear and endogenous function

of their impacts and the Ricatti equations. The first dimension of the limit projected opinion

x̃1
∞, the only non-zero dimension by Observation 2, is proportional to

α2
1

(
1− δ(δα2

2K̃
2
22 + c)

c+ δα2
1K̃

2
11 + δα2

2K̃
2
11

)
b̃1 + α2

2

(
1− δ(δα2

1K̃
1
11 + c)

c+ δα2
1K̃

2
11 + δα2

2K̃
2
11

)
b̃2,

where K̃m
11 is the first diagonal entry of K̃m.28 The denominator c + δα2

1K̃
2
11 + δα2

2K̃
2
11

reflects the marginal effect of the two messages, both the cost today and the total change

in future payoffs. Since α1 > α2, and K̃1
11 > K̃2

11, the limit opinion puts a higher weight

on influencer 1’s agenda. But why do agents reach a consensus when the influencers have

different agendas? Hypothetically, it is possible for each influencer to focus on different

agents, such as influencer 1 sends stronger messages to one group of agents and influencer 2

sends stronger messages to the rest. But in a symmetric network A, each agent’s eigenvector

centrality is the same, that is, they have identical weights in affecting the limit opinions.

Thus, influencers do not find it optimal to treat agents differently, and they form consensus.

In the next section, we will show that consensus is unlikely when the network is asymmetric.

5 Two Applications with Perpetual Disagreements

In real-life social networks, disagreements among agents are prevalent rather than rare

occurrences. We apply our model to shed light on the reasons behind agents’ failure to reach

consensus. Essentially, their disagreements stem from the differential targeting employed by

competing influencers, either as a consequence of strategic choices or due to the influence

of spam bots sending constant messages.

5.1 Uniform Opinion Leader Network

Suppose the government in our running example is influencer 1, who knows the presence of

an adversarial influencer pushing the agenda b2 that vaccines are dangerous and should not
28The projected limit opinions are x̃∞ = {x̃1

∞, 0, . . . , 0}, and the unprojected limit opinions have identical
entries: x∞ = U ′x̃∞ = x̃1

∞1.

24



be used. In the network, there are opinion leaders such as medical officials, news reporters,

and researchers, whose opinions about vaccination hold greater significance to the general

population. To capture this crucial aspect of real-life networks while keeping the analysis

tractable, we focus on the following type of stylized networks.

Definition 1. In a uniform opinion leader network, each column j has identical entries

Aij = aj for all i ∈ N , and a1 > a2 > . . . > aN .

Agent 1 is the clear opinion leader in this network as all agents put the highest weight on his

opinions. Any network with opinion leaders is asymmetric, and thus we apply our general

network model in Section 3.3. Moreover, we use the singular value decomposition (SVD)

method to transform the problem into one with independent dimensions, which simplifies

the analysis in networks with low rank such as the uniform opinion leader network.

Specifically, let A = USV ′, where S = diag{σ1, . . . , σN} is the singular value matrix and

each σ2
j is an eigenvalue of A′A.29 Let σ2

j ≥ σ2
j+1 for all 1 ≤ j < N . The columns of

U and V are orthonormal eigenvectors of AA′ and A′A respectively: U ′U = V ′V = I .

Each column of U is denoted as uj and each column of V is denoted as vj . Because

A =
∑

j σjujv
′
j and σj is ordered by magnitude, dimensions associated with larger singular

values are more important for the influencer. We transform the problem by using projected

variables like before. Let x̃t = V ′xt and r̃t = V ′rt. In the transformed problem, we have

x̃t+1 = V ′USx̃t +
∑

αmr̃
m
t .

SVD greatly simplifies the analysis of the uniform opinion leader network, a rank one

matrix, as it transforms the influencers’ problems in all but the first dimension into myopic

problems. This result is due to the feature of the singular values in the uniform opinion

leader network: σ1 =
√

N(a21 + . . .+ a2N) > 1 and σj = 0 for all j ̸= 1. As the opinions

updating matrix is A =
∑

j σjujv
′
j , when σj = 0, dimension-j opinion in period t+ 1 does

not have any effect on the future opinions. Thus, when choosing the optimal dimension-j

message in period t, the influencer considers only her period-(t+ 1) payoff. This myopic

problem in each dimension j ̸= 1 simplifies the Ricatti matrix, which has no closed-form

solutions when the network is asymmetric in general.

Observation 3. In a uniform opinion leader network, the Ricatti matrix K̃m is diagonal

with K̃m
11 > 1 and K̃m

jj = 1 for all j ̸= 1.

29SVD generalizes the eigendecomposition used in Section 3.1 when A is symmetric. Because A′A is
symmetric and positive semi-definite for any A, it has real, non-negative eigenvalues.
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This result is a direct implication of the myopic problem in dimension j ̸= 1. Recall that the

stage payoff depends on the opinions in the form of −(x̃t − b̃m)′(x̃t − b̃m). When opinions

have no future effect on the influencer’s payoff other than the stage payoff in the next period,

the quadratic term of the opinions is weighted by 1, which is the jth diagonal entry of K̃m.

Next, we show the government and the adversarial influencer 2 endogenously choose to

persuade different agents with different intensity, leading to perpetual disagreement.

Proposition 8. Suppose A is an uniform opinion leader network and α1 > α2. In the unique

MPE, the agents’ opinions converge in the limit and every agent’s limit opinion is closer

to b1 than to b2. When b1 ̸= b2, they disagree in the limit and the opinion leaders’ limit

opinions are closer to b1 than those of opinions followers: |x1
∞ − b1|< . . . < |xN

∞ − b1|.

From Observation 3, the influencers’ messages in the first dimension are chosen to maximize

their total discounted payoffs, but in all other dimensions are myopic best response.30

Several parts of Proposition 7 still hold in uniform opinion leader networks. Specifically,

K̃1
11 > K̃2

11 and the slope of influencer 1’s optimal strategy is steeper than that of influencer

2. Also, the agents’ limit opinions are closer to influencer 1’s agenda than that of influencer

2. More interestingly, whenever b1 ̸= b2, the two influencers focus on different subsets of

agents, who then do not reach consensus in the limit. This differential targeting is reflected

in the limit aggregate message α1r
1
∞ +α2r

2
∞. Suppose b1 > b2, the limit aggregate message

is a decreasing vector with the first entry being the highest. There exists a threshold agent

k, such that the limit aggregate message α1r
1
∞ + α2r

2
∞ is positive in its first k entries and

non-positive in all other entries. It implies that influencer 1 with a higher impact α1 focuses

on the first k agents, who are the (relative) opinion leaders. Finding it not optimal to compete

with influencer 1 on these leaders, influencer 2 focuses more on agents k + 1 through N

who are the opinion followers. Therefore, the agents disagree permanently, with the leaders’

opinions closer to b1 than those of the followers.

While the uniform opinion leader network is stylized, the decomposition method used here

can be extended to cases when A has a low rank, or when A has many small singular values.

In general networks with asymmetric influencers, analytical results beyond the necessary

conditions provided in Appendix B are harder to obtain. We use a three-agent asymmetric

30Unlike Oberservation 2 in the symmetric A case, b̃m = V ′bm can have many dimensions with none zero
and different entries. As a result, in all dimension j ̸= 1, the optimal strategy to maximize next-period payoff
differs in both the slope due to different αm and the constant term.
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network to show the essence of differential targeting remains, leading to perpetual disagree-

ment. Let the initial opinions be x0 = (7,−2, 5)′. Let c = 0.1 and δ = 0.9. Two influencers

have opposing agendas b1 = 10 and b2 = −10, and different levels of influence: α1 = 0.6

and α2 = 0.5. The network is represented by

A =

0.6 0.3 0.1

0.4 0.1 0.5

0.5 0.2 0.3

 .

Agent 1 is the opinion leader of the network because everyone listens to him with a relatively

high weight. Agent 2 is the least important one receiving a total weight of 0.6. Figure 2

depicts the opinion evolution in this network.

Figure 2: Opinions over time in an asymmetric network under asymmetric influencers.

Clearly, the agents fail to reach consensus. The limit opinion vector is (3.93, 2.83, 3), with

every agent’s limit opinion being closer to the agenda of influencer 1. The disagreement is

due to the fact that the influencers focus on different agents, such that the limit aggregate

message α1r
1
∞ + α2r

2
∞ is (0.42,−0.53,−0.43). In net, influencer 1 pushes harder on agent

1 and influencer 2 pushes harder on the other two agents. Notably, as agent 1 is the opinion

leader, both influencers send the most extreme messages to him compared to messages to

the other agents. Influencer 1 with the higher impact benefits from focusing on agent 1 and
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keep his opinions closer to her agenda b1 = 10. Then, influencer 2 focuses more on the

other two agents to keep their opinions relatively closer to agenda b2 = −10. In the limit,

influencer 1 sends a less costly message and gets a higher payoff than influencer 2.

5.2 Confronting Bots with Constant Messages

We can also apply the general network model in Section 3.3 and Proposition 4 in particular

to study how the government in our running example optimally counters spam bots who

mimic genuine network users and send repetitive messages at little to no cost. For instance,

Vosoughi, Roy, and Aral (2018) report that in 2017, Twitter, Facebook, and Instagram were

home to 23, 140 and 27 million bots respectively, representing around 8.5%, 5.5%, and 8.2%

of all accounts on these platforms.31 In addition, Azzimonti and Fernandes (2023) show that

significant levels of polarization are possible even though only 15% of agents believe in fake

news from the bots. Using our model, we show that the government chooses not to achieve

her agenda when facing bots, that is, it is optimal for her to counter different messages of

the bots differently, resulting in generic disagreement and polarization.32

Suppose there are M bots.33 Each bot m sends a message zm in each period, and the vector

of their collective messages is z ∈ RM . The influencer sends messages rt ∈ RN , and the

agents update their opinions in each period after listening to the bots and the influencer:

xt+1 = Anxt + Azz+ rt,

where An and Az represent the weights with which the agents’ listen to each other’s opinions

and to the bots respectively. Each agent’s total weight on the agents and the bots is 1, that is,

31According to the 2021 research report titled “Bot Attacks: Top Threats and Trends" from security firm
Barracuda, more than two-thirds of internet traffic is generated by bots. In addition, 67% of bad bot traffic
originates from public data centers in North America.

32The mechanism underlying our polarization result differs from the existing literature. It is well known
that long-run disagreement can arise due to stubborn agents, homophily, and a lack of interaction among some
clusters of agents. Acemoglu, Como, Fagnani, and Ozdaglar (2013) find disagreements in a network with
stubborn agents and regular agents who update opinions by exchanging information with a neighbor chosen
randomly at any given time. Della Lena (2022) shows that when agents receive informative signals and listen
to sources with fixed opinions, the limit opinion does not feature consensus.

33In the main model, we use M to refer to the number of strategic influencers. In this section with a single
influencer, we abuse the notation to let M be the number of bots and m be a generic bot.
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∑
j a

n
ij +

∑
m azim = 1 for all i, and all weights are non-negative.34 We further assume that

An is strictly substochastic (i.e., each row sum is strictly less than 1) and diagonalizable, and

thus (I − An)−1 exists. We can rewrite the problem which then fits nicely into our general

network model as follows:

χt+1 =

[
xt+1

z

]
=

[
An Az

0 I

][
xt

z

]
+

[
I

0

]
rt = Aχt +Wrt.

Observe that the new opinion variable is χt, an (N +M)× 1 vector of the agents’ opinions

and the bots’ agendas. The new opinion variable evolves according to an expanded matrix

A, which is row stochastic by definition, accounting for the fact that bots never change their

messages. Also, the influencer’s messages rt are multiplied by the (N +M)×N matrix

W because the influencer never sends costly messages to the bots. The government’s total

discounted payoff can be expressed as:

−
∞∑
t=0

δt (χ′
tχt + cr′trt − z′z) .

As she cares only about persuading the agents, we remove the bots’ impact on her payoff by

subtracting z′z from χ′
tχt. The next result shows that while the government pushes back

against the bots in every period, she does not fully achieve her agenda.

Corollary 2. The government’s optimal message is rt = L∗χt, in which L∗ = −(δW ′K∗W+

cI)−1δW ′K∗A and K∗ is the unique positive definite solution of

K∗ = I + δA′ (K∗ − δK∗W (δW ′K∗W + cI)−1W ′K∗)A.
Opinions and messages converge: limt→∞ xt = x∞ and r∞ = limt→∞ rt. The agents

disagree with each other and the government generically: x∞ = (I − An)−1(Azz+ r∞).

The limit opinions are a weighted average of the bots’ messages and the government’s limit

message, where the weights measure their cumulative influences. In particular, the influence

from the agents’ initial opinions is equal to limt→∞(An)t = 0 because An is substochastic.

The cumulative weight of the government’s message is I+An+. . .+(An)∞ = (I−An)−1.35

34We modify our assumption to An +Az , instead of A, being row stochastic to ensure the limit opinions
are well defined. To highlight the change, we denote the network matrix by An.

35This weight includes direct and indirect influence. For example, after one period, the agents place weight
(I +An) on the influencer’s message r∞ (walk of length 1 and 2 from the influencer to her), and so on. This
measure is closely related to the centrality of Katz (1953).
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Similarly, the agents put a total weight of (I − An)−1Az on the bots. With bots, the

government sends non-vanishing messages in the limit (r∞ ̸= 0), and the agents disagree

with her generically (x∞ ̸= 0). To understand this claim, for the first part, suppose r∞ = 0,

then from Corollary 2, the limit opinion is a linear function of the bots’ agendas and is

not zero in general, x∞ = (I − An)−1Azz. The influencer should push the opinions by

sending non-zero messages according to the optimal strategy, and thus r∞ ̸= 0. Second,

suppose x∞ = 0, then from the corollary, the limit message need to completely offset the

bots’ influence: r∞ = −Azz, but this is not the optimal message.

It is more subtle to show that the agents do not have consensus in general. Since r∞ is

endogenous, we need to have a direct solution of x∞. Because A is upper triangular and

W = (I, 0)′, K∗ has an interesting feature: it is a block matrix of the form36

K∗ =

[
K1 K2

K ′
2 K3

]
.

Here, K1 is a function of itself which depends only on the model parameters and network

structure An, while K2 depends on both K1 and the bots’ access to the network Az (see

equation (50) and (51) in the proof of Corollary 2). The limit opinion becomes:

x∞ = (δK1 + cI − cAn)−1(cAz − δK2)z.

We can express the limit opinion as the product of a positive definite matrix independent of z

and Azz. For any positive definite matrix, there can only be one z such that the agents reach

consensus. Therefore, agents don’t agree with each other generically and the influencer is

worse off as ∥z∥ increases.

6 Conclusion

Our model is portable and can be used to study how strategic influencers competing over

networks, such as elections, marketing, and adversarial nations’ disinformation campaigns.

By decomposing the model appropriately, we obtain tractable results, including comparative

statics and insights into limit opinions. Our model can investigate network intervention

36Submatrix K1 summarizes the future disutility from agents’ opinion deviation from the influencer, and
K2 summarizes her future disutility because the agents are influenced by the bots’ agendas. Submatrix K3

summarizes the disutility due to the bots’ deviation from her agenda, which does not matter to her strategy.
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questions, such as determining which social network platforms (e.g., Facebook, Twitter,

Instagram) influencers should target.37 Timing, for instance, plays a crucial role: our model

suggests that early intervention in a network is key. Once a network accumulates numerous

influencers with extreme agendas, it becomes increasingly difficult to persuade others.

One promising research direction is a model of coarse targeting, where influencers can send

messages to only some agents in the network. Preliminary findings suggest that strategic

influencers face a trade-off between short-term and long-term payoffs in their target selection.

Convergence speed plays a vital role in long-term outcomes, making opinion leaders and

stubborn agents potential candidates for targeting. Moreover, it is essential to target agents

with extreme initial opinions, as their opinions affect short-term payoffs significantly. The

question of optimal dynamic targeting holds relevance and presents theoretical interest.

Our findings suggest that in asymmetric networks with asymmetric influencers, disagree-

ment in the limit is the norm rather than the exception. We consider a general model

that accommodates these asymmetries and provide the influencers’ optimal strategies in

Appendix B, which are necessary conditions for possible MPE. Relatedly, an active area of

research in computer science involves investigating the existence and properties of equilibria

in general-sum multiple-player linear quadratic (LQ) games.38 In addition, researchers are

exploring when standard tools such as the policy gradient algorithm lead to an equilibrium

(Mazumdar, Ratliff, Jordan, and Sastry 2019).
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A Proofs

Proof of Proposition 1: We characterize both the finite-horizon and the infinite-horizon

optimal messages and payoffs in details in this proposition. In later results, we focus on the

infinite-horizon case, but we may use the finite-horizon results as part of the proof. First, we

present the finite-horizon result formally.

Proposition 1 (cont’d). Suppose A is symmetric and is decomposed as A = UDU ′. If T is

finite, then for all t < T , the influencer’s optimal message is

r̃t = L̃tx̃t = L̃t

t−1∏
τ=0

(L̃τ +D)x̃0,

in which L̃t = −(δK̃t+1 + cI)−1δK̃t+1D, and K̃t is the Ricatti matrix defined by (16).

Finite-horizon proof: we use ṽt(x̃t) for the continuation value of the influencer at time t.

In the transformed problem, ṽT (x̃T ) = −x̃′
T x̃T , and

ṽT−1(x̃T−1) = max
r̃T−1

−
{
x̃′
T−1x̃T−1 + cr̃′T−1r̃T−1 + δ(Dx̃T−1 + r̃T−1)

′(Dx̃T−1 + r̃T−1)
}
.

Differentiate it with respect to r̃T−1 and set the derivative to zero we obtain

−(δ + c)r̃T−1 = δDx̃T−1, then r̃T−1 = − δ

δ + c
Dx̃T−1.

Since the objective function is concave, and the opinion evolution is linear, the FOC suffices.

Substituting the optimal r̃T−1 into the value function at time T − 1, we have

ṽT−1(x̃T−1) =− x̃′
T−1x̃T−1 − cr̃′T−1r̃T−1 − δx̃′

TxT

=− x̃′
T−1

(
I + c

δ2

(δ + c)2
D2 + δ

c2

(δ + c)2
D2

)
x̃T−1.
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This value function can be written as

ṽT−1(x̃T−1) = −x̃′
T−1K̃T−1x̃T−1, where K̃T−1 = I +

δc

δ + c
D2.

Note that the value function is quadratic in K̃T−1. Clearly, K̃T−1 is diagonal and positive

definite (pd) with each j-th diagonal entry increasing in c and δ, and in λ2
j . Also, the optimal

r̃T−1 characterizes the influencer’s myopic strategy when she maximizes only the next

period’s payoff, which we use in the proof of Proposition 3. We now show if K̃t is diagonal

and pd, then K̃t−1 is also diagonal and pd. From the value function at t− 1, we can show

the optimal message

r̃t−1 = −(δK̃t + cI)−1δK̃tDx̃t−1.

Every matrix above is diagonal and (δK̃t + cI)−1 exists because it is pd. Therefore we can

express the value function as:

ṽt−1(x̃t−1) = −x̃′
t−1x̃t−1 − cr̃′t−1r̃t−1 + δṽt(x̃t)

= −x̃′
t−1x̃t−1 − cr̃′t−1r̃t−1 − δx̃′

tK̃tx̃t

= −x̃′
t−1

(
I + c((δK̃t + cI)−1δK̃t)

2D2 + δ(I − (δK̃t + cI)−1δK̃t)
2K̃tD

2
)
x̃t−1.

Simplifying above, we have:

K̃t−1 = I + δc(δK̃t + cI)−1K̃tD
2. (16)

Clearly, K̃t−1 is diagonal and pd. Moreover, K̃t decreases in t by induction. First, K̃T−1 >

K̃T = I . Second, suppose this claim is true for all K̃t, . . . , K̃T−1. From equation (16) above,

for every dimension j, K̃t−1,jj − K̃t,jj = f(K̃t,jj)− f(K̃t+1,jj), where f(x) =
δcλ2

jx

δx+c
. Since

f(·) is increasing and K̃t,jj > K̃t+1,jj , we have K̃t−1,jj − K̃t,jj > 0 for all j.

Infinite-horizon proof: there are two ways to analyze the infinite-horizon case. First, we

show that the finite-horizon Ricatti matrix has a well defined limit, which is the infinite-

horizon Ricatti matrix. Second, we directly solve the fixed point problem (5) and study

the properties of its solution K̃∗. In later proofs, we may use either method depending on

convenience.

First, we show that the finite-horizon Ricatti matrix has a well defined limit. Recall that

x̃t = Dtx̃0 under no invention, that is, under r̃t = 0 in every period. The value denoted as

ṽ∅(x̃0) = −x̃′
0(I − δD)−1x̃0 is bounded, where ∅ refers to the no intervention case. The
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optimal strategy must do better, that is, ṽ(x̃0) > ṽ∅(x̃0). Thus, K̃T−t is bounded and recall

from above, it increases in t. A bounded and monotonically increasing sequence has a limit.

Let limt→∞ K̃T−t = K̃∗. Taking the limit of both sides of the finite-horizon Ricatti equation

(16), we have the infinite-horizon Ricatti equation (5). Moreover, K̃∗ has all the properties

of the finite-horizon Ricatti matrix, namely, diagonal, positive definite, and unique.

Second, we can directly study the infinite-horizon Ricatti equation. Note from the above that

the value of this problem is bounded and thus a solution exists. We claim ṽ(x̃) = −x̃′K∗x̃,

and verify this claim indeed holds. In period t, the influencer chooses r̃t to maximize

ṽ(x̃t) = −x̃′
tx̃t − cr̃′tr̃t + δṽ(x̃t+1),

where x̃t+1 = Dx̃t + r̃t. Differentiate it with respect to r̃t, we can easily see the the unique

solution (if exists) of infinite-horizon Ricatti equation is a necessary condition for optimality:

K̃∗ = I + δc(δK̃∗ + cI)−1K̃∗D2.

Next, we show that there exists a diagonal and pd matrix K̃∗ that solves this equation. If

K̃∗ is diagonal, then the problem can be solved in each dimension j. At K̃∗
jj = 1, the

left hand side (LHS) is smaller than the right hand side (RHS), but at K̃∗
jj = ∞, the LHS

is bigger than the RHS. Moreover, the slope of the RHS with respect to K̃∗
jj is positive

but smaller than 1, which is the slope of the LHS. Thus, in each dimension, there is one

intersection, which clearly defines K̃∗. Then, we have to show under the optimal strategy

r̃t = −(δK̃∗ + cI)−1δK̃∗Dx̃t, the opinions converge and thus the solution is also sufficient.

It is easy to see that x̃t = ct(δK̃∗ + cI)−tDtx̃0. The matrix c(δK̃∗ + cI)−1D is strictly

substochastic with all eigenvalues strictly less than 1 in absolute value, and thus the system

is asymptotically stable and the limit opinion is 0. Asymptotic stability is a necessary

and sufficient condition for the existence of a unique Ricatti matrix that solves the infinite-

horizon Ricatti equation, therefore the solution K̃∗ is unique. Putting all together, we verify

the claim that the value function is ṽ(x̃) = −x̃′K∗x̃ for any opinion x̃. ∥

Proof of Proposition 2: Recall from expression (7) that the influencer’s message in each

period is a linear function of the current opinions. In dimension j,

∣∣r̃jt ∣∣ = ∣∣∣L̃∗
jj

∣∣∣ ∣∣x̃j
t

∣∣ = δK̃∗
jj|λj|

δK̃∗
jj + c

(
c|λj|

δK̃∗
jj + c

)t ∣∣x̃j
0

∣∣ .
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The optimal message depends on the slope
∣∣∣L̃∗

jj

∣∣∣ as well as the second (exponential) term,

capturing opinion convergence. Both terms depend on the endogenous Ricatti matrix. Since

the value function is continuous, by Envelope Theorem, for any x̃0, the influencer is worse

off as the cost of intervention c increases, or as δ increases since the future losses matter more.

This observation immediately implies that K̃∗ increases in c and δ. Thus, as δ increases, |L̃∗
jj|

increases. Moreover, since for all j, K̃∗
jj is the solution to δ(K̃∗

jj)
2+(c−δ−δcλ2

j)K̃
∗
jj−c = 0,

it is easy to see that K̃∗
jj increases in λ2

j and K̃∗
jj/c decreases in c by the Implicit Function

Theorem. Thus, as c increases, |L̃∗
jj| decreases.

The initial message
∣∣r̃j0∣∣ depends only on the slope. Clearly, it increases in δ and decreases

in c. The exponential term, however, decreases in δ and increases in c. As t increases, the

exponential term dominates, and thus the later messages are less extreme when δ increases

or c decreases. In terms of payoff, since the value function is ṽ(x̃0) = −x̃′
0K̃

∗x̃0, it is easy

to see that it decreases in δ, c, |λj|, and x̃0. ∥

Proof of Observation 1: The first statement is shown in the previous proof, and we prove

the ensuing two parts in turn. Part (1): the matrix JN/N has a unique spectrum: (1, 0, . . . , 0).

Let DJ be a diagonal matrix with this spectrum in the diagonal. Recall that A = UDU ′, it is

easy to verify the JN = UDJU
′. That is, they can be diagonalized by the same eigenvectors.

Therefore, the spectrum of A(ε) is simply (1, (1− ε)λ2, . . . , (1− ε)λN).

Part (2): because A and P are both symmetric and positive definite matrices, they have all

positive eigenvalues. Let the eigenvalues of A(ε) be {λε
1, . . . , λ

ε
N}. Recall that λA

1 is the

largest eigenvalue of A and λA
N is the smallest eigenvalue; we label the eigenvalues of P

similarly. By Weyl’s inequality, since A,P are both symmetric, for all i

(1− ε)λA
i + ελP

N ≤ λε
i ≤ (1− ε)λA

i + ελP
1 .

If λP
N > λA

2 , or the smallest eigenvalue of P is higher than the second largest eigenvalue of

A, then λε
i > λA

i for all i > 2. ∥

Proof of Proposition 3: The optimal strategy for each intervention is given in the text.

Here we add the appropriate superscript to the opinions to be clear. The opinion evolution

is given by x̃os
t = Dt−1x̃1 and x̃∅

t = Dtx̃0 for one-shot and no intervention. Moreover,

x̃mp
t =

(
c

δ+c

)t
Dtx̃0 for myopic intervention, and x̃∗

t = (cI + δK̃∗)−tctDtx̃0 for optimal

dynamic intervention. We now compare initial message intensity of active interventions.
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From the text, in each dimension j,∣∣r̃mp
0,j

∣∣ = δ

δ + c

∣∣λjx̃
j
0

∣∣ < δ

δ + c/K̃∗
jj

∣∣λjx̃
j
0

∣∣ = ∣∣r̃∗0,j∣∣ .
Thus, dynamic intervention sends a stronger initial message in each dimension than that

in myopic intervention. Next, as
∣∣r̃os0,j∣∣ = δ

δ+c(1−δλ2
j )

∣∣λjx̃
j
0

∣∣, we need to compare 1 − δλ2
j

versus 1/K̃∗
jj . By (5),

K̃∗
jj = 1 +

δcK̃∗
jjλ

2
j

δK̃∗
jj + c

⇒ K̃∗
jj − 1 =

δK̃∗
jjλ

2
j

δK̃∗
jj/c+ 1

⇒ 1− 1/K̃∗
jj =

δλ2
j

δK̃∗
jj/c+ 1

< δλ2
j .

Therefore,
∣∣r̃os0,j∣∣ > ∣∣r̃∗0,j∣∣, that is, one-shot intervention sends the strongest initial message.

In terms of later messages, notice that |x̃mp
t |> |x̃∗

t | in every dimension because K̃∗ > I in

the pd sense. When t is large enough, the lower magnitude of current opinions dominates

the steeper slope, and thus the later messages are less extreme under optimal intervention

than that under myopic intervention.

We now compare the payoffs from one-shot and myopic intervention. Substituting the

optimal strategy r̃os0 in the one-shot intervention, we get the one-shot influencer’s payoff is:

ṽos(x̃0) =− x̃′
0x̃0 − c(r̃os0 )′r̃os0 −

∞∑
1

δt(x̃os
1 )′D2(t−1)x̃os

1 (17)

= −x̃′
0x̃0 − x̃′

0cδ(c(I − δD2) + δI)−1D2x̃0. (18)

As in the text, the myopic strategy is r̃mp
t = − δ

δ+c
Dx̃mp

t , and x̃mp
t =

(
c

δ+c

)t
Dtx̃0. Together,

we have the total discounted payoff in myopic intervention is:

−x̃′
0

(
I − δc2

(δ + c)2
D2

)−1(
I +

cδ2

(δ + c)2
D2

)
x̃0. (19)

Use dimension wise comparison here: since x̃0 is fixed, for dimension j, (19)-(18) is:

− δcλ2
j

(
δ + c

(δ + c)2 − δc2λ2
j

− 1

δ + c(1− δλ2
j)

)
=− δcλ2

j

(
δ + c

(δ + c)2 − δc2λ2
j

− δ + c

(δ + c)2 − cδ(δ + c)λ2
j

)
> 0.

Thus, the myopic payoff is always higher than that of the one-shot payoff for all δ, c and

symmetric A. ∥
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Proof of Proposition 4: By standard result such as Proposition 3.1.1 of Bertsekas (2017),

when opinions evolve according to xt = Axt−1 + rt−1 and there is no discounting, if the

pair (A, I) is controllable and (A′, I) are controllable, the system given optimal strategy

is stable. A pair (A, I) is controllable when the matrix [I, A, . . . , AN−1] has full rank N .

Moreover, the Ricatti equation in the case of δ = 1 is

K∗ = I + A′ (K∗ −K∗(K∗ + cI)−1K∗)A
has a unique solution. Let Â =

√
δA, then we can rewrite our Ricatti equation given in the

proposition as

K∗ = I + (
√
δA)′

(
K∗ −K∗

(
K∗ +

c

δ
I
)−1

K∗
)√

δA.

After rewriting, the opinion system evolves according to x̂t = Âx̂t−1 + r̂t, where r̂t =√
δrt, and the cost of the r̂t is c/δ. Since (

√
δA, I) and ((

√
δA)′, I) satisfy the same

controllability conditions, this system with discounting is also stable and x̂t → 0. Clearly,

limt→infty v(xt) = −x′
tK

∗xt = 0. Substitute in the optimal strategy, we have x̂t = (
√
δ)txt

where x̂0 = x0. Because at δ = 1, c(δK∗ + cI)−1A is stable with (absolute value)

of all its eigenvalues strictly smaller than 1. Moreover, K∗ is continuous in δ and the

largest eigenvalue, as a root of a polynomial function is also continuous in δ. Therefore

c(δK∗ + cI)−1A is also stable for δ sufficiently high. ∥

Proof of Proposition 5: we prove the result in a few steps.

Step 1: When T is finite, we claim that the Ricatti matrix K̃m
t is diagonal, positive definite,

and K̃m
t = K̃t for all t and m. To begin with, at the terminal period T , since ṽm(x̃T ) =

−(x̃T − b̃m)′(x̃T − b̃m), K̃m
T = I , k̃m

T = b̃m, and κ̃m
T = 0. Suppose the claim holds at t,

we consider the value function at t− 1.

ṽmt−1(x̃t−1) = −(x̃t−1 − b̃m)′(x̃t−1 − b̃m)− c(r̃mt−1)
′(r̃mt−1)

− δ

(
Dx̃t−1 + α

M∑
l=1

r̃lt−1 − k̃m
t

)′

K̃t

(
Dx̃t−1 + α

M∑
l=1

r̃lt−1 − k̃m
t

)
− δκ̃m

t .

From the FOC for agent m:

cr̃mt−1 = −δαK̃t

(
Dx̃t−1 + α

∑
r̃lt−1 − k̃m

t

)
. (20)
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Summing up all the individual FOCs, we have

α
∑

r̃mt−1 = −(cI + δMα2K̃t)
−1
(
δMα2K̃tDx̃t−1 − δK̃tα

2
∑

k̃m
t

)
.

Note that cI + δMα2K̃t is clearly positive definite and thus an inverse exists. For simplicity,

let Ht = (cI + δMα2K̃t)
−1, which is diagonal and positive definite. Then the above

equation becomes

α
∑

r̃mt−1 = −Htδα
2K̃t

(
MDx̃t−1 −

∑
k̃m
t

)
.

It means that

x̃t = Dx̃t−1 + α
∑

r̃mt−1 = (I −HtδMα2K̃t)Dx̃t−1 +Htδα
2K̃t

∑
k̃m
t . (21)

Substitute back into the individual FOC, and we have:

r̃mt−1 = −δ

c
αK̃t

(
(I −HtδMα2Kt)Dx̃t−1 +Htδα

2K̃t

∑
k̃m
t − k̃m

t

)
,

= −δ

c
αK̃t

(
cHtDx̃t−1 +Htδα

2K̃t

∑
k̃m
t − k̃m

t

)
.

The last equation is due to the fact that

I −HtδMα2K̃t = I − (cI + δMα2K̃t)
−1δMα2K̃t = (cI + δMα2K̃t)

−1cI = cHt.

We now solve for K̃m
t−1 by substituting r̃mt−1 into the value function at t− 1:

K̃m
t−1 = I + cδ2α2D′H ′

t(K̃t)
2HtD + c2δD′H ′

tK̃tHtD

= I + cδD′H ′
tK̃t(δα

2K̃t + cI)HtD. (22)

Clearly, since K̃m
t = K̃t, we know K̃m

t−1 = K̃t−1 for all m. Moreover, because the right

hand side of (22) is a positive definite diagonal matrix, K̃t−1 is also such a matrix.

Step 2: The finite-horizon Ricatti matrix K̃t has a limit. Recall that K̃t−1 is a function of K̃t

according to (22). When A is symmetric, then for dimension j, we have

K̃t−1,jj = 1 +
cδ(δα2K̃t,jj + c)K̃t,jjλ

2
j

(δα2MK̃t,jj + c)2
.

Consider function f(x) = 1 +
cδ(δα2x+c)xλ2

j

(δα2Mx+c)2
, then clearly K̃t−1,jj = f(K̃t,jj). Notice that

f(·) is differentiable, and

∂f(x)

∂x
=

c2δλ2
j(δα

2x(2−M) + c)

(δα2Mx+ c)3
, (23)
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Since c2 < (δα2Mx + c)2 and |δα2x(2 −M) + c|< δα2Mx + c for all M > 1, we have

|∂f(x)/∂x|< δ. Then by the Mean Value Theorem, there exists some point g ≥ 0 such that

|K̃t−1,jj − K̃t,jj|= |f ′(g)(K̃t,jj − K̃t+1,jj)|< δ|K̃t,jj − K̃t+1,jj|.

Thus, for any fixed T , there exists a limit of K̃T−t,jj when t → ∞ because the distance

|K̃t−1,jj − K̃t,jj| is decreasing. In addition, since the terminal value K̃T,jj = 1 and that

f(x) > 1 for all x > 0, the limit K̃∗
jj ≥ 1.

Step 3: There exists a MPE when T = ∞. First, we show that K̃∗ is the solution to the

infinite-horizon Ricatti equation. Take the limit of both sides of equation (22), which exists

by the argument above. Let H = limt→∞Ht, which is also diagonal and pd. We have

equation (11), reproduced here:

K̃∗ = I + cδDHK̃∗(δα2K̃∗ + cI)HD.

It is easy to see equation (11) is a necessary condition for influencer m to maximize his

payoff given the other influencers’ strategies. Next, we show the dynamic system of opinion

evolution given the influencers’ strategies is stable and thus the value function above is well

defined and there exists a unique solution to the Ricatti equation. To do so, we focus on

the special case when bm = 0, that is, all influencers have the same agenda. Note that this

assumption does not affect K̃∗ since the agendas only affect the constant terms in the best

response equation (20). Then, the value function contains only the quadratic term with K̃∗,

and the projected opinions evolve according to

x̃t = (I −HδMα2K̃∗)Dx̃t−1,

which is the limit of equation (21). Note that (I −HδMα2K̃∗)D is a diagonal matrix with

every diagonal entry strictly smaller than 1, so x̃t = (I −HδMα2K̃∗)tDtx̃0 goes to 0 as

t → ∞. Therefore, the solution to equation (11) characterizes each influencer’s equilibrium

strategy. From the standard result on Lyapunov equations, since I > 0, c > 0, and the matrix

(I −HδMα2K̃∗)D has all eigenvalues with absolute value between (0, 1), there exists a

unique K̃∗ that solves equation (11). Together, the optimal strategy given in Proposition 5,

equation (11) and (24) below define the unique MPE of the infinite horizon game.

Step 4: We now show that in the unique MPE, agents reach consensus. We have character-

ized K̃∗ above. We now consider the evolution of the linear term k̃m which depends on the
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influencers’ agendas. Using equation (11), we have

K̃∗k̃m = b̃m − δ2α2DH(K̃∗)2(Hδα2K̃∗
∑

k̃m − k̃m)− cδDHK̃∗(Hδα2K̃∗
∑

k̃m − k̃m)

= b̃m −
(
δ2α2DH(K̃∗)2 + cδDHK̃∗

)
(Hδα2K̃∗

∑
k̃m − k̃m)

= b̃m − (δDHK̃∗(δα2K̃∗ + cI))(Hδα2K̃∗
∑

k̃m − k̃m).

Summing it up for m, we have (note we need D to be invertible here).

K̃∗
∑

k̃m =
∑

b̃m + (K̃∗ − I)D−1(H)−1(HδMα2K̃∗
∑

k̃m −
∑

k̃m)

=
∑

b̃m + (K̃∗ − I)D−1
∑

k̃m. (24)

The last equality holds by substituting equation (11) into the right hand side of the expression.

Recall that K̃∗ is diagonal. Moreover, we know that b̃m = U ′bm1 = (
√
Nbm, 0, . . . , 0)′.

From Step 3, the value function has no linear terms if all influencers’ agendas are zero, that

is, k̃m
j = 0 for j ̸= 1. As K̃∗ − (K̃∗ − I)D−1 is a diagonal matrix with the first diagonal

entry being 1, in the first dimension we have
∑

k̃m
1 =

∑
b̃m
1 =

√
N
∑

bm; and all other

dimensions of
∑

k̃m are 0. As a result,
∑

k̃m is uniquely defined.

Next, given the influencer’s strategies, the network opinions evolve according to

x̃t = Dx̃t−1 + α
∑

r̃mt−1 = (I −HδMα2K̃∗)Dx̃t−1 +Hδα2K̃∗
∑

k̃m. (25)

Recall that (I −HδMα2K̃∗) = cH , and we can rewrite the above as

(x̃t − β) = cHD(x̃t−1 − β),

where β = (I − cHD)−1Hδα2K̃∗∑ k̃m. Clearly, (absolute values) of all eigenvalues

of cHD are smaller than 1, and the above system converges to limt→∞ x̃t − β = 0, or

x̃∞ = β is the limit belief. Since
∑

k̃m
j = 0 for all j ̸= 1 and

∑
k̃m
1 =

√
N
∑

bm, it is

easy to see that β =
(√

N
∑

bm/M, 0, . . . , 0
)

and thus the (unprojected) limit opinions

are x∞ = (
∑

bm/M, . . . ,
∑

bm/M)′ in the unique MPE of this game. ∥

Proof of Corollary 1: From the proof of Proposition 5, influencer m’s strategy is linear, not

affine, in the projected opinions when bm = 0 for all m. Therefore, the payoff depends only

on K̃∗, which is diagonal, pd, and identical for all m. Rewrite the infinite-horizon Ricatti

equation (11) as a function of M :

K̃∗(M) = I + cδDH(M)K̃∗(M)(δα2K̃∗(M) + cI)H(M)D, (26)
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where H(M) = (cI + δMα2K̃∗(M))−1. We now show that each diagonal entry of K̃∗(M)

decreases in M . In dimension j,

K̃∗
jj(M) = 1 +

cδK∗
jj(M)(δα2K∗

jj(M) + c)λ2
j

(δMα2K∗
jj(M) + c)2

.

Let x = K̃∗
jj(M). The above equation can be rewritten as

g(x,M) ≡ 1 +
cδx(δα2x+ c)λ2

j

(δMα2x+ c)2
− x = 0. (27)

It is easy to see that ∂g/∂M < 0. Next,

∂g

∂x
=

c2δλ2
j(δα

2x(2−M) + c)

(Mδα2x+ c)3
− 1.

Note that c2 < (Mδα2x + c)2. Also, (δα2x(2 − M) + c) < Mδα2x + c for all M >

1. Therefore, the ratio above is smaller than 1, which implies ∂g
∂x

< 0. By implicit

function theorem, K̃∗
j (M) strictly decreases in M . Recall that each influencer’s payoff is

−x̃′
0K̃

∗(M)x̃0. Thus, each influencer’s payoff increases in M .

Next, we examine the convergence speed and intervention intensity. Recall that

x̃t = Dx̃t−1 +Mαr̃t−1 =
(
I − (δMα2K̃∗(M) + cI)−1δMα2K̃∗(M)

)t
Dtx̃0.

Using the fact that K̃∗(M) is diagonal, we can rewrite it as:

x̃t =

(
c

δMα2K̃∗
11(M) + c

)t

λt
1x̃

1
0 + . . .+

(
c

δMα2K̃∗
NN(M) + c

)t

λt
N x̃

N
0 .

We now show that MK̃∗
jj(M) increases in M for every dimension j, and thus the con-

vergence speed strictly increases in M . Let y = Mx (recall x = K̃∗
jj(M)), and let

x′ = dx
dM

, y′ = dy
dM

. Differentiating g(x,M) in (27) with respect to M , we have:

−x′
(
1−

cδ(2δα2x+ c)λ2
j

(δMα2x+ c)2

)
=

2cδ2α2x(δα2x+ c)λ2
j

(δMα2x+ c)3
y′.

We know that x′ < 0 from above. Moreover, the second term on the left hand side is positive

because c < δMα2x+ c and 2 ≤ M . Therefore y′ > 0, that is, MK̃∗
jj(M) increases in M

for all j. Therefore, the convergence speed increases in M and the absolute value of (14)

decreases in M for every influencer.
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We now compare the total payoff of the M influencers with that of a single representative

influencer. Recall the representative influencer’s stage payoff is −M x̃′
tx̃t − c

∑M
1 (r̃mt )

′r̃mt .

Since the cost is quadratic, for any aggregate message r̃t =
∑M

1 r̃mt , it is optimal to send

M identical messages. Her value function in period 0 is ṽs0(M) = −M x̃′
0K̃

s(M)x̃0, where

K̃s(M) is the Ricatti matrix of the influencer who sends message r̃t/M . In this way, we

can compare K̃s(M) directly with K̃m(M) in the multiple-influencer model. We have

ṽst (M) = −M x̃′
tx̃t −

c

M
r̃′tr̃t − δM(Dx̃′

t + αr̃t)
′K̃s(M)(Dx̃′

t + αr̃t).

Her optimal strategy is(
δMα2K̃s(M) +

c

M
I
)
r̃t = −δMαK̃s(M)Dx̃t.

The Ricatti equation becomes:

K̃s(M) = I + δc(δM2α2K̃s(M) + cI)−1K̃s(M)D2. (28)

It is easy to verify that K̃s(M) decreases in M and MK̃s(M) increases in M similar to the

multiple-influencer case above.

The Ricatti matrix in (26) and (28) are both diagonal, so we can compare their respective

diagonal entry. In dimension j, we have

gs(x) = 1 +
δc

δM2α2x+ c
xλ2

j , and g∗(x) = 1 +
δc(δα2x+ c)

(δMα2x+ c)2
xλ2

j .

We can verify that gs(x) ≤ g∗(x) and the equality holds if and only if M = 1. So for

M ≥ 2, Ks
jj(M) < K∗

jj(M), which implies that the single representative influencer can do

better than the multiple influencers. For convergence speed, we need to compare M2Ks
jj(M)

and MK∗
jj(M), or equivalently to compare MKs

jj(M) and K∗
jj(M). Notice that at M = 1,

MKs
jj(M) = K∗

jj(M). Since the LHS increases in M and the RHS decreases in M ,

MKs
jj(M) > K∗

jj(M) for all M > 1. Thus, the opinions converge faster under the single

representative influencer than under M influencers. ∥

Proof of Proposition 6: Since A is asymmetric, we do not decompose A and thus all

variables are in their original forms. In the infinite-horizon model, we focus on the semi-

symmetric equilibrium in which all influencers share the same Ricatti matrix Km = K∗ if

such an equilibrium exists. The finite-horizon model is similar with the exception that the
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unique MPE must be semi-symmetric in which all influencers share the same Ricatti matrix

K∗
t for 0 ≤ t ≤ T by backward induction.

First, we characterize the infinite-horizon Ricatti equation (15), which is a necessary condi-

tion of the equilibrium. We assume Km = K∗ is a positive definite matrix for all m and

derive the value function of each influencer.

vm(xt−1) = −(xt−1 − bm)′(xt−1 − bm)− c(rmt−1)
′(rmt−1)

− δ

(
Axt−1 + α

M∑
l=1

rlt−1 − km

)′

K∗

(
Axt−1 + α

M∑
l=1

rlt−1 − km

)
− δκm.

From the FOC for influencer m:

crmt−1 = −δαK∗
(
Axt−1 + α

∑
rmt−1 − km

)
. (29)

Summing up all the individual FOCs, we have

α
∑

rmt−1 = −(cI + δMα2K∗)−1
(
δMα2K∗Axt−1 − δK∗α2

∑
km
)
.

Note that cI+ δMα2K∗ is clearly positive definite and thus an inverse exists. For simplicity,

let H = (cI + δMα2K∗)−1, which is positive definite. Then the above equation becomes

α
∑
m

rmt−1 = −Hδα2K∗
(
MAxt−1 −

∑
km
)
. (30)

Similar to the calculations in Step 1 of the proof of Proposition 5, we get

K∗ = I + cδ2α2A′H ′(K∗)2HA+ c2δA′H ′K∗HA

= I + cδA′H ′K∗(δα2K∗ + cI)HA.

Moreover, we can use the Ricatti equation to obtain the evolution of km:

K∗km = bm − (δAHK∗(δα2K∗ + cI))(Hδα2K∗
∑

km − km),

K∗
∑

km =
∑

bm + (K∗ − I)A−1
∑

km. (31)

Note that the Ricatti equation depends only on the quadratic terms of xt, and thus the Ricatti

equation (15) is the same as one in which all km = 0 and κm = 0. We can rewrite the

Ricatti equation (15) as

(cHA)′K∗cHA−K∗ + I + cδ2α2A′H ′(K∗)′IK∗HA = 0.
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Because I > 0 and cI > 0, I + cδ2α2A′H ′(K∗)′IK∗HA > 0, this is a Lyapunov equation.

If a positive definite solution K∗ exists, then by the known theorem on Lyapunov inequality

(see for example, Theorem 8.4 from Hespanha (2018)), the transition matrix cHA is stable

and has all eigenvalues strictly smaller than 1 (in absolute value).

Next, the network opinions evolve according to

xt = Axt−1 + α
∑

rmt−1 = cHAxt−1 +Hδα2K∗
∑

km.

Again, this is an affine dynamic system and we can rewrite the above as

(xt − β) = cHA(xt−1 − β),

where β = (I − cHA)−1Hδα2K∗∑km. Note that because cHA is asymptotically stable,

the magnitude of all eigenvalues is strictly smaller than 1, (I−cHA) is pd and thus invertible.

The above system converges to limt→∞ xt − β = 0, that is, the network opinions converge,

and x∞ = β is the limit opinion.

Next, we know from equation (31) that(
K∗ − (K∗ − I)A−1

)∑
km =

∑
bm.

If K∗ − (K∗ − I)A−1 is non-singular, the solution
∑

km is unique. We now show in the

limit, consensus is always an equilibrium outcome. In this case, x∞ is a constant vector and

thus x∞ = Ax∞. Since x∞ = Ax∞ +α
∑

rm∞, the sum of long run messages
∑M

1 rm∞ = 0.

Taking (30) to the limit, we have Ax∞ = x∞ =
∑

km/M . So,
∑

km is a constant vector.

Substitute into equation (31) and use the fact Mx∞ =
∑

km = A−1
∑

km, we have

K∗Mx∞ =
∑

bm + (K∗ − I)Mx∞.

That is, x∞ =
∑

bm/M . Therefore there always exists a semi-symmetric MPE in which

all influencers have the same K∗ and the network opinions converge to consensus x∞. This

MPE is the unique semi-symmetric MPE if K∗ − (K∗ − I)A−1 is non-singular. ∥

Proof of Proposition 7: Since A is symmetric, we decompose it as A = UDU ′ and

transform the problem into one using the projected variables.

Step 1: There exist a unique pair of diagonal and pd Ricatti matrices (K̃1, K̃2) that solve

the influencers’ infinite-horizon Ricatti equations. Moreover, K̃1 > K̃2 in the pd sense.
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We assume that the value function of influencer m = 1, 2 exists when T = ∞ and takes the

following quadratic form, and we will verify this assumption later at the end of Step 2.

ṽmt−1(x̃t−1) = −(x̃t−1 − b̃m)′(x̃t−1 − b̃m)− c(r̃mt−1)
′(r̃mt−1)

− δ

(
Dx̃t−1 +

M∑
l=1

αlr̃
l
t−1 − k̃m

)′

K̃m

(
Dx̃t−1 +

M∑
l=1

αlr̃
l
t−1 − k̃m

)
− δκ̃m.

We first derive the coupled Ricatti equations under the assumption that K̃m is diagonal and

pd and will verify later that there exist such Ricatti matrices that solve the Ricatti equations.

From the FOC for influencer m:

cr̃mt−1 = −δαmK̃
m
(
Dx̃t−1 +

∑
αmr̃

m
t−1 − k̃m

)
. (32)

Rearrange and we have:(
cI + δα2

1K̃
1 + δα2

2K̃
2
)
r̃1t−1 = −δα1K̃

1

(
Dx̃t−1 −

δ

c
α2
2K̃

2
(
k̃1 − k̃2

)
− k̃1

)
; (33)(

cI + δα2
1K̃

1 + δα2
2K̃

2
)
r̃2t−1 = −δα2K̃

2

(
Dx̃t−1 −

δ

c
α2
1K̃

1
(
k̃2 − k̃1

)
− k̃2

)
. (34)

We can focus on the evolution of K̃m because it is independent of k̃m and bm. Let Γ =

(cI + δα2
1K̃

1 + δα2
2K̃

2)−1. Substitute equation (33) and (34) into the evolution of opinions:

x̃t = Dx̃t−1 − δα2
1ΓK̃

1Dx̃t−1 − δα2
2ΓK̃

2Dx̃t−1 = (I − δα2
1ΓK̃

1 − δα2
2ΓK̃

2)Dx̃t−1.

Note that (I−δα2
1ΓK̃

1−δα2
2ΓK̃

2) = cΓ, and thus we have x̃t = cΓDx̃t−1. Combined with

r̃mt−1 = −δαmΓK̃
mDx̃t−1, we can derive the coupled Ricatti equations. Note that influencer

m’s Ricatti matrix depends on the other’s Ricatti matrix through Γ.

K̃1 = I + cδDΓK̃1(δα2
1K̃

1 + cI)ΓD; (35)

K̃2 = I + cδDΓK̃2(δα2
2K̃

2 + cI)ΓD. (36)

The above coupled Ricatti equations are necessary conditions for the infinite-horizon game

to have a MPE. Next, we show that there exist positive definite and diagonal solutions

(K̃1, K̃2) to the coupled Ricatti equations. In each dimension j, let x = K̃1
jj and y = K̃2

jj ,

and the coupled Ricatti equations become

x = 1 +
cδλ2

jx(δα
2
1x+ c)

(c+ δα2
1x+ δα2

2y)
2
; (37)

y = 1 +
cδλ2

jy(δα
2
2y + c)

(c+ δα2
1x+ δα2

2y)
2
. (38)
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Because (K̃1, K̃2) need to be pd and diagonal, we search for solutions in the range x ≥
1, y ≥ 1. Subtracting RHS from LHS of equation (37) defines an implicit function g1(x, y) =

0, and we can show ∂g1(x,y)
∂x

> ∂g1(x,y)
∂y

> 0. Given g1(x, y) = 0, x strictly decreases in y

and |∂y/∂x|> 1. Similarly, subtracting RHS from LHS of equation (38) defines an implicit

function g2(x, y) = 0, and we can show ∂g2(x,y)
∂y

> ∂g2(x,y)
∂x

> 0. Given g2(x, y) = 0, we can

show that y strictly decreases in x and |∂y/∂x|< 1. Thus, the two curves g1(x, y) = 0 and

g2(x, y) = 0 intersect at most once. Moreover, at y = 1, x > 1 and at y → ∞, x → 1, and

vice versa. So there exists a unique solution K̃1
jj > 1, K̃2

jj > 1 for each dimension j.

Then, we show K̃1 > K̃2. Notice that whenever α1 ̸= α2, x ̸= y. Also, α2
1x ̸= α2

2y, because

otherwise x = y is a solution. Recall α1 > α2 by assumption. Multiply equation (37) by α2
1

and equation (38) by α2
2 and take their difference. Let x′ = α2

1x, y
′ = α2

2y, we have:

x′ − y′ = α2
1 − α2

2 +
cδλ2

j

(c+ δx′ + δy′)2
(δ((x′)2 − (y′)2) + c(x′ − y′)).

Since α2
1x ̸= α2

2y from above, divide x′ − y′ from both sides, and we have:

1 =
α2
1 − α2

2

x′ − y′
+

cδλ2
j

c+ δx′ + δy′
.

The second term is strictly between 0 and 1, and thus 0 <
α2
1−α2

2

x′−y′
< 1, or x′ > y′ . Together

with the fact that x−1
y−1

= x
y
δx′+c
δy′+c

, we have x−1
y−1

< x
y

and thus x > y. Because K̃1
jj > K̃2

jj for

all j, K̃1 > K̃2 in the positive definite sense.

Step 2: The network opinions converge: limt→∞ x̃t = x̃∞. Since bm ̸= 0 in general, we

also need to derive the evolution of k̃m. Summing up the weighted messages, we have:∑
αmr̃

m
t = −δΓ

(
(α2

1K̃
1 + α2

2K̃
2)Dx̃t − (α2

1K̃
1k̃1 + α2

2K̃
2k̃2)

)
. (39)

Let w = α2
1K̃

1k̃1 + α2
2K̃

2k̃2. From above, we have

x̃t = cΓDx̃t−1 + δΓw; (40)

r̃mt−1 = −δ

c
αmK̃

m(cΓDx̃t−1 + δΓw − k̃m). (41)

Together, we have the evolution of k̃m, which only depends on K̃m and thus is well-defined:

K̃1k̃1 = b̃1 − δΓD(δα2
1K̃

1 + cI)(δK̃1Γw − K̃1k̃1); (42)

K̃2k̃2 = b̃2 − δΓD(δα2
2K̃

2 + cI)(δK̃2Γw − K̃2k̃2). (43)

49



We can then solve for K̃mk̃m as a function of K̃m and other parameters. To simplify the

derivation, let

Y = I − δΓ2D(δα2
1K̃

1 + cI)(δα2
2K̃

2 + cI),

Z1 = δ2α2
2ΓD(δα2

1K̃
1 + cI)K̃1Γ, and Z2 = δ2α2

1ΓD(δα2
2K̃

2 + cI)K̃2Γ.

Then straightforward calculations can show that

(Y 2 − Z1Z2)K̃
1k̃1 = Y b̃1 − Z1b̃

2; (44)

(Y 2 − Z1Z2)K̃
2k̃2 = Y b̃2 − Z2b̃

1; (45)

Moreover, it is easy to show Y 2 − Z1Z2 > 0. Clearly, K̃1k̃1 is strictly increasing in b̃1 and

decreasing in b̃2, and vice versa for K̃2k̃2. Moreover, because K̃1 and K̃2 are unique, there

exist a unique pair of k̃1 and k̃2. Given the opinion evolution process (40), since cΓD is

substochastic, the dynamic system is stable and the opinions converge to

x̃∞ = (I − cΓD)−1δΓw =
(
α2
1K̃

1 + α2
2K̃

2
)−1

w.

Moreover, because (K̃1, K̃2) and (k̃1, k̃2) exist and are uniquely defined, and that the

opinions converge under the affine strategies given by (41), the value functions are well

defined, and there exists a unique MPE of this game.

Step 3: The limit opinion x̃∞ features consensus in the unique MPE of this game. Substitute

expressions (44) and (45) into the expression for x̃∞, and we have:

(α2
1K̃

1 + α2
2K̃

2)(Y 2 − Z1Z2)x̃∞

= α2
1

(
I − δΓD(δα2

2K̃
2 + cI)

)
b̃1 + α2

2

(
I − δΓD(δα2

1K̃
1 + cI)

)
b̃2. (46)

Clearly, in the limit, x̃∞ is zero in all dimensions j ̸= 1 because b̃1
j = 0 and b̃2

j = 0. The

first dimension puts more weight on b̃1 than b̃2 because α2
1 > α2

2 and α2
1K̃

1
11 > α2

2K̃
2
11.

Finally, as x̃∞ is 0 in all dimensions j ̸= 1, the unprojected opinions x∞ = U x̃∞ have all

equal entries. Because the MPE is unique, it must feature consensus in the long run. ∥

Proof of Proposition 8: We consider two normalizations of the model, both of which are

without loss. First, we assume b1 > b2 and α2
1b

1 + α2
2b

2 = 0. Notice that we can add a

constant to all opinions and to both influencers’ agendas and the problem remains the same,

because the influencers care only about the difference between opinions and their agendas.

Thus, we can assume α2
1b

1 + α2
2b

2 = 0 by choosing the proper constant. Then, b1 > 0 and
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b2 < 0, and b1 < |b2| because α1 > α2. Second, we assume vj · 1 ≥ 0 for all j where vj is

the jth column of V. Otherwise, we can simply replace vj with −vj to make it satisfy the

assumption, since both are the unit eigenvectors of the jth eigenvalue.

We first characterize the limit projected opinions in dimensions j ̸= 1 in Step 1 because they

are solutions to a myopic problem. We then study the projected opinion evolution in the first

dimension and prove disagreement in the limit in Step 2.

Step 1: Recall that A = USV ′, where S is the singular value matrix with diagonal entries

σ1 =
√

N(a21 + a22 + . . .+ a2N) and σj = 0 for all j ̸= 1. We use uj and vj for the jth

column of U and V ; similarly, we use [Γ]j for the jth column of any matrix Γ. In the

singular decomposition, u1 =
1√
N
1′ and v1 = (a1, a2, . . . , aN)

′/
√
a21 + a22 + . . .+ a2N . In

the transformed problem, x̃t+1 = V ′USx̃t +
∑

αmr̃mt , where x̃t = V ′xt and r̃t = V ′rt.

Notice that [V ′US]j = 0 for all j ̸= 1, moreover, [V ′US]11 = 1. Therefore only x̃1
t enters

into the opinion x̃t+1, that is, the opinion evolution depends only on x̃1
t for all t. As a

result, in any dimension j ̸= 1, each influencer chooses r̃m,j
t to maximize her myopic payoff.

Specifically,

cr̃m,j
t = −δαm

(
x̃j
t − b̃mj

)
.

Solve for these messages together, we have

(c+ δα2
1 + δα2

2)r̃
m,j
t = −δαm

(
([SU ′V ]j)

′
x̃t − δα2

m′(b̃mj − b̃m
′

j )/c− b̃mj

)
.

Let τ = (c+ δα2
1 + δα2

2)
−1. Assume the limit opinion x̃1

∞ exists (we will show it holds in

Step 2), then in each dimension j ̸= 1, the limit opinion becomes:

x̃j
∞ = cτ ([SU ′V ]j)

′
x̃∞ + δτ

(
α2
1v

′
jb

11+ α2
2v

′
jb

21
)

Thus, the limit opinion in the original problem is x∞ = V x̃∞, which is equal to

V
(
cτV ′USx̃1

∞1+ δτ(α2
1V

′b11+ α2
2V

′b21)
)
+ V


x̃1
∞ − cτ x̃1

∞ − δτ(α2
1b

1+α2
2b

2)√
a21+a22+...+a2N

0
...

0

 .

(47)

As V ′V = I , the first part is cτUSx̃1
∞1+ δτ(α2

1b
11+ α2

2b
21) = cτUSx̃1

∞1 given our first

normalization. As u1 =
1√
N
1′ and Sij = 0 except when i = j = 1, we can show the first
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part is a constant vector. So to make the limit opinion a consensus, we need the second part

to be a constant vector. Recall that v1 has different entries, for consensus, we need

x̃1
∞ − cτ x̃1

∞ − δτ(α2
1b

1 + α2
2b

2)√
a21 + a22 + . . .+ a2N

= 0, or (α2
1 + α2

2)x̃
1
∞ =

α2
1b

1 + α2
2b

2√
a21 + a22 + . . .+ a2N

;

the last term is zero due to the first normalization. We will show in Step 2 that x̃1
∞ > 0, and

thus consensus is impossible.

Step 2: Characterize limit consensus x∞. Recall the value function for influencer m is

ṽmt−1(x̃t−1) = −(x̃t−1 − b̃m)′(x̃t−1 − b̃m)− c(r̃mt−1)
′(r̃mt−1)

− δ

(
V ′USx̃t−1 +

2∑
l=1

αlr̃
l
t−1 − k̃m

)′

K̃m

(
V ′USx̃t−1 +

2∑
l=1

αlr̃
l
t−1 − k̃m

)
− δκ̃m.

We first examine the form of Ricatti matrix K̃m. Since V ′US is a matrix with only the first

column being non-zero, V ′USx̃t−1 contains only x̃1
t−1. As a result, x̃j

t−1 (j ̸= 1) enters the

value function only in its first component (x̃t−1− b̃m)′(x̃t−1− b̃m). Thus, the Ricatti matrix

K̃m is diagonal and all diagonal entries are 1 except for K̃m
11. We can then apply similar

analysis as in Proposition 7 where A is symmetric (and the Ricatti matrix is diagonal):

K̃1 = I + cδ(V ′US)′ΓK̃1(δα2
1K̃

1 + cI)ΓV ′US;

K̃2 = I + cδ(V ′US)′ΓK̃2(δα2
2K̃

2 + cI)ΓV ′US.

The only difference from the Ricatti equations in Proposition 7 is that V ′US is not a diagonal

matrix. Instead, we have

K̃m
11 = 1 +

cδ(δα2
m + c)

(c+ δα2
1 + δα2

2)
2

N∑
2

((V ′US)1j)
2 +

cδK̃m
11(δα

2
mK̃

m
11 + c)

(c+ δα2
1K̃

1
11 + δα2

2K̃
2
11)

2
.

The second term on the right hand side is new but it is independent of K̃m
11. We can follow

similar steps as those in Step 1 of Proposition 7 to show solutions exist and K̃1
11 > K̃2

11.

Next, let w = α2
1K̃

1k̃1 + α2
2K̃

2k̃2, we have the evolution of k̃m, which only depends on

K̃m and thus is well-defined:

K̃1k̃1 = b̃1 − δ(V ′US)′ΓK̃1(δα2
1K̃

1 + cI)(δΓw − k̃1); (48)

K̃2k̃2 = b̃2 − δ(V ′US)′ΓK̃2(δα2
2K̃

2 + cI)(δΓw − k̃2). (49)
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Unlike Observation 2 in the symmetric A, b̃m is not necessarily zero in dimension j ̸= 1

because v1 is not collinear with bm. Because (V ′US)′ is a matrix with only the first row

being non-zero; in dimension j ̸= 1 of (48) and (49), it becomes k̃m
j = b̃mj (recall K̃m

jj = 1).

Thus, wj = 0 for all j ̸= 1 under the first normalization.

We claim that w1 ̸= 0. Suppose w1 = 0, we want to find a contradiction. The second

normalization implies that every entry in the first row of (V ′US)′ must be non-negative

because u1 is proportional to 1. Recall that b1 > 0 and b2 < 0; the second normalization

also implies that b̃1 ≥ 0 and b̃2 ≤ 0 with strict inequality holds in the first entry. Then,

k̃1
j ≥ 0 and k̃2

j ≤ 0 for all j ̸= 1. Inserting the hypothesis w1 = 0 into (48) and (49), we can

show k̃1
1 > 0 and k̃2

1 < 0. Next, we want to show (α2
1K̃

1)α2
1K̃

1k̃1 + (α2
2K̃

2)α2
2K̃

2k̃2 ≥ 0

with strict inequality holds in the first entry. In the first entry,

(α2
1K̃

1
11)α

2
1K̃

1
11k̃

1
1 + (α2

2K̃
2
11)α

2
2K̃

2
11k̃

2
1

=(α2
1K̃

1
11)α

2
1K̃

1
11k̃

1
1 + (α2

2K̃
2
11)(−α2

1K̃
1
11k̃

1
1)

=(α2
1K̃

1
11 − α2

2K̃
2
11)α

2
1K̃

1
11k̃

1
1 > 0

The first equality uses the fact that w1 = α2
1K̃

1
11k̃

1
1 + α2

2K̃
2
11k̃

2 = 0, and the last inequality is

due to the fact that α1 > α2, K̃1
11 > K̃2

11 > 1 and k̃1
1 > 0. Results in all other entries can be

proved in a similar way. Finally, multiply (48) with α2
1 and multiply (49) with α2

2 and sum

them up, we have

(V ′US)′
(
(α2

1K̃
1)α2

1K̃
1k̃1 + (α2

2K̃
2)α2

2K̃
2k̃2
)
= 0.

This equation is a contradiction because we have shown that every entry in the first row of

(V ′US)′ must be non-negative with (V ′US)11 = 1 and (α2
1K̃

1)α2
1K̃

1k̃1+(α2
2K̃

2)α2
2K̃

2k̃2 ≥
0 with strict inequality holds in the first entry. Thus, w1 ̸= 0. Lastly, we show that w1 > 0.

Notice that w1 > 0 when a1 = · · · = aN from Proposition 7 and w1 is a continuous function

of (a1, . . . , aN). If for some (a1, . . . , aN), w1 < 0, then by the intermediate value theorem,

w1 = 0 for some other (a′1, . . . , a
′
N), which contradicts our earlier claim. Thus, w1 > 0.

Again, using the proof of Proposition 7, we have

x̃t = cΓV ′USx̃t−1 + δΓw, and in the limit, (I − cΓV ′US)x̃∞ = δΓw.

Thus, x̃1
∞ > 0 since it is proportional to w1. Using the formula (47) of the limit opinions x∞,

the first part is cτUSx̃1
∞1 > 0. The first element in the vector of the second part becomes
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(1− cτ)x̃1
∞ > 0. Thus, all limit opinions are positive. Moreover, the opinion leaders’ limit

opinions are closer to influencer 1’s agenda and there is total disagreement in the limit:

x1
∞ > . . . > xN

∞ as a1 > . . . > aN . ∥

Proof of Corollary 2: This model is very similar to that of Proposition 4. Thus, we sketch

out only the parts that are different. The derivation of optimal strategies and the Ricatti

equation are the same (except for the new term W ). The Ricatti equation here is

K∗ = I + δA′ (K∗ − δK∗W (δW ′K∗W + cI)−1W ′K∗)A.
A similar inductive argument can show that K∗ = limt→∞ KT−t, which is pd and decreasing.

We now show the opinions converge under the optimal strategy.

Because A is upper triangular and W has a special form W = (I, 0)′, K∗ has an interesting

feature: it is a block matrix of the form

K∗ =

[
K1 K2

K ′
2 K3

]
.

Submatrix K1 summarizes the future disutility from agents’ opinion deviation from the

influencer, and K2 summarizes her future disutility because the agents are influenced by the

bots’ agendas. Submatrix K3 summarizes the disutility due to the bots’ deviation from her

agenda, which is a constant term and does not matter to her strategy. We now show that K∗

can be decomposed in that K1 is a function of itself, while K2 depends on both K1 and K2.

Simple calculations can show

I − δW (δW ′K∗W + cI)−1W ′K∗ = I − δW (δK1 + cI)−1(K1, K2)

= I − δ

[
(δK1 + cI)−1K1 (δK1 + cI)−1K2

0 0

]

=

[
I − (δK1 + cI)−1δK1 −(δK1 + cI)−1δK2

0 I

]
Substitute into the Ricatti equation and we have:

K1 = I + cδ(An)′K1(δK1 + cI)−1An. (50)

K2 = cδ(An)′(δK1 + cI)−1(K1A
z +K2). (51)

From equation (50) we can solve for K1, and then K2 can be solved. The influencer’s optimal

strategy rt = −(δW ′K∗W + cI)−1δW ′K∗Aχt. Therefore opinions evolve according to

χt =
(
(I − δW (δW ′K∗W + cI)−1W ′K∗)A

)t
χ0.
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We can use the expression above and get:

lim
t→∞

xt = lim
t→∞

(
c(δK1 + cI)−1An

)t
x0+(I−c(δK1+cI)−1An)−1(δK1+cI)−1(cAz−δK2)z.

It is easy to see that (c(δK1 + cI)−1An)t → 0 as t → ∞. Therefore

x∞ = (δK1 + cI − cAn)−1(cAz − δK2)z.

Note that K1 and K2 do not depend on z, (δK1 + cI − cAn) is positive definite. Moreover,

using expression (51), we can show x∞ = ΓAzz, where Γ is a positive definite matrix and

thus of full rank, and Γ is independent of z. If ΓAzz = γ1 for all z, where γ is a scalar,

Γ must feature linearly dependent rows. But this is impossible since Γ is positive definite.

Thus for a generic z, x∞ is not proportional to 1, that is, there is no consensus. ∥

B Multiple Strategic Influencers: General Model

We consider a general model of multiple strategic influencers in which we allow each

strategic influencer to send a varying number of messages each period. They also have more

general access to the agents and face a more general cost of sending messages. As in the

text, suppose that there are M strategic influencers with agenda b1, . . . , bM respectively,

with m being a generic influencer. Also, let m’s message be rmt ∈ Rlm . That is, m sends

lm ≥ 1 messages to the agents in each period, which can be considered as her channels of

communication. Influencer m pays the following cost of sending messages: let ρm be m’s

zero-cost message, any departure from ρm entails a quadratic cost. If ρm = 0 as in the text,

it can be thought of as a financial cost of sending messages. If ρm ̸= 0, it can represent a

reputational cost, that is, influencer m is penalized if she sends a message that is different

from her known position ρm.

We look at the finite horizon problem before commenting on the infinite horizon problem.

Each influencer m maximizes her total discounted payoff by choosing messages rmt , for

t = 0, . . . , T − 1. Let bm = bm1N and ρm = ρm1lm . Specifically, influencer m’s stage t

payoff is

um
t (xt) = −(xt − bm)′Qm(xt − bm)− (rmt − ρm)

′Rm(rmt − ρm),

where Qm captures how much weights influencer m assigns to the agents and Rm captures

the cost if m’s message differs from her known position. We assume both Qm and Rm are

symmetric and positive definite.
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Each agent listens to the influencers’ messages according to Wm, a N × lm matrix. That

is, he can listen from multiple channels of influencer m’s message. Agents update their

opinions according to:

xt+1 = Axt +
M∑
1

Wmrmt .

As before, for each agent, the weights he assigns to all other agents’ opinions are summarized

by A. We allow for both possibilities for generality. First, A is stochastic and the influencers

are outside the network. Second, every row sum of A and
∑M

1 Wm is 1, and thus the

influencers are part of the network.

Because each influencer cares about how far the agents’ opinions are from her agenda,

we can ease exposition by letting χm
t = xt − bm ∈ RN , which measures the distance

between xt and m’s agenda. Similarly, let γm
t = rmt − ρm ∈ Rlm , which measures the

distance between rmt and m’s known position. In particular, χm
t is the new state variable

for influencer m, who chooses γm
t instead of rmt in the following analysis. The opinion

updating process above then becomes, for all t ≤ T − 1 and m,

χm
t+1 = Aχm

t +
∑
h

W hγh
t + cm, (52)

where the time independent constant cm =
∑

m Wmρm + (A− IN)b
m ∈ RN .

We assume that all influencers know the parameters of this game, namely, matrix A and Wm

for all m, the payoff parameters Qm and Rm and the horizon T . Thus this is a dynamic game

of complete and imperfect information.39 We also assume that δ < 1 for all influencers so

that the value function is bounded when T = ∞.

As before, we start with influencer m’s problem at T − 1. The value function has both

quadratic and linear terms. We still use Km
t and km

t , κ
m
t to represent these terms, but the use

of km
t is slightly different from the text because this notation is simpler in the more general

model. At T , the value function for m is

vmT (χ
m
T ) = −(χm

T )
′Km

T (χm
T )− (km

T )
′(χm

T )− κm
T ,

with terminal values Km
T = Qm, km

T = 0 ∈ RN and κm
T = 0. We proceed iteratively and

39As in the benchmark case, adding small amount of normally distributed iid noise does not affect the results
qualitatively.
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show if the value function at any 1 ≤ t ≤ T is of the form

vmt (χ
m
t ) = −(χm

t )
′Km

t χm
t − (km

t )
′χm

t − κm
t ,

the value function at t − 1 also has this form. We now derive the optimal strategy of the

influencers. To begin with, the value function at t− 1 is:

vmt−1(χ
m
t−1) = max

γm
t−1

−(χm
t−1)

′Qmχm
t−1 − (γm

t−1)
′Rmγm

t−1 + δvmt (χ
m
t ).

Use expression (52) and differentiate with respect to γm
t−1, and we have the first order

condition for each m:

−
(
(Wm)′Km

t Wm +
Rm

δ

)
γm
t−1

= (Wm)′Km
t Aχm

t−1 + (Wm)′Km
t

(∑
h̸=m

W hγh
t−1

)
+ (Wm)′Km

t cm +
1

2
(Wm)′km

t .

(53)

Influencer m’s strategy in t− 1 is an affine function of the current opinions, messages of the

other influencers, and a constant term depending on her agenda. Her strategy (net of her

known position) goes in the opposite direction of χm
t−1: if the agents’ opinions are higher

than m’s agenda, she aims to reduce them by sending a more negative message (relative to

her agenda), and vice versa. It also decreases in the weighted sum of the other influencers

messages (net of their agendas).

Next, we can find the stage NE for period t − 1 by solving the M first order conditions

together. Reorganize the best response functions, and we have for all m:(
(Wm)′Km

t Wm +
Rm

δ

)
γm
t−1 + (Wm)′Km

t

(∑
h̸=m

W hγh
t−1

)

=− (Wm)′Km
t Aχm

t−1 − (Wm)′Km
t cm − 1

2
(Wm)′km

t .

The left hand side is the sum of all messages weighted by each m’s influence on the network

Wm, her cost, and her Ricatti matrix Km
t . Let the coefficient matrix of the influencers’

messages on the left hand side above be:

Mt−1 =


(W 1)′K1

t W
1 +R1/δ (W 1)′K1

t W
2 · · · (W 1)′K1

t W
M

(W 2)′K2
t W

1 (W 2)′K2
t W

2 +R2/δ · · · (W 2)′K2
t W

M

...
... . . . ...

(WM)′KM
t W 1 (WM)′KM

t W 2 · · · (WM)′KM
t WM +RM/δ

 .
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Here Mt−1 is an (
∑

m lm ×
∑

m lm) matrix, where the first (1m ×
∑

m 1m) submatrix

concerns influencer 1’s equilibrium strategy at t− 1, and the m-th submatrix concerns agent

m. One necessary condition for Mt−1 to be invertible is that each Rm is positive definite.

But because in general the Ricatti matrix Km
t differs by m and it depends on all other Kh

t

for h ̸= m, it is difficult to give a sufficient condition for Mt−1 to be non-singular. We

proceed by assuming Mt−1 is invertible.

Note that χh
t = χm

t−1 + bm − bh by definition. Then the influencers’ equilibrium messages

at t− 1 are:

γm
t−1 = −Em

t−1χ
m
t−1 − Fm

t−1,where Em
t−1 = [M−1

t−1Ht−1]
m, Fm

t−1 = [M−1
t−1Ct−1]

m. (54)

The coefficient matrix Ht−1 on the opinions χm
t−1 and the residual term Cm

t−1 are respectively:

Ht−1 =


(W 1)′K1

t A
...

(WM)′KM
t A

 , and Cm
t−1 =


(W 1)′K1

t A(b
m − b1) + (W 1)′K1

t c
1 + 1

2
(W 1)′k1

t
...

(WM)′KM
t A(bm − bM) + (WM)′KM

t cM + 1
2
(WM)′kM

t

 .

Similarly, Ht−1 and Cm
t−1 are (

∑
m lm × N) and (

∑
m lm × 1) matrix respectively. In

particular, [M−1
t−1Ht−1]

m refers to the m-th submatrix of the product, and [M−1
t−1C

l
t−1]

l refers

to the l-th submatrix of the product.

Next, derive vmt−1(χ
m
t−1) by substituting in the influencers’ equilibrium strategies at t− 1.

Using χh
t = χm

t−1 + bm − bh again, the opinions evolve from agent m’s perspective as

follows:

χm
t =

(
A−

M∑
h=1

W hEh
t−1

)
χm

t−1 −
M∑
h=1

W h
(
Eh

t−1(b
m − bh) + F h

t−1

)
+ cm.

To simplify notations, we can let Gt−1 = A−
∑M

h=1W
hEh

t−1, which determines the period-

to-period evolution of the agent’s opinions, and is common to all influencers. Also, we let

gm
t−1 = −

∑M
h=1W

h
(
Eh

t−1(b
m − bh) + F h

t−1

)
+ cm. Then the opinions evolve given the

influencers’ optimal strategy as:

χm
t = Gt−1χ

m
t−1 + gm

t−1.

We can now expand vmt−1 and equate the quadratic terms and get:

Km
t−1 = Qm +

(
Em

t−1

)′
RmEm

t−1 + δG′
t−1K

m
t Gt−1. (55)
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Note that if Mt−1 is invertible for all t, then from the above expression that each individual

Km
t is symmetric and positive definite by an induction argument similar to that in the main

model. But in general, the M iterative solutions for Km
t−1 depend on all Km

t in a nonlinear

way through M−1
t−1 and Ht−1. So these M equations need to solved simultaneously. But they

only depend on Km
t , not km

t .

Next, we equate the linear term and find:

(km
t−1)

′ = 2δ(gm
t−1)

′Km
t Gt−1 + δ(km

t )
′Gt−1 + 2(Fm

t−1)
′RmEm

t−1. (56)

The constant term is

κm
t−1 = δ

(
(gm

t−1)
′Km

t gm
t−1 + (km

t )
′gm

t−1 − km
t

)
+ (Fm

t−1)
′RmFm

t−1. (57)

By backward induction and equations (55),(56) and (57)), we can iteratively find the optimal

strategy γm = {γm
0 , . . . ,γm

T−1} with a value function vm0 (χ
m
0 ) for all m.

If each Km
t has a limit limt→∞Km

T−t = Km, then taking limit of equations (55), (56) and

(57) on both sides, we obtain the infinite horizon solution. This is because all the matrices

defined above are continuous in Km
t .
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