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1 Introduction

The potential trade-off between incentive provision and equal pay in organizations has received

much scholarly attention. In an influential paper that builds on Segal (2003), Winter (2004)

shows the following in a static setting: an organization aiming to induce everyone to work

may unequally reward identical individuals for their team success if and only if their efforts

are strategic complements — the marginal return to one’s effort increases with the others’.1

Intuitively, the optimal rewards are set so generously for some team members that they are

guaranteed to work hard. And motivated by their enthusiasm, others are paid progressively

less for their effort. In other words, the organization takes advantage of the positive feedback

in the team and saves on its incentive cost. This intuition is reinforced in similar contracting

environments by Bose, Pal, and Sappington (2010), Winter (2010), Halac, Kremer, and Winter

(2020), and Camboni and Porcellacchia (2022), among others.2

Besides explaining the distribution of various organizational ranks and job titles to compa-

rable individuals, the above-mentioned literature carries another important message: unequal

treatment of identical team members is not optimal if their efforts are strategic substitutes,

which will be the case if free-riding as opposed to effort coordination is the main obstacle to

team performance. The reason is that with strategic substitution, eliciting high effort from a

team member via a high reward would only de-motivate others, requiring even higher rewards

for them.3 This observation is intriguing as it contrasts with that of the vast literature on

the voluntary provision of a pure public good whose level is simply the total contribution.

Most notably, in their seminal paper, Bergstrom, Blume, and Varian (1986) find that the free-

rider problem is often the worst among homogenous contributors in that the total equilibrium

contribution is the lowest.4 After all, whatever one can do, so can identical others. The equal-

treatment implication of the aforementioned literature is also important because, beginning

with Holmström (1982), a large and growing literature (reviewed below) has mainly studied

1 In Winter’s setting, the organization first announces the reward or bonus profile for a successful project.
Then, team members simultaneously choose whether to work or shirk. As Winter notes, asymmetric rewards
for identical individuals would be less surprising if they were asymmetrically informed of each other’s actions
or if only a subset of them suffi ced for the project’s success.

2 In particular, Bose et al. (2010) reach the same “if and only if” conclusion as Winter (2004) despite
considering continuous effort choices. However, the nature of unequal pay in Bose et al., as well as Winter
(2010), is slightly different from Winter (2004) in that, working sequentially on the project, the first-mover is
paid less than the second-mover even though the former contributes more to the success.

3Goerg, Kube, and Zultan (2010) experimentally support this reasoning.
4Specifically, their Theorem 5(iii) states that “an equalizing wealth redistribution among donors of identical

tastes will never increase the voluntary equilibrium supply of the public good.”
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the free-rider problem in teamwork.

This paper aims to reconcile the role of free-riding in team incentive pay. Specifically, I

will present a parsimonious dynamic model of teamwork in which the participants’efforts are

strategic substitutes due solely to the free-rider problem. Yet, the organization will optimally

introduce a pay differential by essentially picking a “team leader”who overworks and symmetric

“followers”who underwork, albeit not shirk, from the social standpoint. The dynamics in my

model help generate suffi cient free-riding incentives in the form of procrastination. However,

as I will discuss later, they are not necessary for my main result: less intuitive static settings

could yield the same conclusion.

My model builds on the familiar continuous-time R&D race framework, e.g., Lee and Wilde

(1980), except that the identical agents are asked to work together, not compete, to achieve

a single breakthrough. Consider, for instance, a pharmaceutical company hiring a group of

scientists to develop a new drug or a firm forming a problem-solving team to deal with its

supply chain issue. As in the previous studies, unable to distinguish agents’ contributions

to it, the principal can contract only on the team outcome: success or failure. Given her

reward profile for success,5 each agent privately chooses his (stationary) flow effort, which is

his exponential rate of discovery. Therefore, the team’s rate of breakthrough is the sum of the

agents’efforts, making them perfect productive substitutes and in turn, strategic substitutes.

I first show that under the standard, convex cost of effort, the team has a unique (Nash)

equilibrium in effort choices for any reward profile. Conversely, any effort profile can be

uniquely engendered as equilibrium by a unique reward profile. The profit-maximizing prin-

cipal’s initial task is then to minimize the reward sum or her wage bill by choosing agents’

efforts that aggregate to her desired success rate. As expected, the necessary condition for

this minimization problem equates the marginal pay across agents. With identical agents, an

equal-effort allocation would always satisfy this necessary condition but not the suffi ciency.

Indeed, the equal-effort allocation might even (locally) maximize the reward sum, indicating

Bergstrom et al.’s insight at work. This is because in general, an agent’s reward function is

5The reward structure describes a success bonus for each agent. I assume these bonuses are time-invariant.
As Mason and Välimäki (2015) demonstrated for a single agent, this assumption is not without loss, but
it makes our model easily comparable to static settings referenced above. Moreover, success bonuses that
depend on the completion date appear less common in practice for innovative projects with a flexible timeline,
which our model features. For instance, technology companies often pay predetermined bonuses for patent
filings by their employees (https://www.wired.com/story/big-tech-patent-intellectual-property). Companies in
other industries, such as manufacturing and banking, similarly reward their frontline workers for generating
and implementing new ideas. (https://hbr.org/2022/09/how-your-company-can-encourage-innovation-from-all-
employees).
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S-shaped in his effort (convex turning concave) if the cost of effort is not too convex, the agent

is relatively patient, and the desired aggregate effort is suffi ciently large. To understand, notice

that an agent’s reward compensates him for his marginal cost and for not delaying his effort,

i.e., not procrastinating. As such, the marginal pay increases at low levels of individual effort

since much is left to free-ride on. In contrast, the marginal pay decreases at high individual

effort levels since little is left for others to rely on.

An immediate implication of the S-shaped reward function is that the principal will have at

most one team member, whom I call the “leader,”with a high effort level, i.e., on the concave

part of the reward function. If there were two, they would optimally be induced the same effort

(to equate their marginal pay). But this would be suboptimal because, given concavity, the

principal could strictly lower the incentive cost by slightly re-allocating the total effort between

them, i.e., creating a slight pay heterogeneity. This intuition parallels Bergstrom et al.’s: the

free-rider problem is the worst among homogenous agents, though only if they are significant

contributors to the team project in our setting. Otherwise, the S-shaped reward function also

implies that being on the convex part of the reward function, the rest of the agents, whom I

call the “followers,”will be induced the same low effort via the same low reward for the joint

success.6

Next, I show that a leader-follower team is more likely to emerge if: (a) agents are more

patient and thus more prone to procrastinating, (b) the principal cares more about or is less

patient to achieve the breakthrough; hence, she targets a larger team effort, or (c) the team

is smaller so that equal effort would mean significant effort for each member, intensifying the

procrastination concerns for the principal. In a simple extension, I identify another factor

in favor of the leader-follower team: positive effort spillovers à la Kamien, Muller, and Zang

(1992), whereby agents may get inspired by each other’s attempts at the breakthrough. Al-

though agents’efforts remain perfect productive substitutes in this extension, their increased

motivation to inspire each other worsens the free-rider problem, making unequal pay more

likely.

Related Literature. Aside from those cited above, this paper relates to the strand of

the literature that views teamwork as a dynamic public good provision with substitute efforts.

6Since agents take simultaneous actions, there is no leader or follower in the usual (Stackelberg) sense in my
model. I use the terminology for convenience and similarly to Winter (2004), given that the organization may
designate the highest-paid agent as the “project head”or “team captain.”The difference is that the leader in
my model also works disproportionately harder than the rest, though his pay need not increase at the same
rate. It is also distinct from Hermalin’s (1998) theory of leadership since no agent holds private information
about the project’s prospects.
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See, for instance, Admati and Perry (1991), Fershtman and Nitzan (1991), Bonatti and Hörner

(2011), Georgiadis (2015), Bonatti and Rantakari (2016), Cetemen, Hwang, and Kaya (2020),

Ozerturk and Yildirim (2021), and Yildirim (2023).

In particular, while mainly focusing on the optimal team size, Georgiadis (2015) also dis-

covers in his Proposition 7 the value of asymmetric contracts for two identical agents and

quadratic cost of effort when the project is suffi ciently close to completion; hence, the free-

rider problem is severe enough. Besides the differences in our formal setups, I allow for more

general cost functions and arbitrary team size, which are crucial for understanding the op-

timal team structure. Employing the same model as in this paper, Ozerturk and Yildirim

(2021) examine in a second-best benchmark how a utilitarian planner would allocate the total

“credit” of one for the breakthrough among agents of heterogeneous abilities. With convex

marginal cost assumed in this paper, however, the planner would treat identical agents equally

in their analysis. This difference is unsurprising because the planner is more biased toward

minimizing the team’s total cost and, in turn, equalizing marginal costs across the agents than

a profit-maximizing principal. Using the same setup, Yildirim (2023) assumes identical exoge-

nous rewards for team success and demonstrates, among other results, how the planner can

effi ciently allocate effort, i.e., equalize marginal costs in equilibrium by carefully teaming up

agents of heterogeneous abilities. Although the ability-grouping is also done to alleviate the

free-rider problem, it is not isomorphic to heterogenous rewards considered here. For instance,

no heterogeneous-ability team can be effi cient for log-concave effort cost, such as the iso-elastic

specification, in Yildirim (2023). In contrast, the principal can create an asymmetric team

via unequal rewards in the present paper.7 In this sense, my paper also complements Franco,

Mitchell, and Vereshchagina (2011), Kaya and Vereshchagina (2014), and Glover and Kim

(2021), among others, who highlight the role of team composition in mitigating the free-rider

problem.8

The remainder of the paper is organized as follows. Section 2 presents the model. Section

3 establishes the unique equilibrium in effort choices and characterizes the principal’s cost-

minimizing reward structure, followed by her profit-maximization problem in Section 4. Section

5 extends the analysis to effort spillovers. Finally, Section 6 concludes. The proofs of all formal

results are contained in the Appendix.

7Of course, a large body of work following Holmström (1982) deals with the optimal pay in teams, but it is
also primarily concerned with inducing effi ciency.

8Prat (2002) also argues in favor of workforce heterogeneity but in a model with no effort choice.
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2 Model

A risk-neutral principal hires n ∈ {2, 3, ...} identical and risk-neutral agents to work on a
joint project toward a single breakthrough. Agents exert unobservable effort over a continuous

and infinite time horizon, t ∈ R+. Let xi(t) ∈ R+ denote agent i’s flow effort and discovery

rate at time t. Hence, project completion follows a Poisson process with the aggregate rate

X(t) =
∑

i xi(t). The cost of effort, c(xi(t)), satisfies some standard convexity assumptions:

c′, c′′, c′′′ > 0, with c(0) = c′(0) = c′′(0) = 0 and c′(∞) =∞. (C1)

(C1) will guarantee a unique and interior equilibrium in the team for any positive reward

schedule described below. As such, the analysis will require no equilibrium selection, and with

every agent exerting effort, team size will be meaningful. Notice also that the convexity of the

marginal cost favors equal pay, which will help identify the strategic reason for any unequal

pay in our setup. Among others, (C1) holds for the iso-elastic cost specification: c(x) = xk/k,

k > 2.9

As is common in agency settings, the principal can contract only on the project outcome.

In particular, she cannot observe the team’s effort profile or distinguish who has made the

breakthrough. To motivate the agents, the principal publicly announces a nonnegative and

time-invariant reward schedule v = (v1, ..., vn) ∈ Rn+ where vi represents the bonus payment

promised to agent i upon project’s success.10 There is no penalty for an unsuccessful project, as

agents are assumed to be protected by limited liability. The principal values the breakthrough

at π > 0. Furthermore, the discount rates for the agents and the principal are r > 0 and

rp > 0, respectively.

To keep the model close to its static counterparts, I restrict attention to stationary equi-

librium strategies and drop the time index in the sequel.11 Under stationary strategies, agent

9 It is perhaps worth mentioning that the linearity of the individual discovery rate in the effort level is without
loss because the aggregate rate is their sum. In general, agent i’s rate could be some strictly increasing function
ψ(xi) where ψ(0) = 0. However, any nonlinearity in i’s rate could be subsumed in the cost of effort, c, by a
change of variables: xi := ψ−1(xi).
10As mentioned in Footnote 5, the assumption of time-invariant rewards is not without a loss, but it suits the

purpose of this paper, and such stationary rewards are used in practice.
11 In Appendix B, I elaborate on this restriction. I establish that given any time-invariant reward profile, (1)

if others follow stationary strategies, it is the best response for an agent to do the same, and (2) stationary
strategies are without loss among continuously differentiable strategies in 2- and 3-agent teams. Although I
conjecture the latter holds for any team size, I was unable to prove it mainly because the Jacobian matrix for
laws of motion for the agents’equilibrium utilities is not symmetric due to heterogeneous rewards. Nonetheless,
the point of this paper is made even with teams of 2 and 3 members.
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i’s program at any instant without the breakthrough can be recursively written as

rui = max
xi

[X(vi − ui)− c(xi)] , (1)

where ui denotes agent i’s expected discounted payoff. The RHS of (1) says that with no

success at time t, agent i receives the reward vi but forgoes his continuation payoff if the

team succeeds with probability Xdt in the next instant. Regardless, he bears the flow cost

c(xi)dt. The LHS of (1) reflects the opportunity cost of staying in the team. From (1), agent

i’s program reduces to maximizing his expected discounted payoff expressed in terms of the

team’s effort profile:

ui =
X

r +X
vi −

c(xi)

r +X
. (2)

Remark 1 (2) can be interpreted as follows if the (exponential) discount rate, r, is viewed as

nature’s fixed flow effort to “grab” the breakthrough before the team. Then, the term p(X) ≡
X/(r + X) becomes the team’s probability of winning against nature, in which case agent i

receives the promised reward vi. Furthermore, d(X) ≡ 1/(r + X) corresponds to the expected

duration the agent bears his effort cost until the team or nature makes the discovery. With this

interpretation, (2) can be written: ui = p(X)vi − d(X)c(xi).

The principal’s expected discounted payoff conditional on the team’s effort profile at t = 0

is verified to be

uP =

∫ ∞
0

e−rP te−Xt

(
π −

∑
i

vi

)
dt

=
X

rP +X

(
π −

∑
i

vi

)
, (3)

where the term π −
∑

i vi is her net return from the completed project.

It is evident from (3) that the principal cares only about the team’s aggregate effort, X,

and that her optimal reward schedule can be characterized in two intuitive steps in the spirit of

Grossman and Hart (1983). First, we determine the minimum reward sum,
∑

i vi, to implement

a fixed aggregate effort X. Then, we find the optimal X that maximizes (3). As we will see

below, the first step carries most of the insight in this investigation.
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3 Cost-minimizing rewards

To fix ideas, I begin the analysis by establishing the first-best benchmark. This benchmark

will help isolate the role of free-riding in the optimal rewards.

3.1 First-best: observable effort and equal pay

Suppose that the principal could contract on agents’effort levels. To elicit the total effort X

at the minimum cost, she would then solve the following program:

min
v,x

∑
vi (FB)

s.t. ui ≥ 0 for all i (IR)∑
i

xi = X (given X) (BC)

vi ≥ 0 for all i. (LL)

where the (IR) constraint ensures each agent’s participation in the project, and the (BC)

and (LL) refer to the “budget”and limited liability constraints. The unique solution to this

program is equal pay.

Lemma 1 Fix X. With contractible efforts, the optimal pay is equal across agents:

xFBi =
X

n
and vFBi =

c(Xn )

X
.

If the principal could dictate an agent’s effort level, she would only pay for its cost so that

the agent breaks even. Formally, setting ui = 0 in (2) would imply the reward function:

v̂(xi) =
c(xi)

X
. (4)

Since the cost of effort is strictly convex, so is each agent’s reward given the aggregate effort,

X. Therefore, the total reward that elicits X is minimized when agents’marginal pays and, in

turn, their marginal costs are equalized, which implies equal effort and equal pay for all. Note

that the first-best reward schedule is socially effi cient as it minimizes the total cost,
∑
c(xi),

of eliciting X.

3.2 Second-best: free-riding and unequal pay

In a second-best world, each agent privately chooses his effort: xi is unobservable to his

teammates and the principal at any time. Therefore, the latter’s program is also subject to a
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team incentive compatibility constraint. Formally, the principal now solves

min
v,x

∑
vi (SB1)

s.t. (IR), (BC), (LL), and

xi = arg max
x̂i

ui given X−i for all i. (IC)

The unobservability of effort engenders a simultaneous-move game within the team. Hence, the

(IC) describes a “team equilibrium:”given the reward schedule v ∈Rn+, agent i best responds
to his teammates’effort, X−i. To understand i’s equilibrium incentive and simplify (SB1), we

differentiate (2) with respect to xi and obtain the following first-order condition:12

c′(xi) (r +X)− c(xi) = rvi. (5)

The left-hand side of (5) is a dynamic marginal cost. Re-arranging its terms as

c′(xi)r + [c′(xi)xi − c(xi)] + c′(xi)X−i,

notice that the first term, c′(xi)r, refers to the marginal cost of increasing effort now rather

than in the next instant. The second term, [c′i(xi)xi − ci(xi)], is the net increase in the flow
cost of exerting effort xi, and the last term, c′(xi)X−i, is the marginal opportunity cost of

effort in case teammates make the breakthrough. The agent trades off the dynamic marginal

cost against the dynamic marginal benefit rvi on the right-hand side of (5), which is the time

value of receiving the reward, vi.

Remark 2 Building on Remark 1, (5) can also be written as: c′(xi) + d′(X)c(xi) = p′(X)vi.

Since d′(X) < 0, the LHS represents agent i’s net marginal cost per unit time after taking

into account the expected reduction in his total cost due to a marginally faster arrival of break-

through. The RHS is the expected marginal benefit.

Inspecting (5) reveals that agent i’s dynamic marginal cost is increasing in his effort, xi,

(since c′′ > 0) and in the others’, X−i, which implies ∂xi/∂X−i < 0. That is, teamwork is prone

to free-riding: the breakthrough being a public good, each agent would slack if his teammates

worked harder. The nature of the free-riding is, however, only intertemporal in our model, i.e.,

12The second-order condition is easily verified: ∂
2ui
∂x2i

= −c′′(xi)(r+X) < 0 whenever ∂ui
∂xi

= 0. The first-order

condition in (5) could also be obtained from the recursive program (1) by noting c′(xi) = vi−ui and substituting
for ui from (2).
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the agent’s ability to delay the discovery by relying on the team’s future effort. To see this,

we insert (5) into (2) and find i’s equilibrium payoff to be:

ui = vi − c′(xi) =
c′(xi)X − c(xi)

r
.

Clearly, ui → 0 as r → ∞. That is, unable to delay their actions, infinitely impatient agents
would choose xi = c′−1(vi) regardless of others and command no positive expected payoffs or

“rents.”Building on this insight, the following result characterizes the (IC) and helps streamline

(SB1).

Lemma 2 (team equilibrium) For any reward structure v ∈ Rn+, there is a unique team
equilibrium. Conversely, for any effort vector x ∈ Rn+, there exists a unique reward structure
that implements x as team equilibrium. This reward structure is as follows:

v(xi) = c′(xi) +
c′(xi)X − c(xi)

r︸ ︷︷ ︸
u(xi)

. (6)

Moreover, given the total effort X,

(a) v′(xi) > 0, with v(0) = v′(0) = 0.

(b) u′(xi) > 0, with u(0) = 0.

(c) v(xi) > v(xj) implies c′(xi) > c′(xj).

For a given reward schedule, the uniqueness of team equilibrium obtains because, as argued

above, agents view their efforts as strategic substitutes, i.e., ∂xi/∂X−i < 0. Conversely, solving

for the reward vi in (5), the reward schedule v(xi) uniquely elicits a fixed effort profile, x, as

equilibrium. (6) indicates that the principal pays agent i for his marginal cost of effort, c′(xi),

as she would in a static, single-agent moral hazard problem, and for not postponing this effort,

which, as mentioned above, is also the source of the agent’s positive rent. Parts (a) and (b) of

Lemma 2 simply show that the principal needs to pay a more diligent agent more generously

and leave a greater rent. Hence, equal work deserves equal pay in our framework. Part (a)

further shows that it is virtually costless for the principal to elicit a small effort from each

agent, which will later ensure an all-active team.13 Part (c) adds to part (a) that anytime an

agent is paid more than another, he is also induced to work ineffi ciently harder.

13Here, v′(0) = 0 obtains since c′(0) = c′′(0) = 0 by (C1).
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Comparing (6) with (4), it is worth observing that unlike in the second-best, the first-best

reward is independent of agents’discount rate, which makes sense in the absence of a free-rider

problem. Consequently, an agent’s first-best reward decreases with the others’ effort, X−i,

whereas his second-best reward increases to prevent his procrastination.

Armed with Lemma 2 and the fact that (IC) implies (IR) due to limited liability,14 (SB1)

reduces to:

min
x

∑
i

v(xi) s.t.
∑
i

xi = X (given X). (SB)

A solution x∗ for (SB) exists because v(xi) is continuous over a compact set, xi ∈ [0, X] for

all i. Since v(0) = v′(0) = 0 by Lemma 2(a), every solution must be interior: x∗i > 0 for all i,

ensuring an all-active team. Therefore, as with the first-best, the first-order condition of (SB)

requires that the principal equate agents’marginal pays:

v′(x∗i ) = v′(x∗j ). (7)

Clearly, the symmetric effort profile
(
X
n , ...,

X
n

)
always satisfies (7). It will be the solution to

(SB) if, as in the first-best, the reward function in (6) is strictly convex given X. And this is

the case for the agents who are suffi ciently impatient or have suffi ciently convex cost of effort,

as confirmed in the next result.

Lemma 3 (equal pay) Fix X. Then, v′′(x) > 0, and thus, equal pay is the unique solution

to (SB) if r is suffi ciently large or c(4)(x) ≥ 0 in [0, X].

Intuitively, very impatient agents hardly procrastinate. Similarly, when the cost of effort is

suffi ciently convex in the sense of a nonnegative fourth derivative (e.g., cubic power or higher

for the iso-elastic specification), agents know they cannot rely much on their teammates. In

each case, worried little about free-riding in the team, the principal pays agents primarily for

their marginal costs of effort, c′(xi), which is strictly convex by our assumption (C1). Thus,

the principal optimally induces equal effort via equal pay.

Lemma 3 implies that unequal pay can be optimal only when agents are relatively patient

and their costs are not too convex, so free-riding is significant in the team. Formally, a necessary

condition for unequal pay is that the reward function v not be convex everywhere in [0, X].

Indeed, if v(x∗i ) 6= v(x∗j ), i.e., the optimal pay differs for some agents i and j, then x
∗
i 6= x∗j in

14This follows because, with a nonnegative payment, an agent can always guarantee himself a nonnegative
utility by exerting zero effort.
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(7) and, in turn, v′′(xI) = 0 for some xI between x∗i and x
∗
j by the mean-value theorem, i.e., v

has at least one inflection point. In fact, by the same argument, if the optimal pay schedule has

m different rewards in the team, then the reward function must have at least m− 1 inflection

points. This suggests an intimate relationship between the number of inflection points in the

reward function and the pay heterogeneity in the team. Lemma 4 indicates that v has at most

one inflection if the effort cost is not too convex.

Lemma 4 Fix X, and suppose c(4)(x) < 0 in [0, X]. Then, the reward function v has at most

one inflection point (convex turning concave) in [0, X] .

According to Lemma 4, if the cost of effort is not too convex in the sense of c(4)(x) < 0 in

the relevant region, then, unlike in the first-best, the reward function v(x) can have a concave

part but at most be S-shaped (convex turning concave), as depicted in Figure 1. For instance,

under the iso-elastic cost, c(x) = xk/k, it is readily verified from (6) that the unique inflection

point is: xI = (k − 2)(r +X).15

Figure 1. S-shaped reward function, v(x)

The intuition behind an S-shaped reward function is that at low effort levels, the marginal

pay accounts for an agent’s increasing marginal cost and his strong incentive to free ride on

15The following is another cost family that satisfies c(4)(x) < 0 and (C1): c′′(x) = ΠJ
j=0

x+2j
x+2j+1

for any

J ∈ {0, 1, ...}. For example, c(x) = x(x+2)
2
− (x + 1) ln(x + 1) for J = 0. Using Wolfram Mathematica, others

can be easily generated in closed form.

11



others’high residual effort. Although the marginal cost is increasing at any effort level (c′′ > 0),

the marginal pay must be decreasing at suffi ciently high effort since the work left for others is

too low to free ride on.16,17

The importance of an S-shaped reward function and how the principal manages free-riding

in the team become evident in the next finding.

Proposition 1 Fix X, and suppose v(x) is S-shaped in [0, X]. Then, the optimal reward

schedule either pays (n− 1) agents equally and one higher, or it pays all n agents equally.

To understand Proposition 1, note from Figure 1 that the optimal pay schedule cannot

have multiple agents on the concave or high-effort part of the reward function. If it did, then

the equal marginal pay condition in (7) would require equal effort, say x∗, for such agents.

But, by the concavity of v in this region,

v(x∗ − ε) + v(x∗ + ε) < 2v (x∗) .

This would imply that the principal could implement the total effort of 2x∗ at a strictly lower

cost between two agents on the concave part by slightly reallocating the effort between them.

In other words, the principal optimally manages the severe free-riding problem among high-

effort agents by having only one. A similar argument reveals that the optimal reward schedule

must treat all agents equally in the convex region of v.

Although agents move simultaneously in our model, the unequal pay schedule seems to

create a “leader-follower team”with one agent being paid so generously that in the unique

equilibrium, everyone expects him to work significantly harder —in fact, ineffi ciently harder per

Lemma 2(c). As in Winter (2004), the “leader”could be the “project head”or “team captain.”

In contrast, the equal pay schedule creates a “horizontal team”with equal stakes participants.

Proposition 2 identifies the conditions under which each team structure emerges. Corollary 1

parametrizes these conditions for the iso-elastic cost.
16Put differently, when the principal considers eliciting marginally more effort from an agent, she must si-

multaneously consider eliciting marginally less from some others to keep the total effort X fixed in her reward-
minimization problem (SB). Therefore, what matters for an agent’s marginal pay is the difference between the
two considerations. Note that X being fixed plays a role in this intuition, but it is without loss per the two-step
approach to the principal’s problem. Otherwise, the reader will observe that v in (6) is always convex given
X−i: v′′(xi) = 1

r
c′′(xi) (r +X) > 0. However, it would be erroneous to conclude from this convexity that the

optimal reward must be equal for all since X−i + xi would no longer be fixed under such partial differentiation,
invalidating the two-step approach and calling for another, which is bound to yield the same result.
17 In light of Footnote 9, it is perhaps worth remarking that the free-riding incentive being significant only

when c(4)(x) < 0 is an artifact of our assumption that the discovery rate is linear in one’s effort. To see this,
suppose agent i’s rate were

√
xi (instead of xi), and his actual cost of effort were x1.1i . By a change of variables,

this setting would be strategically equivalent to ours with the cost function c(xi) = x2.2i .
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Proposition 2 (unequal pay) Fix X, and suppose v(x) is S-shaped with an inflection point

xI in [0, X]. Then, the optimal pay creates
a leader-follower team if X > nxI

a horizontal team if X ≤ xI
either team if xI < X ≤ nxI .

Corollary 1 (iso-elastic cost) Fix X, and let c(x) = xk/k, with k ∈ (2, 2 + 1
n). Then, the

optimal pay creates
a leader-follower team if X > r k−2

2+ 1
n
−k

a horizontal team if X ≤ r k−2
3−k

either team if r k−2
3−k < X ≤ r k−2

2+ 1
n
−k .

Proposition 2 says that if the principal seeks suffi ciently high team effort in that the average

per agent lies on the concave part of the reward function, it is optimal to have a leader-follower

team. In fact, since v′′(X/n) < 0 in this case, equal pay would locally maximize the principal’s

wage bill in (SB). If, on the other hand, the principal seeks moderate team effort, X ∈ (xI , nxI),

so that v′′(X/n) > 0, a horizontal team is locally optimal. However, the principal can consider

a non-local deviation, which ramps up the effort for one agent, pushing him to the concave

part of the reward function, while scaling everyone else’s effort down in the convex region.

Such a non-local deviation, resulting in a leader-follower team, may or may not dominate the

horizontal team for the principal, depending on the targeted level of team effort. Nevertheless,

it would be inferior to a horizontal team if the principal targeted suffi ciently low team effort,

X ≤ xI , in which case even the leader’s effort would lie in the convex region. Using the iso-

elastic cost, Corollary 1 reveals that a leader-follower team is more likely when agents have

lower discount rate and less elastic cost. Example 1 illustrates Corollary 1.18

Example 1 Let n = 3, r = 1.85, k = 2.23, and X = 2.99 Then, xI ≈ 1.11, and the leader

and each follower’s rewards are approximately 5.29 and .90, inducing efforts 2.11 and .44,

respectively. Here, v′′(X/3) ≈ .08 > 0, so the equal effort profile is only a local minimizer.

Our last result in this section performs comparative statics with respect to team size.

18Wolfram Mathematica was used for simulations.
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Proposition 3 (team size) Fix X. If the optimal pay is unequal in a team, it is also unequal

in a smaller team. Moreover, among the leader-follower teams,

(a) the pay range is larger in a smaller team.

(b) each follower’s effort is increasing while the leader’s effort is decreasing in team size.

Perhaps contrary to conventional wisdom, Proposition 3 indicates that a leader-follower

structure is more likely to be optimal in smaller teams. The reason is that given the fixed

aggregate effort, equal pay would require each agent to do substantial work in a small team,

which would then exacerbate the free-riding incentive and call for a leader-follower structure, as

explained in Proposition 1. Part (a) indicates that the pay difference in leader-follower teams

decreases with size. As part (b) highlights, such pay compression in larger teams occurs not

only because the leader needs to exert lower effort when there is one more participant but also

because each follower is paid higher to increase his effort with size. To understand the latter,

refer to Figure 1 and consider adding one more agent i. Clearly, the principal would not keep

x∗i as it is; otherwise, given the fixed aggregate effort, this would mean a lower effort for j (the

leader) and unequal marginal pays within the team, violating cost-minimization. If, on the

other hand, the principal were to induce a lower effort than x∗i , i.e., reduce the followers’effort

and, in turn, reduce their marginal pay in a larger team, she would have to do so substantially

to match the leader’s marginal pay. But this would mean too much work for the leader. Thus,

the principal increases each follower’s effort in a larger team.

4 Profit-maximizing rewards

Although the principal’s cost minimization problem (SB) contains most of the insight into her

reward structure, I also briefly examine her profit-maximizing choice of aggregate effort in this

section. Notice that in light of Proposition 1, (SB) reduces to:

w(X) = min
x∈[0,X

n
]
(n− 1)v(x) + v(X − (n− 1)x), (SB2)

where x denotes the effort level for the (n − 1) followers, and w(X) denotes the principal’s

minimum wage bill to elicit X.

We know from the previous section that (SB2) has a unique and interior solution for any

X. Moreover, it is verified that w(X) is strictly increasing in X, with w(0) = w′(0) = 0.19

19These claims are proved within Proposition 4.
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Using (SB2) and recalling (3), the principal finds her optimal X by solving:

max
X≥0

X

rP +X
(π − w(X)) . (PM)

Proposition 4 Let X∗ denote a solution to (PM). Then, (1) X∗ exists, and it is positive,

and (2) X∗ is strictly increasing in π and rP . Thus, under an iso-elastic cost of effort, if the

principal chooses a leader-follower team for some k ∈ (2, 2 + 1
n), r, rP , and π, she also does

so for all k′ ∈ (2, k], r′ ≤ r, r′P ≥ rP , and π′ ≥ π.

As expected, the principal will elicit greater team effort if, all else equal, she cares more

about the breakthrough or has less patience to get it. Generally, the principal’s desire for

greater team effort has two opposing effects on her optimal pay structure. While cost effi ciency

favors equal pay, the agents’increased free-riding incentives call for unequal pay. Proposition

4 reveals that when the cost of effort is iso-elastic, the latter effect dominates, as evident from

Corollary 1.20 To illustrate, consider Example 1 with rP = 1.85 and π = 40. Then, X∗ ≈ 2.99,

implying the leader-follower structure in Example 1.

In the next section, I show that the principal will also lean toward a leader-follower structure

when there are positive effort spillovers among agents.

5 An extension: effort spillover and unequal pay

In the base model, an agent’s rate of discovery depends only on his effort. What makes agents

a team is the fact that regardless of who achieves the breakthrough, all benefit from it. In

practice, by working closely, team members may also benefit from each other’s effort toward

the breakthrough. Following Kamien, Muller, and Zang (1992) on research joint ventures, I

formalize such effort spillovers by augmenting agent i’s rate of discovery as:

yi = xi + β
∑
j 6=i

xj , (8)

where β ∈ [0, 1] is the commonly known probability that agent i gets inspired by his teammates’

attempts at the breakthrough. In general, β may depend on how closely the agents work and

communicate.
20The opposing effects can also be seen in Figure 1. First, the inflection point, xI , grows with X, widening

the reward function’s convex region. This signifies the cost-effi ciency effect. Second, given xI , a higher X makes
X/n more likely to lie in its concave part, highlighting the increased free-riding incentive.
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Given (8), the team’s breakthrough rate becomes∑
i

yi = αX,

where α = 1 + (n − 1)β represents each agent’s marginal contribution to the team’s rate of

discovery.

The baseline analysis seamlessly extends to this case by substituting αX for X in (2). In

particular, agent i’s first-order condition becomes

c′(xi)
( r
α

+X
)
− c(xi) = rvi. (9)

It is evident from (9) that agent i’s dynamic marginal cost on the left-hand side of (9) is

decreasing in the spillover rate, which enables the principal to decrease his reward, vi. Intu-

itively, the amplified impact of his action on team’s success motivates the agent, requiring less

inducement. However, such increased motivation also exacerbates the free-rider problem in

the team, leading the principal to favor a leader-follower (unequal pay) structure. Graphically,

with the spillover, the reward function and its inflection point would both lie below those in

Figure 1. For instance, under the iso-elastic cost, xI = (k−2)( rα +X), which is decreasing in α.

Thus, applying Proposition 2 (or substituting αX for X in Corollary 1), it is immediate that

the X− regions for a leader-follower team expand with α, which is reported in Proposition 5.

Proposition 5 Fix X. If , all else equal, the principal chooses a leader-follower team for the

spillover rate β, she also does so for β′ ≥ β.

6 Concluding remarks

The objective of this paper was to make a simple point: contrary to what is implied by the

recent literature, e.g., Winter (2004) on teamwork with complementary efforts, an organization

may also introduce asymmetric pay among symmetric team members solely to mitigate the free-

rider problem when their efforts are (perfect) substitutes. Although it plays an important role,

the difference in prediction is more than our modeling of effort as a continuous choice variable

since Bose et al. (2010) reached the same conclusion as Winter (2004) with this feature. The

contrast also stems from our model’s dynamics that can create suffi cient intertemporal free-

riding incentives without inducing some team members to remain idle, which would obscure

the meaning of team size.
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I show that when suffi ciently concerned about the free-riding incentive, the organization

may alleviate it by promising one agent a substantially higher reward for the team’s success

than the rest of his teammates, leaving the latter much less work and, in turn, room to

delay their actions. Thus, our model predicts a team with one “leader”who overworks and

equally rewarded “followers”who underwork from the social viewpoint. Accordingly, the leader

“deserves”his higher pay by working harder overall and at the margin than his teammates in

our model. This observation is consistent with the general understanding that project leaders

assume greater responsibility for the project’s success.

Our investigation has also produced some testable implications. For instance, it predicts

that a pharmaceutical company will more likely employ a leader-follower structure for its

scientific team when it urgently needs a drug discovery, perhaps because of the competitive

pressure. The same is true for manufacturers facing critical supply chain issues and forming

problem-solving teams. Our investigation further implies that leader-follower teams are more

likely in organizations whose employees work more closely, inspiring each other for success.

As previously stated, the model presented in this paper should be viewed as a reasonable

set of suffi cient conditions to convey its main point. In particular, unequal pay in symmetric

teams may also emerge in static settings, to the extent that they are easy to interpret. For

instance, consider the static payoff function: ui = p(X)vi−c(xi) for agent i, where p(X) ∈ [0, 1]

is the team’s probability of success, and p′(X) > 0 and p′′(X) ≤ 0. The first-order condition

for agent i yields the reward function: vi = c′(xi)/p′(X) ≡ v(xi). Thus, if c′′′ > 0, as assumed

in (C1), equal pay would minimize the total reward to induce a target X. If, on the other

hand, c′′′ < 0, then the principal would optimally employ a single agent, rendering the team

size irrelevant. This means that unequal pay that induces every agent to work can be optimal

only if c′′′ changes sign on [0, X], e.g., when c′ is S-shaped in [0, X].21 Even so, free-riding

would play no role in this conclusion.

In closing, I want to point out that while employees appear to receive fixed success bonuses

for their creative ideas in innovation-driven industries (see Footnote 5), it may be worth ex-

ploring the optimal time-dependent bonuses, as suggested by Mason and Välimäki (2015), and

examining how such bonuses treat identical team members across time.

21To illustrate, consider the marginal cost function c′(x) = x3

10x3+(1−x)3 , which is increasing and S-shaped in

[0, 1], with the inflection point xI ≈ .3. It is numerically verified that in a 2-agent team, x∗1 ≈ .52 and x∗2 ≈ .13
for X = .65.
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Appendix A: Proofs

Proof of Lemma 1. When efforts are contractible, the principal optimally sets each

reward so that (IR) binds. This reveals

vi =
c(xi)

X
≡ v̂(xi),

where v′, v′′ > 0 given X and c′, c′′ > 0. Then, (FB) reduces to:

min
x

∑
i

v̂(xi) s.t.
∑
i

xi = X.

The solution equates the marginal pays: v̂′(xFBi ) = v̂′(xFBj ), implying xFBi = xFBj = X/n for

all i and j.

Proof of Lemma 2. Fix a reward schedule v ∈ Rn+. Since vi = 0 implies xi = 0 by (5),

it suffi ces to consider v ∈ Rn++ in this part. Define

Ω(x,X) = c′(x) (r +X)− c(x). (A-1)

Then, the first-order condition (5) reads

Ω(xi, X) = rvi, (A-2)

where Ω has the following properties:

Ω(0, X) = 0

since c′(0) = c(0) = 0;

Ω(∞, X) =∞

since c′′ > 0, c′(∞) =∞, and Ω(x,X) ≥ c′(x)r; and

ΩX = c′(x) > 0 and Ωx = c′′(x) (r +X)− c′(x) > 0 for x > 0

since c′′(x) > 0, and c′′(x)x− c′(x) ≥ 0 by c′′′(x) ≥ 0.

Then, the properties of Ω imply a unique solution for xi to (A-2), which we denote by

xi = fi(X). (A-4)

Summing (A-4) over all i, the equilibrium team effort Xe must solve the following fixed-point

equation:

g(X) ≡
∑
i

fi(X)−X = 0. (A-5)
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It is verified that

f ′i(X) = −ΩX

Ωx
< 0 and lim

X→∞
fi(X) = 0, (A-6)

where the limit obtains because the left-hand side of (A-2) would diverge if limX→∞ fi(X) > 0.

Hence,

g′(X) < 0 and lim
X→∞

g(X) = −∞. (A-7)

The equilibrium is established if g(X) > 0 for some X ≥ 0. To this end, I consider two cases:

Case 1. c′(r)r − c(r) > rmaxi vi.

Then, fi(0) > 0 for all i by (A-2), and, in turn, g(0) =
∑

i fi(0) > 0.

Case 2. c′(r)r − c(r) ≤ rmaxi vi.

Let imax = arg maxi vi. Note that (c′(x)x− c(x))′ = c′′(x)x > 0 for x > 0. Thus, there is

some X̂ ≥ 0 such that

c′(r + X̂)
(
r + X̂

)
− c(r + X̂) = rvimax ,

which implies fimax(X̂) = r + X̂ > 0 since r > 0. Then,

g(X̂) =
∑
i

fi(X̂)− X̂

=
(
r + X̂

)
+
∑
i 6=imax

fi(X̂)− X̂

> 0.

Given (A-7) and the two cases, there is a unique Xe > 0 that solves (A-5). Therefore, from

(A-4) and the fact that f ′i < 0, there is a unique team equilibrium: xei = fi(X
e) for all i.

Conversely, take an arbitrary effort profile x ∈Rn+, and using (A-2), define the reward
v(xi) = Ω(xi,X)

r ≥ 0, as in (6). Clearly, v′(xi) > 0 for xi > 0 because Ωx > 0, and v(0) = 0 be-

cause Ω(0, X) = 0. Hence, by the previous existence result, the reward profile (v(x1), ..., v(xn))

uniquely engenders x as team equilibrium.

To prove the rest, fix X. Part (a) is completed by observing v′(0) = Ωx(0,X)
r = 0 since

c′(0) = c′′(0) = 0 by (C1). The proof of part (b) mimics part (a). Finally, part (c) follows

because v(xi) > v(xj) implies xi > xj , which, in turn, implies c′(xi) > c′(xj), given c′′ > 0.

Proof of Lemma 3. Fix X. From (6),

v′′(x) =
1

r

[
c′′′(x) (r +X)− c′′(x)

]
. (A-8)
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Clearly, v′′(0) ≥ 0 since c′′(0) = 0 and c′′′(x) > 0 for x > 0. And, (C1) implies limr→∞ v′′(x) =

c′′′(x) > 0 for x > 0.

Next, suppose c(4)(x) ≥ 0 in [0, X]. Then,

v′′(x) >
1

r

[
c′′′(x)x− c′′(x)

]
(since x ≤ X and r > 0)

=
x

r

[
c′′′(x)− c′′(x)

x

]
≥ 0 (since c′′(0) = 0 and c(4)(x) ≥ 0).

Hence, v′′(0) ≥ 0 and v′′(x) > 0 for x ∈ (0, X].

Given the strict convexity of v(x) in each case, the unique solution to (SB) is the equal

effort profile and thus, equal pay.

Proof of Lemma 4. Fix X. Suppose v′′(x) = 0 for some xI ∈ (0, X) where sgn [v′′(x)] =

sgn
[
c′′′(x)
c′′(x) −

1
r+X

]
by (A-8). Clearly, if c(4)(x) < 0 in [0, X], then

(
c′′′(x)
c′′(x)

)′
< 0. Hence, if

xI ∈ (0, X) exists, it must be unique and imply that v′′(x) > 0 for x < xI and v′′(x) < 0 for

x > xI .

Proof of Proposition 1. Suppose v(x) is S-shaped in [0, X], i.e., it has an (interior)

inflection point xI (convex turning concave). As argued in the text, under the optimal reward

schedule, there can be at most one agent such that x∗i > xI , i.e., v′′(x∗i ) < 0. By the same

argument, if x∗i , x
∗
j ≤ xI for some i and j, then x∗i = x∗j . Otherwise, x

∗
i < x∗j would imply

v′′(x) > 0 for x ∈ [x∗i , x
∗
j ]. But, by Jensen’s inequality, we would have

2v

(
x∗i + x∗j

2

)
< v(x∗i ) + v(x∗j ),

revealing that the principal could implement x∗i + x∗j at a strictly lower reward sum for i and

j, contradicting the optimality of the initial pay. From here, the statement of the proposition

is confirmed.

Proof of Proposition 2. Suppose v(x) is S-shaped in [0, X], with an inflection point xI .

Also suppose xI < X
n . If all agents were paid equally, then each would exert effort

X
n and be

on the concave part of v. But, by Proposition 1, there cannot be multiple agents in this part,

implying the optimality of a “leader-follower” team. Next suppose X ≤ xI . Then, x∗i ≤ xI

for all i, i.e., all agents operate on the convex part of v, implying an optimal equal pay or a

“horizontal”team.

Proof of Corollary 1. For c(x) = xk/k, with k ∈ (2, 2 + 1
n), (A-8) implies xI =

(k − 2)(r + X) (which solves v′′(x) = 0). From Proposition 2, we then observe that X
n >
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xI ⇐⇒ X > r k−2
2+ 1

n
−k , and X ≤ xI ⇐⇒ X ≤ r k−2

3−k .

Proof of Proposition 3. In light of Proposition 1, the principal’s reward-minimization

program (SB) reduces to:

min
x∈[0,X

n
]
(n− 1)v(x) + v(X − (n− 1)x) ≡ φ(x;X,n),

where (n− 1) agents are induced to exert the (low) effort x ∈ [0, Xn ].

The first- and second-order conditions are given by:

FOC: φx(x∗; .) = 0⇐⇒ v′(x∗)− v′(X − (n− 1)x∗) = 0

and

SOC: φxx(x∗; .) = v′′(x∗) + (n− 1)v′′(X − (n− 1)x∗) ≥ 0.

Treating n as a continuous parameter here, the implicit differentiation of the FOC implies

φxx(x∗; .)
∂x∗

∂n
+ φxn(x∗; .) = 0

⇐⇒
φxx(x∗; .)

∂x∗

∂n
+ x∗v′′(X − (n− 1)x∗) = 0. (A-9)

Suppose x∗ < X
n , i.e., a leader-follower team is optimal. Then, φxx(x∗; .) > 0. Otherwise,

by (A-9), φxx(x∗; .) = 0 would imply

v′′(X − (n− 1)x∗) = 0.

That is, the leader’s effort, X − (n − 1)x∗, would be at the inflection of the reward function,

v. But then, all agents’efforts would be on the convex part of v, implying the optimality of

equal effort, contradicting the hypothesis x∗ < X
n .

Given φxx(x∗; .) > 0 and the fact that v′′(X − (n− 1)x∗) < 0 when x∗ < X
n , (A-9) reveals

∂x∗

∂n
> 0. (A-10)

Suppose x∗(n + 1, .) < X
n+1 , i.e, unequal pay in a team of size n + 1. Then, by (A-10),

x∗(n, .) < x∗(n+ 1, .), implying that x∗(n, .) < X
n . Hence, unequal pay in a team of size n+ 1

means unequal pay in a team of size n, as claimed.

To prove part (a), suppose an n-agent team has unequal pay, i.e., x∗(n, .) < X
n . Then, it

trivially has a wider pay range than a larger team of size m > n if the latter has equal pay,
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i.e., x∗(m, .) = X
m . If, instead, x

∗(m, .) < X
m , then x

∗(n, .) < x∗(m, .) by (A-10), and, in turn,

X − (n− 1)x∗(n, .) > X − (m− 1)x∗(m, .). Together with the fact that v′(xi) > 0 by Lemma

2(a), these reveal that the smaller team has a wider pay range.

Finally, part (b) follows from (A-10) since each follower exerts effort x∗, leavingX−(n−1)x∗

to the leader.

Proof of Proposition 4. We first prove the properties of w(X) as claimed in the text.

Notice that using (6), (SB2) can be re-written as:

w(X) = min
x∈[0,X

n
]
(n− 1)[c′(x) + u(x)] +

[
c′(X − (n− 1)x) + u(X − (n− 1)x)

]
,

where u(x) = c′(x)X−c(x)
r .

Clearly, w(0) = 0 since c(0) = c′(0) = 0 by (C1). Moreover, by applying the Envelope

Theorem, we find

w′(X) =
[
(n− 1)c′(x∗) + c′′(X − (n− 1)x∗)(r +X)

]
/r.

Thus, w′(X) > 0 for X > 0, and w′(0) = 0 since c′′ > 0, with c′′(0) = 0. The Envelope

Theorem further reveals that w(X) is strictly decreasing in r for X > 0 since u(x∗) > 0 by

Lemma 2. Finally, w(X) must be strictly decreasing in n for X > 0 because the solution to

(SB2) is interior for any n by Lemma 2, i.e., each additional team member is utilized by the

principal.

To prove the proposition, define uP (X) = X
rP+X (π − w(X)). A solution to (PM), denoted

by X∗, exists because uP (X) is continuous in X, and X ∈ [0, w−1(π)]. Next, note that

u′P (X) =
rp[π − w(X)−Xw′(X)]−X2w′(X)

(rP +X)2
,

implying that u′P (0) = π
rP

> 0. Hence, X∗ > 0 and, in turn, u′P (X∗) = 0 in the first-order

condition.

Now take π < π′, and let X∗ and X∗′ be the corresponding solutions to (PM). Then, by

revealed preference arguments,22 we have

X∗′

rP +X∗′
(
π − w(X∗′)

)
≤ X∗

rP +X∗
(π − w(X∗))

and
X∗

rP +X∗
(
π′ − w(X∗)

)
≤ X∗′

rP +X∗′
(
π′ − w(X∗′)

)
.

22 I use revealed preference arguments instead of Calculus for comparative statics because the second-order
properties of w(X) are not immediate or needed here.

22



Adding the terms side by side and arranging them, we find

X∗

rP +X∗
(
π′ − π

)
≤ X∗′

rP +X∗′
(
π′ − π

)
,

which implies X∗ ≤ X∗′. Notice that X∗ 6= X∗′ since π < π′ and u′P (X∗) = 0 = u′P (X∗′).

Similar revealed preference arguments also prove that X∗ is strictly increasing in rP . The

rest of the proposition obtains from Corollary 1: under the iso-elastic cost, the principal

optimally chooses a leader-follower if X∗ > r k−2
2+ 1

n
−k .

Proof of Proposition 5. Fix X. Solving for vi in (9), we amend (6) as:

v(xi) =
c′(xi)

(
r
α +X

)
− c(xi)

r
. (A-11)

Hence, as in the proof of Lemma 4, sgn [v′′(x)] = sgn
[
c′′′(x)
c′′(x) −

1
r
α

+X

]
.

Next take β < β′, or equivalently, α < α′. Clearly,

sgn
[
v′′(x)|α′

]
< sgn

[
v′′(x)|α

]
for all x > 0. In particular, if an inflection point in [0, X] exist for α′, then xI′ < xI . The

conclusion follows from Proposition 2.

Appendix B: On stationary strategies

In this appendix, I prove the claim made in Footnote 11 that the restriction to stationary

strategies is without loss for the 2- and 3-agent teams. To this end, fix a positive reward profile,

i.e., vi > 0 for all i. Recall that xi(t) and ui(t) denote agent i’s continuously differentiable

effort level and expected discounted payoff at time t, respectively. Then, as is standard by

now, agent i’s dynamic program can be written as an Hamilton-Jacobi-Bellman equation:

rui(t) = max
xi(t)

(xi(t) +
∑
j 6=i

xj(t))(vi − ui(t))− c(xi(t)) + u′i(t)

 . (B-1)

Clearly, in equilibrium, ui(t) ∈ (0, vi) due to costly effort and the cost assumption (C1).23

The first-order condition requires that

xi(t) = h(vi − ui(t)), (B-2)

23 (B-1) reduces to (1) under stationary strategies.
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where h = c′−1, and h′ > 0 and h′′ < 0, with h(0) = 0 and h′(∞) = ∞ by (C1). Plugging

(B-2) into (B-1) and arranging terms, we obtain the law of motion for i’s equilibrium utility:

u′i(t) = rui(t) + c(h(vi − ui(t)))− (vi − ui(t))
∑
j

h(vj − uj(t)). (B-3)

Finding an equilibrium amounts to solving this system of n ODEs. Evidently, the steady

state of this system, i.e., its solution when u′i(t) = 0 for all i, corresponds to the stationary

equilibrium analyzed in the main text. By Lemma 2, the steady state uniquely exists, which

we denote by u∗ = (u∗1, u
∗
2, ..., u

∗
n).

To rule out any other equilibrium, I will argue that if ui(τ) 6= u∗i for some agent i at time

τ , uj(t) would diverge for some agent j as t→∞, violating its feasible values (0, vj).24 To do

so, I write the Jacobian matrix for the system in (B-3) and show that its eigenvalues are all

real and positive.

Consider first a 2-agent team. Omitting the time index for conciseness below, notice from

(B-3) that

∂u′i
∂ui

= r − c′(h(vi − ui))h′(vi − ui) + [h(vi − ui) + h(vj − uj)] + (vi − ui)h′(vi − ui)

= r + h(vi − ui) + h(vj − uj),

since c′(h(.)) = c′(c′−1(.)) = vi − ui. Similarly,

∂u′i
∂uj

= (vi − ui)h′(vj − uj).

To further simplify the notation, let

zi = vi − ui.

Then, the Jacobian matrix for 2 agents evaluated at utility values at time τ becomes

J2 =


∂u′1
∂u1

∂u′1
∂u2

∂u′2
∂u1

∂u′2
∂u2

 =

 r + h(z1) + h(z2) z1h
′(z2)

z2h
′(z1) r + h(z1) + h(z2)

 .
The eigenvalues of this matrix admit closed forms:

λ1,2 = r + h(z1) + h(z2)±
√
z1z2h′(z1)h′(z2).

24 In their working paper version, Bonatti and Rantakari (2016) argue similarly for eliminating nonstationary
equilibrium in their 2-agent benchmark. However, their “phase-diagram”approach is diffi cult to extend to more
than 2 agents.
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Since h′′ < 0 and h(0) = 0, we have h′(z) < h(z)
z for z > 0. Hence,

r + h(z1) + h(z2)−
√
z1z2h′(z1)h′(z2) ≥ r + h(z1) + h(z2)−

√
h(z1)h(z2) > 0,

implying that both eigenvalues are real and positive for the 2-agent team.

Next consider a 3-agent team. In this case, the Jacobian matrix is given by

J3 =


r +

∑
i h(zi) z1h

′(z2) z1h
′(z3)

z2h
′(z1) r +

∑
i h(zi) z2h

′(z3)

z3h
′(z1) z3h

′(z2) r +
∑

i h(zi)

 .
Unfortunately, the eigenvalues of J3 do not admit tractable closed forms. Moreover, J3 is not

symmetric for arbitrary z−values, nor is it diagonally dominant or totally positive, each of
which would help argue all real and positive eigenvalues. However, J3 is a positive matrix for

which the Perron-Frobenius Theorem would imply that the largest eigenvalue in magnitude is

real and positive. Still, that theorem is silent about the real parts of the other eigenvalues. To

determine them, I work directly with the characteristic equation of J3, which, in general, is of

the form

λ3 − tr(J3)λ2 + pλ− det(J3) = 0. (B-4)

Clearly, tr(J3) = 3 (r +
∑

i h(zi)) > 0. It can also be verified that

det(J3) =

(
r +

∑
i

h(zi)

)(r +
∑
i

h(zi)

)2

−
(
z1z2h

′(z1)h′(z2) + z1z3h
′(z1)h′(z3) + z2z3h

′(z2)h′(z3)
)

+2z1z2z3h
′(z1)h′(z2)h′(z3)

> 0,

because h′(z) < h(z)
z by h′′(z) < 0. Lastly, by the same argument,

p = 3

(
r +

∑
i

h(zi)

)2

−
(
z1z2h

′(z1)h′(z2) + z1z3h
′(z1)h′(z3) + z2z3h

′(z2)h′(z3)
)

> 0.

Then, Descartes’rule of signs reveals that (B-4) has either 1 or 3 real positive roots, and no

negative real root. To determine the number of real roots, we find, after some algebra, the

discriminant of the cubic polynomial in (B-4):

108

[(
(z1z2h

′(z1)h′(z2) + z1z3h
′(z1)h′(z3) + z2z3h

′(z2)h′(z3))

3

)3

−
(
z1z2z3h

′(z1)h′(z2)h′(z3)
)2]
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which is positive by the arithmetic-geometric mean inequality. Hence, all three roots of (B-4)

and thus, all eigenvalues of J3, are real, which, by Descartes’rule of signs, are also all positive.

Conclusion 1 For 2- and 3-agent teams, if the initial point is not exactly its steady state, the

solutions to the system of ODEs described by (B-3) are divergent, i.e., ui(t) /∈ (0, vi) as t→∞
for some i. Therefore, there is no equilibrium with continuously differentiable strategies other

than the stationary one considered in the main text.

Although I strongly conjecture that Conclusion 1 extends to any team size, I have been

unable to prove it. Nevertheless, it is evident that for an arbitrary team size, if all but agent

i followed stationary strategies, so would agent i. Otherwise, since ∂u′i
∂ui

> 0, agent i’s utility

would diverge. Hence, we reach

Conclusion 2 For an arbitrary team size, if agent i expects all others to adopt stationary

strategies, he does the same.
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