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Abstract

We prove an elementary property of order statistics that bounds the k-

th largest order statistic of a given sample using the largest order statistic

of a (random) subsample. This property is applied to the design of com-

binatorial auctions when the auctioneer has limited statistical information

about the joint distribution of the bidders’ valuations. The VCG mechanism

is asymptotically optimal—its revenue-guarantee differs from the highest

revenue-guarantee by at most O( 1n).
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1 Introduction

The theory of order statistics is an integral part of probability theory and

a requisite component in the toolbox of researchers in various fields including

economics. Applications in economics include modeling auctions, optimizing pro-

duction processes, estimating parameters of a distribution, among many others.

For a notable example, results on order statistics are the basis of much of the

auction literature—for the single-unit auction, the full surplus is the expectation

of the highest value, the expected revenue from the first-price auction with no

reserve price is the expectation of the highest bid, and the expected revenue from

the second-price auction with no reserve price is the expectation of the second

highest value.

In this paper, we prove an elementary property of order statistics that bounds

the k-th largest order statistic of a given sample using the largest order statistic of a

(random) subsample. Among other things, this implies that in a variety of settings,

the worst-case expectations of order statistics are asymptotically equivalent. We

apply this property to the design of combinatorial auctions when the auctioneer

has limited statistical information about the joint distribution of the bidders’

valuations. By bounding the expected revenue from the VCG mechanism (see

Vickrey (1961), Clarke (1971), and Groves (1973)) from below using a few properly

constructed order statistics, we show that the VCG mechanism is asymptotically

revenue-maximizing.

Traditional models of optimal auction design pin down relatively simple auction

formats that maximize revenue under strong assumptions about the environment.

For instance, the celebrated work of Myerson (1981) works with the allocation

of a single unit of an object and makes the explicit assumption of independent

values, as well as implicit assumptions that both the auctioneer and the bidders

are fully Bayesian with an accurate common prior belief. In practice, however,

these assumptions are rarely satisfied. For example, two of the most profitable

auctions, the Google Ads Auction and the Meta Ads Auction,1 are combinatorial

and involve highly correlated valuations. Given the frequency and scale of these

ads auctions, the data accessibility and computation capability constraints pro-

hibit the auctioneer to even form an accurate belief in real-time, not to say solving

the revenue maximization problem. Our result suggests that the co-existence of

all these nuances is in fact a blessing instead of a curse: the scale of the auction

1 In 2021, Google and Meta (formerly Facebook Inc) generated ads revenue of 209.49 billion and 114.93 billion
U.S. dollars, respectively. Google adopts generalized second price (GSP) auction and Meta adopts VCG auction.
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and the lack of knowledge lead to the robust optimality of the VCG mechanism.

We consider a combinatorial auction, where an auctioneer sells a set K of

heterogeneous objects to n bidders. Each bidder i has her own private valuation

function vi : 2
K → R+ that specifies bidder i’s valuation for each possible subset of

objects. We assume that the possible valuation functions are uniformly bounded

and exhibit no complementarity. The auctioneer has limited statistic information

about the joint distribution of the bidders’ valuation. In the baseline model,

the auctioneer only knows that the marginal distribution of each bidder’s private

type lies in an arbitrary ambiguity set Π ⊆ ∆V . All joint distributions that are

compatible with the ambiguity set are considered plausible.

The auctioneer evaluates mechanisms in terms of revenue-guarantee—the worst-

case expected revenue where the worst-case is taken over all joint distributions

that are considered plausible. We show that the VCG mechanism is asymptot-

ically optimal—its revenue-guarantee differs from the highest revenue-guarantee

by at most O( 1
n
). The following example illustrates the intuition of this result in

a simple setting.

Example 1 (Single-unit auction). Consider a single-unit auction with n bidders,

where Π = {U [0, 1]}. It is well-known that when the bidders’ values are indepen-

dent, the expectation of the second highest value is n−1
n+1

, which approaches n
n+1

,

the expectation of the highest value as n gets large. This seems intuitive as the

second highest value is a good approximation of the highest value when values are

independent.2

Perhaps surprisingly, this is not the case if the values are correlated. For

a simple example, consider the joint distribution defined by randomly drawing

q ∼ U [0, 1] and taking v1 = q and vi = 1 − q for all i ̸= 1. Obviously, the

distributions of the highest and the second highest values do not depend on n,

and it is easy to calculate that E[v(1)] = 3
4
and E[v(2)] = 1

2
.3 Thus, for some

correlation structures, the second highest value could be a poor approximation of

the highest value.4

Our key observation is that the second highest value remains a good approx-

imation of the highest value under the worst-case correlation structure. E[v(1)] is
minimized when all values are maximally positively correlated, and it is simply the

expected value of one randomly selected bidder. We now compare E[v(2)] with the

expected value of a randomly selected bidder (without specifying the correlation

2Bulow and Klemperer (1996) shows that adding one more bidder is sufficient for the second highest value to
outperform the optimal mechanism for any finite n.

3We use v(k) to denote the k-th largest order statistic in {v1, v2, . . . , vn}.
4 It is obvious that for the proposed distributions, adding extra bidders has no use at all.
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structure). Let i be a uniform randomization of bidder identities. We have

E[v(2)] =E[v(2)|v(2) ≥ vi]P(v(2) ≥ vi) + E[v(2)|v(2) < vi]P(v(2) < vi)

≥E[vi|v(2) ≥ vi]P(v(2) ≥ vi)

=E[vi]− E[vi|v(2) < vi]P(v(2) < vi)

≥E[vi]−
1

n
.

The two equalities apply the law of iterated expectations. The second inequality is

because, for v(2) < vi, i must be the bidder with the highest value, which happens

with probability 1
n
. Therefore, the worst-case expectation of the second highest

value differs from that of the largest value by at most 1
n
. The second-price auction

with no reservation price is asymptotically optimal in large markets.

The methodology in Example 1 is generalized to show the main result. We

show that (1) the expected revenue from the VCG mechanism can be bounded

from below using a few properly constructed order statistics and (2) the highest

revenue-guarantee can be bounded from above by the total welfare under the effi-

cient allocation when the bidders’ valuations are maximally positively correlated.

Similar analysis as in Example 1 shows that these two bounds differ by O( 1
n
).

Appendix A extends our analysis to the case of asymmetric bidders. The key

assumption on the ambiguity set is what we call a subsample sufficiency property.

In words, it says that for any object, the worst-case expectation of the highest

individual utility for the object is approximately the same in the full sample and

in any subsample that is not “too small.” Theorem 3 extends the asymptotic

optimality of the VCG mechanism to settings with asymmetric ambiguity set and

restricted correlation structures.

2 Order statistics of large samples: theory

In this section, we prove an elementary property of order statistics that bounds

the k-th largest order statistic of a given sample using the largest order statistic

of a (random) subsample.

Let M = {1, 2, . . . ,m}, m ≥ 2. Denote {Xi}mi=1 as an m-dimensional random

variable, where all Xi’s are uniformly bounded in the interval [x, x]. We write

F ∈ ∆[x, x]m to denote the joint distribution of {Xi}mi=1. For any I ⊆M , let X
(k)
I

denote the k-th largest order statistic of {Xi}i∈I . For any r ≤ m, let I(r) denote

the uniform random sample of r distinct elements from M .
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Lemma 1. For any F , k ≤ m, and r ≤ m− k + 1, we have

EF

[
X

(k)
M

]
≥ EF

[
X

(1)
I(r)

]
− (x− x)

(
1−

(
m−k+1

r

)(
m
r

) )
.

Proof.

EF

[
X

(k)
M

]
=EF

[
X

(k)
M |X

(k)
M ≥ X

(1)
I(r)

]
P
(
X

(k)
M ≥ X

(1)
I(r)

)
+ EF

[
X

(k)
M |X

(k)
M < X

(1)
I(r)

]
P
(
X

(k)
M < X

(1)
I(r)

)
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[
X

(1)
I(r)|X

(k)
M ≥ X

(1)
I(r)

]
P
(
X

(k)
M ≥ X

(1)
I(r)

)
+ xP

(
X

(k)
M < X

(1)
I(r)

)
=EF

[
X

(1)
I(r)

]
− EF

[
X

(1)
I(r)|X

(k)
M < X

(1)
I(r)

]
P
(
X

(k)
M < X

(1)
I(r)

)
+ xP

(
X

(k)
M < X

(1)
I(r)

)
≥EF

[
X

(1)
I(r)

]
− (x− x)P

(
X

(k)
M < X

(1)
I(r)

)
, (1)

where the second and the fourth line apply the law of iterated expectations, and

the third and the fifth line follow from the assumption that all Xi’s are uniformly

bounded in the interval [x, x].

When X
(k)
M < X

(1)
I(r), I(r) necessarily contains at least one index i such that

Xi > X
(k)
M . Note that there are at most k − 1 such indices. Since I(r) is the

uniform random sample of r distinct elements from M , the probability that at

least one of k − 1 specific indices is contained in I(r) is 1− (m−k+1
r )

(mr )
. Thus,

P
(
X

(k)
M < X

(1)
I(r)

)
≤ 1−

(
m−k+1

r

)(
m
r

) . (2)

Lemma 1 follows from Equations (1) and (2). Q.E.D.

Lemma 1 holds for any number of random variables m and any joint distri-

bution F . We now apply Lemma 1 to the case in which the number of random

variables is large and there is limited statistical information about the joint dis-

tribution. In this setting, we establish an asymptotic equivalence result on the

worst-case expectations of order statistics. Let {Xi}∞i=1 be an infinite sequence of

random variables. As before, we assume that all Xi’s are uniformly bounded in

the interval [x, x]. Let F denote the collection of joint distributions the modeler

perceives plausible.

Definition 1 (Subsample sufficiency). For an increasing sequence r(n) and a
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decreasing sequence χ(n), F is r-subsample χ-sufficient if for all n,

inf
F∈F

EF

[
X

(1)
I(r(n))

]
≥ inf

F∈F
EF

[
X

(1)
[n]

]
− χ(n).5

In words, Definition 1 says that to achieve the worst-case expectation of the

largest order statistic up to a χ(n) difference, it is not necessary to sample all

Xi’s. Instead, it suffices to consider a random size-r(n) subset of random variables.

When the family of distributions F is symmetric and exhibits full ambiguity in the

correlation structure (for example, when F is the collection of all joint distributions

that have the same marginal distribution on all dimensions), it is 1-subsample 0-

sufficient.6

Theorem 1 below bounds the difference between the worst-case expectations

of order statistics.

Theorem 1. If F is r-subsample χ-sufficient, then for any k,

inf
F∈F

EF

[
X

(1)
[n]

]
− inf

F∈F
EF

[
X

(k)
[n]

]
≤ O

(
r(n)

n
+ χ(n)

)
.

Proof.

inf
F∈F

EF

[
X

(k)
[n]

]
≥ inf

F∈F

[
EF

[
X

(1)
I(r(n))

]
− (x− x)

(
1−

(
n−k+1
r(n)

)(
n

r(n)

) )]

= inf
F∈F

EF

[
X

(1)
I(r(n))

]
−O

(
r(n)

n

)
≥ inf

F∈F
EF

[
X

(1)
[n]

]
−O

(
r(n)

n
+ χ(n)

)
,

where the first inequality follows from Lemma 1 and the last inequality follows

from Definition 1. Q.E.D.

Note that there is a trade-off between r and χ: to achieve small approximation

error χ, one necessarily needs to choose a large subsample.7 Theorem 1 states that

if a diminishing approximation error can be achieved by considering a subset of

size o(n), then the worst case expectation of all finite order statistics are asymp-

totically the same. In Section 3, we utilize Theorem 1 to study robustly optimal

auction design under symmetric F that exhibits full ambiguity in the correlation

5[n] = {1, 2, . . . , n} for all n.
6We say that a family of distributions F is symmetric if Fτ ∈ F for any F ∈ F and any permutation

τ : N+ → N+, where Fτ is the joint distribution of {Xτ(1), Xτ(2), . . .}.
7Any F is trivially n-subsample 0-sufficient and 1-subsample (x̄ − x)-sufficient. However, these pairs of r, χ

do not provide a meaningful bound in Theorem 1.
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structure, which satisfies 1-subsample 0-sufficiency. The extension to general F is

straightforward and is discussed in Appendix A.

3 The combinatorial auction

In this section, we consider a combinatorial auction of heterogeneous objects.

Let K = {1, 2, . . . , k} be the finite set of objects for sale, and N = {1, 2, . . . , n}
the set of potential buyers. As we eventually focus on large markets, we assume

that n ≥ k+1. Each bidder i has her own private valuation function vi : 2
K → R+

that specifies bidder i’s valuation for each possible subset of objects: for a subset

of objects A ⊆ K, vi(A) is bidder i’s valuation of the bundle A. We assume that

valuations are monotonically non-decreasing (vi(A) ≤ vi(B) whenever A ⊆ B),

normalized so that vi(∅) = 0, and scaled to lie in [0, 1]. Each bidder i knows her

own valuation function vi, and this is common knowledge. We also refer to vi as

bidder i’s type. For ease of exposition, in the baseline model, we assume that

all bidders are ex ante identical. We denote by V the set of possible valuation

functions of each bidder i, where V is a complete and separable metric space. (In

Appendix A, we extend our analysis to the case of asymmetric bidders).

We assume that the bidders’ valuation functions satisfy the following standard

property:

Assumption 1 (Complement-free). vi is complement-free.8 That is, for any

A,B ⊆ K,

vi(A) + vi(B) ≥ vi(A ∪B).

For any F ∈ ∆V n, let Φi(F ) denote the marginal distribution of F on the i-th

dimension. The auctioneer lacks information about the joint distribution of the

bidder’s types, and believes any joint distribution in F is a plausible candidate,

where

F =
{
F ∈ ∆V n

∣∣∣Φi(F ) ∈ Π for all i
}

for some exogenously given Π ⊆ ∆V .

8 Submodular valuation functions have received much attention in combinatorial auctions; vi is submodular if
for any pair of nested subsets of objects A ⊆ B ⊆ K and any single object x,

vi(A ∪ {x})− vi(A) ≥ vi(B ∪ {x})− vi(B).

Our assumption of complement-free valuation function is a strictly weaker notion than submodularity.
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Remark. We do not place any restriction on the collection of distributions Π ⊆ ∆V .

This flexibility means that we can apply our results to various settings in which Π is

constructed to reflect additional natural characteristics. For example, by modeling

Π to be a singleton set, we could accommodate the correlation-robust auction

model; see Bei et al. (2019), He and Li (2022), and Zhang (2021). By modeling

Π to be the collection of distributions that satisfy certain moment conditions,

we could accommodate the analysis in Che (2020) and Suzdaltsev (2020). These

features are consistent with our framework, but are not required for our main

results.

Mechanisms/ payoff functions

An allocation is a vector of sets A = (A1, A2, . . . , An), Ai ∩ Aj = ∅, where
Ai denotes the bundle allocated to bidder i (it is not required that all items

are allocated).9 Let An denote the set of all allocations with n bidders. Let

A∗(v) ∈ argmaxA∈An

∑
i vi(Ai) denote an efficient allocation under v.

Rather than defining the set of feasible mechanisms explicitly, it suffices for

our purpose to directly define the set of feasible payoff functions that are imple-

mentable.

Definition 2. We define the VCG payoff tvcg as a function of the type profile as

follows: for each v ∈ V n,

tvcg(v) =
n∑

i=1

(
sup

A∈An−1

∑
j ̸=i

vj(Aj)−
∑
j ̸=i

vj(A
∗
j(v))

)
.

That is, tvcg is the payoff function implemented through the VCG mechanism.

Let T denote the set of “feasible payoffs” functions that are implementable

(without fully specifying it). We assume that (1) the VCG mechanism is feasible

and (2) any feasible mechanism satisfies the individual rationality requirement—

the payoff of each bidder i is nonnegative. That is, (1) tvcg ∈ T and (2) t(v) ≤
supA∈An

∑
i vi(Ai) for any t ∈ T .

Revenue-guarantee

For any t ∈ T and F ∈ F , we denote by R(t, F ) =
∫
V
t(v)F (dv) the auc-

tioneer’s expected revenue when the mechanism uses the payoff function t and

9For notational simplicity, we only consider deterministic allocations. Given the concerns of this paper,
allowing for randomized allocations would not affect what follows.
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the joint distribution is F . We define the revenue-guarantee of a mechanism t as

infF∈F R(t, F ). The auctioneer’s objective is to choose a mechanism that generates

the highest revenue-guarantee:

sup
t∈T

inf
F∈F

R(t, F ).

Asymptotic optimality of the VCG mechanism

Theorem 2. Under Assumption 1

inf
F∈F

R(tvcg, F ) ≥ sup
t∈T

inf
F∈F

R(t, F )−O

(
1

n

)
.

In words, Theorem 2 says that the revenue-guarantee of the VCG mecha-

nism differs from the highest revenue-guarantee by at most O( 1
n
), and hence the

VCG mechanism is asymptotically optimal (among all individually rational mech-

anisms). The proof proceeds by bounding the expected revenue of the VCG mech-

anism by a few properly constructed order statistics, and then applying Lemma 1

(Theorem 1 in the case of asymmetric bidders).

Proof. Step 1. We first construct an upper bound of the highest revenue-

guarantee. For any π ∈ Π, consider the maximally positive correlation Fπ that

puts probability one on the line segment v1 = v2 = . . . = vn. Clearly, Fπ ∈ F for

all π ∈ Π. Almost surely under the joint distribution Fπ, for any A ∈ An,

n∑
i=1

vi(Ai) ≤
n∑

i=1

∑
o∈Ai

vi({o})

=
n∑

i=1

∑
o∈Ai

v1({o})

≤
k∑

o=1

v1({o}),

where the first inequality follows from Assumption 1, the first equality is because

for any v in the support of Fπ, vi = v1 for all i, and the second inequality follows

from a reordering of the terms in the summation. Therefore,

sup
t∈T

inf
F∈F

R(t, F ) ≤ sup
t∈T

inf
π∈Π

R(t, Fπ)

≤ inf
π∈Π

sup
t∈T

R(t, Fπ)
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≤ inf
π∈Π

EFπ

[
k∑

o=1

v1({o})

]
. (3)

Step 2. We proceed to establish a lower bound of the revenue-guarantee of

the VCG mechanism by constructing, for each i, an allocation Ai ∈ An−1 of the

objects to the bidders other than bidder i. Clearly, for any such profile (Ai),

tvcg(v) =
n∑

i=1

(
sup

A∈An−1

∑
j ̸=i

vj(Aj)−
∑
j ̸=i

vj(A
∗
j(v))

)

≥
n∑

i=1

(∑
j ̸=i

vj(A
i
j)−

∑
j ̸=i

vj(A
∗
j(v))

)
(4)

For each i, we construct allocation Ai ∈ An−1 via the following algorithm:

Algorithm. Set Ai
j = ∅ for all j. Set O = A∗

i .

(1). For each j ̸= i:

If A∗
j ̸= ∅, set Ai

j = A∗
j .

Let N̄ = {j ∈ N : Ai
j = ∅, j ̸= i}.

(2). If O ̸= ∅, pick o ∈ O.

Set Ai
j = {o} for some j ∈ argmaxj′∈N̄ vj′({o}).

Update O ← O \ {o} and N̄ ← N̄ \ {j}.

(3). Repeat (2) until O = ∅.

(4). Return allocation Ai = (Ai
1, A

i
2, . . . , A

i
i−1, A

i
i+1, . . . , A

i
n).

In words, if an object is allocated to a bidder other than bidder i under A∗, the

object is still allocated to that bidder. We then iteratively pick an object o that is

allocated to bidder i under A∗, and allocate the object to the bidder j whose value

for the object vj({o}) is the highest among all the bidders who are not allocated

any object yet. For each o ∈ A∗
i , define jo to be the index j such that Ai

j = {o}.
It follows from Equation (4) that

tvcg(v) ≥
n∑

i=1

(∑
j ̸=i

vj(A
i
j)−

∑
j ̸=i

vj(A
∗
j(v))

)

=
n∑

i=1

∑
o∈A∗

i

vjo({o})
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≥
k∑

o=1

max
j

(k+1)vj({o}), (5)

where max
(k+1)
j denotes the (k+1)-th largest element when j traverses {1, . . . , n}.

The second inequality follows from the construction of Ai: when an object o ∈ A∗
i

is being allocated, it is allocated to the bidder j whose value for the object vj({o})
is the highest among all the bidders who are not allocated any object yet. Since

each iteration assigns at least one good to one bidder and there are at most k

goods, we have vjo({o}) must be at least the (k + 1)-th highest value among all

vi({o}).
Equation (5) then implies that for any F ∈ F ,

R(tvcg, F ) ≥EF

[
k∑

o=1

max
j

(k+1)vj({o})

]

=
k∑

o=1

EF

[
max

j

(k+1)vj({o})
]

≥
k∑

o=1

(
EF

[
vI(1)({o})

]
− k

n

)

=EF

[
k∑

o=1

vI(1)({o})

]
− k2

n
,

=⇒ inf
F∈F

R(tvcg, F ) ≥ inf
π∈Π

EFπ

[
k∑

o=1

v1({o})

]
− k2

n
. (6)

The second inequality follows from Lemma 1. It follows from Equations (3) and (6)

that

inf
F∈F

R(tvcg, F ) ≥ sup
t∈T

inf
F∈F

R(t, F )−O

(
1

n

)
.

Q.E.D.

4 Related literature

This paper joins the burgeoning literature of robust mechanism design; see

Bergemann and Morris (2012) and Carroll (2019) for recent surveys on robust

mechanism design and references therein. An important strand of this literature

considers settings in which the designer does not have reliable information about
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the agents’ hierarchies of beliefs while assuming the knowledge of the payoff envi-

ronment; see, for example, Bergemann and Morris (2005), Chung and Ely (2007),

Bergemann et al. (2016, 2017, 2019), Chen and Li (2018), Du (2018), Brooks and

Du (2021), and Yamashita and Zhu (2020). The focus of our paper is on the

uncertainty about the payoff environment.

Several recent papers have analyzed single-unit auction settings in which the

auctioneer has limited statistical information of the payoff environment.10 Bei

et al. (2019), He and Li (2022), and Zhang (2021) consider an auctioneer who

only has knowledge of the marginal distribution, but not the correlation struc-

ture. Neeman (2003), Koçyiğit et al. (2020), Suzdaltsev (2020), and Che (2020)

consider an auctioneer who only has knowledge about certain moment conditions

of the marginal distribution. There are several differences between our work and

the above-mentioned papers. First, while these papers consider the single-unit

auction setting, we focus on combinatorial auctions (which cover the single-unit

auction as a special case). Second, rather than considering a specific set of possible

joint distributions, our formulation of uncertainty set is general enough to cover

many different specifications; see Section 3. Third, to establish the asymptotic

optimality of the VCG mechanism in combinatorial auctions, we uncover some

elementary properties on the order statistics of large samples. Lemma 1 and The-

orem 1 can be readily used to show that, in the environments considered in these

papers, the second-price auction with no reserve price is asymptotically optimal.

5 Conclusion

In many realistic settings, the designer might not have a complete understand-

ing of the payoff environment and faces some uncertainty about the joint distri-

bution of the agents’ payoff types. This paper uncovers an elementary property

of order statistics that bounds the k-th largest order statistic of a given sample

using the largest order statistic of a (random) subsample. By establishing a lower

bound of the performance of the VCG mechanism using properly constructed or-

der statistics, we apply this property to establish the asymptotic optimality of

the VCG mechanism in combinatorial auction settings. Such property of order

statistics could potentially be useful for other (robust) design settings.

10Also see Carroll (2017) and Che and Zhong (2021) who consider a multi-dimensional screening setting in
which the seller faces uncertainty about the payoff environment.
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A General ambiguity set

We now extend our analysis to an arbitrary ambiguity set. We first adapt the

subsample sufficiency property (Definition 1) to the combinatorial auction setting.

Definition 3 (Subsample sufficiency). For an increasing sequence r(n) and a

decreasing sequence χ(n), F is r-subsample χ-sufficient if for all n, for all

o ∈ K,

inf
F∈F

EF

[
max

i∈I(r(n))
vi({o})

]
≥ inf

F∈F
EF

[
max
i∈[n]

vi({o})
]
− χ(n).

In words, Definition 3 says that for any object, considering a random size-r(n)

subset of bidders, the worst case expectation of the highest individual utility for

the object is at most χ(n) from that of the full set of bidders.

Theorem 3. If Assumption 1 is satisfied and F is r-subsample χ-sufficient, then

inf
F∈F

R(tvcg, F ) ≥ sup
t∈T

inf
F∈F

R(t, F )−O

(
r(n)

n
+ χ(n)

)
.

Proof. The proof is analogous to the proof of Theorem 2. Here, we only note

down the key changes.

Step 1. Equation (3) is modified to

sup
t∈T

inf
F∈F

R(t, F ) ≤ inf
F∈F

EF

[
k∑

o=1

sup
i∈[n]

vi({o})

]
(7)

Step 2. Equation (5) still holds in the current setting, as the derivation of

Equation (5) does not depend on the distribution of bidders’ valuations. Therefore,

inf
F∈F

R(tvcg, F ) ≥ inf
F∈F

k∑
o=1

EF

[
max
j∈[n]

(k+1)vj({o})
]

≥ inf
F∈F

k∑
o=1

EF

[
max
j∈[n]

(1)vj({o})
]
−O

(
r(n)

n
+ χ(n)

)
≥ sup

t∈T
inf
F∈F

R(t, F )−O

(
r(n)

n
+ χ(n)

)
,

where the first line follows from Equation (5), the second line follows from Theo-

rem 1, and the last line follows from Equation (7). Q.E.D.

Theorem 3 extends Theorem 2 by allowing the ambiguity of the correlation

13



structure to be less extreme or the ambiguity set to be asymmetric. To illustrate

Theorem 3, consider the following examples.

Example 2. The setting is the same as Example 1, except that the ambiguity set

F exhibits limited correlation:

F =

{
F ∈ ∆[0, 1]n

∣∣Φi(F ) ∼ U [0, 1] and z ≤ P(Xi|X−i)

P(Xi|X ′
−i)
≤ 1

z
,∀i,Xi, X−i, X

′
−i

}
,

where z ∈ (0, 1]. The ambiguity set F satisfies “z-independence” (introduced by

Cripps and Swinkels (2006)). When z = 1, F contains a unique i.i.d. U [0, 1]

distribution. When z → 0, F exhibits full ambiguity on correlation. Intuitively,

the parameter z captures the level of dependence among bidders. Next, we show

that the second price auction is asymptotically optimal under the z-independence

condition.

The definition of F implies that ∀F ∈ F , ∀i, ∀X−i:

P(vi ∈ [x, 1]|X−i) ≥ z · (1− x),

where the RHS is the CDF of U [1−1/z, 1]. Let ṽ = U [1−1/z, 1]. Then, ∀i, ∀X−i,

ṽ ≤FOSD vi
∣∣X−i.

Let {ṽi}i∈[n] be i.i.d. copies of ṽ. Therefore,

E[ max
i∈I(m)

vi] ≥E[ max
i∈I(m)

ṽi]

=E[max
i∈[m]

ṽi]

=1− 1

z

1

1 +m

≥E[max
i∈[n]

vi]−
1

z

1

1 +m
. (8)

The first inequality is by replacing the conditional distribution of each vi with ṽi.

The first equality is from ṽi being i.i.d. The second equality is from calculating

the first order statistic of uniform i.i.d. distribution. Note that Equation (8)

implies that F is m-subsample 1
z

1
1+m

-sufficient. When m is chosen properly (e.g.

m =
√
n), Theorem 3 implies that the second price auction is asymptotically

optimal under ambiguity set F .

Example 3. Consider a single-unit auction setting. There exists G ∈ ∆[0, 1] and

14



Π ⊂ ∆[0, 1] such that ∀G′ ∈ Π, G ≥FOSD G′. There exists an increasing sequence

r(n) such that

F = {F ∈ ∆[0, 1]n|Φi(F ) ∈ Π for r(n) i’s and Φi(F ) = G for remaining i’s} .

In words, it is known to the auctioneer that r(n) bidders are ex ante “inferior” to

the rest of the bidders. It is easy to verify that the ambiguity set F is r(n) + 1-

subsample 0-sufficient, because sampling any r(n) + 1 bidders guarantees at least

one bidder with marginal valuation distribution G, which is the worst-case highest

value. Then, Theorem 3 implies that the second price auction is asymptotically

optimal under ambiguity set F .
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