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Abstract

We extend the standard disclosure model between a sender and a receiver by
allowing the receiver to independently gather partial information, by means
of a test – a signal with at most k realizations. The receiver’s choice of test
is observed by the sender and therefore influences his decision of whether to
disclose. We characterize the optimal test for the receiver and show how it
resolves the trade-off between informativeness and disclosure incentives. If the
receiver were aiming at maximizing the informativeness, she would choose a
deterministic test. In contrast, the optimal test involves randomization over
signal realizations and maintains a simple structure. Such a structure allows
us to interpret this randomization as the strategic use of uncertain evaluation
standards for disclosure incentives.

Decision makers often have limited access to relevant information and must therefore

rely on data provided by strategic agents. For example, an environmental regulator

evaluating a factory may base its decisions partly on information that it has obtained

independently (e.g., by testing air and water samples nearby), and partly on self-

reported data from the factory’s owner (Malik, 1993). Similarly, financial regulators

consider information disclosed by banks, and investors consider information disclosed

by companies (Harris and Raviv, 2014). Since in these settings the informed agent has

different interests from the decision maker and strategically chooses what to disclose,

it is crucial for the decision maker to create disclosure incentives.
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In voluntary disclosure settings, as in other communication games, the informed

agent’s strategy depends on the information already available to the decision maker.

For example, Balakrishnan et al. (2014) show that a reduction in bank analyst

coverage motivates companies to provide more informative earnings guidance. As

argued in Graham et al. (2005), when investors deem a company too risky because

they lack information about it, the company can “correct investors’ perceptions of

current or future performance” to its benefit through voluntary disclosure. Therefore,

decision makers seeking to acquire information on their own need to carefully consider

how their choices affect agents’ disclosure incentives. In this paper, we study how a

decision maker optimally gathers information when she does not only aim at being

informed on her own but also at creating disclosure incentives.

Our analysis builds on the canonical disclosure game of Dye (1985), which we

extend by allowing the receiver to gather her own (limited) information. We model the

receiver’s information-gathering process as a test, which is defined as an informative

signal with at most k realizations.1 We assume the receiver can publicly commit to

a specific test, thereby influencing the sender’s disclosure strategy. Thus, the game

begins with the receiver’s choice of test; subsequently, the state is sampled according

to some prior distribution, and with a certain probability, the sender obtains evidence.

If the sender obtains evidence, he can either disclose it truthfully or he can pretend

not to have evidence. The receiver observes both the sender’s disclosure (or lack

thereof) and the realization of her private signal, and selects an action in R. In the

spirit of Dye (1985), the receiver’s objective is to align her action with the actual state,

while the sender’s objective is to maximize the action. Formally, the sender’s utility

is given by the action, while the receiver’s utility is determined by the quadratic

distance between the action and the state.

Our main result is the characterization of the optimal test for the receiver to choose,

in order to resolve the trade-off between disclosure incentives and informativeness.

That is, the receiver wants to incentivize the sender to disclose, since her test can

yield only limited information; however, when the sender is either unwilling or unable

to disclose, the receiver must rely on the test alone. We show that the optimal test

1We discuss this assumption in Section 6.2.
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has a simple structure: it assigns random signal realizations to certain states, in

a way that can be interpreted as a strategic use of uncertain evaluation standards.

More explicitly, the optimal test can be implemented as an evaluation having k

distinct grades as possible outcomes, separated by k + 1 thresholds. Each threshold

is randomly drawn from an interval of states, and the i-th grade is awarded whenever

the state lies between the i-th and (i+ 1)-st thresholds. This kind of uncertainty can

be observed in various real-world regulatory settings (e.g., in bank stress tests2); in

Section 4 we explain how it can incentivize disclosure.

To explain the main effects in our model, for the rest of this section we focus on

the scenario in which the receiver’s test is limited to a maximum of k = 2 signal

realizations. We label the signal inducing the lower posterior mean as “failure” and

the one inducing the higher posterior mean as “success.” We can then identify a test

with a function that assigns to each state a probability that the signal realization is a

success.

To disentangle the objectives of informativeness and disclosure incentives, we

start by considering a benchmark model in which the receiver cannot commit to a

test. Here, the timing of the game is different: first the sender decides whether to

disclose, and then the receiver chooses a test. Thus, the receiver takes the sender’s

disclosure strategy as given and disregards disclosure incentives when making her

choice. We find that in the benchmark model, the receiver’s optimal choice is a

monotone deterministic test, i.e., one assigning a success probability of 0 below a

certain threshold state and a success probability of 1 above it. The intuition behind

this is as follows. If the sender does not disclose, then the receiver chooses her action

according to the realization of the test – which is either failure or success – and

her cost is determined by the distance between the state and the action. Therefore,

the receiver’s cost is minimized if the test assigns a success probability of 0 to each

state that is closer to her action conditional on failure than to her action conditional

on success, and 1 to each state that is closer to her action conditional on success.

2Kupiec (2020) states that the Federal Reserve Board uses confidential stress testing models.
These models rely on pooled institutional data for calibration, whereas banks’ internal stress tests
are based on their own historical data. This disparity results in significant differences between banks’
and regulators’ forecasts, increasing policy uncertainty.
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This leads to a deterministic test. Formally, we show (for arbitrary k) that every

non-deterministic test is dominated, with respect to the information order introduced

in Athey and Levin (2018), by some deterministic test. This implies that the optimal

test in the benchmark model has to be deterministic.3

By contrast, in the main model, where the sender observes the receiver’s test

choice before deciding whether to disclose, we find that the receiver’s optimal choice

is a monotone non-deterministic test. Its structure is simple: it assigns a success

probability of 0 to low states and 1 to high states. Over an interval of intermediate

states, the success probability is linear in the state; at the interval’s endpoints, it

is discontinuous. (See Figure 1 for an illustration.) To see why the optimal test is

non-deterministic, consider the sender’s disclosure incentives. The sender will disclose

if the realized state exceeds his expected utility from non-disclosure, which equals

the expected value of the receiver’s action conditional on non-disclosure. The latter

depends linearly on the success probability associated with the state. Therefore, the

sender will disclose the state if the associated success probability is below a certain

threshold, which increases linearly with the state. In other words, if the sender is

unwilling to disclose a given state, the receiver can induce disclosure by altering her

test to assign a lower success probability to that state – that is, by pooling it with low

states (those with success probability 0). For sufficiently low states, such pooling is

impossible; for sufficiently high states, either it is unnecessary (because the sender will

always disclose), or it would lead to an information loss that outweighs the receiver’s

gains from disclosure. Therefore, the receiver will apply pooling only to an interval of

intermediate states, and will do so with the lowest probability that is sufficient for

disclosure, leading to a binding linear disclosure threshold.

We interpret the pooling employed by the receiver in the optimal test as a strategic

use of uncertain evaluation standards to incentivize disclosure. In the benchmark case,

the optimal test can be seen as a deterministic pass–fail test: the signal realization is a

success if and only if the state is above a certain threshold. Therefore, given the state,

3In Appendix A, we show via a counterexample that the information order introduced in Lehmann
(1988) does not apply here. That is, there exists a non-deterministic test that is not dominated by
any monotone deterministic test with respect to the Lehmann order.

4



x

success prob.

Figure 1: The optimal test.

the sender always knows the outcome of the test. By contrast, as we demonstrate

in Section 4, the optimal test in the main model can be implemented as a pass–fail

test with a random threshold, which is drawn from the interval of intermediate states

where the success probability is increasing. This means that the sender is certain

about the test outcome for states below or above this interval, but uncertain within

it. This uncertainty about the standards for intermediate states induces him to

disclose. For k > 2, the optimal test still has a simple structure and randomizes only

between two adjacent signal realizations. This also reinforces the idea of uncertain

evaluation standards: when a state is sufficiently close to an evaluation grade, the

sender is certain about the outcome. However, for intermediate states between two

adjacent grades, the sender remains uncertain and chooses to disclose due to the risk

of receiving the lower grade.

The major obstacle to proving our main result is the global dependency of the

equilibrium on the test: the sender’s strategy at a particular state is a function

not just of the probability assigned by the test to that one state, but of the test

as a whole. This complexity prevents us from formulating the receiver’s cost using

Euler–Lagrange equations. Moreover, continuous changes in the test can lead to

discontinuous changes in the sender’s strategy, which means conventional techniques

from variational calculus are not suitable for the proof. We therefore adopt a different
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approach: we show that for every test different from the optimal one, we can find

a positive Gateaux derivative. That is, there exists a test nearby that induces an

equilibrium in which the receiver’s utility is higher. To circumvent the issue that any

change in the test may have a global impact on the equilibrium, we find an adjustment

of the test such that in the emerging equilibrium, conditional on non-disclosure, the

receiver chooses a lower action for each realization of the test. This implies that the

sender discloses (weakly) more information. Moreover, we show that we can find such

an adjustment that makes the test more informative, and hence makes the receiver

better off. Thus, our technical contribution to the information design literature is the

construction of an information structure that is not simply optimal for the decision

maker, but that induces a fixed-point problem, similar to that of Goldstein and Huang

(2020).

Finally we note that in our main model, the receiver can commit only to a test,

not to actions. This is a natural assumption in many real-world settings, where the

agent taking the action is different from the receiver; for instance, in a market setting

where the prices are determined by supply and demand, we can view the regulator as

the information designer and the market as the agent deciding on an action without

commitment. However, there are other applications in which the regulator may also

be able to commit to actions (see e.g. Evans et al., 2009 or Harris and Raviv, 2014).

Therefore, in Section 5, we study a variant of our baseline model in which the receiver

can commit to actions. In standard models of voluntary disclosure in which the

receiver does not have private information, commitment power does not improve

outcomes. This has been demonstrated by Glazer and Rubinstein (2004, 2006) and

generalized by Hart et al. (2017), who show that even the possibility of committing

to actions ex ante does not change the joint distribution of states and actions. In

this paper, however, we show that when the receiver has an additional information

channel (namely, her test), she can benefit from committing to actions. While the

optimal test structure in this setting remains similar to that of the main model, the

optimal mechanism (i.e., the optimal choice of test and action scheme) incentivizes

more disclosure by rewarding it with higher actions, and by penalizing non-disclosure

with lower actions, than in the main model.
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Related Literature To the best of our knowledge, ours is the first paper to consider

information-gathering by a receiver in a disclosure model. Standard models, such as

those of Grossman (1981), Milgrom (1981), Dye (1985), and Jung and Kwon (1988),

assume that the receiver has no information beyond that disclosed by the sender.

Frenkel et al. (2020) study how firms’ strategic disclosure is affected when analysts

provide additional information to the financial market. In their model, unlike in

ours, the receiver learns the state with an exogenously given probability which can

depend on whether the sender learns the state. Frenkel et al. show that, though an

increase in this probability may lead to a decrease in firms’ voluntary disclosure, it

necessarily implies a higher utility for the receiver in equilibrium. Similarly, Harbaugh

and Rasmusen (2018) study a model of costly certification in which certified grades

are disclosed to a receiver. They show that coarse grades result in a more informed

receiver, because they provide greater incentive for intermediate-quality types to seek

certification. Lichtig and Weksler (2023) show that in general voluntary disclosure

games, a more informed sender communicates more information in equilibrium. This

can be viewed as complementary to our result, in which a more informed receiver

may be worse off in equilibrium.

Information acquisition by the receiver has been studied in other communication

settings, such as cheap talk and Bayesian persuasion. Dziuda and Salas (2018) and

Tam and Sadakane (2022) study cheap talk models in which the receiver can verify the

sender’s information. They show that high types reveal the truth and are mimicked

by low types. Argenziano et al. (2016) study a cheap talk model in which both

the sender and the receiver can acquire costly information. They show that even if

both parties possess the same information acquisition capabilities, the receiver can

incentivize the sender to gather more information than the receiver would acquire

independently. Matyskova and Montes (2023) study a Bayesian persuasion model

in which a rationally inattentive receiver can gather information on her own. Their

results are similar to ours: they show that lower information costs can hurt the

receiver by discouraging the sender from disclosing. Wei (2021) presents a comparable

finding in a Bayesian persuasion model with costly learning. Relatedly, Lai (2014)

and Ishida and Shimizu (2016) study cheap talk models where the receiver obtains
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an exogenous signal about the state. They find that more information may harm the

receiver by leading to less effective communication.

The problem of incentivizing firms to disclose information to regulators has

also been studied in the applied disclosure literature, in fields such as banking,

accounting, and environmental economics. Typically, in this literature, the approach

is to encourage disclosure by making regulatory decisions contingent upon the act of

disclosure itself. For instance, Evans et al. (2009) propose a reduction of emission

taxes for firms that voluntarily report their emissions. In banking, regulators might

permit banks to pay dividends to equity holders even after admitting to riskiness

(Harris and Raviv, 2014). In the present paper, although we do consider commitment

to actions as a way for the receiver to reward disclosure, we mainly focus on the

incentives provided through the information-gathering process.

1 Model

Preliminaries The model represents a communication game between two players:

a sender (referred to as “he”) and a receiver (referred to as “she”). The sender may

possess verifiable information that he can disclose, and the receiver selects an action

a ∈ R. The state of the world is denoted as a random variable X, with a continuously

differentiable cumulative distribution function (CDF) F over the interval [0, 1]. The

probability distribution function (PDF) is represented by f , and a generic realization

of X is denoted as x.

Evidence and Disclosure In line with the Dye (1985) model, we assume that with

probability q ∈ (0, 1) the sender can disclose what the state is and that q does not

depend on X. A sender with evidence x can either send the message x or pretend

to have no evidence and send the message ∅. A sender without evidence can only

declare, i.e., cannot prove, that he has no evidence. Consequently, a sender’s type is

a tuple of random variables (X,E) with a generic realization (x, e) ∈ [0, 1]× {0, 1}
where e = 1 indicates that the sender has evidence.
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Receiver chooses

a test T

The state x is realized;

w.p. q Sender

obtains evidence

Sender decides

whether to disclose x

Receiver sees test realization s
and disclosure;

chooses a ∈ R

Figure 2: Timeline of the Game

Testing We assume that the receiver can conduct any test T : [0, 1] → ∆k that maps

any state to k different realizations, denoted by 1, . . . , k.4 We denote by Ti(x) the

i-th entry of T (x) for every x ∈ [0, 1] and by S the random variable corresponding to

the realization of the test. The bound on the number of possible signal realizations

represents the receiver’s restricted access to information and is discussed in Section

6.2.

Timing First, the receiver selects a test T : [0, 1] → ∆k. Then, the sender’s type is

determined according to F and q and, in case he can, the sender decides whether to

disclose the state. Subsequently, the receiver observes a realization in {1, . . . , k} of

test T . Finally, the receiver takes an action a ∈ R; see Figure 2.

Strategies A (pure) strategy of the sender is a mapping β : [0, 1] × T → {0, 1}
where T denotes the set of all feasible tests and 1 indicates that the sender discloses

and 0 indicates that the sender does not disclose. If he does not have evidence, the

sender can send only the empty message. If he has evidence, he can choose between

sending the empty message or disclosing the state. Thus, the second dimension of

the sender’s type does not appear in the notation of his strategy. We assume that if

the sender is indifferent between both alternatives, he discloses.

The receiver’s strategy is a pair (T, a) s.t. T : [0, 1] → ∆k is the test she selects

and a : [0, 1] ∪ {∅} × {1, . . . , k} → [0, 1] is the action she selects. Note that following

disclosure of type x, the receiver does not learn new information from the test result

and her optimal action is a = x.

4Since in the optimal test the receiver would exhaust her budget, our notation assumes that the
receiver’s choice set consists only of tests with exactly k realizations.
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Payoffs The sender’s preferences are independent of the state, and he always aims

to maximize the receiver’s action. His utility is given by

v(a, x) = a.

In contrast, the receiver is interested in aligning her action with the state. Her utility

is given by

u(a, x) = −(x− a)2.

Equilibrium

As a formal solution concept, we use Perfect Bayesian Equilibrium (PBE). Whenever

the sender discloses that the state is x, the optimal action for the receiver is a = x.

Therefore, to define the receiver’s equilibrium strategy we need to define the test T

and a1, . . . , ak, where ai is the action the receiver selects following non-disclosure and

realization i of the test. Consequently, we denote an equilibrium as a triple (T, β, a)

with a = (a1, . . . , ak). Every choice of the test T induces a subgame. We denote a

PBE of such a subgame by
(
βT , aT

)
.

Beliefs As with regards to the receiver’s equilibrium strategy, we need to define

her beliefs only in case of non-disclosure. In the Dye (1985) model, disclosure of

state x resolves all uncertainty about the sender’s type. Furthermore, since q ∈ (0, 1),

non-disclosure has a positive probability for any strategy of the sender. Therefore,

we do not need to worry about off-path beliefs. If the receiver observes disclosure of

type (x, 1), for whom βT (x) = 1, she believes that the state is x with probability 1.

Conversely, if type (x, 1) with βT (x) = 1 does not disclose, the receiver does not know

that the sender’s non-disclosure is off the equilibrium path. Therefore, the receiver’s

beliefs coincide with her on-path non-disclosure beliefs.

The density of the ex-ante distribution of the sender’s type and the realization

of the test is given by qf (x)Ti (x) where (x, 1) is the sender’s type and i the test

realization. Similarly, for type (x, 0), it is given by (1− q) f (x)Ti (x). Therefore,

following non-disclosure and realization i ∈ {1, . . . , k} of the test, the receiver’s beliefs
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are described by the following PDF.

fT (x|S = i) =

[
q
(
1− βT (x)

)
+ (1− q)

]
f (x)Ti (x)

1∫
0

[q (1− βT (x)) + (1− q)] f (x)Ti (x) dx

Sequential Rationality Sequential rationality requires the following k + 1 conditions

to hold for a PBE (βT , aT ) of subgame induced by T :

(i) The sender’s disclosure strategy is optimal, i.e.,

βT (x) =

0, x <
∑k

i=1 Ti(x)a
T
i

1, x ≥
∑k

i=1 Ti(x)a
T
i

(1)

(ii) Following non-disclosure, the receiver’s action is optimal for every realization of

the test. That is, for every i ∈ {1, . . . , k}, it holds that

aTi =

1∫
0

fT (x|S = i)xdx. (2)

Equilibrium Selection Similar to other articles in the voluntary disclosure literature

(e.g., Lichtig and Weksler, 2023; Rappoport, 2020), our analysis focuses on the

receiver’s preferred equilibrium. Furthermore, in many applications, we can think of

the information designer as a third player – a principal, where the literature commonly

assumes that she can choose the equilibrium. Thus, for a test T , we denote the

receiver-preferred equilibrium by (βT , aT ) and call it the equilibrium induced by T .

Receiver’s minimization problem Given an equilibrium disclosure strategy of the

sender βT and an equilibrium action strategy of the receiver aT , the expected quadratic

cost is
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C
(
T, βT , aT

)
:=

k∑
i=1

∫ 1

0

Ti(x)
(
x− aTi

)2
f(x)

[
q
(
1− βT (x)

)
+ (1− q)

]
dx.

In order to satisfy sequential rationality, the receiver’s test choice in the first stage

of the game has to be the solution of the minimization problem

min
T :[0,1]→∆k

C
(
T, βT , aT

)
s.t. (βT , aT ) is the equilibrium induced by T . We call a solution of this minimization

problem an optimal test.

2 Analysis

The optimal choice of the test has to fulfill two objectives: incentivize the sender

to disclose and ensure the test’s informativeness in the cases where the sender does

not provide evidence. To disentangle these objectives, we start our analysis with a

benchmark in which the receiver’s choice considers only the informativeness of the

test.

2.1 Benchmark: non-observable test choice

The benchmark model differs from our baseline model in timing:5 first, the sender’s

type is determined according to F and q and, in case he can, the sender decides

whether to disclose the state. Only after the sender’s disclosure decision, the receiver

selects a test, observes its realization in 1, . . . , k, and takes an action a ∈ R; see
Figure 3. Therefore, when choosing the test, the receiver takes the sender’s disclosure

strategy as given and the sender’s strategy does not depend on T . Let fTi (x) be the

5We can also think of this difference as a result of commitment power. That is, we can assume
that in both models the receiver chooses the test after the sender’s disclosure choice. However,
our baseline model allows the receiver to commit to a test, unlike the benchmark case where such
commitment is absent.
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Receiver sees disclosure;

chooses a test T

The state x is realized;

w.p. q Sender

obtains evidence

Sender decides

whether to disclose x

Receiver sees
test realization s;

chooses a ∈ R

Figure 3: Timeline of the Game – Benchmark

PDF of the receiver’s beliefs given disclosure strategy β and realization i of a test T ;

i.e.,

fTi (x) =
[q (1− β (x)) + (1− q)] f (x)Ti (x)

1∫
0

[q (1− β (x)) + (1− q)] f (x)Ti (x) dx

.

As previously, we employ PBE as our solution concept and define beliefs in the

same manner. That is, the receiver’s minimization problem can be written as

min
T :[0,1]→∆k

k∑
i=1

∫ 1

0

Ti(x)
(
x− aTi

)2
fTi (x)dx, (3)

where

aTi =

∫ 1

0

fTi (x)xdx.

Consequently, the equilibrium of the benchmark case is given by a triplet (T, βT , aT ),

s.t. T solves (3) and βT is given by (1).

Proposition 1. In the benchmark case, for every distribution F , it holds for the

optimal test T ∗ with induced equilibrium (a∗, β∗) that there exist thresholds t1, . . . tk+1

with t1 = 0 and tk+1 = 1 s.t. T ∗
i (x) = 1 for every i ∈ {1, . . . , k} and all x ∈ (ti, ti+1)

and that ti =
a∗i+a

∗
i+1

2
for all i ̸= 1, k + 1.

In the benchmark case, the receiver’s optimal choice partitions the state space

into k segments, and, for every state in the i-th segment, it assigns a probability of 1

to realization i. Since the receiver disregards disclosure incentives, for every state she

assigns a probability of 1 to the realization for which the non-disclosure action is the

closest. Consequently, every threshold i lies at the equidistant point between the two
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x⋆a1 a2

a1

a2

state

success prob.

disclosure utility

non-disclosure utility

nondisclosure

Figure 4: Equilibrium – Benchmark.

The utility of the sender from disclosure is given by the 45◦ line in black (dashed). His
utility from non-disclosure is given by the red (dotted) line: a1 if the success probability

(blue, solid) is 0 and a2 if the success probability is 1.

adjacent non-disclosure actions ai and ai+1.

As the optimal test in the benchmark case is deterministic, the sender is certain

about the test outcome. Thus, we can think of the optimal test resulting in k separate

Dye games. For k = 2 and optimal threshold x⋆, one Dye game emerges on [0, x⋆] with

distribution F1(x) = F [x|S = 1] and another Dye game on [x⋆, 1] with distribution

F2(x) = F [x|S = 2]; see Figure 4. This interpretation allows us to identify the types

that do not disclose. Let a1 and a2 denote the actions conditional on non-disclosure

and signals 1 and 2 respectively. Then the non-disclosure regions are given by [0, a1]

and [x⋆, a2].

In the first Dye game, a sender with type x compares his utility from disclosure,

given by x, with his utility from non-disclosure, given by a1. Conclusively, he discloses

if and only if x ≥ a1. The analogous reasoning applies to the second Dye game.

Since the receiver chooses the test after the sender’s disclosure choice, she faces a
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decision problem. The distribution of the state is already given and the receiver’s

choice does not affect the sender’s disclosure strategy. Therefore, we can apply Athey

and Levin’s (2018) condition for monotone decision problems. They introduce a

condition that ensures that a decision maker with a supermodular utility prefers

one information structure over another. For any given non-deterministic test, we

construct a deterministic test that dominates it according to Athey and Levin’s

(2018) condition. The deterministic test has the same overall probability of success.

However, the test realizations induce posterior means that are further away from each

other. We provide the formal proof in Appendix A and also provide an example of a

non-deterministic test that is not comparable with any monotone deterministic test

w.r.t. to information order introduced in Lehmann (1988).6

2.2 Commitment and disclosure incentives

We now demonstrate how the receiver can increase her utility by committing to a

test. In the baseline model, in which the receiver chooses the test before the sender’s

disclosure decision, she can incentivize disclosure of some states by lowering the

success probability assigned by the test. To gain some intuition, we fix the receiver’s

optimal actions, a1 and a2, as in the equilibrium of the benchmark model. For every

test T , the sender discloses the state if and only if

x ≥ T (x)a2 + (1− T (x)) a1. (4)

Thus, the disclosure condition, the maximal probability of success for which the

sender discloses truthfully, is given by the function

T̃ (x) ≤ x− a1
a2 − a1

. (5)

Figure 5 demonstrates how the receiver can incentivize more disclosure than in

the equilibrium of the benchmark case. In the benchmark case, types with evidence

6It is also possible to prove the result directly. We chose a proof that highlights the connection
to supermodular decision problems.
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x⋆ x+a1 a2 x

success prob.

T̃ (x)

nondisclosure

Figure 5: Incentivizing disclosure.

By lowering the success probability (blue, solid) for states in [x⋆, x+] below T̃ (x) (black,
dashed), she incentivizes the sender to disclose those states.

x ∈ [x⋆, x+] do not disclose. The probability of success in those states is 1, and, since

the state is lower than a2, they choose to pretend that they do not possess evidence,

inducing action a2. Decreasing the success probability of the states between x∗ and x+

implies that these states will be pooled with low states that receive a zero probability

of success, thus increasing disclosure incentives for the states in [x∗.x+].

Note that x⋆ lies exactly at the equidistant point of [a1, a2]. That is, around x
⋆

the utility of the receiver if she takes action a1 is close to her utility from action a2.

Therefore, the receiver can decrease her expected cost in state x from (x− a2)
2 to

(1− q)
(
α (x− a1)

2 + (1− α) (x− a2)
2). As long as α ≤ T̃ (x), the sender discloses

the state, and, in case he obtains evidence, the receiver’s cost is 0. Only in the case

where the sender does not obtain evidence (w.p. 1− q < 1) the receiver bears any

cost. Though with probability 1− α the receiver’s action is further away from the

optimal action than in the benchmark model, for x close enough to x⋆, the expected

cost is necessarily lower if the receiver induces disclosure.
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Since pooling intermediate states with low states departs from the test maximizing

informativeness, it is intuitive that in the optimal test, the receiver uses this pooling

with the lowest probability that is sufficient to incentivize disclosure. Therefore, it

seems natural that the disclosure condition has to bind whenever the test is not

deterministic. However, throughout the last exercise, we have kept a1 and a2 constant.

If we consider a change in the test T , we need to take into account that this change

induces a new fixed point. The receiver’s optimal non-disclosure actions change and

so does the sender’s disclosure strategy. Thus, it is not straightforward that the

disclosure condition is binding. We discuss this issue in the next section where we

characterize the optimal test and present our proof technique.

3 The Optimal Test

In the binary case, the optimal test settles informativeness considerations and

disclosure incentives by assigning a non-deterministic success probability to intermediate

states. As we saw above, the receiver can improve her utility in the equilibrium

of the benchmark case by incentivizing the sender to disclose those states. To

minimize the loss in informativeness, the test leaves the sender indifferent between

disclosing his evidence and not; see Figure 6. For every distribution F , there exists

an interval of states [x−, x+], such that for every x ∈ [x−, x+] the probability of

success T (x) = x−a1
a2−a1 . For states below x−, the probability of success is 0, and,

for types above x+, it is 1. In addition, we know that x− ∈
(
a1,

a1+a2
2

)
and that

x+ ∈
(
a1+a2

2
, a2
)
. Next, we present the main result for a general k and then discuss

the our proof technique.

Proposition 2. Let the vector a∗ = (a∗1, . . . , a
∗
k) be the receiver’s actions after non-

disclosure in the equilibrium induced by the optimal test T ⋆. For every F and q ∈ (0, 1),

and for every i ∈ {1, . . . , k − 1} the following is true:

(i) It holds that T ∗
1 (x) = 1 for all x ∈ [0, a∗1] and T

∗
k (x) = 1 for all x ∈ [a∗k, 1].

(ii) There exist numbers x−i , x
+
i with a∗i < x−i <

a∗i+a
∗
i+1

2
< x+i < a∗i+1 s.t. T ⋆i (x) =

x−a∗i
a∗i+1−a∗i

and Ti+1 = 1− Ti(x) for all x ∈
(
x−i , x

+
i

)
.
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T ∗ (x)
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Figure 6: The optimal test.

For every state x ∈ [x−, x+], the probability of success (blue, full) is exactly T̃ (x) (black,
dashed).

(iii) For every x ∈
[
x+i , x

−
i+1

]
, T ∗

i+1(x) = 1.

The proof of Proposition 2 is deferred to Appendix B. Here we provide some

intuition for the proof technique in the case where k = 2. The receiver’s utility in a

given state is a function of the whole test and not only of the probability vector for

this particular state. Every test induces a subgame with an equilibrium that includes

the sender’s disclosure strategy and the non-disclosure actions. The non-disclosure

actions – the optimal actions for the receiver given the conditional distributions

of the state – depend on the function T globally. Those actions determine the

sender’s disclosure strategy for every state, which, in turn, determines the distribution

of the state conditional on each realization of the test. This complexity prevents

us from formulating the receiver’s utility in the fixed point, induced by T , using

Euler-Lagrange equations.7 Moreover, assume that for a given test, a set of types with

7That is, there does not exist a function L s.t. we can write the costs induced by a test T as∫ 1

0
L (x, T (x), T ′(x)) dx.
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a positive measure is indifferent between disclosure and non-disclosure. Continuous

changes to such a test can lead to discontinuous changes in the receiver’s utility.

Therefore, conventional techniques from Variational Calculus are not useful for the

characterization of the optimal test.

The general approach of the proof is to assume, by contradiction, that the optimal

test does not fulfill one of the characteristics we claim in Proposition 2. We then

find a directional derivative of the receiver’s costs that is strictly negative. Let

T be an optimal test with induced equilibrium (β, a1, a2) that does not fulfill one

of the characteristics, and let T̂ ε be a test that differs from T on a set of states

(x− ε, x) ⊆ [0, 1].8 As we explain above, continuous changes in the test might lead

to discontinuous changes in the equilibrium payoffs. However, in some directions,

changes in the test induce continuous changes in the sender’s disclosure strategy. In

this case, for every ε > 0 that is sufficiently small, we find an equilibrium
(
β̂ε, âε1, â

ε
2

)
induced by T̂ ε s.t. the limit

lim
ε→0

C
(
T̂ ε, β̂ε, âε1, â

ε
2

)
− C (T, β, a1, a2)

ε

exists and is strictly negative.9 Consequently, we show that for any test that fails

the properties of Proposition 2 there exists a nearby test that leads to strictly lower

costs and obtain a contradiction. In particular, we show how one can circumvent the

issue of the equilibrium’s global dependency on the test by finding an adjustment

that weakly lowers the actions conditional on non-disclosure in the new equilibrium.

For example, if over some interval of states a test is not deterministic but the

disclosure condition is not binding, then it cannot be an optimal test. Assume

by contradiction, that in the equilibrium (β, a1, a2) induced by an optimal test

T there exists a positive mass interval (x1, x2) such that 0 < T (x) < x−a1
a2−a1 for

every x ∈ (x1, x2). (The case x−a1
a2−a1 < T (x) < 1 is proven in a similar way.) Let

x1 < y < z < x2 and let T̂ ε be a test that differs from T in two segments as illustrated

8We are dropping the index T from the notation of the equilibrium (β, a1, a2) since it is clear
that the test T is meant.

9We discuss in Section E how this limit can be written as a Gateaux derivative.
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in Figure 7: T̂ ε(x) = T (x) − δ for all x ∈ (y − ε, y) and T̂ ε(x) = T (x) + δ′ for all

x ∈ (z − ε, z), for some (small) δ and δ′ that satisfy

δf(y) (a2 − y) = δ′f(z) (a2 − z) . (6)

We choose δ and δ′ in (6) to ensure that the changes in the sender’s strategy are

continuous. Close to the limit, T̂ ε adds and subtracts types from the non-disclosure

and success set in a way that keeps the expected value of the state conditional on

non-disclosure and a success the same: decreasing the success probability at y reduces

the probability with which y enters the non-disclosure and success set. Thus, for

y < a2, the average of this set will increase by an amount that depends on the distance

a2 − y. This has to be outweighed by the increase in the success probability at z.

We show that such a change induces a strict decrease in the expected value of the

state conditional on non-disclosure and failure. That is, we can find a T̂ ε such that,

for sufficiently small ε, the receiver’s optimal actions conditional on non-disclosure

are lower than in T . This implies that the sender’s disclosure strategy does not

discontinuously jump from disclosure to non-disclosure and the directional derivative

exists. To show that the receiver’s costs decrease by changing the test in this direction,

we confirm two effects. First, we show that the precision effect is positive. That is,

fixing the sender’s disclosure strategy, test T̂ ϵ increases the correlation between the

state and the probability of success. Second, we need to show that the disclosure effect

is positive. In the equilibrium induced by T̂ ε, the sender discloses more information.

Test T̂ ε increases the success probability for higher states (z − ε, z) and decreases

it for low states (y − ε, y). That is, as long as we fix the sender’s disclosure strategy,

test T̂ ε makes the higher action a2 more likely in higher states, and the lower action a1

more likely in lower states, which decreases the receiver’s costs. In addition, since T is

not binding, we can choose δ and δ′ sufficiently small such that, for every x ∈ (x1, x2),

T̂ ε (x) < x−a1
a2−a1 . That is, as long as we fix the receiver’s optimal actions, a1 and a2,

the sender discloses states (x1, x2) also in T̂ ε. Finally, we know that both âε1 < a1

and âε2 < a2 – the disclosure condition is more relaxed – and each type that discloses

in T discloses also in T̂ ε. Thus, we obtain a contradiction to the assumption that T
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Figure 7: Adjustments of a test.

We assume by contradiction that the optimal test is not binding over some interval and
conduct an adjustment on the intervals (y − ε, y) and (z − ε, z) .

is optimal. If the disclosure condition is not binding, we can find a test T̂ ε that is

more informative and incentivizes more disclosure.

In a similar way, we show the remaining characteristics of the optimal test: mixing

for a positive mass interval, monotonicity, and discontinuity at the interval’s endpoints.

4 Implementation

When choosing a test, the receiver assigns a vector of probabilities of the signal

realizations to every state. Since the receiver does not know the state, this may raise

the question of how the receiver is able to fine-tune the probabilities conditional

on the state. Thus, we propose a simple way to implement a test. Moreover, we

argue that this implementation allows us to interpret the randomization over signal

realizations in the optimal test as the strategic use of uncertain evaluation standards

in order to incentivize disclosure.

Definition 1. A deterministic threshold test for k signals is a function T : [0, 1] →
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{1, . . . , k} s.t. there exists a vector (t1, . . . , tk+1) with t1 = 0 and tk+1 = 1 s.t.

T (x) = j if and only if x ∈ [tj, tj+1] for all j ∈ {1, . . . , k}.

That is, a deterministic threshold test assigns signal j to a state x if and only if x

lies between the two thresholds tj and tj−1.

We established that in the benchmark case, a monotone deterministic test is

optimal. Any monotone deterministic test corresponds to a deterministic threshold

test. For instance, any binary monotone deterministic test assigns a success probability

of 0 below a certain threshold t∗ and a success probability of 1 above it. Thus, it

corresponds to a deterministic threshold test with threshold t∗.

xx⋆

success prob.

no success success

x⋆ 10

Figure 8: A deterministic monotone test as a threshold test.

Definition 2. A random threshold test for k signals is a random function T : [0, 1] →
{1, . . . , k} s.t. there exists a vector of random variables (T2, . . . , Tk) defined over [0, 1]

with realizations (t2, . . . , tk) in [0, 1] s.t. T (x) = j iff x ∈ [tj, tj+1] for j ∈ {1, . . . , k}
with t1 = 0 and tk+1 = 1.

That is, a random threshold test assigns signal j to a state x if and only if x lies

between the two realizations tj and tj−1 of the random thresholds Tj and Tj+1.

We call a test monotone if for every j ∈ {1, . . . , k} and any x, y ∈ [0, 1] with

x < y it holds that Tj(y) ≥ Tj(x). Any monotone test corresponds to a random

threshold test. A monotone test T : [0, 1] → ∆k induces a vector of random variables
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(T1, . . . , Tk) s.t. Pr (Tj ≤ x) = Tj(x) for all j ∈ {1, . . . , k} and all x ∈ [0, 1]. For

instance, the optimal binary test is a random threshold test s.t. the distribution has

atoms on a low and a high threshold and is uniform in between.

x− x+

success prob.

xx

x− x+ 10

uniform

Figure 9: A monotone test as a random threshold test.

Thus, we can interpret the optimal binary test as an evaluation with two possible

outcomes – success or failure – s.t. success occurs if and only if the state is above a

random threshold that is drawn from some interval [x−, x+]. For states below x−, the

sender is certain that the state is below the threshold and that the evaluation outcome

is a failure. Similarly, the sender is certain that the outcome is a success for states

above x+. For the interval [x−, x+], the sender is uncertain about the evaluation

outcome and chooses to disclose due to the risk of failure as an evaluation outcome

in case of non-disclosure.

This reasoning extends to k signals: since the optimal test randomizes only

between adjacent signals, we can interpret it as an evaluation with k possible grades

and k + 1 random thresholds. When a state is sufficiently close to an evaluation

grade, the sender is certain about the outcome. However, for intermediate states

between two adjacent grades, the sender remains uncertain. As one would expect in

regulatory evaluations, the uncertainty is not arbitrary but is limited to which of the

two adjacent grades the evaluation outcome will be. Due to the risk of receiving a

lower grade in the case of non-disclosure, the sender discloses the state whenever he

faces an uncertain threshold.
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5 Optimal Mechanism

So far, we have assumed that the receiver cannot commit to actions. This assumption

is reasonable in various settings, in particular in settings where the agent taking the

action is different from the receiver. Consider, for example, market settings where

prices are shaped by supply and demand. In such cases, we can think of the receiver

(e.g. an investor) as the one gathering information and the market as the agent

deciding on an action. However, particularly in regulatory settings, the receiver may

have commitment power. For example, Harris and Raviv (2014) argue that financial

regulators may allow bank payouts to equity holders even after a bank has disclosed

its financial risk in order to encourage disclosure.

In this section, we discuss an alternative model where the receiver cannot only

commit to a test but also to an action. We call the choice of the receiver a mechanism.

A mechanism is defined by a test T : [0, 1] → ∆k, an action scheme ψ : [0, 1] → R+,

and a vector a = (a1, . . . , ak). The function ψ : [0, 1] → R+ indicates the receiver’s

action conditional on disclosure.

The receiver’s optimization problem is

argmin
T,ψ,a

C (T, β, a) (7)

where

β (x) =

0, ψ (x) <
∑k

i=1 T (x)ai

1, ψ (x) ≥
∑k

i=1 T (x)ai
(8)

The receiver commits ex-ante to her actions, ψ and a.

Proposition 3. Let the vector a∗ = (a∗1, . . . , a
∗
k) be the receiver’s actions after non-disclosure

in optimum. For every F and q ∈ (0, 1), and for every i ∈ {1, . . . , k− 1} the following

is true:

(i) It holds that T1(x) = 1 for all x ∈ [0, a∗1] and Tk(x) = 1 for all x ∈ [a∗k, 1].

(ii) T ⋆i (x) =
ψ∗(x)−a∗i
a∗i+1−a∗i

and Ti+1 = 1− Ti(x) for all x ∈
(
a∗i+a

∗
i+1

2
,
(1−q)a∗i+(1+q)a∗i+1

2

)
.
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(iii) For every x ∈
[
(1−q)a∗i+(1+q)a∗i+1

2
,
a∗i+1+a

∗
i+2

2

]
, T ∗

i+1(x) = 1.

where ψ⋆ is given by

ψ⋆ (x) =

x
q
− 1−q

q

a⋆i+a
⋆
i+1

2
,

a⋆i+a
⋆
i+1

2
< x <

(1−q)a⋆i+(1+q)a⋆i+1

2

x, otherwise
. (9)

The structure of the optimal test remains similar: the state space is partitioned into

k intervals. For the lowest and highest states of the interval, the test is deterministic.

For an interval of intermediate states, the test corresponds to the binding disclosure

condition.

However, if the sender discloses, the receiver commits to choose an action that

is higher than the disclosed state on an interval of intermediate states. Although

such an action does not minimize the receiver’s costs after disclosure, it incentivizes

disclosure and therefore reduces the receiver’s costs in equilibrium. For sufficiently

low states, the receiver does not make this commitment since incentivizing disclosure

is not possible. For sufficiently high states, either the sender discloses anyhow and

does not need incentives, or incentivizing disclosure is too costly compared to the loss

in precision.

The intuition from the main model remains: the receiver pools intermediate states

with low states in order to incentivize disclosure. Since this pooling deviates from

the deterministic test and diminishes informativeness, the receiver uses it with the

lowest probability that is sufficient to incentivize disclosure. However, now a change

in the test does not force the receiver to change actions in the new equilibrium. The

lack of this equilibrium effect on actions causes the first discontinuity to occur at

the midpoint
a∗1+a

∗
2

2
. Again, due to the lack of the equilibrium effect, the second

discontinuity occurs at the state where the precision effect and the disclosure effect

balance each other out, allowing for a closed-form characterization. Thus, the optimal

binary test has the following structure:

One can easily check that ψ∗(x) > x for all
a⋆i+a

⋆
i+1

2
< x <

(1−q)a⋆i+(1+q)a⋆i+1

2
. One

can also show that the receiver does not only reward disclosure by choosing an action
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Figure 10: The optimal mechanism.

that is higher than the ex-post optimum but also chooses actions that are lower than

the ex-post optimum in order to punish the lack of disclosure.

Proposition 4. For every i ∈ {1, . . . , k} and the optimal T ∗ and (a∗1, . . . , a
∗
k) it holds

that

a∗i <

∫ 1

0

fT (x|S = i)xdx.

6 Conclusion

6.1 Summary

Because decision makers such as investors or regulators may have limited access to

relevant information, they often have to rely on the voluntary disclosure of data by

informed agents whose interests conflict with their own. In such cases, a decision

maker may be able to encourage disclosure by publicly committing to a certain

information-gathering process.

We model this situation as a disclosure game between an informed sender and

a receiver, in which the receiver can obtain partial information through a test (a

signal with a finite number of realizations). In a benchmark model where the receiver
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cannot commit to a test (and therefore her choice of test cannot influence the

sender’s disclosure behavior), we find that the receiver’s optimal test – the maximally

informative one – is deterministic, assigning a certain signal realization to each state

with probability one. By contrast, in our main model, where the receiver commits to

a test at the start of the game, we find that her optimal test randomizes between

some signal realizations. This randomization induces disclosure in some states, at the

cost of test informativeness.

The optimal test has a simple structure: the state space is partitioned into

intervals, and the test is deterministic for the highest and lowest states within each

interval. (These correspond to states in which it is either impossible, unnecessary, or

too costly to induce disclosure.) For intermediate states within each interval, the test

induces disclosure by assigning a low signal with a certain probability; that is, with

some probability, these states are pooled with lower states. This probabilistic pooling

can be interpreted as the strategic use of uncertain evaluation standards – as seen in

various regulatory settings – in order to increase voluntary disclosure.

6.2 Discussion and future steps

Coarse information In order to model the receiver’s limited access to information,

we assume she can obtain coarse information through a test having a finite number of

signal realizations. This assumption yields a tractable model and is widely used: an

emerging literature has studied coarse information arising from strategic coarsening

(Ostrovsky and Schwarz, 2010; Suen, 2004; Harbaugh and Rasmusen, 2018), imperfect

communication (Jäger et al., 2011; Blume, 2000; Blume and Board, 2013; Aybas

and Turkel, 2019; Hagenbach and Koessler, 2020), and cognitive limitations such as

limited memory (Dow, 1991; Spiegler, 2011).

Another natural way to model limited access to information is by imposing

information acquisition costs (for which the receiver has a fixed budget). If we

consider a model where such costs depend on the maximum possible number of signal

realizations, we can just assume that the receiver’s optimal choice is k. Of course,

information costs can be modeled in many other ways (e.g., as entropy costs); as a
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direction for future research, it would be interesting to explore these possibilities.

Quadratic cost function Our finding that the optimal test is either deterministic or

binding at each state depends on the convexity of the receiver’s cost function. To see

this, consider the case of k = 2 and the uniform distribution. Recall that in order

to show that the optimal test is binding, we construct a profitable adjustment of

any non-binding test. For k = 2, this adjustment consists in decreasing the success

probability by δ on some interval (y, y − ε) and increasing it by δ′ on some interval

(z, z − ε), where

δ (a2 − y) = δ′ (a2 − z) . (10)

This choice of δ and δ′ ensures that a2 remains constant.

If δ and δ′ were equal, the adjustment would clearly be profitable, even for

cost functions other than our quadratic one: decreasing the success probability for

lower states while increasing it by the same amount for higher states would increase

informativeness (under the uniform distribution). However, equation (10) requires

δ′ to be larger than δ, and therefore it is not obvious whether the adjustment is

profitable; its effect needs to be computed explicitly. In our main model, with a

quadratic cost function, we are able to carry out this computation and establish

that the adjustment is indeed profitable. Our result depends on verifying that the

derivative with respect to y of the difference in costs, in the quadratic case given by

− (a2 − y)2 + (a1 − y)2, is sufficiently high. Similar arguments may apply to a larger

class of cost functions, which would imply that a binding test is optimal in those cases.

It would then be a natural next step to extend our model to such cost functions.

Comparative statics Another natural avenue for future research is to examine how

the optimal test changes with the probability q that the sender learns the state. Note

that as q increases, the use of probabilistic pooling can be expected to increase, for

two reasons. First, since probabilistic pooling is specifically a tool for encouraging

disclosure, its use becomes more beneficial when the sender is more likely to be

informed. Second, a higher q leads to more disclosure, even in the baseline Dye

model; consequently, the reduction in test informativeness due to probabilistic pooling
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becomes less salient for the receiver, since she can now rely more on disclosure and

less on the test for information.

However, the comparative-statics analysis is not straightforward, even if the

receiver can commit to actions and we can find closed-form solutions for the intervals

over which the disclosure constraint is binding. It is easy to see that for given

actions conditional on non-disclosure, the upper endpoints of these intervals are

increasing in q. But we also need to take into account how the actions conditional

on non-disclosure change as q varies, and we cannot currently express this in closed

form. The comparative-statics analysis thus presents another opportunity for future

research.

Richer information structures In general disclosure models, such as that of Lichtig

and Weksler (2023), the sender may possess multiple pieces of evidence, of which

he can disclose any subset.10 However, in the present paper, as in Dye (1985), the

sender’s choice is assumed to be binary: if he learns the state, he can either disclose

it or pretend not to know it. This simplified assumption eliminates the need to

consider off-path beliefs. Any deviation from the sender’s equilibrium strategy falls

into one of two categories: either it is undetectable (when a disclosing type chooses

not to disclose), or it resolves all uncertainty (when a non-disclosing type chooses to

disclose).

By contrast, in models with more complex evidence structures, sender deviations

may be detectable by the receiver without fully revealing the sender’s type. This raises

concerns about off-path beliefs, since the receiver may exhibit extreme pessimism

in zero-probability events. Furthermore, as the receiver possesses the ability to

design her own information structure (within certain constraints), she may be able

to strategically combine these tools to incentivize extensive disclosure. It would be

valuable to investigate a refined equilibrium incorporating these considerations – for

example, a variation of the truth-leaning equilibrium introduced by Hart et al. (2017)

– in an environment featuring a partially informed receiver.

10For different general disclosure models, see Hart et al. (2017) and Ben-Porath et al. (2019).
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Appendices

A Proof of Proposition 1

Proof. We prove the Proposition by using the condition (MIO) provided in Athey and

Levin (2018). Since we have a supermodular problem, we can use a simplified version

of the condition provided in Example 3.3.1: A decision maker prefers test T ′ over

test T if for all z ∈ [0, 1] it holds that G′
X (·|G′

S(S
′) > z) dominates GX (·|GS(S) > z)

in terms of first-order stochastic dominance. For a test T , G denotes the joint

distribution of signals and states :

G : [0, 1]× {1, . . . , k} → [0, 1],

GS (·|x) is the signal distribution conditional on x, while GS is the marginal signal

distribution defined by GS(s) = EX [GS(s|X)] for s ∈ {1, . . . , k} and GX(·|s) denotes
the conditional distribution of X given signal realization s. The analogous definitions

apply for G′, test T ′ etc. Let T be a non-deterministic test, i.e., there exist i, j ∈
{1, . . . , k} s.t. Ti(x), Tj(x) ∈ (0, 1) for some interval (x0, x1) ⊂ [0, 1].

We now define an alternative test T ′. Test T ′ is identical to T but for segment

(x0, x1). On the relevant segment, test T ′ shifts probability weight from signal j

to signal i for lower states and vice versa for higher states. In addition, the total

probabilities of signals i and j in T and T ′ are equal.

Let y be defined by∫ x1

x0

Tj(x)f(x)dx =

∫ x1

y

(Ti(x) + Tj(x)) f(x)dx

⇔
∫ y

x0

Tj(x)f(x)dx =

∫ x1

y

Ti(x)f(x)dx.
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For y < x′ < x1 this is equivalent to∫ y

x0

Tj(x)f(x)dx+

∫ x′

y

Tj(x)f(x)dx =

∫ x1

y

Ti(x)f(x)dx+

∫ x′

y

Tj(x)f(x)dx

from which follows that∫ x′

x0

Tj(x)f(x)dx >

∫ x′

y

(Ti(x) + Tj(x)) f(x)dx. (11)

We define T ′ s.t. T ′
i (x) = Ti(x) + Tj(x), T

′
j(x) = 0 for all x ∈ (x0, y) and

T ′
i (x) = 0, T ′

j(x) = Ti(x) + Tj(x) for all x ∈ (y, x1).

We will show now that T and T ′ fulfill the condition stated above. By constriction,

it holds for every h ∈ {1, . . . , k}, that GS(h) = G′
S(h). Let zh = GS(h) = G′

S(h). Since

we have a finite number of signals, it is sufficient to show the condition for z1, . . . , zk.

For h < i and h > j it holds that GX (·|GS (S) > zh) = G′
X (·|G′

S (S
′) > zh). Assume

that i ≤ h ≤ j. It holds for x0 < x′ < y that

GX (x′|j) =
∫ x0
0
Tj(x)f(x)dx+

∫ x′
x0
Tj(x)f(x)dx

Pr(S = j)
> G′

X (x′|j) =
∫ x0
0
Tj(x)f(x)dx

Pr(S ′ = j)

since Pr(S ′ = j) = Pr(S = j) by construction and T ′
j (x

′) = 0 for x0 < x′ < y. For

y < x′ < x1, it holds that

GX (x′|j) =
∫ x0
0
Tj(x)f(x)dx+

∫ x′
x0
Tj(x)f(x)dx

Pr(S = j)

> G′
X (x′|j) =

∫ x0
0
Tj(x)f(x)dx+

∫ x′
y

(Ti(x) + Tj(x)) f(x)dx

Pr(S ′ = j)

due to (11). Conclusively, it holds for all x ∈ [0, 1] that

GX (x|GS (S) > zh) ≥ G′
X (x|G′

S (S
′) > zh) .
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This shows that in the benchmark case the optimal test has to be deterministic. It

is left to show that it is also monotone, resulting in a deterministic threshold test.

Assume that there exists an optimal deterministic test T that is not monotone. Then

there exist i, j ∈ {1, . . . , k} with j > i and intervals (x0, y), (y, x1) s.t. Tj(x) = 1 for

all x ∈ (x0, y) and Ti(x) = 1 for all x ∈ (y, x1). We can choose the numbers x0, x1, y

in a way s.t. ∫ y

x0

Tj(x)f(x)dx =

∫ x1

y

Ti(x)f(x)dx.

Consider the test T ′ that differs from T s.t. Ti(x) = 1 for all x ∈ (x0, y) and Tj(x) = 1

for all x ∈ (y, x1). Than by constriction, it holds for every h ∈ {1, . . . , k}, that
GS(h) = G′

S(h). Analogously as above, we obtain a contradiction since T ′ dominates

T w.r.t. to the order proposed by Athey and Levin (2018).

Counterexample for Lehmann order Now we will show that there exists a non-

deterministic test that is not dominated by any deterministic threshold according to

the information order in Lehmann (1988). To apply this information order, we now

provide for every test T an information-equivalent test T̃ that has a continuous range

of signals. The test T̃ is a mapping

[0, 1] → ∆[0, 1],

i.e., for every state in [0, 1] it assigns a probability distribution over [0, 1] instead

of a probability vector for k signals. We denote the random variable corresponding

to the signal realization by S̃. In order to define T̃ , we partition the interval [0, 1]

into k equal intervals and associate signal i with the uniform distribution on the i-th

interval. Formally,
(
T̃ (x)

)
(s) = Pr

(
S̃ ≤ s|X = x

)
. Assume that s lies in the i-th

interval, i.e., i−1
k

≤ s ≤ i
k
then we define

(
T̃ (x)

)
(s) = T1(x) + · · ·+ Ti−1(x) + Ti(x)

s− i−1
k

1
k

.
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We can check that if a signal s is an endpoint of one of the k intervals, the conditional

distribution is the same: Assume that s = i
k
, then

s− i−1
k

1
k

= 1 and it holds that

f
(
x′|S̃ ≤ s

)
=

T1 (x
′) + · · ·+ Ti (x

′)∫
[0,1]

(T1 (x′) + · · ·+ Ti (x′)) f(x)dx
.

For the initial information structure induced by T , it holds that the i-th interval

corresponds to signal i and thus it holds that

f (x′|S ≤ i) =
Pr (S ≤ s|x′)
Pr (S ≤ s)

=
T1 (x

′) + · · ·+ Ti (x
′)∫

[0,1]
(T1 (x′) + · · ·+ Ti (x′)) f(x)dx

.

Now we need to show that for any non-deterministic test T there exists a deterministic

test T ′ s.t. T̃ ′ dominates T̃ in terms of the order introduced by Lehmann, i.e., for all

s ∈ [0, 1] it holds that

G′−1
S (GS (s|x) |x)

is non-decreasing in x.

Consider the following counterexample for k = 2, a uniform distribution, and the

test T (x) = x. Consider the test T ′ that is equal to 0 on [0, t∗] and to 1 on [t∗, 1].

Let x, s, s′ be numbers between 0 and min{t∗, 1
2
}. Then GS (s|x) = (1 − x)2s and

G′ (s′|x) = 2s′. Thus,

2s′ = (1− x)2s ⇔ s′ = (1− x)s ⇔ G′−1
S (GS (s|x) |x) = (1− x)s

which is strictly decreasing in x.

B Proof of Proposition 2

The general approach of the proof is to assume, by contradiction, that the optimal

test does not fulfill one of the characteristics we claim in the main Proposition. To
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support this claim, the proof finds a directional derivative of the receiver’s costs that

is not equal to 0, particularly one that is strictly negative. In other words, it identifies

an adjustment of the test that leads to strictly lower costs for the receiver if it is

sufficiently small.

The proof proceeds through the following lemmas. Lemma 1 provides a class of

adjustments that induce a weakly lower vector of actions conditional on non-disclosure.

If for a given test the disclosure condition is binding, a slight increase in an action

conditional on disclosure may lead to a discontinuous decrease in the receiver’s

utility due to less disclosure. Thus, this Lemma serves as an important tool to

create adjustments for which the directional derivative of the receiver’s utility exists.

Lemma 2 introduces a class of directional derivatives of the receiver’s costs for a given

test, all of which are strictly negative. By utilizing this lemma, we can explore the

different characteristics of the optimal test and demonstrate their optimality through

contradiction. Lemma 3 introduces a class of directional derivatives that are zero.

Lemma 4 establishes that the optimal test must be binding, i.e., the disclosure

condition is either binding or the test assigns a probability of 1 to a specific signal.

Then, Lemma 5 follows, showing that for each signal, there exists a positive mass

interval over which the optimal test assigns a probability of 1 to that signal. This

crucial finding confirms that the disclosure condition is not binding. This fact makes

it possible to apply Lemma 2 in order to show in Lemma 6, that the optimal test

mixes only between signals i and i+ 1 within the interval [ai, ai+1]. Finally, Lemma 7

shows that the optimal test is monotone and Lemma 8 establishes the location of the

points x−i and x+i .

Lemma 1. Let T be a test with induced equilibrium (β, a).11 Assume there exists

ε̃ > 0 s.t. for all x ∈ [0, 1] it holds that

x̃ <
k∑
i=1

Ti(x̃)ai ⇒ x̃ <

k∑
i=1

Ti(x̃)ai − ε̃ (12)

except for x = aj s.t. Tj(aj) = 1 for j ∈ {1, . . . , j}.
11If it is clear what the test is, we will suppress T in the notation of the equilibrium.
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That is, the test is not arbitrarily close to the disclosure condition from above,

except for non-disclosure actions that get the corresponding signal assigned with

probability one. Let i, j, h ∈ {1, . . . , k} and let y, z ∈ [0, 1] s.t. there exists ε′, δ̃ > 0 s.t.∑k
i=1 Ti(x̃)ai > x+ δ̃ for all x ∈ (y − ε′, y) and all x ∈ (z − ε′, z), i.e., the disclosure

condition is not binding. For every ε > 0 let T̂ ε be the test that differs from T s.t.

T̂ εi (x) = Ti(x) + δ, T̂ εj (x) = Tj(x)− δ for allx ∈ (y − ε, y)

and

T̂ εh(x) = Th(x)− δ′, T̂ εj (x) = Tj(x) + δ′ for allx ∈ (z − ε, z)

for δ, δ′ < δ̃ s.t. |δ|, |δ′| are sufficiently small s.t. T̂ ε is a feasible test, i.e., Tl(x) ∈ [0, 1]

for all l ∈ {1, . . . , k} and all x ∈ [0, 1] and β. Then for ε > 0 sufficiently small, there

exists an equilibrium
(
β̂ε, âε

)
induced by T̂ ε s.t. for

âj = aj + lim
ε→0

âεj − aj

ε

the following holds true:

(i) If

δf(y) (aj − y) = δ′f(z) (aj − z) , (13)

it holds that âj = aj.

(ii) If

δf(y) (aj − y) < δ′f(z) (aj − z)

and −δf(y) + δ′f(z) > 0, it holds that âj < aj.

(iii) If

δf(y) (aj − y) > δ′f(z) (aj − z)

and −δf(y) + δ′f(z) < 0, it holds that âj < aj.
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Proof. Part (i): It holds that

aj =
(1− q)

∫ 1

0
Tj(x)xf(x)dx+ q

∫ 1

0
(1− β(x))T (x)xf(x)dx

(1− q)
∫ 1

0
T (x)f(x)dx+ q

∫ 1

0
(1− β(x))T (x)f(x)dx

Let Aj be the nominator and Bj the denominator in this expression. Due to

condition (12), for sufficiently small ε > 0, disclosure behavior can change only at aj.

Thus, for every ε > 0 that is sufficiently small, there exists an equilibrium
(
β̂ε, âε

)
induced by T̂ ε s.t.

âεj =
Aj + αεj − δ

∫ y
y−ε xf(x)dx+ δ′

∫ z
z−ε xf(x)dx

Bj + βεj − δ
∫ y
y−ε f(x)dx+ δ′

∫ z
z−ε f(x)dx

(14)

for expressions αεj and β
ε
j that are either equal to zero or depend on the difference

between aj and a
ε
j. If the expressions are not equal to zero, it holds that lim

ε→0

αε
j

ε
=

ajf(aj) and lim
ε→0

βε
j

ε
= f(aj). It holds that (13) is equivalent to

⇔ −δyf(y) + δ′zf (z) = aj (−δf(y) + δ′f (z))

⇔ −δyf(y) + δ′zf (z)

−δf(y) + δ′f(z)
= aj =

Aj
Bj

(15)

⇔ Bj (−δyf(y) + δ′zf (z)) = Aj (−δf(y) + δ′f(z)) (16)

It holds that

lim
ε→0

âεj − aj

ε
=

1

ε

(
lim
ε→0

Aj + αεj − δ
∫ y
y−ε xf(x)dx+ δ′

∫ z
z−ε xf(x)dx

Bj + βεj − δ
∫ y
y−ε f(x)dx+ δ′

∫ z
z−ε f(x)dx

− Aj
Bj

)

= lim
ε→0

1

ε

Bj

(
−δ
∫ y
y−ε xf(x)dx+ δ′

∫ z
z−ε xf(x)dx+ αεj

)
− Aj

(
−δ
∫ y
y−ε f(x)dx+ δ′

∫ z
z−ε f(x)dx+ βεj

)
B2
j

=
Bj (−δyf(y) + δ′zf (z))− Aj (−δf(y) + δ′f(z))

B2
j

+ f(aj)
Bjaj − Aj

B2
j
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=
Bj (−δyf(y) + δ′zf (z))− Aj (−δf(y) + δ′f(z))

B2
j

(17)

which is equal to zero due to (16). We conclude that âj = aj.

Part (ii): It holds that

aj (−δf(y) + δ′f(z)) > −δyf(y) + δ′zf(z).

Since −δf(y) + δ′f(z) > 0, this is equivalent to

−δyf(y) + δ′zf(z)

−δf(y) + δ′f(z)
< aj =

Aj
Bj

.

⇔ Bj (−δyf(y) + δ′zf (z)) < Aj (−δf(y) + δ′f(z))

which is equivalent to âj < aj due to equation (17).

Part (iii): It holds that

aj (−δf(y) + δ′f(z)) < −δyf(y) + δ′zf(z).

Since −δf(y) + δ′f(z) < 0, this is equivalent to

−δyf(y) + δ′zf(z)

−δf(y) + δ′f(z)
> aj =

Aj
Bj

.

⇔ Bj (−δyf(y) + δ′zf (z)) < Aj (−δf(y) + δ′f(z))

which is equivalent to âj < aj due to equation (17).

We assumed that the disclosure condition is not fulfilled at y and z. However, as

long as the test is not arbitrarily close to the disclosure condition, the same proof

goes through if the disclosure condition is fulfilled at y and z.
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Lemma 2. Let T be a test with induced equilibrium (β, a) s.t. there exists ε′ > 0 with

sup {Tj(x) | x ∈ (y − ε′, y)} > 0

and

sup {Ti(x) | x ∈ (z − ε′, z)} > 0

for 1 ≤ i ≤ j ≤ k and y < z < aj. Assume that for the types in the interval (z − ε′, z)

the disclosure condition is not binding, i.e., there exists δ̃ s.t.

k∑
h=1

Th(x)ah + δ̃ < x ∀x ∈ (z − ε′, z) or
k∑

h=1

Th(x)ah > x+ δ̃ ∀x ∈ (z − ε′, z) . (18)

Then T is not optimal.

Proof. Assume there exists an optimal test T that fulfills the conditions of the lemma.

For every ε with 0 < ε < ε′ let T̂ ε be the test that differs from T s.t. T̂ εj (x) =

Tj(x)− δ, T̂ εi (x) = Ti(x) + δ for all x ∈ (y − ε, y) and T̂ εj (x) = Tj(x) + δ′, T̂ εi (x) =

Ti(x)− δ′ for all x ∈ (z − ε, z). Let δ′ be defined in dependence of δ s.t.

δf(y) (aj − y) = δ′f(z) (aj − z) . (19)

In addition, δ is chosen sufficiently small s.t. δ < δ̃ and s.t. T̂ ε is a feasible test.

Assume that condition (12) from Lemma 1 holds, we will show this at the end of

the proof. Since we focus on receiver-preferred equilibria, it is sufficient to show that

the proposed adjustment of the test induces strictly lower costs for some equilibrium.

Define âj as in Lemma 1, then it follows from part (i) of Lemma 1 that âj = aj. It

holds that −δyf(y)+δ′zf(z) > 0 because otherwise, it would hold that δf(y) > δ′f(z)

which is a contradiction to δ′f(z) = δf(y)
aj−y
aj−z > δf(y). Therefore, δf(y)− δ′f(z) < 0

and it follows from Lemma 1 part (iii) that âi < ai. Since we established that the

actions a1, . . . , ak (weakly) decrease in the new equilibrium, types outside the intervals

(y − ε, y) and (z − ε, z) cannot switch from disclosure to non-disclosure. Moreover,

the same holds true for every x ∈ (y − ε, y), since
∑k

h=1 Th(x)ah >
∑k

h=1 T̂h(x)ah

and thus, the expected utility from non-disclosure decreases. Due to (18), disclosure
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behavior does not change on the interval (z − ε, z). It follows that β̂(x) ≥ β̂(x) for all

x ∈ [0, 1]. Thus, it is left to compare the costs conditional on non-disclosure. Since â

is a minimzer of the receiver’s cost function, it holds that

−C
(
T̂ , β̂, â

)
+ C (T, β, a)

> −C
(
T̂ , β̂, a

)
+ C (T, β, a) (20)

> −C
(
T̂ , β, a

)
+ C (T, β, a)

= lim
ε→0

δ

ε

∫ y

y−ε

(
(aj − x)2 − (ai − x)2

)
f(x)dx+

δ′

ε

∫ z

z−ε

(
− (aj − x)2 + (ai − x)2

)
f(x)dx

(21)

= δ
(
a2j − 2ajy + y2 − a2i + 2aiy − y2

)
f(y)+δ′

(
−a2j + 2ajz − z2 + a2i − 2aiz + z2

)
f(z)

(22)

= δ (aj − ai) (aj + ai − 2y) f(y) + δ′ (aj − ai) (−aj − ai + 2z) f(z).

By the definition of δ′ (δ), this is equal to

(aj − ai)

(
δ (aj + ai − 2y) f(y) +

δf(y) (aj − y)

f(z) (aj − z)
(−aj − ai + 2z) f(z)

)

= f(y)δ (aj − ai)
(aj + ai − 2y) (aj − z) + (−aj − ai + 2z) (aj − y)

aj − z

=
f(y)δ (aj − ai)

aj − z
(− (aj + ai) (z − y) + 2aj(z − y))

=
f(y)δ (aj − ai) (z − y)

aj − z
(aj − ai) > 0. (23)

In case that for every ε > 0, it holds that âεj > aj, we can choose δ′ to be larger

than
δf(y)(aj−y)
f(z)(aj−z) . It follows that −δyf(y) + δ′zf(z) > 0 because otherwise, it would

hold that δf(y) > δ′f(z) which is a contradiction to δ′f(z) > δf(y)
aj−y
aj−z > δf(y).

Thus, we conclude from part (ii) of Lemma 1 that âj < aj . Since δyf(y)−δ′zf(z) < 0,

it follows from part (iii) that âi < ai. Since we derived −C
(
T̂ , β̂, â

)
+C (T, β, a) > 0
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with a strict inequality, the inequality remains strict if we choose δ sufficiently small

and define δ′ for example by

(
δ + δ2

)
f(y) (aj − y) = δ′f(z) (aj − z) .

Since we obtain a strict inequality of costs in the limit, it follows that there exists

ε > 0 s.t. T̂ ε induces a strictly lower cost than T .

Now we establish that condition (12) is fulfilled. Assume this were not the case

and for all ε̃ > 0 there exists x̃ s.t.

k∑
i=1

Ti(x̃)ai > x̃ >
k∑
i=1

Ti(x̃)ai − ε̃

and it does not hold that x̃ = ah with Th(ah) = 1. If the disclosure condition is

binding on the interval (x̃, x̃+ ϵ), there exists an interval (x1, x2) to the left of x̃

and δ̂ s.t. the disclosure condition is not fulfilled and is δ̂ away from the test. Let

i, j ∈ {1, . . . , k} s.t. i < j, Ti(x) < 1, and Tj(x) > 0 over (x1, x2) (such i, j exist for

(x1, x2) sufficiently small). Otherwise, the disclosure condition could not be arbitrarily

close to the test. Due to the same reason, one can choose j s.t. x2 < aj. Then one

can choose y, z, δ, δ′ as above. If the disclosure condition is not binding on some

interval (x̃, x̃+ ϵ), there exists an interval (z − ϵ̂, z) and δ̂ s.t. z > x̃ and the test is

δ̂ away from the disclosure condition over this interval. Moreover, there exists an

interval (y − ϵ̂, y) s.t. either the disclosure condition is binding over this interval or it

is δ̂ away from the test. Again, we can adjust the test at y and z with δ and δ′ as

above.

Conducting the adjustments for every x̃ for which condition (12) is not fulfilled,

leads to an adjustment inducing strictly lower costs for the receiver. Thus, T cannot

be optimal and condition (12) has to hold.

Lemma 3. Let T be an optimal test with induced equilibrium (β, a) s.t. there exists
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an interval (aj − ε′′, aj) s.t. Tj(x) = 1 for all x ∈ (aj − ε′′, aj). Let

ε̃ = sup{ε′′ > 0 | Tj(x) = 1 for all x ∈ (aj − ε′′, aj)}

and let z = aj − ε̃. For every ε > 0, let T̂ be the test that differs from T s.t. T̂j(x) = 1

for all x ∈ (z − ε, z) and
(
β̂ε, âε

)
. Then the following holds true

(i) For every i ∈ {1, . . . , k} it holds that âi ≤ ai.

(ii) It holds that

lim
ε→0

C
(
T̂ ε, β̂ε, âε

)
− C (T, β, a)

ε
= 0.

Proof. First, we argue that for every ε > 0 it holds that Th(x) = 0 for h > j and

x ∈ (z − ε, ε) except for a measure zero set of values. This follows from Lemma 2

since the assumption that Tj(x) = 1 for all x ∈ (z, aj) implies that the disclosure

condition is not binding for these types and we can shift probability weight between

signals j and h. Next, we follow from Th(x) = 0 for h > j, that the actions conditional

on non-disclosure are smaller under T̃ than under T , i.e., âi ≤ ai for all i ∈ {1, . . . , k}.
Thus, the costs are continuous and differentiable in ε. Since we assumed that T is

optimal, it follows that the derivative of the costs w.r.t. ε is zero, i.e.,

lim
ε→0

C
(
T̂ ε, β̂ε, âε

)
− C (T, β, a)

ε
= 0.

Lemma 4. Let T be an optimal test. For every x ∈ [0, 1] it holds that T is binding

except for a set of measure zero, i.e., for every x ∈ [0, 1] one of the two conditions is

satisfied:

(i) The disclosure condition is binding, i.e.,
∑k

i=1 Ti(x)ai = x

(ii) The test puts a probability weight of 1 on one signal, i.e., there exists i ∈
{1, . . . , k} s.t. Ti(x) = 1.
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Proof. Assume by contradiction, that there exist i, j ∈ {1, . . . , k} and an interval

(x1, x2) s.t. Ti(x) > 0 and Tj(x) > 0 and
∑k

i=1 Ti(x)ai ̸= x for all x ∈ (x1, x2). Without

loss, we assume that j > i and let l ∈ {1, . . . , k} be such that (x1, x2) ⊆ (al−1, al).

For now, we prove the lemma for the case that l ≤ j. We will provide the rest of

the proof after stating and proving Lemma 5. If l ≤ i, again, we can conclude that

there exist i, j, and y, z with x1 < y < z < x2 and l ≤ j s.t. there exists ε′ > 0 s.t.

sup {Tj(x) | x ∈ (y − ε′, y)} > 0

and

sup {Ti(x) | x ∈ (z − ε′, z)} > 0.

Thus, the conditions of Lemma 2 are fulfilled, and the assumption that T is optimal

leads to a contradiction.

Lemma 5. For every i ∈ {1, . . . , k} it holds that there exists ε > 0 s.t. for all

x ∈ (ai − ε, ai) it holds that Ti(x) = 1 except for a measure zero set of values.

Proof. We will show this statement by induction beginning with k. Assume that

there does not exist ε > 0 s.t. Tk(x) = 1 for all x ∈ (ak − ε, ak). Then there exists

ε′ > 0 and j ̸= k s.t. Tj(x) > 0 for all x ∈ (ak − ε′, ak).

Let ε be s.t.

(1− q)

∫ ak

ak−ε
Tj(x) (x− aj)

2 f(x)dx >

∫ ak

ak−ε
(x− ak)

2 f(x)dx.

Such an ε exists since the RHS is decreasing in ε while the LHS is bounded above

from zero for ε < ε′. The costs for a type x ∈ (ak − ε, ak) is given by at least

(1− q)Tj(x) (x− aj)
2 .

Consider the test T̂ that differs from T s.t. Tk(x) = 1 for all x ∈ (ak − ε, ak). Then

the costs for a type x ∈ (ak − ε, ak) is given by at most (x− ak)
2 Thus, the difference
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in costs between T and T̂ is given by at least

(1− q)

∫ ak

ak−ε
Tj(x) (x− aj)

2 f(x)dx−
∫ ak

ak−ε
(x− ak)

2 f(x)dx > 0.

In other words, even when putting all the probability weight on signal k causes type

x to switch from disclosure to non-disclosure, the cost decreases.12 The equilibrium

effect from adjusting the test is also positive since it (weakly) decreases all actions in

equilibrium.

Now we turn to the induction step. Assume we have shown the statement for every

h > i. Assume by contradiction that there does not exist ε > 0 s.t. Ti(x) = 1 for all

x ∈ (ai − ε, ai). Thus, there exists j ̸= i s.t. Tj(x) > 0 on some interval (ai − ε, ai).

If Tj(x) > 0 on some interval (ai − ε, ai) only for j < i, then we can apply the same

argument and adjust the test to T̂i(x) = 1 for all x ∈ (ai − ε, ai) for a sufficiently

small ε. However, if Tj(x) > 0 on some interval (ai − ε, ai) for j > i, then this would

lead to an increase in aj in equilibrium. Thus, the rest of the proof is devoted to

ruling this case out. Assume that such j > i and ε > 0 exist. Then according to

the induction assumption, there exists an interval (aj − ε′, aj) s.t. Tj(x) = 1 for all

x ∈ (aj − ε′, aj). Let

ε̃ = sup{ε′ > 0 | Tj(x) = 1 for all x ∈ (aj − ε′′, aj)}

and let z = aj − ε̃. Then by construction, it holds that ai < z < aj. Moreover, we

argue that there exists l < j and ε′′ > 0 s.t.

sup {Tl(x) | x ∈ (z − ε′′, z)} > 0. (24)

Due to Lemma 2, it holds that there does not exist h > j s.t. Th(x) > 0 for an interval

of positive measure between aj−1 and aj. Since by the induction assumption, the

12To be precise: choose a subinterval (ak − ε2, ak − ε1) for 0 < ε1 < ε2 from [ak − ε′, ak] s.t. that
the infimum of Tj is some strictly positive number tj . Then we change the test on (ak − ε2, ak − ε1)
and the costs on this interval are at least (1− q)tj (ε2 − ε1) (ak − ε2 − aj). The costs in the adjusted
test are at most (ε2 − ε1) ε

2
2. Thus, the costs in the adjusted test are smaller for ε2 sufficiently small.
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disclosure condition is not binding on the interval (aj − ε̃, aj), the conditions of the

Lemma are fulfilled and we can shift probability weight between signals j and h. Since

z < aj and Th(x) = 0 for h > j and all x ∈ (aj−1, aj) except for a set of measure zero,

we can apply Lemma 4 and argue that there exists ε′ s.t. either Th(x) = 1 for h < j

and all x ∈ (z − ε′, z) or the disclosure condition is binding, i.e.,
∑m

i=1 Ti(x)ai = x

for all x ∈ (z − ε′, z). Since z is strictly smaller than aj, this implies that there is a

discontinuity in Tj at z and thus (24) holds. For every ε > 0 let T̂ ε be the test that

differs from T s.t. T̂ εj (x) = Tj(x) + δ, T̂ εi (x) = Ti(x) − δ for all x ∈ (y − ε, y) and

T̂ εj (x) = 1 for all x ∈ (z − ε, z). Let

δ′ = lim
ε→0

1− (1− q)Tj(y − ε).

Choose δ s.t.

δf(y) (aj − y) < δ′f(z) (aj − z)

and the assumption that Tj(x) > 0 on some interval (ai − ε, ai) leads to a

contradiction.

Proof. Now we will provide the proof for Lemma 4 for the general case. Assume there

exists an interval (x1, x2) s.t. the test is not binding on this interval. Let ∈ {1, . . . , k}
be such that (x1, x2) ⊆ (al−1, al). If there exists i, j ∈ {1, . . . , k} with i < j and

l ≤ j s.t. Ti(x) > 0 and Tj(x) > 0 for all x ∈ (x1, x2), then it holds that x2 < aj

and we can apply Lemma 2 as in the proof for the special case above. Assume that

such i, j do not exist, then it holds that Th(x) = 0 for all h ≥ l and all x ∈ (x1, x2).

Let i, j ∈ {1, . . . , k} with i < j < l be such that Ti(x) > 0 and Tj(x) > 0 for all

x ∈ (x1, x2). Due to Lemma 5, there exists an interval (aj − ε′′, aj) s.t. Tj(x) = 1 for

all x ∈ (aj − ε′′, aj). Let

ε̃ = sup{ε′′ > 0 | Tj(x) = 1 for all x ∈ (aj − ε′′, aj)}

and let y = aj − ε̃. Moreover, we choose z ∈ (x1, x2). For every ε > 0 let T̂ ε be the

test that differs from T s.t. T̂ εj (x) = Tj(x) + δ, T̂ εi (x) = Ti(x)− δ for all x ∈ (z − ε, z)
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and T̂ εj (x) = 1 for all x ∈ (y − ε, y). Let

δ′ = lim
ε→0

1− (1− q)Tj(y − ε).

Choose δ s.t.

δf(z) (z − aj) < δ′f(y) (aj − y) .

Since this is equivalent to (−δ) f(z) (aj − z) < δ′f(y) (aj − y) and − (−δ) f(z) +
δ′f(y) > 0, it follows from part (ii) of Lemma 1 that âj < aj and since i < l, also

ai decreases. It follows from Lemma 3 that the derivative of the costs w.r.t. to the

adjustment at y is zero and âh ≤ ah for all h ∈ {1, . . . , k}. In the limit, the difference

in costs of the adjustment at z is given by

δ
(
(ai − z)2 − (aj − z)2

)
= δ

(
a2i − a2j + 2z (aj − ai)

)
= δ (aj − ai) (−aj − ai + 2z)

which is strictly positive since z ∈ (al−1, al) and i < j < l. Conclusively, test T̂ ε

induces strictly lower costs in the limit for ε→ 0.

Lemma 6. Let T be an optimal test. Than for every i ∈ {1, . . . , k}, it holds that

Tj(x) = 0 for all x ∈ (ai, ai+1) and j ̸= i, i+ 1 except for a measure zero set of values.

Proof. Assume T is optimal and there exists i, j ∈ {1, . . . , k} s.t. j ̸= i, i + 1 and

(x1, x2) ⊆ (ai, ai+1) s.t. Tj(x) > 0 for all x ∈ (x1, x2). First, we consider the case

j > i+ 1. Then we know from Lemma 5 that there exists an interval (ai+1 − ε, ai+1)

s.t. Ti+1(x) = 1 for all x ∈ (ai+1 − ε, ai+1) and thus the disclosure condition is not

binding over this interval. Therefore, the conditions of Lemma 2 apply and we obtain

a contradiction. Next, we consider the case i > j. If there is probability weight only

on signals smaller than i + 1, then the disclosure condition is not binding, which

contradicts Lemma 4. Thus, we can assume that there exists h > i s.t. Th(x) > 0

over a subinterval (x′1, x
′
2). Choose y ∈ (x′1, x

′
2). We define the test T̂ ε that differs

from T s.t. T̂ εj (x) = Tj(x)− δ, T̂ εh(x) = Th(x)− δ ah−ai
ai−aj , and T̂

ε
i (x) = Ti(x) + δ

ah−aj
ai−aj

for all x ∈ (y − ε, y). Moreover, we know from Lemma 5 that there exist an interval
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(ai − ε′′, ai) s.t. Ti(x) = 1 for all x ∈ (ai − ε′′, ai). Let

ε̃1 = sup{ε′′ > 0 | Ti(x) = 1 for all x ∈ (ai − ε′′, ai)}

and let z1 = ai − ε̃. Similarly, we define

ε̃2 = sup{ε′′ > 0 | Th(x) = 1 for all x ∈ (ah − ε′′, ah)}

and z2 = ah − ε̃. Let T̂ ε differ from T̂ s.t. T̂ εi (x) = 1 for all x ∈ (z1 − ε, z1) and

T̂ εh(x) = 1 for all x ∈ (z2 − ε, z2). Let

δ′1 := 1− (1− q) sup {Ti(x) | x ∈ (z1 − ε̃1, z1)}

and

δ′2 := 1− (1− q) sup {Th(x) | x ∈ (z2 − ε̃2, z2)}.

The adjustment at y ensures that the test is feasible since

−δ − δ
ah − ai
ai − aj

+ δ
ah − aj
ai − aj

= δ (−ai + aj − ah + ai + ah − aj) = 0

and that the disclosure condition is still binding since

−δah − δ
ah − ai
ai − aj

aj + δ
ah − aj
ai − aj

ai = δ
−ah (ai − aj)− aj (ah − ai) + ai (ah − aj)

ai − aj
= 0.

The derivative of the costs w.r.t. to the adjustment at z is zero due to Lemma 3

while the difference in the costs of the adjustment in y at the limit is given by

δ (ah − y)2 + δ
ah − aj
ai − aj

(ai − y)2 − δ
ah − aj
ai − aj

(ai − y)2

=
δ

ai − aj

(
(ai − aj) (a3 − y)2 + (ah − aj) (ai − y)2 − (ah − aj) (ai − y)2

)
.
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Simplifying gives
δ

ai − aj
(ah − ai) (ah − aj) (ai − aj) > 0.

Let δ1 be defined by

δ1
ah − aj
ai − aj

f(y) (ai − y) = δ′1f(z) (ai − z)

and

δ2
ah − ai
ai − aj

f(y) (ah − y) = δ′1f(z) (ah − z) .

By choosing δ < min{δ1, δ2}, we ensure that âi < ai and âh < ah while âj < aj by

construction.

Lemma 7. The optimal test is monotone, i.e., for every i ∈ {1, . . . , k} and every

x, y ∈ [0, 1] with y > x it holds that Ti(y) > Ti(x) except for a measure zero set of

values.

Proof. Assume there exists i ∈ {1, . . . , k} and intervals (x1, x2) and (y1, y2) s.t.

Ti(x) > Ti(y) for all x ∈ (x1, x2) and all y ∈ (y1, y2). If the disclosure condition is

not binding on (y1, y2), one can choose y ∈ (x1, x2) and z ∈ (y1, y2) and conduct the

usual adjustment. Assume the disclosure condition is binding. Due to Lemma 5,

there exists an interval (ai − ε′, ai) s.t. Ti(x) = 1 for all x ∈ (ai − ε′, ai). Let

ε̃ = sup{ε′ > 0 | Tj(x) = 1 for all x ∈ (ai − ε′, ai)}

and let z = ai − ε̃. We already established that the test is either deterministic or

binding and mixes only between adjacent signals. Therefore, it has to hold that

Ti(x) = 1 for all x ∈ (x1, x2). If x2 ≤ ai+ai−1

2
, then simply shifting probability mass

from signal i to signal i−1 will increase precision. Thus, we can choose y ∈ (x1, x2) and

consider the test T̂ ε that differs from T s.t. T̂ εi (x) = Ti(x)− δ, T̂ εi−1(x) = Ti−1(x) + δ

for all x ∈ (y − ε, y) and T̂ εi (x) = 1 for all x ∈ (z − ε, z) s.t. δ < δ′ with

δ′ = lim
ε→0

1− (1− q)Ti(y − ε)
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and it follows from Lemma 3 that the adjustment at z does not change costs in the

limit. If x2 >
ai+ai−1

2
, we consider an adjustment at y s.t. the disclosure condition

becomes binding: T̂ εi (x) =
x−ai−1

ai−ai−1
for all x ∈ (y − ε, y). Since x2 is closer to ai+ai−1

2

than z, this strictly decreases the receiver’s costs. The difference in costs between the

old and the new test in the limit is given by

(ai − x2)
2 + q

[
T̃i(z) (ai − z)2 +

(
1− T̃i(z)

)
(z − ai−1)

2
]

−q
[
T̃i(x2) (ai − x2)

2 +
(
1− T̃i(x2)

)
(x2 − ai−1)

]
− (ai − z)2

which is strictly positive.

Let z′ = inf{x′ < x1|Ti(x′) = 1 ∀ x ∈ (x′, x1)}. Then adjusting the test at z′ s.t.

T̂ εi (x) = 1 for all x ∈ (z′ − ε, z′) ensures that ai decreases and induces no change in

costs in the limit due to Lemma 3.

Lemma 8. For every i ∈ {1, . . . , k} it holds that a∗i < x−i <
a∗i+a

∗
i+1

2
< x+i < ai+1.

Proof. First, we establish that x−i ̸= x+i . If this is the case, the optimal test would be

a deterministic threshold test. In optimum, the threshold must lie at the equidistant

point
a∗i+a

∗
i+1

2
, where the precision effect is equal to zero. Consider the adjustment

of the test that shifts probability weight from signal i+ 1 to signal i on an interval(
a∗i+a

∗
i+1

2
,
a∗i+a

∗
i+1

2
+ ε
)
s.t. the disclosure condition is binding. Shifting probability

weight from signal i + 1 to signal i for a state x to the right of the equidistant

point s.t. the disclosure condition is binding, has a positive disclosure effect given by

q (x− ai+1)
2 while the negative precision effect is given by

(1− q)
(
(a∗i − x)2 −

(
a∗i+1 − x

)2)
= (1− q)

(
a∗i+1 − a∗i

) (
2x−

(
a∗i + a∗i+1

))
for j = i, i + 1 which converges to zero as ε → 0. Thus, for x sufficiently close to
a∗i+a

∗
i+1

2
, the disclosure effect dominates the precision effect. However, decreasing the

probability of a state x to the right of the equidistant point has a negative equilibrium

effect. The equilibrium effect has bite only if the disclosure condition is binding. If
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the test deterministic, this is the case only at a∗i and a
∗
i+1. Denote by âεi and â

ε
i+1 the

non-disclosure actions in the equilibrium induced by the adjusted test. Then the loss

from the negative equilibrium effect is given by

q

∫ âεj

aj

(aj − x)2

which also converges to zero as ε → 0. Thus, the proposed adjustment strictly

decreases costs for sufficiently small ε due to the dominating disclosure effect.

We established that x−i ̸= x+i and that x−i ≤ a∗i+a
∗
i+1

2
. Assume that x−i =

a∗i+a
∗
i+1

2
.

The disclosure condition is binding on an interval of positive measure. Thus, shifting

probability weight from signal i to signal i+ 1 on an interval
(
a∗i+a

∗
i+1

2
− ε,

a∗i+a
∗
i+1

2

)
has a strictly positive equilibrium effect while the precision effect converges to zero as

ε→ 0. Hence, this adjustment strictly decreases costs for ε sufficiently small.

We have established that x−i <
a∗i+a

∗
i+1

2
, it is left to show that x+i < ai+1. At ai+1,

the disclosure effect is zero while the precision effect is strictly positive. Moreover,

the equilibrium effect from shifting probability weight from signal i to signal i+ 1

has a positive equilibrium effect. This concludes the proof.

C Proof of Proposition 3

Proof. The proofs of Lemmas 2- 6 also apply to the setting where the receiver can

commit to actions. Lemma 1 does not require a proof in this setting, because the

actions are chosen freely by the receiver are not the solution of a fixed point problem.

In particular, after adjusting the test, the receiver can choose exactly the same vector

of non-disclosure actions in order to the disclosure threshold constant. In Lemma

2, the change in the receiver’s actions conditional on non-disclosure matters only in

inequality (20):

−C
(
T̂ , β̂, â

)
+ C (T, β, a) > −C

(
T̂ , β̂, a

)
+ C (T, β, a) .

49



Here we use only that the costs in the equilibrium induced by the adjusted test cannot

be higher than the costs induced by the adjusted test when one would plug in the

non-disclosure actions from the initial test. Since this argument also holds for the

setting where the receiver can commit to actions, the proof of Lemma 2 applies. The

proofs of lemmas 4-6 rely on the adjustment proposed in Lemma 2 and therefore also

apply. The proof of Lemma 3 depends on the continuity and differentiability of the

costs in the proposed adjustment if the disclosure threshold remains fixed. Since this

argument is also valid in the mechanism settings, the proof can be employed.

It is left to show the optimality of ψ∗. Fix ai and ai+1 for i ∈ {1, . . . , k − 1}. Let
cx (ψ (x)) be the expected cost of the receiver in state x. The utility of the receiver

(in state x) as a function of ψ (x) is

cx (ψ (x)) = q [ψ (x)− x]2 + (1− q)
[
Ti+1 (x) (ai+1 − x)2 + (1− Ti+1 (x)) (ai − x)2

]
= q [ψ (x)− x]2 + (1− q)

[
ψ (x)− ai
ai+1 − ai

(ai+1 − x)2 +
ai+1 − ψ (x)

ai+1 − ai
(ai − x)2

]
.

Since ψ is optimal for every x, it holds that

∂

∂ψ (x)

(
q [ψ (x)− x]2

)
= − ∂

∂ψ (x)

(
(1− q)

[
ψ (x)− ai
ai+1 − ai

(ai+1 − x)2 +
ai+1 − ψ (x)

ai+1 − ai
(ai − x)2

])
(25)

⇔ 2q [ψ (x)− x] + (1− q)

[
1

ai+1 − ai
(ai+1 − x)2 − 1

ai+1 − ai
(ai − x)2

]
= 0 (26)

Simplifying the second part gives

1

ai+1 − ai
(ai+1 − x)2− 1

ai+1 − ai
(ai − x)2 =

1

ai+1 − ai

[
a2i+1 − 2ai+1x+ x2 − a2i + 2aix− x2

]
(27)

=
1

ai+1 − ai

[
a2i+1 − a2i − 2x (ai+1 − ai)

]
= ai+1 + ai − 2x (28)

That is, we can write (26) as

2q [ψ (x)− x] + (1− q) [ai+1 + ai − 2x] = 0 (29)
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2qψ (x)− 2qx+ ai+1 + ai − 2x− q (ai+1 + ai) + 2qx = 0 (30)

2qψ (x) + (1− q) (ai+1 + ai)− 2x = 0 (31)

ψ (x) =
x

q
− 1− q

q

ai+1 + ai
2

. (32)

Due to the lack of the equilibrium effect, the first discontinuity in the interval

(ai, ai+1) occurs at the equidistant point between ai and ai+1 and the second discontinuity

is determined by the state that balances the precision and the disclosure effect:

q [ψ (x)− x]2+(1− q)

[
ψ (x)− ai
ai+1 − ai

(ai+1 − x)2 +
ai+1 − ψ (x)

ai+1 − ai
(ai − x)2

]
= (x− ai+1)

2

⇔ x =
(1 + q)ai+1 + (1− q)ai

2
.

D Proof of Proposition 4

Proof. Assume there exists i ∈ {1, . . . , k} s.t. a∗i =
∫ 1

0
fT (x|S = i)xdx is ex-post

optimal. Then it minimizes the receiver’s costs:∫ 1

0

(x− a∗i )
2 f (x|S = i) dx.

This implies that the derivative of this expression w.r.t. a∗i is equal to zero. A decrease

in a∗i by some ε > 0 strictly changes the disclosure condition and therefore allows

to increase the average action conditional on non-disclosure on the intervals with a

non-deterministic test in which signal i occurs with positive probability. For example,

one can decrease ψ(x) by Ti(x)ε for every state x in these intervals. This implies that

the derivative w.r.t. ε as ε→ 0 is strictly positive. Conclusively, decreasing a∗i by a

sufficiently small amount, strictly decreases the receiver’s costs.
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E Gateaux derivatives

We consider the vector space of all mappings from [0, 1] to Rk. Let T be a test

with induced equilibrium (a, β) and for every ε > 0 let T̂ ε with induced equilibrium(
âε, β̂ε

)
be the test that differs from T s.t. T̂ εj (x) = Tj(x)− δ, T̂ εi (x) = Ti(x) + δ for

all x ∈ (y − ε, y) and T̂ εj (x) = Tj(x) + δ′, T̂ εi (x) = Ti(x)− δ′ for all x ∈ (z − ε, z) s.t.

δf(y) (aj − y) = δ′f(z) (aj − z) .

In order to interpret this adjustment as a Gateaux derivative, we define

yεA :=

∫ y

y−ε
xf(x)dx, zεA :=

∫ z

z−ε
xf(x)dx, yεB :=

∫ y

y−ε
f(x)dx, zεB :=

∫ z

z−ε
f(x)dx,

γε :=
ajy

ε
B − yεA

ajzεB − zεA,

and T̃ ε to be a mapping from [0, 1] to Rk s.t. T̃ εh(x) = 0 for all x ∈ [0, 1] and h ̸= i, j

and

T̃ εi (x) =


1, x ∈ (y − ε, y)

−γε, x ∈ (z − ε, z)

0, else

(33)

T̃ εj (x) =


−1 x ∈ (y − ε, y)

γε, x ∈ (z − ε, z)

0, else

(34)

Given the choice of γε, it holds for δ̂′ = γεδ that

−δyA + δ̂′zA
−δyB + δ′zB

= aj.

For δ sufficiently small, it holds that T +δT̃ ε is a feasible test with induced equilibrium(
ãε, β̃ε

)
. It follows from (16) and (17) that aj remains the same in the equilibrium
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induced by T + δT̃ ε. It follows from (22) that difference in costs between the

equilibrium induced by T and in the equilibrium induced by T + δT̃ ε is given by at

least

δ

∫ y

y−ε

(
(aj − x)2 − (ai − x)2

)
f(x)dx+ δγε

∫ z

z−ε

(
− (aj − x)2 + (ai − x)2

)
f(x)dx

Since the inequality in (23) is strict, this is expression is strictly positive for ε small

enough. Thus, the Gateaux derivative

lim
δ→0

C
(
T + δT̃ ε, β̃ε, ãε

)
− C(T, β, a)

δ

is strictly positive for sufficiently small ε.
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