
Communication and Information Aggregation in

Committees

Gorkem Celik∗and Sergei Severinov†

March 1, 2022

Abstract

We explore the work of committees that aggregate private information of their

heterogeneous members under: (a) standard monotone preference; (b) non-monotones

preferences reflecting fit between The equilibria in case (a) have a partition struc-

ture but may be non-monotone, while in case (b) they can be either “exclusive” or

“overlapping.” We provide a sufficient condition for uniqueness of equilibria with a

fixed number of categories bunching the members provate information. More equi-

librium categories imply ex-ante better decisions. Collective mistakes are possible

even under the most informative equilibrium with the highest number of categories:

The committee may make decisions to the contrary of the preferences of its mem-

bers. The worst mistakes are made when the committee members observe opposite

signals, confirming their inherent biases.
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1 Introduction

The paper studies decision-making procedures for committees consisting of members who

have similar preferences, but differ in their assessment of the costs os making mistakes and

taking wrong decisions. In a related paper, Li, Rosen, and Suen (2001, hereafter LRS)

have shown that even a small difference between the individuals’ preferences limits how

a committee can aggregate their private information. Although each member observes

a realization of a continuous random variable correlated with the state of nature, the

committee’s decision procedure bunches different realizations into coarse categories.

LRS identify the equilibrium conditions for deterministic and monotone decision

mechanisms where each member’s signal space is partitioned into a number of cate-

gories. The difference in the members’ assessment of the costs of type-1 and type-2

errors provides a bound on how many categories can be supported in an equilibrium.

In this paper, we provide a sufficient condition for the uniqueness of equilibrium with

a given number of categories. The significance of establishing uniqueness goes beyond a

theoretical point. LRS argue that committees make better decisions by using mechanisms

allowing for more equilibrium categories. Their argument is based on the demonstration

that, assuming that such equilibria exist, each N-category equilibrium is dominated by

one N+1-category equilibrium in terms of the committee members’ ex-ante expected

costs for wrong decisions. Hence, our uniqueness result strengthens the case for the

efficiency of more equilibrium categories without the need for a selection argument.

Under this sufficient condition, we provide a procedure to identify the maximum

number of categories that can be supported in an equilibrium of a decision mechanism.

Even in this equilibrium, the committee sometimes makes Pareto inefficient decisions. By

processing only the signal categories, the committee may end up choosing one decision

whereas its members would prefer the alternative decision in light of the raw signals.

We can quantify the inefficiency of a committee decision by calculating the likelihood

that the committee’s decision is wrong as a function of the raw signals of the committee

members. One question of interest here is what signal combinations will lead to the most
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inefficient decisions by the committee.

We show that, in the equilibrium with the maximum number of categories, the com-

mittee makes its most inefficient decisions when the progressive element within the com-

mittee (whose cost of maintaining the status-quo incorrectly is relatively high) receives

a signal within the weakest category for the status-quo, whereas the conservative ele-

ment (with a low relative cost of maintaining the status quo) receives a signal strongly

supporting the status-quo. This observation applies to both type-1 and type-2 errors.

Mistakes would still happen as the progressive element’s signal lends more support to the

status-quo and simultaneously the conservative element’s signal becomes less supportive.

Yet, the magnitudes of the worst mistakes decline monotonically as the signals change in

these directions.

2 Preliminaries

Following LRS, we consider a committee of two members A and B. There are two states

of nature and two decisions which we, for brevity, denote in the same way: the null

state and the corresponding null decision, and the alternative state and corresponding

alternative decision. The committee is tasked with accepting the null decision or rejecting

it and accepting the alternative (i.e., maintaining or abandoning the status-quo). The

prior of member i that the null is true is γi, her personal cost of type-1 error (accepting

the null when it is false) is λi1, and her personal cost of type-2 error (rejecting the null

when it is correct) is λi2. Let ki1 = λi1 (1− γi) and ki2 = λi2γ
i. As LRS argued, what

is relevant for the decisions is the cost of false acceptance relative to the cost of false

rejection ki = ki1/k
i
2. In order to study the conflict of interest between the committee

members, we assume that ka < kb: member A is more prone to accepting the null (e.g.,

more conservative).

We propose a transformation of the private observations of the committee members,

which would make our points easier to demonstrate. In the work of LRS, each committee

member i receives a private observation yi which is a realization of a random variable
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distributed on the subset
[
yi, yi

]
of the real line. The cumulative distribution function

for this random variable is F i
q if the null is true, and F i

u if the null is false. Both these

functions are continuously differentiable. We transform this random variable to the

domain [0, 1] and ensure that its distribution is uniform when the null is false. That is,

for each yi ∈
[
yi, yi

]
, we define variable xi = F i

u (yi). Accordingly, when the null is true,

xi is the realization of a random variable with the cumulative distribution function

Gi
(
xi
)

= F i
q

[(
F i
u

)−1 (
xi
)]
.

It will be easier to concentrate on the density of this distribution which gives us the

likelihood ratio for the null after observing xi:

gi
(
xi
)

=
f i
q

[
(F i

u)
−1

(xi)
]

f i
u

[
(F i

u)−1 (xi)
] ,

where f i
q and f i

u are the density functions for the original observation yi, when the null is

true and when it is false respectively. The monotone likelihood ratio property that LRS

impose is identical to the assumption that function gi is strictly increasing on [0, 1]. This

is an assumption that we will maintain for our analysis.

As LRS indicate, in light of the collective evidence xa, xb, whether accepting the

null is a good decision for member i depends on comparing the likelihood of the null

ga (xa) × gb
(
xb
)

to the relative cost of rejecting the null for this member (ki). The

fact that the two members do not have the same relative cost for false decisions hinders

effective communication.

To simplify our analysis by avoiding some corner conditions, we assume that either

committee member is willing to reject the null if her own signal is the lowest possible

one. Moreover, she is willing to accept the null upon receiving the highest possible

signal, regardless of the signal of the other member. That is, we assume that ga (0) <

ka < ga (1) gb (0) and gb (0) < kb < ga (0) gb (1).
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3 Equilibrium Conditions

LRS show that, any deterministic and monotone equilibrium outcome of a decision mech-

anism, which gives each individual member of the committee the power to unilaterally

accept the null,1 is a partition outcome: For each committee member, there are N thresh-

olds ti1, t
i
2, ..., t

i
N partitioning the observation space [0, 1] into N + 1 categories. We can

imagine such a mechanism as a voting game with a scoring rule, where each member can

show the intensity of her support by choosing an integer between 0 and N (including

0 and N), and the null is accepted if the sum of the integers is at least N . In equilib-

rium, each partition cell for each member corresponds to a different integer. Committee

member A who has observed a signal exactly equal to threshold tan must be indifferent

between choosing integer n − 1 and integer n. The decision between these two options

would matter only if member B chooses integer N−n, which would happen when she has

observed a signal xb between tbN−n and tbN−n+1. The probability of such an observation

equals tbN−n+1 − tbN−n if the null is incorrect (recall that our transformation implies a

uniform distribution of the signal in this case), or
tbN−n+1∫
tbN−n

gb
(
xb
)
dxb if the null is correct.

Accordingly, the increase in member A’s expected cost of false acceptance after voting n

is

η

tbN−n+1∫
tbN−n

ka1dx
b,

and the increase in her expected cost of a false rejection after voting n− 1 is

η

tbN−n+1∫
tbN−n

ka2g
a (tan) gb

(
xb
)
dxb,

where η = (γag (tan) + (1− γa))−1 is the normalization factor under Bayesian updating.

Comparing type-1 and type-2 errors reveals the following equilibrium no-arbitrage con-

1The unilateral rejection setting would be similar to the unilateral acceptance setting that is discussed
here, after the relabeling of the null and alternative states.
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dition:

(An) :

tbN−n+1∫
tbN−n

[
ga (tan) gb

(
xb
)
− ka

]
dxb = 0,

with the convention that if tbN−n = tbN−n+1, then tan is solution to ga (tan) gb
(
tbN−n

)
= ka.

An identical condition arises for the thresholds of member B:

(Bn) :

taN−n+1∫
taN−n

[
ga (xa) gb

(
tbn
)
− kb

]
dxa = 0.

The following conditions ensure that the lower bounds of the lowest categories match

with the lower bounds of the supports of the signal distributions:

(A0) : ta0 = 0,

(B0) : tb0 = 0.

Thresholds ta0 ≤ ta1 < ... < taN ≤ 1 and tb0 ≤ tb1 < ... < tbN ≤ 1 identify an equilibrium

solution with length N if they satisfy conditions (An) and (Bn) for n = 0, 1, ..., N . These

conditions together correspond to equilibrium conditions in (13) in LRS. A partition

equilibrium divides the space of signal pairs [0, 1] × [0, 1] into two areas according to

whether the null is accepted or rejected in equilibrium. These areas are separated by

the graph of a step function, whose kink points are given by pairs
(
tan, t

b
m

)
such that

n+m equals either N or N + 1. See Figure 1 for an equilibrium solution with length 2,

partitioning the signals of each committee member into three categories.

An important feature of a solution to the system of equations above is that knowing

the value of ta1 is sufficient for calculating the rest of the equilibrium thresholds iteratively:

Equation (BN) yields tbN given the values of ta1 and ta0 = 0. Then, for all n ≥ 1, equation

(An) yields tbN−n given tbN−n+1 and tan. And equation (BN−n) yields tan+1 given tan and

tbN−n. If ta1 is indeed the equilibrium threshold for the lowest category, then the other

thresholds identified by this iterative procedure would be within set [0, 1] and the final
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threshold tb0 equals zero to satisfy (B0). We refer to thresholds ta0 ≤ ta1 < ... < taN ≤ 1

and tb0 ≤ tb1 < ... < tbN ≤ 1 as a partial solution with length N if they satisfy (An) and

(Bn) for n = 1, ..., N as well as (A0 : ta0 = 0), but not necessarily
(
B0 : tb0 = 0

)
.

4 Uniqueness

LRS discuss conditions for existence and uniqueness of an equilibrium outcome with two

categories where each of the two members vote either yes or no and the null is accepted if

there is at least one yes vote. But there is no known condition that guarantees existence

and/or uniqueness for arbitrary number of categories. LRS also point to the similarities

between the construction of the equilibrium partition in this setting and the construction

of equilibria in a cheap talk game played by an informed sender and an uninformed

receiver à la Crawford and Sobel (1982). The differences between the two approaches

are that asymmetric information is double sided within a committee (as opposed to the

single-sided asymmetry between the sender and the receiver) and the final decision to be

made is binary (whereas there is a continuum of available alternatives for the receiver

in Crawford and Sobel’s work). However, each committee member’s Bayesian strategy

can be thought as setting an acceptance cutoff on the [0, 1] continuum for each category

reported by the other committee member, leading to the resemblance of the equilibrium

conditions in the two settings. Therefore, as discussed by Crawford and Sobel, the

following monotonicity condition on the partial solutions (satisfying equations (An) and

(Bn) for n ≥ 1 and (A0)) would ensure uniqueness of a partition equilibrium with N

thresholds.

(M) : Suppose t =
(
ta0, t

a
1, ..., t

a
N ; tb0, t

b
1, ..., t

b
N

)
and t̃ =

(
t̃a0, t̃

a
1, ..., t̃

a
N ; t̃b0, t̃

b
1, ..., t̃

b
N

)
are

two partial solutions as defined above. If ta1 > t̃a1, then tan > t̃an for n > 1 and tbn < t̃bn for

n ≥ 0.

Crawford and Sobel provide a sufficient condition on the primitives of their model for

(M) in their Theorem 2. They show this by proving that, once their sufficient condition

is satisfied, an increase in the initial condition ta1 of the iterative process defining the
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other thresholds implies an even higher increase for ta2, and even higher one on ta3, etc.

This leads to the equilibrium structure that each category is larger than the preceding

one, which is a familiar feature from their uniform-quadratic example. In the context of

the current two-sided asymmetric information / binary decision setting however, their

sufficient condition corresponds to a likelihood (of the null) which is a function of the

sum of the observations of the two members. This is not satisfied by the likelihood

ga (xa) gb
(
xb
)

under the conditional independence of the observations in the LRS model.

Below, we will demonstrate that the concavity of gi (·) /gi′ for i = a, b is an alternative

sufficient condition for (M) and therefore for the uniqueness within the class of N -

threshold equilibria.2 Under this concavity condition, we can establish not only the

monotonicity of the partial solution’s thresholds in the initial threshold ta1, but also the

monotonicity of the evolution of the likelihood of the null state corresponding to the

threshold pairs of the two members. This concavity condition is satisfied by a broad

range of distributions, e.g. power functions where the random variable x is governed by

the cumulative distribution function xm for m ≥ 2. The corresponding density function

gi (x) = mxm−1 yields a linear (and therefore concave) gi (x) /gi′ (x).

To provide the uniqueness argument, we start with defining the likelihood levels at

the kink points of the step function separating the acceptance and rejection regions:

g
n

= ga (tan) gb
(
tbN−n

)
and gn = ga (tan) gb

(
tbN−n+1

)
. Now, let us use a change of variable

to rewrite the conditions (An) and (BN−n) as follows:

(An) :
1

ga (tan)

gn∫
g
n

z − ka

gb′ (xb)
dz = 0, (1)

where xb is defined implicitly as the unique solution to equation ga (tan) gb
(
xb
)

= z which

yields the following relation between xb and tan for fixed z:

dxb

dtan
= −

ga′ (tan) gb
(
xb
)

ga (tan) gb′ (xb)
.

2Where gi′ (·) refers to the first derivative of the density function gi (·).
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Similarly,

(BN−n) :
1

gb
(
tbN−n

) gn+1∫
g
n

z − kb

ga′ (xa)
dz = 0, (2)

where xa is the unique solution to equation ga (xa) gb
(
tbN−n

)
= z, and so for fixed z we

have dxa

dtbN−n
= −ga(xa)gb′(tbN−n)

ga′(xa)gb(tbN−n)
.

The following Lemma is based on the analysis of conditions (1) and (2):

Lemma 1 1. Suppose gb (·) /gb′ (·) is concave. If both gn and tan increase, and at least

one of them increases strictly, then g
n
and tbN−n decrease strictly for condition (An)

to continue to hold.

2. Suppose ga (·) /ga′ (·) is concave. If both g
n
and tbN−n decrease, and at least one of

them decreases strictly, then gn+1 and tan+1 increase strictly for condition (BN−n)

to continue to hold.

Using Lemma 1 we establish the following uniqueness result.

Proposition 1 If ga (·) /ga′ (·) and gb (·) /gb′ (·) are both concave, then condition (M)

holds and there is at most one equilibrium partitioning the signal space of each member

with N thresholds, for any given N.

In the rest of our analysis we assume that the concavity conditions of Proposition 1

are satisfied by the distributions of the members’ signals.

As highlighted in the Introduction, this uniqueness result together with the analysis

of LRS (2001) allow to rank different equilibria in terms of efficiency. As the number

of equilibrium categories increases, ex-ante expected cost of type-1 and type-2 errors de-

crease for both committee members. This implies that the most efficient equilibrium has

the largest possible number of categories. In the next section, we introduce a procedure

to identify the highest number of categories.
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5 The Partition Equilibrium with Most Categories

We start this section with an important property of the step function separating the ac-

ceptance and rejection areas in the data space. Each (horizontal and vertical) step of this

function passes through the disagreement zone where the two members of the committee

cannot agree on accepting or rejecting the null. In Figure 1, the disagreement zone corre-

sponds to the area between the two downward-sloping curves. For an environment with

bounded support and bounded likelihood functions for the distributions, this observation

implies an upper bound on the number of categories that can be supported in a partition

equilibrium.

In order to identify the highest number of equilibrium categories, we introduce the

following partial solution. Partial solution t̂ (N) with arbitrary length N is constructed

with the initial condition t̂a1 (N) = t̂a0 (N) = 0.3 Thanks to condition (M) such a partial

solution would be well-defined as long as its final element is in the signal space: t̂b0 (N) ≥ 0.

(It follows from ga (1) gb (0) > ka that threshold t̂aN (N) is bounded away from 1 as long

as t̂b0 (N) satisfying (AN) exists.) Because the first category of voting for member A has

zero measure, t̂ (N) is essentially identical to a partial solution t̃ (N − 1) with length

N − 1, where t̃an (N − 1) = t̂an+1 (N) and t̃bn (N − 1) = t̂bn (N) for 1 ≤ n ≤ N − 1.

The maximum number of thresholds that can be sustained in a partition equilibrium

is determined by the maximum length N̄ that partial solution t̂ (N) can have: Existence

of a partition equilibrium that has more thresholds than N̄ would violate condition (M),

and we can construct an equilibrium with length N̄ by using a continuous deformation

argument as in Crawford and Sobel (1982). To see this construction, consider partial

solution tx =
(
txa0 , t

xa
1 , ..., t

xa
N̄

; txb0 , t
xb
1 , ..., t

xb
N̄

)
with length N̄ satisfying (A0), (An), and

(Bn) with the initial condition txa1 = x. If x = 0 then tx = t̂
(
N̄
)
. As x increases,

condition (M) implies that thresholds txan increase for n > 0 and thresholds txbn decrease

for n ≥ 0 continuously. Consider the most extreme threshold txb0 . For a large enough

3Recall that, when ta0 = ta1 , we define tbN as the solution to the equation ga (ta0) gb
(
tbN
)

= kb. This
maintains continuity of tbN in ta0 and ta1 .
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value of x, threshold txb0 assumes value 0 and the corresponding tx gives us N̄ pairs of

equilibrium thresholds.

We can also see that the value of x that ensures txb0 = 0 is smaller than t̂a2
(
N̄
)
.

Otherwise, txb0 > 0 for x = t̂a2
(
N̄
)

= t̃a1
(
N̄ − 1

)
and partial solution tx with length

N̄ would correspond to t̃
(
N̄
)
, indicating existence of t̂

(
N̄ + 1

)
, in contradiction to N̄

being the maximum length for such a partial solution. This observation will be crucial

in the following section, when deriving the result on the magnitudes of the committee’s

mistakes.

Once the maximum number of thresholds N̄ that can be supported in an equilibrium

is identified, the same continuous deformation procedure can be repeated to establish

that there exists an equilibrium with N thresholds as long as 1 < N ≤ N̄ .

6 Worst Mistakes

Because each step of the step function separating the equilibrium acceptance and rejection

regions is crossing the disagreement zone between the two members, the equilibrium

decision of the committee is ex-post inefficient. In other words, the committee will make

decisions to the contrary of the preferences of its members ka, kb and the aggregation of

their observations xa, xb. These mistakes will be made at signal pairs in the neighborhood

of the kink points of the step function separating the acceptance and rejection regions,

indicated by the shaded areas in Figure 1.4

The magnitudes of the committee’s mistakes can be identified by the likelihood of

the null state on the graph of this step function. Under the concavity of ga(·)
ga′(·) and gb(·)

gb′(·) ,

concentrating on the most informative (and therefore most efficient) partition equilibrium

with N̄ thresholds, we show that the worst mistakes are made when member A indicates

a high preference for acceptance after observing her individual signal and member B

4At the kink points of the graph of the step function bordering the equilibrium acceptance and
rejection regions, the likelihood levels are either lower than both members’ relative false-acceptance cost
(ga (tan) gb

(
tbm
)
< ka < kb for n + m = N) or higher than both members’ relative false-acceptance cost

(ga (tan) gb
(
tbm
)
> kb > ka for n + m = N + 1).
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indicates a high preference for rejection: If the outcome is implemented with a scoring

mechanism, the worst errors are committed when B votes 0 and A votes either N̄ (for

a false acceptance with the lowest likelihood) or N̄ − 1 (for a false rejection with the

highest likelihood). Suppose that partition in Figure 1 is the partition of the equilibrium

with the highest number of categories. According to our next result, the false acceptance

of the null with the lowest likelihood happens around signal pair (ta2, 0) and the false

rejection of the null with the highest likelihood is around
(
ta2, t

b
1

)
. The magnitudes of

both types of errors decline as we move both upwards and leftward on the graph to the

other kink points of the step function.

Proposition 2 Suppose ga(·)
ga′(·) and

gb(·)
gb′(·) are both concave. If t

∗ =
(
t∗a0 , t

∗a
1 , ..., t

∗a
N̄

; t∗b0 , t
∗b
1 , ..., t

∗b
N̄

)
is the most informative equilibrium solution with the highest possible number of thresholds

N̄ , then g
n

(t∗) is decreasing and gn (t∗) is increasing in n.

7 Appendix

Proof of Lemma 1

Let us begin by proving the statement of part (1). Totally differentiating the left-

hand-side of (An) yields:

gn − ka

gb′
(
tbN−n+1

)dgn +
ka − g

n

gb′
(
tbN−n

)dg
n

+

 gn∫
g
n

[z − ka]
d
(
gb′
(
xb
))−1

dtan
dz

 dtan = 0. (3)

The coefficients of dgn and dg
n

are positive. To see that coefficient of dtan is positive,

notice that

d
(
gb′
(
xb
))−1

= −
gb′′
(
xb
)

(gb′ (xb))2dx
b =

ga′ (tan) gb
(
xb
)
gb′
(
xb
)

ga (tan) (gb′ (xb))3 dtan.
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Therefore the integral in (3) can be rewritten as follows:

gn∫
g
n

[z − ka]
ga′ (tan) gb

(
xb
)
gb′′
(
xb
)

ga (tan) (gb′ (xb))3 dz =
ga′ (tan)

ga (tan)

tbN−n+1∫
tbN−n

[
ga (tan) gb

(
xb
)
− ka

] gb (xb) gb′′ (xb)
(gb′ (xb))2 dxb.

The ratio ga′(tan)
ga(tan)

is positive. Concavity of gb(·)
gb′(·) implies

gb(xb)gb′′(xb)
(gb′(xb))

2 is non-decreasing

in xb. Moreover, we know that
tbN−n+1∫
tbN−n

[
ga (tan) gb

(
xb
)
− ka

]
dxb = 0 and the integrand

ga (tan) gb
(
xb
)
−ka is increasing in xb. This establishes that the coefficient of dtan is positive.

Hence, if both tan and gn are increasing (at least one of the strictly), it must be that g
n

is

strictly decreasing for equation (An) to continue to hold. Because g
n

= ga (tan) gb
(
tbN−n

)
,

this also implies that tbN−n is strictly decreasing. This completes the proof of the state-

ment in part (1) of the Lemma.

The proof of the statement in part (2) is analogous and is therefore omitted. Q.E.D.

Proof of Proposition 1

The proof follows from Lemma 1. Start with an arbitrary partial solution with length

N . (If there is no such partial solution, the proposition is trivially correct for N .) An

increase in ta1 implies a decrease in tbN and g
0

and an increase in g1 (from (BN)). Then

part (1) of the lemma implies a decrease in g
1

and tbN−1, and part (2) in turn implies an

increase in g2 and ta2. Continuing in this fashion up to taN and tb0 establishes (M). Q.E.D.

Proof of Proposition 2

We prove this result in two steps, each of which relies on an induction argument. The

first step establishes the monotonicity of the likelihood levels calculated at the threshold

pairs of the partial solution t̂
(
N̄
)
. The second step shows that this monotonicity is

maintained by the continuous deformation of t̂
(
N̄
)

that yields the equilibrium solution

t∗. For brevity, we drop the argument
(
N̄
)

of t̂.

Step 1. g
n

(
t̂
)

is decreasing and gn
(
t̂
)

is increasing in n.

Given that t̂a0 = t̂a1 = 0 and t̂bN is the solution to ga (0) gb
(
t̂bN
)

= kb, we know that
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g
0

(
t̂
)

= g1

(
t̂
)

= kb. It follows from (A1) that g
1

(
t̂
)
< ka < kb = g

0

(
t̂
)
, and it follows

from (BN−1) that g
2

(
t̂
)
< kb. This constitutes the first step of the induction argument.

Comparing (BN−n−1) with (BN−n) for arbitrary n ≥ 0, part (2) of Lemma 1 implies that

if g
n+1

(
t̂
)
< g

n

(
t̂
)
, then gn+2

(
t̂
)
> gn+1

(
t̂
)
. Similarly, comparing (An+2) to (An+1), part

(1) of Lemma 1 implies that if gn+2

(
t̂
)
> gn+1

(
t̂
)
, then g

n+2

(
t̂
)
< g

n+1

(
t̂
)
.

Step 2. g
n

(tx) is decreasing and gn (tx) is increasing in n, where tx is the continuous

deformation of t̂ defined by the initial condition txa1 = x for 0 ≤ x ≤ t̂a2 as above.

If x = 0 then tx = t̂. As x increases in the interval
[
0, t̂a2

]
, monotonicity condition

implies that thresholds txan increase for n > 0 and thresholds txbn decrease for n ≥ 0 in x.

A decreasing txbN implies that g
0

(tx) is also continuously decreasing in x. By Lemma 1,

gn (tx) is increasing and g
n

(tx) is decreasing in x for n ≤ N̄ . At the upper bound of this

continuous deformation where x = t̂a2, the first N̄ − 1 pairs of tx are identical to the last

N̄ − 1 pairs of t̂, i.e. txan = t̂an+1 and txbn = t̂bn for 1 ≤ n ≤ N̄ − 1 if x = t̂a2. For x < t̂a2,

this upper bound implies that the value of gn (tx) remains smaller than gn+1

(
t̂
)

and the

value of g
n

(tx) remains larger than g
n+1

(
t̂
)

for n < N . That is, for any x ∈
[
0, t̂a2

)
, and

in particular for the value of x yielding the N̄ pairs of equilibrium thresholds, we have:

gn
(
t̂
)
≤ gn (tx) < gn+1

(
t̂
)

for n < N and gN
(
t̂
)
≤ gN (tx) ,

g
n

(
t̂
)
≥ g

n
(tx) > g

n+1

(
t̂
)

for n < N and g
N

(
t̂
)
≤ g

N
(tx) .

Q.E.D.
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Figure 1: An equilibrium partition with 3 categories
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The step function separates the acceptance (of the null) and rejection re-

gions in equilibrium. The two downward-sloping curves (ga (xa) gb
(
xb
)

= ka

and ga (xa) gb
(
xb
)

= kb) indicate the preferences of the two committee mem-

bers. Each step of the step function crosses the disagreement zone between

these two curves, implying that the committee can make decisions to the con-

trary of the preferences of both members. The shaded areas give the signal

pairs for which the committee makes such wrong decisions.
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