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1. Introduction

Reinforcement learning (RL) algorithms are designed to learn from data and adapt ac-

tions toward an optimal policy with minimal assumptions about the underlying decision

process. Such algorithms have become a prevalent tool for decision making in complex eco-

nomic environments, with applications in airline pricing, gasoline pricing, stock markets,

security force deployment, and more. Economists have become increasingly interested in

how RL affects strategic behavior of firms and markets. Simulations of RL by economists

have suggested that firms often end up learning how to collude with each other. This raises

the theoretical question of how RL facilitates collusion. The aim of this project is to shed

light on the complex process that appears to allow independent RL agents to learn to play

collusive, state dependent strategies in a large class of repeated games with continuous

actions. While holding in a broader environment, my results are of relevance for regulators

interested in which types of learners, under which market and payoff conditions, are more

likely to arrive at collusion.

Despite the fast growing economic literature on deep learning, machine learning and

related advancements in computer science, there is still a lack of understanding in the

effect RL can have on economic outcomes stemming from strategic interactions between

such agents. So far, and perhaps to an extend due to the complexity of the problem, most

attempts at an answer have been either empirical or simulation-based.

This project attempts to fill this gap. I aim to shed light on the analytical underpinnings

of the effect large scale deployment of RL agents has on economic outcomes.

(1) I provide a framework to study the limiting behavior of a general class of RL agents

who compete in strategic environments.

(2) I show that limiting strategies of RL in my class act as a selection mechanism among

repeated game strategies, based on details of the game and algorithms in play.

(3) I argue that this framework opens up an important comparative statics exercise:

Changes in the game can affect the set of possible limiting behaviors observed when

RL agents play.

My class of RL agents contains, among others, actor-critic and gradient-based algorithms

playing on continuous action spaces and discrete state spaces. I allow agents to maintain a

possibly biased estimator of their current gradient or value function (the critic), and update

policies (the actor) towards a presumed optimal direction. Such agents are able to support

state-dependent repeated game policies. The RL agents can maintain estimates of their

payoff functions and distributions of observed shocks, but do not have explicit models of
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their opponent behavior or payoffs. This can best be thought of as a model free solution

to a firm’s problem of finding an optimal behavior based on observed state variables, when

information about competitors is hard to come by or the risk of misspecifying an opponent

model is deemed too high. I provide sufficient conditions for algorithms to fall into my

class as well as an example algorithm that satisfies those conditions.

While my analysis applies to general repeated continuous action games, its potential

is perhaps best shown via the example of competing firms and collusion. The case of

competing algorithms has attracted attention from economists in the recent years. Both

empirical evidence (Assad et al. 2020) and numerical simulations (Klein 2021, Calvano,

Calzolari, Denicolo, et al. 2020,Calvano, Calzolari, Denicoló, et al. 2021) suggest that a

market composed of reinforcement algorithms may be vulnerable to collusive pricing strate-

gies. Their evidence suggests that RL agents in the limit may not only be able to sustain

supra-competitive profits, but also learn correctly to play repeated game strategies akin

to typical strategies analysed in the literature on repeated games. One can see from their

observations that not all payoffs of the repeated game that are supportable through a Folk

theorem are observed as limiting payoffs of the RL agents. Simulations however can take

us not much further than that.

My analytical framework allows to ask precisely: which payoffs of the repeated game are

supportable? And what strategies that support those payoffs are feasible limiting strate-

gies of the RL agents? Furthermore, my framework will allow us to evaluate how robust

the simulation results are to choices of the underlying game and details of the algorithms

playing that game.

Specifically, my analysis shows which equilibrium strategies can be selected in the limit

as RL agents play. Arguments from stochastic approximation theory allow me to connect

the limiting process of RL strategy profiles to an underlying differential equation that de-

pends on details of the game and the algorithms involved. I show that, given the state

space agents play on, limits of the process of RL strategy profiles get selected based on

their asymptotic stability with respect to that underlying differential equation. In the

case of actor-critic Q-learning, this differential equation is a state-dependent best response

dynamic, where best responses are computed among the set of stationary strategies with

respect to the fixed state space.
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To fix ideas, consider the state space only consisting of the previous period’s price as in

Calvano, Calzolari, Denicoló, et al. 2021’s imperfect public monitoring game. My result

then implies that if an equilibrium is asymptotically stable with respect to a state-dependent

best response dynamics, then there is positive probability that it will be reached by the

algorithms. Conversely, if it is unstable, it can never be a limiting point of algorithm play.

We can then ask how the price distribution, and cost functions of the firms affect the stabil-

ity of collusive equilibria of that game given the state space. This will allow to understand

details of games as more or less amenable to collusion among specific types of algorithms.

Relation to the Literature

Broadly speaking, this project speaks to results in asymptotic behavior of algorithms in

the computer science literature, the classical theory of learning in games, as well as the

theory of repeated games and equilibrium refinements.

Firstly, this paper makes use of an extensive body of research related to stochastic approx-

imation theory (see for example Borkar 2009) and hyperbolic theory (Palis Jr, Melo, et al.

1982). There is a growing strand of the computer science literature devoted to establishing

convergence proofs in multi agent algorithmic environments. The paper in that area closest

to this one is by Mazumdar, Ratliff, and Sastry 2020. They establish a connection between

gradient-based learning algorithms for continuous action games and asymptotic stability of

equilibria of the underlying game. While nested in our RL class, the updating rules that

Mazumdar, Ratliff, and Sastry 2020 consider implicitly assume that agents observe each

other’s per period policies, or at least observe an unbiased estimator of their per-period

value function gradient. I argue that this assumption is difficult to satisfy, especially in the

case of continuous action games. I give lower level sufficient conditions algorithms must

satisfy in order to fall into the class I consider, and also provide a full example of an algo-

rithm that satisfies all those conditions. My results suggest that Mazumdar, Ratliff, and

Sastry 2020’s results are robust to the type of bias in the gradient estimation that my RL

class allows.

Other papers related to asymptotic analysis of multi-agent systems commonly focus on one

specific algorithm, allow communication across agents, require information on the primitives

of the game, or do not ask about the nature of the limiting points. Notably, Ramaswamy

and Hullermeier 2021 give a more general treatment on asymptotic analysis of RL without

considering stability properties of rest points. Others focus on specific classes of games, for

example zero sum games (Sayin et al. 2021) and show convergence of multi-agent learning
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there.

Leslie, Perkins, and Xu 2020’s paper takes us from project intended for computer sci-

entist audiences to those more intended for economists. They consider zero-sum Markov

games and construct an updating scheme related to best response dynamics that converges

to equilibria of the game. As they also keep track of separate policy and value function

updates, their scheme falls into the class of actor-critic learning rules. Perhaps more due to

notation and framing than due to content, Leslie, Perkins, and Xu 2020’s paper is consid-

ered as research in the theory of learning in games much more so than algorithmic learning

theory.

When it comes to the theory of learning in games more generally, this paper looks into

the ability of agents following a heuristic, uncoupled learning rule to learn how to play

repeated game strategies. I impose an informational constraint on agents, namely that

they be unable to observe other agent’s payoffs or actions, and not able to build a model

of their opponent’s behaviors. The RL class I consider can thus be seen as agents following

uncoupled learning rules as defined in Hart and Mas-Colell 2003. However, the fact that

in my paper agents learn to play repeated game policies is in contrast to the classical game

theoretic learning literature, that generally considers the process of learning to play static

game Nash equilibria. In that sense, this project sheds light on the ability of agents to learn

to play equilibria of a repeated game other than the static equilibrium of the underlying

stage game. At the same time, since the agents I consider learn policies on a fixed state

space, one may recast their payoffs as expected discounted payoffs based on stationary

strategy profiles that can only condition on that state space. Taking that view, one can say

that agents in my class of RL algorithms learn to play Nash equilibria of a repeated stage

game with multi-dimensional continuous actions. In this sense my analysis ties neatly into

classical analysis of the theory of learning in games with minimal information requirements.

Finally, this paper casts RL competition as an equilibrium selection mechanism. It is a

common observation in the learning literature that when agents follow heuristic learning

rules, they may not be able to learn to play all possible equilibria of the game, or not even

converge to an equilibrium. This paper is no different, and also allows for the possibility

of games for which agents may converge to cycles. However, the classical literature was

developed as model to understand how rational agents may learn to play Nash equilibria,

whereas here we consider real economic agents that happen to be algorithmic and show

that their behavior can be understood through the theory of learning in games. We refer to
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Fudenberg and Levine 2009 for an excellent review of issues regarding the theory of learning

in games, including algorithmic learning and applications of stochastic approximation.

The paper is structured as follows: In section 2 we define the general class of RL agents

we analyse, and provide general limiting results in section 3. In section 4 we define the

specific game environment we want to analyse our class of RL on. In section 5 we define

actor-critic deep Q-learning as important motivation and give sufficient conditions for such

learners to be part of our class when playing our game. In section 6 we argue how our class

of learners act as equilibrium selectors. Section 7 concludes.

2. Modelling Reinforcement Learning

We first give a set of mathematical definitions we will use throughout the paper.

2.1. Mathematical Preliminaries

Let X, Y be two metric spaces.

• Let Ci[X, Y ] be the set of functions that is i times continuously differentiable, with

domain X and range Y .

• For γ > 0, let Biγ be the set of Ci functions with bounded derivatives :

Biγ =
{
g : E 7→ E; | sup

x∈E
‖g(x)‖+

i∑
j=1

sup
x∈E
‖Djg(x)‖ ≤ γ

}
, (1)

where Djg represents the jth derivative.

• For any set B, define conv[B] as the convex closure.

• The Hausdorff distance between sets A,B is defined as

H(A,B) = max {sup
x∈A

d(x,B), sup
x′∈B

d(x′, A)},

with

d(x,A) = inf
x′∈A
‖x− x′‖.

2.2. Preliminaries to RL

We will define a model of policy-updating algorithms that perform well up to some bias.

We model RL agents that update policies using information gathered about an underlying

value function of the problem they’re facing. In general we assume that these agents don’t

know the true value function of the repeated game, and neither the stage game. In such
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cases, RL algorithms update policies using some estimate of a value function or at least a

value-increasing direction. There are multiple reasons why this is a difficult situation for

such agents when it comes to learning a good policy.

The fact that there are multiple agents involved in updating independent policies implies

that each agent learns in a nonstationary environment. Nonstationarity means that agents

are trying to follow a moving target, which can cause value function approximations to be

inconsistent. Furthermore, as we consider learning under continuous controls, unbiasedly

estimating a value function becomes an even more daunting task. Very commonly in such

situations agents use some form of parametric function approximation to generate an es-

timate, which can introduce bias. Often that involves deep neural networks due to their

flexibility and scaleability. We will be abstract about the estimation of the value function

and therefore introduce a class of algorithms that perform reasonably well in the function

approximation step, according to our conditions.

We believe that allowing for a bias significantly increases the number of learning algorithms

that fall into our class of RL agents, due to the inherent problems these agents face while

learning, as outlined above. We refer to François-Lavet et al. 2018 for an excellent intro-

duction to state of the art RL techniques and a deeper dive into issues of biased estimation

of value functions and their gradients. We will show that the bias we allow in our class

does not affect the main results in the next section.

First we need to define the class of functions to be approximated:

Definition 1. We define the setM1 of (possibly multivalued) maps G with compact domain

X ⊂ Rk and range P [R] for compact set R ⊂ Rd s.t.

• G(x) ⊂ R is convex, compact valued.

• There exists c > 0 such that sup{‖y‖ : y ∈ G(x)} ≤ c(1 + ‖x‖) for all x ∈ X, i.e.

linear growth.

• There is a union of connected sets C ⊆ X of positive measure, UG =
⋃
C, such that

G(x) is C1 for x ∈ UG.

Remark 1. We allow for multivaluedness to be able to handle to common learning scheme

of actor-critic Q-learning, which maintains estimates of the argmax of a value function.

Note however that C1 ⊂M1.

Definition 2 (C1 Approximation). hhh

Let Y be some space of observations to be used to approximate a function. Given γ > 0, we

say that a function approximation operator Ag :M1 × Y 7→ M1 is a C1 Approximation of

a G ∈ M1 if there is an increasing sequence of σ-fields Fn generated by datasets Dn ∈ Y ,

an error function g ∈ B1
γ and an integer N > 0 such that we can write for all n ≥ N :
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(i) For all x ∈ X,

H
(
G(x), Ag[G,Dn](x)

)
< γ + δ(x,Dn),

where δ(x,Dn) ≥ 0 is such that supx∈X δ(x,Dn) →p 0 as n → ∞. ”→p” denotes

convergence in probability.

(ii) For all x ∈ UG,

Ag[G,Dn](x) = G(x) + g(x) +R(x,Dn),

with g ∈ B1
γ, and R(x,Dn) is a (possibly singleton) set such that

sup
x∈X

sup
δn(x)∈R(x,Dn)

‖δn(x)‖ →p 0,

as n→∞.

One can interpret g(x) as representing the bias part of the function approximation, and

δ(x,Dn) as a random variable such that E[‖δ(x,Dn)‖2 | Fn] represents the variance part.

In the case of Q learning, Dn only needs to consist of (st, at, rt, st+1)nt=1, i.e. past obser-

vations of states, actions, payoffs, state transitions, and the initial Q0.

Generally one can think of Ag[G,Dn](·) as a parametric or non-parametric function ap-

proximation, with bounded errors that can be approximated by a small C1 function after

enough data (large n) has been accumulated.

2.3. A class of Reinforcement Learners

Here we provide a general model of reinforcement learning abstracting away from un-

derlying details of the environment that is being played on. We assume there is a set of I

agents with |I| = n. Agents observe states on some fixed, finite state space S with |S| = k,

and make per period choices (actions) in compact interval Ai. They are thus able to iterate

over policies xi ∈ Āi = Aki , with policy profile space E = ×i∈IĀi. Agents then follow a

fixed rule (algorithm) to update their strategy profiles over time.

Definition 3. Given g ∈ B1
γ and observation space Y , let Dn ∈ Y be a sequence of datasets

and Ag[F,Dn] be a C1 approximation of F (x) ∈M1 (3). Then for profiles xn ∈ E we model

our algorithm as

xn+1 = xn + αn [Ag[F,Dn](xn) +Mn+1] , (2)

We assume:
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(1) Agent are independent and do not communicate. Each agent i runs a separate

updating scheme

xin+1 = xin + αn
[
Aig[F,Dn](xin) +M i

n+1

]
,

such that Ag[F,Dn](xn) is the stacked vector of function approximators Aig[F,Dn]

and similarly for shocks M i
n+1. The stacked result Ag[F,Dn](xn) is a C1 approxi-

mation of F (x), so we can write the overall updating to profiles xn as in 2.

(2) Fn is the σ-field generated by {xn, Dn,Mn, xn−1, Dn−1,Mn−1..., x0, D0,M0}, i.e. all

the information available to the updating rule at a given period n.

(3) Mn+1 are shocks the algorithm designer generates in order to induce exploration.

There is 0 < M̄ <∞, q ≥ 2 such that for all n

E[Mn+1 |Fn] = 0; E[‖Mn+1‖q |Fn] < M̄

(4) Support condition: Recall K = supA, the upper bound of the action set. For n large

enough,

−xn
αn
−Ag[F,Dn](xn) ≤Mn+1 ≤

K − xn
αn

−Ag[F,Dn](xn)

holds almost surely, conditional on Fn. Since the algorithm designer samples Mn+1

themselves, this can always be satisfied.

(5) Whenever xn ∈ U ,

Ωn ≡ E[Mn+1M
′
n+1 |Fn],

where Ωn is symmetric positive definite for all n.

(6) Write εn = Ag[F,Dn](xn)− F (xn). Then Mn+1, εn are independent conditional on

Fn.

(7) Robbins-Monro Condition on stepsizes:

αn → 0 with
∞∑
n=0

αn =∞;
∞∑
n=0

α2
n <∞.

Note that we have assumed that F (x) is single valued only on U . If for some x /∈ U ,

F (x) is not a singleton, we allow the algorithm to pick an arbitrary selection.

Remark 2. The only assumption above that is non-standard with respect to the algorithmic

learning literature is item 4. This assumption is made to ensure that updates stay within

their compact strategy spaces. When noise is generated by the algorithm as a means of

exploration, at every period this can be satisfied by drawing from a support that satisfies
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this condition. There are multiple different options when it comes to exploration of con-

tinuous control spaces. The method assumed here falls into the case of ’parameter space

noise’ (Plappert et al. 2017). It is sufficient for the results to go through, but alternative

interpretations of Mn+1 exist, such as noise generated by the function approximation A.

Remark 3. Notice that Definition 2 does not exclude the case in which the function to

be approximated is fully known, or there is no bias term. Our results thus include the

case where agents know their value functions and follow a simple heuristic in updating

their payoffs, taking as an input the current strategies of their opponent. In the case where

F (X) is a gradient, this scenario is similarly treated in Mazumdar, Ratliff, and Sastry 2020.

We also refer to Mazumdar, Ratliff, and Sastry 2020 for a list of classes of algorithms that

are included in our definition.

3. Limiting Behavior

Definition 4. Take the algorithm 2. The limit set is defined as

Lg =
⋂
n≥0

{xs |s ≥ n},

the set of limits of convergent subsequences xtk . We write g as subscript to underline the

dependence on bias function g.

Definition 5. Let x∗ be a rest point of F (x), and = eigv[DF (x∗)] the set of eigenvalues.

For a complex number z, let Re[z] ∈ R be the real part. x∗ is

• Hyperbolic if Re[λ] 6= 0 holds for all λ ∈ Λ.

• Asymptotically stable if Re[λ] < 0 holds for all λ ∈ Λ.

• Linearly unstable if Re[λ] > 0 holds for at least one λ ∈ Λ.

Proposition 1. With probabilitiy one, Lg is an internally chain transitive (ICT) set1 of

the differential inclusion

ẋ ∈ Fg(x(t)) ≡ conv[F (x(t))] + g(x(t)).

Proof Sketch of Proposition 1

The full proof for this and the following Propositions can be found in Appendix A. This

proof follows from celebrated results in stochastic approximation theory. In a nutshell, we

relate a time-interpolated version of the recursion xn in 2 to the solution of the differential

inclusion in Proposition 1. The limiting behavior of xn can then be deduced from a subset

1Importantly, these sets include rest points and limit cycles (if they exist). We refer to Benaım, Hofbauer,
and Sorin 2005 Definition 6 for a definition, and Papadimitriou and Piliouras 2018 for an intuitive discussion.
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of the limiting behaviors of the differential inclusion, which are precisely the internally

chain transitive sets.

Proposition 2. Let x∗ ∈ UF be asymptotically stable for F . Then for all γ small enough

and all g ∈ B1
γ there is a profile xg such that

(1) supg∈B1γ |x
g − x∗| → 0 as γ → 0.

(2) P [Lg = {xg}] > 0.

Proof Sketch of Proposition 2

The proof first establishes a firm connection between x∗ and xg. We use a more general

version of the inverse function theorem to show that since g(x) is a well behaved, differen-

tiable bias term, for every x∗ there is a unique rest point xg. Further, stability of x∗ must

carry over to stability of xg. Then we use the stochastic approximation method to relate,

for large enough n, the recursion 2 to the solution of the differential inclusion defined in

Proposition 1. Once it is established that xn tracks solutions to such a differential system

over time, it is then intuitive that attracting points of the differential system will also

attract xn over time.

Proposition 3. Let x∗ ∈ UF be linearly unstable for F . Then for all γ small enough and

all g ∈ B1
γ there is an open neighborhood Uγ with x∗ ∈ Uγ such that

P [Lg ∈ Uγ] = 0.

Proof Sketch of Proposition 3

Firstly, as in the proof of Proposition 2, we establish a one to one relationship between the

stability properties of x∗ and the rest points xg. xg being unstable hyperbolic implies that

there exists an unstable manifold that xg lies on, which acts as a repeller to the differential

inclusion Fg. We go on to show that due to the instability of xg and nonvanishing variance

of Mn+1, no matter how close the algorithm updates come to xg, and no matter how large

n is, there is always a high probability that xn lands on the unstable manifold and therefore

must move away from xg. Finally we show the existence of a neighborhood Uγ. We show

that due to the hyperbolicity of x∗, xg, there is a neighborhood U around xg with x∗ ∈ U
such that xg is the only internally chain transitive set within U . We recall that x∗ is not

internally chain transitive for the perturbed system Fg, and the result follows.

4. The Game Application

Having given technical results connecting limiting policies of general RL algorithms to

stability of rest points of underlying differential equations, we can take a closer look at
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what specific interactions multiple RL agents could have, and how those can translate to

an underlying differential equation. We first define the underlying environment the agents

can play on.

Throughout, it is important to keep in mind that we are defining an environment played

on not by rational agents, but by algorithms constrained to play a certain type of policies.

Definition 6 (The Game Played by Algorithms). hh

• Set of agents I, |I| = N .

• Common finite state space S with |S| = k.

• Interval-action space Ai = [0, Ki] with some large Ki < K <∞. A = ×i∈IAi
• Stationary strategy space based on S: Āi = Aki .

• Strategy profiles in E = ×i∈IĀi.
• Stage game payoff function ui(r, s), C2 in r ∈ A.

• States transition from s to s′ according to controlled Markov Transition kernel

Pss′(r) for r ∈ A.

• For every r ∈ A, states follow an irreducible positive recurrent Markov chain with

stationary distribution λ(s, r).

• There exists c ∈ (0, 1) such that λ(s, r) > c for all s ∈ S, r ∈ A.

At first glance, the description of the game above may remind one of a stochastic game.

Stochastic games, which take the notation ui(r, s) seriously and by definition take the state

as stage-game payoff relevant are included. The notation however allows us be more flexible

than that. Firstly, recall that RL agents in our class (3) are defined to be constrained to

playing strategies that condition on a fixed, pre-specified state space. This affects how we

define the strategy space for the game above. A different state space means not only a

different game-form, but also different available strategy sets. We are silent about how this

state space came to be and we do not model any incentives to design a state space.

Secondly, as we take this pre-specified state space seriously, we can include in our definition

also auxiliary games that arise from players playing finite automaton strategies given a

number of k states. In that case we consider the subpproblem of finding optimal strategies

within the set of stationary strategies there.

I give three examples that are within the breadth of Definition 6:

Example 1. hh

(1) S = Y , where Y is a set of outcomes a random variable can take that affects the

payoffs of the current stage game. This would be a stochastic game.
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(2) st = pt−1, where pt is the realization of a random variable can take that affects the

payoffs of the stage game in period t. Note that st is not payoff relevant, but gives a

constraint on the strategies RL agents can play (akin to bounded-recall strategies).

(3) S = {C,D} is a set abstract, automaton states. One can think of equilibria in which

s = C inspires agents to collude, while s = D initializes punishment.

For any i ∈ I, let Ā−i = ×j 6=iĀj. We can define repeated game payoff functions

W i(xi, x−i, s0) given stationary strategy profiles [xi, x−i] ∈ E:

W i(xi, x−i, s0) = E
∞∑
t=0

δtui(x(st), st).

Next, define Bi
S(x−i) as the optimal strategy given a profile x−i ∈ Ā−i, chosen from the

constraint set of stationary, S-state strategies:

Bi
S(x−i) = argmaxx∈ĀiW

i(x, x−i, s0),

where due to the irreducibility assumption in Definition 6 the optimal strategy does not

depend on the initial state s0. We let B̄S(x) be the stacked optimal strategy, stacked over

i.

We introduce these concepts because they will allow us to make sense of the strategies and

updating that the algorithms we consider are able to make. This will become especially

apparent when considering the subclass of actor-critic Q-learning as will be introduced in

subsection 5.

Assumption 1 (Equilibrium existence and differentiability). hhh

• We assume stationary equilibrium profiles x∗ ∈ E exist on state space S. Call the

set of such equilibria ES.

• For all x∗ ∈ ES, x∗ are interior to E and there is an open neighborhood Ux∗ with

x∗ ∈ U such that BS(x) is single valued for all x ∈ Ux∗.

We define U =
⋃
ES
Ux∗ . A sufficient condition for the first point in Assumption 1

to hold, is the existence of a static Nash equilibrium given u(r, s) for all s ∈ S. As

for the second point, such equilibria x∗ are sometimes referred to as ’differential Nash

equilibria’. A sufficient condition for such equilibria would be that the Hessian of each

agent’s optimization problem at the equilibrium be negative definite. As our analysis of

limiting strategies will depend on a smoothness condition of an underlying differential

equation at the given rest point, this assumption will prove crucial.

Next, for x ∈ E
FB(x) = B̄S(x)− x, (3)
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be the state dependent best response dynamics gradient field. This gradient field will be

a useful example of limiting differential equation for a prominent class of RL algorithms

within our class. In the next section we give an example of important algorithms that fall

into our class, and for which 3 would be the limiting differential equation.

5. Example: Actor-Critic DQN Learning

The RL class we defined in Definition 3 is given in general terms and it is not obvious

to see which algorithms can satisfy it. This section gives an example of very common RL

agents known as actor-critic, and a sufficient condition on their learning behavior so that

they satisfy our Definition 3 when playing a game as defined in 6.

In line with a canonical problem in reinforcement learning and also the main problem

we want to study, we will consider the task of approximating the maximizer of Q(s, a, y)

action-value function for a game as stated in Definition 6. This function is defined as the

fixed point of a Bellman equation:

Qi(s, a, y) = ui(s, a, y(s)) + δ
∑
s′∈S

Pss′(a, y(s)) max
a′∈Ai

Qi(s′, a′, y).

We include opponent policy profile y ∈ Ā−i as an argument to be clear about the depen-

dence of payoffs on opponent’s profiles.

This class of algorithm is called actor-critic because it iterates over two separate objects,

where one the update of one is based on the other. Every period, it updates both an

estimate of the Q-function (the critic), and the policy (the actor) using the estimate of the

Q-function.

Define the argmax operator T , so that

T Q(s, a, y) = argmaxa′∈AQ(s, a, y).

Here θn ∈ Θ ⊂ RD is element of a sequence of large but finite dimensional vectors that pin

down the DQN approximation. For a concise introduction, see Mnih et al. 2015 or chapter

3 in Busoniu et al. 2017.

Suppose we consider agents whose policy profiles xin change according to the following

recursion:

xin+1(s) = xin(s) + αn

[
T Q̃i(s, a, θin)− xin +Mn+1

]
, (4)

for all s ∈ S, where we take our assumptions in Definition 3 to hold for all i, letting

T Q̃i(s, a, θin) − xin take the place of the approximation operator Aig[F i, Di
n](xin) in that

definition. For convenience we drop the i- superscript as often as possible.
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We define a (possibly growing) window size Bn < n for all n and define

Dn = {(st, at, rt, st+1) : n−Bn + 1 ≤ t ≤ n},

as the Bn-sized data set used to construct Q̃(s, a; θn). Dn is often referred to as ’experience-

replay buffer’. Using this set, data points are sampled to update θn at every period, for

example according to some gradient descent procedure (Mnih et al. 2015).

Define the space of functions in the range of the DQN approximation as

DQ =
{
Q(s, a; θ) : S × A×Θ 7→ R

∣∣ Q is twice differentiable in (a, θ)
}
.

Assumption 2 (Q-approximation: Sufficient Conditions). hhh

Let xin be generated by 4 for all i. We assume

(i) For all i, s, conv[T Q(s, a, y)] ∈M1. (See Definition 1)

(ii) Q̃(s, a; θn) is a synchronous DQN approximation, based for example on Mnih et al.

2015. See chapter 3 in Busoniu et al. 2017 for a review of successful Q- function

approximators.

(iii) There is gQ ∈ B2
γQ

such that

sup
s,a

∥∥Q̃(s, a; θn)−
[
Q(s, a, x−in ) + gQ(s, a, x−in , θn)

]∥∥→p 0,

as n→∞.

(iv) For all x ∈ U , θ ∈ Θ and all i, s, D2Qi(s, xi(s), x−i) + D2giQ(s, xi(s), x−i, θ) has full

rank. D2 is the second derivative in a.

Remark 4. Note that point (iii) is doing the main work among these assumptions. The

convergence behavior of DQN is a complex problem, and only very recently has there been

progress in providing asymptotic analysis in general settings. See for example Ramaswamy

and Hullermeier 2021.

In the best case with respect to asymptotics, one can have that Q̃(s, a; θn) converges to the

function in DQ closest to Q(s, a, x−in ). Define

Q̃(s, a; θ∗(x−in )) ≡ min
θ∈Θ

sup
(s,a)

∥∥Q̃(s, a; θ)−Q(s, a, x−in )
∥∥.

If we then have that

sup
(s,a)

∥∥Q̃(s, a; θn)− Q̃(s, a; θ∗(x−in ))
∥∥→p 0,

as n→∞, (iii) follows:

DQN involves nonlinear transformations from (s, a, θ) to outputs. Under mild regularity

conditions on DQ and Q(s, a, x−in ), it can then be seen that the difference Q̃(s, a; θ∗(x−in ))−
Q(s, a, x−in ) ∈ B2

γQ
, in which case point (iii) is satisfied.
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Lemma 1. Suppose Assumption 2 holds. Then conv[T Q̃(s, a; θn)] satisfies Definition 2.

Proof Sketch of Lemma 1

The proof makes use of the assumed good convergencde behavior of Q̃ (Assumption 2) as

well as the upper hemicontinuity of the argmax function with respect to the supremum

norm in bounded function spaces. Using these two tools, we show how the argmax of the

random function approximator must approach the argmax of the best parametric approxi-

mation of the true Q-function.

To show that Assumption 2 is satisfied by a nonempty set of algorithms, we refer to Ap-

pendix B for a fully developed example of an actor-critic learning algorithm that satisfies it.

6. Equilibrium Selection

Now that we are equipped with a good intuition of the class of algorithms defined in 3,

we can consider results on their limiting behavior more concretely.

Definition 7. A profile x is an ε-equilibrium if for all players i all individual profiles x′ ∈ Ā
and states s ∈ S

W i(x, s) ≥ W i(x′, x−i, s)− ε.

Corollary 1. In the case where F = FB, let x∗ ∈ Es be asymptotically stable for FB (3).

Then for all γ small enough and all g ∈ B1
γ there is a ε̄ > 0 and a profile xg such that

(1) xg is an ε-equilibrium for all ε ≥ ε̄

(2) supg∈B1γ |x
g − x∗| → 0 as γ → 0.

(3) P [Lg = {xg}] > 0.

If x∗ ∈ Es is unstable for FB, for all γ small enough and all g ∈ B1
γ there is an open

neighborhood Uγ with x∗ ∈ Uγ such that

P [Lg ∈ Uγ] = 0.

6.1. Discussion

Corollary 1 shows the full potential of our framework. It allows to interpret algorithms

in our class 3 as equilibrium-selection mechanism. Asymptotically stable equilibria are

equilibria that can be limiting points of the RL learning game, while unstable equilibria

are not. The intuition is related to how RL learn to play: since such agents make errors
15



by construction and also to explore their action space, opponent’s strategy profile are con-

stantly perturbed. In other words, out of the view of a fixed agent i, the other agents are

frequently deviating to policies nearby in the policy space. Now suppose the current profile

xn is close to an equilibrium x∗. Since i’s updating rule tracks FB, their policy will only

stay close to x∗ if the dynamics of FB are somehow robust to deviations. This robustness

is implied by asymptotic stability, and broken by unstable equilibria.

There is a caveat here however: Corollary 1 does not state that all limiting points in Lg

will be equilibria of the game. Depending on details of the game, we may or may not be

able to rule out the case where algorithm updates get trapped in a cycle, or other more

complex behavior not involving rest points (see Papadimitriou and Piliouras 2018). We do

not include cycles in the above definition, however it is straightforward to extend Propo-

sition 2 to the case of attracting cycles as in Faure and Roth 2010, and there exist results

considering linearly unstable cycles (Benaım and Faure 2012) that suggest one may extend

Proposition 3 to such linearly unstable cycles also.

For now, I have not extended my results to include cycles as I believe it of second order

importance to the understanding of stability properties of equilibrium rest points, which is

the main focus of this paper. I consider an extension of the result as interesting avenue for

further research.

Now let us restrict attention to the equilibrium limiting points of the algorithm learning

process. Importantly, recall that asymptotic stability of rest points is equivalent to an

eigenvalue condition as defined in 5. This gives rise to the possibility of an interesting

comparative statics exercise: how does the stability of a given set of equilibria change as

we change parameters of the game?

The question boils down to the perturbation theory of eigenvalues of the linearization

of FB at an equilibrium of interest. For example, given a fixed state space S, one can

characterize best equilibrium (with respect to payoffs) under that state space, or the most

collusive equilibrium (with respect to average quantities). One can then observe how the

stability of these equilibria changes as for example the elasticity of demand changes. This

analysis is a main focus of further research of the author.

7. Conclusion

This paper considers the limiting behavior of a broad class of RL algorithms and shows

that one can interpret these algorithms as equilibrium selection mechanism. By ways of
16



the example of collusion in repeated games, I observe the usefulness of this framework: it

allows one to consider comparative statics exercises with respect to details of the game

played by the RL agents. These comparative statics will allow to understand the change

in potential limiting behavior or RL algorithms when their game environment changes.

Potential applications include the prevalence of collusive limiting behavior when changing

demand elasticities, stochastic components of the firm’s payoffs, or firm’s cost functions.
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Appendix A. Proofs

A.1. Proof of Lemma 1

Consider Definition 2, (i).

Recall that Berge’s Theorem of the maximum shows upper hemicontinuity of the argmax

correspondence with respect to parameters. It allows for parameters living in function

spaces equipped with the sup norm. To apply Berge, we rewrite Q̃(s, a; θn). First, define

Q ≡
{
Q : S × E 7→ R

∣∣Q is twice differentiable in E and sup
(s,x)

‖Q(s, x)‖ <∞
}
,
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as the space of Q− functions that can be generated by our game as defined in 6. Then

define

B0
σ =

{
ε : S × A 7→ R

∣∣∣ ε is continuous in E ×Θ and sup
(s,a)

‖ε(s, a)‖ < σ
}
,

as the space of error functions resulting from the DQN estimation. Given some γQ, σ > 0

we can now define

F : Q× B2
γQ
× B0

σ 7→ DQ,

such that

F (Q, gq, ε) ≡ Q̃(s, a; θ) = Q(s, a, x) + gQ(s, a, x, θ) + ε(s, a),

where we can then treat gq, ε as parameters in Berge’s Theorem. Thus, T F (Q, gq, ε) is

upper hemnicontinuous in gq, ε. To connect back to our DQN estimation, write

F (Q(·, ·, x−in ), gq, εn) ≡ Q̃(s, a; θn).

It follows that under Assumption 2 (iii), for all γ > 0 there exists γQ > 0, N > 0 such that

for all gQ ∈ B2
γQ

and almost surely for all n ≥ N ,

H(T Q(s, a, xn), T Q̃(s, a; θn)) < γ,

and thus Definition 2, (i) holds.

Now for Definition 2, (ii):

Fix n large and take xn ∈ U . By our assumptions, xn is interior for each i. Fix an agent i.

Since interior, xn must solve the FOCs

DaQ(s, xin(s), x−in ) = 0 ∀ s.

Now consider T [Q(s, s, x−in ) + gQ(s, a, x−in , θn)]. Since gQ(s, a, xn, θn) ∈ B2
γQ

we can apply

arguments analogous to the proof of Proposition 2 to show that there is γQ small enough

s.t. the perturbed argmax a∗ must also be interior and solve

DaQ(s, a∗, x−in ) +DagQ(s, a∗, x−in , θn) = 0 ∀ s.

Next, by Assumption 2 (iv), we can apply the implicit function theorem to show that

a∗(x−in ) is differentiable in x−in in a neighborhood Ux−in of x−in . Using the terminology of

Definition 2, we can write

a∗(x−in , θn) = G(x−in ) + g(x−in , θn),

where g(x−in , θn) is differentiable in x−in and can be made to vanish as γQ vanishes, again

by arguments analogous to the proof of Proposition 2. Finally, write

conv
[
T Q̃(s, a; θn)

]
= G(x−in ) + g(x−in , θn) +RBn

n (x−in ),
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where RBn
n (x−in ) is a convex set resulting from the error term εn(s, a) in the definition of

Q̃(s, a; θn):

RBn
n (x−in ) =

{
z −

[
G(x−in ) + g(x−in , θn)

]
: z ∈ conv

[
T Q̃(s, a; θn)

]}
.

Note that by upper hemicontinuity of the argmax and our assumption on vanishing

εn(s, a),

sup
δn∈Rn(x−in )

‖δn‖ →p 0

as required.

One may wonder about the content of this as xn may move in and out of the neighborhood

U . This statement then means that we can always find N large enough such that if xn ∈ U
for n > N , Rn(xn) can be made negligible.

�

A.2. Proof of Proposition 1

Write M̄n+1 = Mn+1 + εn − g(xn), then the algorithm 2 can be written as

xn+1 = xn + αn
[
Fg(xn) + M̄n+1 + δn

]
,

were all assumption for the set valued convergence Theorem 3.6 in Benaım, Hofbauer, and

Sorin 2005 hold. �

A.3. Proof of Proposition 2

Since payoffs are differentiable around x∗, point 1 follows as long as xg and x∗ are close.

For point 2, we will prove something more general: as long as x∗ is hyperbolic, point 2

holds.

This follows because when x∗ is hyperbolic, there is a neighborhood U around 0 such that

F has a differentiable inverse on U . Next, note that xg solves

F (xg) + g(xg) = 0.

Since ‖g‖1 ≤ γ, for γ small enough, F (xg) ∈ U must hold. Then there is some LF−1 > 0

such that

‖xg − x∗‖ = ‖F−1(F (xg))− F−1(0)‖

≤ LF−1‖F (xg)‖ ≤ LF−1γ,

where the first inequality follows because F−1 is differentiable and F (x∗) = 0, and the

second by the definition of F (xg). Since the right hand side is independent of g, the bound
20



is uniform.

For point 3, we first need to verify that all xg close enough to x∗ must also be asymptotically

stable. The next Lemma gives a more general result:

Lemma 2. Suppose x∗ is hyperbolic. Then the eigenvalues of DFg(x
g) converge to the

eigenvalues of DF (x∗) uniformly over g ∈ B1
γ as γ → 0. Thus, for small enough γ, xg has

the same stability properties as x∗.

Proof. We will show that eigenvalues of a hyperbolic matrix DF (x∗) vary continuously in

C1 perturbations g to F .

Proposition 2.18 in Palis Jr, Melo, et al. 1982 shows that eigenvalues vary continuously for

any matrix A. Thus, if ‖DF (x∗) − DFg(xg)‖ is small enough, the eigenvalues of the two

matrices must be close to each other. Now write

‖DF (x∗)−DFg(xg)‖ = ‖DF (x∗)−DF (xg)‖+ ‖Dg(xg)‖

≤ ‖DF (x∗)−DF (xg)‖+ γ,

where the equality follows from the definition of Fg. Since DF is continuous, and xg → x∗

uniformly for g ∈ B1
γ as γ → 0 (see above proof of point 2), we get that

sup
g∈B1γ
‖DF (x∗)−DFg(xg)‖ → 0

as γ → 0. Then applying Proposition 2.18 in Palis Jr, Melo, et al. 1982 finishes the

result. �

Now that we know that all xg must be asymptotically stable for γ small enough, we can

apply Faure and Roth 2010 (Thm 2.8).

We only need to verify that our game satisfies their attainability condition:

Definition 8. A point p is attainable if, for any n > 0 and any neighborhood U of p

P [∃s ≥ n : xs ∈ U ] > 0.

We let Att(X) be the set of attainable points for algorithm 2. Then we need that the

basin of attraction of an attractor has nonempty intersection with Att(X). This should

be true given our support condition on Mn+1 and the assumption that equilibria must be

interior:

Lemma 3. Let B be a basin of attraction of an attractor A for Fg. Suppose xn ∈ E \ B.

Then there exists s > n such that xs ∈ B with positive probability.
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Proof. Since t is finite, to show existence we construct s = n + 1: For any z ∈ B, we can

pin down the necessary shock Mz to reach it:

Mz =
z − xn
αn

− Fg(xn).

Since z ∈ int(E) by definition, Mz is in the support of Mn+1 for every n. For any ball Bz

around z, we can define

Mz = {Mx′ : x′ ∈ Bz}.

Mz must have positive measure for all finite n, since it is in the support of Mn+1. (if

we allow s > n + 1, we may be able to increase the measure but we only need it to be

positive.) �

All other conditions that are sufficient for the model-algorithm to converge to the at-

tractor hold by definition 3.

�

A.4. Proof of Proposition 3

Notice first that the following analysis is local to the rest points in ES, which by assump-

tion on U is also where F, Fg are single valued. Solution curves are unique whenever they

intersect U .

The proof will use the Hartman-Grobman Theorem (c.f.Chicone 2006, Thm 4.8) , which

connects the flow of a nonlinear ODE in the neighborhood of a hyperbolic rest point to the

flow of a linearized ODE. Since it works fully locally, our analysis only requires that F (x)

be single valued and C1 in Ux∗ , and we can allow F (x) to be multivalued otherwise.

First, we define invariant sets for given differential equations:

Definition 9. Let z(t, z0) be the solution so some given differential equation ż = f(z) with

initial value z0. Then a set S

• is invariant for f , if z(t, z0) ∈ S holds for all t ∈ R and all z0 ∈ S.

• isolated invariant for f if there is an open set N such that S ⊂ N and

S = {z′ : z(t, z′) ∈ N ∀t ∈ R}.

Given a g ∈ B1
γ, we know from Proposition 1 that only ICT sets subset of a neighborhood

of xg are candidates to being limiting points of the algorithm 2. The singleton {xg} is an

ICT set, and we show first that this cannot be a limiting set of the algorithm. Then we

go on to show that for small engough γ, no other ICT sets can exists in a neighborhood

around x∗, which finishes the proof.

1) {xg} cannot be a limiting set.
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Note that by Lemma 2, there are γ > 0 small enough such that all xg are linearly unstable

just as x∗. We can thus apply Benaım and Faure 2012, Thm 3.12 to prove P [Lg = xg] = 0

first:

We can show that the sufficient conditions for this hold by definition of our algorithm 3.

According to Faure and Roth 2010 Proposition 2.16, we have that the bounding function

required in Benaım and Faure 2012, Hypothesis 2.2 exists given our assumptions on εn,Mn.

Benaım and Faure 2012’s Hypothesis 3.6 is then also satisfied, at least in a neighborhood

of the rest point. As noted by their Remark 3.7, all conditions only need to hold in a

neighborhood of the unstable point, so set-valued gradients outside the neighborhood are

allowed.

2) No other ICT sets exist in a neighborhood of x∗ and xg.

We will prove that there are no other invariant sets in such a neighborhood. Since ICT

sets are subsets of invariant sets, this will complete the proof.

We can use Hartman-Grobman to show that there are open neighborhoods Ng, N0 with

x∗ ∈ N0, x
g ∈ Ng such that x∗, xg are isolated invariant sets in their respective neighbor-

hoods. These neighborhoods are nontrivial for all γ small enough, which follows from both

x∗, xg being hyperbolic:

By Hartman-Grobman and hyperbolicity there exists a homeomorphism H on a neighbor-

hood N ⊆ Ux∗ of x∗ with H(x∗) = x∗ such that

H(φ(t, x)) = ψ(t,H(x)),

where φ(t, ·) is a solution (flow) to the differential inclusion ẋ ∈ conv[F (x)], and ψ(t, ·) is

the solution to the ODE ẏ = DF (x∗)(y − x∗). Given a neighborhood U ⊆ N of x∗, define

inv(U) = {x ∈ U : φ(t, x) ∈ U ∀t ∈ R}.

We will show that x∗ = inv(U), and therefore it is isolated invariant.

Notice that inv(U) can be rewritten as

inv(U) = {y ∈ H(U) : H−1(ψ(t, y)) ∈ U ∀t ∈ R} = {y ∈ H(U) : ψ(t, y) ∈ H(U)∀t ∈ R},

since H is bijective. We know that x∗ is an isolated invariant set for the linear ODE solution

ψ(t, y) = CetDF (x∗)y + x∗. Thus, we must also have that

inv(U) = x∗,

and x∗ is isolated invariant set for φ(t, x).

Since xg are hyperbolic for γ small enough, an analogous argument gives us that xg are

isolated invariant also. Let Ng be the neighborhood on which the homeomorphism is defined
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that connects flows of Fg to flows of the linearized system DFg(x
g). By definition, xg ∈ Ng,

and we know that xg is isolated invariant in Ng. We are left to show that for γ small

enough, for all g ∈ B1
γ, x

∗ ∈ Ng:

To prove this, we will argue that each Ng contains a ball Bg
z (x

g), for which the radius z > 0

can be lower bounded by a number that depends only on the eigenvalues of DF (x∗) and γ.

First we need an auxiliary Lemma to show how eigenvalues of DFg(x
g) vary continuously

in γ. First some more notation:

For small enough γ, all xg are hyperbolic when g ∈ B1
γ. Fix such a g. Define ρl > 0 to be

the smallest positive eigenvalue of DFg(x
g), and ρu < 0 be the largest negative eigenvalue

of DFg(x
g). Now let ag ∈ (0, 1) be any number such that

max {eρu , e−ρl} < ag < 1.

For the original system DF (x∗), let a0 ∈ (0, 1) be any such number.

Lemma 4. For any δ > 0 with a0 < 1 − δ there exists γ > 0 such that for all γ ∈ (0, γ],

there is a set of {ag}g∈B1γ as defined above with

sup
g∈B1γ

|ag − a0| < δ.

Proof. Apply Lemma 2. Since there is a one-to-one mapping between eigenvalues and

{eρu , e−ρl}, we can find numbers ag. The result follows. �

Given this continuity in eigenvalues, we can prove the following Lemma to finish our

result:

Lemma 5. Suppose x∗ is hyperbolic for F . Fix a small z > 0. Then there is γ̄ such that

for all γ ≤ γ̄, and all g ∈ B1
γ, there is Bg

z (x
g) ⊆ Ng with z ≥ z.

Proof. For small enough γ, all xg are hyperbolic when g ∈ B1
γ. Fix such a g. Given some

ε > 0, let rε be defined as

sup{r > 0 : ‖x− xg‖ < r; ‖DFg(x)−DFg(xg)‖ < ε}.

Since DFg is continuous, rε > 0 must hold. Pick ag ∈ (0, 1) as defined previously.

Then define

εg =
1− ag
ag

> 0.

By Lemmas 4.3 and 4.4 of Palis Jr, Melo, et al. 1982, Brε(x
g) ⊆ Ng, if ε < εg.

We are left to show that rε can be made to depend only on the eigenvalues of DF (x∗) and

γ.
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Notice that small enough z > 0 pins down the δ > 0 referred to in Lemma 4: Let

ẑ(γ) = inf
γ∈(0,γ]

inf
g∈B1γ

εg.

For δ > 0 small enough, choose γ > 0 such that Lemma 4 holds. It follows from the Lemma

that ẑ(γ) > 0. Then any z < ẑ(γ) satisfies our conditions and the conclusion follows. �

Now recall that by the proof of Proposition 2 point 2, xg → x∗ uniformly over g ∈ B1
γ as

γ → 0. Thus there is γ small enough for which supg∈B1γ |x
g−x∗| < z and therefore x∗ ∈ Ng

for all g ∈ B1
γ. Let Uγ = ∩g∈B1γNg. Since xg for g ∈ B1

γ are isolated invariant in Uγ by

construction, the result follows.

�

Appendix B. Example of a C1 Approximation Algorithm

We show here an example of a synchronous actor-critic Q learning scheme that achieves

our sufficient conditions 2. Since our sufficient conditions concern the asymptotic behavior,

we will consider a simple, naive scheme with the required asymptotic properties, that may

otherwise be inefficient and not too desirable. We argue that if this simple scheme satisfies

the sufficient conditions, since the conditions are desirable for an algorithm designer it is

likely that more realistic schemes will do better at achieving our bounds.

Take a finite set of agents I with |I| = N , fix a finite state space S with |S| = K and

continuous action set A as defined in 6. As in the previous section, we let Qi(s, a, x−i) be

the unique Q value function given an opponent policy profile x−i.

Recall that, for a ∈ A, we write ui(a, x−i) as the stage game payoff given an opponent

profile, and

Pss′(x) = Pr[s′|s, x]

as the transition probability function from state s to s′ given a profile x. We will assume that

all agents use parametric function approximation to estimate their payoff and transition

functions. Take compact, finite dimensional parameter space Θ and 0 < j < h < 1 and

define

Fu =
{
fu(a; θ) 7→ R

}
⊂ C2[A×Θ,R]; Fp =

{
fp(a; η) 7→ [j, h]

}
⊂ C2[A×Θ, [j, h]],

as the space of functions used by all agents to approximate their respective payoffs and

transition functions. Note that we impose transition function approximators to map into

numbers strictly between 0, 1. This will simplify the convergence proof and not make us

loose generality (for small enough j and large enough h) by the assumption of irreducible

state distributions (see Definition 6).
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Before speaking about the function approximation in detail, we will describe how agents

update their policies, choose actions and make observations. From now on, to save notation

we drop the i superscripts.

• Parameter estimates

Each agent i keeps track of their current period’s parameter estimates θt, ηt that

pin down their payoff and transition function estimators respectively.

• Q̃ as a fixed point

Agents determine their Q estimates as the fixed point of

Q̃i(s, a; θ, η) = fu(a; θs,t) + δ
∑
s′∈S

fp(a; ηss′,t)T Q̃i(s′, a′; θ, η). (5)

Recall that T = maxa′∈A. Here we write θs,t, ηss′,t to make clear the dependence of

the approximating parameters on the given states.

Since for each s, a,
∑

s′∈S fp(a; ηss′,t) = 1, it is quick to check that 5 is a contraction

mapping and therefore has a unique fixed point.

• Policy updates

We assume agents update their policies xt ∈ Ā according to

xt+1(s) = xt(s) + αt

[
T Q̃(s, a; θt, ηt)− xt +Mt+1

]
, (6)

for all s ∈ S, where we take our assumptions in Definition 3 to hold for all

agents, replacing the algorithm operator in Definition 3 by our parametric esti-

mator T Q̃(s, a; θt, ηt).

• Action sampling

To simplify our analysis, we assume that given current state st, agents sample their

actions at every period with an ε- greedy policy:

at ∼ x̄t(st),

where x̄t is a mixture such that with probability 1 − ε, xt is chosen, and with ε,

actions are sampled from A according to a continuous full support distribution with

fixed mean µ and density function g(a) > 0∀a ∈ A. Note that ε, g(a) can vary by

individuals without loss, but for ease of notation we will assume them symmetric

here. What is important is that over time, only the mean xt changes, while the

exploration mixture g is held fixed. For such mixtures and for any θ, we write

U(x̄t(s)) = E[u(at)| x̄t, s]; Fu(x̄
i
t(s); θ) = E[fu(a

i
t; θ)| x̄it, s]
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The following describes the period-by-period behavior of an agent:

(1) Agents observe st.

(2) Agents sample ait ∼ x̄it(st), observing their own action only.

(3) Agents observe their own stage payoff uit and next state st+1.

(4) Agents update their parameter vectors θt, ηt.

(5) Agents compute new Q̃ fixed points based on those parameters and 5.

(6) Agents use 6 to update policies.

Thus, the new data that is observed every period by an agent is (st, at, ut, st+1).

Now we are ready to define the parametric function estimation procedure.

For each s ∈ S, let the state-count function be

nT (s) =
T∑
t=1

1{st = s}.

By our assumptions on the irreducibility of the state-Markov chain conditional on any

action profile a ∈ A (see Definition 6), we have that there is c ∈ (0, 1) and T̄ such that for

all s,
nT (s)

T
> c (7)

almost surely for all T > T̄ .

For sequences of natural numbers B̄T (s) < T , B̄T (ss′) < T that diverge,

WT (s) =
{
T − B̄T (s) + 1 ≤ t ≤ T | st = s

}
;

WT (ss′) =
{
T −BT (ss′) + 1 ≤ t ≤ T | st = s, st+1 = s′

}
,

as moving windows of time indices at which a certain state was observed, or a certain state

transition was observed. These will be the sets of time indices used to estimate state-

dependent payoffs and transitions for each agent.

Let BT (s) = |WT (s)| be the random size of WT (s). We will use a carefully constructed

rate of divergence for BT (s) to ensure convergence of our estimations. If BT (s) is a strictly

monotone function of nT (s), this is indeed feasible by 7.

Define

L̂sT (θ) =
1

BT (s)

∑
t∈WT (s)

(
ut − fu(at; θ)

)2
, (8)

as the sample criterion function used to estimate θt for all s:

θs,T = argminθ∈Θ L̂
s
T (θ).
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Thus, θs,t is an M-estimator as in Hansen 2010, Chapter 6. Given a fixed profile x ∈ E and

a sequence of profiles x(WT (s)) = {xt}t∈WT (s), define the population criterion functions

Ls(θ, x) = E
[(
ut − fu(at; θ)

)2∣∣ x̄, s];
Ls(θ,x(WT (s))) =

1

BT (s)

∑
t∈WT (s)

E
[(
ut − fu(at; θ)

)2∣∣ x̄t, s].
We assume:

Assumption 3 (θ-ID). hhh

For all x ∈ E and all s ∈ S there exists a unique θ∗(x) that minimizes Ls(θ, x), in the

sense that for all ρ > 0,

inf
θ/∈Bρ(θ∗(x))

Ls(θ, x) > Ls(θ∗(x), x).

With this assumption at hand we are ready to prove consistency in θt:

Lemma 6. Suppose assumption 3 holds and consider the algorithm 6. Then θT as the

minimizer of 8 satisfies

‖θT − θ∗(xT )‖ →p 0,

as T →∞.

Proof. We first show that for all θ ∈ Θ,

‖L̂sT (θ)− Ls(θ, xT )‖ →p 0, (9)

as T →∞. We can write

‖L̂sT (θ)− Ls(θ, xT )‖ ≤ ‖L̂sT (θ)− Ls(θ,x(WT (s)))‖+ ‖Ls(θ,x(WT (s))− Ls(θ, xT )‖.

First, letting Yt =
(
ut − fu(at; θ)

)2
we can write

L̂sT (θ)− Ls(θ,x(WT (s))) =
1

BT (s)

∑
t∈WT (s)

Yt − E
[
Yt
∣∣xt, s].

Now note that conditional on xt, s, actions are sampled independently across individuals

and time. In fact, states s follow a controlled markov process, where in this case the control

profile xt is markov with respect to states also, only that it is changing over time. Thus

over t, Yt conditional on xt, s are not identically distributed, but independent. We are left

to show that

E[Y 2
t | x̄, s] <∞

holds for all t and uniformly over θ, x, s. This follows promptly from the uniform bound-

edness of u, fu. Now we can use Chebyshev’s inequality, and it follows that

‖L̂sT (θ)− Ls(θ,x(WT (s)))‖ →p 0
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as T →∞. Then write

‖Ls(θ,x(WT (s))− Ls(θ, xT )‖ ≤ 1

BT (s)

∑
t∈WT (s)

‖E
[
Yt
∣∣ x̄t, s]− E

[
Yt
∣∣ x̄T , s]‖

≤ C0R1,T + C0R2,T ,

with

R1,T =
1

BT (s)

∑
t∈WT (s)

‖U(x̄t(s))− U(x̄T (s))‖,

and

R2,T =
1

BT (s)

∑
t∈WT (s)

‖Fu(x̄iT (s); θ)− Fu(x̄it(s); θ)
]
‖. (10)

The last inequality follows from bounded payoffs, so that the expectation of the squared

difference has Lipschitz constant C0 <∞.

Recall that given some profile x̄, we can equivalently state each agent’s action sampling the

following way: first each agent tosses a biased coin Ci ∈ {0, 1}, such that Pr[Ci = 0] = 1−ε.
In other words, Ci = 0 means the agent plays xi, while otherwise they sample actions from

A according to pdf g(a). To find U(x̄t), we can thus define all possible outcomes of all

agents draws from Ci:

Σ = {{ci}Ni=1| ci ∈ {0, 1}}.

Then for any σ ∈ Σ

Pr[σ] = Πiε
(1−ci)(1− ε)ci .

Given a draw of σ, let a ∈ A be an action profile in the support of x̄. We write a(σ(x)) as

the subvector of a that collects all actions taken by agents whose coin toss landed on {0}:

a(σ(x)) = (xi)i: ci=0.

Analogously we define a(σ(g)) as the remaining coordinates of a - precisely those for which

the draw σ specifies exploration. We let I(σ(g)) k(σ) = |I(σ(g))| be the set and number

of agents drawing ci = 1 in profile σ. Let z be the function that maps the reordered profile

(a(σ(x)), a(σ(g))) back to a. We can thus write u(a) = u(z(a(σ(x)), a(σ(g)))).

Using this notation, we can write the expected payoff as

U(x̄) =
∑
σ∈Σ

Pr[σ]

ˆ
Ai|i∈I(σ(g))

u(z(a(σ(x)), a(σ(g))))g(a(σ(g)))k,

where we make use of our assumption that all agents use the same exploration density g.

If that were not the case, the proof is analogous but more notation heavy. Now we are able

to use the Lipschitz continuity of u, fu to finish the proof:
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R1,T ≤ C1
1

BT (s)

∑
t∈WT (s)

‖xt(s)− xT (s)‖ ≤ C1C2
1

BT (s)

∑
t∈WT (s)

T∑
l=t

αl,

where the first inequality uses the C1 < ∞, the Lipschitz constant of u and the fact that

between x̄t, x̄T , the only difference is the underlying policy xt, xT , such that there is no

expectation involved anylonger. The second inequality takes C2 <∞ such that

sup
a∈A
‖a− a+M‖ < C2,

where a = infa′∈A a
′ and M is the random variable as in 6, which is assumed to be bounded

almost surely (see Definition 3). In other words, C2 is an upper bound to the updating

factor for a policy at each period. Since αt is decreasing, we have

1

BT (s)

∑
t∈WT (s)

T∑
l=t

αl ≤ BT (s)αT−BT (s).

We will show that for some αt that satisfy the classical Robbins-Monro condition stated in

Definition 3, the right hand side can be made to vanish. Take b ∈ (1
2
, 1], and let αt = t−b.

Then for any v ∈ (0, b), the result follows if we let BT (s) = nT (s)v:

By 7,

BT (s)αT−BT (s) = nT (s)v
(
T − nT (s)v

)−b
= nT (s)v−b

( T

nT (s)b
− nT (s)v−b

)−b
nT (s)v−b

(
T 1−b( T

nT (s)

)b − nT (s)v−b
)−b
→ 0

almost surely as T → ∞, since nT (s)v−b → 0 and by 7 T
nT (s)

> 0 almost surely. An

analogous argument holds for R2,T . The claim follows: 9 holds.

To conclude we will apply well known results from econometric theory for M - estimators.

We assume compact Θ, and by the above proof of pointwise convergence, we have that

Assumptions 1 and 2 in Newey 1991 are satisfied. To conclude, is is sufficient to show that

Hs
T (θ) = L̂sT (θ)− Ls(θ,x(WT (s))) (11)

is stochastically equicontinuous. This holds if Hs
T (θ) has a uniformly bounded derivative

in θ for all T large enough (see the remark after Corollary 2.2 in Newey 1991). In our case

this is satisfied since we assume u, fu to be bounded and twice differentiable. Corollary 2.2

in Newey 1991 then gives that Hs
T (θ) converges to zero uniformly over θ. The result now

follows from Theorem 22.1 in Hansen 2010. �

For ηT we proceed similarly, but using maximum likelihood estimation. For any param-

eter η, given a state transition s let the parametrized likelihood of a the random next state
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s̄ conditional on action profile a and state s be defined as

Λ(s̄|s, a, η) = Πs′∈Sfp(a; ηss′)
1{s′=s̄}. (12)

From here we can define the observed loglikelihood function

l̂sT (η) = − 1

BT (s)

∑
t∈WT (s)

∑
s′∈S

1{st+1 = s′}logfp(at; ηss′). (13)

Similarly, and as in the case of θ, we have the population versions:

ls(η, x) = −
∑
s′∈S

E
[
1{st+1 = s′}logfp(at; ηss′)

∣∣ x̄, s];
lsT (η,x(WT (s))) = − 1

BT (s)

∑
t∈WT (s)

∑
s′∈S

E
[
1{st+1 = s′}logfp(at; ηss′)

∣∣ x̄t, s].
Then, define

ηT = argminη∈Θ l̂
s
T (η); η∗(x) = argminη∈Θ l

s(η, x).

We assume:

Assumption 4 (η-ID). hhh

For all x ∈ E and all s ∈ S there exists a unique η∗(x) that minimizes ls(η, x), in the sense

that for all ρ > 0,

inf
η/∈Bρ(η∗(x))

ls(η, x) > ls(η∗(x), x).

Then,

Lemma 7. Suppose assumption 4 holds and consider the algorithm 6. Then ηT as the

minimizer of 13 satisfies

‖ηT − η∗(xT )‖ →p 0,

as T →∞.

Proof. The proof continues analogously to the proof of Lemma 6. We will need to show

the pointwise consistency of l̂sT (η), and the rest will follow from our condition on the speed

of BT (s) and xT . We first show that for all η ∈ Θ,

‖l̂sT (η)− ls(η, xT )‖ →p 0, (14)

as T →∞. We can write

‖l̂sT (η)− ls(η, xT )‖ ≤ ‖l̂sT (η)− ls(η,x(WT (s)))‖+ ‖ls(η,x(WT (s))− ls(η, xT )‖.
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By analogous arguments to Lemma 6, we get that the first term converges to 0 in probability

as T →∞. As for the second term,

‖ls(η,x(WT (s))− ls(η, xT )‖

≤ 1

BT (s)

∑
t∈WT (s)

∑
s′∈S

∥∥∥E[1{st+1 = s′}logfp(at; ηss′)
∣∣ x̄t, s]− E

[
1{st+1 = s′}logfp(at; ηss′)

∣∣ x̄T , s]∥∥∥
=

1

BT (s)

∑
t∈WT (s)

∑
s′∈S

∥∥∥E[Pss′(at)logfp(at; ηss′)∣∣ x̄t, s]− E
[
Pss′(at)logfp(at; ηss′)

∣∣ x̄T , s]∥∥∥,
where the equality comes from an application of the law of iterated expectations (by condi-

tioning on atx̄t, s). Having this, we can use analogous arguments to Lemma 6 to write out

the expectation operators and then bound their differences, by using differentiability and

boundedness of Pss′(at)logfp(at; ηss′) for all ss′, η. The conclusion then follows as in the

previous Lemma, and 14 holds. Finally we can again refer to Lemma 6 for an analogous

verification that all assumptions for uniform weak convergence hold, and the conclusion

follows. �

We have shown in Lemma 7 that ηT converges to the unique minimizer η∗(xT ). One

may wonder about the interpretation of this result in the case where the true transition

function Pss′(a) /∈ Fp. It is a classical result in econometric theory that η∗(x) can be seen as

minimizer of the Kulback-Leibler Information Criterion, which measures distances between

two measures P, fp. In other words, η∗ minimizes the distance between the true transition

function Pss′ and the parametric family Fp. For details, see for example Hansen 2010,

Chapter 28.

Given these results, we can write Q̃(s, a; θt, ηt) as we wanted:

Proposition 4. Under assumptions 3, 4 and the assumptions specified for algorithm 6, we

can write

Q̃(s, a; θt, ηt) = Q̃(s, a; θ∗(xt), η
∗(xt)) + ζt,

where ζt →p 0 as t→∞. Furthermore,

ḡ(s, a, xt) = Q(s, a, xt)− Q̃(s, a; θ∗(xt), η
∗(xt))

is the asymptotic bias term, and is twice differentiable in a, xt.
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Proof. We can write

sup
s,a
‖Q̃(s, a; θt, ηt)− Q̃(s, a; θ∗(xt), η

∗(xt))‖

≤ sup
s,a
‖fu(a; θs,t)− fu(a; θ∗s(xt))‖

+δ
∑
s′∈S

sup
s,a

∥∥fp(a; ηss′,t)T Q̃(s′, a′; θt, ηt)− fp(a; η∗ss′(xt))T Q̃(s′, a′; θ∗(xt), η
∗(xt))

∥∥
≤ D1‖θt − θ∗(xt)‖+ δD2 sup

s,a

∑
s′∈S

∥∥fp(a; ηss′,t)− fp(a; η∗ss′(xt))
∥∥

+δ sup
s,a

∑
s′∈S

fp(a; η∗ss′(xt))
∥∥T Q̃(s′, a′; θt, ηt)− T Q̃(s′, a′; θ∗(xt), η

∗(xt))
∥∥

≤ D1‖θt − θ∗(xt)‖+ δD2D3K
∥∥ηt − η∗(xt)∥∥+ δ sup

s,a
‖Q̃(s, a; θt, ηt)− Q̃(s, a; θ∗(xt), η

∗(xt))‖,

where D1 < ∞ is the upper bound on the Lipschitz constant of fu, D2 < ∞ is the upper

bound on sups,a,θ,η ‖Q̃‖, D3 < ∞ is the upper bound on the Lipschitz constant of fp, and

the last inequality follows because
∑

s′∈S fp = 1 by construction, and the maximum of

a difference dominates the difference of maxima. Putting the last line and the first line

together, we get

sup
s,a
‖Q̃(s, a; θt, ηt)− Q̃(s, a; θ∗(xt), η

∗(xt))‖

≤ 1

1− δ
[
D1‖θt − θ∗(xt)‖+ δD2D3K

∥∥ηt − η∗(xt)∥∥],
and the first assertion follows by Lemmas 6, 7.

The second assertion follows once prove that the minimizers θ∗, η∗ are differentiable in xt.

This follows by strengthening assumptions 3, 4 slightly, by requiring that the Hessian of

the minimization problem at the solution be negative definite, for all profiles xt. �

Proposition 4 shows that for the algorithm (6) here developed, our sufficient condition

outlined in Assumption 2 holds.
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