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Abstract

This paper characterizes axiomatically a simple consequentialist updating rule for

a broad class of ambiguity-averse preferences, which nests many well-known families

of ambiguity averse preferences. In particular, for the translation invariant subfamily

and the positively scale invariant subfamily, explicit representations of the conditional

preferences are fully characterized. These updating rules nest the familiar prior-by-

prior updating of maxmin EU as a special case.
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1 Introduction

The relevance of ambiguity (Ellsberg, 1961) in decisions and markets has been supported by a

rich theoretical and experimental literature (see Gilboa and Marinacci (2013) and Machina

and Siniscalchi (2014) and references therein). For instance, a decisionmaker (DM) can

perceive multiple probabilities as plausible and make decisions according to the maxmin ex-

pected utility criterion – that is, he aims to maximize the worst-case expected utility (Gilboa
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and Schmeidler, 1989). It delivers a good outcome for the DM regardless of the true prob-

ability. Numerous generalizations of the maxmin EU have been developed to account for

the more general cases and less extreme ambiguity averse attitudes. A few well-known cases

are the variational preferences (Maccheroni et al., 2006a), smooth ambiguity preferences

(Klibanoff et al., 2005), and confidence preferences (Chateauneuf and Faro, 2009).1 More-

over, all of these preferences are nested as special cases of the uncertainty-averse preferences

(Cerreia-Vioglio et al., 2011).

Many economically relevant decisions are dynamic in nature. In a dynamic setting, the DM

will receive new information and update their ambiguous beliefs upon this new informa-

tion. While the standard theory of learning for subjective expected utility preferences is the

Bayesian updating rule (Savage, 1954); for an agent with one of the aforementioned classes

of ambiguity preferences, characterizing a good updating rule is less straightforward. Never-

theless, for the maxmin EU model, a good model of learning is the prior-by-prior Bayesian

updating rule – each prior considered plausible by the DM is updated by Bayes’ rule one by

one. This updating rule has a few merits: (i) it generalizes the Bayesian updating rule in a

simple and robust way; (ii) the behavioral property that characterizes prior-by-prior updat-

ing for the maxmin EU naturally weakens Savage’s definition of conditional preferences for

the SEU model; and (iii) it is shown tractable and applied wildly.2

Two natural questions arise from this literature. First, one would like to better under-

stand how the prior-by-prior updating rule for maxmin EU preferences generalizes to other

ambiguity-averse preference families. Second, a critique on the prior-by-prior updating rule

is that it simply updates all plausible priors without discrimation. As discussed in Gilboa

and Schmeidler (1993) and the Epstein and Schneider (2007), one may also wish to give pri-

ority to updating the prior that assigns a higher likelihood to the occured event, motivated

by the desire to select probabilities that can better rationalize the occured information.3

This paper applies the familiar behavioral properties to the general case of the strongly

1Note that each of these three classes nests the maxmin EU preferences as a special/limit case. Moreover,

the variational preferences family also nests the multiplier preferences model (Hansen and Sargent, 2001;

Strzalecki, 2011); and the monotone mean-variance preferences model (Markowitz, 1952; Tobin, 1958) as

special cases.
2See, among others, Epstein and Schneider (2007), Bose and Renou (2014), Kellner and Le Quement

(2018), and Beauchêne et al. (2019).
3The idea is similar in spirit to the maximum likelihood method widedly used in frequentist statistics –

one selects the subset of plausible priors which assign the maximum likelihood to the occurred event. For

maxmin EU model, Gilboa and Schmeidler (1993) characterize a maximum likelihood updating rule; Epstein

and Schneider (2007) propose a learning model which only updates plausible priors that assign likelihoods

to the occurred event that are above a certain threshold level.
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monotone uncertainty-averse preferences (UAP). I find that by adding a concavity assump-

tion on the functional aggregator of the UAP representation, the familiar behavioral prop-

erty that characterizes prior-by-prior updating, called conditional consistency (CC), leads to

well-defined conditional certainty equivalents (Lemma 2). Under this assumption, a char-

acterization of generalized-Bayesian updating for the UAP family is provided (Proposition

1). Moreover, in two invariant subfamilies of the UAP preferences, the variational pref-

erences (with a translation invariant aggregator) and the confidence preferences (with a

positively scaled invariant aggregator), this concavity assumption always holds and one can

fully characterize explicit representations of the conditional preferences (Theorems 1, 2). A

characterization of the updated conditional preferences for the subclass of smooth ambiguity

preferences (Klibanoff et al., 2005) with a concave certainty equivalent function is also pro-

vided (Corollary 2). An interesting observation is that, as we investigate the two invariant

subfamilies that both generalize maxmin EU, the generalized Bayesian updating rule fea-

tures a normalization term (as the inversed probability of the occured event) that prioritizes

selecting the probability model which assigns a higher likelihood to the occured event. It

suggests that the previous critique on how prior-by-prior updating may fail to select the prior

that better rationalizes the occured event could be a result of restricting to the maxmin EU

functional form rather than a limitation of the updating rule.

In particular, for the variational preferences family, Theorem 1 fully characterizes a simple

explicit representation of the conditional preferences in terms of the unconditional utility

representation, which generalizes the Bayes’ rule. Under this updating rule, as the DM

learns that the true state of world belongs to some event E, he updates his preferences

which still belong to the variational family. The updated cost function has two features.

First, its domain contains only probabilities/posteriors are supported on the news event

E. Therefore, outcomes in states that are ruled out by the news event should no longer

matter in the DM’s updated preferences. Second, the updated cost of choosing a posterior

equals to the minimum cost (normalized by the likelihood of the news event) of choosing all

priors that are updated to this posterior via the Bayes’ rule. In this way, the DM displays

cautiousness when incorporating the news. This updating rule nests the well-known prior-

by-prior updating model of maxmin EU preferences (Pires, 2002), and a model that updates

the reference prior by Bayesian updating in multiplier preferences (Strzalecki, 2011) and

monotone mean-variance preferences (Corollary 1).

In the existing literature, the closest to Theorem 1 is Maccheroni et al. (2006b), which pro-

vides a recursive “no-gain” condition that connects the unconditional and the conditional

cost functions within the variational preferences family. The key difference is that the up-

dating rule studied in Theorem 1 considers all variational preferences and all information
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filtration but satisfies only consequentialism; while Maccheroni et al. (2006b) consider a fixed

information filtration and characterize the subfamily of variational preferences that respects

both assumptions. Given the above-mentioned experimental evidence, the two approaches

are complementary.

For the confidence preferences family, Theorem 2 explicitly characterizes a simple general-

ization of the prior-by-prior updating rule. Given the news event and the unconditional

confidence preferences representation, the updated conditional confidence of a posterior is

equal to the maximal difference between the unconditional confidence divided by the likeli-

hood of the news event and the odds ratio of this event, subject to the constraint that all

the priors must generate this posterior via Bayesian updating and this difference must be

positive.

Finally, for the smooth ambiguity preferences, due to non-separability of the utility function-

als, the updated conditional utility is still an implicit solution to an equation. The analysis

in section 4.2 provides the necessary and sufficient condition to guarantee concavity of the

certainty equivalent function, which is needed for the conditional consistency axiom to be

well-defined.

The main results (Lemma 2, Theorems 1 and 2) contribute to the literature on how to up-

date ambiguity-averse preferences. This literature often evaluates an updating rule via two

desiderata: (i) consequentialism—outcomes in states that are ruled out by the new infor-

mation should not be relevant for decisions (Machina, 1989); (ii) dynamic consistency—a

contingent plan that is ex ante optimal should remain optimal as the DM receives additional

information. It is well-known that under reduction, the joint assumption of the two implies

the sure-thing principle and rules out ambiguity aversion (Epstein and LeBreton, 1993). This

modeling choice is consistent with documented experimental evidence on dynamic choice un-

der ambiguity. Dominiak et al. (2012) find that, in a dynamic Ellsberg urn decision problem,

subjects’ behaviors often obey consequentialism while violate dynamic consistency.4 The up-

dating rules characterized in this paper respect consequentialism. Moreover, if one allows

for preferences for temporal resolution of uncertainties, the generalized updating rule can

always be embedded into a recursive preferences model that preserves dynamic consistency,

albeit at the cost of relaxing reduction (Li, 2020).

1.1 Related literature

4See also recent experimental work by Kops and Pasichnichenko (2020).
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Since incorporating ambiguity necessarily implies the failure of the sure-thing principle, under

reduction, either consequentialism or dynamic consistency should be relaxed.

One direction to go is to preserve consequentialism at the cost of relaxing DC, which includes

two popular updating theories—the prior-by-prior Bayesian updating and the maximum

likelihood updating. The prior-by-prior Bayesian updating rule is the most straightforward

generalization of Bayesian updating, which typically consists of updating all the priors the

DM considers plausible without discrimination. In this direction, Pires (2002) axiomatizes

full Bayesian updating for maxmin EU. Faro and Lefort (2019) provide an alternative ax-

iomatization for the same updating rule, also for maxmin EU preferences, by imposing

consistency axioms between the unconditional objectively rational preferences and the con-

ditional subjectively rational preferences. Their work can be viewed as a new justification

for this updating rule.5

Alternatively, the maximum likelihood updating model select the subset of plausible priors

that prescribe the highest likelihood to the realized event and only update these priors.

Gilboa and Schmeidler (1993) first axiomatize the maximum likelihood updating rule for

the Maxmin EU preferences.6 Ortoleva’s (2012) hypothesis testing model shares a similar

motivation—it considers DM who does Bayesian updating for a normal event but deviates

from it when an unexpected small-probability event occurs.

Along this line, this paper further provides an axiomatic characterization of the full Bayesian

updating for the more general cases of concave and strongly monotone uncertainty-averse

preferences. The main representations can be viewed as an robust generalization of the

prior-by-prior updating, which also incorperates the likelihood of the occured event.

Another direction is to relax consequentialism but maintain some appropriate form of dy-

namic consistency. Hanany and Klibanoff (2007) propose an updating rule for the maxmin

EU that satisfies a weak form of dynamic consistency but not consequentialism. Gul and

Pesendorfer (2018) study a proxy updating rule that satisfies consequentialism and a weak

dynamic consistency property called “not all news is bad news”, which is distinct from

either full Bayesian updating or maximum likelihood updating. Recently, Sadowski and

Sarver (2019) consider an evolutionary model and show that for the objective of maximiz-

ing long-run population growth, updating rule should be dynamically consistent for certain

ambiguity-averse preference families, such as the multiplier preferences and the confidence

preferences.7

5Eichberger et al. (2007) axiomatize a generalized Bayesian updating rule for the Choquet EU family.
6See Cheng (forthcoming) for a generalization to the relative maximum likelihood updating for the

maxmin EU preferences.
7Note that the violation of consequentialism is interpreted differently in Sadowski and Sarver (2019),
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The paper proceeds as follows. Section 2 introduces the preliminaries and characterizes up-

dating for the general strongly monotone and concave UAP preferences. Section 3 character-

ize updating in two invariant subfamilies: variational preferences and confidence preference.

Section 4 discusses special cases, the smooth ambiguity preferences, and the comparative

ambiguity notions. Omitted proofs are relegated to the appendix.

2 The general case

2.1 Notation

Let S be a finite set of states and Σ∗ = 2S\∅ be the collection of non-empty events. Let

X be a nonempty set of consequences, which is a convex subset of some topological vector

space. An act f is a mapping from S 7→ X that assigns every state an outcome. Denote

by F the set of acts. For each non-empty event E ∈ Σ∗, let %E be the preferences over F
conditional on the information that the true state belongs to event E. The primitives are

the collection of conditional preferences {%E}E∈Σ∗ .

Let ∆E be the set of probabilities with support on E. Let p, q denote probabilities in ∆S.

For any p ∈ ∆S, let p(·|E) denote its Bayesian posterior conditional on E. Conversely, for

any pE ∈ ∆E, let ∆(pE) denote the subset of prior probabilities in ∆S whose Bayesian

posterior is pE:

∆(pE) = {p ∈ ∆S : p(·|E) = pE}.

Note that the subset ∆(pE) is not closed because p(E) > 0.

2.2 Uncertainty-averse preferences and updating

Cerreia-Vioglio et al. (2011) characterize a broad family of ambiguity-averse preferences.

Axiom 1 (UAP axioms). For all E ∈ Σ∗, %E satisfies the following:

1. (Weak order). %E is complete and transitive.

because it stems from the differences between the welfare of an individual in a population and the goal of

maximizing population growth. An individual may not care about outcome in a state that has been ruled

out for himself, yet outcome in this state may still be relevant for the population when other individuals in

the same population faces idiosyncratic risk. This paper considers a one-step-ahead updating for a single

decisiomaker who only cares about him own payoff, and hence it is natural imposing consequentialism.
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2. (Continuity). For all f ∈ F , {g ∈ F : g %E f} and {g ∈ F : f %E g} are closed.

3. (Monotonicity). If f(s) %E g(s) for all s ∈ E, then f %E g.

4. (Non-degeneracy). f �E g for some f, g ∈ F .

5. (Constant-act independence). For all x, y, z ∈ X, and α ∈ (0, 1),

x %E y ⇔ αx+ (1− α)z %E αy + (1− α)z

6. (Uncertainty aversion). For all f, g ∈ F such that f ∼E g, αf + (1− α)g %E g for all

α ∈ [0, 1].

Definition 1. Say %E admits an uncertainty-averse preferences representation (uE, GE) if

it can be represented by

VE(f) = inf
p∈∆(S)

GE

(∫
S

uE(f)dp, p

)
, (1)

where uE : X 7→ R is an affine function and GE : uE(X) × ∆S 7→ (−∞,+∞] is the

uncertainty-averse index that satisfies the following properties: (i) GE is quasi-convex and

lower semi-continuous; (ii) GE(·, p) is increasing for all p ∈ ∆S; (iii) infp∈∆S GE(t, p) = t for

all t ∈ uE(X).

Here the function uE(·) corresponds to the standard vNM expected utility over lotteries.

Note that in the utility representation (1), outcomes in states s /∈ E may still matter, so

consequentialism is not yet imposed.

For all act f ∈ F , E, let uE,f := uE(f) ∈ uE(X)|S| be the state-contingent expected utility

vector associated with this act. Then define the UAP aggregator IE : uE(X)|S| 7→ uE(X) to

be

VE(f) = IE(uE,f ) = inf
p∈∆(S)

GE

(∫
S

uE,fdp, p

)
.

An UAP aggregator IE is (i) continuous, (ii) monotone uE,f ≥ uE,g implies IE(uE,f ) ≥
IE(uE,g) for all uE,f ,uE,g ∈ uE(X)|S|, (iii) normalized, i.e., IE(k1S) = k for all k ∈ uE(X),

and (iv) quasi-concave, i.e., IE(αuE,f + (1 − α)uE,g) ≥ min{IE(uE,f ), IE(uE,g)}, for all

α ∈ [0, 1], uE,f ,uE,g ∈ uE(X)|S|.

By Cerreia-Vioglio et al. (2011), the following statements are equivalent: (i) %E satisfies

Axiom 1; (ii) %E admits an UAP representation (uE, GE); and (iii) %E admits an UAP

representation VE = IE ◦ uE.

To simplify exposition about updating preferences conditional on a non-empty event E ∈ Σ∗,

I strengthen Monotonicity axiom to the following.
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Axiom 2 (Strong monotonicity). If f(s) %E g(s) for all s ∈ E and f(s) �E g(s) for some

s ∈ E, then f �E g.8

Strong Monotonicity emphasizes improvement in every state “count”, which is used to sim-

plify the discussions on conditional preferences elicitation.

Under UAP axioms and strong monotonicity, IS is strictly monotone, u ≥ (>)u′ implies

I(u) ≥ (>)I(u′) for all u,u′ ∈ u(X)|S|; and G(·, p) is strictly increasing for all p ∈ dom(G).

Assumption 1. %S admits some UAP representation with strongly monotone and concave

IS : u(X)|S| 7→ R.

The next two axioms are consistency requirements connecting %S and %E.

Axiom 3 (Stable constant-act preferences). For all E ∈ Σ∗ and x, y ∈ X, x %E y if and

only if x %S y.

The axiom says the DM’s preferences over constant acts should not change after she learns

about event E.

Let uE ≈ u denote that uE : X 7→ R is a positive affine transformation of u : X 7→ R, i.e.,

uE = au+ b for some a > 0 and b ∈ R.

Lemma 1. Suppose %S and %E admit some UAP representations (uS, GS) and (uE, GE).

Then %S and %E satisfy stable constant-act preferences if and only if uS ≈ uE.

Proof. Axiom 3 says that %E and %S agree on X, which is equivalent to uE and uS are

ordinally equivalent. Since uS and uE are unique up to a positive affine transformation,

uE = auS + b for a > 0 and b ∈ R.

Axiom 4 (Conditional consistency, CC). For all f ∈ F , x ∈ X, and nonempty E ∈ Σ∗,

fEx ∼S x⇒ f ∼E x. (2)

The conditional consistency (CC) axiom connects the unconditional preferences %S and the

conditional preferences %E.9 Note that the axiom only requires the⇒ direction. Intuitively,

it specifies an updating rule from <S to <E: one can calibrates the utility from an act f

8Here f(s) and g(s) are constant acts that give in every state outcomes f(s) and g(s), respectively.
9Pires (2002) first introduce this axiom to characterize prior-by-prior updating for Maxmin EU prefer-

ences.
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Figure 1: I(·) is quasi-concave Figure 2: I(·) is concave

conditional on event E by finding a fixed point x to the indifference relation fEx ∼S x.

For an E-conditional certainty equivalent to be well defined, the fixed point above must be

essentially unique; that is, fEx ∼S x and fEy ∼S y implies x ∼S y.

Figures 1 and 2 illustrate why concavity of I(·) is needed for Axiom 4 to be well-defined in

the UAP family. Suppose X = [0, 1] and u(x) = x. Fix some act f and event E and plot

the function I(fE·) : [0, 1] 7→ [0, 1]. In Figure 1, I(·) is quasi-concave and strictly increasing,

but there could be multiple fixed points x ∈ X that solves the equation I(fEx) = x. In

Figure 2, I(·) is additionally concave, in which case Lemma 2 below implies that there could

be only a unique solution to the updating equation.

The next lemma provides a sufficient condition for the UAP preferences for the conditional

certainty equivalent to be well-defined via Axiom 4.

Lemma 2. Suppose %S satisfies Assumption 1. Then, for all f ∈ F and E ∈ Σ∗, there

exists an essentially unique x ∈ X such that fEx ∼S x.

Remark: In general, the UAP axioms only imply I(·) is quasi-concave. In several special

cases of UAP, including the variational preferences and the confidence preferences, concavity

of I(·) follows from quasi-concavity. In other cases such as the smooth ambiguity preferences,

additional conditions are needed to ensure that I(·) is concave. For this case, Lemma 7 in

section 4.2 below provide an exact characterization for concavity.

Proposition 1. Suppose {%E}E∈Σ∗ satisfies Axioms 1 and 2, and %S satisfies Assumption 1.

For all E ∈ Σ∗, %E and %S satisfy stable constant-act preferences and conditional consistency

if and only if %E admits the induced UAP representation VE : F 7→ R such that VE(f) = k,

and k ∈ R solves

k = inf
{p∈∆S:p(E)>0}

G

(∫
E

u(f)dp+ kp(Ec), p

)
(3)
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Proof. By Lemma 2, for UAP preferences that satisfies Assumption 1, the conditional cer-

tainty equivalent in Axiom 4 is well defined; i.e., the k that solves equation (3) is unique.

Due to the lack of separability of the general UAP functional, the conditional utility k

determined by equation (3) does not always have an explicit representation. In special cases,

when the uncertainty averse index G(·, ·) is additively separable or multiplicatively separable,

one can separate the two terms
∫
E
u(f)dp and kp(Ec) in expression (3), and hence obtain

an explicit representation of the conditional preferences %E (in terms of (u,G)). This is the

goal of sections 3.1 and 3.2.

2.3 Some preliminary results

First I establish a few prelimiary results for the UAP preferences.

Lemma 3. Suppose %S satisfies Assumption 1. For all t ∈ u(X), any pt such that G(t, pt) =

minp∈∆S G(t, p) = t, there must be pt(E) > 0 for all E ∈ Σ∗.

Definition 2. %E satisfies consequentialism if fEg ∼E fEh for all f, g, h ∈ F . An updating

rule (%S, E) 7→%E satisfy consequentialism if %E satisfies consequentialism for all E ∈ Σ∗.

Clearly, for any E ∈ Σ∗, %E and %S satisfy CC implies %E satisfies consequentialism.

Definition 3. Say %E admits a consequentialist conditional uncertainty-averse representa-

tion if it is represented by

VE(f) = min
pE∈∆(E)

GE

(∫
E

uE(f)dpE, pE

)
,

where uE : X 7→ R is affine and GE : uE(X) × ∆E 7→ (−∞,+∞] is a conditional UAP

index that is lower semi-continuous, quasi-convex, GE(·, pE) is monotone for all pE ∈ ∆E,

and infpE∈∆E GE(t, pE) = t for all t ∈ uE(X).

Lemma 4. %E satisfy Axioms 1, 2, and consequentialism if and only if %E admits a con-

sequentialist conditional uncertainty-averse representation.

3 Updating rules for invariant subfamilies

This section provides explicit characterization of the updating rule for two invariant sub-

families of the UAP preferences: (i) Variational preferences (VP), where I(·) is translation

invariant; (ii) Confidence preferences (CP), where I(·) is positively scale invariant. Note that

Assumption 1 holds in both families.
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3.1 Variational preferences

The variational preferences family was characterized by Maccheroni et al. (2006a). It cor-

responds to the case where u(X) = R and the aggregator I(·) is translation invariant ; i.e.,

I(u + b1) = I(u) + b for all b ∈ R. It is equivalent to assuming the UAP index G(·, ·) is

additively separable, that is, G(t, p) = t+ c(p). Note that for variational preferences, I(·) is

concave and Assumption 1 always holds.

Axiom 5 (Variational preferences). %E satisfies the UAP Axiom 1, and

(i) (Weak Certainty Independence). For all f, g ∈ F , x, y ∈ X, and α ∈ (0, 1),

αf + (1− α)x %E αg + (1− α)x⇒ αf + (1− α)y %E αg + (1− α)y

(ii) (Unboundedness). For all x �E y, there exists z, z′ ∈ X such that

1

2
z +

1

2
y %E x �E y %E

1

2
z′ +

1

2
x

Say a function g : Y 7→ [0,+∞] is grounded if there exists y ∈ Y such that g(y) = 0.

Definition 4. For all E ∈ Σ∗, say the conditional preference relation %E admits an un-

bounded variational preferences representation (uE, cE) if there exists some onto and affine

vNM utility index uE : X 7→ R and some cost function cE : ∆S 7→ [0,+∞] that is convex,

lower semi-continuous, and grounded, such that %E is represented by

VE(f) = min
p∈∆S

∫
S

uE(f)dp+ cE(p). (4)

Typically, equation (4) is interpreted as the DM is playing a zero-sum game against a malev-

olent player called Nature, who aims to minimize the DM’s expected utility by choosing the

probability model while paying a cost for her choice of probability.

For any E ∈ Σ∗, Maccheroni et al. (2006a) show that %E satisfies Axiom 5 if and only if %E

admits some unbounded variational preferences representation (uE, cE). In addition, uE is

unique up to a positive affine transformation and cE is unique.

Suppose %E admits VP representation. By Lemma 4, %E also satisfies consequentialism if

and only if it can be represented by

VE(f) = min
pE∈∆E

∫
E

uE(f)dpE + cE(pE), (5)
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where cE : ∆E 7→ [0,+∞] is the conditional cost function.

The domain of cE is the set {p ∈ ∆E : cE(pE) < +∞} and will be denoted dom(cE). To

simplify notation, I denote uS(·) by u(·) and cS(·) by c(·) when there is no confusion.

Definition 5. A collection of conditional variational preferences {%E}E∈Σ∗ satisfies gener-

alized Bayesian updating for variational preferences if uE ≈ u and cE : ∆E 7→ [0,+∞] is

given by

cE(pE) = min
p∈∆(pE)

c(p)

p(E)
, for all pE ∈ ∆E. (6)

Equation (6) can be interpreted as follows. In calculating the conditional cost at posterior

pE,

(i) Nature selects all prior probability models p whose Bayesian poterior is equal to pE. 10

(ii) Inside the minimum, the numerator c(p) simply represents the unconditional cost to

Nature in selecting the prior probability model p absent the information s ∈ E. It

is multiplied by 1
p(E)

, the inverse probability of event E, which is a normalization to

correct for the fact that some prior probability p does not rationalize the occurred

event E well. For instance, if a probability model p induces a small penalty c(p) but a

small sample likelihood p(E), it might still induce a high conditional cost. 11

(iii) The minimization still reflects that the DM is playing a zero-sum game against a

malevolent Nature in incorperating the information p(E).

The main result (Theorem 1) says that Axioms 2, 3, 4, 5, are necessary and sufficient for the

collection of conditional preferences {%E}E∈Σ∗ to admit unbounded variational preference

representations that satisfy generalized Bayesian updating (equation (6)).

Theorem 1. The following two statements are equivalent: (i) For every nonempty event

E ∈ Σ∗, %E satisfies Axioms 2 and 5, and %S and %E jointly satisfy Axioms 3 and 4;

(ii) every <E admits an unbounded variational representation (uE, cE) and the generalized

Bayesian updating for variational preferences holds ; i.e., u = auE + b for a > 0 and b ∈ R,

and, when u = uE, cE(·) is induced by c(·) via equation (6).

10Hence, the constraint rules out model mis-specification in updating.
11The normalization in Eqn. (6) is similar in spirit to the inversed probability weighting (e.g., the

Horvitz–Thompson estimator) commonly used in statistics, which is used to correct for unequal selection

probability bias in a stratified sample.
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Below is a sketch of its proof. The details are relegated to the appendix.

First, for each E ∈ Σ∗, the variational preferences Axiom 5 are necessary and sufficient for

the preference relation %E to admit an unbounded variational preferences representation

(uE, cE) (Maccheroni et al., 2006a). Second, Strong Monotonicity of %S implies that every

state is non-trivial and hence a useful property of the unconditional cost function c(·) .

By Lemma 3, For all p ∈ ∆S such that c(p) = 0, p(E) > 0 for all E ∈ Σ∗. In other

words, any probability p that is so plausible that c(p) = 0 must have full support. Third,

observe that for variational preferences, the aggregator IS(uf ) = infp∈∆S

∫
S

ufdp + c(p) is

the pointwise infimum of a collection of affine functions of uf , and hence it is concave and

staisfies Assumption 1. By Lemma 2, the conditional certainty equivalent defined via Axiom

4 is well defined. Fourth, by the CC axiom, the conditional variational preference relation

%E satisfies consequentialism. Applying Lemma 4, in the variational representation (uE, cE),

it is without loss to restrict the domain of cE to ∆E. Fifth, by Lemma 1, Stable constant-act

preferences implies that % and %E agree on X, and hence u ≈ uE. Without loss, one can

let u = uE. Together, %E can be represented by

VE(f) = min
pE∈∆E

∫
E

u(f)dpE + cE(pE),

where u : X 7→ R is an onto and affine function and cE : ∆E 7→ [0,+∞] is a convex, lower

semi-continuous, and grounded conditional cost function.

Then, the key is to show that the conditional cost function cE(·) must be the induced by the

unconditional cost function c(·) exactly as equation (6). Take some variational representation

(u, c) of the unconditional preference relation %S, where the cost function c : ∆S 7→ [0,+∞]

is convex, lower semi-continuous, and grounded. For every non-empty event E ∈ Σ∗, define

the following conditional cost function c̃E : ∆E 7→ [0,+∞] induced by the unconditional

cost function c(·):

c̃E(pE) = inf
p∈∆(pE)

c(p)

p(E)
, ∀pE ∈ ∆E. (7)

Lemmas 9 and 10 in appendices 1.4 and 1.5 verify that c̃E(·) defined by equation (7) attains

its minimum within the set ∆(pE)12 and it inherits convexity, lower semi-continuity, and

groundedness from function c(·). Hence, c̃E(·) is equivalent to the conditional cost function

cE(·) defined by equation (6).

Then, define the function ṼE : F 7→ R that is induced by the unconditional representation

12Recall that ∆(pE) requires its element to satisfy p(E) > 0, and hence it is not a closed set.
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(u, c) as follows: for all f ∈ F ,

ṼE(f) = min
pE∈∆(E)

(∫
E

u(f)dpE + min
p∈∆(pE)

c(p)

p(E)

)
= inf

{p∈∆S:p(E)>0}

∫
E

u(f)dp(·|E) +
c(p)

p(E)
. (8)

Lemma 5. Suppose %S satisfies Axioms 2 and 5. For all f ∈ F , if fEx ∼S x, then

VS(fEx) = ṼE(f).

Under the CC axiom, x, the conditional certainty equivalent of f , must satisfy VS(fEx) =

u(x). Lemma 5 says the utility of the conditional certainty equivalent of f is also pinned

down by the induced function ṼE(f). In other words, %E can be represented by the induced

function ṼE(·). Also, VE(·) is “constructed” as variational utility function using vNM index

u and the induced cost function c̃E(·) defined by equation (6). Hence, it suffices to show

that c̃E is the unique conditional cost function for any variational representation of %E (with

vNM index u), which is shown by the following lemma.

Lemma 6. Pick any nonempty event E ∈ Σ∗. Suppose two unbounded variational represen-

tations (u, cE) and (u, c′E) both represent %E. Then cE = c′E.

Lemma 6 verifies the uniqueness of the conditional cost function. For any two variational

utility functions VE and V ′E with the same vNM index u but different cost functions, these

two utility functions must be strictly separated at some act. To see this, if cE(p0) < c′E(p0)

at some p0 ∈ ∆E, then one can find a hyperplane in R|E|+1 that strictly separates the point

(p0, cE(p0)) and the epigraph of c′E(·).13 Take the normal vector v ∈ R|E|+1 of this separating

hyperplane. Since u(X) = R, there always exists some act f ∈ F whose the restriction on

event E, the act fE, satisfy that the vector (u(fE), 1) ∈ R|E|+1 is proportional (by a strictly

positive scalar) to this normal vector v. For this act, VE(f) < V ′E(f), and hence the two

variational functional cannot represent the same %E.

Remark 1. Here the unconditional preferences <S and the conditional preferences <E may

not jointly satisfy dynamic consistency. Nevertheless, if the ex ante preferences allows for

preferences for the temporal resolution of uncertainty, they may still be recursively generated

by <S (and its updates <E). Li (2020) proposes a general framework to generate these

recursive preferences.

13The epigraph of c′E is epi(c′E) = {(p, r) ∈ ∆E × R : c′E(p) ≤ r}. It is nonempty, convex, closed and

bounded below.
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3.2 Confidence preferences

Another special case is the confidence preferences family characterized by Chateauneuf and

Faro (2009). It corresponds to the case when there exists a worst outcome x∗ ∈ X and I(·) is

positively scale invariant.14 Again, for confidence preferences I(·) is concave and Assumption

1 always holds.

Definition 6. Say %E admits a maximal confidence preferences representation consisting

a pair (uE, ϕ1E) if %E is represented by

V CP
E (f) = inf

p∈∆S

∫
S
uE(f)dp

ϕ1E(p)
,

where uE : X 7→ R+ is an affine function with u(x∗) = 0, and ϕ1E : ∆S 7→ [0, 1] is a

confidence function that is quasi-concave, upper semi-continuous, and ϕ1E(p) = 1 for some

p ∈ ∆S. Moreover, if (uE, ϕ1E) and (uE, ϕ
′
1E) are both confidence representations of %E,

then ϕ1E ≥ ϕ′1E.

By standard duality argument,

ϕ1E(p) = inf
f∈F

(∫
S
uE(f)dp

uE(cf )

)
,

where cf ∈ X is the certainty equivalent of f such that cf ∼E f . Note that the maximal

confidence function ϕ1E(·) is the pointwise infimum of a collection of linear functions of p,

and hence it is concave.

For the unconditional preference relation %S, it admiting a maximal confidence preferences

representation is a special case of UAP representation, where the UAP index G(·, ·) is mul-

tiplicatively separable: for all (t, p) ∈ R+ ×∆S,

G(t, p) =

 t
ϕ1(p)

p ∈ C

+∞ p /∈ C

where C = {p ∈ ∆ : ϕ1(p) > 0} is the domain of the confidence function ϕ1. It’s straight-

forward to check that C is a non-empty, convex, and closed subset of ∆S.

Suppose X is bounded below according to %S; i.e., there exists some worst outcome x∗ ∈ X
such that x %S x∗ for all x ∈ X.

14By Cerreia-Vioglio et al. (2011), it is equivalent to assuming the UAP index G(t, p) is multiplicatively

separable in t and p.
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Axiom 6 (Confidence Preferences). For E ∈ Σ∗, %E satisfies Axiom 1 and the following

axioms.

(i) (Independence to the worst outcome.) For all f, g ∈ F , α, β ∈ (0, 1),

αf + (1− α)x∗ %E αg + (1− α)x∗ ⇒ βf + (1− β)x∗ %E βg + (1− β)x∗.

(ii) (Bounded attraction for certainty.) There exists δ ≥ 1 such that for all f ∈ F and

x, y ∈ X:

x ∼E f ⇒
1

2
x+

1

2
y %E

1

2
f +

1

2

(
1

δ
y +

(
1− 1

δ
x∗

))

That is, %E satisfies independence with respect to the worst lottery outcome.

By Chateauneuf and Faro (2009) (Theorem 3, Corollary 5), %E satisfies Axiom 6 if and only

if %E admits a unique maximal confidence preference representation (uE, ϕ1E). Moreover, if

both (uE, ϕ1E) and (u′E, ϕ
′
1E) are maximal confidence representation of %E, then uE = λu′E

for some λ > 0 and ϕ1E = ϕ′1E.

Definition 7. Say %E admits a consequentialist maximal confidence preferences represen-

tation if

V CP
E (f) = inf

p∈∆E

∫
E
uE(f)dp

ϕ1E(p)
(9)

for some affine function uE : X 7→ R+ with uE(x∗) = 0, and confidence function ϕ1E : ∆E 7→
[0, 1].

Definition 8. A collection of conditional confidence preferences {%E}E∈Σ∗ satisfies gener-

alized Bayesian updating for confidence preferences if %E is represented by (9) with uE ≈ u

and ϕ1E : ∆E 7→ [0, 1] is induced by ϕ1 : ∆S 7→ [0, 1] via the following formula:

ϕ1E(pE) = max
{p∈∆(pE):ϕ1(p)>p(Ec)}

(
1− 1− ϕ1(p)

p(E)

)
for all pE ∈ ∆E. (10)

Equation (10) characterizes the conditional confidence at the posterior pE. The constraint

set, {p ∈ ∆(pE) : ϕ1(p) > p(Ec)}, contains all the priors p with Bayesian posterior equal to

pE and the unconditional confidence ϕ1(p) is at least p(Ec). The latter requirement makes

sure that the term 1− 1−ϕ1(p)
p(E)

= ϕ1(p)
p(E)
− p(Ec)

p(E)
is positive. Overall, the maximum picks the prior

p with Bayesian posterior pE that leads to the highest confidence level ϕ1(p) normalized by

the maximum likelihood of event E. Again, the procedure reflects a concern for cautiousness

in updating the confidence level.
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Equation (10) can be rewritten as

ϕ1E(pE) = max
{p∈∆(pE):ϕ1(p)>p(Ec)}

(
ϕ1(p)

p(E)
− p(Ec)

p(E)

)
.

That is, the conditional confidence aims to maximize the difference between the normalized

prior confidence level ϕ1(p)
p(E)

and the odds ratio p(Ec)
p(E)

of the occurred event.

Theorem 2. The following two statements are equivalent: (i) For every nonempty event

E ∈ Σ∗, %E satisfies Axioms 2 and 6 and %S and %E jointly satisfy Axioms 3 and 4;

(ii) every <E admits a maximal confidence preferences representation (uE, ϕ1E) and the

generalized Bayesian updating for confidence preferences holds; i.e., u = auE for a > 0, and,

when u = uE, ϕ1E(·) is induced by ϕ1(·) via equation (10).

The intuition of the proof is similar to that of Theorem 1 and hence omitted. The proof is

in Appendix 1.12.

4 Discussion

4.1 Maxmin EU preferences, multiplier preferences, and mono-

tone mean-variance preferences

In this subsection, I consider three important special cases of variational preferences—

maxmin EU, multiplier preferences, and monotone mean-variance preferences. The gen-

eralized variational preferences updating formula (6) nests three well-known updating rules

for the special ambiguity families: Prior-by-prior updating of the maxmin EU preferences,

Bayesian updating of the multiplier preferences, and Bayesian updating of the monotone

mean-variance preferences.

Example 1. Suppose the preference relation %E admits the maxmin EU representation

VE(f) = min
pE∈PE

∫
E

uE(f)dpE,

if the conditional cost function takes the form

cE(pE) =

0 if pE ∈ PE
+∞ otherwise

,

where PE ⊆ ∆E is a non-empty, closed, and convex set of priors on E. Then equation (6)

implies the prior-by-prior updating rule; i.e., PE = {p(·|E) : p ∈ PS}.
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If PE = {pE} is a singleton, then %E admits the SEU representation

VE(f) =

∫
E

uE(f)dpE,

and equation (6) imply the Bayesian updating rule.

Example 2. Suppose the preference relation %E admits the multiplier preferences represen-

tation

VE(f) = min
pE∈∆(E)

∫
E

uE(f)dpE + θR(pE‖qE),

if the conditional cost function takes the form

cE(pE) = θR(pE‖qE) = θ

∫
E

ln
pE
qE

(s)dpE(s),

where qE ∈ ∆E is a reference prior with full support15, θ > 0 is a parameter, and R(pE‖qE) =∫
E

ln
(
pE
qE

)
dpE is the relative entropy distance to the reference probability qE. Then equation

(6) implies Bayesian updating of the reference prior; i.e., qE = qS(·|E).

Example 3. Suppose X is the set of all monetary lotteries and u(z) = z for all z ∈ R.

The preference relation %E admits the monotone mean-variance preferences representation

(θ, qE)

VE(f) = min
pE∈∆(E)

∫
E

fdpE + θG(pE‖qE),

if the conditional cost function takes the form

cE(pE) = θG(pE‖qE) = θ

∫
E

1

2

(
pE(s)

qE(s)
− 1

)2

dpE(s)

where qE ∈ ∆E is a reference prior with full support, θ > 0 is a parameter of ambiguity

aversion, and G(pE‖qE) is the Gini index. Then %E also admits the classic mean-variance

utility representation

UE(f) =

∫
E

fdqE(s)− 1

2θ
V arE(f)

for the subset of acts {f : f(s)−
∫
E
fdqE ≤ θ, ∀s ∈ E}, where V arE(f) is the variance of f

according to qE (Maccheroni et al., 2006a, Theorem 24).

For monotone mean-variance preferences, equation (6) implies Bayesian updating of the

reference prior; i.e., qE = qS(·|E).

The next corollary applies the updating equation (6) to these three special cases. The up-

dating rule implies the well-known prior-by-prior updating rule for maxmin EU preferences,

and Bayesian updating of the reference prior for multiplier preferences and monotone mean-

variance preferences.

15The reference priors in Example 2 and 3 have full support, because %E is strongly monotone.
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Corollary 1. Suppose all the assumptions in Theorem 1 hold.

1. If {%E}E∈Σ∗ admit MEU representations (uE, PE) and uE ≈ u, then equation (6)

implies the prior-by-prior updating rule; i.e., PE = {p(·|E) : p ∈ PS}.

2. If {%E}E∈Σ∗ admit multiplier preferences representations (uE, qE, θ) and uE ≈ u, then

equation (6) implies Bayesian updating of the reference prior; i.e., qE = qS(·|E).

3. Suppose X is a set of monetary lotteries. If {%E}E∈Σ∗ admit monotone mean-variance

preferences representation (uE, qE, θ) where uE(t) = t ∈ R, then equation (6) implies

Bayesian updating of the reference prior; i.e., qE = qS(·|E).

4.2 Smooth ambiguity preferences

With smooth ambiguity preferences (Klibanoff et al., 2005), we have

VS(f) = φ−1

(∫
∆S

φ

(∫
u(f)dp

)
dµ(p)

)
For ξ ∈ u(X)|S|, define the aggregator

IS(ξ) := φ−1

(∫
∆S

φ

(∫
ξdp

)
dµ(p)

)

Alternatively, for any fixed ξ ∈ u(X)|S| and µ ∈ ∆∆S, define

X̃ξ(p) =

∫
S

ξ(s)dp(s), ∀p ∈ ∆S,

where X̃ξ is a random variable on R induced by µ.

Define Cφ : ∆R 7→ R to be

Cφ(X̃ξ) := φ−1

(∫
∆S

φ
(
X̃ξ(p)

)
dµ(p)

)
So Cφ is the certainty equivalent function for the real-value random variable X̃ξ.

For φ ∈ C3 (i.e., φ is three-times continuously differentiable), define the measure of absolute

ambiguity aversion as Aφ(·) := −φ′′(·)
φ′(·) .
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Lemma 7. For the smooth ambiguity preferences %S, suppose φ ∈ C3, φ′ > 0, and φ′′ < 0.

Then the following are equivalent: (1) I(·) is concave; (2) The certainty equivalent function

Cφ(·) is concave; (3) 1
Aφ(·) is concave.16

Corollary 2. If {%E}E∈Σ∗ admit smooth ambiguity preferences representations and %S ad-

mit a smooth representation with (u, φ, µ). Suppose φ ∈ C3, φ′ > 0 and φ′′ < 0, and 1
Aφ(·) is

concave.

Then stable constant-act preferences and conditional consistency hold if and only if %E ad-

mits representation VE : F 7→ R with VE = IE ◦u such that for all f ∈ F , IE(u(f)) = k∗ ∈ R
that uniquely solves

k∗ = φ−1

(∫
∆S

φ

(∫
E

u(f)dp+ k∗p(Ec)

)
dµ(p)

)
(11)

Proof. “If” part is obvious. To see the “only if” part, by Lemma 7, IS(·) satisfies Assumption

1 and hence the conditional certainty equivalent is well-defined. That is, for all f ∈ F , the

equivalence relation fEx ∼S x induces the equation

VS(fEx) = φ−1

∫
∆S

φ

(∫
E

u(f)dp+ p(Ec)u(x)

)
dµ(p) = u(x),

which has a unique solution u(x) ∈ u(X). Let k∗ = u(x). Then equation (18) follows from

conditional consistency axiom.

Remark 2. In the smooth ambiguity representation, when µ ∈ ∆∆S has support on Dirac

probabilities on X, then µ can be identified with a p0 ∈ ∆S while the DM still has second-

order risk aversion captured by the concave functional φ(·). In this special case, %S admits

a Second-order EU (SOEU) representation (u, φ, p0) (Grant et al., 2009)

VS(f) = φ−1

(∫
S

φ(u(f))dp

)
.

For this case, when φ satisfies the same conditions in Corollary 2, stable constant act pref-

erences and conditional consistency are equivalent to %E admits the following utility repre-

sentation:

VE(f) = k∗ = φ−1

(∫
E

φ(u(f))dp0 + k∗p0(Ec)

)
(12)

See Appendix 1.15 for detail.

16I thank Todd Sarver for suggesting a reference for the proof.
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4.3 Comparative ambiguity

Here I consider the notion of interpersonal comparison of ambiguity aversion introduced by

Ghirardato and Marinacci (2002). The updating rule characterized for the strongly monotone

and concave UAP family preserves the comparative ambiguity attitudes; i.e., if %1
S is more

ambiguity averse than %2
S, then the updated preferences %1

E is still more ambiguity averse

than %2
E.

Definition 9. For any non-empty event E ∈ Σ∗ and two two DMs with UAP preferences

%1
E and %2

E, say DM 1 is more ambiguity averse than DM 2 if (i) %1
E=%2

E on X and (ii)

f %1
E x⇒ f %2

E x for all f ∈ F and all x ∈ X.

Corollary 3. Suppose two DMs have concave and strongly monotone UAP preferences %1
S

and %2
S satisfying Assumption 1. For all E ∈ Σ∗, %i

S and %i
E satisfy stable constant-act

preferences and conditional consistency for i = 1, 2.

Then, if unconditionally %1
S is more ambiguity averse than %2

S, then the updated preferences

%1
E is also more ambiguity averse than %2

E .

Proof of Corollary 3. Take any f ∈ F and x ∈ X such that f %1
E x. Let x0 ∈ X be

the essentially unique conditional certainty equivalent by DM 1; i.e., fEx0 ∼1
S x0. Then

conditional consistency implies f ∼1
E x0 %1

E x. DM 2 is unconditionally less ambiguity

averse than DM 1 thus fEx0 %2
S x0.

Lemma 8. Suppose %S satisfies Assumption 1. For all E ∈ Σ∗, under stable constant-

act preferences, the following statements are equivalent: (i) %S and %E satisfy conditional

consistency; (ii) fEx %S x⇒ f %E x and fEy -S y ⇒ f -E y for all f ∈ F , x, y ∈ X.

The proof of Lemma 8 is in appendix 1.14. It implies f %2
E x0. Since %2

E=%1
E on X, f %2

E x

for all x that satisfies f %1
E x.

A Appendix: Proofs

1.1 Proof of Lemma 2

Proof. Fix an act f ∈ F and event E ∈ Σ∗. There exists x∗, x
∗, x∗ - f(s) and x∗ % f(s)

for all s ∈ E. Let a = u(x∗) and b = u(x∗). Define function g : [a, b] 7→ [a, b] where
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g(z) := I(u(f)Ez). Then g is strictly increasing, continuous, and concave. Since I(·) is

normalized, g(a) ≥ I(a1) = a, and g(b) ≤ I(b1) = b.

Define h(z) = g(z)− z. Then the function h : [a, b] 7→ [a, b] is continuous, and h(a) ≥ 0 and

h(b) ≤ 0. By intermediate value theorem, there exists z∗ ∈ [a, b], h(z∗) = 0.

Next I show the solution z∗ is unique. Note that g(z) = I(u(f)Ez) is concave as I(·) is

concave. So h(z) = g(z)− z is concave since it is the sum of two concave functions.

First, suppose for a fixed f one can find some x∗ ∈ X such that g(a) > a for a = u(x∗); i.e.,

f(s) � x∗ for some s ∈ E. Suppose there are more than one solution to h(z) = 0 on [a, b].

Let z∗1 be the smallest solution and z∗2 > z∗1 be another solution. Then there are two cases:

(i) there exists z′ ∈ (z∗1 , z
∗
2) such that h(z′) < 0; (ii) h(z′) ≥ 0 for all z′ ∈ (z∗1 , z

∗
2).

For case (i), there exists some λ ∈ (0, 1) such that z′ = λz∗1 + (1− λ)z∗2 . Yet

0 > h(z′) = h(λz∗1 + (1− λ)z∗2) ≥ min{h(z∗1), h(z∗2)} = 0

where the ≥ step follows from (quasi-)concavity of the h(·) function. This is a contradiction.

For case (ii), note that z∗1 is the smallest solution to h(z) = 0 on [a, b] and h(a) > 0. Since

h is a continuous function, there exists some z′′ ∈ [a, z∗1) such that h(z′′) > 0. Pick any

z′ ∈ (z∗1 , z
∗
2), then h(z′) ≥ 0. Moreover, there exists α ∈ (0, 1) such that z∗1 = αz′′+(1−α)z′.

Then

0 = h(z∗1) = h(αz′′ + (1− α)z′) ≥ αh(z′′) + (1− α)h(z′) > 0,

where the ≥ step follows from the concavity of h(·). Again this is a contradiction.

Finally, I rule out the corner case where for the fixed f , one cannot find x∗ ∈ X such that

g(a) > a for a = u(x∗). This is the case when u(X) is bounded below at a and u(f(s)) = a

for all s ∈ E. Then there exists some x∗ ∈ X such that x % x∗ for all x ∈ X, and for this

a = u(x∗) we have g(a) = a; i.e., I(u(f)Ea) = a = u(x∗). In this case, fEx∗ ∼ x∗. Since

x∗ is the least preferred element in X, f(s) % x∗ for all s ∈ E. By Strong Monotonicity

of %, f(s) ∼ x∗ for all s ∈ E, because if not there must be fEx∗ � x∗. Suppose there is

another y ∈ X that satisfies fEy ∼ y. Then by Strong Monotonicity f(s) ∼ x∗ for all s ∈ E
implies x∗Ey ∼ fEy ∼ y, which implies x∗ ∼ y. So the conditional certainty equivalent is

essentially unique at the corner case.

1.2 Proof of Lemma 3

Proof of Lemma 3. Take any t ∈ u(X), it suffices to show pt(E) > 0 for all non-empty

E ∈ Σ∗.
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Construct vectors ξ, ξ′ ∈ u(X)|S|,

ξ(s) = t, ∀s ∈ S, ξ′(s) =

t+ ε, ∀s ∈ E

t, ∀s ∈ Ec
,

where ε > 0 is arbitrarily small.

Suppose pt(E) = 0 for some E. Then
∫
ξ′dpt =

∫
ξdpt = t. Hence,

IS(ξ) = min
p∈∆S

G(

∫
ξdp, p) = G(

∫
ξdpt, pt) = G(t, pt) = t

(by definition of pt). And

IS(ξ′) = min
p∈∆S

G(

∫
ξ′dp, p) ≤ G(

∫
ξ′dpt, pt) = G(t, pt) = t.

But ξ′ > ξ, by strong monotonicity of IS, there must be IS(ξ′) > IS(ξ). A contradiction.

1.3 Proof of Lemma 4

Proof. Note that %E satisfies Axiom 1 and strong monotonicity if and only if %E admits a

strongly monotone UAP representation (uE, G̃E)

VE(f) = min
p∈∆S

G̃E

(∫
S

uE(f)dp, p

)
, (13)

where uE : X 7→ R is an affine vNM utility and G̃E : uE(X) × ∆S 7→ (−∞,+∞] is

a conditional UAP index that is lower semi-continuous, quasi-convex, G̃E(·, p) is strongly

monotone for all p ∈ ∆S, and infp∈∆S G̃E(t, p) = t for all t ∈ uE(X).

“If” direction is obvious. When the minimizer of equation (13) always belong to ∆E, %E

satisfies consequentialism.

For the “only if” direction, fix any E ∈ Σ∗. For an arbitrary f ∈ F , because S is finite, there

is some x∗ ∈ X such that f(s) �E x∗ for all s. By consequentialism of %E, fEx∗ ∼E f . Let

p∗ ∈ ∆S be an arbitrary minimizer in equation (13). Then

VE(f) = G̃E

(∫
S

uE(f)dp∗, p∗
)

= VE(fEx∗) ≤ G̃E

(∫
E

uE(f)dp∗ + p∗(Ec)uE(x∗), p
∗
)
.

Strict monotonicity of G̃E(·, p∗) implies
∫
Ec

(uE(f) − uE(x∗))dp
∗ ≤ 0. Since uE(f)(s) −

uE(x∗) > 0 for every state s ∈ Ec, the implication holds if and only if p∗(Ec) = 0.
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Therefore, for every f ∈ F , any minimizing probability p∗ in VE(f) always has full support

on E. Therefore, without loss one can express the utility representation of %E as

VE(f) = min
p∈∆S

G̃E

(∫
S

uE(f)dp, p

)
= min

pE∈∆E
GE

(∫
E

uE(f)dpE, pE

)
,

where GE : uE(X)×∆E 7→ (−∞,+∞] is the restriction of G̃E on uE(X)×∆E.

1.4 Lemma 9

Lemma 9. If %S satisfies Axioms 2 and 5, the conditional cost function c̃E defined by

equation (7) attains its minimum.

Proof. Given c, the function c̃E : ∆E 7→ [0,+∞] is

c̃E(pE) = inf
p∈∆(pE)

c(p)

p(E)
.

Recall ∆(pE) = {p ∈ ∆S : p(·|E) = pE}. If c(p) = +∞ for all p ∈ ∆(pE), then cE(pE) = +∞
and the minimum value attains at any p ∈ ∆(pE). Otherwise, c(p) < +∞ for some p ∈ ∆(pE)

and thus cE(pE) < +∞. Define function φ : ∆S 7→ [0,+∞] where φ(p) = c(p)
p(E)

.

First, φ(·) is a lower semi-continuous function on ∆S. To see this, for all r ∈ [0,+∞], let

Lr = {q ∈ ∆S : c(q)
q(E)
≤ r}. Take any sequence qn in Lr, which satisfies c(qn) ≤ rqn(E) for

all n. This implies

c(q) ≤ lim
m

inf
n≥m

c(qn) ≤ r lim
n
qn(E) = rq(E),

where the first inequality follows from lower semi-continuity of function c, the second in-

equality follows from that qn ∈ Lr, and the last equality from qn → q.

Second, ∆(pE) = ∆(pE)∪∆(Ec) is a compact subset ∆(S), and hence infp∈∆(pE) φ(p) attains

its minimum on ∆(pE). To see this, ∆(pE) is obviously bounded. And for any sequence

{qn} ⊆ ∆(pE), there exists a convergent subsequence {ql} such that ql → q∗ ∈ ∆S since

∆S is compact. It remains to show that q∗ belongs to ∆(pE), which is closed. If q∗(E) = 0,

then q∗ ∈ ∆Ec ⊆ ∆(pE). Suppose q∗(E) > 0. Then, for sufficiently large l, ql(E) > 0 and

ql ∈ Q(pE). Therefore,

q∗(B ∩ E)

q∗(E)
= lim

l

ql(B ∩ E)

ql(E)
= pE(B) for all B ∈ Σ,
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and thus q∗ ∈ ∆(pE) ⊆ ∆(pE).

Hence, c̃E(pE) = infp∈∆(pE)
c(p)
p(E)

, and there exists some p∗ ∈ ∆(pE) such that c̃E(pE) = c(p∗)
p∗(E)

.

First suppose p∗ ∈ ∆(Ec). Then p∗(E) = 0, and by Lemma 3, c(p∗) > 0. For all p ∈ ∆(pE),

+∞ =
c(p∗)

p∗(E)
= min

p∈∆(pE)

c(p)

p(E)
≤ c(p)

p(E)
< +∞,

which leads to a contradiction. Hence, p∗ ∈ ∆(pE) and c̃E(pE) = minp∈∆(pE)
c(p)
p(E)

.

1.5 Lemma 10

Lemma 10. If %S satisfies Axioms 2 and 5, the function c̃E defined by equation (6) is

convex, lower semi-continuous, and grounded.

Proof. Convexity. By Lemma 9, for all pE, qE ∈ ∆(E), there exists p∗, q∗ ∈ ∆S such that

p∗(·|E) = pE, q
∗(·|E) = qE, and cE(pE) =

c(p∗)

p∗(E)
, cE(qE) =

c(q∗)

q∗(E)
.

Fix any α ∈ [0, 1]. Pick γ ∈ [0, 1] that satisfies γp∗(E)
γp∗(E)+(1−γ)q∗(E)

= α. Set p′ := γp∗+(1−γ)q∗.

Then

p′(·|E) =
γp∗(·) + (1− γ)q∗(·)
γp∗(E) + (1− γ)q∗(E)

= α
p∗(·)
p∗(E)

+ (1− α)
q∗(·)
q∗(E)

= αp∗(·|E) + (1− α)q∗(·|E) = αpE + (1− α)qE

And

cE(αpE + (1− α)qE) ≤ c(p′)

p′(E)
≤ γc(p∗) + (1− γ)c(q∗)

γp∗(E) + (1− γ)q∗(E)

=
γp∗(E)

γp∗(E) + (1− γ)q∗(E)
cE(pE) +

(1− γ)q∗(E)

γp∗(E) + (1− γ)q∗(E)
cE(qE)

= αcE(pE) + (1− α)cE(qE).

The first inequality follows from definition and that p′(·|E) = αpE + (1− α)qE. The second

inequality follows from convexity of c.

Lower semi-continuity. It suffices to show that for all r ∈ [0,+∞], Lr = {pE ∈ ∆E : cE(pE) ≤
r} is closed in ∆E. To that end, take any sequence {pnE} in Lr and pnE → pE ∈ ∆(E). Then
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cE(pnE) ≤ r for all n. By Lemma 9, there exists a corresponding sequence pn ∈ ∆(S) such

that pn(·|E) = pnE and c(pn)
pn(E)

= cE(pnE). This implies c(pn) ≤ rpn(E) for all n. Since ∆(S) is

compact, there exists a convergent subsequence {pk} such that pk → p∗ ∈ ∆(S). Moreover,

c(p∗) ≤ lim inf c(pk) ≤ r lim pk(E) = rp∗(E).

If p∗(E) > 0, then its Bayesian posterior exists and equals to limk p
k
E = pE. So cE(pE) ≤

c(p∗)
p∗(E)

≤ r and pE ∈ Lr. If p∗(E) = 0, then the above imply c(p∗) = 0, which contradicts

Lemma 3.

Groundedness. Since c is grounded, so there exists p∗ such that c(p∗) = 0. By Lemma 3,

p∗(E) > 0, so cE(p∗(·|E)) = 0.

1.6 Proof of Lemma 5

Proof. Suppose fEx ∼S x.

First, I show VS(fEx) ≥ ṼE(f).

VS(fEx) = min
p∈∆S

∫
E

u(f)dp+ u(x)p(Ec) + c(p)

=

∫
E

u(f)dp∗ + u(x)p∗(Ec) + c(p∗)

(14)

where p∗ is the minimizing probability in equation (14). If p∗(E) = 0, then the above

equation implies c(p∗) = 0, which contradicts Lemma 3. Therefore, p∗(E) > 0, and equation

(14) becomes

p∗(E)u(x) =

∫
E

u(f)dp∗ + c(p∗).

Thus,

VS(fEx) = u(x) =

∫
E

u(f)dp∗(·|E) +
c(p∗)

p∗(E)

≥ min
pE∈∆(E)

(∫
E

u(f)dpE + min
p∈∆(pE)

c(p)

p(E)

)
= inf
{p∈∆S:p(E)>0}

∫
E

u(f)dp(·|E) +
c(p)

p(E)
= ṼE(f).

For the other direction VS(fEx) ≤ ṼE(f). Since c(·) is lower semi-continuous, there exists

some q∗ ∈ ∆S such that∫
E

u(f)dq∗(·|E) +
c(q∗)

q∗(E)
= inf
{p∈∆S:p(E)>0}

∫
E

u(f)dp(·|E) +
c(p)

p(E)
= ṼE(f)
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Also, there must be q∗(E) > 0. Suppose not and q∗(E) = 0, then the fact that the expression

attains its infimum at q∗ rules out the case c(q∗) > 0. Then c(q∗) = 0, which contradicts

Lemma 3.

Then,

q∗(E) · ṼE(f) + q∗(Ec) · u(x)

= q∗(E)

(∫
E

u(f)dq∗(·|E) +
c(q∗)

q∗(E)

)
+ q∗(Ec)u(x)

≥ VS(fEx)

Since VS(fEx) = u(x), there must be ṼE(f) ≥ VS(fEx).

1.7 Proof of Lemma 6

Proof. For notational simplicity, I prove the lemma for the case E = S. The proof for the

case with an arbitrary non-empty event E ∈ Σ∗ is analogous.

By constant-act independence, u ≈ u′. Without loss, let u = u′. Denote φ = u(f).

It suffices to show the following statement. For any two variational functionals I(φ) =

minp∈∆

∫
S
φdp + c(p) and I ′(φ) = minp∈∆

∫
S
φdp + c′(p), if c(p0) < c′(p0) for some p0, then

there exists ξ ∈ R|S| such that I(ξ) < I ′(ξ).

Consider the epigraph of c′:

epi(c′) = {(p, r) ∈ ∆S × R|r ≥ c′(p)} ⊆ ∆S × [0,+∞]

Since c′ is nonnegative, convex, lower semi-continuous, and grounded, epi(c′) is nonempty,

closed and convex. Let r0 = c(p0). Since c(p0) < c′(p0), (p0, r0) /∈ epi(c′). By the strict sep-

arating hyperplane theorem there exists (ξ0, r
∗) ∈ R|S|+1, (ξ0, r

∗) 6= 0, that strictly separates

(p0, r0) from the set epi(c′); i.e.,∫
S

ξ0dp0 + r0 · r∗ < min
r′≥c′(p′)

∫
S

ξ0dp
′ + r′ · r∗. (15)

17 Note that r∗ > 0: If r∗ < 0, take r′ = +∞ in inequality (15) above and the right-

hand side becomes −∞; or if r∗ = 0, then for (p0, r
′) ∈ epi(c′) inequality (15) becomes∫

S
ξ0dp0 <

∫
S
ξ0dp0. Hence, multiplying both sides of (15) by 1

r∗
(take ξ = 1

r∗
ξ0) yields∫

S

ξdp0 + r0 <

∫
S

ξdp′ + r′, ∀(p′, r′) ∈ epi(c′).

17Since infr′≥c′(p′)

∫
S
ξdp′ + r′ = minp′∈∆

∫
S
ξdp′ + c′(p′), the right hand side always attains its minimum.
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By r0 = c(p0), ∫
S

ξdp0 + r0 =

∫
S

ξdp0 + c(p0) ≥ min
p∈∆

∫
S

ξdp+ c(p) = I(ξ).

By definition,

min
r′≥c′(p′)

∫
S

ξdp′ + r′ = min
p′∈∆

∫
S

ξdp′ + c′(p′) = I ′(ξ).

Thus, I(ξ) ≤
∫
S
ξdp0 + r0 < minr′≥c′(p′)

∫
S
ξdp′ + r′ = I ′(ξ).

1.8 Proof of Theorem 1

Proof. (i) implies (ii). Suppose Axioms 1-9 hold.

By Stable Constant-act Preferences, <0 and <E agree on the set of constant acts X. Without

loss of generality, assume uE = u.

It remains to show that given u and c functions, the conditional cost function cE must coincide

with the induced cost function c̃E(pE) := min{p∈∆(pE)}
c(p)
p(E)

. Suppose instead cE 6= c̃E. Thus

there exists p∗E such that cE(p∗E) 6= c̃E(p∗E).

Suppose cE(p∗E) > c̃E(p∗E). By Lemma 6, there exists some ξE ∈ R|E| such that

min
pE∈∆E

∫
E

ξEdpE + c̃E(pE) < min
pE∈∆E

∫
E

ξEdpE + cE(pE).

Since u(X) = R, there exists an act f ∈ F such that u(f)(s) = ξE(s) for all s ∈ E.

min
pE∈∆E

∫
E

u(f)dpE + c̃E(pE) < min
pE∈∆E

∫
E

u(f)dpE + cE(pE).

By Continuity, there exists x ∈ X such that x ∼E f . Then,

u(x) = VE(f) = min
pE∈∆E

∫
E

u(f)dpE + cE(pE) > min
pE∈∆E

∫
E

u(f)dpE + c̃E(pE) = ṼE(f)

By Lemma 5, for all y ∈ X such that y ∼S fEy, u(y) = VS(fEy) = ṼE(f) < u(x). By

conditional consistency, f ∼E y. Hence, x ∼E y. By Stable Risk Preferences, x ∼S y, which

contradicts u(y) < u(x).

The case cE(p∗E) < c̃E(p∗E) at some p∗E ∈ ∆E can also be ruled out by an analogous argument.

Hence, cE(·) = c̃E(·) on ∆E.
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(ii) implies (i). Take any non-empty event E ∈ Σ∗. Let (u, c) and (uE, cE) be the variational

representations for %S and %E, respectively.

Since u ≈ uE, for all x, y ∈ X, x %S y ⇔ u(x) ≥ u(y) ⇔ uE(x) = au(x) + b ≥ au(y) + b =

uE(y)⇔ x %E y, for some a > 0, b ∈ R. Hence, Stable Constant-act Preferences holds.

Without loss, let u(·) = uE(·) on X. Suppose the cost functions cE(·) and c(·) satisfies

equation (6). Then, for all f ,

VE(f) = min
pE∈∆E

∫
E

u(f)dpE + cE(pE) = ṼE(f)

for ṼE defined in equation (8).

It remains to check that conditional consistency also holds. For any f ∈ F and x ∈ X,

suppose fEx ∼S x. By Lemma 5,

u(x) = VS(fEx) = ṼE(f) = VE(f)

Since u(x) = uE(x) and VE(·) represents %E, there must be f ∼E x.

1.9 Proof of Corollary 1

Proof. 1. Suppose <S has a MEU representation (u, PS). Then it corresponds to the

indicator cost function

c(p) =

0 if p ∈ PS,

+∞ otherwise.

For all E ∈ Σ∗, Strong Monotonicity of <S ensures that p(E) > 0 for all p ∈ PS.

Applying updating equation (6),

cE(pE) =

0 if pE ∈ {p(·|E) : p ∈ PS}

+∞ otherwise

2. Suppose <S has a multiplier preference representation (u, q, θ). Then %S corresponds

to the cost function that is proportional to the relative entropy distance:

c(p) = θ

∫
S

ln

(
p

q
(s)

)
dp(s)
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For any nonempty event E, Strong Monotonicity of <S ensures that qS(E) > 0 for all
E ∈ Σ∗. Applying updating equation (6),

cE(pE) = min
p∈∆(pE)

θ

p(E)

∫
S

ln

(
p

q
(s)

)
dp(s)

= min
p∈∆(pE)

θ

p(E)

(∫
E

ln
pE
qE

(s)dpE(s)

)
p(E) +

θ

p(E)

(∫
Ec

ln
pEc

qEc

(s)dpEc(s)

)
p(Ec)

+
θ

p(E)

(
p(E) ln

p(E)

q(E)
+ p(Ec) ln

p(Ec)

q(Ec)

)
= θ

∫
E

ln
pE
qE

(s)dpE(s)

In the last equality, the minimizer p satisfies p(E) = q(E) and p(·|Ec) = qEc .

3. Suppose X is the set of monetary lotteries and <S admits a monotone mean-variance

preferences representation (qS, θ) with uS(t) = t ∈ R. Denote qS by q. Strong Mono-

tonicity of <S ensures that q(E) > 0 for all E ∈ Σ∗.

Then %S corresponds to the unconditional cost function that is proportional to the

Gini index:

c(p) = θG(p‖q) = θ

∫
S

1

2

(
p(s)

q(s)
− 1

)2

dp(s)

Applying updating equation (6),

cE(pE) = min
p∈∆(pE)

θ

p(E)

∫
S

1

2

(
p(s)

q(s)
− 1

)2

dp(s)

= min
p∈∆(pE)

θ

p(E)

[∫
E

(
pE(s)p(E)

qE(s)q(E)
− 1

)2

dpE(s)p(E) +

∫
Ec

(
p(s)

q(s)
− 1

)2

dp(s)

]

=
θ

p(E)

[∫
E

(
pE(s)

qE(s)
− 1

)2

dpE(s)p(E)

]

= θ

∫
E

(
pE(s)

qE(s)
− 1

)2

dpE(s) = θG(pE‖qE).

The second equality follows from p(·|E) = pE, and the third equality follows from

setting the minimizing p to p(E) = q(E) and p(·|Ec) = qEc .

1.10 Lemma 11

Lemma 11. For all pE ∈ ∆E,

ϕ̃1E(pE) = sup
{p∈∆(pE):ϕ1(p)>p(Ec)}

(
ϕ1(p)

p(E)
− p(Ec)

p(E)

)
, (16)

30



attains its maximum in {p ∈ ∆(pE) : ϕ1(p) > p(Ec)}.

Proof. Define h : ∆S 7→ R to be

h(p) :=

(
ϕ1(p)

p(E)
− p(Ec)

p(E)

)
− 1 =

ϕ1(p)− 1

p(E)

So for all element in C(pE) := {p ∈ ∆(pE) : ϕ1(p) > p(Ec)} ⊆ ∆S, h(p) ∈ (−1, 0].

Fact 1: mapping h : ∆S 7→ R is upper semi-continuous.

Recall two properties of upper semi-continuous functions: For any two functions f : X 7→ R
and g : X 7→ R, (i)if both f and g are both upper semi-continuous, then so is f + g ; (ii)

if both f, g are also positive valued, then the product function fg is upper semi-continuous

(and positive valued); Since ϕ1 is positive valued and upper semi-continuous, 1
p(E)

:= 1∫
S 1Edp

is continuous (in p) and positive valued, the claimed fact follows.

Fact 2: the closure of C(pE), denoted C(pE), is compact.

To see this fact, observe that

C(pE) ⊆ {p ∈ ∆(pE) : ϕ1(p) ≥ p(Ec)} ∪∆Ec ⊆ ∆S,

and ∆S is a compact subset of R|S|+ . Hence, C(pE) is closed (by definition) and bounded.

By a generalized Weierstrass’ Theorem (Aliprantis and Border (2007), Theorem 2.43), the

real-valued upper semicontinuous function h(·) : C(pE) 7→ R attains its maximum on the

compact set C(pE).

Let p∗ ∈ C(pE) be a maximizer of h(·). Suppose p∗ /∈ C(pE), then either (i) ϕ1(p∗) = p∗(Ec)

or (ii) p∗(E) = 0. Let {pn} be a sequence in C(pE) such that pn → p∗. By construction,

pn(E) > 0 and ϕ1(pn) > pn(Ec).

If case (i), since p∗ is a maximizer,

−1 =
p∗(Ec)− 1

p∗(E)
=
ϕ1(p∗)− 1

p∗(E)
≥ ϕ1(pn)− 1

pn(E)
>
pn(Ec)− 1

pn(E)
= −1.

This is a contradiction.

If case (ii), since ϕ1(p∗) ∈ (0, 1]. Using the convention 0−/0 = −∞,

−∞ =
ϕ1(p∗)− 1

p∗(E)
≥ ϕ1(pn)− 1

pn(E)
>
pn(Ec)− 1

pn(E)
= −1.

Again, this is a contradiction.
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Therefore, p∗ ∈ C(pE); i.e., the function

h(p) + 1 =

(
ϕ1(p)

p(E)
− p(Ec)

p(E)

)
attains its maximum on the constraint set C(pE).

1.11 Lemma 12

Lemma 12. The conditional confidence function defined by equation (10) is a function

ϕ̃1E : ∆E 7→ [0, 1] that is concave, upper semi-continuous, and normal (ϕ̃1E(pE) = 1 for

some pE ∈ ∆E).

Proof. (i)ϕ̃1E : ∆E 7→ [0, 1]. For any pE ∈ ∆E, by construction, ϕ1E(pE) > 0 for all pE ∈ CE
such that ϕ1(p) > p(Ec).

For all p ∈ ∆(pE) such that ϕ1(p) > p(Ec) ≥ 0, 1 ≥ ϕ1(p). Hence, ϕ1(p)
p(E)

− p(Ec)
p(E)

≤
1

p(E)
− p(Ec)

p(E)
= 1. So 0 ≤ ϕ1E(pE) ≤ 1 for all pE ∈ ∆E.

(ii) Concavity.

By Lemma 11, for all pE, qE ∈ ∆E, there exists p∗, q∗ ∈ ∆S such that p∗ ∈ C(pE) and

q∗ ∈ C(qE); i.e.,

p∗(·|E) = pE, ϕ(p∗) > p∗(Ec), ϕ̃1E(pE) =
ϕ1(p∗)− 1

p∗(E)
+ 1;

q∗(·|E) = qE, ϕ(q∗) > q∗(Ec), ϕ̃1E(qE) =
ϕ1(q∗)− 1

q∗(E)
+ 1.

Take any λ ∈ [0, 1], there exists γ ∈ [0, 1] such that γp∗(E)
γp∗(E)+(1−γ)q∗(E)

:= λ. Set p′ :=

γp∗ + (1− γ)q∗. Then, by concavity of ϕ1(·),

p′(·|E) =
γp∗(·) + (1− γ)q∗(·)
γp∗(E) + (1− γ)q∗(E)

= λ
p∗(·)
p∗(E)

+ (1− λ)
q∗(·)
q∗(E)

= λp∗(·|E) + (1− λ)q∗(·|E) = λpE + (1− λ)qE;

ϕ1(p′) = ϕ1(γp∗ + (1− γ)q∗) ≥ γϕ1(p∗) + (1− γ)ϕ1(q∗) > γp∗(Ec) + (1− γ)q∗(Ec) = p′(Ec),
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which implies p′ ∈ C(λpE + (1− λ)qE). Moreover,

ϕ̃1E(λpE + (1− λ)qE) ≥ ϕ1(p′)− 1

p′(E)
+ 1 =

ϕ1(γp∗ + (1− γ)q∗)− 1

γp∗(E) + (1− γ)q∗(E)
+ 1

≥ γ(ϕ1(p∗)− 1) + (1− γ)(ϕ1(q∗)− 1)

γp∗(E) + (1− γ)q∗(E)
+ 1

= λ

(
ϕ1(p∗)− 1

p∗(E)
+ 1

)
+ (1− λ)

(
ϕ1(q∗)− 1

q∗(E)
+ 1

)
= λϕ̃1E(pE) + (1− λ)ϕ̃1E(qE).

(iii) Upper semi-continuity. It suffices to show Uα = {pE ∈ ∆E : ϕ̃1E(pE) ≥ α} is a closed

set for all α ∈ R. If α ≤ 0, then Uα = ∆E and the claim holds. If α > 1, then Uα is an

empty set and the claim holds vacuously. Fix any α ∈ (0, 1], take any convergence sequence

pnE from Uα such that pnE → p∗E ∈ ∆E. For each pnE, by Lemma 11, there exists pn ∈ C(pnE)

such that

ϕ̃1E(pnE) =
ϕ1(pn)− 1

pn(E)
+ 1 ≥ α.

Therefore, for all n,

pn(E) ≥ pn(E)(1− α) ≥ 1− ϕ1(pn)

And since ∆S is compact, the sequence {pn} ⊆ ∆S has a convergent subsequence {pk},
pk → p∗. Then

p∗(E)(1− α) = lim
k
pk(E)(1− α) = lim inf

k
pk(E)(1− α) ≥ lim inf

k
(1− ϕ1(pk)) ≥ 1− ϕ1(p∗),

where the last ≥ uses 1− ϕ1(·) is lower semi-continuous.

If p∗(E) = 0, then the above implies ϕ1(p∗) = 1. By Lemma 3, p∗ must have full support on

S, which is a contradiction. Hence, p∗(E) > 0.

Then p∗(·|E) is well defined and equals to limk p
k
E = p∗E.18 Moreover, since 0 < α ≤ 1,

p∗(E) > (1− α)p∗(E) ≥ 1− ϕ1(p∗) and hence ϕ1(p∗) > p∗(Ec). Therefore, p∗ ∈ C(p∗E), and

ϕ̃1E(p∗E) ≥ 1− ϕ1(p∗)

p∗(E)
+ 1 ≥ α ⇒ p∗E ∈ Uα.

(iv) Normality. Since ϕ1 is normalized, there exists p∗ ∈ C, ϕ1(p∗) = 1 = max∆S ϕ1(p). For

this p∗, ϕ1(p∗) ≥ p∗(Ec) and ϕ1(p∗)
p∗(E)

− p∗(Ec)
p∗(E)

= 1. So max∆E ϕ1E(pE) = 1.

18It is straightforward to verify that if p(E) > 0 the Bayesian updating mapping p(·) 7→ p(·|E) is continuous

at every event B ⊆ S.
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1.12 Proof of Theorem 2

Proof. The (ii) ⇒ (i) direction follows from standard argument. It suffices to show the (i)

⇒ (ii) direction.

Take any nonempty E ∈ Σ∗. Suppose Confidence preferences %S and %E satisfy stable-

constant act preferences and conditional consistency. Then there exists unique maximal

confidence preferences representation (u, ϕ1) and (uE, ϕ1E) that represents %S and %E, and

u ≈ uE. Without loss, normalize and let u = uE. It remains to show that ϕ1E can be derived

by ϕ1 via the updating equation (10).

For confidence preferences, first note that Lemma 3 suggests ϕ1(p) = 1 implies p(E) > 0 for

all E ∈ Σ∗. Second, The aggregator function ICPS : u(X)|S| 7→ R is ICPS (ξ) = infp∈∆S

∫
S ξdp

ϕ1(p)

for all ξ ∈ u(X)|S|. Observe that ICPS (·) is the pointwise infimum of a collection of linear

functions (of ξ), and hence it is concave (Aliprantis and Border (2007), Lemma 5.40). There-

fore, Assumption 1 holds. By Lemma 2, the conditional certainty equivalent given by the

conditional consistency axiom fEx ∼S x is essentially unique. Third, by Lemma 4, it is

without loss to focus on confidence preferences representation of %E with the conditional

cost function ϕ1E defined on ∆E.

Then, consider the candidate conditional confidence function ϕ̃1E : ∆E 7→ [0, 1] induced by

ϕ1(·):

ϕ̃1E(pE) = sup
{p∈∆(pE):ϕ1(p)>p(Ec)}

(
ϕ1(p)

p(E)
− p(Ec)

p(E)

)
, (17)

By Lemma 11, equation (17) attains its maximum in the set {p ∈ ∆(pE) : ϕ1(p) > p(Ec)}.
And by Lemma 12, the induced function ϕ̃1E satisfies the properties of a confidence function.

Consider the following conditional confidence preferences representation (u, ϕ̃1E) of %E:

Ṽ CP
E (f) = inf

pE∈∆E

∫
E
ξdpE

ϕ̃E1(pE)
= inf

pE∈∆E

(∫
E

ξdpE · inf
{p∈∆(pE):ϕ1(p)>p(Ec)}

p(E)

ϕ1(p)− p(Ec)

)
= inf

{p∈∆S:p(E)>0,ϕ1(p)>p(Ec)}

∫
E
ξdp(·|E)

ϕ1(p)−p(Ec)
p(E)

Lemma 13. Suppose %S satisfies Axiom 6. For all f ∈ F , if fEx ∼S x, then

VS(fEx) = Ṽ CP
E (f).

Proof of Lemma 13. For any f ∈ F . Let ξ = u(f) ∈ u(X)|S| and IS(ξ) = VS(f) for f ∈
u−1(ξ). Note that IS(·) is concave. By Lemma 2, there exists some x ∈ X such that
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fEx ∼S x and u(x) := k ∈ R+ is unique. Let V CP
E (·) given by (u, ϕ1E) be a consequentialist

confidence preferences representation of %E. By conditional consistency, f ∼E x and hence

V CP
E (f) = u(x) = k.

So

k = IS(ξEk) = inf
p∈∆S

∫
E
ξdp+ kp(Ec)

ϕ1(p)

=

∫
E
ξdp∗ + kp∗(Ec)

ϕ1(p∗)
,

where p∗ is from arg minp∈∆S

∫
E ξdp+kp(E

c)

ϕ1(p)
. Note that the infimum attains because ϕ1(·) is

positive valued and upper semi-continuous on ∆S, so 1
ϕ1(·) is positive valued and lower semi-

continuous. The function p 7→
∫
E
ξdp+ kp(Ec) is positive valued and linear. So the function

p 7→
∫
E ξdp+kp(E

c)

ϕ1(p)
is lower semi-continuous on the compact set ∆S.

Then

k =

∫
E
ξdp∗

ϕ1(p∗)− p∗(Ec)
=

∫
E
ξdp∗(·|E)

ϕ1(p∗)−p∗(Ec)
p∗(E)

≥ inf
{p∈∆S:p(E)>0,ϕ1(p)>p(Ec)}

∫
E
ξdp(·|E)

ϕ1(p)−p(Ec)
p(E)

= inf
pE∈∆E

(∫
E

ξdpE · inf
p∈∆(pE):ϕ1(p)>p(Ec)

p(E)

ϕ1(p)− p(Ec)

)
= inf

pE∈∆E

∫
E
ξdpE

ϕ̃E1(pE)
:= Ṽ CP

E (f)

Hence, k ≥ ṼE(f).

Now suppose k > ṼE(f).

Since ϕ1(·) is upper semi-continuous, the function p 7→ φ(p) −
∫
S

1Ecdp is upper semi-

continuous, so {ϕ1(p) ≥ p(Ec)} is a compact subset of ∆S. On {ϕ1(p) ≥ p(Ec)}, the

function p 7→ φ(p)−p(Ec) is also positive valued. So p 7→ 1
φ(p)−p(Ec) is lower semi-continuous.

Given ξ ∈ R|S|+ , ξ 6= 0, p 7→
∫
E
ξdp is positive valued and continuous. Hence the function

p 7→
∫
E ξdp

φ(p)−p(Ec) is positive valued and lower semi-continuous, and must attain its minimum

on a compact set. Hence, there exists p̄ ∈ {ϕ1(p) ≥ p(Ec)} ⊆ ∆S such that∫
E
ξdp̄

ϕ1(p̄)− p̄(Ec)
= inf
{p∈∆S:p(E)>0,ϕ1(p)>p(Ec)}

∫
E
ξdp

ϕ1(p)− p(Ec)
.

Note that there must be (i) p̄(E) > 0 and (ii) ϕ(p̄) > p̄(Ec). To see this, if (i) does not

hold and p̄(E) = 0. Then p̄(Ec) = 1 and 1 ≥ ϕ1(p̄) ≥ p̄(Ec) = 1. Then ϕ1(p̄) = 1 but this
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contradicts the conclusion of Lemma 3. If (ii) does not hold and ϕ(p̄) = p̄(Ec), then for any

ξ 6= 0, the above expression implies

+∞ =

∫
E
ξdp̄

ϕ1(p̄)− p̄(Ec)
≤

∫
E
ξdp

ϕ1(p)− p(Ec)
< +∞

for all p(E) > 0 and ϕ1(p) > p(Ec), which is a contradiction.

Hence, there exists some p̄ ∈ ∆S, p̄(E) > 0, ϕ1(p̄) > p̄(Ec) such that

k > Ṽ CP
E (f) =

∫
E
ξdp̄

ϕ1(p̄)− p̄(Ec)
.

This implies

k >

∫
E
ξEkdp̄

ϕ1(p̄)
≥ min

p∈∆S

∫
S
ξEkdp

ϕ1(p)
= IS(ξEk) = k.

However, k > k is a contradiction.

So k = V CP
E (f) = Ṽ CP

E (f).

Hence, %E can be represented by Ṽ CP
E (·), which is a consequentialist confidence preference

representation consisting (u, ϕ̃1E). By Chateauneuf and Faro (2009), given u, the maximal

confidence representation ϕ̃1E is unique. And this finishes the proof.

1.13 Proof of Lemma 7

Proof. (2) ⇔ (3). X̃ξ is a real value random variable. For φ ∈ C3, φ′ > 0 and φ′′ < 0, by

construction Cφ(·) is

Cφ(X̃ξ) := φ−1

∫
∆S

φ
(
X̃ξ(p)

)
dµ(p),

which is the same as a certainty equivalent function for a EU DM with utility index φ(·) on

u(X) ⊆ R.

By Corollary 5.1 from Ben-Tal and Teboulle (2007), the certainty equivalent function Cφ(·)
is concave if and only if 1

Aφ(·) is concave.
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(1) ⇔ (2). For all ξ ∈ u(X)|S|, by definition

Cφ(X̃ξ) = I(ξ) = φ−1

∫
∆S

φ

(∫
S

ξ(s)dp(s)

)
dµ(p).

For any ξ1, ξ2 ∈ u(X)|S| and any α ∈ [0, 1], since X̃ξ =
∫
S
ξdp,

I(αξ1 + (1− α)ξ2) = Cφ

(
X̃αξ1+(1−α)ξ2)

)
= Cφ

(∫
S

(αξ1 + (1− α)ξ2)dp)

)
= Cφ

(
αX̃ξ1 + (1− α)X̃ξ2)

)
.

Since I(ξ1) = Cφ(X̃ξ1) and I(ξ2) = Cφ(X̃ξ2),

I(αξ1 + (1− α)ξ2) ≥ αI(ξ1) + (1− α)I(ξ2).

if and only if

Cφ

(
αX̃ξ1 + (1− α)X̃ξ2)

)
≥ αCφ(X̃ξ1) + (1− α)Cφ

(
X̃ξ2)

)
.

1.14 Proof of Lemma 8

Proof. (ii) ⇒ (i) is obvious. For (i) ⇒ (ii), start with the first half. Suppose fEx %S x

for some f and x. Then by Lemma 2, there exists an essentially unique x0 ∈ X such that

fEx0 ∼S x0. Axiom 4 implies f ∼E x0. It suffices to show x0 %S x. Note that %S admits

some concave and strongly monotone unconditional UAP representation (u, I). And recall

from the proof of Lemma 2, fix ξ = u(f) ∈ R|S| and denote z0 := u(x0) and z = u(x), then

recall h(z′) = I(ξE · z′) − z′. Pick real numbers a ≤ u(f(s)) and b ≥ u(f(s)) for all s ∈ S.

Note function h : [a, b] 7→ R crosses zero exactly once from above. Since fEx0 ∼S x0 implies

h(z0) = 0. Then fEx %S x implies h(z) ≥ 0, which can only happen when z ≤ z0; i.e.,

u(x) ≤ u(x0). Hence, f %E x. The proof of the second part goes by analogy. (It suffices to

pick w = u(y) and use the fact that h(w) ≤ 0 implies w ≥ z0; i.e., u(y) ≥ u(x0).)

1.15 The SOEU case

When the second-order belief µ has support on Dirac probabilities, then µ can be identified

with a probability on S and the smooth preferences become the special case of SOEU. Let

p0 ∈ ∆S be the second-order belief in this case.
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Then %S admits a SOEU representation (u, φ, p0) (Grant et al., 2009)

VS(f) = φ−1

(∫
S

φ(u(f))dp

)

Or IS : (u(X))|S| 7→ R is

IS(ξ) = φ−1

(∫
S

φ(ξ)dp

)
Let Cφ(·) be the certainty equivalent function. Then by the same argument as Lemma 7, the

following statements are equivalent: (1) I(·) is concave (2) The certainty equivalent function

Cφ(·) is concave; (3) 1
Aφ(·) is concave.

Lemma 14. For SOEU preferences %S. Suppose φ ∈ C3, φ′ > 0, and φ′′ < 0. Then the

following are equivalent: (1) I(·) is concave; (2) The certainty equivalent function Cφ(·) is

concave; (3) 1
Aφ(·) is concave.

Proof. The proof is analogous to that of Lemma 7 and hence omitted.

Corollary 4. If {%E}E∈Σ∗ admit SOEU representation and %S admit a smooth representa-

tion with (u, φ, p0). Suppose φ ∈ C3, φ′ > 0 and φ′′ < 0, and 1
Aφ(·) is concave.

Then stable constant-act preferences and conditional consistency hold if and only if %E ad-

mits representation VE : F 7→ R with VE = IE ◦u such that for all f ∈ F , IE(u(f)) = k∗ ∈ R
that uniquely solves

k∗ = φ−1

(∫
E

φ(u(f))dp0 + k∗p0(Ec)

)
(18)

Proof. “If” direction is obvious.

“Only if” direction. By Lemma 14, IS(·) satisfies Assumption 1 and hence the conditional

certainty equivalent is well-defined. That is, for all f ∈ F , the equivalence relation fEx ∼S x
induces the equation

VS(fEx) = φ−1

(∫
E

φ(u(f))dp+ p(Ec)u(x)

)
= u(x),

which has a unique solution u(x) ∈ u(X). Let k∗ = u(x). Then equation (18) follows from

conditional consistency.
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