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Abstract. This paper introduces a novel framework for analyzing Bayesian updating and non-

Bayesian heuristics. A learning rule consists of an arbitrary set of belief states and a set of transition

functions, called arguments, from the belief set to itself. Bayesian learning rules, with beliefs in

the form of probability distributions over a state and arguments in the form of Bayes’ rule, are

a special case. The paper’s first main result is an axiomatic characterization of Virtual Bayesian

learning rules, which can be turned into a Bayesian via a relabeling of the set of beliefs. There

are three substantive axioms – that arguments are injective functions, that arguments commute,

and that repeated application of an argument never produces cycles of beliefs – as well as three

regularity assumptions. The axioms both identify the algebraic properties common to all Bayesians

and distinguish which among familiar updating heuristics are Virtual Bayesians. The second main

result establishes that any Virtual Bayesian learning rule can be embedded into Euclidean space

– and therefore equipped with geometric notions of magnitude, direction, etc. – by defining the

‘agreement’ between pairs of arguments in a suitably additive manner. Applying such an embedding,

an argument’s direction corresponds to the limit of the support of posterior beliefs under repeated

application of the argument, and its magnitude is the extent to which a single application pushes

prior beliefs towards that limit. The paper discusses how the framework of learning rules could be

applied to additional contexts, including the elicitation of beliefs from laboratory subjects.
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1. Introduction

Departures from Bayesian updating take various forms. An agent may learn according to an

incorrectly specified but otherwise standard Bayesian model,1 or she may employ a non-Bayesian

heuristic characterized by an intuitive functional form (e.g. DeGroot learning) or by axiomatic

properties.2 In this paper, I analyze Bayesian updating as well as non-Bayesian heuristics with

the following framework patterned after concepts in group theory and automata theory. Given an

arbitrary set of beliefs B, an argument is any function a : B −→ B, representing how the agent’s

beliefs should update as a result of receiving the argument. Arguments compose with each other to

form new arguments; for example, the composition a1 ◦a2 is b 7−→ a1(b) 7−→ a2(a1(b1)). A learning

rule is a pair (A,B), where A is a set of arguments over B which is closed under composition.

This paper is structured around two central questions. The first asks which algebraic properties

of arguments and beliefs characterize Bayesian learning rules. Motivated by the fact that the answer

involves interpreting Bayesian arguments as vectors which ‘push’ beliefs in different directions, the

second question asks which other learning rules admit geometric representations. The applicability

of the answers to both questions is illustrated in the context of belief elicitation in the lab. Finally,

I discuss how additional applications can leverage the framework of learning rules to complement

the traditional probabilistic perspective to belief updating.

The paper’s first central question is, formally: under what conditions can a learning rule be

transformed into a Bayesian by relabeling its belief set? When this is possible, the learning rule is

termed Virtual Bayesian. For example, consider how someone might update about the risk of her

house flooding in the next five years. Initially, she expresses her belief in the form of the verbal

statement, ‘the risk is small.’ Then it rains heavily some month, and she thinks, ‘there’s some risk.’

After half a year of minimal rain she again believes, ‘the risk is small,’ but in the following month

a downpour nearly floods her house, after which she maintains, ‘the risk is real.’ The woman’s

verbal statements are non-probabilistic beliefs, and her updating from one belief to another is not

governed by Bayes’ rule. Nonetheless, if we relabel her beliefs as follows:

1See, for instance, Rabin and Schrag (1999); Eyster and Rabin (2010); Esponda and Pouzo (2016).
2See Epstein (2006); Lehrer and Teper (2016); Cripps (2019) and others discussed at the end of this section.
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‘the risk is small’ =⇒ ‘the house floods with probability 1%’

‘there’s some risk’ =⇒ ‘the house floods with probability 3%’

‘the risk is real’ =⇒ ‘the house floods with probability 8%’

and specify the following conditional probabilities of monthly rain level given flood propensity:

P conditional on:
flooding no flooding

rains heavily 12.67% 4.14%
minimal rain 78.72% 94.86%
almost floods 8.61% 1.0%

then the woman resembles a Bayesian: each transition from one belief to another follows the

functional form of Bayes’ rule using the above conditional probabilities. Hence, she is a Virtual

Bayesian.

Now consider a man who updates about flood risk in a different manner. When it rains in a

given month, he assesses the risk of future flooding as ‘high.’ When it does not rain, he assesses

the risk as ‘low.’ In contrast to the woman, there is no way to relabel his beliefs so he becomes

Bayesian. If there were, then – under the relabeling – he would learn by adjusting weight on some

set of underlying states via Bayes’ rule. The information conveyed to him by a rainy month would

cause him to place greater weight on at least one of his underlying states, and therefore two months

of rain would lead to even greater weight on that state. However, after two rainy months the man

instead retains exactly the same belief he had after one rainy month. Hence, he is not a Virtual

Bayesian.

Theorem 1 axiomatically characterizes when a learning rule (A,B) is a Virtual Bayesian. There

are three substantive axioms: that arguments commute, that arguments are injective, and that

arguments do not produce cycles of beliefs. Commutativity means that an agent is insensitive to

the order in which arguments arrive. Injectivity means different priors lead to different beliefs or,

equivalently, that after any sequence of arguments and given an agent’s terminal belief, there is

no ambiguity as to where she started. Acyclicality ensures that repeatedly applying any argument

leads the agent to new posterior beliefs. There are also three regularity axioms: that there are only

countably infinite arguments and beliefs, that there exists an ‘original’ prior belief from which all

beliefs can be reached by way of a unique argument, and that there are at least two ‘directionally
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distinct’ arguments for which no positive multiple of the first coincides with a positive multiple of

the second.

It is straightforward to verify that Bayesian learning rules satisfy the above properties; the

challenge is to start with an arbitrary learning rule (A,B) that satisfies them and to produce a

matching Bayesian. The proof of Theorem 1 proceeds by augmenting the set of arguments to

include inverses and fractional elements, forming a vector space over the rational numbers. This

enriched copy of A is then embedded inside the real line, associating each original argument with

a value that is re-interpreted as a log likelihood-ratio in a Bayesian learning rule.

Virtual Bayesians take various forms. Distorted copies of Bayes’ rule, such as probability

weighting, are familiar examples. Other families of updating on probabilities, for example power-

law updating of the form p 7−→ px, are also Virtual Bayesians. Some heuristics studied in the

learning-in-games literature, such as reinforcement learning and fictitious play, encode Virtual

Bayesian learning rules despite their patently non-Bayesian configurations. Further afield, there

are cases of beliefs in the form of verbal statements, or forms of heuristic thinking, such as pro-con

lists and multi-cell rubrics, which satisfy all six axioms of Theorem 1. There are also seemingly

equally plausible heuristics which fail one or more of the axioms. For instance, any finite learning

rule cannot satisfy acyclicality; learning rules that combine two arguments by preserving the most

compelling one and discarding the other are necessarily not injective; combining arguments by

averaging with fixed weights, ala DeGroot learning, necessarily violates commutativity. ‘Deductive’

learning rules, which transition among beliefs by ruling out potential values of an underlying state,

are commutative but neither injective nor acyclic. These examples illustrate how Theorem 1’s

axioms can disentangle Virtual Bayesians from non-Bayesians.

The paper’s second central question asks: when and how can the arguments of a learning rule be

be endowed with geometric notions of direction and magnitude? The answer starts by considering

how to define an ‘agreement’ function A×A −→ R. Such a function is additive if the agreement

between any two arguments a1 and a2 is unchanged when either or both of them is decomposed

into component parts. Functions which satisfy this property and two regularity conditions are the

foundation for embedding the set of arguments into Rn. As Theorem 2 establishes, it is possible

to define an additive agreement function on any Virtual Bayesian, and any learning rule which

admits such a function and satisfies the regularity axioms of Theorem 1 is necessarily a Virtual
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Bayesian. Theorem 3 makes explicit the link between additive agreement functions and embeddings

in Euclidean space: for every additive agreement function on a Virtual Bayesian, there is a unique

embedding into Rn that extends the additive agreement function to the standard inner product.

Viewed as subspaces of Rn, Virtual Bayesian learning rules are endowed with an agreement

geometry. Notions of norm, angle, and projection all follow from the associated additive agree-

ment function. As illustrated through a series of examples, an agreement geometry describes the

effect that an argument has on an agent’s prior belief in a way that complements more familiar

descriptions. Every argument is characterized by its magnitude and direction. For a Bayesian

learning rule, each direction (outside of a measure-zero set) corresponds to a unique value of the

underlying latent state variable. Positively extending an argument while holding its direction fixed

produces an exaggerated version which, in the limit, sends all prior beliefs arbitrarily close to the

direction’s associated state value. Moreover, the norm defined on the set of arguments constitutes a

prior-free measure of the strength of information. In contrast, quantifying information via entropy

reduction or by value gained in a decision problem (as characterized in Frankel and Kamenica

(2019)) necessarily depends on one’s prior belief. As an example of the wedge between the two

approaches, if one’s prior is the uniform distribution, then for any fixed direction, an argument

of higher magnitude yields a posterior with more entropy reduced; however, if one’s prior places

almost all weight on a single state, higher magnitude arguments pushing towards alternative states

induce more entropy.

To illustrate the tools developed in this paper, I consider how to use the characterization

of Virtual Bayesians to elicit laboratory subjects’ beliefs. Standard methods of elicitation (see

Schotter and Trevino (2014) and Schlag, Tremewan and van der Weele (2015) for literature reviews)

typically make assumptions about subjects’ preferences and then leverage subjects’ decisions over

lotteries to deduce their beliefs.3 By contrast, I propose a class of methods that link the context

of the subject’s belief to a data-generating procedure in the lab and then present the subject

with hypothetical additional information. For a subject known to be a Virtual Bayesian who can

3For example, quadratic and other proper scoring rules make truthful reporting of one’s beliefs incentive compati-
ble under the assumption of risk neutrality. Various papers have developed methods for de-biasing beliefs skewed
by probability weighting or other biases. However, these methods are all predicated on subjects possessing some
subjective probability distribution over outcomes.
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describe his beliefs in rudimentary geometric terms (e.g. distinguishing relative angle or relative

magnitudes), his reaction to additional information is sufficient to identify his prior belief.

This paper fits into an emerging literature that axiomatically characterizes non-Bayesian up-

dating. Most closely related is Cripps (2019), which also characterizes an agent who becomes a

Bayesian updater when his beliefs are properly translated. However, the agent in Cripps’ setup

maintains beliefs in the form of probability distributions over an explicit state, and he receives in-

formation through statistical (Blackwell) experiments. Thus while Cripps’ agent can be translated

into a Bayesian with fewer axioms,4 the agent starts out already closer to the Bayesian framework

than an abstract learning rule. In a related vein, Shmaya and Yariv (2016) characterize when trees

of probabilistic beliefs can be rationalized as conditional expectations processes. As they allow for

history-dependent correlation structures, Shmaya and Yariv obtain a more permissive condition for

near-Bayesianness: that a belief at any one node must lie in the convex hull of beliefs at successor

nodes. Zhao (2016) provides a way to augment Bayesian updating procedures so that an agent can

process information of the form ‘event A is more likely than event B.’

In the choice theoretic paradigm, Epstein (2006) presents a generalized version of the Anscome-

Aumann theorem to allow for dynamically inconsistent updating, and Epstein, Noor and Sandroni

(2008) extends this to a repeated context. Epstein and Seo (2010) presents a generalization of the

de Finetti theorem in which agents are not certain that successive signals are conditionally indepen-

dent. More recently, Hanany and Klibanoff (2014) characterizes dynamic consistency in the context

of ambiguity aversion, and Lehrer and Teper (2016) studies agents who satisfy a weaker version of

Bayesianism called ‘local consistency.’ Although I am unaware of an equivalent definition of learn-

ing rules in the economics literature, automata have been used as a model of limited cognition.

For example (Abreu and Rubinstein, 1988) study repeated games with strategies implemented via

finite automata, and Wilson (2014) characterizes how finite state machines can optimally approx-

imate Bayesian learning in dynamic environments. Similarly, although the concept of agreement

geometry is novel, conceiving of and manipulating information as log-likelihood-ratio vectors finds

precedence in a variety of papers, e.g. Molavi, Tahbaz-Salehi and Jadbabaie (2018).

4The key characterizing axiom in Cripps (2019) is divisibility : updating from two pieces of information produces the
same posterior as sequentially updating from each of them one at a time. This corresponds to commutativity (A.5)
in the present paper. Additionally, Cripps’ non-dogmatic axiom contains a requirement of injectivity. His other two
axioms are more closely tied to the setup of his model and do not have close counterparts in the present paper.
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Organization. Section 2 introduces the machinery of learning rules, defines Bayesianism in this

context, and lays the foundation for the main characterization theorem presented in Section 3. Fol-

lowing several examples of Virtual and non-Bayesians, Section 4 analyzes the geometric structures

of Virtual Bayesians. Section 5 uses the paper’s results to construct several belief elicitation meth-

ods. The discussion in Section 6 considers a series of open questions to guide future applications of

the Virtual Bayesian framework. All proofs omitted from the main text are found in Appendix A.

2. Model: Learning Rules

Let B denote an arbitrary set. Elements b ∈ B are called belief states, and B is called a belief

set. An argument over B is a function a : B −→ B. An argument describes how a learning agent’s

beliefs should change as a result of receiving the argument. The composition of two arguments a1

and a2 is defined by a1 ◦ a2 : b 7−→ a2(a1(b)). The identity argument b 7−→ b, which communicates

no information, is denoted aid. By pairing a set of arguments with its corresponding belief set we

obtain a simple model of updating.5

Definition. A learning rule (A,B) is set of arguments A over belief set B such that A is closed

under composition: a1 ◦ a2 ∈ A for all a1, a2 ∈ A.

To illustrate this concept, first consider several examples of updating as described in the language

of learning rules. Readers eager for the formal definition of Bayesian vs non-Bayesian learning rules

can skip to Section 2.1.

Agent 1. The Bernoulli Bayesian. A Bayesian agent has uncertainty about the bias of a coin. She

believes there are two equally likely states, a heads-biased state in which the probability of flipping

heads is q ∈ (1/2, 1) and a tails-biased state in which heads realizes with probability 1 − q. She

learns about the coin by observing realizations of i.i.d. flips. This agent’s set of beliefs is made up

of the conditional probability assessments she could have about the coin’s bias after a finite number

of observations: B = {P[heads-biased | y0, . . . , yk]} ⊂ (0, 1), where yi denotes the realization of flip

5In algebraic terminology, argument set A constitutes a semigroup, a set with a composition operation which is closed
under composition and satisfies the associative law a1◦(a2◦a3) = (a1◦a2)◦a3. (Function composition always satisfies
the associative law.) Note that A need not include the identity argument aid, although many examples studied in the
paper, including all Bayesians, do include aid. Moreover, the pair (A,B), in which elements of A are ‘acting’ on B,
constitutes a semigroup action. Equivalently, (A,B) can be viewed as a (potentially non-finite) automaton in which
elements of B describe the current state of abstract machine and arguments in A correspond to inputs to the machine
which induce deterministic transitions among the states. For reference, see Reddy (2014) among others.
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i = 0, . . . , k. Arguments correspond to sequences of additional flips of the coin: given sequence

(ŷ0, . . . , ŷk̂), the associated argument is

a(ŷ0,...,ŷk̂) : P[heads-biased | y0, . . . , yk] 7−→ P[heads-biased | y0, . . . , yk, ŷ0, . . . , ŷk̂].

Each argument is in the form of Bayes’ rule. For example, a single additional heads flip ŷ = heads

corresponds to

aheads : π 7−→ qπ

qπ + (1− q)(1− π)

for all π ∈ B. Any flip sequence with h net number of heads minus tails is associated with the

argument

ah : π 7−→ qhπ

qhπ + (1− q)h(1− π)
.

This illustrates how all arguments correspond to a certain number of net heads flips. Moreover,

the composition of an h1 net-heads argument with an h2 net-heads argument is

ah1 ◦ ah2 = ah1+h2 : π 7−→ qh1+h2π

qh1+h2π + (1− q)h1+h2(1− π)
.

In this way, the agent combines two pieces of information by adding together their net-heads values.

Agent 2. The Beta Bayesian. Another Bayesian learns about the bias of a coin by observing

realizations of i.i.d. flips. However, he believes the probability of a heads flip is uniformly distributed

on (0, 1). After observing y0, . . . , yk, with h(y0, . . . , yk) total heads and t(y0, . . . , yk) total tails, the

agent believes the coin’s bias is distributed Beta(1 + h(y0, . . . , yk), 1 + t(y0, . . . , yk)). This agent’s

belief set is therefore B = {Beta(h, t) | h, t ≥ 0}, and his set of arguments is

A =
{
a : Beta(h, t) 7−→ Beta(h+ h′, t+ t′) | h′, t′ ≥ 0

}
.

He combines arguments ah1,t1 and ah2,t2 into ah1+h2,t1+t2 , that is by adding together the individual

dimensions separately.

Agent 3. The Flip-Flopper. A non-Bayesian learns about a coin in the following manner. She

thinks the coin always flips heads or always flips tails. After observing a heads flip, she concludes

it always flips heads; after a tails flip, she thinks the coin always flips tails. Her belief set is B =

{always heads, always tails}, and her argument set comprises the two maps ah : b 7−→ always heads

and at : b 7−→ always tails. For this agent, at ◦ ah = ah and ah ◦ at = at.
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Agent 4. The Verbal Reasoner. Another non-Bayesian describes his uncertainty about a coin with

a set of verbal statements which can be ordered in terms of their confidence in predicting heads

flips. One statement is the coin is neutral. The next most heads-friendly statement is maybe heads,

then probably heads, then likely heads, then very likely heads, very very likely heads, very very very

likely heads, and so on. He likewise entertains the possibility of maybe tails, probably tails, and so

forth. The agent’s belief set B is the union of all possible statements he could make about the coin.

When the agent observes a heads flip, his belief progresses one statement in the heads-friendly

direction; a tails flip sends him one statement backwards. The agent’s argument set A is the union

of transitions k ≥ 0 statements forwards and j ≤ 0 statements backwards.

Commentary on the Examples. These four examples collectively illustrate several features of

learning rules. First, learning rules can describe any case of Bayesian updating which is sufficiently

stationary, that is in which the information content of a signal realization remains consistent across

signals. Second, they can also describe a wide range of non-Bayesian updating examples. Most

importantly, by framing updating in terms of belief-transition maps who compose with each other,

learning rules provide a method for analyzing the compositional structure of learning models as

distinct from particular functional forms. Defined rigorously in the following subsection, two learn-

ing rules are said to be isomorphic if the set of arguments in the first learning rule is equivalent to

that in the second learning rule under a one-to-one relabeling of the belief states. Thus, some non-

Bayesian updating rules, despite not encoding beliefs as probabilities or not transitioning among

them via Bayes’ rule, nonetheless possess a Bayesian compositional structure.

For example, Agent 4 is clearly not Bayesian. However, it is possible to relabel his set of

beliefs so that he matches the Bayesian updating of Agent 1. Agent 4’s statement the coin is

neutral becomes π = 1/2. His statement maybe heads is mapped to π = q, probably heads to

π = q2/(q2 + (1− q)2), and so forth. This mapping associates the verbal statement Agent 4 would

adopt after every possible sequence of flip realizations with the corresponding belief that Agent 1

would adopt. Under this relabeling of belief states, Agents 1 and 4 have the same set of arguments;

each argument in each learning rule simply pushes the corresponding agent’s beliefs forwards or

backwards along a single dimension. Agent 4 is accordingly termed a Virtual Bayesian.

In constrast, Agent 3 cannot be paired with any Bayesian, as her learning rule contains several

features which no Bayesian does. First, the way she composes arguments displays order dependence:
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at ◦ah 6= ah ◦at. Next, her arguments not injective, e.g. at(always heads) = at(always tails). Finally,

her learning rule contains cyclic arguments for whom multiple application is equivalent to a single

application: at ◦ at = at and ah ◦ ah = ah. As is established formally in the following section, no

Bayesian learning rule has these properties, and therefore there is no Bayesian with which Agent 3

is isomorphic.

Finally, it is worth comparing Agents 1 and 2. Both of them have Bayesian learning rules, but

they are not isomorphic. Agent 1 is concerned with the net number of heads flips she has observed.

She considers two arguments with x1 and x2 net heads flips as equivalent to a single argument that

presents x1 + x2 net heads flips. Her set of arguments is thus isomorphic to the additive group of

integers. On the other hand, Agent 2 keeps track of both the total number of heads observed and

the total number of tails observed. For example, he distinguishes between the sequences (H,H, T )

and (H,H,H, T, T ), whereas Agent 1 would consider those to be identical arguments. His argument

set is isomorphic to the (algebraically distinct) additive semigroup Z>0 × Z>0.

2.1. Bayesian and Virtual Bayesian Learning Rules

Let (Ω,F ,P) be a probability space, and let {X, (Yi)∞i=1} be a set of random variables. The

‘state’ X has support X , and the ‘signals’ Yi share a common support Y. After observing the

sequence y1, . . . , yn, a Bayesian learner’s belief is the conditional distribution PX [·|y1, . . . , yn].

Several regularity assumptions are placed on this environment.6 First, assume that the Yi’s

are i.i.d. conditional on X, which ensures that the learning environment is stationary. Next,

the following conditions ensure that Bayes’ rule is always applicable and unambiguously defined

after any sequence of Yi realizations: (1) Y is discrete, (2) X is either discrete or continuous (for

notational purposes I use the former), and (3) P[Yi = y |x] > 0 for all x ∈ X , y ∈ Y. Finally, assume

that the learning environment is non-trivial: there exists some y ∈ Y such that PX [·|y] 6= PX [·].

Definition. The Bayesian learning rule corresponding to {X, (Yi)∞i=1} combines the belief set

B = {PX [·| y1, . . . , yn] | n ≥ 0}

6Section 6 includes further discussion about the significance of these conditions.
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with the argument set

A = {PX [·| y1, . . . , yn] 7−→ PX [·| y1, . . . , yn, ŷ1, . . . , ŷm] | n,m ≥ 0} .

Per Bayes’ rule, each argument a = a(ŷ1,...,ŷm) has the functional form

a(ŷ1,...,ŷm)(π)(x) =
π(x) ·P[ŷ1|x] · · · · ·P[ŷm|x]∑

x′∈X π(x′) ·P[ŷ1|x′] · · · · ·P[ŷm|x′]

for π ∈ B and x ∈ X .

Morphisms. To formally define the concept of Virtual Bayesians, whose compositional structures

match those of Bayesians, I first clarify the definition of homomorphisms (structure-preserving

maps) and isomorphisms (bijective homomorphisms) between learning rules. Note that these are

entirely standard definitions; they coincide with semigroup action homomorphisms and isomor-

phisms.

Definition. A homomorphism from (A,B) to (A′,B′) is a pair of maps g : A −→ A′ and

h : B −→ B′ such that g(a)(h(b)) = h(a(b)) for all a ∈ A and b ∈ B. An isomorphism is a

homomorphism whose maps g and h are both invertible.

Definition. Learning rule (A,B) is a Virtual Bayesian if it is isomorphic to some Bayesian

learning rule (A′,B′).

There is also an equivalent and perhaps more intuitive condition for (A,B) and (A′,B′) to be

isomorphic: for some invertible map h : B −→ B′,

A = {b 7−→ h−1(a′(h(b))) | a′ ∈ A′}.

That is, each argument a ∈ A is equivalent to a unique counterpart a′ ∈ A′ when the elements of

B are ‘relabeled’ through h into elements of B′.

3. Algebraic Properties of Virtual Bayesians

This section establishes the paper’s main result, an axiomatic characterization in algebraic

terms of Virtual Bayesian learning rules. Following the proof of Theorem 1, I discuss a series of

examples of Virtual Bayesians and non-Bayesians.
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Theorem 1. Learning rule (A,B) is a Virtual Bayesian if and only if it is

(A.1) countable: A and B are countably infinite,

(A.2) self-recording: there exists b0 ∈ B such that, for all b ∈ B, there exists a unique ab ∈ A

mapping b0 7−→ b,

(A.3) pluralistic: there exist a1, a2 6= a0 such that ak1 6= aj2 for all positive integers k, j,

(A.4) injective: a(b1) 6= a(b2) for all a ∈ A and b1 6= b2 ∈ B,

(A.5) commutative: a1 ◦ a2 = a2 ◦ a1 for all a1, a2 ∈ A, and

(A.6) acyclic: ak 6= a for all a ∈ A, k > 1.

Discussion of Axioms. The properties enumerated in Theorem 1 consist of three regularity

conditions (A.1-3) and three substantive axioms (A.4-6). First, countability (A.1) is imposed in

parallel with the discreteness/continuity condition in definition of Bayesianism. Pluralism (A.3) is

a richness condition which, as is made precise in Section 4, requires that an agent’s beliefs can be

pushed in multiple ‘directions.’ A simple example that fails (A.3) while meeting the other criteria

is B = Z≥0 and A = {b 7−→ b+k | k ∈ Z≥0}. Such a learning rule acts as an integer-valued counter

that only increases; as with all cases that fail (A.3), any attempt to pair it with a Bayesian would

be thwarted by the Bayes-plausibility condition that prior beliefs must lie in the convex hull of the

corresponding set of posteriors.

The self-recording property (A.2) requires that there be some belief b0 ∈ B from which all

beliefs, including b0, can be reached via a unique argument. Any such b0 is termed an ur-prior7

and models an ‘original’ or ‘zero-information’ state of knowledge. In a Bayesian learning rule, the

prior distribution over the state space always serves this role. There is no requirement that b0 be

unique. For example, with B = Z and A = {b 7−→ b + k | k ∈ Z}, like for Agents 1 and 4 in

the previous section, every belief satisfies the definition of an ur-prior. A practical implication of

the self-recording property is that all algebraic structure described by the pair (A,B) is equally

well encoded in the argument set A alone. Because each belief state b is associated with a unique

argument ab, the value of a(b) for any arbitrary a ∈ A is equivalent to a(ab(b0)) = (ab ◦a)(b0). The

arguments do not need the beliefs to record their effect; they are ‘self recording.’ When comparing

two self-recording learning rules, it suffices to focus solely on the compositional structure of their

7The ‘ur-’ terminology distinguishes it from the way in which any belief can be considered a ‘prior’ when it is the
input to an argument. The prefix ‘ur-’ describes a primitive or original version of something, c.f. ‘ur-text’ etc.
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arguments; as stated formally below, this consequence of (A.2) greatly simplifies the proof of

Theorem 1.

Fact 1. Self-recording learning rules (A,B) and (A′,B′) are isomorphic if and only if A and A′

are isomorphic as semigroups. Proof in the appendix.

Although beyond the scope of this paper, departures from the self-recording property allow for more

exotic structures. Intuitively, a learning rule that fails (A.2) either has an argument set strictly

richer than its belief set, has a belief set strictly richer than its argument set, or both. For example,

B = Z is single dimensional while A = {b 7−→ c · b + d | c, d ∈ Z} has two degrees of freedom;

alternatively, B = Z × Z is two dimensional while A = {(b1, b2) 7−→ (b1 + k, b2) | k ∈ Z} is single

dimensional.

The substantive axioms of Theorem 1 are straightforward. Commutativity (A.5) demands that

the semantic content of an argument is invariant to whatever other arguments have preceded it.

Injectivity (A.4) and acyclicality (A.6) can be both understood as prohibitions against forms of

memory loss. By (A.4), whenever an agent is known to have reached posterior belief b after receiving

argument a, her prior belief is uniquely determined. By (A.6), whenever an agent is known to have

transitioned from b1 to b2 after receiving multiple instances of argument a, the number of instances

is uniquely determined.

3.1. Proof of Theorem 1

Summary. Given (A,B) satisfying (A.1-6), we progressively augment the structure of A to include

inverses and fractional elements, enriching A from a semigroup to an Abelian group to a vector

space over the rational numbers. We leverage the properties of vector spaces to construct an

embedding of A into the real line in such a way that includes positive and negative numbers in its

image. Finally, we interpret the image of A in R as log likelihood-ratios and identify a Bayesian

learning rule whose associated joint probability distribution matches them. The proof is completed

by verifying that Bayesian learning rules satisfy all six axioms.

Inverse and Fractional Arguments. First, let (A,B) be a learning rule satisfying (A.1-6).

Because all Bayesians are self-recording (see end of proof), and by Lemma 1, it suffices to exhibit

a Bayesian learning rule with an isomorphic argument set. We first insert new elements into A in

order to guarantee the existence of a basis, which proves useful for manipulating the original set.
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The initial challenge is to embed A into an Abelian (commutative) group which, unlike semigroups,

must have an identity element and inverse elements. Note that properties (A.2) and (A.5) already

guarantee an identity argument: as there is a unique a∗ ∈ A mapping b0 7−→ b0, commutativity

provides that for any b,

a∗(b) = a∗(ab(b0)) = ab(a
∗(b0)) = ab(b0) = b,

so a∗ = aid is the identity argument. In service of establishing inverse elements, we first show

that A satisfies a related form of injectivity: for any two beliefs b and b′ there exists at most one

argument mapping b 7−→ b′.

Lemma 1. If A is self-recording, injective and commutative, then a1(b) 6= a2(b) for all a1 6= a2 ∈ A

and b ∈ B. Proof in the appendix.

The upshot of Lemma 1 is that A must be cancellative: the equation a1◦a3 = a2◦a3 always implies

a1 = a2, even though a3 may not have an inverse.8 We can see this from the contrapositive: if

a1 6= a2, then a1(b) 6= a2(b) by Lemma 1, and

(a1 ◦ a3)(b) = a3(a1(b)) 6= a3(a2(b)) = (a2 ◦ a3)(b)

by (A.4). The cancellation property allows us to apply a standard procedure in abstract algebra,

the Grothendieck construction, to extend A to an Abelian group. At a high level, this procedure

conceives of the pair (a1, a2) as representing ‘a1 minus a2,’ establishes an appropriate equivalence

relation on pairs, and provides for an embedding of A into the set of equivalence classes A+, which

is shown to be an Abelian group. Additionally, A+ consists only of the images of elements of A

and their (missing) inverses. Hence A+ itself is both countable and acyclic.

Lemma 2. If A is a countable, commutative, and cancellative semigroup, then there exists an

injective homomorphism f : A −→ A+, where A+ is a countable Abelian group. Moreover, any

a ∈ A+ can be expressed a = f(a1) ◦ (−f(a2)), where a1, a2 ∈ A. Proof in the appendix.

Now A+ is extended by filling in fractional elements. As a countable and acyclic Abelian

group, A+ is isomorphic to countably many products of the set of integers. It therefore neatly

8Technically the cancellation property also requires that a3 ◦ a1 = a3 ◦ a2 implies a1 = a2, but for commutative
semigroups this is an equivalent statement.
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embeds inside a corresponding product of multiple copies of the rational numbers, denoted A∗,

which is a rational vector space. The dimension of A∗ is unique and is denoted d(A). Moreover,

the embedding A+ −→ A∗ is what I will term essential, in that the image of A+ in A∗ contains

a basis for A∗. A small bit of additional work establishes an essential extension from A itself into

A∗.

Lemma 3. If A is a countable, commutative, cancellative, and acyclic semigroup, then there exists

an essential embedding A −→ A∗, where A∗ is a rational vector space of countable dimension.

Proof in the appendix.

Embedding into the Reals. Now we establish an injective homomorphism A∗ −→ R via the

following construction. Let (āi)
d(A)
i=1 be a basis of A∗ contained in the image of A embedded in A∗.

Every a ∈ A∗ is thus of the form a =
∑d(A)

i=1 qi(a)āi.
9 Note that by the pluralistic axiom (A.3),

there must be at least two distinct basis elements.10 We use the following process to construct

a set of non-zero real numbers (xi)
d(A)
i=1 that are ‘mutually irrational’: xi /∈

∑
j 6=i xjQ, x 6= 0 for

all i = 1, . . . , d(A). First, set x1 = 1. Choose x2 /∈ Q, x2 < 0, then choose any x3 /∈ Q + x2Q,

xr /∈ Q + x2Q + x3Q, etc. The mapping

a =

d(A)∑
i=1

qi(a)āi 7−→
d(A)∑
i=1

qi(a)xi

is an injective homomorphism. Composing the maps at each stage of the proof so far, we also have

an injective homomorphism

A −→ A+ −→ A∗ −→ R.

As the image of A in A∗ contains the basis (āi)
d(A)
i=1 , and ā1 is mapped to x1 > 0 while ā2 is

mapped to x2 < 0, the image of A in R necessarily contains both positive and negative numbers,

so A −→ R is termed two-sided.

The Log-Likelihood Connection. As a small detour, consider a Bayesian learning rule cor-

responding to {X, (Yi)∞i=1}, and let x0 denote an arbitrarily chosen numeraire state. The log

9Note that {āi}d(A)
i=1 is a Hamel basis of A∗, which means that for any a all but finitely many of the qi(a) coefficients

are zero. This eliminates the need to consider the cases of d(A) <∞ and d(A) =∞ separately.
10Otherwise, all arguments could be expressed a = q(a)ā1, and hence for q(a) = p(a)/r(a), p(a), r(a) ∈ Z>0, it would

follow ar(a) = ā
p(a)
1 , contradicting (A.3).
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odds-ratio of any state x relative to x0 under belief π is

o(π)(x|x0) = log
π[x]

π[x0]
,

and the log likelihood-ratio of any state x relative to x0 given signal sequence y1, . . . , yn is

l(y1, . . . , yn)(x|x0) =

k∑
i=1

log
π[yi|x]

π[yi|x0]
.

Applying these transformations to the beliefs and arguments, we obtain the logit transformation

of Bayes’ rule:

o(a(y1,...,yn)(π))(x|x0) = o(π)(x|x0) + l(y1, . . . , yn)(x|x0).

This rewriting of Bayes’ rule demonstrates the one-to-one connection between Bayesian arguments

and vectors of log likelihood-ratios. The application of any Bayesian argument can be seen as the

addition of its corresponding log likelihood-ratio vector to the log-odds transformation of the prior.

It would be tempting to assume any learning rule which can be embedded as a subspace of Rn

is therefore isomorphic to some Bayesian, but this ignores the Bayes-plausibility condition that the

prior belief is constrained to lie in the convex hull of the posterior distributions. In general, 0 lying

in the convex hull of a set of vectors in Rn does not imply that the image of 0 under a reverse logit

transformation lies in the convex hull of the image of the vectors. However, this connection does

hold for n = 1. Thus, any learning rule which can be embedded into R1 and whose range includes

both positive and negative values is isomorphic to a Bayesian.

Lemma 4. If (A,B) is a countable, self-recording learning rule and there exists an injective, two-

sided homomorphism A −→ R, then (A,B) is a Virtual Bayesian. Proof in the appendix.

To conclude: by Lemmas 1 – 2 there exists a two sided injective homomorphism A −→ R and by

Lemma 4 it follows (A,B) is a Virtual Bayesian. The other direction of the proof is straightforward

and does not merit any special discussion.

Lemma 5. All Bayesian learning rules satisfy axioms (A.1-6). Proof in the appendix.

3.2. Examples of Virtual Bayesians

Virtual Bayesian learning rules are found widely among updating procedures analyzed by prior

literature as well as among colloquial rule-of-thumb heuristics. As the following cases illustrate,
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Virtual Bayesians are often identified by updating in the form of tallying one or more quantities,

shifting along a spectrum, or a combination of the two.

Probability Weighting and Variations. The most familiar instances of Virtual Bayesians are

produced by coupling Bayes’ rule with a given belief-distortion function. For instance, consider the

case of probability weighting as used in Cumulative Prospect Theory. According to the functional

form introduced in Prelec (1998), objective probabilities p ∈ (0, 1) are transformed into weighted

versions via h(p) = e−(− log p)α , where α ∈ (0, 1).

0.2 0.4 0.6 0.8 1.0
Bayesian Belief

0.2

0.4

0.6

0.8

1.0

Subjective Belief

Figure 1. Probability Weighting Function. The orange line describes an agent’s subjective
probability as a function of the objective value, where α = 1/2. The 45-degree line is in blue.

Any Bayesian learning argument can be warped into a Virtual Bayesian by application of the

probability weighting function. For a given log likelihood-ratio l, where the Bayesian would update

p 7−→ el/(1 + el), the probability-weighting version would update according to

p̃ 7−→ exp

{
−
(
− log

(
el

e(− log p̃)/α − (1− el)

))α}
.

The key point is that expressing miscalibrated probability assessments – overstating low events and

understating high ones – is compatible with the kind of internally consistent updating exhibited by

bona fide Bayesians.

Theorem 1 also enables us to identify Virtual Bayesians merely from their functional forms,

which can then point the way to underlying belief transformation functions. Consider the learning

rule where A = {b 7−→ bx | x ∈ Q>0}, and B = {a(1/2) | a ∈ A}. As is readily verified, this satisfies

the axioms of Theorem 1, so it is a Virtual Bayesian, and the transformation from the Bayesian

belief set to the power-law updater is easily obtained: bpower-law = 21−1/bBayesian . Figure 2 illustrates

how it looks qualitatively like the opposite of a probability weighting function.
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Figure 2. Power-Law Belief Distortion. The orange line describes an agent’s subjective
probability as a function of the objective value, where α = 1/2. The 45-degree line is in blue.

Reinforcement Learning. The learning-in-games literature features several heuristics by which

players transition among strategies according to the results of past play. One of the earliest studied

is reinforcement learning, by which one maintains a weight value for each possible action, chooses

new actions with probabilities determined by the weights, and updates the weights according to

realized payoffs. As formalized in Erev and Roth (1998), action αk is initially given weight qk = 1;

thereafter, whenever action αk is selected and the player receives payoff x, he updates k’s weight by

qk 7−→ qk + R(x), where R(·) ≥ 0 is an increasing ‘reward’ function. Being defined in the context

of games, reinforcement learning also specifies a particular action function (αk is given probability

qk/
∑

j qj), but, given the present paper’s focus on learning rules, we can consider its updating

procedure in isolation.

A reinforcement-learning agent has beliefs in the form b = (q1, . . . , qn), and arguments describe

what happens to the weights after potential play of the game:

a : (q1, . . . , qn) 7−→

q1 +

m1∑
j=1

R1,j , . . . qn +

mn∑
j=1

Rn,j

 ,

where each reward Rk,j is equal to R(u(αk, αopp)) for some opponent action profile αopp. A is the

set of all such arguments, and B = A(b0) for b0 = (1, 1, . . . , 1).

The axioms of Theorem 1 are easily verified, verifying that the learning rule generated by

reinforcement learning is Virtual Bayesian. Intuitively, beliefs take the form of a multi-dimensional

tally, one of the paradigms of Virtual Bayesians. What is perhaps unintuitive about this example

is that a reinforcement-learning agent is explicitly not calculating probabilities, and the player’s
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weights and updates have nothing to do with frequency predictions. Nonetheless, the compositional

structure created by the heuristic is entirely Bayesian.

Fictitious Play. A distant cousin of reinforcement learning is fictitious play, by which a player

in a game best-responds to the empirical frequency of her opponents’ actions. Although players

keep track of opponent actions rather than own actions, the updating in fictitious play also forms

a multi-dimensional tally. That is, each argument specifies

a : (αopp,1, . . . , αopp,n) 7−→ (αopp,1 + ∆1, . . . , αopp,n + ∆n),

where ∆k is the number of times the player observes profile αopp,k in a given temporal window.

Pro/Con Lists. As demonstrated by the example of the woman reasoning about flood risk in

the Introduction and Agent 4 in Section 2, Virtual Bayesians need not have beliefs in the form of

probability distributions. Indeed, many commonplace procedures for keeping track of information

use natural language, symbols or other structures which lack a clear probabilistic interpretation.

Consider pro-con lists. An agent wishing to evaluate the quality of a good maintains two columns of

features about the object, one recording its virtues and the other its faults. The agent’s belief pairs

the total number of pro items and the total number of con items. Formally, B = {(p, c) | p, c ≥ 0}

and A = {(p, c) 7−→ (p + pnew, c + cnew) | pnew, cnew ≥ 0}. This learning rule is isomorphic to that

of Agent 2. More generally, any evaluation rubric in which a number is assigned to each of a finite

number of categories and arguments take the form of adjustments to each category satisfies axioms

(A.1-6).

3.3. Examples of Non Virtual Bayesians

Learning rules which cannot be paired with an isomorphic Bayesian are similarly ubiquitous

among the updating procedures in the literature and everyday life. The examples below demon-

strate failures of the three substantive axioms of Theorem 1. We examine failures of commutativity

first, followed by non-injective and then non-acyclic learning rules.

DeGroot Learning. An intuitive procedure for incorporating new information into one’s current

beliefs is averaging. Although DeGroot (1974) considered averaging only with respect to a fixed

network of agents, it seems appropriate to label any case of updating via averaging as a form of

‘DeGroot’ learning. Formally, let an agent’s set of beliefs be Q, and, for a fixed value of α ∈ (0, 1),
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let A be the set of all maps

aq′ : q 7−→ αq′ + (1− α)q, q′ ∈ Q.

That is, the DeGroot agent incorporates a new opinion q′ into his current belief q by taking a

weighted average of the two with weight α on the new opinion. Although the agent’s beliefs comprise

a single-dimensional spectrum, as in several examples of Virtual Bayesians encountered thus far, he

does not transition among the beliefs by shifting but rather by compressing the spectrum towards

a particular point (the new opinion). This creates order effects, which violate commutativity. For

example, for α = 1/2,

aq′1 ◦ aq′2 : q 7−→ q + q′1 + 2q′2
4

but aq′2 ◦ aq′1 : q 7−→ q + 2q′1 + q′2
4

.

The root of the non-Bayesian character lies in the fixed weighting. If we were to amend the

procedure by allowing for suitably adjustable weights, the heuristic would become Virtual Bayesian.

Specifically, set B = Q×N, where each belief couples an opinion q with a strength n. Each argument

is identified by an additional (q′, n′), and updating is of the form

(q, n) 7−→
(
nq + n′q′

n+ n′
, n+ n′

)
.

The flexible weighting means that each argument’s associated opinion is factored into the agent’s

ultimate posterior according to its associated strength, and not according to the order in which it

was received.

Other Cases of Non-Commutative Learning Rules. An agent engaging in base-rate neglect

(Benjamin, Bodoh-Creed and Rabin, 2019) has beliefs in the form of probabilities, but updates with

a modified version of Bayes’ rule that underweights her prior belief. Specifically, for π ∈ B, any

state x ∈ X , and any signal y ∈ Y,

π(x) 7−→ π(x)α ·P[ŷ|x]∑
x′∈X π(x′)α ·P[ŷ|x′]

,

where α < 1 captures the extent of underweighting the base-rate. As with DeGroot learning,

this differential treatment of one’s prior relative to the likelihood creates order effects and vio-

lates commutativity. Examples are also found in the learning-in-games literature. Consider the

experience-weighted attraction (EWA) model of Camerer and Ho (1999), which nests reinforcement
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learning and fictitious play under a single framework. Unlike its two special cases, the EWA model

features a discount rate ϕ on the weight a player assigns to any given strategy, which ‘depreciates

previous attraction’ to that strategy. This and another depreciation rate generically lead to order

effects.

As a final example, consider concatenating learning rules, where, for a set of symbols S, beliefs

are sequences (s1, . . . , sn), si ∈ S and arguments correspond to additional sequences that the agent

appends to her current belief:

A = {(s1, . . . , sn) 7−→ (s1, . . . , sn, ŝ1, . . . , ŝm) | ŝk ∈ X} .

A concatenating learning rule satisfies all of the axioms of Theorem 1 except for commutativity

(A.5). Note that unlike the other examples, which feature heuristics or biases, concatenation records

strictly more information than a Bayesian does.

Deductive Reasoning. We next consider failures of injectivity, which necessarily involve ‘collaps-

ing’ multiple priors onto a single posterior. One common example is deductive reasoning, whereby

an agent updates about an unobserved state by progressively ruling out different possibile state

values. Each belief is a subset of already-disproven states, and each argument corresponds to a

subset of newly-disproven states. As the agent learns, she narrows the range of possibilities until

she reaches either a single state or concludes that none is possible.

Definition. Learning rule (A,B) is deductive if there exists a state space X such that (1) each

belief is a subset of disproved states b ⊂ X and (2) each argument is associated with a subset of

additionally impossible states: a : b 7−→ b ∪Xa for some Xa ⊂ X .

Deductive reasoning shares a close relationship with Bayesian updating, but they are fundamentally

different. The similarity is that a Bayesian who receives signals with zero likelihood values for

some states appears to rule out those states just as a deductive reasoner would. However, Bayes’

rule provides no guidance for how to update following a signal that the agent believes has zero

probability. The deductive reasoner, in an equivalent circumstance, simply transitions to believe

that no state is possible. Furthermore, as shown in the following Proposition, deductive reasoners

have a very different compositional structure. In particular, whereas a Bayesian distinguishes

between different multiples of a given argument, a deductive reasoner treats all repeated instances
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of an argument as equivalent to a single instance. Her learning rule is idempotent : a ◦ a = a for

all a ∈ A.

Proposition 1. A self-recording learning rule is isomorphic to some deductive learning rule if and

only if it is commutative and idempotent. Proof in the appendix.

Though dense, the proof of Proposition 1 admits an intuitive interpretation. To show that an

arbitrary learning rule is deductive, one needs to exhibit a set of states X such that each argu-

ment corresponds to a subset of states. As a thought experiment, suppose the task were already

completed. Then, for every element x ∈ X , there would be a set Ax ⊂ A of arguments whose

corresponding subsets contained x. Any collection of arguments generated in this way would have

the following inclusion property: whenever a ∈ Ax and a ◦ a′ ◦ a′′ = a′ ◦ a′′, at least one of a′ or a′′

must be contained in Ax. Intuitively, this says that whenever (1) argument a ‘communicates’ state

x and (2) arguments a′ and a′′ together subsume the information contained in a, at least one of

the subsuming arguments a′ or a′′ must themselves communicate state x. Any underlying state x

is therefore functionally equivalent to a subset of arguments Ax with the inclusion property. The

proof of Proposition 1 demonstrates that we can define X to be the set of all argument subsets

with the inclusion property.

As a final note, one might suppose that the structure of a deductive learning rule is sufficient to

recover the underlying state space (up to relabeling), but a simple counterexample shows otherwise.

Consider X = {x, y} and A consisting of a0 (corresponding to ∅), a1 ({x}), a2 ({y}), and a3

({x, y}). Compare this with X ′ = {x, y, z} and A′ comprising a′0 (∅), a′1 ({x, z}), a′2 ({y, z}), and

a3 ({x, y, z}). The learning rules generated by these two argument sets are isomorphic, and hence

there is no way to identify from the compositional structure of arguments alone whether the state

space is X or X ′. In both cases, the compositional structure is described by a1 ◦ a2 = a3 (or

a′1 ◦ a′2 = a′3), but while this equation reveals that neither of a1 or a2’s associated state sets is a

subset of the other, there is nothing to indicate whether their intersection is nonempty.

Adopting the Strongest Opinion. Another variant on DeGroot learning specifies B = Q ×

N, with beliefs consisting of opinion-strength pairs as in the adjustable-weight example, but has

arguments of the form

(q, n) 7−→


(q′, n′) if n′ > n

(q, n) otherwise.
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That is, the agent keeps track of the relative strength of any opinion, but instead of giving more

weight to a stronger new opinion, the agent either adopts it fully if it has greater strength than one’s

current opinion or discards it otherwise. Like with deductive reasoning, all arguments are idempo-

tent, violating injectivity. Furthermore, this variant also violates commutativity, but such violations

are restricted to corner cases in which multiple arguments share identical opinion strengths.

Cyclic Learning Rules. Consider an agent who learns about the status of a light bulb. The

set of beliefs is B = {on, off}, and the set of arguments consists of

maintain :


on 7−→ on

off 7−→ off
and switch :


on 7−→ off

off 7−→ on.

More generally there are ‘cyclic’ learning rules with B = {state0, . . . , staten−1} and

A = {statek 7−→ statek+j modulo n | j = 0, . . . , n− 1} .

These model uncertainty in environments with an inherently cyclic structure, such as those dealing

with recurring blocks of time. Their argument semigroups are isomorphic to Zn = Z/nZ. In fact

there is a close connection between Bayesian and cyclic learning rules. While no finite learning rule

can be acyclic, and therefore no finite learning rule can be a Virtual Bayesian, it is still possible for

a learning rule to satisfy the other five axioms of Theorem 1. Those who do have an fundamentally

cyclic structure.

Proposition 2. A finite, self-recording learning rule (A,B) is pluralistic (A.3), injective (A.4), and

commutative (A.5) if and only if there exist primes p1, . . . , pk, k ≥ 2, such that A ∼= Zp1×· · ·×Zpk .

Proof in the appendix.

4. Geometric Properties of Virtual Bayesians

The paper has thus far considered purely algebraic relationships between arguments. For ex-

ample, if a2 = a1 ◦ a1, then a2 is understood as ‘twice’ a1 and a1 is ‘half’ a2, etc. But what can be

said more generally, especially for arguments that lack a clear algebraic connection? This section

explores one particular relationship between two arguments: agreement, the extent to which each

supports the effect of the other. It is shown that a learning rule is Virtual Bayesian if and only if
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(subject to regularity axioms) it admits an agreement function that is additive. Moreover, an addi-

tive agrement function serves as the foundation for embedding the set of arguments into Euclidean

space. Hence, Virtual Bayesian arguments are characterized by various geometric measures; this

section illustrates how those measures complement more familiar probabilistic concepts.

4.1. Additive Agreement

What does it mean for two arguments to ‘agree’ with each other? That is, what should be

the function form of γ : A × A −→ R, where γ(a1, a2) is the level of agreement (γ(·, ·) > 0) or

disagreement (γ(·, ·) < 0) between a1 and a2? Consider the following thought experiment. An agent

with learning rule (A,B) is presented with arguments a1 and a2, which have agreement γ(a1, a2).

Next, suppose a1 were decomposed into components a′1 and a′′1 such that a1 = a′1 ◦a′′1. There would

be agreement γ(a′1, a2) between a′1 and a2 as well as γ(a′′1, a2) between a′′1 and a2. Intuitively, what

agreement a1 originally had with a2 stemmed in some part from the a′1 and in some part from a′′1.

It follows that γ(a′1, a2) and γ(a′′1, a2) ought to sum to γ(a1, a2).

Say that γ : A×A −→ R is an additive agreement function if it satisfies the above decomposition

insensitivity – γ(a′1, a2) + γ(a′′1, a2) = γ(a′1 ◦ a′′1, a2) for all a′1, a
′′
1, a2 ∈ A – as well as two regularity

conditions. First, γ is symmetric: γ(a1, a2) = γ(a2, a1) for all a1, a2 ∈ A. Second, it is positive

definite:

γ(a1, a2) <
1

2
(γ(a1, a1) + γ(a2, a2))

for all a1, a2 6= aid. If A contains inverses, then positive definiteness is equivalent to requiring that

all arguments agree with themselves: γ(a, a) > 0 for a 6= aid.11 If A does not contain inverses, the

positive definiteness not only implies all arguments have positive self agreement, but it also ensures

that, were A to be augmented by the insertion of inverse arguments, the extension of γ would still

assign all arguments positive self agreement.

Additive agreement functions provide a link between Virtual Bayesians and embeddings into

Rn. The key factor is that the three defining properties of additive agreement functions are also

satisfied by an inner product on a real vector space. An argument set A is not a rich enough

space on which to define a true inner product, but an additive agreement function provides the

foundation for extending A into Rn.

11One implication of the additivity condition is that γ(aid, aid) = 0, so this case must be exempted.
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Additive Agreement and Virtual Bayesians. Being able to define an additive agreement

function on a given learning rule (A,B) guarantees that A satisfies axioms (A.4,5,6) from Theorem

1. Commutativity (A.5) and acyclicality (A.6) follow from the fact that the real numbers, as

a group, share these properties. Similarly, a learning rule with an additive agreement function

necessarily satisfies the cancellation property, which is shown to imply injectivity (A.4). Given any

Virtual Bayesian learning rule, it is straightforward to define an additive agreement function, e.g.

by treating its basis as an orthonormal set. Thus the existence of an additive agreement function,

in conjunction with axioms (A.1,2,3), completely characterizes Virtual Bayesians.

Theorem 2. Learning rule (A,B) is a Virtual Bayesian if and only if it is (A.1) countable, (A.2)

self-recording, (A.3) pluralistic, and it admits an additive agreement function γ : A × A −→ R.

Proof in the appendix.

Additive Agreement and Euclidean Embeddings. Any embedding f : A −→ Rn defines an

agreement function by pulling back the standard inner product on Rn: γ(a1, a2) ≡ 〈f(a1), f(a2)〉.

As is shown by Theorem 3 below, all additive agreement functions can be generated in this way. The

proof of Theorem 2 establishes that γ on A extends uniquely to the rational completion A∗. There

are multiple ways to embed A∗ −→ R, but only a subset of them preserve γ; one such way is the

inclusion map A∗ −→ Rn. However, it is also possible to embed A∗ into any lower dimensional real

vector space by collapsing distinct dimensions of A∗ onto a single dimension of Rn. For example, let

(A,B) be a self-recording learning rule with A ∼= Z≥0×Z≥0. That is, from an algebraic perspective,

A is generated from two distinct elements. As illustrated by Agent 2, (A,B) could represent a Beta-

Binomial learning model in which each of the generating arguments, H and T, each communicate

information that does not directly contradict the other (in the Beta-Binomial model, both H and T

signals lower the learner’s subjective variance about the state). Under this interpretation, the most

intuitive specification of an agreement function sets γ(H,T) = 0, corresponding to an embedding

A −→ R2. However, (A,B) could also represent uncertainty about a binary state, as with Agent

1. For example, if one of the generating arguments is H and the other is
√

2T, then the natural

specification of agreement sets γ(H,
√

2T) = −
√

2, corresponding to an embedding A −→ R1. The

multiple plausible interpretations in this example illustrate how the algebraic structure of (A,B) is

made more concrete by specifying an additive agreement function.
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Theorem 3. Let (A,B) be a Virtual Bayesian learning rule. Then

(a) For every additive agreement function γ on A there is a unique n ≤ d(A) and a unique

(up to orthogonal transformation) essential embedding f : A −→ Rn extending γ to the

standard inner product on Rn.

(b) For every essential embedding f : A −→ Rn there is a unique additive agreement function

γ on A that f extends to the standard inner product on Rn.

(c) There exists an essential embedding A −→ Rn for all 1 ≤ n ≤ d(A).

Proof in the appendix.

Statements (a) and (b) of Theorem 3 establish that there is a near one-to-one connection

between additive agreement functions on A and embeddings into Rn. The only exception is highly

technical: starting with a given embedding A −→ Rn, one can flip, rotate, or otherwise rigidly

transform the image of A inside Rn to manufacture a distinct embedding, but this is tantamount to

imposing an alternative coordinate system. Similarly, by embedding A into Rn and then embedding

Rn into Rn+1, one obtains a technically distinct mapping A −→ Rn+1, but it is necessarily not

an essential embedding. (Recall that f : A −→ Rn is essential if f(A) contains a basis for Rn.)

Finally, statement (c) confirms that A can be embedded into Euclidean space of any dimension n

up to its ‘algebraic dimension’ d(A). The reasoning is intuitive: by treating all basis elements of

A as mutually orthogonal, one constructs an embedding A −→ Rd(A); by treating more and more

basis elements as linearly dependent, one can reduce the dimensionality arbitrarily to n = 1.

4.2. Agreement Geometry

When into Rn, A obtains a handful of familiar geometric concepts. Interpreted as vectors

in Rn, arguments are equipped with the standard inner product; they have length, angle, and

direction; one can specify the distance between two arguments or the projection of one onto another.

Theorem 3 shows that the universe of different Euclidean geometries available to an learning rule

are enumerated by the set of additive agreement functions.

The most primitive structure inherited by an learning rule is real-valued scaling: given argument

a ∈ A, any k ∈ R identifies a unique scaled version ka. For positive integer values of k, the scaled

copy ka is part of A itself; for k ∈ Q, ka lies in A∗; for irrational values of k, ka is guaranteed

not to be a part of A, but it can nonetheless be understood as part of the linear extension of A.
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Scaling also defines a notion of argument magnitude via the norm |a| ≡
√
γ(a, a). This coincides

with scaling, in that |ka| = |k| · |a|.

Each argument is identified by the conjunction of its magnitude and direction; the direction of

any argument a ∈ A is its counterpart a/|a| lying on the unit sphere Sn−1. The angle between two

arguments is

θ(a1, a2) ≡ cos

(
γ(a1, a2)

|a1| · |a2|

)
,

and the projection of one argument onto another is

a1|a2 ≡
(
γ(a1, a2)

|a2|

)
a2.

Finally, distance between two arguments a1 and a2 is defined by the metric |a1 − a2|.

4.3. Bayesian Comparison: Examples

We can compare the various Euclidean structures that come with an additive agreement function

to probabilistic notions already defined for a Bayesian learning rule by first examining several

examples.

Single Binary Issue. Consider learning as modeled by Agent 1 in Section 2 (the ‘Bernoulli

Bayesian’), who has uncertainty about a binary state. Each argument a ∈ A is associated with

a single log likelihood-ratio la. Every additive agreement function which embeds A into R is of

the form γ(a1, a2) = w · la1 · la2 , where w > 0. To understand the relationship between arguments

and probabilistic notions in this particular case, consider the effect of a given argument on a fixed

reference prior. For example, if the reference prior is either P[ω = 1] = 2/3 or P[ω = 1] = 1/3,

then the posterior as a function of the argument is described by the graph in Figure 3. There

are two directions, positive and negative; scaling up any positive argument leads to a posterior

belief arbitrarily close to P[ω = 1] = 1, and scaling up a negative argument leads the learner

towards P[ω = 1] = 0. In this way the two directions of arguments are associated with the two

distinct Bayesian states. Moreover, sufficiently extreme magnitude is associated with certainty on

a particular state.

The relationship between intermediate scaling of an argument and the corresponding posterior

distribution depends on which reference prior is chosen. As illustrated by Figure 3, scaling up

a positive argument always increases the expectation of the probabilistic belief, and scaling up a
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Figure 3. Posterior Expectation as a Function of Argument. The orange line describes an
agent’s posterior probability given a prior of P[ω = 1] = 2/3 as a function of the argument
a as embedded in R. The blue line is for P[ω = 1] = 1/3.
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Figure 4. Variance, Entropy Reduction as a Function of Argument. The left graph com-
pares the reduction in variance for an agent with prior belief P[ω = 1] = 2/3 (orange line)
or P[ω = 1] = 1/3 (blue line) as a function of argument. The green line describes the norm
of the argument. The right graph shows corresponding relationships for entropy reduction.

negative argument always decreases the expectation. The effect on variance and entropy, however,

depends on whether the prior is above or below the uniform belief of P[ω = 1] = 1/2. Intuitively,

measuring information gain by reduction in variance or entropy tracks how the posterior moves

towards or away from certainty, while measuring information gain by the agreement norm tracks

movement away from one’s prior, which must always be positive. As illustrated in Figure 4, when

the agent’s prior is – for example – 1/3, small rightward arguments push the posterior closer to

1/2, and therefore have negative variance and entropy reductions.

Agreement itself, as specified by γ(a1, a2) = w · la1 · la2 , measures the extent to which two

arguments push the prior belief in the same direction. Agreement is positive if and only if both
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arguments share the same sign – that is, if they both push the agent towards believing ω = 1 or

both push towards ω = 0. The magnitude of agreement or disagreement is simply proportional to

the product of the arguments’ associated log likelihood-ratios.

Multiple Independent Binary Issues. Consider an extension of the two-state Bayesian learning

model in which there are n binary issues, where beliefs are independent across issues and each

argument preserves independence. Moreover assume that the arguments can lead to arbitrarily high

certainty on any of the 2n states. For this example there is a natural class of additive agreement

functions which treat separate issues as orthogonal: set γ(a1, a2) =
∑n

i=1w
ilia1 l

i
a2 , where wi > 0 are

importance weights on the different issues. In the case of n = 2 such an embedding can be visualized

in the following way, as illustrated in Figure 5. Take any argument embedded in R2, and consider

what is the effect of the argument on a given reference prior, e.g. the uniform distribution.12 This

produces a mapping from R2 into the set of possible beliefs as represented by the unit square

∆({0, 1})×∆({0, 1}).
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Figure 5. Standard Embedding of A into R2 for Two Independent Binary Issues. The
left figure shows polar contour lines in R2; the right figure shows the same contour lines
under the following transformation: each argument as embedded in R2 is identified with
the posterior distribution ppost ∈ (0, 1) × (0, 1) it produces when the prior is the uniform
distribution.

In contrast to the two-state example, there is a continuum of directions in R2. As before, almost

all directions correspond to a unique limit belief, but now there are measure-zero borders separating

R2 into four regions corresponding to the four different configurations of the two binary issues. Also

12The identity of the reference prior does not change the qualitative appearance of the graph, but using the uniform
distribution as a reference makes the relationships clearer.
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in this case, projection has a very intuitive meaning. Projecting an argument onto the axes isolates

the information an argument communicates about each issue. Projecting onto an arbitrary direction

forces the original argument to discuss the two issues at the relative frequency of the projection

direction. As a way of illustrating how different embeddings treat the set of arguments differently,

consider stretching one issue/dimension, e.g. by specifying that the argument originally mapped

to (1, 0) is instead mapped to (2, 0), as in Figure 6. For arguments whose angle is sufficiently close

to the stretched issue, angles between them become tighter with the stretching; for those closer to

the other issue, the angles are widened.
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Figure 6. Stretched Embedding of A into R2 for Two Binary Issues. This replicates the
previous figure but with the argument corresponding to the log likelihood-ratio pair (1, 0)
mapped to (2, 0).

Finite State Spaces. A similar kind of intuitive embedding exists for finite state spaces. Fixing

a numeraire state, each dimension corresponds to the relative weight between the numeraire state

and one of the other states. For example, consider n = 3 states under the embedding

(p0, p1, p2) 7−→
(
w1 log

p1
p0
, w2 log

p2
p0

)
.

Graphically, the image of R2 as mapped back into the probability simplex resembles the relationship

in the case of two independent binary issues, only with greater warping due to the simplex’s

triangular shape. All but two directions of arguments (specifically, 180◦ and 270◦ counterclockwise

from (1, 0)) correspond to a unique limit state. As with the case of multiple binary issues, the border

directions of the space partition R2 into regions. However, instead of each direction corresponding

to a frequency of discussion between multiple states, each direction captures the relative frequency

at which each non-numeraire state is compared with the numeraire.

29



-10 -5 0 5 10

-10

-5

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Figure 7. Embedding of A into ∆2 for Three States. The left figure shows polar contour
lines in R2; the right figure shows the same contour lines under the following transformation:
each argument in A as embedded in ∆2 is identified with the posterior distribution it induces
on the uniform distribution.

4.4. Bayesian Comparison: General Connections

In general, Euclidean embeddings of Virtual Bayesians need not admit intuitive interpretations

with each axis corresponding to an issue or a frequency of discussion. However, the core features of

the examples above – that argument length corresponds asymptotically to probabilistic certainty

and that argument direction corresponds to a limit state – are preserved in any embedding.

Formally, given a finite state space X , let χ ⊂ X denote any strict and non-empty subset of X :

χ /∈ {∅,X}. Each possible value of χ corresponds to a region of limit beliefs in which some states of

X have been ruled out. Say that χ1 and χ2 are neighboring if one is a subset of the other: χ2 ⊂ χ1

or χ1 ⊂ χ2. The border of the probability simplex represents all of the limit beliefs a Bayesian

agent could adopt. Each vertex, edge, face, etc. of the simplex corresponds to a single χ, and two

components of the border are adjacent if and only if they correspond to neighboring subsets of X .

Duality between Argument Directions and Limit Beliefs. Now suppose that (A,B) is a

Bayesian learning rule on X . A given subset of states χ is said to be reached by an argument a ∈ A

if repeatedly applying a to any prior belief leads to posteriors which put vanishing weight on any

states outside χ and non-vanishing weight on any states in χ. Formally, for any π ∈ B and any

ε > 0, (1) ak(π)(x) < ε for any x /∈ χ and k sufficiently large and (2) if x ∈ χ and π(x) ≥ ε then

ak(π)(x) ≥ ε for all k ≥ 1. The Proposition below establishes the connections between values of χ

and directions in Rn for a learning rule that is full-dimensional, that is n = d(A). Given a linear

extension for A, every value of χ corresponds to a cone of arguments in Rn, or equivalently, a region
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of vectors on the unit sphere. The association between state subsets and regions of directions in

Rn matches the neighboring relation: neighboring values of χ correspond to adjacent regions of

directions.

The critical difference between state subsets and regions of directions lies in their dimensionality.

For a state space with |X | elements, a full-dimensional (A,B) is extended to Rn where n = |X | −

1. Then, a region of directions corresponding to any singleton χ has dimension n − 1; a region

corresponding to χ with |χ| = 2 has dimension n − 2, etc. In this way the geometric measures

introduced by the agreement function capture the same qualitative information as distance and

direction in the probability simplex while stressing different perspectives. For example, if two

different arguments a1 6= a2 correspond to the same value of a singleton χ, then the sequences

ak1(π) and ak2(π) both converge to the same point in the probability simplex as k −→∞, while the

sequences of arguments ak1 and ak2 diverge in Rn. Conversely, if χ has |X | − 1 elements, as it rules

out only a single state, then there is a only a single direction of arguments which reach χ, while in

the probability simplex χ corresponds to a hyperface of the border of ∆(X ).

Proposition 3. Suppose (A,B) is a full-dimensional Bayesian learning rule on a finite state space

X and f : A −→ Rn is an essential embedding. Then

(a) For each χ there exists a path-connected subset S(χ) of the unit sphere S|X |−1 such that χ

is reached by all arguments a for which f(a)/|f(a)| ∈ S(χ).

(b) Subsets χ1 and χ2 are neighboring if and only if region S(χ1) ∪ S(χ2) is path-connected.

(c) The region S(χ) is a manifold of dimension |X | − |χ| − 1.

Proof in the appendix.

5. Methods for Belief Elicitation

Experimenters in the lab are often tasked with eliciting a subject’s probabilistic belief about

an issue. The machinery of learning rules provides tools for interpreting and quantifying beliefs

even when these beliefs are arbitrarily encoded. In essence, under the assumption that a subject’s

updating is isomorphic to the objective (Bayesian) learning rule, the experimenter can elicit the

subject’s prior belief by introducing new information and tracking how he updates in response. The

techniques discussed below do not exhaust all possible information environments, and they are not
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the only methods possible in the environments considered; rather, they demonstrate the basic idea

of elicitation through changes in a subject’s beliefs.

An Example. There is a binary question whose answer is known to an experimenter but unknown

to a subject. For instance, ‘is it currently raining in Seattle?’ The subject’s belief about the

question is ‘probably not.’ Despite having a grasp of the issue – he recognizes that both states are

possible, he knows that rain is generally less common than no rain but that the Pacific Northwest

is known for precipitation, he considers the month of the year, etc. – the subject cannot readily

distill these factors into a probabilistic assessment. The experimenter takes the following approach.

She shows the subject two urns, a ‘rain’ urn with two-thirds ‘rain’ balls and one-third ‘dry’ balls,

and a ‘dry’ urn with the reversed proportions of balls. She selects one urn according to the answer

to the question and then draws with replacement from that urn. After each draw, the subject is

asked which urn is more likely.

If the subject switches from expressing a belief that no precipitation is most likely to rain being

most likely following a sequence of draws with N net rain balls, the experimenter has reached a

concrete interpretation of the subject’s prior belief. Under the assumption that the subject is a

Virtual Bayesian, his prior belief is (approximately) equivalent to starting at the ur-prior of equal

weight on both states and receiving −N net rain balls worth of information. In other words, a

Bayesian who switched from claiming rain was less likely to more likely at the same time as the

subject did would have to had a prior belief of rain with 1/(1 + (1/2)N ) probability.

Elicitation Assumptions. Like more traditional approaches, the elicitation method outlined

in the example above and detailed below requires stringent assumptions on the agent’s behavior.

The three assumptions are non-traditional, rendering them useful in some contexts and not others.

The first assumption is that the subject’s learning rule is isomorphic to a particular Bayesian with

identified ur-prior. For instance, in the rain-urn example above, the experimenter assumed the

subject’s arguments to be isomorphic to a two-state Bayesian with an ur-prior corresponding to

the uniform distribution. Second, the subject must be able to report her hypothetical belief after

receiving a particular signal. In the example above, the experimenter may have needed to re-shuffle

the order of draws shown to the subject in order to induce the subject’s belief switch which is

necessary for identification, so the subject must agree to treat the draws as though they were
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strictly i.i.d. More generally, the underlying issue’s answer may be unknown to both subject and

experimenter, and so the subject has to be able to indicate hypothetical updating.

Finally, the subject must have a rudimentary understanding of the geometric relationships

between arguments/beliefs. I consider two possibilities. The first possibility is that the subject can

distinguish relative angles: he can say, for any triple of arguments/beliefs (a1, a2, a3), whether a1 is

closer in angle to a2 or to a3. Relative angle is often a very intuitive concept. In the example above,

there are only two directions arguments can take – the ‘rain is more likely’ direction and the ‘rain is

less likely’ direction – so distinguishing relative angle requires the subject only to state which of the

two states is more likely. In the case of Beta learning, each direction corresponds to the mean of the

distribution. The second possibility is that the subject distinguishes relative magnitudes: he can say

which of a1 and a2 is a larger argument. This is also an intuitive concept; the experimenter needs

only ask the subject, ‘putting aside the question of which state these arguments points to, which

one incorporates the larger amount of information?’ Note that because information is presented

in discrete portions, the implied beliefs elicited will necessarily be approximations; presenting the

subject with smaller arguments would refine that approximation.

Method via Relative Angles. The example above already illustrates how the experimenter

can elicit a subject’s belief when his learning rule is isomorphic to a two-state Bayesian. In the

case that his learning rule instead matches Z≥0 × Z≥0, as with a Beta learner, a simple procedure

for identifying his prior requires the following. See Figure 8 for a graphical description. Let the

two possible signals that the experimenter can show the subject be denoted x and y, and write ax

and ay as arguments corresponding to receiving one of those signals. The experimenter posits that

the subject begins at prior (bx, by); she asks him whether his belief is closer in angle to ax or ay.

Without loss of generality, take this to be ax. Next, the experimenter presents the subject with ay

signals until, following ∆y signals, he claims his belief is now closer to ay. Next, she presents the

subject with ∆x of the ax signals until he claims ay is equally close to his posterior belief as to his

prior belief.
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Figure 8. Elicitation via Relative Angle. The experimenter gives the subject ∆y of the ay
signals to reach the 45◦ line followed by ∆x of the ax signals to return to the angle of the
original belief.

The values of ∆x and ∆y identify the subject’s prior. First, the fact that ∆y of the ay signals

equalize the angle between the subject’s belief and the two extreme directions implies bx = by+∆yay.

Second, it follows that the subject’s ultimate posterior belief is a scaled version of the prior,

bx + ∆xax
bx

=
by + ∆yay

by
.

Together these identities constitute a linear system from which bx and by are recovered.

Method via Relative Magnitudes. When the subject’s learning rule is isomorphic to a two-

state Bayesian, as in the example, the experimenter can leverage relative magnitude in two steps.

She first discerns which of the two signals would make the subject’s belief smaller. In the example,

for instance, this would be the rain ball. Next, she presents with subject with this signal until,

after N iterations, he claims his posterior belief exceeds the magnitude of his prior belief. His prior

belief must have been equivalent to N/2 of the opposite signal.

When the subject’s learning rule is isomorphic to Z≥0 ×Z≥0, the experimenter first fixes some

reference value ∆y > 0. Next she asks the subject how many x signals would be needed so that his

prior plus ∆y of the ay arguments would be equivalent in magnitude to ∆x of the ax arguments.

Finally she asks how many iterations of both x and y signals would be necessary to match the

magnitude of his belief following ∆y of the y signals? Denoting this value by ∆, it follows

b2x + (by + ∆yay)
2 = (bx + ∆xax)2 + b2y = (bx + ∆ax)2 + (by + ∆ay)

2,
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which similarly produces a linear system identifying bx and by. See Figure 9 for a graphical illus-

tration.
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(b′′x, b
′′
y)

∆y

∆x

∆

Figure 9. Elicitation via Relative Magnitude. The experimenter gives the subject ∆y of
the ay signals, ∆x of the ax signals, and ∆ of both signals such that all three posteriors have
the same magnitude.

6. Discussion

This paper has analyzed Bayesian updating from algebraic and geometric perspectives, starting

from the key observation that Bayesians treat signal realizations, here codified as arguments, like

elements of real vector spaces. Hence, updating rules which share the compositional properties of

Bayesians are characterized by the substantive axioms of Theorem 1 – injectivity, commutativity,

acyclicality – which allow an embedding into Rn. As Theorem 3 establishes, there is a one-

to-one relationship between embeddings and additive agreement functions. Moreover, any such

updating rule inherits the geometric structures of Euclidean space via its embedding, with measures

of length and angle that provide a prior-free understanding of the relationships between pieces

of information. As Section 5 illustrates, these conceptual tools help to engage agents who lack

probabilistic sophistication but nonetheless maintain Bayesian-like internal consistency.

In what follows, I discuss what alterations to the modeling framework would have led to a

substantially different characterization theorem and outline several open questions which could be

addressed in subsequent work.
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6.1. Discussion of Modeling Assumptions

To understand how different modeling assumptions could have led to substantively different

characterization theorems, note first that the framework of learning rules largely serves as a no-

tational container for richer structures. Rather, it is the regularity conditions placed on Bayesian

learning rules which are most restrive. The non-dogmatic learning requirement ensures Bayes’ rule

is always applicable, as the belief set contains no elements which rule out the arrival of any argu-

ments, but it also excludes a number of examples which would be regularly termed ‘Bayesian.’ The

challenge is this: if a Bayesian is allowed to receive an argument which tells him some state x∗ ∈ X

should have zero probability, how should his belief transition after subsequently receiving another

argument that tells him to put more weight on state x∗? There are multiple paths to follow here,

but none is clearly best. To borrow from game theory, the logic of Perfect Bayesian Equilibrium

suggests the agent could have any belief at all, while that of Sequential Equilibrium would suggest

introducing a topology on the beliefs and arguments to define the agent’s update as the limit of

Bayesian prescriptions. A third route might involve the agent ‘forgetting’ the earlier information

which caused him to rule out x∗, but this would break commutativity and could therefore radically

change the nature of Bayesianism.

Although the i.i.d. assumption might seem strong, it is not substantive. One could alternatively

omit X from the model and specify a Bayesian learner solely with reference to the probability space

and the sequence (Yi)
∞
i=1, which is then assumed to be exchangeable. Instead of having belief states

in the form of conditional assessments about the distribution of X, the leaner’s beliefs concern

the distribution of the tail of the sequence, (Yi)
∞
i=t+1. However, by the de Finetti–Hewitt–Savage

theorem, the distribution over (Yi)
∞
i=1 can equivalently be expressed as a joint distribution over

(Yi)
∞
i=1 and an underlying measure, F ∈ ∆(Y), conditional on which the (Yi)

∞
i=1 sequence is i.i.d.

Then, assessments about the tail distribution are equivalent to assessments about the measure F ,

which plays the same role in the model as the X does in the version above. So while the omission

of X and ‘generalization’ to exchangeable Yi’s may seem at first more elegant, this route only leads

back, with additional trouble, to the model as presented in the main text.

The assumption that the signal space is discrete and the state space is either discrete or

continuous sidelines a host of measure-theoretic complications. It is unclear how exactly Theorem

1 might change as a result of relaxing that, but I do not suspect any dramatic difference. There
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are a host of examples with a continuous signal space, e.g. the Gaussian-Gaussian learning model,

that nonetheless satisfy all but the countability axiom and embed neatly into Rn.

6.2. Future Work

Looking forward, this paper could provide a foundation for additional applications of the

learning rule framework. For example, Theorems 1 and 2 show how to link an arbitrary learning

rule with some Bayesian, but they do not address the question of how many Bayesian isomorphism

classes exist, which could be addressed in subsequent work.13 Along similar lines, non-Bayesians

could be further classified in terms of their sophistication vis-a-vis Bayesians. Say that learning rule

(A′,B′) computes for, or reproduces, (A,B) if there exists an injective homomorphism (A,B) −→

(A′,B′). This defines a complete and transitive relation on the set of all learning rules and yield

a partially ordered set of computability equivalence classes. What characterizes the non-Bayesians

which can compute for some or for all Bayesians, and what non-Bayesians can Bayesians compute

for?

More broadly, the geometric concepts of argument scaling, projecting one argument onto an-

other, or squeezing two arguments nearer by reducing the angle between them could be used as

tools for modeling cognitive biases. Indeed, in a recent working paper (Chauvin, 2020) I have

developed a model of an agent who subjectively distorts information by scaling multiple arguments

in the interest of maximizing the magnitude of their composition. Furthermore, the framework

supplies a novel model of naive updating in networks: suppose a network of agents start from a

common prior, are initially supplied with a single private argument each, then update by treating

their neighbors’ opinions as reflecting new arguments. Under intuitive circumstances,14 the beliefs

from this aggregation process coincide with the averaging of DeGroot learning. In other cases, such

as reasoning over a binary state, repeated aggregation leads to consensus on one of the two states,

contrasting with DeGroot’s prediction of an interior probabilistic consensus. Future work could

compare the two models in greater detail.

13It is relatively easy to see that there is a family of Bayesian examples for Zn1 ×Zn1
≥0 ×Zn3

>0 and Qn1 ×Qn1
≥0 ×Qn3

>0

for almost all specifications of n1, n2, n3, and that these are all non-isomorphic. How many others are there?
14Namely, when the data generating process is Gaussian, when all agents have the same number of neighbors, and
when agents place equal weight on their neighbors.
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Appendix A. Proofs

Proof of Fact 1. The only if direction of the proof is immediate from the definition of a learning

rule isomorphism. To establish the if direction, first define the bijection f : A −→ B by setting

f(a) as the unique belief with a = af(a), and note that a2(f(a1)) = f(a1 ◦ a2) for all a1, a2 ∈ A.

Define f ′ : A′ −→ B′ accordingly. As

f(f−1(b) ◦ a) = a(f(f−1((b))) = a(b),

applying f−1 to both sides yields the relation f−1(b) ◦ a = f−1(a(b)). Now let g : A −→ A′ be

a semigroup isomorphism. Define h : B −→ B′ by h(b) = f ′(g(f−1(b))), and note that h, as a

composition of bijections, is itself a bijection. Then for any a ∈ A and b ∈ B,

g(a)(h(b)) = g(a)(f ′(g(f−1(b)))) = f ′(g(f−1(b)) ◦ g(a)) = f ′(g(f−1(b) ◦ a))

= f ′(g(f−1(a(b)))) = h(a(b)),

where the fourth equality holds by the relation established above. This demonstrates that (g, h) is

a learning rule isomorphism. ◦

Proof of Lemma 1. We show the contrapositive: a case of a1(b) = a2(b) where a1 6= a2

necessarily implies a violation of (A.2). Towards a contradiction, suppose a1(b) = a2(b) for some

a1 6= a2 ∈ A and b ∈ B, and let f : A −→ B denote the map defined in the proof of Fact 1

above. Now define a = f−1(b) and b1 = f(a1) 6= b2 = f(a2). Then by the properties of f and

commutativity we have

f(a ◦ a1) = a1(f(a)) = a1(b) = a2(b) = a2(f(a)) = f(a ◦ a2)

and

a(b1) = a(f(a1)) = f(a1 ◦ a) = f(a ◦ a1)

= f(a ◦ a2) = f(a2 ◦ a) = a(g(a2)) = a(b2),

contradicting (A.2). ◦
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Proof of Lemma 2. Let15 S ≡ Ā×Ā, and define the addition of s1 = (a11, a
1
2) and s2 = (a21, a

2
2) by

s1+s2 = (a11 ◦a21, a21 ◦a22). Then define the equivalence relation (a11, a
1
2) ∼ (a21, a

2
2) if a11 ◦a22 = a21 ◦a12,

and let A+ = S/ ∼ be the set of equivalence classes of S under ∼, with typical members denoted

s̄. Define the composition of s̄1 and s̄2 to be the equivalence class containing s1 + s2, where s1 ∈ s̄1

and s2 ∈ s̄2 are any representative members of S. To verify this operation is well defined, suppose

that s1, ŝ1 ∈ s̄1 and s2, ŝ2 ∈ s̄2. Then
s1 ∼ ŝ1 =⇒ a11 ◦ â12 = â11 ◦ a12

s2 ∼ ŝ2 =⇒ a21 ◦ â22 = â21 ◦ a22.

Combining these equations and leveraging commutativity,

a11 ◦ a21 ◦ â12 ◦ â22 = â11 ◦ â21 ◦ a12 ◦ a22,

confirming

s1 + s2 = (a11 ◦ a21, a12 ◦ a22) ∼ (â11 ◦ â21, â12 ◦ â22) = ŝ1 + ŝ2.

We now establish that A+ is an Abelian group. Closure under addition, associativity, and commu-

tativity follow from Ā. The equivalence class containing all (a, a) is an identity element. The class

corresponding to −s ≡ (a2, a1) is the inverse of that containing s = (a1, a2). Furthermore, for every

a ∈ Ā, there are at most |Ā| corresponding equivalence classes in A+. Thus from Ā countable we

conclude A+ is countable.

Next we verify the map f̄ : Ā −→ A+, a 7−→ (a, a0) is a homomorphism: f̄(a1 + a2) =

(a1 + a2, a0) = (a1, a0) + (a2, a0) = f̄(a1) + f̄(a2). It is also injective, as

f̄(a1) = f̄(a2) =⇒ (a1, a0) = (a2, a0) =⇒ a1 = a1 ◦ a0 = a2 ◦ a0 = a2.

Thus the composition f : A −→ Ā −→ A+ is an injective homomorphism. Finally, note that an

equivalence class s̄ ∈ A+ containing (a1, a2) is effectively the composition of a1 with the ‘inverse’

of a2, as s̄ also contains (a1, a0) ◦ (a0, a2). Therefore, in the notation of the inclusion map, s̄ =

f(a1) ◦ (−f(a2)).
◦

15N.b. the main content of this Lemma is an established result from abstract algebra. I nonetheless include a full
proof so that interested readers can follow the complete construction.
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Proof of Lemma 3. We make use of two key facts from group theory:

(1) If A+ is an Abelian group, then there exists a divisible group D (an Abelian group such

D = nD for all integers n ≥ 1) and an embedding h : A+ −→ D as an essential subgroup: for

all non-trivial subgroups H ⊂ D, H 6= {0}, the image of A+ in D intersects H: h(A+)∩H 6=

{0}.

(2) Any acyclic (equivalently, in the parlance of group theory, ‘torsion-free’) divisible group D

is isomorphic to a direct sum of copies of Q.16

Note that as A+ is acyclic, its divisible counterpart D must be as well: were there any x ∈ D,

xn = 0, then H ≡ {dn|n ≥ 0} is a non-trivial subgroup, which by the essentialness of the embedding

implies a∗ = h−1(xd) ∈ A+ is an element with (a∗)m = a0 for some m, contradicting the acyclicality

of A+. By these facts, it follows there exists an embedding f : A+ −→ A∗ ∼= Qd(A) for some value

(cardinality) d(A). Let (āi)
d(A)
i=1 be a basis for A∗. As f(A+) is an essential subgroup of A∗, it

shares a non-trivial intersection with the subgroup generated by each basis element āi, and thus

there exists qi ∈ Q such that qiāi ∈ f(A+). Define âi = qiāi. Then (âi)
d(A)
i=1 is a basis for A∗: each

element a ∈ A∗ can be uniquely written a =
∑d(A)

i=1 ci(a)āi, so

a =

d(A)∑
i=1

1

qi
ci(x)︸ ︷︷ ︸
ĉi(x)

âi

is an equivalent unique representation as a rational combination of âi’s. This reasoning also demon-

strates that d(A) can be no greater than the cardinality of A+, which is countable. ◦

Proof of Lemma 4. Let X = {0, 1}, let Y = A, and denote the homomorphism g : A −→ R.

Since g is two-sided, there exists a1, a2 ∈ A with g(a1) > 0 > g(a2). In what follows we find a joint

distribution over (X,Yi), X ∈ X , Yi ∈ Y, such that the log likelihood-ratio function associated

with each a ∈ A is equal to g(a). This produces a Bayesian learning rule which is isomorphic to

its associated additive semigroup of log-likelihood functions, and therefore also isomorphic to A,

verifying A as a Virtual Bayesian. To accomplish this, let the marginal probabilities of X be set

to P[X = 1] = P[X = 0] = 1/2, and note that, given a marginal distribution over Y = A, the

16See, for example, Fuchs (2015) pp. 131-141.
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conditional probabilities must satisfy

log

(
P[y = a|X = 1]

P[y = a|X = 0]

)
= g(a) =⇒


P[y = a|X = 1] =

exp{g(a)}
2(1 + exp{g(a)})

P[y = a]

P[y = a|X = 0] =
1

2(1 + exp{g(a)})
P[y = a].

It thus suffices to find a marginal distribution over Y that satisfies the law of total probability

P[X = 1] =
1

2
=
∑
a∈A

1

1 + exp{−g(a)}
P[y = a] =

∑
a∈A

P[X = 1|y = a]P[y = a].

Define E : ∆◦(A) −→ (0, 1) by

δ 7−→
∑
a∈A

δ(a)

1 + exp{−g(a)}
,

and note that ∆◦(A) is a connected metric space, that E is continuous and that, as g(a1) > 0 >

g(a2), it follows E(δa1) > 1/2 > E(δa2) for distributions δa1 and δa2 that place sufficiently high

mass on a1 and a2 respectively. By the intermediate value theorem, there exists δ∗ such that

E(δ∗) = 1/2. This completes the proof. ◦

Proof of Lemma 5. Let (A,B) be the Bayesian learning rule corresponding to {X, (Yi)∞i=1}

on (Ω,F ,P). Countability of A and B follow from the assumed countability of Y. (A,B) is self-

recording as the belief PX [·] is an ur-prior.

To show all a ∈ A are injective, let PX [·|y1, . . . , yn] and PX [·|y′1, . . . , y′n] be two distinct beliefs.

Then there exists some values x+, x− ∈ X such that

P[x+|y1, . . . , yn]

P[x−|y1, . . . , yn]
>

P[x+|y′1, . . . , y′n]

P[x−|y′1, . . . , y′n]
.

Then for any ŷ1, . . . , ŷm,

P[x+|y1, . . . , yn, ŷ1, . . . , ŷm]

P[x−|y1, . . . , yn, ŷ1, . . . , ŷm]
=

P[x+|y1, . . . , yn]

P[x−|y1, . . . , yn]
· P[ŷ1, . . . , ŷm|x+]

P[ŷ1, . . . , ŷm|x−]

>
P[x+|y′1, . . . , y′n]

P[x−|y′1, . . . , y′n]
· P[ŷ1, . . . , ŷm|x+]

P[ŷ1, . . . , ŷm|x−]
=

P[x+|y′1, . . . , y′n, ŷ1, . . . , ŷm]

P[x−|y′1, . . . , y′n, ŷ1, . . . , ŷm]
,
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so PX [·|y1, . . . , yn, ŷ1, . . . , ŷm] and PX [·|y′1, . . . , y′n, ŷ1, . . . , ŷm] are also distinct beliefs. Commuta-

tivity comes directly from the assumption of conditional independence:

P[x|y1, . . . , yn, ŷ1, . . . , ŷm] =
P[y1, . . . , yn, ŷ1, . . . , ŷm|x]P[x]∑

x′∈X P[y1, . . . , yn, ŷ1, . . . , ŷm|x′]P[x′]

=

∏n
i=1 P[yi|x]

∏m
j=1 P[ŷj |x]P[x]∑

x′∈X
∏n
i=1 P[yi|x′]

∏m
j=1 P[ŷj |x′]P[x′]

=
P[ŷ1, . . . , ŷm, y1, . . . , yn|x]P[x]∑

x′∈X P[ŷ1, . . . , ŷm, y1, . . . , yn|x′]P[x′]
= P[x|ŷ1, . . . , ŷm, y1, . . . , yn].

To establish (A,B) as acyclic, let a = a(ŷ1,...,ŷm) be any non-identity argument. As it is not the

identity, there exists some belief PX [·|y1, . . . , yn] and some values x+, x− ∈ X such that

P[x+|y1, . . . , yn, ŷ1, . . . , ŷm]

P[x−|y1, . . . , yn, ŷ1, . . . , ŷm]
=

P[x+|y1, . . . , yn]

P[x−|y1, . . . , yn]
· P[ŷ1, . . . , ŷm|x+]

P[ŷ1, . . . , ŷm|x−]︸ ︷︷ ︸
>0

>
P[x+|y1, . . . , yn]

P[x−|y1, . . . , yn]
,

and thus the odds-ratio of x+ to x− after receiving k ≥ 1 copies of argument a(ŷ1,...,ŷm) is

P[x+|y1, . . . , yn]

P[x−|y1, . . . , yn]
·
(

P[ŷ1, . . . , ŷm|x+]

P[ŷ1, . . . , ŷm|x−]

)k
>

P[x+|y1, . . . , yn]

P[x−|y1, . . . , yn]
,

demonstrating that a(ŷ1,...,ŷm) cannot be cyclic.

Finally we show that (A,B) is pluralistic. Note that for any subset of states E ⊂ X ,

P[E] =
∑
y∈Y

P[E|y] ·P[E],

and, for all y ∈ Y,

P[E|y] + P[Ec|y] = 1.

By non-triviality it must be the case that P[E] 6= P[E|y] for some E and y; by the first identity

there then exists E, y1, y2 such that P[E|y1] > P[E] > P[E|y2]. It then follows from the second

identity that there must then exist E1, E2, y1, y2 such that
P[E1|y1] > P[E1] > P[E1|y2]

P[E2|y1] < P[E2] < P[E2|y2]
=⇒ P[E1|y1]

P[E2|y1]
>

P[E1]

P[E2]
>

P[E1|y2]
P[E2|y2]

.
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Bayes’ rule and the conditional independence assumption then allow us to manipulate this as

follows:

P[y1|E1]P[E1]

P[y1|E2]P[E2]
>

P[E1]

P[E2]
>

P[y2|E1]P[E1]

P[y2|E2]P[E2]

P[y1|E1]

P[y1|E2]
> 1 >

P[y2|E1]

P[y2|E2](
P[y1|E1]

P[y1|E2]

)k
> 1 >

(
P[y2|E1]

P[y2|E2]

)j
P[y1|E1]

kP[E1]

P[y1|E2]kP[E2]
>

P[E1]

P[E2]
>

P[y2|E1]
jP[E1]

P[y2|E2]jP[E2]

P[E1|
k times︷ ︸︸ ︷

y1, y1, . . . , y1]

P[E2| y1, y1, . . . , y1︸ ︷︷ ︸
k times

]
>

P[E1]

P[E2]
>

P[E1|
j times︷ ︸︸ ︷

y2, y2, . . . , y2]

P[E2| y2, y2, . . . , y2︸ ︷︷ ︸
j times

]
,

where k and j are positive integers, and the last line follows from conditional independence. This

demonstrates that a(y1) and a(y2) cannot share any common multiples. Hence A is pluralistic. ◦

Proof of Proposition 1. That deductive learning rules are commutative and idempotent is clear

by inspection. Now, suppose learning rule (A,B) is self-recording, countable, commutative, and

idempotent. To show that it is isomorphic to some deductive learning rule it suffices to exhibit a set

X such that each a ∈ A is associated with Xa ⊂ X and a1 ◦a2 = a3 if and only if Xa1 ∪Xa2 = Xa3 .

To that end, define

X ≡
{
A ⊂ A | a ∈ A, a ◦ a′ ◦ a′′ = a′ ◦ a′′ =⇒ a′ ∈ A or a′′ ∈ A

}
and denote Xa = {A ∈ X | a ∈ A}.

We first note two features of the above definition. First, setting a′ = a′′ in the condition for

A ∈ X produces the simpler condition a ∈ A, a ◦ a′ = a′ =⇒ a′ ∈ A. Second, if a 6= a′, then

Xa 6= Xa′ . To see this, posit a 6= a′, which implies a◦a′ 6= a or a◦a′ 6= a′; without loss of generality,

take the former as true. Then define A∗ = {â ∈ A | a ◦ â 6= a} to be the set of all arguments

not ‘contained’ in a. Next we show A∗ ∈ X : if this were not true, then there would exist â ∈ A∗,

â′, â′′ ∈ A for which â ◦ â′ ◦ â′′ = â′ ◦ â′′ but â′ /∈ A∗ and â′′ /∈ A∗; by definition it follows a ◦ â′ = a
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and a ◦ â′′ = a, so a ◦ (â′ ◦ â′′) = a, so

a ◦ â = (a ◦ â′ ◦ â′′) ◦ â = a ◦ (â′ ◦ â′′ ◦ â) = a ◦ â′ ◦ â′′ = a,

contradicting â ∈ A∗. As a′ ∈ A∗ and A∗ ∈ X , it follows A∗ ∈ Xa′ . On the other hand, a /∈ A∗, so

A∗ /∈ Xa, completing the proof that Xa 6= Xa′ .

We now verify a1 ◦ a2 = a3 if and only if Xa1 ∪Xa2 = Xa3 . Suppose a1 ◦ a2 = a3. If A ∈ Xa1 ,

then by definition a1 ∈ A; as a1 ◦a3 = a3, it follows a3 ∈ A, so A ∈ Xa3 . Hence Xa1 ⊂ Xa3 , and (as

Xa2 ⊂ Xa3 by identical logic) Xa1∪Xa2 ⊂ Xa3 . If A ∈ Xa3 , then a3 ∈ A; as a3◦a1◦a2 = a1◦a2, then

either a1 ∈ A =⇒ A ∈ Xa1 or a2 ∈ A =⇒ A ∈ Xa2 . Hence Xa3 ⊂ Xa1 ∪Xa2 , so Xa1 ∪Xa2 = Xa3 .

Finally, as we have shown that Xa1 ∪Xa2 = Xa1◦a2 and that a1 6= a2 =⇒ Xa1 6= Xa2 , it follows

that Xa1 ∪Xa2 = Xa3 must imply a1 ◦ a2 = a3. ◦

Proof of Proposition 2. Suppose (A,B) is a finite, self-recording learning rule satisfying A.3,

A.4, A.5, and A.6. By the proof of Theorem 1, A satisfies the cancellation property. For any a ∈ A,

by finiteness there exist k, j ≥ 1 such that ak = ak+j , so

ak ◦ aj = ak ◦ a0,

which by the cancellation property implies aj = a0, so

aj−1 ◦ a = a ◦ aj−1 = a0,

so aj−1 = a−1. This makes A a finite, Abelian group. By the Fundamental Theorem of Finitely

Generated Abelian Groups, A ∼= Zp1×· · ·×Zpk . Moreover, as (A,B) is pluralistic, k ≥ 2. If (A,B)

is a finite, self-recording learning rule with A ∼= Zp1 × · · · × Zpk , k ≥ 2, it is readily verified that it

satisfies axioms (A.3,4,5,6). ◦

46



Proof of Theorem 2. We begin by establishing the following lemma.

Lemma. Let γ be an additive agreement function on A. Then

(a) γ extends uniquely to an additive agreement function γ∗ : A∗ ×A∗ −→ R.

(b) γ identifies A: if γ(a1, a) = γ(a2, a) for all a ∈ A, then a1 = a2.

To prove statement (a), we first show that γ admits an extension to A+ ×A+ −→ R. Define

γ+(a1, a2) =


γ(a1, a2) if a1, a2 ∈ A or a1, a2 /∈ A

−γ(a1, a2) if a1 ∈ A; a2 /∈ A or a2 ∈ A; a1 /∈ A.

Symmetry of γ+ is clear from inspection and additivity follows from the definition. To show γ+ is

self-positive, suppose there were a ∈ A+ such that γ(a, a) ≤ 0. Any a ∈ A+ can be expressed as the

composition an element in A and an inverse of some element: a = a1 ◦ (−a2) for some a1, a2 ∈ A.

If γ+ were not self-positive, we would have γ(a, a) ≤ 0 for some a 6= a0, but then this would imply

γ+(a1 ◦ (−a2), a1 ◦ (−a2)) = γ(a1, a1) + γ(a2, a2)− 2γ(a1, a2) ≤ 0,

a violation of the positive definiteness of γ on A itself. This verifies the extension to A+.

Now consider A∗. Let {āi}d(A)i=1 be a basis for A∗ contained in the image of the embedding

f(A) ⊂ A∗. Then for all a1 =
∑d(A)

i=1 qi(a1)āi ∈ A∗ and a2 =
∑d(A)

i=1 qi(a2)āi ∈ A∗, define

γ∗(a1, a2) =

d(A)∑
i,j=1

qi(a1) · qj(a2) · γ(f−1(āi), f
−1(āj)).

We show γ∗ is indeed an additive agreement function. Symmetry is clear from inspection and addi-

tivity follows from the definition. To show self-positivity, we note that any violation of self-positivity

would imply a corresponding violation of self-positivity of γ+: if there were a =
∑d(A)

i=1 qi(a)āi ∈ A∗,

a 6= a0 such that γ∗(a, a) ≤ 0, then, denoting C ≡ g. c.d.i=1,...,d(A){qi(a)},17 it follows

γ∗(Ca,Ca) =

d(A)∑
i,j=1

Cqi(a) · Cqj(a)︸ ︷︷ ︸
∈Z

·γ∗(āi, āj) = γ+(Ca,Ca) ≤ 0.

Therefore γ∗ must be self-positive. Finally we consider uniqueness. Suppose that γ∗1 and γ∗2 are

two extensions of γ to A∗. If γ∗1 and γ∗2 are distinct, then it must be that γ∗1(ā1, ā2) 6= γ∗2(ā1, ā2) for

17Recall that even if d(A) =∞, qi = 0 for all but finitely many i, so C remains well defined.
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some basis elements ā1, ā2 ∈ A∗, but this contradicts the fact that, as they are extensions, it must

be that γ∗1(ā1, ā2) = γ(f−1(ā1), f
−1(ā2)) = γ∗2(ā1, ā2), where f : A −→ A∗. Conclude that γ∗1 = γ∗2 .

This proves statement (a).

To show statement (b), suppose that a1, a2 ∈ A are such that γ(a1, a3) = γ(a2, a3) for all

a3 ∈ A. Then by additivity

γ(a2 − a1, a2 − a1) = γ(a2, a2) + γ(a1, a1)− 2γ(a1, a2)

= γ(a1, a2) + γ(a1, a2)− 2γ(a1, a2) = 0,

so by self-positivity a2 − a1 = a0, and hence a1 = a2. This finishes the proof of the lemma.

Now, suppose (A,B) is a Virtual Bayesian. By Theorem 1, it satisfies (A.1,2,3), and by

the proof of Theorem 1 there exists an essential embedding f : A −→ A∗ for some countable

dimensional rational vector space A∗. Let (āi)
d(A)
i=1 be a basis for A∗, so each a ∈ A∗ is of the form

a =
∑d(A)

i=1 qi(a)āi. We can easily define an additive agreement function on A∗ by treating the basis

elements as mutually orthogonal. Let

γ∗(a1, a2) ≡
d(A)∑
i=1

qi(a1) · qi(a2).

The symmetry condition γ∗(a1, a2) = γ∗(a2, a1) holds by inspection. Additivity follows as

γ∗(a1 ◦ a2, a) =

d(A)∑
i=1

qi(a1 ◦ a2) · qi(a)

=

d(A)∑
i=1

(qi(a1) + qi(a2)) · qi(a)

=

d(A)∑
i=1

qi(a1) · qi(a) +

d(A)∑
i=1

qi(a2) · qi(a) = γ∗(a1, a) + γ∗(a2, a).

As A∗ is invertible, to demonstrate positive-definiteness it suffices to verify that every argument

a ∈ A∗, a 6= a0, has positive self-agreement. As a 6= a0, there must exist some i∗ such that

qi∗(a) 6= 0. Then

γ∗(a, a) =

d(A)∑
i=1

qi(a) · qi(a) ≥ qi∗(a)2 > 0.

This proves that γ∗ is an additive agreement function. Let γ be the restriction of γ∗ to A. By the

lemma above, γ is an additive agreement function.
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Finally we complete the other direction of the proof. Let (A,B) be a learning rule satisfying

(A.1,2,3) and equipped with the additive agreement function γ. It suffices to establish that A also

satisfies (A.4,5,6) from Theorem 1. That A satisfies (A.6) is straightforward:

γ(ak, a) = kγ(a, a) 6= γ(a, a) > 0

for all k > 1, so by the fact that γ identifies A (by the lemma above) it follows ak 6= a. Next, A

satisfies (A.5) as a simple consequence of the additivity of γ and the fact that R is commutative:

for all a1, a2, a ∈ A,

γ(a1 ◦ a2, a) = γ(a1, a) + γ(a2, a) = γ(a2, a) + γ(a1, a) = γ(a2 ◦ a1, a),

so by identification a1 ◦ a2 = a2 ◦ a1. Lastly, we verify (A.4) by first establishing that A satisfies

the cancellation property. Suppose a1 ◦ a3 = a2 ◦ a3 for some a1, a2, a3 ∈ A, and let a ∈ A be any

other argument. Then

γ(a1, a) + γ(a3, a) = γ(a1 ◦ a3, a) = γ(a2 ◦ a3, a) = γ(a2, a) + γ(a3, a)

by additivity, which shows γ(a1, a) = γ(a2, a), and therefore by identification it follows a1 = a2,

verifying the cancellation property. Finally we establish that the cancellation property implies

(A.4). Suppose a(b1) = a(b2) for some a ∈ A and b1, b2 ∈ B. By A self-recording under the

bijection g : A −→ B, it follows b1 = g(a1) and b2 = g(a2) for some a1, a2 ∈ A, and therefore

g(a1 ◦ a) = a(g(a1)) = a(b1) = a(b2) = a(g(a2)) = g(a2 ◦ a).

Thus a1 ◦a = a2 ◦a, which by the cancellation property implies a1 = a2, and therefore b1 = g(a1) =

g(a2) = b2. This completes the proof. ◦

49



Proof of Theorem 3.

We start with statement (a). Let γ∗ be the unique extension of γ toA∗ whose existence is guaranteed

by the lemma in the proof of Theorem 2, and let {āi}d(A)i=1 be a countable basis for A∗. Below is an

iterative procedure for defining an embedding the basis of A∗ into Rn, f : {āi}d(A)i=1 −→ Rn, such

that 〈f(āi), f(āj)〉 = γ∗(āi, āj) for all i, j = 1, . . . , d(A). This will then serve as the foundation for

embedding the entire space A −→ A∗ −→ Rn.

The first step is to iteratively construct a maximal ‘linearly independent’ subset {āi}∗I ⊂

{āi}d(A)i=1 . How this relates to linear independence in the true sense of the word will be made clear

as the proof progresses. To define the set of ‘independent’ indices I∗ we first iterate through all of

i = 1, . . . , d(A) and at each step define I∗i to be the provisional set of independent indices through

index i. At each step, define

Σi,i ≡
(
γ(āj , āk)

)
j,k∈I∗i

to be the real-valued |I∗i | × |I∗i | matrix of the pairwise agreement values between the elements of

I∗i . To start, let I∗1 = {1}. For i > 1, first assume that Σi−1,i−1 has been shown to be invertible.

Now define Σi,i−1 ≡
(
γ∗(āi, āj)

)
j∈I∗i−1

to be the |I∗i−1| × 1 dimensional vector of agreement values

between āi and the elements of I∗i−1. Informally, we can think of the value of Σ′i,i−1Σ
−1
i−1,i−1Σi,i−1

as the square of the magnitude of the ‘projection’ of āi onto the span of the elements of I∗i−1. Such

a projected value may not exist in A∗ itself, but the γ∗ values tell us where it ought to lie were

A∗ embedded in Rn, and therefore āi is considered independent from the elements I∗i−1 only if the

magnitude of āi strictly exceeds the magnitude of its ‘projection.’ Formally, if

γ(āi, āi)− Σ′i,i−1Σ
−1
i−1,i−1Σi,i−1 > 0,

then we set I∗i = I∗i−1 ∪ {i}, and otherwise we set I∗i = I∗i−1. Now we show that the assumption

of Σi,i invertible was indeed justified. Note that Σ1,1 is invertible as ā1 6= a0, so by self-positivity,

γ∗(ā1, ā1) > 0. For i > 1, note that we can express Σi,i as a block-symmetric matrix,

Σi,i =

Σi−1,i−1 Σi,i−1

Σ′i,i−1 γ∗(āi, āi)

 ,
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and as such its determinant is given by

|Σi,i| = |Σi−1,i−1| (γ∗(āi, āi)− Σ′i,i−1Σ
−1
i−1,i−1Σi,i−1)︸ ︷︷ ︸

>0

.

Thus Σi,i has positive determinant, and is therefore invertible, so long as Σi−1,i−1 is. Conclude

that Σi,i is invertible for all i ≥ 1. Finally, having defined I∗i for all i ≥ 1, set I∗ ≡
⋃d(A)
i=1 I∗i and

denote n = |I∗|.

Now we embed the ‘linearly independent’ subset {āi}i∈I∗ into Rn. With slight abuse of notation,

relabel I∗ = {1, . . . , n}. Let the standard orthonormal basis vectors of Rn be denoted e1, . . . en,

and denote f : {āi}ni=1 −→ Rn by āi 7−→
∑n

k=1Ci,kek, where the values of Ci,k are defined as

follows. For i = 1, set C1,1 = γ(ā1, ā1)
1/2 and C1,k = 0 for k > 1. For i > 1, extending γ to the

standard inner product requires

〈f(āi), f(āj)〉 =
i∑

k=1

Ci,kCj,k = γ(āi, āj)

for all j ≤ i− 1. Thus
Ci,1

...

Ci,i−1

 =


C1,1 . . . C1,i−1

...
. . .

...

Ci−1,1 . . . Ci−1,i−1


−1

︸ ︷︷ ︸
C−1
i−1


γ(āi, ā1)

...

γ(āi, āi−1)

 .

(Note that by construction Ci−1 is an upper triangular matrix with strictly positive diagonal entries;

it thus has positive determinant and is indeed invertible.) We define Ci,i so that the magnitude of

āi is preserved under f ,

Ci,i =
√
γ(āi, āi)− Σ′i,i−1Σ

−1
i−1,i−1Σi,i−1,

and set Ci,k = 0 for k > i. By constructing f in this manner, we have guaranteed γ∗ is preserved

on I∗.

Now we show that f can extend γ∗ on all of i = 1, . . . , d(A). For any non independent basis

element āi, let Σi,i−1 and Σi−1,i−1 be defined as in the construction of I∗. Now let

(
ci,1 . . . ci,|I∗i−1,i−1|

)′
= Σ−1i−1,i−1Σi,i−1,
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and define f(āi) =
∑

j∈I∗i−1
cijf(āj). We show that for any arbitrary a′ ∈ A∗ it must be the case

that γ∗(āi, a
′) =

∑
j∈I∗i−1

cijγ
∗(āj , a

′), which verifies that f extends γ∗ on the entire basis. To do

this, let (qj)j∈I∗i−1
∈ Q be any arbitrary set of rational coefficients. Then, by the Cauchy-Schwartz

inequality (which is proved for this setting as a lemma at the very end of the proof of the theorem):

γ∗

āi − ∑
j∈I∗i−1

qj āj , a
′

2

≤ γ∗(a′, a′)γ∗
āi − ∑

j∈I∗i−1

qj āj , āi −
∑
j∈I∗i−1

qj āj


= γ∗(a′, a′)

γ∗(āi, āi)− 2
∑
j∈I∗i−1

qjγ
∗(āi, āj) +

∑
j,k∈I∗i−1

qjqkγ
∗(āj , āk)


︸ ︷︷ ︸

δ(q)

.

Note that as qj −→ cij for all j ∈ I∗i−1,

δ(q) −→ γ∗(āi, āi)− 2Σ′i,i−1Σ
−1
i−1,i−1Σi,i−1 + Σ′i,i−1Σ

−1
i−1,i−1Σi−1,i−1Σ

−1
i−1,i−1Σi,i−1 = 0.

Thus

lim
qj−→cij

γ∗(āi, a′)− ∑
j∈I∗i−1

qjγ
∗(āj , a

′)

2

= lim
qj−→cij

γ∗

āi − ∑
j∈I∗i−1

qj āj , a
′

2

≤ lim
qj−→cij

γ∗(a′, a′)δ(q) = 0,

so γ∗(āi, a
′) =

∑
j∈I∗i−1

cijγ
∗(āj , a

′), verifying f extends γ to all of {āi}i=1,...,d(A).

Finally, setting f(a) =
∑d(A)

i=1 qi(a)f(āi) allows for γ to be extended for all of A∗. The restriction

of f to A constitutes the essential embedding described in the theorem statement. This proves

statement (a) except for the uniqueness claim, which is handled below.

Now to show statement (b), suppose f is an essential embedding A −→ Rn. Then γ(a1, a2) =

〈f(a1), f(a2)〉 is an additive agreement function on A. (All three properties easily follow from 〈·, ·〉

being an inner product on Rn). Now we establish the uniqueness claims of (a) and (b). Suppose

f1 : A −→ Rn and f2 : A −→ Rn both extend the same γ on A to 〈·, ·〉 on Rn. As f1 and f2

are essential, there exists bases {e1i }ni=1 and {e2i }ni=1 for Rn contained in the images of f1 and f2.

Define g : Rn −→ Rn by

g :

n∑
i=1

xie
1
i 7−→

n∑
i=1

xif2(f
−1
1 (e1i )).
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As f1 and f2 both preserve γ, it follows that 〈x, y〉 = 〈g(x), g(y)〉 for all x, y ∈ Rn. That is, g is an

orthogonal transformation. Thus the embedding constructed in the proof of part (a) is unique up

to orthogonal transformation, and the γ constructed in the proof of part (b) is unique.

Finally we establish statement (c). Let A be any Virtual Bayesian learning rule of algebraic

dimension d(A). Let fd(A) : A∗ ∼= Qd(A) −→ Rd(A) be the inclusion mapping from the d(A)

dimensional rational vector space to the d(A) dimensional real vector space. Without loss of

generality assume that the standard basis of Rd(A) is contained in f(A∗). This is an essential

embedding. Now, to construct an essential embedding into Rn for n < d(A), first let {xi}d(A)i=1

be the set of ‘mutually irrational’ real numbers as was used in the proof of Theorem 1. Then set

fn : A∗ −→ Rn by

fn

d(A)∑
i=1

qi(a)āi

 =
n∑
i=1

qi(a)fd(A)(āi) +

d(A)∑
i=n+1

qi(a)xi.

This function modifies the inclusion mapping fd(A) by collapsing all dimensions higher than n onto

the first dimension while still preserving additivity. As the dimensionality of Rd(A) is reduced in

the process, fd(A) being essential guarantees that fn is essential as well. This completes the proof.

Lemma. (Cauchy-Schwartz for γ∗ on A∗) γ∗(a1, a2)2 ≤ γ∗(a1, a1) · γ∗(a2, a2) for all a1, a2 ∈ A∗.

Proof. Consider that by positive-definiteness it follows for any a1, a2 ∈ A∗ and q1, q2 ∈ Q that

γ∗(q1a1 − q2a2, q1a1 − q2a2) = q21γ
∗(a1, a1) + q22γ

∗(a2, a2)− 2q1q2γ
∗(a1, a2) ≥ 0.

Let (qk1 ), (qk2 ) ∈ Q be sequences with qk1 −→ γ∗(a1, a1)
−1/2 and qk2 −→ γ∗(a2, a2)

−1/2 as k −→ ∞.

Then, as

γ∗(a1, a2) ≤
1

qk1q
k
2

· 1

2

(
(qk1 )2γ∗(a1, a1) + (qk2 )2γ∗(a2, a2)

)
for all k = 1, 2, . . . , it follows

γ∗(a1, a2) ≤
(

1

γ∗(a1, a1)−1/2 · γ∗(a2, a2)−1/2

)
· 1

2

(
γ∗(a1, a1)

γ∗(a1, a1)
+
γ∗(a2, a2)

γ∗(a2, a2)

)
=
√
γ∗(a1, a1) · γ∗(a2, a2),

and squaring both sides delivers the Cauchy-Schwartz inequality. ◦
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Proof of Proposition 3. The proof proceeds in two steps. We first construct a homeomor-

phism which warps (almost all of) the unit sphere into a region of the unit cube, after which the

connectedness and dimensionality claims in the proposition statement follow straightforwardly.

To deform the sphere, first fix an arbitrary numeraire state x0 ∈ X , enumerate the remaining

states x1, . . . , xn, let (āi)
n
i=1 be a basis for A, and let li ∈ Rn be the log likelihood-ratio with respect

to x0 for argument āi. For each y ∈ Sn−1, where y =
∑d(A)

i=1 ciāi, define

l̂(y) =

d(A)∑
i=1

cili = Ly,

to be the implied log likelihood-ratio at y. By the full-dimensionality assumption, the set (li) is

linearly independent, so L is an invertible matrix. Define S(χ) = {y ∈ S | yi > 0, yi ≥ yj∀j =

1, . . . , n ⇐⇒ xi ∈ χ} to be the subset of directions in which the maximum log likelihood-ratio

states are χ. By inspection, any argument in this region reaches χ. This construction applies only

for x0 /∈ χ, but – as is also done in the rest of the proof – to consider a region corresponding to χ

with x0 ∈ χ, one need only choose an alternative numeraire state.

Note that l̂(y) = (l̂j(y))n−1j=1 is a n−1 dimensional vector, and denote l̂max(y) = maxj=1,...,n−1 lj(y)

to be the maximum of the different non-numeraire states’ log likelihood-ratios. Now let Y ⊂ Sn−1

denote the set of y for which l̂max(y) > 0, the union of all regions S(χ) with x0 /∈ χ. Define the

transformation

ψ : y 7−→ l(y) +
1− lmax(y)

1 + lmax(y)
· (l(y) + 1).

This is the ‘projection’ of from the point (−1,−1, . . . ,−1) through Y onto the cube [−1, 1]n. Let

Z denote ψ(Y). As ψ is continuous and admits the continuous inverse

ψ−1 : z 7−→ L−1
(
z − k(z)

1 + k(z)

)
; k(z) = (n− 1)−1

1 +

n∑
i=1

zi +

√√√√(1 +

n∑
i=1

zi

)2

− (n− 1)

(
−1 +

n∑
i=1

z2i

) ,

it follows that Y and Z are homeomorphic.

The usefulness of the transformation is that ψ carries each region S(χ) to a single hyperface of

the cube:

ψ(S(χ)) = {z ∈ Z | zi = 1⇐⇒ xi ∈ χ, i = 1, . . . , n} .
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Note further that each ψ(S(χ)), as the intersection of a cube hyperface and – as ψ is a projection

of Y from (−1,−1, . . . ,−1) – a convex cone. We can now quite easily prove statements (a-c) about

the ψ−transformed regions lying in Z. Then, as ψ−1 is a homeomorphism, this implies that (a-c)

also hold for the un-transformed regions lying in Y.

First we show ψ(S(χ)), χ 6= {x0}, is itself path-connected. Let z1, z2 ∈ ψ(S(χ)) and consider

the straight-line path [0, 1] −→ Z, α 7−→ (1− α)z1 + αz2. For any i with xi ∈ χ, z1,i = z2,i = 1, so

((1 − α)z1 + αz2)i = (1 − α) + α = 1; for any i with xi /∈ χ, z1,i, z2,i < 1, so ((1 − α)z1 + αz2)i <

(1−α)+α = 1. This shows the entire path is contained in ψ(S(χ)), so the region is path-connected.

Finally, to establish S({x0}) is path-connected, simply choose another numeraire state x′0 6= x0 and

repeat the above argument.

Next, suppose χ1 ⊂ χ2, x0 /∈ χ1, are neighboring. Let zj ∈ ψ(S(χj)), j = 1, 2, be defined by

zj,i =


1 if xi ∈ χj

1 + ε otherwise,

where ε > 0 is sufficiently small that zj ∈ ψ(S(χj)), j = 1, 2. Then define the path [0, 1] −→ Z,

α 7−→ (1 − α)z1 + αz2 as before. For α < 1, ((1 − α)z1 + αz2)i = 1 if and only if xi ∈ χ1; for

α = 1, ((1− α)z1 + αz2)i = 1 if and only if xi ∈ χ2. This shows the region ψ(S(χ1)) ∪ ψ(S(χ2)) =

ψ(S(χ1) ∪ S(χ2)) is path-connected. To cover the case of x0 ∈ χ1 ⊂ χ2, simply choose another

numeraire x′0 /∈ χ2 and repeat the argument.

Now suppose χ1 and χ2 are not neighboring, so there exists xi ∈ χ1 \χ2 and xj ∈ χ2 \χ1. (For

this portion the ψ transformation proves more hindrance than help, so we temporarily put it aside.)

Let f : [0, 1] −→ Y be any path from y1 ∈ S(χ1) to y2 ∈ S(χ2). By the choice of i and j it follows

f(0)i−f(0)j > 0 and f(1)i−f(1)j < 0, so by the intermediate value theorem, there exists α ∈ (0, 1)

such that f(α)i = f(α)j , meaning f(α) lies neither in S(χ1) nor S(χ2). Thus S(χ1) ∪ S(χ2) is not

path-connected. Conclude χ1 and χ2 are neighboring if and only if S(χ1)∪S(χ2) is path-connected.

Finally we establish the dimensionality of ψ(S(χ)). For the sake of notation, let χ = {x1, . . . , xm}.

Any z ∈ ψ(S(χ)) is of the form z = (1, . . . , 1, zm+1, . . . , zm+(n−m)), where zk < 1, k = 1, . . . , n−m.

Let ε̄ > 0 be small enough that the (square) ball

Bε(z) ≡
{

(1, . . . , 1, zm+1 + ε1, . . . , zm+(n−m) + εn−m) | |εk| < ε̄, k = 1, . . . , n−m
}
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is contained in ψ(S(χ)). The mapping

(1, . . . , 1, zm+1 + ε1, . . . , zm+(n−m) + εn−m) 7−→
(

ε1
ε̄2 − ε21

, . . . ,
εn−m

ε̄2 − ε2n−m

)
is a homeomorphism Bε(z) −→ Rn−m, so ψ(S(χ)), and therefore S(χ) also, is a manifold of

dimension n−m = |X | − |χ| − 1. ◦
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