
Dynamic Contracting with Flexible

Monitoring∗

Liang Dai † Yenan Wang ‡ Ming Yang §

February 2022

Abstract

We study a principal’s joint design of optimal monitoring and com-

pensation schemes to incentivize an agent by incorporating information

design into a dynamic contracting framework. The principal can flexi-

bly allocate her limited monitoring capacity between seeking evidence

that confirms or contradicts the agent’s effort, as the basis for reward

or punishment. When the agent’s continuation value is low, the princi-

pal seeks only confirmatory evidence. When it exceeds a threshold, the

principal seeks mainly contradictory evidence. Importantly, the agent’s

effort is perpetuated if and only if he is suffi ciently productive.
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1 Introduction

An employer generally faces two interdependent problems when designing an

employment contract. First, the contract needs to specify performance in-

dicators that correspond to different stages of the employee’s career (i.e., a

monitoring scheme). Second, the reward or punishment corresponding to

each realization of the stipulated performance indicators (i.e., a compensa-

tion scheme based on a given monitoring scheme) must also be specified. This

motivates the dynamic moral hazard problem studied in this paper, in which

a principal (“she”), with limited monitoring capacity, jointly designs a moni-

toring scheme and a subsequent compensation scheme for the agent (“he”), to

motivate him to take her desired action.

The resolution of this problem calls for a non-trivial combination of two

major strands of the literature on incentive provision. One is information

design, which investigates how a principal can optimally provide information

about an exogenous state of nature to incentivize an agent, taking as given their

payoffs as exogenous functions of the state and the agent’s action. Instead,

our monitoring scheme directly reveals information about the agent’s hidden

action, which is endogenously shaped by the monitoring scheme through the

jointly designed compensation scheme.

The other strand of the literature is contract design, which studies a princi-

pal’s optimal design of a compensation scheme given an exogenous monitoring

scheme.1 In our model, the compensation scheme is instead jointly designed

with the monitoring scheme. Non-trivial interactions arise between them: The

more monitoring capacity allocated to seeking a certain type of evidence, the

more likely such evidence would arrive, and hence the more effective is the

reward (punishment) associated with such evidence in incentivizing the agent.

This in turn makes it more worthwhile to seek such evidence in the first place,

or vice versa. Moreover, allowing for joint design leads to new implications

relative to the standard contract-design literature. Specifically, with a large

1That is, it either assumes a single exogenous performance indicator, or focuses on how
much monitoring capacity should be devoted to a given performance indicator.
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monitoring capacity, it is possible that the principal optimally perpetuates

the agent’s effort.2 We believe that this paper is among the first to explore

the combination of information and dynamic contract design, which engenders

non-trivial interaction with novel implications for incentive provision.

The flexibility in the principal’s information design is modeled as that in

the allocation of her limited monitoring capacity to searching for two polar

types of evidence about whether the agent is working.3’4 A “carrot-based

search”(“C-search”hereafter) generates confirmatory evidence of the agent’s

effort (“C-evidence”) that emerges only if the agent has worked, while a “stick-

based search” (“S-search”hereafter) generates contradictory evidence of the

agent’s effort (“S-evidence”) that emerges only if the agent has shirked. By

and large, any relevant monitoring scheme in this environment can be under-

stood as a combination of C-search and S-search. The flexibility of allocating

limited monitoring capacity to searching for two types of evidence solves a

technical dilemma: it renders the information design meaningful while it re-

tains flexibility in the design and guarantees tractability.

The contracting aspects of the model are standard. The principal’s project

requires the agent’s operation. The agent is less patient than the principal and

can work or shirk at each instant. From the perspectives of both the principal

and social welfare, it is optimal for the agent to work, but the agent enjoys

a private benefit from shirking. Besides determining how much to reward or

punish the agent when each piece of evidence arrives, the principal can also

terminate the project at any time, which is socially ineffi cient.

2To the best of our knowledge, dynamic contracting models rarely yield a perpetual
contractual relationship as optimum, with the exception of Sannikov (2008). Yet, even in
that optimum, the agent no longer exerts effort once his continuation value reaches the
payout boundary.

3This can be understood as specifying in employment contracts the corresponding KPIs
for employees differing in seniority and past performance, which is commonly seen in prac-
tice. Che and Mierendorff (2019) adopt the same monitoring setting in a single individual’s
decision problem.

4From the modeling perspective, unlike information-design models, the principal learns
about the agent’s hidden actions from the monitoring scheme designed by herself. Thus,
constraints on her ability to acquire information are necessary to make this problem non-
trivial: otherwise, it is simply optimal for her to choose to be perfectly informed.
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Our model brings to light two issues novel in the literature. First, we

identify a key tradeoff between seeking confirmatory and contradictory evi-

dence as a means to incentivize the agent. C-search generates greater varia-

tion in the agent’s continuation value than S-search. This is because, given

that the agent indeed works, no S-evidence exists, and thus no adjustment to

the agent’s continuation value is required; while C-evidence does emerge in

equilibrium, which necessarily involves a reward upon its receipt (“carrots”

hereafter) and the downward adjustment of the agent’s continuation value in

the absence of C-evidence. In this sense, C-search is less advantageous to the

principal, who is effectively risk-averse due to the ineffi ciency of early termi-

nation. On the other hand, for S-search alone to be effective, the agent’s stake

in the project (continuation value) must be high, whereas the effectiveness of

C-search does not depend on the agent’s continuation value. Moreover, to

guarantee the effectiveness of S-search, a high continuation value for the agent

must be maintained, which involves high interest expenditure for the principal.

This tradeoff shapes the optimal incentive scheme.

Consequently, when the agent’s continuation value is low, the principal

allocates all her monitoring capacity to C-search. Instead of paying the agent

immediately upon receiving C-evidence, the principal adds the whole reward to

the agent’s continuation value to build a buffer against ineffi cient termination

and to make S-search effective in the future. When the agent’s continuation

value becomes higher, the optimal incentive scheme features a “phase change.”

That is, instead of the carrot-only mode, the principal now relies mainly on S-

search, and sets the penalty for observing S-evidence (“sticks”hereafter) to its

maximum: confiscation of the entire stake promised to the agent, resulting in

termination of the project. C-search is still used but is limited to the minimum,

and the associated reward is decreasing in the agent’s continuation value. The

standard incentive versus interest tradeoff implies that payments to the agent

are incurred only when the agent’s continuation value grows beyond a payout

boundary.

The second issue novel to the literature concerns perpetuating the agent’s

effort with a permanent position. Specifically, the flexibility of combining C-
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search with S-search offers the principal the opportunity to first build up the

agent’s stake (i.e., his continuation value) with C-search, and then perpetuate

his effort mainly with S-search to avoid ineffi cient termination. Is perpetuating

the agent’s effort optimal? We show that the answer is affi rmative if and only if

the latent benefit from the agent’s effort is large. Moreover, when perpetuation

of the agent’s effort is optimal, the value function is convex in the vicinity of

the (absorbing) payout boundary when public randomization is not allowed.

This is due to a new economic force in addition to the standard incentive

versus interest tradeoff. That is, the higher the agent’s continuation value, not

only is it the less likely to reach the (ineffi cient) termination boundary as in

existing models, it is also more likely to reach perpetuation with no ineffi cient

termination. The latter fact makes the marginal benefit of accumulating the

agent’s continuation value increasing instead of decreasing in the continuation

value in the vicinity of the payout boundary.

Our model offers practical suggestions for the design of incentive schemes,

which turn out to be largely consistent with the real practice in academia.

First, junior employees are incentivized mainly based on evidence that con-

firms their effort, while senior employees are incentivized mainly based on

evidence that refutes theirs. This is consistent with the fact that publication

matters more for junior faculty than for senior faculty. Second, permanent

positions are offered only for employees with suffi ciently large potential syn-

ergy. This is largely consistent with the fact that for top research universities,

only research faculty can be on the tenure track, but this pattern is less clear

for teaching schools. Similar pattern also applies to the viability of partner-

ship in accounting, consulting and law firms. Third, except for those hired

permanently, in the absence of evidence confirming their contribution, em-

ployees become more prone to unemployment, and the more so if they are less

senior. Lastly, instead of fixed payments only, compensation for employees

hired permanently should still involve carrots. This is consistent with the fact

that tenured professors are still entitled to wage increase and promotions for

post-tenure achievements.
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1.1 Literature Review

Our paper is related to three strands of the literature: information design,

dynamic attention allocation and contract design. First, our paper connects

to the information design literature. Standard information design models, e.g.,

Kamenica and Gentzkow (2011),5 Ely (2017), Smolin (2017), Ely and Szyd-

lowski (2020), Ball (2019), Orlov et al. (2020) and Che et al. (2021), consider

situations where the principal designs an information scheme for an exogenous

payoff-relevant state of nature to maximize the chance that the agent takes the

principal’s desired actions. In contrast, in our model, the information scheme is

for the agent’s hidden actions, where the latter is endogenously shaped by the

former through the jointly designed compensation scheme. Recent work also

explores the design of monitoring schemes in moral hazard settings. Varas

et al. (2020) consider a setting in which the principal designs a schedule of

costly inspections of the project quality affected by the agent’s hidden actions,

but they abstract from the design of a compensation scheme which we explore.

Hoffmann et al. (2020) and Georgiadis and Szentes (2020) consider contracting

problems where the impatient agent takes only one hidden action at the very

beginning, and the principal designs a deferred compensation scheme facing

the tradeoff between additional information about that action before payment

and costly payment deference.6 Compared with these models, our setup is

richer in three aspects. First, our model allows the agent to act and payments

to occur at every instant, as in a standard dynamic contracting model. Sec-

ond, besides how much attention to devote to a single exogenous information

source, our principal can determine the attention allocation between multiple

information sources. Lastly and most importantly, our main focus is exactly

on the rich interaction between the first two aspects.

Our modeling approach for the principal’s flexibility in information de-

sign is inspired by the literature on dynamic attention allocation. Che and

5Methodologically, Kamenica and Gentzkow (2011) adopt the concavification approach
in Aumann et al. (1995).

6Li and Yang (2019) consider a static contracting problem where the cost of acquiring
information is related to the accuracy of the information.
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Mierendorff (2019) consider a decision maker’s dynamic attention allocation

between seeking confirmatory and contradictory evidence for one of the two

states of nature. Mayskaya (2020) applies the modeling approach of Che and

Mierendorff (2019) to study a decision maker’s attention allocation between

multiple dimensions of states of nature. Nikandrova and Pancs (2018) apply

the same modeling approach to an investor’s attention allocation between two

projects to seek confirmatory evidence of their profitability. All these papers

study a single individual’s decision problems. Instead, we study contracting

problems between strategic individuals. Kuvalekar and Ravi (2019) consider

a principal’s design of a compensation scheme for an agent, who allocates lim-

ited attention between seeking confirmatory and contradictory evidence of a

project’s quality for the principal. Similar to the aforementioned standard dy-

namic information design literature, the fact to be learned in these papers is

exogenous. In our model, the fact to be learned is instead the agent’s hidden

actions, which is endogenous to the principal’s attention allocation through

the jointly designed compensation scheme.

Our paper adopts a standard continuous-time contract design framework,

pioneered by DeMarzo and Sannikov (2006), Biais et al. (2007) and Sannikov

(2008).7 DeMarzo and Sannikov (2006) directly apply the martingale repre-

sentation technique developed in Sannikov (2008) to a continuous-time setup,

while Biais et al. (2007) is based on the continuous-time limit of a discrete-

time model. Early work on dynamic contract design also includes Biais et al.

(2010), featuring an environment where the arrival rate of huge loss can be

reduced by the agent’s effort. Myerson (2015) considers a similar problem

in a political economy framework, where a political leader uses randomized

punishment to motivate governors. In contrast to the discrete losses in Biais

et al. (2010), Sun and Tian (2017) consider discrete revenue. In a setup sim-

ilar to Biais et al. (2010) and Myerson (2015), Chen et al. (2020) model the

principal’s option of monitoring as her ability, at any instant, to enforce the

agent’s effort at an exogenous flow cost, regardless of incentive compatibility.

7Both DeMarzo and Sannikov (2006) and Biais et al. (2007) study continuous-time vari-
ants of the discrete-time dynamic security design model in DeMarzo and Fishman (2007).

7



As discussed in the Introduction, evidence-generating processes are exogenous

in these models. That is, given the agent’s hidden actions, the principal has

no control over how evidence is generated. Based on DeMarzo and Sannikov

(2006), Piskorski and Westerfield (2016) allow the principal to choose the ar-

rival rate of confirmatory evidence of the agent’s profit diversion. Orlov (2018)

considers a situation where the agent relies on the principal’s inspection to in-

fer his past performance, and for each instant the principal can choose the

percentage of projects to inspect. In our model, the principal optimally de-

signs the evidence generating processes jointly with the compensation scheme,

subject to the budget constraint of monitoring capacity. Besides how much

attention to devote to a single exogenous information source, our principal can

determine the attention allocation between multiple information sources. This

leads to novel interaction between monitoring and compensation schemes and

the possibility of optimally perpetuating the agent’s effort mentioned in the

Introduction.

2 The Model

2.1 Setup

Time is continuous and infinite. There is a principal (“she”, designer of a bu-

reaucratic system) and an agent (“he”, a representative offi cer in the system).

Both are risk neutral. The principal has a discount rate r > 0 and unlim-

ited access to capital. The agent has a discount rate ρ > r and is protected

by limited liability; i.e., his cumulative payment from the principal must be

non-negative and non-decreasing over time. The principal owns a project that

requires the agent’s operation, which involves an action at ∈ [0, 1] taken by

the agent. The action can be understood as the level of shirking. If action at
is taken at instant t, in period [t, t+ dt], the agent enjoys a private benefit of

λ · atdt, while the principal’s benefit is z · (1− at) dt > 0. The agent’s outside

option is zero. The principal can terminate the project at any time, and the

project then generates a payoff of zero for both players.
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Here, we interpret z as the latent progress of a project or the reputation of

an entity that is lost without the agent’s due diligence and is not discernible

immediately.8 Therefore, contracts cannot be made contingent on whether z is

accrued.9 We interpret z this way for two reasons. First, it captures the reality,

mentioned in the Introduction, that the agent’s hidden actions are often not

reflected in existing indicators, such as current output, sales or stock prices.

This is because, the outcome of such actions may be realized only in the long

run. For example, the daily practice of offi cers in charge of disease prevention

can hardly be evaluated until an epidemic arrives. A manager focusing on the

long-term development of her firm should not be over-responsive to the firm’s

current sales, output or stock prices. Second, it separates the role of output

as a component of physical payoff from that as a given performance indicator;

the latter having been well studied. This allows us to focus on the principal’s

active monitoring of the agent’s action. For ease of presentation, we hereafter

refer to z as the “synergy”(between principal and agent).

To model the flexibility in the principal’s information design, we assume

that she can freely specify in the contract for each instant how she allocates

her µ units of monitoring capacity between “carrot-based search”(“C-search”)

and “stick-based search”(“S-search”); i.e., to seek one of two types of evidence

as the basis for reward and penalty.10 The receipt of C-evidence confirms the

agent’s effort, while the receipt of S-evidence contradicts it. Specifically, if the

principal allocates a fraction αt ∈ [0, 1] of her µ units of monitoring capacity

to seeking S-evidence and the remaining 1 − αt to C-evidence, she receives

S-evidence at the arrival rate µ · αt · at, and C-evidence at the arrival rate
µ · (1− αt) · (1− at). Hence, the agent’s chance of being caught shirking is

8Alternatively, one can interpret the principal and agent (instead with discount rates
0 and ρ − r, respectively) as playing a repeated game that ends exogenously with arrival
rate r, when the principal receives her whole payoff from the game. Accordingly, z can be
understood as the instantaneous contribution to that payoff.

9For similar reasons, the assumption that flow payoffs are unobservable until the end of
players’interaction are also made in many models of repeated games or information design,
such as Aumann et al. (1995), Orlov (2018), Ball (2019) and Ely and Szydlowski (2020).
10The capacity µ in our model should be understood generically as resources available to

the principal for monitoring the agent. In reality, this corresponds to the total budget for
hiring a quality control team, installing call recorders or surveillance cameras, etc.
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proportional to at, the level of shirking, and µ · αt, the capacity allocated to
monitoring shirking. Intuitively, if the agent does not shirk, no evidence of

shirking exists, and the principal cannot find S-evidence no matter how much

capacity is allocated to seeking it; if the principal allocates no capacity to

monitor shirking, she receives no S-evidence regardless of the agent’s level of

shirking. The arrival rate of C-evidence can be interpreted similarly. More

specifically, the cumulative number of arrivals of S-evidence, Y1, and that of

C-evidence, Y0, satisfy

dY1,t =

{
1, with probability µαtatdt
0, otherwise

,

and

dY0,t =

{
1, with probability µ (1− αt) (1− at) dt
0, otherwise

,

respectively. To save the notation, we write Y = (Y0, Y1).

By and large, any relevant monitoring scheme in this environment can be

understood as a combination of C-search and S-search. Inspired by Che and

Mierendorff (2019), the allocation of monitoring capacity between two extreme

information sources maintain both flexibility and tractability in the design of

the monitoring scheme.

As standard in the dynamic contracting literature, we assume that z > λ >

0; i.e., z is large enough so that shirking (action 1) is ineffi cient even taking

into account the agent’s private benefit. This assumption ensures that it is

optimal for the principal to always implement at = 0, and allows us to focus on

the interaction between the monitoring scheme and the agent’s compensation

scheme. In addition, we assume that r < ρ < µ; i.e., the principal is more

patient than the agent,11 and that the principal has enough capacity to monitor

the agent.

A contractX = (a, α, I, τ) specifies the recommended action a taken by the

11As in DeMarzo and Sannikov (2006), this assumption is made for two reasons. First, it
captures the fact that a firm usually has a greater risk-bearing capacity than an individual
employee. Second, it rules out the possibility that the principal indefinitely postpones
payments to the agent, which is neither interesting nor realistic.
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agent, the monitoring scheme α,12 the cumulative payment I to the agent and

the time τ of project termination as functions of the history of past evidence.

Given the contract X and an action process a, the expected discounted utility

of the agent is

Ea
[∫ τ

0

e−ρt (dIt + λatdt)

]
,

and that of the principal is

Ea
[∫ τ

0

e−rt (z (1− at) dt− dIt)
]
. (1)

For notational convenience, we hereafter suppress all time subscripts when no

confusion can be caused.

While contracts involving public randomization are of theoretical interest,

they are typically not practical. Therefore, we relegate the discussion of public

randomization to Section 6.1 of the Appendix, and consider only deterministic

contracts for the rest of this paper unless otherwise mentioned.

2.2 Incentive Compatibility and Limited Liability

To characterize the incentive compatibility condition, we employ martingale

techniques similar to those introduced by Sannikov (2008). When choosing his

action at time t, the agent considers how it will affect his continuation value,

defined as

wt (X, a) = Ea
[∫ τ

t

e−ρu (dIu + λaudu)
∣∣Ft] 1{t<τ},

12By including the monitoring scheme α (i.e., the allocation of capacity) in the contract,
we are studying the benchmark in which evaluation of the agent’s performance changes
focus as the contractual relationship develops, and this is explicitly stated at the outset
and strictly implemented. This benchmark is realistic, especially for firms, organizations
or bureaucratic systems that specify the details of their routine monitoring of employees
in different positions with different seniority in contracts, charters or codes of conduct.
Situations where the principal cannot commit to a monitoring scheme are also realistic in
other circumstances, but are beyond the scope of this paper.
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where {Ft} is the filtration generated by Y , and τ is the time when the project
is terminated. Since the agent’s outside option is zero, promise keeping implies

that the termination time τ must be the first time when his continuation value

w falls to zero. Martingale representation theorem yields the following lemma.

Lemma 2.1 For any contract X that implements at = 0 for all t ≤ τ , there

exist predictable processes (β0, β1) such that wt evolves before termination

(t ≤ τ) as

dwt = ρwtdt− dIt + β0,t [dY0,t − µ (1− αt) dt]− β1,tdY1,t . (2)

The contract is incentive compatible if and only if

µαtβ1,t + µ(1− αt)β0,t ≥ λ . (IC)

And the contract satisfies the limited liability constraint of the agent if and

only if

β1,t ≤ wt (3)

and

β0,t + wt ≥ 0 . (4)

Proofs of this lemma and of all the other lemmas and propositions are

relegated to the Appendix unless otherwise specified. Intuitively, β0 refers to

the agent’s reward upon receipt of C-evidence, and β1 refers to his punishment

upon receipt of S-evidence. Hereafter, we refer to β0 as “carrots,”and β1 as

“sticks.”(IC) highlights our model’s key feature. Its left-hand side consists of

the instruments, C-search and S-search, that the principal uses to incentivize

the agent, which together with the associated carrots and sticks, must sum to

at least λ, the agent’s private benefit from shirking. The principal can choose

not only the allocation of her monitoring capacity α, but also β0 and β1, the

carrots and sticks.

Two limited liability constraints in Lemma 2.1 restrict the magnitudes of

reward and punishment. (3) requires that sticks should be no more than the
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whole stake promised to the agent. (4) says that carrots plus the stake already

promised to the agent must be non-negative, which will be shown slack.

As a preview of our results, after establishing some basic properties of the

optimal contract in Section 3, Section 4.1 shows that in the optimal contract,

the principal resorts only to carrots when the agent’s continuation value w

is low, and mainly resorts to sticks when w is high; i.e., the flexibility in

capacity allocation is always valuable to her. Section 4.2 further shows that

if the synergy z is large enough, the optimal contract involves the possibility

of perpetuating the agent’s effort (i.e., the payout boundary is an absorbing

state), a feature novel in the dynamic contracting literature.

3 Basic Properties of the Optimal Contract

This section provides a heuristic derivation of some basic properties of the

optimal contract. Proposition 3.1 at the end of this section verifies that this

contract is indeed optimal. Notationally, superscript * hereafter denotes items

in the optimal contract. First, our assumption z > λ > 0 implies that the

optimal contract never induces shirking;13 i.e.,

Property 1 a∗ (w) = 0 for all w.

Let B(w) denote the principal’s value function. We have the Hamilton—

Jacobi—Bellman (HJB) equation in the continuation region (t < τ)

rB (w) = max
α,β0,β1

z+(1− α)µ [B (w + β0)−B (w)]+[ρw − β0µ (1− α)]B
′
(w) ,

(5)
13In our formal derivation in the Appendix, we first assume that the optimal contract

satisfies Property 1 when deriving its other properties, and verify this assumption at the
end. This property differs from a setup featuring Brownian motions (e.g., Proposition 8
in DeMarzo and Sannikov (2006)), where it is optimal to induce the agent’s effort only if
the surplus generated is significantly greater than the agent’s private benefit from shirk-
ing. Implementation of effort requires the agent to be exposed to the adverse effect of the
quadratic variation of his continuation value. Such exposure has a first-order impact if his
continuation value follows a Brownian motion. In our setup, the agent’s continuation value
follows a (generalized) Poisson process, and such exposure has no first-order impact. This
is evident from the fact that V ′′ does not enter our HJB equation (9).
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subject to

µαβ1 + µ(1− α)β0 ≥ λ ; (IC)

β1 ≤ w ; (6)

β0 + w ≥ 0 ; (7)

and

α ∈ [0, 1] . (8)

The left-hand side of (5) is the principal’s expected flow of value. The

first term on the right-hand side, z, is the flow of synergy. The second term

is due to the carrots β0 given to the agent if C-evidence is obtained, which

happens with probability (1− α)µdt conditional on a = 0 being implemented

from t to t + dt. The third term arises from the drift of w, where ρw is the

rate at which interest accrues, and −β0µ(1 − α) is the flip side of carrots

due to promise keeping: if there is no C-evidence, the principal reduces the

agent’s continuation value at this rate to balance against carrots, so that the

continuation value wt net of a drift ρwtdt is a martingale, and thus the contract

does deliver wt in expectation to the agent.

Note that no term in (5) corresponds to sticks (i.e., no term containing

β1), because S-evidence is never obtained if the agent follows the contract

and takes a = 0 at each instant. In this sense, sticks serve only as an off-

equilibrium threat. Therefore, the limited liability constraint (6) must be

binding: If S-evidence were obtained, the principal would maximize the penalty

by terminating the project and confiscating the agent’s whole stake w.

Property 2 β∗1 (w) = w.

Instead of B (w), it is equivalent but more convenient to continue our

analysis based on V (w) = B(w) +w, the sum of the principal’s value function

and the agent’s continuation value, or their joint surplus. (5) then becomes

rV (w) = max
α,β0

z+[ρw−β0µ(1−α)]V ′ (w)+(1−α)µ[V (w+β0)−V (w)]−(ρ−r)w .
(9)
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Next, since r < ρ, we guess and later verify that there is a payout boundary

w̄ as standard in existing dynamic contracting models, e.g., DeMarzo and

Sannikov (2006) and Biais et al. (2010). If w > w̄, the principal will simply pay

dI = w − w̄ immediately and reduce the continuation value to w̄. Otherwise,
the principal will use backloading; i.e., wait for the agent’s continuation value w

to increase instead of paying him immediately (i.e., dI = 0). By construction,

V (w̄+β0) = V (w̄), so that when w = w̄, the third term on the right-hand side

of (9) equals zero, and V ′ (w̄) = 0 if it exists. If V ′ (w̄) does not exist; i.e., the

left and right derivatives at w̄ are not equal, (9) is not defined at w = w̄, so

the coeffi cient in front of V
′
(w), which is the drift of the continuation value,

must be zero at w̄. As a result, the second term in (9) must also equal zero

when w = w̄, so that

V (w̄) =
z

r
− (ρ− r)w̄

r
(10)

and

B(w̄) =
z

r
− ρ

r
w̄ . (11)

Moreover, we must have w̄ ≤ λ
µ
. If not, then at any continuation value

w ∈
(
λ
µ
, w̄
)
, the principal could always incentivize the agent with the following

contract: paying out w − λ
µ
immediately to reduce the agent’s continuation

value to λ
µ
; setting α = 1− ρ

µ
, β0 = β1 = λ

µ
, so that (IC) is binding, and that

β0µ(1−α) = ρλ
µ
; i.e., the drift of the agent’s continuation value is zero.14 The

principal’s payoff from this new contract is

z

r
− ρ

r
· λ
µ
− (w̄ − λ

µ
) >

z

r
− ρ

r
w̄ = B(w̄) ,

where the inequality follows w̄ > λ
µ
, contradicting the optimality of B(w̄). As

a standard result in this literature, the optimality of B implies B′ (w) > −1

for w < w̄ and B′ (w) = −1 for w > w̄. Then by definition, V ′ (w) > 0 for

w < w̄ and V ′ (w) = 0 for w > w̄. We summarize these results in the following

property.

14More precisely, under this contract, once w = λ
µ , the continuation value never drifts

away and the agent receives discrete payments of β0 = λ/µ at the arrival rate ρ forever.
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Property 3 There exists a w̄ ∈ (0, λ/µ] such that i) dI∗ = (w − w̄)+ ; ii) V

is increasing in [0, w̄]; iii) if w ≥ w̄,

V (w) = z/r − (ρ− r)w̄/r ; (12)

and iv) either V ′ (w̄) = 0, or ρw̄ − µ(1 − α∗ (w̄))β∗0 (w̄) = 0, i.e., the drift at

w = w̄ is 0.

Together with Property 2, we have β∗1 (w) = w < w̄ ≤ λ/µ for w < w̄.

Hence, by (IC), sticks alone are not suffi cient to incentivize the agent to work.

Moreover, (IC) and Property 2 imply that wα∗ + β∗0(1 − α∗) ≥ λ/µ, thus

β∗0 (w) ≥ λ/µ ≥ w̄ for w < w̄. This, together with Property 3, implies

Property 4 w + β∗0 ≥ w̄ for all w < w̄.

That is, a single piece of C-evidence suffi ces to make the continuation value

w jump to the payout region [w̄,+∞), so that V (w + β∗0) = V (w̄); i.e., β∗0,

carrots, raises their joint surplus only from V (w) to V (w̄), and the remaining

reward, β∗0− (w̄ − w), is an immediate transfer from the principal to the agent

and has no impact on their joint surplus. Also, the limited liability constraint

(7) slacks as conjectured.

Property 4 simplifies our derivation of the optimal contract, given that the

value function V may not always be concave.15 To see this, note that according

to Property 4, (9) becomes

rV (w) = max
β0,α

z+[ρw − β0µ(1− α)]V
′
(w)+(1− α)µ[V (w̄)−V (w)]−(ρ−r)w ,

(13)

whose right-hand side is always decreasing in β0. This has two important

implications. First, it indicates the advantage of using S-search rather than

C-search, regardless of the concavity of V . In equilibrium, S-evidence is never

obtained, and thus S-search incentivizes the agent without causing variation

in his continuation value w. But if C-search is used (i.e., α < 1), C-evidence is

15This possibility is discussed in Subsection 4.2. We also concavify the value function via
public randomization in Section 6.1 of the Appendix.
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obtained in equilibrium and generates variation in w. Property 4 implies that

effectively, the upward jump in w upon the receipt of C-evidence is always

w̄ − w (after the bonus payment), which is independent of α and β0. But the

magnitude of the downward drift of w in the absence of C-evidence, β0µ(1−α),

is increasing in both the capacity allocated to C-search, µ(1 − α), and the

associated carrots, β0. Therefore, the more the principal resorts to C-search,

the more adverse variation in w is generated, making it detrimental relative

to sticks.

Second, the fact that the right-hand side of (13) is decreasing in β0 implies

a binding (IC) in the no-payment region [0, w̄]; i.e.,

Property 5 µ [α∗w + (1− α∗)β∗0] = λ.

The incentive compatibility constraint (IC) plays a central role in our

model. Property 5 establishes that the combination of C-search and S-search

should be just enough to overcome the agent’s private benefit from shirking.

Note that the principal still has a degree of freedom to adjust the sensitivities

of the agent’s continuation value to evidence reflecting his actions. In the no-

payment region, we have dI = 0 by definition and V (w + β0) = V (w̄) from

Property 3. By Property 5, the HJB equation (13) becomes

rV (w) = max
α

z−(ρ−r)w+(1−α)µ[V (w̄)−V (w)]+(ρw−λ+µαw)V
′
(w). (14)

As mentioned in the literature review, this contrasts with the counterpart in

models without choice among multiple performance indicators; e.g., in San-

nikov (2008) and Biais et al. (2010), where there is no such degree of freedom.

Notice that α affects the right-hand side of (14) through the last two terms.

As explained before, the third term reflects its impact through carrots; i.e.,

raising α reduces the arrival rate of C-evidence and that of the contingent

increment V (w̄)−V (w) in their joint surplus. This in turn reduces the expected

instantaneous joint surplus (1−α)µ[V (w̄)−V (w)]. The impact is linear in α,

and the marginal impact is −µ[V (w̄)− V (w)], whose absolute value decreases

monotonically with w.
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The last term on the right-hand side of (14) reflects the impact of α through

the flip side of carrots; i.e., a lower arrival rate of C-evidence also reduces the

downward drift of the agent’s continuation value w due to promise keeping.16

This increases the expected instantaneous joint surplus (ρw−λ+µαw)V
′
(w).

This effect is also linear in α, with a marginal impact µwV
′
(w), which could

be non-monotonic in w. Since the total impact of α is linear, with marginal

impact

µ
[
wV

′
(w) + V (w)− V (w̄)

]
, (15)

the principal would choose α∗ = 0 if wV
′
(w) + V (w)− V (w̄) < 0, and α∗ = 1

if wV
′
(w) + V (w)− V (w̄) > 0.

Properties 2 and 5 imply

µ (1− α∗) β∗0 = λ− µα∗w. (16)

Since w ≤ w̄ ≤ λ/µ, we have ∂β∗0
∂α∗ = λ−µw

µ(1−α∗)2 > 0, and thus (16) highlights the

substitution between the capacity allocated to C-search, 1− α, and the asso-

ciated carrots, β0, which is peculiar to our setup with flexibility in monitoring

design. The more capacity allocated to C-search, the higher is the probability

of obtaining C-evidence that confirms the agent’s effort, and thus less reward is

needed to incentivize the agent. Conversely, higher carrots provide a stronger

incentive for the agent, and thus reduce the principal’s reliance on obtaining

C-evidence, enabling her to use S-search.

If α∗ = 0; i.e., incentive is completely provided through carrots, (16) yields

β∗0 = λ/µ. However, while the value function (14) is well-behaved when α∗ = 1,

a singularity arises in the original optimization problem (13): by (16), we have

β∗0 →∞ as α∗ → 1. Intuitively, if α∗ (w) = 1 in (14), it is optimal for the prin-

cipal to rely on sticks as much as possible when the agent’s continuation value

is w. Yet, since w ≤ w̄ ≤ λ/µ (by Property 3), if α = 1, Property 5 fails; i.e.,

sticks do not suffi ce to incentivize the agent, so an additional incentive from

carrots is necessary. In addition, in this no-payment region, α = 1 further pre-

16Note that ρw− λ+µαw ≤ 0 since w̄ ≤ λ
ρ+µᾱ . Raising α thus reduces the magnitude of

the downward drift.
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cludes carrots and thus the rise of w, rendering the principal unable to keep the

promise to deliver w to the agent. But if α < 1, the principal can always reduce

the expected carrot payment, µ (1− α) β0 = λ − αµw, by making α as close
to 1 as possible (i.e., reducing the probability that C-evidence arrives when

the agent works, µ (1− α), since the right-hand side is decreasing in α) while

raising the bonus upon its arrival, β0, creating an open-set problem for finding

the optimal α and the associated β0. That is why β
∗
0 →∞ as α∗ → 1 in (16).

Since as α → 1, µ (1− α) β0 → λ − µw, which is well defined, if we view the
optimal expected carrot payment µ (1− α∗) β∗0 as a single variable defined by
(16), the resulting value function (14) is well-behaved when its optimal control

α∗ = 1. Thus, this open-set problem is innocuous for our qualitative results

regarding the shape of the value function and the payout boundary. But it

does cause trouble for separate identification of β∗0 and α
∗, and for the eco-

nomic interpretation of the expected carrot payment µ (1− α∗) β∗0. Therefore,
we henceforth preclude this singularity by assuming α ≤ ᾱ for some exogenous

ᾱ very close to 1. Specifically, we require max
{

1/2, 1− ρ
µ

}
< ᾱ < 1.17 Given

that, we have

Property 6 If wV ′(w) + V (w) < V (w̄), then α∗ = 0 and β∗0 = λ/µ;

If wV
′
(w) + V (w) = V (w̄), then α∗ ∈ [0, ᾱ] and β∗0 = λ−µα∗w

µ(1−α∗) ;

If wV
′
(w) + V (w) > V (w̄), then α∗ = ᾱ and β∗0 = λ−µᾱw

µ(1−ᾱ)
.

The following proposition verifies that our derived contract is indeed opti-

mal.

Proposition 3.1 The solution V to HJB equation (9) is principal and agent’s
joint surplus under the optimal contract. Moreover, the optimal contract is

characterized by Properties 1 and 6, and is terminated at time τ when w falls

to zero for the first time.

17Note that the control that we use to establish Property 3 is still viable under the
assumption that α ≤ ᾱ. So this new assumption affects none of the previous properties.
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4 The Role of Flexible Monitoring

This section highlights the critical role of flexible monitoring, which is central

to this paper. Section 4.1 shows that such flexibility is indeed utilized by

and thus valuable to the principal. Section 4.2 articulates that such flexibility

allows a long-term contractual relationship that perpetuates the agent’s effort

with positive probability when the synergy, z, is suffi ciently large, and that

the value function is convex in the vicinity of the payout boundary w̄ if and

only if such perpetuation is optimal. Section 4.3 summarizes these results

with a graphic illustration using the narrative of career path and provides a

few empirically plausible predictions.

4.1 Flexibility in Monitoring is Valuable

Property 6 establishes that other than in knife-edge cases, the optimal mon-

itoring capacity allocated to S-search, α∗, is either 0 or ᾱ.18 This subsection

further establishes that an optimal contract necessarily involves both possibil-

ities.

Specifically, Proposition 4.1 establishes that α∗ (w) = 0 when the agent’s

continuation value w is close to 0, and α∗ (w) = ᾱ when w is close to the

payout boundary w̄. This indicates that flexibility in allocating monitoring

capacity between C-search and S-search allows the principal to incentivize the

agent differently at different stages of his career, and is thus valuable to the

principal.

Proposition 4.1 There exists a ŵ ∈ (0, w̄), such that α∗ (w) = 0 and β∗0 (w) =

λ/µ for w ∈ (0, ŵ), and that α∗ (w) = ᾱ and β∗0 (w) = λ−µᾱw
µ(1−ᾱ)

for w ∈ (ŵ, w̄].

From Property 6, the optimal contract involves only α = 0 and α = ᾱ

except for the knife-edge case featuring indifference. From (14) we know that

for each w ∈ (0, w̄), either α = 0 and

rV (w) = z + [ρw − λ]V
′
(w) + µ[V (w̄)− V (w)]− (ρ− r)w , (17)

18Lemma 6.3 in the Appendix shows that no interval of continuation values exists, such
that the principal is indifferent between 0 and ᾱ. Thus the knife-edge cases are non-generic.
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or α = ᾱ and

rV (w) = z+ (1− ᾱ)µ[V (w̄)−V (w)] + [ρw−λ+µᾱw]V
′
(w)− (ρ− r)w . (18)

Both equations can be solved in closed form (see Appendix). It can be verified

that V ′ (0) is finite. This implies 0 · V ′(0) + V (0) = 0 < V (w̄), and by

continuity, there is a neighborhood of w = 0 such that wV
′
(w)+V (w) < V (w̄).

Thus, by Property 6, the principal relies completely on C-search when the

agent’s continuation value w is low. The statement for the vicinity of w̄ can

be similarly proved with closed-form solutions. We show further that the

optimal ranges for using α = 0 and α = ᾱ must be connected respectively, so

that there is a cutoff ŵ separating them.

Intuitively, when the agent’s continuation value w is low, the principal

should not rely on S-search, because the agent has little to lose even if he

is known to have shirked. Relying on C-search also maximizes the chance of

obtaining C-evidence. This helps the principal quickly raise the agent’s “skin

in the game,”which makes S-search (which is costless to the principal) more

effective in the future, and pushes the project away from termination (which

is socially ineffi cient). When the agent’s continuation value w is higher, the

principal can impose a large penalty for S-evidence. Since such a penalty is

just an off-equilibrium threat, making S-search less costly than C-search, the

principal should rely on S-search as much as possible.

The flexibility of combining C-search and S-search allows the principal to

exploit their respective advantages. On one hand, C-search generates greater

variation than S-search in the agent’s continuation value, and is thus less ad-

vantageous to the principal. Given that the agent does work, no S-evidence

would arrive, and thus, no adjustment of the agent’s continuation value would

be required. However, in equilibrium, C-evidence would be obtained, which

would necessarily involve a reward and the downward adjustment of the agent’s

continuation value in the absence of C-evidence. On the other hand, a suffi -

ciently high continuation value is required as the agent’s skin in the game for

sticks alone to be an effective incentive, whereas the effectiveness of C-search
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does not depend on the agent’s continuation value. Moreover, even if S-search

could work alone, a high continuation value for the agent has to be main-

tained, which involves interest expenditure for the principal, making S-search

less advantageous than C-search. This tradeoffbetween C-search and S-search

induces the principal to rely only on C-search when w is low, and on S-search,

as much as possible, when w is high.

Concerning carrots, β0, recall that the right-hand side of (13) is decreasing

in β0, since an increase in β0 makes the drift of the agent’s continuation value,

ρw − β0µ(1 − α), more negative due to promise keeping, and thus makes

the project more prone to termination. Hence, given the optimal capacity

allocation α∗, β∗0 should be set as low as possible – such that (IC) is binding.

Thus, for agents facing α∗ = 0, including those with w ∈ (0, ŵ), we have

β∗0 (w) = λ/µ, and the resulting drift of w is ρw − λ< 0. For agents facing

α∗ = ᾱ, including those with w ∈ (ŵ, w̄], we have β∗0 (w) = λ−µᾱw
µ(1−ᾱ)

, and the

resulting drift of w is ρw − λ+ µᾱw ≤ 0.19

Note first that β∗0 (w) is constant in the region of α∗ (w) = 0, but is decreas-

ing in the region of α∗ = ᾱ. This is because in the latter case, sticks increase

with w, partially substituting carrots that are required by (IC). Second, β∗0 (w)

features an upward jump when α∗ switches from 0 to ᾱ. To see this, notice

the fact that any switching point w < λ
µ
implies that the size of the jump is

λ−µᾱw
µ(1−ᾱ)

− λ
µ
>

λ−µᾱ·λ
µ

µ(1−ᾱ)
− λ

µ
= 0. Third, the drift of w increases (i.e., becomes less

negative) with w, due to the interest accrued (i.e., due to the term ρw) and the

increasing reliance on S-search in lieu of C-search (i.e., due to the term µᾱw).

Lastly, the drift of w is negative, which moves w towards 0, the termination

boundary, unless w reaches the payout boundary w̄ and w̄ = λ
ρ+µᾱ

, where the

drift is zero; i.e., the project and the agent’s effort are perpetuated. Section

4.2 characterizes when such perpetuation is optimal.

19This is because w ≤ w̄ ≤ λ
ρ+µᾱ .
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4.2 Possibility of Perpetuating the Agent’s Effort

The assumption that z > λ > 0 implies that at each instant, from the planner’s

perspective, having the agent working always dominates letting him shirk,

which further dominates terminating the project. Perpetuation of the agent’s

effort is always a feasible option for the principal as well.20 But is this optimal

for her? This subsection shows that, if and only if the synergy z is large

enough relative to the agent’s private benefit from shirking, λ, the payout

boundary w̄ of the optimal contract is another absorbing state in addition to

0, so that the optimal contract involves the perpetuation of the agent’s effort

with positive probability for any continuation value w. And the value function

V is convex in (ŵ, w̄), where the optimal control α∗ = ᾱ.21 This feature is

novel in the dynamic contracting literature. Otherwise, as in standard in the

literature, w̄ is reflective, so that the optimal contract results in termination

with probability one and V is universally concave.

Before formally presenting the result in Proposition 4.2 and explaining the

underlying mechanisim, it is worthwhile to highlight its value with the fact

that, without the flexibility in capacity allocation, the possibility of optimal

perpetuation for all w is out of the question regardless of the synergy z. Con-

sider first the extreme situation where only C-search is viable (i.e., α is fixed

to 0) as in Sun and Tian (2017). From Property 5, the cheapest way to satisfy

(IC) is to set the carrot β0 (w) = λ/µ for all w. But promise keeping inevitably

requires the reduction of continuation value w when C-evidence does not ar-

rive, jeopardizing perpetuation. The only way to counteract is to defer bonus

payments, and the cheapest option is to set an absorbing payout boundary

w̄ = λ/ρ.22 Despite its feasibility, the interest accrual required for maintaining

such a high continuation value makes this option so costly that it is never

optimal for the principal regardless of the synergy z. Indeed, our closed-form

solution to (17) implies that V ′ (λ/ρ) < 0 for all z.

20As discussed below, one trivial way is to incentivize the agent with only carrots, and to
defer payments whenever the agent’s continuation value w approaches zero.
21Recall from Section 2 that we discuss public randomization in Section 6.1 and preclude

it in the rest of the paper unless otherwise mentioned.
22The drift of w there is ρw̄ − (1− α)µβ0 = ρ · λ/ρ− 1 · µ · λ/µ = 0.
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In the opposite extreme situation, where only S-search is viable (i.e., α is

fixed to 1), the cheapest way to satisfy (IC) is to maintain w = λ/µ with a

constant flow payment ρλ/µ and an immediate lump-sum payment w − λ/µ
if w ≥ λ/µ; i.e., to have an absorbing payout boundary w̄ = λ/µ. Since

z > λ > ρλ/µ, this option is always optimal for the principal. But if w < λ/µ,

it is impossible to satisfy (IC), so the principal has to immediately raise w to

λ/µ unconditionally. But by Proposition 4.1, the principal can instead base

the rise of w on carrots if she is entitled to the flexibility of combining them

with sticks. This makes it possible to have an absorbing payout boundary

while satisfying (IC) for all w in the optimal contract.

Proposition 4.2 1. w̄ ≤ λ
ρ+µᾱ

, and w̄ is absorbing if and only if w̄ = λ
ρ+µᾱ

;

2. w̄ = λ
ρ+µᾱ

if and only if V is convex in (ŵ, w̄), which holds if and only if

z/λ is greater than a threshold θ (r, ρ, µ, ᾱ):

3. Perpetuation may not be optimal while feasible: if there exist constants

cρ > 1 and cµ > cρ such that ρ = cρr and µ = cµr, then limr→+∞ θ (r, ρ, µ, ᾱ) =

+∞;

4. Perpetuation is optimal with large monitoring capacity: for all r, ρ, ᾱ,

limµ→+∞ θ (r, ρ, µ, ᾱ) = 0.

Since λ
ρ+µᾱ

< λ/µ, Statement 1 indicates that the flexibility in combining

C-search with S-search reduces the cost of perpetuating the agent’s effort.

As aforementioned, the perpetuation requires a minimum w = λ/µ if the

principal can resort to only S-search, and the agent’s continuation value is fixed

there with a perpetuity ρλ/µ from the principal. The flexibility in combining

C-search with S-search allows the principal to replace this perpetuity with

carrots, which in turn replaces part of S-search’s role in (IC). This reduces the

required continuation value and saves on accrued interest. The minimum w

required for perpetuation with this flexibility is such that the flow interest ρw

exactly equals the expected carrots required by (IC), λ− ᾱµw, as in Property
5, which yields the absorbing w̄ = λ

ρ+µᾱ
in Statement 1.
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Statement 2 formally establishes that it is optimal for the principal to set

an absorbing payout boundary if and only if the synergy z is large enough

relative to the agent’s private benefit from shirking, λ. We give a precise

formula for the threshold θ (r, ρ, µ, ᾱ) in the Appendix, which is derived from

our closed-form solution to (18).

Figure 1: Reflective Payout Boundary w̄

In addition, statement 2 points out a novel feature of our model: the value

function V is convex in (ŵ, w̄), where α∗ = ᾱ, if and only if w̄ is absorbing.23 V

is always concave in (0, ŵ), where α∗ = 0. This reflects the standard incentive-

versus-interest tradeoff, as illustrated in Figure 1. That is, an increase in w

pushes the continuation value away from the termination boundary 0, whose

marginal benefit decreases with w, but whose marginal cost, due to an increase

in accrued interest, is constant.24 But new economic forces come into play in

(ŵ, w̄), where α∗ = ᾱ. There, the reliance on S-search reduces the downward

drift of the continuation value, µ (1− α) β0, that balances carrots. This raises

the marginal benefit of increasing w without affecting the marginal cost, and

thus makes V less concave. Moreover, a fundamental change occurs when
23Recall from Section 2 that we discuss public randomization in Section 6.1 of the Ap-

pendix and preclude it in the text unless otherwise mentioned.
24Besides Sun and Tian (2017), such a tradeoff is also featured in Biais et al. (2010) and

DeMarzo and Sannikov (2006).
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w̄ becomes absorbing, as illustrated in Figure 2. In that case, the marginal

benefit of increasing w results not only from the fact that w is further away

from the ineffi cient absorbing state 0, but also from the fact that w is closer

to the effi cient absorbing state w̄. The latter fact, together with the constant

marginal cost due to accrued interest, makes the marginal benefit increasing

instead of decreasing in w and thus the value function V convex in (ŵ, w̄).

Figure 2: Absorbing Payout Boundary w̄

Statements 3 and 4 illustrate that the flexibility in combining C-search with

S-search offers the principal more flexibility to decide whether to perpetuate

the agent’s effort. Recall that with only C-search, such perpetuation is never

optimal for the principal even if z/λ → ∞, but that as long as z/λ > 1,

with only S-search, such perpetuation is always optimal for her, provided that

w ≥ λ/µ. Statement 3 shows that, with the flexibility in combining C-search

with S-search, such perpetuation is no longer optimal when w ≥ λ/µ if ρ/r

and µ/r are constant and r is suffi ciently large. This is because, the large

difference in ρ − r increases the interest expenditure for the principal given

the same w. Statement 4 instead shows that it is always optimal to have an

absorbing payout boundary w̄ if the principal has large monitoring capacity

µ. This is because, large monitoring capacity reduces the penalty needed
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when S-evidence arrives (i.e., w̄), and in turn the interest expenditure from

maintaining it.

4.3 Practical Implications

Our model offers practical suggestions for the design incentive schemes in re-

ality, and they turn out to be largely consistent with the real practice in

academia, where the majority of our readers are. First, Proposition 4.1 sug-

gests that incentives for junior employees (i.e., agents with continuation value

w ∈ (0, ŵ) in the model) are mainly based on carrots, since they need to accu-

mulate a cushion against unemployment (i.e., termination) and have little to

lose even if caught shirking. Senior employees are instead incentivized in stick-

dominant mode (i.e., α = ᾱ), since they have enough skin in the game, and

sticks are off-equilibrium penalties, which are less costly than on-equilibrium

carrots. This is largely consistent with the fact that publication matters more

for junior faculty than for senior faculty.

Second, Proposition 4.2 suggests that permanent positions are offered only

for employees with suffi ciently large potential synergy. This is largely consis-

tent with the fact that for top research universities, only research faculty can

be on the tenure track, but this pattern is less clear for teaching schools. Simi-

lar pattern also applies to the viability of partnership in accounting, consulting

and law firms. Third, except for those hired permanently, in the absence of

evidence confirming their contribution, employees become more prone to un-

employment, and the more so if they are less senior. Lastly, instead of fixed

payments only, compensation for employees hired permanently should still in-

volve carrots.25 This is consistent with the fact that tenured professors are

still entitled to wage increase and promotions for post-tenure achievements.

25Recall from Section 3 that this is true even if ᾱ→ 1.
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5 Conclusion

This paper studies the joint design of monitoring and compensation schemes

in a continuous-time moral hazard model. In the model, a principal (i.e., the

designer of the scheme) can flexibly combine C-search with S-search to incen-

tivize an agent. That is, the principal can flexibly allocate her limited mon-

itoring capacity between confirmatory and contradictory evidence concerning

the agent’s effort as the basis for reward or punishment. We find that such

flexibility generates rich dynamics, which differ qualitatively from the situa-

tion where only one of the two methods is feasible. When the agent has little

skin in the game, the principal resorts only to C-search; when the agent has

suffi cient skin in the game, the principal instead assigns the highest possible

weight to S-search. Moreover, only with such flexibility can the agent’s effort

be perpetuated with positive probability when the agent is less patient than

the principal.
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6 Appendix

6.1 Public Randomization

In the text, we have been focusing on deterministic contracts, on the basis

that random contracts are of little practical relevance in reality. This is also

theoretically without loss of generality if the resulting value function is globally

concave as in the case illustrated in Figure 1 and as in most models in the

literature. However, as established in Proposition 4.2, our value function is

convex in the vicinity of the payout boundary w̄ if it is absorbing (Figure
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2). For this situation, this section discusses the extension in which public

randomization of the following form is allowed. At time 0, in addition to

starting the contractual relationship with a deterministic continuation value

w0, the principal can choose a mean-preserving spread of w0 as the basis for

random contracts, but no further randomization is allowed for t > 0. Since

B = V −w, and the linear term has no effect on the concavification operation,
we can work with the joint surplus function V without loss of generality.

Proposition 6.1 With public randomization, the principal’s value function is
Brdm = V rdm − w, where V rdm is the concavification of V .

Proof. Proposition 4.2 establishes that when V is not globally concave, we

must have w̄ = λ
ρ+µᾱ

, and V (w̄) is uniquely determined by Property 3. In

addition, V is concave in (0, ŵ) and convex in (ŵ, w̄). Therefore, the concav-

ification of V must be over w̄ and some w′ ∈ (0, ŵ) as shown with the yellow

broken line in Figure 2.26

We check that the values of non-randomized states are not changed. First,

V (w̄) does not change because w̄ = λ
ρ+µᾱ

is absorbing and its value does

not depend on the values of other states. For w ∈ (0, w′), notice that the

continuation value may only drift downward or jump upward over w̄. Since

V (w̄) remains the same and V rdm = V for w ∈ (0, w′), the values of these

states satisfy the same HJB equation and thus remain the same.

6.2 Proofs in Section 2

6.2.1 Proof of Lemma 2.1

Proof. The proof is a standard application of the martingale representation
theorem. For any given contract X = (α, I, τ) and effort process a, define

M1,a
t = Y 1

t − µ
∫ t

0

αsasds

26The purple dotted line in Figure 2 illustrates the corresponding concavification B∗ of
the principal’s value function B.
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and

M0,a
t = Y 0

t − µ
∫ t

0

(1− αs)(1− as)ds .

If the agent follows the effort process a, his lifetime expected payoff, conditional

on information at time t, is

Ut =

∫ t∧τ

0

e−ρs(dIs + λasds) + e−ρtWt .

Let ã be an arbitrary effort process. Let Ũt denote the agent’s lifetime expected

payoff conditional on information at time t if he follows ã until time t and then

reverts to a. Then by the martingale representation theorem, Ut can be written

as

Ut = U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,a
s +

∫ t∧τ

0

e−ρsβ0,sdM
0,a
s

For each t ≥ 0,

Ũt =Ut +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

=U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,a
s +

∫ t∧τ

0

e−ρsβ0,sdM
0,a
s +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

=U0 −
∫ t∧τ

0

e−ρsβ1,sdM
1,ã
s +

∫ t∧τ

0

e−ρsβ0,sdM
0,ã
s +

∫ t∧τ

0

e−ρsλ(ãs − as)ds

−
∫ t∧τ

0

e−ρsµαsβ1,s(ãs − as)ds−
∫ t∧τ

0

e−ρsµ(1− αs)β0,s(ãs − as)ds

Hence, at = 0 for all t is incentive compatible if and only if the drift term of

the above expression is non-positive for any effort process ã 6= 0; i.e.,

λ ≤ µαtβ1,t + µ(1− αt)β0,t

for all t before termination.
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6.3 Proofs in Section 3

We first prove statement 1) of Proposition 4.2, which establishes a tighter

upper bound for the payout boundary w̄ than that in Property 3. Then we

prove Property 3 and Proposition 3.1, assuming that Property 1 holds.
We verify Property 1 in Section 6.5. Proofs of all the other properties are

straightforward from the text and are therefore omitted.

Lemma 6.1 w̄ ≤ λ
ρ+µᾱ

, and w̄ is absorbing if and only if w̄ = λ
ρ+µᾱ

.

Proof. If w̄ > λ
ρ+µᾱ

, then at any continuation value w ∈
(

λ
ρ+µᾱ

, w̄
)
, the

principal could always incentivize the agent with the following contract: paying

out w − λ
ρ+µᾱ

immediately to reduce the agent’s continuation value to λ
ρ+µᾱ

;

setting α = ᾱ, β1 = λ
ρ+µᾱ

and β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ)

, so that (IC) is binding, and

that β0µ(1 − ᾱ) = ρ λ
ρ+µᾱ

; i.e., the drift of the agent’s continuation value is

zero, and thus w = λ
ρ+µᾱ

is an absorbing state. The principal’s payoff from

this new contract is

z

r
− ρ

r
· λ

ρ+ µᾱ
− (w̄ − λ

ρ+ µᾱ
) >

z

r
− ρ

r
w̄ = B(w̄) ,

where the inequality follows w̄ > λ
ρ+µᾱ

, contradicting the optimality of B(w̄).

For the second conclusion, first consider the “if”statement. If w̄ = λ
ρ+µᾱ

,

we show that the following strategy is feasible and optimal, and makes w̄

absorbing: α = ᾱ, β0 = ρλ
µ(1−ᾱ)(ρ+µᾱ)

and β1 = w̄ = λ
ρ+µᾱ

. Feasibility results

from the binding (IC) constraint. To see why w̄ is absorbing, note that when

w = w̄, the positive component of the drift of the agent’s continuation value

due to accrued interest is ρw̄dt = ρλ
ρ+µᾱ

dt, and the negative component as

the flip side of carrots is µ(1 − ᾱ)β0dt, which also equals
ρλ

ρ+µᾱ
dt, so that w

remains constant when there is no C-evidence, and when it is obtained, the

whole reward β0 is paid out immediately so that w remains at
λ

ρ+µᾱ
.

To see the optimality of this strategy, observe that the principal’s expected

payoff at w = λ
ρ+µᾱ

is E(
∫ +∞

0
ze−rtdt−β0

∫ +∞
0

e−rtdY0,t). Since Y0,t−µ(1− ᾱ)t
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is a martingale,

E(

∫ +∞

0

ze−rtdt− β0

∫ +∞

0

e−rtdY0,t) =
z

r
− β0µ(1− ᾱ)

r
=
z

r
− ρ

r
· λ

ρ+ µᾱ
.

Thus, the expected joint surplus is

z

r
− ρ

r
· λ

ρ+ µᾱ
+ w̄ =

z

r
− ρ− r

r
· w̄ .

From (10), this strategy achieves the optimal joint surplus at the payout

boundary.

Now consider the “only if”statement. From Property 3, it suffi ces to show

that any w̄ < λ
ρ+µᾱ

cannot be absorbing. Any contract respecting (IC) satisfies

β0µ(1− ᾱ) ≥ λ− w̄µᾱ > ρ · λ

ρ+ µᾱ
> ρw̄ .

Thus, when there is no C-evidence, the agent’s continuation value always has

a downward drift term ρw̄ − β0µ(1 − ᾱ) < 0. This implies that the payout

boundary w̄ < λ
ρ+µᾱ

is reflective.

6.3.1 Proof of Property 3

Proof. Note that the joint value function V must be nondecreasing in contin-
uation value w. This is because in any region where V is strictly decreasing

in w, the principal can benefit from paying out to the agent, contradicting

the optimality of V . Let A ⊂ R+ denote the region of continuation values in

which V is strictly increasing. Then the principal does not make any payment

when w ∈ A and R+\A is the payout region. Since ρ > r, deferring pay-

ment becomes infinitely costly as w → +∞. Thus the payout region R+\A is
nonempty and there exists a w̄ = inf(R+\A).

By construction, V is strictly increasing for w ∈ [0, w̄] and is constant in a

right neighborhood of w̄, (w̄, w̄ + ∆). Then, if V ′ (w̄) exists, it must be zero.

If V ′ (w̄) does not exist, i.e., the left and the right derivatives are not equal,

(9) is not defined at w = w̄ and the coeffi cient in front of V
′
(w) must be zero
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at w̄. Notice that this coeffi cient is the drift of the continuation value. Hence,

when V ′ (w̄) does not exist, w̄ is an absorbing payout boundary. As a result,

no matter whether V ′ (w̄) exists or not, the second and the third terms on the

right-hand side of (9) must be zero when w = w̄, leading to V (w̄) = z
r
− ρ−r

r
w̄.

By definition, the payout region is a subset of (w̄,+∞). Actually, the

payout region is (w̄,+∞). Otherwise, there exists an interval (w̄′ −∆, w̄′) ⊂
(w̄,+∞) such that V is strictly increasing on [w̄′ −∆, w̄′] and is constant in

a right neighborhood of w̄′. It must be the case that w̄′ <∞, since ρ > r and

deferring payment is infinitely costly as w → +∞. Then a similar argument
regarding the existence of V ′ (w̄) also applies here: no matter whether V ′ (w̄′)

exists or not, the second and the third terms on the right-hand side of (9)

must be zero when w = w̄′, and thus V (w̄′) = z
r
− ρ−r

r
w̄′ < z

r
− ρ−r

r
w̄ = V (w̄) ,

a contradiction to the non-decreasing property of V . Hence, the above defined

w̄ is the payout boundary and the payout region is (w̄,+∞). As an immediate

implication, the optimal payment is dI∗ = (w − w̄)+ and for w ∈ [w̄,+∞),

V (w) = V (w̄).

The above proof has already shown that either V ′ (w̄) = 0, or V ′ (w̄) does

not exist and ρw̄ − µ(1− α∗ (w̄))β∗0 (w̄), the drift at w = w̄, is 0.

The proof for w̄ ≤ λ/µ is straightforward from the text.

6.3.2 Proof of Proposition 3.1

Lemma 6.2 For any w̄ ∈ (0, λ
ρ+µᾱ

], let V̄ ≡ z
r
− ρ−r

r
w̄. Then the ODE

rV (w) = max
α∈[0,α]

z−(ρ−r)w+ρwV
′
(w)+(1−α)µ[V̄ −V (w)]−(λ−µαw)V

′
(w)

(19)

with boundary condition V (0) = 0 has a unique solution on [0, w̄].

Proof. For any w < λ
ρ+ᾱµ

, since λ− µαw − ρw > 0, we can rearrange (19) to

obtain

V
′
= max

α∈[0,α]

z − (ρ− r)w + (1− α)µ[V̄ − V ]− rV
λ− µαw − ρw .
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Let

F (w, V ) = max
α∈[0,α]

z − (ρ− r)w + (1− α)µ[V̄ − V ]− rV
λ− µαw − ρw .

For any fixed ε > 0, for any (w1, V1), (w2, V2) ∈ [0, λ
ρ+ᾱµ

− ε] × [0, V̄ ], there

exists an M such that |F (w1, V1) − F (w2, V2)| ≤ M |V1 − V2|. Then, by the
Cauchy-Lipschitz theorem, the initial value problem has a unique solution

over [0, λ
ρ+ᾱµ

− ε]. Further, notice that V is increasing and upper bounded,

and therefore V does not explode as w → w̄. Then the maximum interval of

existence reaches the boundary w̄ for all w̄ ≤ λ
ρ+ᾱµ

. When w̄ = λ
ρ+ᾱµ

, taking

ε→ 0, we can extend the solution over
[
0, λ

ρ+ᾱµ

]
.

Proposition 6.2 Consider two ODEs

rV1 = maxα∈[0,ᾱ]z − (ρ− r)w + ρwV
′

1 + (1− α)µ[V̄1 − V1]− (λ− µαw)V
′

1

and

rV2 = maxα∈[0,ᾱ]z − (ρ− r)w + ρwV
′

2 + (1− α)µ[V̄2 − V2]− (λ− µαw)V
′

2 ,

where V̄1 = z
r
− ρ−r

r
w̄1, V̄2 = z

r
− ρ−r

r
w̄2, w̄1 < w̄2 ≤ λ

ρ+ᾱµ
; and V1(0) = V2(0) =

0. Then V1 > V2 for w ∈ (0, w̄1).

Proof. Suppose the opposite holds. Note that V ′1 (0) > V
′

2 (0). Then, there ex-

ists aw ∈ (0, w̄1) such that V1(w) = V2(w). Define w̃ = inf {w ∈ (0, w̄1) : V1(w) = V2(w)}.
By the continuity of V1 and V2, we have V1(w̃) = V2(w̃). Let α2 be the α that

solves the maximization problem for V2 at w̃. Taking the difference between

the two ODEs at w = w̃, we obtain

(ρw̃ + µα2w̃ − λ) · (V1 − V2)
′
+ (1− α2)µ(V̄1 − V̄2) ≤ 0 .

Since α2 < 1 and V̄1 − V̄2 > 0,

(ρw̃ + µα2w̃ − λ) · (V1 − V2)
′
< 0 .
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Since w̄1 <
λ

ρ+ᾱµ
, ρw̃ + µα2w̃ − λ < 0. Thus, V

′
1 (w̃) − V ′2 (w̃) > 0. Note that

this inequality holds whenever V1 = V2. Since V1 (w)−V2 (w) is continuous and

the inequality is strict, it also holds for w close to w̃; i.e., V
′

1 (w)− V ′2 (w) > 0

in (w̃ − δ, w̃) for some δ > 0. By the definition of w̃, V1 (w) − V2 (w) > 0 for

w ∈ (w̃ − δ, w̃). Then, it is impossible to have V1(w̃) = V2(w̃), a contradiction.

According to the above results, the candidate for the optimal payout bound-

ary is the smallest w̄ ∈ (0, λ
ρ+ᾱµ

] such that the solution of ODE (14) satisfies

V (w̄) = z
r
− ρ−r

r
w̄. The existence of such w̄ is guaranteed by the continuity

of V . Now we are ready to prove Proposition 3.1, assuming Property 1 holds

(verified in Section 6.5).

Proof. Let τ denote the first time that wt hits zero. We first verify that the
principal’s value function can be induced by the proposed control processes in

Property 6 and the proposed payment process dIt = (β0 +w− w̄)+dY 0
t . Note

that by Property 4, β0 + w > w̄, so that dIt = (β0 + w − w̄)dY 0
t . By Ito’s

Formula for jump processes,

e−r(t∧τ)B(wt∧τ ) =B(w0) +

∫ t∧τ

0

e−rs[(ρws − β0,sµ(1− αs))B
′
(ws)− rB(ws)]ds

+

∫ t∧τ

0

e−rs[B(w̄)−B(ws)]dY
0
s .

Under the optimal control processes, the HJB equation becomes

rB(w) = z+(ρw−β0µ(1−α))B
′
(w)+(1−α)µ[B(w̄)−B(w)− (w+β0− w̄)] .

Thus,

B(w0) =

∫ t∧τ

0

e−rs[z + (1− αs)µ(B(w̄)−B(ws)− (ws + β0,s − w̄))]ds

−
∫ t∧τ

0

e−rs[B(w̄)−B(ws)]dY
0
s − e−r(t∧τ)B(wt∧τ ) .

Due to the fact that Y 0
s − (1 − αs)µs is a martingale and wτ = 0, letting

t → ∞ and taking expectation on the right hand side of the above equation,
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we obtain

B(w0) = E(

∫ τ

0

e−rs[zds− (ws + β0,s − w̄)dY 0
s ]) ,

which verifies that the principal’s expected payoffgiven by (1) is indeed achieved

with the proposed control and payment processes.

We then verify that the proposed contract is optimal. Since the cumulative

payment process is increasing in time, without loss of generality, we write a

general payment process as

It = Ict + Idt ,

where Ict is a continuous increasing process and I
d
t includes discrete upward

jumps. By Ito’s Formula for jump processes,

e−r(t∧τ)B(wt∧τ ) =B(w0) +

∫ t∧τ

0

e−rs[(ρws − β0,sµ(1− αs))B
′
(ws)− rB(ws)]ds

−
∫ t∧τ

0

e−rsB
′
(ws)dI

c
s +

∫ t∧τ

0

e−rs[B(ws + β0,s)−B(ws)]dY
0
s

+
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Ids )−B(ws + β0,s∆Y

0
s )] ,

where ∆Y 0
s ≡ Y 0

s − Y 0
s−. We then rearrange the terms to get

B(w0) =e−r(t∧τ)B(wt∧τ )

+

∫ t∧τ

0

e−rs{rB(ws)− (ρws − β0,sµ(1− αs))B
′
(ws)− (1− αs)µ[B(w + β0,s)−B(w)]}ds

+

∫ t∧τ

0

B
′
(ws)e

−rsdIcs +

∫ t∧τ

0

[B(w + β0,s)−B(w)][(1− αs)µds− dY 0
s ]

−
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Idt )−B(ws + β0,s∆Y

0
s )] .
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Taking expectation on both sides and using the fact that Y 0
t −

∫ s
0

(1− αs)µds
is a martingale, we obtain

B(w0) =E(e−r(t∧τ)B(wt∧τ )) + E

( ∫ t∧τ
0

e−rs{rB(ws)− (ρws − β0,sµ(1− αs))B
′
(ws)

−(1− αs)µ[B(w + β0,s)−B(w)]}ds

)

+ E(

∫ t∧τ

0

B
′
(ws)e

−rsdIcs)− E(
∑

s∈[0,t∧τ ]

e−rs[B(ws + β0,s∆Y
0
s −∆Idt )−B(ws + β0,s∆Y

0
s )]) .

Notice that

rB(w) ≥ z+ (ρw−β0µ(1−α))B
′
(w) + (1−α)µ[B(w̄)−B(w)− (w+β0− w̄)]

and for any incentive compatible contract,

B(w + β0,s) = B(w̄)− (w + β0,s − w̄) .

Moreover, since B
′
(w) ≥ −1,

B (w0) ≥ E(e−r(t∧τ)B(wt∧τ ))+E(

∫ t∧τ

0

ze−rsds−
∫ t∧τ

0

e−rsdIcs)−E(
∑

s∈[0,t∧τ ]

e−rs∆Idt ) .

Letting t→∞ and using the fact that B(w) is bounded, we obtain

B(w0) ≥ E(

∫ τ

0

e−rs(zds− dIs)) .

Therefore, any function satisfying all these conjectured properties is indeed

the value function for the principal.

6.4 Proofs in Section 4

6.4.1 Proof of Proposition 4.1

Proof. By Lemma 6.1, w̄ ≤ λ
ρ+µᾱ

. If w = w̄ = λ
ρ+µᾱ

, (18) is exactly (10), so

α∗ (w) = ᾱ.
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For w ∈
(

0, λ
ρ+µᾱ

)
, (14) is equivalent to

V ′ (w) = max
α∈[0,ᾱ]

z − (ρ− r)w + (1− α)µ[V (w̄)− V (w)]− rV (w)

λ− ρw − µαw . (20)

Let G (α;w) = z−(ρ−r)w+(1−α)µ[V (w̄)−V (w)]−rV (w)
λ−ρw−µαw , which is obviously continuous

in both α and w. Property 6 establishes that the maximizer of the right-hand

side (RHS) of (20) must be 0 or ᾱ. So to figure out α∗ (w), it suffi ces to

compare G (0;w) with G (ᾱ;w), taking as given V (0) = 0 and V (w̄).

For w ∈
(

0, λ
ρ+µᾱ

)
, G (ᾱ;w) ≥ G (0;w) is equivalent to

w [z − (ρ− r)w − rV (w)] ≥ [λ− (µ+ ρ)w] (V (w̄)− V (w)) . (21)

Notice that when w → 0, the left-hand side of (21) goes to zero while

its right-hand side is positive. Thus, there exists ŵ0 > 0 such that for any

w ∈ (0, ŵ0), α∗ (w) = 0. β∗0 (w) for w ∈ (0, ŵ0) results from (16).

Now we establish the optimality of α (w) = ᾱ for w in the vicinity of w̄.

Note that by (10), (21) is equivalent to

w (ρ− r) (w̄ − w) ≥ [λ− (µ+ ρ+ r)w] (V (w̄)− V (w)), (22)

which holds for all w ≥ λ
ρ+µ+r

. So if w̄ ∈ ( λ
ρ+µ+r

, λ
ρ+µᾱ

], α∗ (w) = ᾱ for all

w ∈ ( λ
ρ+µ+r

, w̄].

Next consider the case where w̄ ≤ λ
ρ+µ+r

. Note that (22) is equivalent

to w̄−w
V (w̄)−V (w)

≥ λ−(µ+ρ+r)w
(ρ−r)w . If w̄ ≤ λ

ρ+µ+r
< λ

ρ+µᾱ
, by Lemma 6.1 (whose

proof does not require Proposition 4.1), w̄ is reflective so that V ′ (w̄) =

0. Then by L’Hôpital’s rule, lim
w→w̄−

w̄−w
V (w̄)−V (w)

= lim
w→w̄−

1
V ′(w)

= +∞, while

lim
w→w̄−

λ−(µ+ρ+r)w
w(ρ−r) = λ−(µ+ρ+r)w̄

(ρ−r)w̄ < +∞. Hence, there also exists a ŵᾱ < w̄, such

that α (w) = ᾱ for all w ∈ (ŵᾱ, w̄]. β∗0 (w) for w ∈ (ŵᾱ, w̄] again results from

(16).

We hereby establish that ŵ0 = ŵᾱ = ŵ when w̄ < λ
ρ+µ+r

. ŵ0 = ŵᾱ = ŵ

when w̄ ≥ λ
ρ+µ+r

is delegated to Proposition 6.3. From (22), α = ᾱ when

V (w) + F (w) ≥ V̄ , where F (w) = w(ρ−r)(w̄−w)
λ−(µ+ρ+r)w

. When w̄ < λ
ρ+µ+r

, F (w) and
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its derivatives are well defined on w ∈ [0, w̄]. Since V is concave, if F
′′
< 0,

then V + F is concave and thus {w : V (w) + F (w) ≥ V̄ } is connected and
ŵ0 = ŵᾱ = ŵ. Tedious algebra yields F ′′ (w) = −2λ(ρ−r)

[λ−(µ+ρ+r)w]3
[λ− (µ+ ρ+ r)w̄],

which is negative if w̄ < λ
ρ+µ+r

.

Here we provide the closed-form solutions to (17) and 18). As a first-order

linear ODE, (17) has general solutions

V (w) =
ρ− r

r + µ− ρ(
λ

ρ
− w) +

µV (w̄) + z − (ρ− r)λ
ρ

r + µ
+K(

λ

ρ
− w)

r+µ
ρ , (23)

which are all strictly concave in (0, w̄). From V (0) = 0, we can pin down for

w ∈ (0, ŵ0) that K = − ρ(ρ−r)
(r+µ)(r+µ−ρ)

· λ
ρ

− r+µ−ρ
ρ − µV (w̄)+z

r+µ
· λ
ρ

− r+µ
ρ .

Also as a first-order linear ODE, (18) has general solutions

V (w) =
ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
(

λ

ρ+ µᾱ
− w) +

(1− ᾱ)µV (w̄) + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)

+K(
λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ (24)

if r + (1− ᾱ)µ 6= ρ+ ᾱµ, and

V (w) = − ρ− r
ρ+ µᾱ

(
λ

ρ+ µᾱ
− w) ln(

λ

ρ+ µᾱ
− w) +

(1− ᾱ)µV (w̄) + z − (ρ− r) λ
ρ+ᾱµ

r + µ(1− ᾱ)

+K(
λ

ρ+ µᾱ
− w) (25)

if r+(1−ᾱ)µ = ρ+ᾱµ. The assumption that ᾱ > 1/2 implies that r+(1−ᾱ)µ <

ρ+ ᾱµ, and it is shown later in the proof of Proposition 4.2 that the solutions

that are increasing in (0, w̄) are strictly convex in (0, w̄) if K < 0, linear if

K = 0, and strictly concave in (0, w̄) otherwise.

With the closed-form solutions and their concavity properties discussed

above, we show the following proposition:

Proposition 6.3 If w̄ ≥ λ
ρ+µ+r

, then ŵ0 = ŵᾱ.
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To prove Proposition 6.3, we first prove Lemma 6.3, which articulates that

the optimal α takes values in {0, α} almost surely.

Lemma 6.3 There does not exist an interval (w1, w2) such that w · V ′ (w) =

V (w̄)− V (w) for all w ∈ (w1, w2).

Proof. Suppose the contrary. Then w · V ′ (w) = V (w̄)− V (w) implies

V (w) =
c

w
+ V (w̄) (26)

in (w1, w2) for some constant c. Plugging w · V ′ (w) = V (w̄)− V (w) into the

HJB equation (9) we obtain

V (w) =
z − (ρ− r)w + (ρ+ µ− λ/w)V (w̄)

r + ρ+ µ− λ/w . (27)

It is straightforward to verify that (26) and (27) cannot both be satisfied in

any interval.

Lemma 6.4 shows that the convexity of V in an interval below the payout

boundary w̄ is “contagion”up to w̄.

Lemma 6.4 If there exists an interval [w1, w2) ⊂ (0, w̄) such that w1·V
′
(w1) ≥

V (w̄)−V (w1) and V is convex in (w1, w2), then α∗ (w) = ᾱ for all w ∈ (w1, w̄]

and V is convex in [w1, w̄].

Proof. If V is convex in (w1, w2), since V is continuously differentiable in

(0, w̄), w · V ′ (w) + V (w) is strictly increasing in [w1, w2). Given that w1 ·
V
′
(w1) ≥ V (w̄) − V (w1), we have w · V ′ (w) > V (w̄) − V (w) for all w ∈

(w1, w2). So there exists w3 ∈ (w2, w̄) such that w ·V ′ (w) > V (w̄)−V (w) for

all w ∈ (w1, w3). Iteration of this argument yields w · V ′ (w) > V (w̄)− V (w)

and thus α∗ (w) = ᾱ for all w ∈ (w1, w̄). By Proposition 4.1, α∗ (w̄) = ᾱ as

well.

Given that α∗ (w) = ᾱ for all w ∈ (w1, w̄], the specific solution to (18)

that matches the value function V in [w1, w2) must also match V in [w1, w̄].

Since V is convex in [w1, w2), that specific solution must be given by (24) with
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K ≤ 0 and r + (1− ᾱ)µ < ρ+ ᾱµ. This proves the convexity of V in [w1, w̄].

With Lemmas 6.3 and 6.4, we can now prove Proposition 6.3.

Proof. Let Ŵ ≡
{
w ∈ (0, w̄) : w · V ′ (w) = V (w̄)− V (w)

}
. We are to show

that Ŵ is a singleton if w̄ ≥ λ
ρ+µ+r

. By Proposition 4.1, Ŵ is non-empty and

has a maximum. Without loss of generality, assume ŵᾱ = max Ŵ . Then V

must be strictly concave in (0, ŵᾱ]. To see this, Lemma 6.3 and the properties

of the general solutions to (17) and (18) imply that V must be piecewise

concave or convex in (0, ŵᾱ]. If there is an interval (w1, w2) ⊂ (0, ŵᾱ] such

that V is convex in it, then by Lemma 6.4, α∗ (w) = ᾱ for all w ∈ (w1, w̄],

contradicting the fact that ŵᾱ = max Ŵ .

Note that (27) holds for w = ŵᾱ. Plug it into V
′
(ŵᾱ) = V (w̄)−V (ŵᾱ)

ŵᾱ
, we

have V
′
(ŵᾱ) = ρ−r

r+ρ+µ
(1 −

λ
r+µ+ρ

−w̄
λ

r+µ+ρ
−ŵᾱ

). Similarly, if there exists ŵ′ ∈ Ŵ such

that ŵ′ < ŵᾱ, then V
′
(ŵ′) = ρ−r

r+ρ+µ
(1−

λ
r+µ+ρ

−w̄
λ

r+µ+ρ
−ŵ′ ). If w̄ ≥

λ
ρ+µ+r

, then we have

V ′ (ŵ′) ≤ V ′ (ŵᾱ), contradicting the concavity of V in (0, ŵᾱ].

6.4.2 Proof of Proposition 4.2

Proof. Statement 1 is already shown as Lemma 6.1 before. We now prove
statement 2. By Proposition 4.1, α∗ (w) = ᾱ if w ∈ (ŵ, w̄], so here we focus

on the solutions to (18) when studying the property of the payout boundary

w̄. Let VK be the solution with constant K in (24) or (25). We first show that

w̄ is absorbing (i.e., w̄ = λ
ρ+µᾱ

) if and only if K ≤ 0; i.e., if and only if V is

(weakly) convex in (ŵ, w̄).

ᾱ > 1/2 implies that r + (1 − ᾱ)µ < ρ + ᾱµ. Since − ρ−r
r+(1−ᾱ)µ−(ρ+ᾱµ)

> 0,

K in (24) can be either positive or negative. (??) yields

V
′′

K = K
r + (1− ᾱ)µ

ρ+ µᾱ
(
r + (1− ᾱ)µ

ρ+ µᾱ
− 1)(

λ

ρ+ µᾱ
− w)

r+(1−ᾱ)µ
ρ+µᾱ

−2 .

If K > 0, since r+(1−ᾱ)µ
ρ+µᾱ

− 1 < 0 , V
′′
K < 0 so that VK is concave. Moreover,

as w → λ
ρ+µᾱ

, V
′
ᾱ → −∞. Again, it must be that w̄ < λ

ρ+µᾱ
, and w̄ is reflective.

If K = 0, then V
′
K (w) = − ρ−r

r+(1−ᾱ)µ−(ρ+ᾱµ)
> 0 for all w ∈ (ŵᾱ, w̄]. Thus
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we must have w̄ = λ
ρ+µᾱ

as an absorbing state.

If K < 0, V
′′
K > 0 so that VK is strictly convex. Thus, the value function

V satisfies V
′
> 0 for all w < λ

ρ+µᾱ
. This implies that w̄ = λ

ρ+µᾱ
, and w̄ is

absorbing by Lemma 6.1.

Now we prove that w̄ is absorbing if and only if z/λ ≥ θ (r, ρ, µ, ᾱ), where

θ (r, ρ, µ, ᾱ) is defined by (31). From (23), we have

V
′
(ŵ) =

ρ− r
r + µ− ρ(1− ρ

λ
ŵ)

r+µ
ρ
−1 +

µV (w̄) + z

λ
(1− ρ

λ
ŵ)

r+µ
ρ
−1 − ρ− r

r + µ− ρ .
(28)

On the other hand, by Property 6, we have V ′ (ŵ) = V (w̄)−V
ŵ

. Plugging this

into (17), we have

V
′
(ŵ) =

ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− w̄

λ
r+µ+ρ

− ŵ
) . (29)

As ŵ increases from 0 to λ
r+µ+ρ

, the right-hand side of (28) is decreasing from
µV (w̄)+z

λ
, and that of (29) is increasing from z−V (w̄)

λ
to +∞. Thus, there exists

a unique ŵ ∈ (0, λ
r+µ+ρ

) such that both equations hold simultaneously.

Next, we show that VK is convex if and only if ŵ ≥ λ
2(ρ+µᾱ)

. Observe that

V (ŵ) should also satisfy (24), and thus

V
′
(ŵ) = − ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
−Kr + (1− ᾱ)µ

ρ+ µᾱ
(

λ

ρ+ µᾱ
− ŵ)

r+(1−ᾱ)µ
ρ+µᾱ

−1 .

(30)

We have shown that VK is convex if and only if K ≤ 0. From (29) and (30),

K ≤ 0⇔ ρ− r
r + ρ+ µ

(1−
λ

r+µ+ρ
− w̄

λ
r+µ+ρ

− ŵ
) ≥ − ρ− r

r + (1− ᾱ)µ− (ρ+ ᾱµ)
,

where w̄ = λ
ρ+ᾱµ

. This reduces to ŵ ≥ λ
2(ρ+µᾱ)

. Notice that since r+(1− ᾱ)µ <

ρ+ ᾱµ, λ
2(ρ+µᾱ)

< λ
r+µ+ρ

.

Therefore, VK is convex if and only if the right-hand sides of (28) and (29)

intersect at some ŵ ∈ [ λ
2(ρ+µᾱ)

, λ
r+µ+ρ

). The second condition holds if and only
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if(
ρ− r

r + µ− ρ +
µV̄ + z

λ

)
(1−ρ

λ
· λ

2(ρ+ µᾱ)
)
r+µ
ρ
−1− ρ− r

r + µ− ρ ≥
ρ− r

r + ρ+ µ
(1−

λ
r+µ+ρ

− λ
ρ+µᾱ

λ
r+µ+ρ

− λ
2(ρ+µᾱ)

) ,

which is equivalent to

z

λ
≥ r(ρ− r)

µ+ r

{
2(ρ+ µᾱ)

ρ+ 2µᾱ

2µᾱ

(r + µ− ρ)[(ρ+ µᾱ)− (r + µ(1− ᾱ))]
− 1

r + µ− ρ +
µ

ρ+ µᾱ

}
≡ θ (r, ρ, µ, ᾱ) . (31)

Statements 3 and 4 are straightforward from (31).

6.5 Proof of Property 1

First, if z > λ > 0, it is suboptimal for the principal to implement a > 0 in the

payout region, [w̄,+∞). To see this, consider any contract that implements

at > 0 for some wt > w̄. This implies that in [t, t+ dt], the agent receives a

private benefit of λatdt. Instead, the principal could implement at = 0 (which

generates additional synergy z · atdt), and increases the payment to the agent
by λatdt in [t, t+ dt], without altering the contract afterwards. This raises the

principal’s payoff by (z − λ) atdt > 0, while leaving the dynamics of the agent

continuation value unchanged. Iteration of this argument rules out profitable

deviation from a = 0 in the payout region. Thus, we only need to consider the

possibility of shirking in the no-payment region henceforth. We will rule out

the profitability of deviation of a = 1 and a ∈ (0, 1), respectively.

If the principal implements a = 1 for some wt ∈ (0, w̄), then the agent’s in-

centive compatibility constraint is µαβ1+µ(1−α)β0 ≤ λ, and his continuation

value follows

dwt = ρwtdt− λdt− β1,t[dY1,t − µαtdt] .

To rule out the profitability of such deviation, we need to show that for
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any w ∈ (0, w̄),

rV (w) ≥ max
α,β1

λ+[ρw−λ+αµβ1]V
′
(w)+αµ[V (w−β1)−V (w)]−(ρ−r)w . (32)

If β1 ≥ 0, then

RHS of (32) ≤ max
α

z + (ρw − λ+ αµw)V
′
(w)− (ρ− r)w

< max
α

z + (ρw − λ+ αµw)V
′
(w) + µ (1− α) [V (w̄)− V (w)]− (ρ− r)w

≤ rV (w) ,

where the first two inequalities follow the fact that V is increasing in w, and the

third inequality holds because its LHS is the flow value achieved with β1 = w

when implementing a = 0 and thus the LHS is dominated by the optimal flow

value rV . Hence, it suffi ces to show that (32) holds for β1 < 0.

Denote the objective function of the RHS of (32) by D. If β1 ≤ 0, we show

that D can achieve its maximum only when β1 = 0 or β1 = −(w̄ − w). In

particular, for β1 < −(w̄ − w), we have V (w − β1) = V (w̄) and ∂D/∂β1 =

αµV
′
(w) > 0. ThusD can achieve its maximum only when β1 ∈ [−(w̄ − w), 0].

For β1 > −(w̄ − w), ∂D/∂β1 = αµ
[
V
′
(w)− V ′(w − β1)

]
. If V

′
(w) ≥ V ′(w −

β1) for all β1 ∈ [−(w̄ − w), 0], then ∂D/∂β1 > 0 and D is maximized with

β1 = 0. If V
′
(w) < V ′(w − β1) for some β1 ∈ [−(w̄ − w), 0], then V is not

globally concave. By Proposition 4.2, V is concave in (0, ŵ) and convex in

[ŵ, w̄]. This implies the existence of β̂ such that w − β̂ ∈ [ŵ, w̄] and that

∂D/∂β1 = αµ
[
V
′
(w)− V ′(w − β1)

]
< 0 if and only if β1 < β̂. Therefore, if

D is maximized with β1 ∈ [−(w̄−w), β̂), then the maximizer is β1 = −(w̄−w).

If D is instead maximized with β1 ∈
[
β̂, 0
]
, then the maximizer is β1 = 0.

Since we have already shown that (32) holds for β1 ≥ 0, we only needs to show

that it holds for β1 = −(w̄ − w).

Note also that D is linear in α, so D is maximized with either α = 0 or

α = ᾱ.27 If D is maximized with β1 = −(w̄ − w) and α = 0, then the RHS of

27If D is maximized at some interior value of α, the coeffi cient of α must be zero and thus
it is equivalent to evaluating D at α = 0.

46



(32) equals

λ+ (ρw − λ)V
′
(w)− (ρ− r)w ;

If D is maximized with β1 = −(w̄ − w) and α = ᾱ, then the RHS of (32)

equals

λ+ (ρw − λ)V
′
(w) + ᾱµ[V (w̄)− V (w)− (w̄ − w)V

′
(w)]− (ρ− r)w .

For both cases, we have

RHS of (32) < z + (ρw − λ)V
′
(w) + µ[V (w̄)− V (w)]− (ρ− r)w ≤ rV (w) ,

where the last inequality results from (14). Therefore, deviation to a = 1 is

never profitable.

If the principal instead implements a ∈ (0, 1) for some wt ∈ (0, w̄), then

the agent’s continuation value follows

dwt = ρwtdt− aλdt+ β0,t [dY0,t − µ (1− αt) (1− a)dt]− β1,t[dY1,t − µαtadt] .

To guarantee that the agent does not choose either a = 0 or a = 1, his

incentive compatibility constraint is

µαβ1 + µ(1− α)β0 = λ.

To rule out the profitability of such deviation, we need to show that for

any w ∈ (0, w̄),

rV (w) ≥ max
α,β0,β1

z(1− a) + aλ+ [ρw − aλ− β0µ(1− α)(1− a) + µαβ1a]V
′
(w)

+ (1− α)µ(1− a)[V (w̄)− V (w)] + αµa[V (w − β1)− V (w)]− (ρ− r)w .
(33)
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From the incentive compatibility condition, the RHS of (33) equals

max
α,β0,β1

z(1− a) + aλ+ [ρw − β0µ(1− α)]V
′
(w)

+ (1− α)µ(1− a)[V (w̄)− V (w)] + αµa[V (w − β1)− V (w)]− (ρ− r)w .

If β1 ≥ 0, then (14) implies that (33) holds. If β1 < 0, then due to the IC

constraint, the RHS of (33) equals

max
α,β1

z(1− a) + aλ+ [ρw − λ]V
′
(w) + (1− α)µ(1− a)[V (w̄)− V (w)]

+ αµa[V (w − β1)− V (w)] + µαβ1V
′
(w)− (ρ− r)w

< max
α

z + [ρw − λ]V
′
(w) + [(1− α)(1− a) + aα]µ[V (w̄)− V (w)]− (ρ− r)w

< z + [ρw − λ]V
′
(w) + µ[V (w̄)− V (w)]− (ρ− r)w ≤ rV (w) ,

where the last inequality again results from (14). Thus, deviation to a ∈ (0, 1)

is never profitable either.
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