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Abstract

In a private private information structure, agents’ signals contain no infor-
mation about the signals of their peers. We study how informative such struc-
tures can be, and characterize those that are on the Pareto frontier, in the sense
that it is impossible to give more information to any agent without violating
privacy. In our main application, we show how to optimally disclose information
about an unknown state under the constraint of not revealing anything about

a correlated variable that contains sensitive information.
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1 Introduction

Economists have long used private information as a basic modeling tool to capture
settings where different people have different information about an uncertain state of
nature. Typically, each agent observes a signal that induces a belief over this state.
The same signal could also alter the agent’s belief over other people’s beliefs. In this
paper, we study a special case of private information where the information available
to each agent reveals nothing at all about the information available to her peers. That
is, we consider private signals that are literally private, which we call private private
signals.

As a simple example of private private information, suppose three agents each
receive an independent binary signal, and the unknown state of nature is the majority
of these three signals.! Because of independence, each agent holds the same belief
about others’ signal realizations when her own signal is high and when it is low. And
yet, every signal is informative about the state. On the other hand, conditionally
independent private signals are not private private. For instance, consider a binary
state and conditionally independent binary signals that match the state with a certain
probability. Here, each agent’s signal contains information about the others’ signals:
when an agent observes a high signal, she becomes more confident that her peers also
got high signals.

The main question that we address in this paper is: how informative can private
private signals be? There is an inherent tension between the privacy of an information
structure and its informativeness. For example, it is clearly impossible for two agents
to both have signals that perfectly reveal the state while maintaining privacy. What
is the maximum amount of information that can be conveyed through private private
signals? We formalize this question using the notion of Pareto optimality with respect
to the Blackwell order: a private private information structure is Pareto optimal if it
is impossible to give more information to any agent—in the Blackwell sense—without
violating privacy.

In the case of two agents and a binary state, we give a simple description of the
Pareto frontier that allows for a straightforward test of optimality and a construc-

tive procedure for finding optimal structures. We also study Pareto optimality in

!Similar information structures are used in the social learning literature (Gale, 1996; Celen and
Kariv, 2004a,b).



the general case with any number of agents, where our characterization provides a
surprising connection to the field of mathematical tomography and the study of sets
of uniqueness. A subset of [0,1]" is called a set of uniqueness if it is uniquely de-
termined by the densities of its projections to the coordinate axes. Understanding
such sets has been an active area of research since the 1940s (Lorentz, 1949). This
problem gained more prominence with the advent of tomography, a technology to re-
construct three-dimensional objects from their projections (Gardner, 1995). We show
that private private information structures for n agents can be identified with subsets
of [0,1]", and that the Pareto optimal ones correspond exactly to sets of uniqueness.
In the two-dimensional case—which corresponds to the case of two agents and a bi-
nary state—the complete characterization of the sets of uniqueness is known (Lorentz,
1949) and leads to our characterization of the Pareto frontier. With more agents, we
rely on more recent results on sets of uniqueness for n > 3 (Fishburn et al., 1990)
to provide some sufficient conditions and some necessary conditions for Pareto opti-
mality. With three or more states, an analogous equivalence holds between between
Pareto optimality and a generalization of sets of uniqueness that we term partitions
of uniqueness.

Finally, using a information-theoretic approach, we provide simple constraints
on the informativeness of private private signals. We show that the sum of mutual
information of private private signals cannot exceed the entropy of the state, which is
not true for general information structures. We also prove an improved bound on the
sum of mutual information of private private signals, which might be of independent

interest in information theory.

Our focus on the maximal informativeness of private private signals is relevant to
a number of economic settings:

(1) In causal inference, a collider is a causal structure where a number of inde-
pendent random variables together determine a state (see, e.g., Pearl, 2009), as in the
majority signal example above. Characterizing Pareto optimality of private private
signals lets us bound the causal strengths of the various causes in a collider structure
(Janzing et al., 2013).

(2) Suppose agents compete in a zero-sum game, and a designer who knows the
state wishes to influence how agents’ actions correlate with the state. We show that
equilibrium signals must be private private. So, our bounds on the informativeness

of private private signals limit how much the designer can adapt the agents’ actions



to the state and thus constrain the designer’s payoffs.

(3) In our main application of optimal private disclosure, we consider the problem
of designing a maximally informative signal about the state under the constraint
of not revealing any information about a correlated random variable. Consider an
employer deciding whether to hire an applicant. The employer wants to know an
unknown state, which is the applicant’s productivity type. The employer solicits a
letter from a recommender who knows the applicant’s type. Barring any constraints,
the recommender could perfectly reveal this state to the employer. But the obstacle is
that there is an additional piece of information—a health condition of the applicant—
that is also known to the recommender, that is correlated with the productivity
type, and that the recommender is not allowed to reveal. Indeed, we assume the
recommender’s message must be completely independent of the applicant’s health, so
that the employer learns nothing about the applicant’s health from the letter. Thus,
the applicant’s health condition and the recommender’s letter comprise two private
private signals about the applicant’s productivity type.

When the state is binary (i.e., the applicant’s productivity type takes one of two
values), our results on Pareto optimal private private information imply a complete
solution to the optimal private disclosure problem. As we show, in this case there is a
unique optimal private disclosure: a way to write the recommendation letter so that it
Blackwell dominates the information contained in any other letter that preserves the
applicant’s privacy. Our proof is constructive and gives a simple recipe for generating

this optimal signal.

Related literature. The question of which belief distributions can arise in private
private information structures was addressed in Gutmann et al. (1991) and Arieli et al.
(2021). They provide a characterization for two agents under additional symmetry
assumptions; we discuss the relation to our work below. More generally, a related
question is which joint belief distributions are feasible without the privacy constraint
(see, e.g., Dawid et al., 1995; Burdzy and Pal, 2019; Burdzy and Pitman, 2020; Arieli
et al., 2021; Cichomski and Ose¢kowski, 2021). Hong and Page (2009) look at a special
case of private private signals where there are as many signals as there are states of
nature. But they do not characterize private private information in general or study
how informative these structures can be.

Private private signals arise as the worst-case information structure for the auc-



tioneer in some problems of robust mechanism design: see Bergemann et al. (2017)
and Brooks and Du (2021). Private private signals also appear as counterexamples of
information aggregation in financial markets: see the discussion in Ostrovsky (2012)
and similar observations in the computer science literature (Feigenbaum et al., 2003).

Our application to influencing competitors in zero-sum games relates to the lit-
erature of information design in games (Bergemann and Morris, 2016; Taneva, 2019;
Mathevet et al., 2020). Our application to optimal private disclosure has a concep-
tual connection to Eliaz et al. (2020), who also consider an optimization problem on
random variables under an independence constraint.

As mentioned above, our work is related to the mathematics of sets of uniqueness
and mathematical tomography (Lorentz, 1949; Fishburn et al., 1990; Kellerer, 1993).
These techniques have been applied in economics, for example by Gershkov et al.
(2013) to show the equivalence of Bayesian and dominant strategy implementation in

an environment with linear utilities and one-dimensional types.

2 Model
We consider a group of agents N = {1,...,n} where each agent ¢ has a signal s;
containing information about a state of nature w taking value in Q = {0, 1,...,m—1},

and all agents start with a common, full-support prior belief about the state. We
call the tuple Z = (w, s1,. .., $,) an information structure. Formally, fix a standard
nonatomic Borel probability space (X, ¥, P), and let w, sq, ..., s, be random variables
defined on this space that take values in 2x 57 x- - - x .5, where each .S; is a measurable
space.? The marginal distribution of w is the prior over the state.

Denote by p(s;) the posterior associated with s;. Formally, p(s;) is the random
variable taking value in A(Q) given by p(s;)(k) = Plw = k|s;]. In the case of a
binary state (i.e., when = {0, 1}), we let p(s;) take value in [0, 1] by setting p(s;) =
Plw = 1]s;].

Definition 1. We say that T = (w, s1,...,S,) s a private private information struc-

ture if (s1,...,8,) are independent random variables.

Private private signals should not be confused with conditionally independent

signals, where (sq,...,s,) are independent given w. This is a different notion, and

2 An alternative approach would be to define an information structure as a joint distribution over
QxS x-+ x5,



indeed conditionally independent signals cannot be private private, unless they are
fully uninformative about the state.

As a simple example of a private private information structure for two agents and
a binary state, let s1,so be independently and uniformly distributed on [0, 1], and
let w be the indicator of the event that s; + s; > 1, as illustrated in Figure 1. The
distribution of (s1, $2) conditioned on w = 1 is the uniform distribution on the upper
right triangle of the unit square. Conditioned on w = 0, (s1,s2) have the uniform
distribution on the bottom left triangle. Note that the posterior beliefs are p(s;) = s;
in this information structure, so both agents have strictly informative signals. While
the two signals are independent, they are not conditionally independent given the

state w.
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Figure 1: The pair of signals (si,sy) is uniformly distributed on the unit square,
with w = 1 in the black area and w = 0 in the white area. The induced posteriors
p(s1),p(s2) coincide with the signals.

This paper focuses on characterizing the private private signals that are maximally
informative for the group of agents, formalized through the concept of Pareto optimal-
ity of private private information structures. For the single-agent case (n = 1), recall
that an information structure (w, s) Blackwell dominates (w, §) if for every continuous
convex ¢: A(Q) — R it holds that E[p(p(s))] = E[e(p(8))].

This notion captures a strong sense in which s contains more information about w
than § does: in any decision problem, an agent maximizing expected utility performs
better when observing s than when observing s.

For more than one agent, our next definition introduces a partial order on private

private information structures that captures Blackwell dominance for each agent.
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Figure 2: The pair of signals (si,sy) is uniformly distributed on the unit square,
with w = 1 in the black area and w = 0 in the white area. The induced posteriors
p(s1),p(s2) are binary, and equally likely to be either 1/4 or 3/a.

Definition 2. Let 7 = (w, $1,...,8,) and 7 = (w, 81,...,8,) be private private in-
formation structures. We say that T dominates Z, and write T > I, if for every i it
holds that (w, s;) Blackwell dominates (w,8;). We say that T and 7 are equivalent if
I>7 andT > T.

It follows from this definition that Z is equivalent to 7 if and only if, for each i,
the distributions of p(s;) and p($;) coincide. Thus we can partition the set of private
private information structures into equivalence classes, with each class represented by
n distributions (p1, . . ., i,) on A(2). A first question that arises is that of feasibility:
which n-tuples (1, . .., ;) represent some private private information structure? We
address this question in §6.

Figure 2 illustrates another example of a private private information structure,
where the signals are again uniform on [0, 1], but each agent’s posterior belief is
equally likely to be either /4 or 3/2. Thus this structure is equivalent to a structure
where agents receive binary signals. More generally, a structure (w,sq,...,S,) is
always equivalent to the “direct revelation” structure (w,p(s1),...,p(s,)) in which
agent ¢ observes the posterior belief induced by s;.

We use the concept of dominance to define Pareto optimality: which private
private information structures provide a maximal amount of information to the agents,

so that more information cannot be supplied without violating privacy?

Definition 3. We say that a private private information structure Z is Pareto optimal

if, for every private private information structure T such that T > T, the structure T



18 equivalent to T.

In other words, Z is Pareto optimal if there is no private private information
structure Z that gives as much information to each agent (in the Blackwell sense),
and gives a strictly Blackwell dominating signal to at least one agent. In the Appendix
(Lemma 4), we show that Pareto optimal structures exist, and that, moreover, every
private private information structure is weakly dominated by a Pareto optimal one.

As we explain in the introduction, there is some tension between the privacy of
an information structure and its informativeness. For example, the most informative
structure from the point of view of agent 1 is the one where s; completely reveals
the state, i.e., p(s;) = d,. Likewise, agent 2 would benefit most from a structure
where sy perfectly reveals the state. But then p(s;) = p(s2), and so sy and sy are
not independent. The question is thus: what are the ways to maximally inform the

agents, while still maintaining privacy?

3 Applications of Pareto Optimal Private Private Signals

Before turning to our main results, we provide some motivation for studying Pareto

optimal private private signals by discussing two applications.

3.1 Optimal Private Disclosure

Optimal private disclosure is the problem of an informed party who wishes to disclose
as much information as possible about the state of nature w using a message s, but
must not reveal any information about a correlated random variable s; in the process.
In this application, we should interpret s; not as the “signal” given to some agent,
but as a pre-existing trait that must be kept secret for legal or security reasons.

As a concrete example, suppose an uninformed company wants to learn about a
decision-relevant type w of an applicant (e.g., whether she is a good fit for a job or
whether she will pay her rent on time), and an informed party (e.g., a recommender or
a credit-rating company) knows both this type and a legally protected trait s; of the
applicant that correlates with the type: this could be the applicant’s private medical
information, or a protected attribute like gender or race. The informed party faces
the problem of optimal private disclosure: convey as much information as possible

about the applicant without revealing any information about her protected trait,



so that the company’s downstream decision based solely on the disclosure will be
independent of the protected trait and therefore not cause disparate impact. Note
that even disclosure that does not explicitly contain the protected trait may cause
disparate impact, if such disclosure contains correlates of the trait.

A less economic (but more colorful) story is that of a government who would like
to reveal a piece of intelligence w, but without revealing any information about the
identity of its source s;. These could be naturally correlated: for example, if w is the
location of a weapons facility and the source s; is likely to live close to it. So the
government’s disclosure sy should contain as much information as possible about w,
while not revealing any information about s;.

The problem of optimal private disclosure can be phrased in terms of finding a
Pareto optimal private private information structure for two “agents” with a given

marginal distribution on (w, s1).

Definition 4. Given a one-agent information structure (w,s1), a signal sy is an
optimal private disclosure for (w,s1) if Z = (w,s1,82) is a Pareto optimal private

private information structure.

When w and s; are correlated, s; cannot be a completely revealing signal, as
it would provide information about s;. A priori, it is not obvious whether there
exists a unique solution to the optimal private disclosure problem, or whether there
are multiple Blackwell unordered signals s, that are optimal for different decision
problems. Our characterization of the Pareto optimal private private signals will
show that the solution is unique and provide a simple recipe to calculate it, when the

state is binary.

3.2 Influencing Competitors in Zero-Sum Games

As another motivation for private private signals, we consider a zero-sum game played
by two players. The action set of player i € {1,2} is A;, which we take to be finite, and
the utilities are given by u; = —us = u for some u: A; x Ay, — R. We assume that
this game has a unique mixed Nash equilibrium, which holds for generic zero-sum
games (Viossat, 2008).

There is a random state w taking value in €2. The two players do not know the
state and their payoffs do not depend on it. But, there is another agent (the designer)
who knows the state and has a utility function ug: €2 x A; x A, that depends on the



state and the actions of the players. This can model a setting where a designer
wants to influence the actions of two competitors, with the designer’s preference over
actions given by his private type w. The designer commits to a (not necessarily private
private) information structure (w, s1,s2). When the state w is realized, the designer
observes it and sends the signal s; to player 1 and s, to player 2. The players choose
their actions after observing the signals.

As a simple example, suppose the game is rock-paper-scissors, so that A; = Ay =
{R, P, S} and u(ay,as) equals 1 on {(P, R), (R, S), (S, P)}, zero on the diagonal, and
—1 on the remaining action pairs. The state w takes values in {0, 1} and is equal to
1 with probability /2. The designer gets a payoff of 1 for each player who chooses
scissors in the high state or chooses rock in the low state.

A pure strategy of player i is a map f;: S; — A;, and a mixed strategy o; is a
random pure strategy. An equilibrium consists of an information structure together
with a strategy profile (o1, 03) such that each agent maximizes her expected utility

given her signal. That is, for every s; € S; and a; € A;
Elui(oi(si), 0-i(s-i))|si] = E[ui(ai, 0-i(s-i))|si]-

This is just the incentive compatibility condition of a correlated equilibrium, and so,
by a direct revelation argument, we can assume that S; = A; and that o; is always the
identity: in equilibrium, the designer recommends an action to each agent, and the
agents follow the recommendations. We refer to such equilibria as direct-revelation
equilibria.

The next claim shows that private private information structures arise endoge-

nously in this setting.

Claim 1. In every direct-revelation equilibrium, the information structure (w, si, So)

1S a private private information structure.

Proof. A zero-sum game with a unique Nash equilibrium has a unique correlated
equilibrium which is equal to that Nash equilibrium (Forges, 1990). Thus (s, $2)

form a Nash equilibrium, and in particular s; must be independent of ss. O]

The intuition behind this result is simple: revealing to player ¢ any information
about the recommendation given to player —i gives ¢ an advantage that she can

exploit to increase her expected utility beyond the value of the game. But player —



can guarantee that ¢ does not get more than the value, and hence s; cannot contain
any information about s_;. Note that Claim 1 applies beyond generic zero-sum games
to any game with any number of players, provided that it has a unique correlated
equilibrium.?

In the rock-paper-scissors example above, the joint distribution of (s, sy) must
be uniform over {R, P, S} x {R, P, S}, by Claim 1. However, the designer is free to
choose the joint distribution between (si, s2) and w. Thus his problem is to maxi-
mize E[uq(w, s1, s2)] over all structures in which (sy, s2) is uniform over {R, P, S} x
{R, P,S}. Choosing (s1,ss) independently of w yields a payoff of 6/9. A straight-
forward calculation shows that an optimal structure yields him a payoff of 8. By
comparison, in a relaxed problem where the designer is allowed to dictate the players’
actions without worrying about the privacy constraint, he can achieve utility 2 by
revealing the state to both players, telling them to both choose scissors when the
state is high and rock when the state is low.

Beyond the specifics of the rock-paper-scissors example, the fact that equilibrium
signals are private private means that any bound on the informativeness of private
private signals yields a bound on the designer’s equilibrium utility: if the designer’s
recommendations only contain a limited amount of information about the state, then
he cannot hope that the players’ actions efficiently adapt to the state and yield him
high utility. Thus our results below, including Theorem 1 and Propositions 3, 4 and

5, constrain what can be achieved by the designer in any such setting.

4 Pareto Optimality and Conjugate Distributions

The question of Pareto optimality of private private information structures is already
non-trivial in the case of two agents and a binary state. For example, is the structure
given in Figure 1 Pareto optimal? What about the structure in Figure 27 In this
section, we give a simple description of the Pareto frontier, making it easy to check
if a structure is Pareto optimal. In particular, our results imply that the structure in

Figure 1 is Pareto optimal while the one in Figure 2 is not.

3The set of games with a unique correlated equilibrium is open (Viossat, 2008), so a small
enough perturbation of (for example) the rock-paper-scissors game will still have a unique correlated
equilibrium, although it will not be zero-sum. As a side note, we are unaware of interesting examples
of three player games with a unique correlated equilibrium. In particular, the following question is
open, to the best of our knowledge: does there exist a three player game with a unique correlated
equilibrium in which no player plays a pure strategy?

10
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Figure 3: An example of a cumulative distribution function F' and its conjugate F.
The shapes under the curves are congruent: the transformation that maps one to
the other is reflection around the anti-diagonal. Qualitatively, F' corresponds to the
belief distribution of a more informative signal, and F corresponds to that of a less
informative signal.

To state this result, we introduce conjugate distributions on [0, 1]. Let F': [0,1] —
[0,1] be the cumulative distribution function of a probability measure in A(]0, 1]).

The associated quantile function, which we denote by F'~!, is given by
F~z) = min{y : F(y) > x}. (1)

Since cumulative distribution functions are right-continuous, this minimum indeed
exists, and so F~1 is well defined. When F is the cumulative distribution function of a
full support and nonatomic measure, then F is a bijection and F~! is its inverse. More
generally, F~!(x) is the smallest number y such that an z-fraction of the population

has value less than or equal to y.

Definition 5. The conjugate of a cumulative distribution function F': [0,1] — [0, 1]
is the function F': [0,1] — [0,1], which is given by

F(z)=1—-F(1-x).

Graphically, (x,y) is on the graph of F if and only if (1 —y, 1 — ) is on the graph
of F: in other words, F' is the reflection of F around the anti-diagonal of the unit
square. An example is depicted in Figure 3.

As we show in the Appendix (Claim 2), F is also a cumulative distribution func-

11



tion. Thus, given a measure u € A([0,1]), we can define its conjugate measure
i € A([0,1]) as the unique measure whose cumulative distribution function is the
conjugate of the cumulative distribution function of p. It is easy to verify that the
conjugate of fi is again pu.

The main result of this section is that Pareto optimality can be characterized in

terms of conjugates.

Theorem 1. For a binary state w and two agents, a private private information
structure T = (w, $1,S9) is Pareto optimal if and only if the distributions of beliefs

p(s1) and p(s2) are conjugates.

Our proof of Theorem 1 combines our more general characterization of Pareto
optimality in the n agents case (Theorem 3) together with a classical result of Lorentz
(1949) about so-called “sets of uniqueness,” which we discuss in detail in §5; these are
subsets of [0,1]" that are uniquely determined by their projections to each of the n
axes.

Figure 3 suggests that on the Pareto frontier, when s; is very informative, s, must
be very uninformative. We formalize this in the Appendix (Proposition 6), where we
show that if both (w, s1, $2) and (w, t1, t2) are Pareto optimal, and if ¢; dominates sy,
then t, is dominated by s,. That is, giving agent 1 more information must come at
the cost of giving agent 2 less.

Note that for every pair of conjugate distributions p and i, there exists a private
private information structure Z = (w, s1, s2) where p(s;) has the distribution p and
p(s2) has the distribution . By Theorem 1, this structure will be Pareto optimal. To
explicitly construct such a structure, calculate the cumulative distribution function
F of ;1 and its conjugate F', choose (81, $2) uniformly from the unit square (so that
they are independent and each distributed uniformly on [0, 1]), and let w = h be the
event that s, > (1 — s). A simple calculation shows that F'(1 — s1) is equal to the
posterior p(s;) and has the distribution p, and p(ss) has the distribution fi. Figure 4

illustrates this construction.

We can use Theorem 1 to understand whether the structures of Figures 1 and 2 are
optimal. The uniform distribution on [0, 1] is its own conjugate. Hence, using Theo-
rem 1’s belief conjugacy test, we can conclude that Figure 1’s information structure

is Pareto optimal.

12
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Figure 4: A private private information structure, where the beliefs p(s;) and p(sz) are

'~

distributed according to the pair of conjugate distributions F' and F' from Figure 3:

~

the signals are uniform on [0,1]% and w = h if and only if sy > F(1 — s;) (black
region).

To understand the structure of Figure 2, consider, more generally, a discrete dis-
tribution g on [0, 1] with k atoms. Its conjugate i is also atomic: each atom of p with
weight w corresponds to an interval of zero mass with length w for i and, symmetri-
cally, each interval of length [ carrying no atoms in p becomes an atom of weight [ in
i (see Figure 5). In particular, i has either k — 1, k or k + 1 atoms, corresponding to
the cases that (1) p places positive mass on both 0 and 1, (2) p places positive mass
on exactly one of {0, 1}, and (3) p places zero mass on {0, 1}.

We conclude that the information structure of Figure 2, where both signals induce
beliefs /4 or 3/4 is not Pareto optimal, since two discrete distributions with the same
number of atoms can only be conjugates if each of them assigns a non-zero weight to

exactly one of {0, 1}.

4.1 Optimal Private Disclosures

Using Theorem 1, we solve the optimal private disclosure problem for binary states.

Theorem 2. For a binary state w, there exists an optimal private disclosure s3 for
every (w, s1). This disclosure is unique up to equivalence: the distribution of p(s}) is
the conjugate of the distribution of p(sy). Furthermore, every signal so independent

of s1 is Blackwell dominated by sj.

The last statement in Theorem 2 implies that every decision maker would find the

signal s5 optimal, regardless of the decision problem at hand. For example, no s, that

13
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Figure 5: The conjugate of a discrete distribution F' with three atoms at 0.1, 0.4,
and 0.6. Each atom becomes an interval of zero measure with length equal to the
atom’s weight, and vice versa. Since F' does not have atoms at the endpoints of [0, 1],
the number of intervals of zero measure exceeds the number of atoms by one, so its
conjugate F has four atoms at 0, 0.5, 0.8, and 1.

is independent of s; can have higher mutual information with w or lower quadratic
loss. This uniqueness of the optimal private disclosure is a rather surprising property
as one could expect that, for given (w, s1), there are non-equivalent choices of s that
are both maximal and incomparable in the Blackwell order. In Appendix B.2, we
demonstrate that uniqueness is a feature of the binary-state case by considering an
example with three states, binary s; and a continuum of optimal private disclosures.

Figure 6 shows the optimal private disclosure when the two states are equally likely
and s is a symmetric binary signal that matches the state with probability 3/2. The
optimal disclosure s} is trinary: it completely reveals the state with probability /2, and
gives no information with the remaining probability. More generally, when the states
are equally likely and s; is a symmetric binary signal that matches the state with
probability r € [1/2,1], the optimal disclosure will be trinary. It completely reveals
the state with probability 2(1 —r), and gives no information with the complementary
probability. Thus, as the correlation between s; and w increases, the optimal private

disclosure becomes less informative.

We provide a simple practical procedure for generating an optimal private disclo-
sure s5, given realizations of (w, s1). We know that s; and s} induce conjugate belief
distributions, so we can use the general procedure outlined in Figure 4 to construct

s5 as follows:
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Figure 6: Optimal private disclosure when a 3/4-binary signal s; must be kept secret.
The left panel depicts the cumulative distribution function F' of posteriors induced by
the symmetric binary signal s; matching the state with probability 3/2. The optimal
private disclosure s} corresponds to the conjugate distribution F' depicted in the right
panel. We see that sj is trinary: it is completely uninformative with probability 1/2
and fully reveals the state with the complementary chance, inducing the posteriors 0
or 1 with equal probabilities.

e Calculate p(sy), the conditional probability of w = 1 given s;.
e If w =1, sample s} uniformly from the interval [1 — p(s;), 1].

e If w =0, sample s3 uniformly from the interval [0, 1 — p(s1)].

This procedure yields an s that, conditioned on si, is distributed uniformly on [0, 1],
and hence is independent of s;. It is simple to verify that s} is optimal (see the proof
of Theorem 2).

This procedure can be simplified if the posterior p(s;) only takes finitely many
values, in which case there exists an optimal private disclosure that is also finitely
valued. Let [0,1] = ||, Ix be a partition of the unit interval into subintervals using
the values of p(s;). The belief p(s3) is constant when s} ranges within I. Hence, the
constructed optimal private disclosure s with values in [0, 1] is equivalent to a signal
t5 € {0,..., K} such that t5 = k whenever s} € I;. The signal t} is also an optimal
private disclosure and takes at most one more value than the number of values of
p(s1).

Consider the symmetric binary s; matching w with probability 3/2 from Figure 6.
An optimal private disclosure s} of the state can be generated as follows. It takes

three values, {0,1,2}. If s; = w, then s} = 2w, and if s; # w then s§ = 1 with
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probability /3 and s = 2 - w with probability /3. As a result, the realization s} = 1

is completely uninformative and s} € {0,2} completely reveals w.

4.2 Welfare Maximizing Private Private Information Structures

Suppose that each agent i € {1,2} has to choose an action a; € A; after observing
a signal s;, and receives payoff according to a utility function w;(w,a;). Our only
assumption is that u; is bounded from above.

For a given binary w, the social welfare of a given structure (w, s1, o) is

Z]E[ sup ui(w,ai(si))].

i:1,2 O’LSz—LAZ

What are the private private information structures (w, s1, so) that maximize social
welfare?

Clearly, every maximizing structure must lie on the Pareto frontier. But while
the Pareto frontier contains a rich set of information structures, including some that
induce a continuum of beliefs, the ones that maximize social welfare have a simpler

form.

Proposition 1. Given a binary w, and given u; and us, there exists a welfare maxi-
mizing private private information structure (w, 1, s2) such that sy takes two values,
so takes three values, and the distributions of beliefs induced by s; and sy are conju-

gates.

By permuting the roles of s; and sy, we deduce that there is also a welfare-
maximizing structure in which s, takes two values and s; takes three. The proposition
is proved in Appendix A.7 using a combination of an extreme-point argument and the
characterization of Pareto optimal structures via conjugate distributions (Theorem 1).

For an example of a social welfare maximizing structure, consider the canon-
ical example with two equally likely states, A; = Q = {0,1}, where each agent
gets utility 1 from matching the state and utility -1 from mismatching it, so that
uy(w,a) = us(w,a) = 2lw — a| — 1. If we reveal the state to agent 1 and give agent
2 no information, then the social welfare is 1. Consider instead a private private
information structure where each agent has a posterior belief of \/172 with probability
\/% and a posterior belief of 0 with the complementary probability. Such a structure

exists as this distribution is its own conjugate: see also Figure 7. Then the social
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Figure 7: A social welfare maximizing private private information structure for the
decision problem in which u;(w, a) = us(w,a) = 2lw —al — 1.

welfare is 4 — 24/2 ~ 1.17. Let us check that this is the highest possible social welfare
across all private private information structures.
By Proposition 1, we can assume that the distribution of posteriors p induced

by s is supported on two points. It has mean !/2 since the average posterior equals

[0}

the prior, and thus can be represented as 01 5+ a%@é% +o for some constants

a+,3 2
a, € (0,1/2], where §, denotes the point mass at x. The contribution of the first
agent to the welfare is therefore ;%%.

The conjugate distribution /i takes the form (% — oc) do + (a —1—6)5&%& + (% — 6) 1.
As the problem is state-symmetric, we can assume [ > a without loss of generality
and, hence, the middle atom of /i is above 1/2. Therefore, the second agent contributes
1 — 2« to the welfare, and the total welfare equals % + 1 —2a. A simple calculation
shows that this is maximized when 8 = 12 and o = 4/1/2 — 1/2, which yields the

structure described above.

5 Pareto Optimality and Sets of Uniqueness

In this section, we study Pareto optimality of private private information in the
general setting of n agents and a state w that takes value in Q = {0,...,m — 1}.
Our main result shows that Pareto optimality can be characterized using “sets of
uniqueness”: subsets of [0, 1]" that are uniquely determined by their projections to
the n axes.

As a first step, we show that it is without loss of generality to focus on information

structures that are constructed similarly to the examples we have considered above:
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each s; is distributed uniformly on [0, 1], and each value of w corresponds to some
subset of [0,1]". That is, w is a deterministic function of the signals (see Figures 1
and 2, as well as 8 in the Appendix).

More formally, let A = (Ay,..., An_1) be a partition of [0,1]™ into measurable
sets. That is, each Ay, is a measurable subset of [0, 1]", the sets in A are disjoint, and

their union is equal to [0, 1]™.

Definition 6. The private private information structure associated with a partition
A= (Ag,...,Am-1) isT = (w, $1,...,5,) where (s1,...,s,) are distributed uniformly
on [0,1]" and {w = k} is the event that {(s1,...,Sn) € Ax}.

Note that if A and A’ are partitions such that each symmetric difference A, AA}
has zero Lebesgue measure, then both are associated with the same information
structure, in the strong sense that the joint distributions of (w,si,...,s,) coincide.
Accordingly, we henceforth consider two subsets of [0,1]" to be equal if they only

differ on a zero-measure set.

Proposition 2. For every private private information structure I, there exists a

partition A whose associated information structure ' is equivalent to T.

While the general proof contained in Appendix A.2 is not constructive, for struc-
tures with a finite number of signals and a binary state, we show in Appendix B.3
how to construct a partition with an equivalent associated structure.

The ideas behind the proof of this proposition are the following. Using standard
results, one can always reparameterize the signals so that they are uniformly dis-
tributed in [0, 1]. Thus the main challenge is to ensure that the state is determined
by the signals. To this end, given signals that do not determine the state, we add a
signal ¢ that resolves the remaining uncertainty, so that w is a deterministic function
of (s1,...,8n,t). Then, we use a “secret sharing” technique (Shamir, 1979) to create
a pair of independent random variables t;, ¢y such that ¢ is determined by the pair
(t1,t2), but each t; is uninformative about the state and the other signals. We then
reveal to agents 1 and 2 the additional signals ¢; and t,, respectively. Thus the infor-
mation structure (w, (s1,t1), (s2,12), - .. ,sn) is equivalent to (w, sq,...,$,), but now
the signals determine the state.

Proposition 2 implies that for the purpose of studying the Pareto optimality of

private private signals, one can assume without loss of generality that information
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structures are always associated with partitions. In particular, the question of Pareto
optimality can now be phrased as a question about partitions: when does a partition
A correspond to a Pareto optimal structure? Our next result answers this question.
We state this result for the case of a binary state, as it involves significantly simpler
notation; the result for a general finite state space is given in Appendix A.3. In the
case of a binary state, a partition A = (A, A;) is determined by A;, since Ay is its
complement. Hence we will represent A by a single set A = A;. The information
structure associated with A will refer to the structure associated with the partition
(A, A).

Given a measurable set A < [0, 1]", we define n functions (o', ..., o) that cap-
ture the projections of A to the n coordinate axes. Denote by A the Lebesgue measure
on [0,1]"~%. The projection a': [0,1] — [0, 1] of A to the ith axis is

a(t) = A{y—i : (Wi, y—) € A, yi = t}).
If (w,s1,...,5,) is the information structure associated with A, then a(¢) is the

posterior of agent ¢ when she observes s; = t.

Definition 7. A measurable A < [0, 1]™ is a set of uniqueness if for every measurable
B < [0,1]" such that (o, ..., a2) = (P, ..., aB), it holds that A = B.

n n

Less formally, A is a set of uniqueness if it is determined by the projections
(af, ... o).
The main result of this section characterizes Pareto optimality in terms of sets of

uniqueness.

Theorem 3. A private private information structure is Pareto optimal if and only if

it is equivalent to a structure associated with a set of uniqueness A < [0,1]™.

To prove that Pareto optimality implies that A is a set of uniqueness, suppose
A is not a set of uniqueness, so that B # A has the same projections. Hence the
structure associated with A is equivalent to the one associated with B. By considering
a convex combination of the two structures, we arrive at another equivalent structure,
one in which the signals do not always determine the state. We resolve this residual
uncertainty via an additional informative signal ¢, which is independent of (s1, ..., s,).
Now, revealing this new signal to agent 1 results in a private private information

structure (w, (s1,t),82,... ,sn) that dominates the structure associated with A.
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Conversely, suppose the information structure associated with A is not Pareto
optimal. By considering a Pareto dominating information structure and garbling the
signals, we can find a density f : [0,1]™ — [0, 1] that is not an indicator function, but
has the same marginals as A. We next apply a result of Gutmann et al. (1991): the set
of densities valued in [0, 1] with given marginals is a convex set whose extreme points
are indicator functions. Since f is not an indicator function, the corresponding convex
set is not a singleton and must have at least two different extreme points. There exists
some other set with the same marginals as A, so A is not a set of uniqueness.

Theorem 3 shows an equivalence between the two a priori unrelated notions of
Pareto optimality and sets of uniqueness; a similar result in Appendix A.3 estab-
lishes an analogous equivalence for arbitrary finite state spaces, generalizing sets of
uniqueness to partitions of uniqueness. This connection lets us use characterization
results about sets of uniqueness to study Pareto optimality. Sets of uniqueness have
been studied since Lorentz (1949), who gives a simple characterization in the two
dimensional case. A version of his characterization, as we explain below, leads to
Theorem 1. Beyond the two dimensional case, sets of uniqueness have also been more
recently studied in the mathematical tomography literature (e.g., Fishburn et al.,
1990). We discuss below how these newer results help us understand Pareto optimal
structures.

To characterize sets of uniqueness in two dimensions, we will need the following
definitions. Say that A < [0,1]? is a rearrangement of B < [0,1]? if for i = 1,2 and
every q € [0,1], the sets {t € [0,1] : af'(t) < ¢} and {t € [0,1] : aP(t) < ¢} have

B

7, when viewed as random variables

the same Lebesgue measure. That is, o' and «
defined on [0, 1], have the same distribution. This has a simple interpretation in
terms of information structures: A is a rearrangement of B if and only if the two
associated information structures are Blackwell equivalent. This is immediate, since
in the information structure associated with A, aZ(t) is the belief of agent i after
observing s; = t.

Recall that B < [0,1]" is upward-closed if x = (x1,...,x,) € B implies that

y:(yla"'yyn)erOI'aHyZ,jE.

Theorem 4 (Lorentz (1949)). A measurable subset A < [0,1]? is a set of uniqueness

of and only if it is a rearrangement of an upward-closed set.

This formulation is different than the one that appears in the paper by Lorentz
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(1949). We therefore show in the Appendix that it is an equivalent characterization.
Theorem 1 is a consequence of Theorems 4 and 3.

When n > 2, the known characterizations of sets of uniqueness are more involved
(Kellerer, 1993). Nevertheless, a simple sufficient condition for uniqueness (Fishburn
et al., 1990) is to be an additive set: this holds when there are bounded h;: [0,1] — R
such that

In two dimensions a set is additive if and only if it is a rearrangement of an upward-
closed set, and so additivity provides another characterization of the sets of uniqueness
(and equivalently, of the Pareto optimal structures). In higher dimensions (i.e., with
three or more agents), the sufficiency of additivity implies that every additive set is
associated with a Pareto optimal structure. With n > 3, Kemperman (1991) demon-
strated that there are sets of uniqueness that are not additive. However, additivity
is “almost necessary”: Kellerer (1993) characterizes the class of sets of uniqueness as

the closure, in a certain topology, of the class of additive sets.

6 Feasibility

In §2 we discussed the fact that a private private information structure (w, s1, ..., s,)
is equivalent to the “direct revelation” structure (w,p(s1),...,p(s,)). Equivalence
classes of information structures correspond to n-tuples (p1, ..., t,) of measures on

A(Q), where p; is the distribution of p(s;). In this section, we consider the question
of feasibility: which tuples (p,. .., ,) represent some private private information

structure?

Definition 8. An n-tuple (p1,. .., i,) of probability measures on A()) is said to be
feasible if there exists a private private information structure T = (w, $1,...,S,) such

that p; is the distribution of p(s;).

For example, Figure 2 shows that for symmetric binary states and two agents, it

is feasible for both agents to have binary signals that induce beliefs of either /1 or
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3/s. That is, (u1, p2) is feasible for

1 1
M1 = p2 = 551/4 + 553/4-

The question of feasibility was studied by Gutmann et al. (1991) and Arieli et al.
(2021). The latter investigate feasibility for two agents, symmetric binary states,
and focus on the case of p; = po. They show that if p is symmetric to reflection
around /2 (i.e., to permuting the states), then (u,u) is feasible if and only if u is
a mean-preserving contraction of the uniform distribution on [0, 1]. It follows, for
example, that 3/4 is the strongest possible binary signal that two players can have in
a symmetric private private information structure with a symmetric binary state. To

the best of our knowledge, little is known about feasibility beyond this result.

A necessary condition for feasibility is given by the the so-called martingale con-
dition (i.e., by the law of iterated expectations). It implies that if the posterior p(s;)
has distribution p; then the expected posterior Sqdui(q) must equal to the prior dis-
tribution of w. Thus a necessary condition for feasibility is that {¢du;(¢) = {qdu;(q)
for all agents 7 and j.

The question of feasibility is closely related to that of Pareto optimality. Indeed,
one answer is that (ug,..., ) is feasible if and only if there exists a Pareto optimal
structure represented by some (v4,...,1,), such that each u; is a mean-preserving
contraction of ;. This holds since mean-preserving contractions of the posterior belief
distributions correspond to Blackwell dominance. By Blackwell’s Theorem, one can
take a structure with posteriors (v1,...,1,), and apply an independent garbling to
each agent’s signal to arrive at a structure with posteriors (1, ..., ).

This observation, together with Theorem 1, gives the following characterization

for the case of a binary state and two agents.

Corollary 1. The pair (p1, o) of distributions on [0, 1] is feasible if and only if s

1s @ mean preserving contraction of the conjugate of ji.

This result generalizes the symmetric case addressed in Proposition 2 of Arieli
et al. (2021): in our result, the two states need not be equally likely, the two agents
need not have the same belief distribution, and their belief distributions need not
be symmetric around /2. It offers a simple tool for checking feasibility. Indeed, by

applying a standard characterization of mean-preserving spreads, the pair (p, f2)

22



is feasible if and only if they have the same expectation, and the corresponding

cumulative distribution functions (Fi, Fy) satisfy

f Fy(z)dz > f Fi(z) da

Y Y

for every y € [0, 1].

In the general case of m states and n agents, we do not have a simple characteriza-
tion of feasibility. Nevertheless, we now present a necessary condition for feasibility,
which relies on information-theoretic ideas. We will require two standard definitions.

The Shannon entropy of a measure ¢ € A({) is

H(g) = — ) (k) logy(q(k)). (2)

ke

Given a signal (w, s;), denote the mutual information between w and s; by

I(w;s;) = H (E[p(s;)]) — E[H(p(s;))]-

Note that I(w;s;) can be written in terms of the distribution of posteriors y;, and so

it is an equivalence invariant:

1) = 11 ( [aat@)) - [ #10) duto) 3)

In this expression, the first expectation §qdu;(g) is the prior distribution of w.

In information theory, entropy is often used to quantify the amount of randomness
in a distribution. Mutual information is then the expected reduction in this random-
ness, and is used as a measure for the amount of information contained in a signal.
These notions are also used in economics, e.g., in the rational inattention literature
(Sims, 2010; Matéjka and McKay, 2015). In our setting, mutual information is use-
ful as it provides the following necessary condition for feasibility of private private

information structures.

Proposition 3. With n agents and m states, the tuple (p1, .. ., pin) of distributions on
A(Q) is feasible only if all p; have the same expectation p = §qdu;(q) and Y, I(w) <
H(p).
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The fact that I(u;) < H(p) follows immediately from the definition of mutual
information. For general information structures (e.g., conditionally independent sig-
nals), there are no further restrictions on the tuple (/(p1),...,1(1,)): each can take
any value between 0 and H(p). Proposition 3 shows that the situation is different
when it comes to private private information structures. Here, the sum of mutual
information is bounded by the entropy of the prior over w, so that the entropy of w
behaves like a finite resource that needs to be split between the agents. The proof of
this proposition uses standard information-theoretic tools.

Proposition 3 raises a natural question: is this condition tight? That is, does the
picture of entropy as a finite resource to be split between the agents tell the whole
story, or is there a tighter inequality that relates ), I(p;) and H(p)?

Our next proposition shows that Proposition 3 can be strengthened in the case of

a binary state.

Proposition 4. The tuple (p1, ..., ly,) of distributions on A({0,1}) is feasible only
if all p; have the same expectation p = §qdu;(q) and

In2

= 3 1) 1)

1<j

Z[(Ni)<H<p>_

As far as we know this proposition is a novel information-theoretic inequality,
which might have some independent interest. It shows that for a binary state, while
entropy is a finite resource, it cannot be fully divided among the agents: the sum of
mutual information is strictly less than the entropy of w (as long as at least two signals
are informative). This is a special property of the binary-state setting. For example,
if w is uniformly distributed over {0, 1} x {0, 1}, then the structure in which s; is equal
to the first coordinate of w and s; is equal to the second satisfies Proposition 3 with

equality.

The mutual information I is the expected utility associated with a particular
decision problem: one in which the indirect utility is given by a constant minus
the entropy. Does an analog of Proposition 3 hold for other decision problems?
A positive answer would give additional necessary conditions for feasibility. The
next proposition shows that for another natural indirect utility function—a quadratic
one—an analogous statement indeed holds. Curiously, the proof of this proposition

is different than that of Proposition 3, and we do not know of a unifying principle
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that yields both results. Moreover, we do not know of any other indirect utility that
yields the same type of result.
In analogy to (2) and (3), for ¢ € A(Q) denote H(q) = X, q(k)(1 — q(k)), and

for a measure g on A(S2) define

1 = ([ aduta)) - [ @ o

Loosely speaking, for a distribution p over posterior beliefs, I(yx) is the expected

reduction in the variance of the agent’s belief.

Proposition 5. With n agents and m states, the tuple (p1, ..., i) of distributions on
A(Q) is feasible only if all p; have the same expectation p = §qdu;(q) and >, I(p;) <
H(p).

While this statement is completely analogous to that of Proposition 3, the proof
uses a different technique, exploiting the L? orthogonality of independent random vari-
ables. Indeed, we do not know of a unifying argument that implies both propositions,
and we furthermore do not know of additional decision problems that yield analogous
statements. We note that Proposition 5 is a generalization—from the binary state
case—of the “concentration of dependence” principle of Mossel et al. (2020). A very
similar idea appeared earlier in the economics literature (Al-Najjar and Smorodinsky,
2000) and is standard in the analysis of Boolean functions (see, e.g., Kahn et al., 1988;
O’Donnell, 2014).
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Appendix

A  Omitted Proofs

Note that we sometimes prove results in a different order than the order that they
appear in the main text, since some of the results we state earlier are implied by some

of the later results.

28



A.1 Preliminary Lemmas

Let Z = (w,s1,...,5,) be a private private information structure. The signals
S1,...,8p can be combined into a new signal s = (sy,...,s,). The following lemma
gives a lower bound on the informativeness of the combined signal s in terms of the
informativeness of the individual signals. It can be seen as superadditivity of mutual

information for independent signals.

Lemma 1. For a private private information structure (w, s1,...,S,) the following

inequality holds

Z](w;si)gl(w;(51,...,sn)). (4)

Proof. The result for n > 3 follows from the result for n = 2 by applying it sequentially
to (s1,...,sk) for k < n. Consequently, in the rest of the proof we assume n = 2.

Our goal is to show that
A=1(w; (s1,8)) —I(w; s1) — I(w; s2) = 0.

Let p1(k) = p(s1)(k) = Plw = k| s1], define ps likewise, and let p12(k) = p(s1, s2)(k) =
Plw = k| s1, $2]. Let p denote the prior distribution of w. By the martingale property

E[p12 | pi] = pi and E[p;] = p.
Using this notation and the definition of mutual information, we can write for
i€ {l,2}

p(k) . 3 p(k)
w s, = [Zpl ) log k)] and I(W,Sl,SQ = [Zplz ) log (k)]

By the martingale property we can replace the first p; by pia:

p(k)
(w; si) = [Zplz )log (k)]

Thus

£ Soate log >p2<k>]'
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Applying Jensen’s inequality to the logarithm, we get that

p12(k)p(k)

Cancelling and rearraging we get
1
A =log Y ——E|pi(k)p2(k)].
Since pi(k) and po(k) are independent,
1
A > log ) | =< E[pi (k)]E[pa(k)].
— p(k)

By the martingale property E[p;(k)] = p(k), and so A >1log >, p(k) = 0. O

Note that this proof only used the independence of (s1,$2) to the extent that it
implies that p(s;) is uncorrelated with p(ss).

To show that a given private private information structure Z = (w, $1,...,58,) is
Pareto dominated, we will often use the following technique: construct an additional
informative signal ¢ independent of sq,...,s,, and reveal it to one of the agents,
say, the first one. The new information structure Z' = (w, (s1,1), S2, - - ., Sp) strictly

dominates Z thanks to the following direct corollary of Lemma 1.
Corollary 2. Fix w, and consider a pair of signals s and t such that
e s and t are independent, and
e t is not independent of w.

Then the information structure (w, (s,t)) strictly dominates (w, s) with respect to the

Blackwell order.

Proof. Clearly (w, s) is weakly dominated by (w, (s,t)). We show that this domination
is strict.

Since t is informative, I(w;t) > 0. Hence, by Lemma 1,
I(w; (s,t) = I(w; s) + [(w;t) > I(w;s).
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Since I(w; s) is the value of a particular decision problem (see the discussion in §6),
it follows that (w, (s,t)) strictly dominates (w, s). O

The next lemma shows that, without loss of generality, induced posteriors are
equal to signals, which can be seen a version of the revelation principle for private

private information structures.

Lemma 2. Any private private information structure T = (w, s1, ..., Sy,) is equivalent
to J = (w,t1,...,t,) where each agent’s signal t; is her posterior p(s;) in the structure
T.

Proof. By the law of total expectation, p(t;) = t;. It follows that p(s;) and p(t;) have

the same distribution, and so are Blackwell equivalent. O]

For a private private information structure Z = (w,sy,...,S,), recall that we
denote by p; € A(A(Q)) the distribution of the belief p(s;). Let M < A(A(Q2))" be
the set of feasible distributions i, ..., f,, i.e., those that correspond to some private

private information structure 7.

Lemma 3. The set of feasible distributions M is compact in the topology of weak

convergence.

Proof. Since the set of probability measures A(A(S2)) is compact, to prove the com-

pactness of M, it is enough to check that it is closed. In other words, we need

to check that if a sequence of feasible distributions (i}, ..., u!) weakly converges to
(u, ..., 1) as | — oo, then the limit is also feasible.
Let 7! = (w,st,...,s\) be an information structure inducing (i,...,ul). By

Lemma 2, we can assume without loss of generality that the signals s! are in A(Q)

and they coincide with the induced beliefs, i.e., p(st) = s;. Let ¢! € A(Q x A(Q)")

be the joint distribution of w and the beliefs s!, ..., s.. By compactness of the set of

, Sy
probability measures, we can extract a subsequence of ¢! converging to some ¥*. By
definition, the marginal of 1)* on the belief coordinates equals p{® x ... x p°.
Consider a private private information structure Z® = (w,sy,...,s?), where
signals s belong to A(2) and the joint distribution of the state and signals is given
by *. Each signal s° has distribution p°. Let us check that the induced beliefs

coincide with signals, i.e., p(s)(k) = s{(k) almost surely for each k € Q. We verify
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an equivalent integrated version of this identity:

f <2h =)k >) dy” f (Z h(k,s?>s?<k>> ) (5)

for any continuous function h on Q2 x A(£2). Since the left-hand side is just the integral

of h, this is equivalent to

| ne, dwf(z]h )dw"o (6)

For each [ < oo, the beliefs in Z! coincide with the signals, i.e.,

| heshawt - f(Zh )w

As integration of a continuous function commutes with taking weak limits, letting [
go to infinity, we obtain (6).

We conclude that each belief p(s) in Z* coincides with the signal s and the
latter is distributed according to p;°. Therefore, (uf, ..., ur) is feasible and so the

set of feasible distributions is closed and thus compact. n

The next lemma shows that our order on private private information structures is
well-behaved, in the sense that each structure is dominated by a Pareto optimal one:
each element of the partially ordered set of private private information structures is

upper bounded by a maximal element.

Lemma 4. For any private private information structure T = (w, sq,...,Sy), there

exists a Pareto optimal structure T' = (w, s}, ..., s,) that weakly dominates T.

Proof. Recall that Z < 7 if for any continuous convex ¢: A(€2) — R and any agent
i1=1,...,n,

J@(QJ)dMi(Q) < J@(Q)dVi(Q) (7)

where p; and v; are the distributions of agent i’s beliefs in Z and J, respectively.
We say that the collection of distributions (u1, .. ., i,) is dominated by (v, ..., v,)
if (7) holds. Hence, J dominates Z if and only if the distributions of beliefs in J

dominate those in Z. If p! — p* and v/ — v weakly as | — oo and (v,..., 1))

P
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dominates (p},...,ul), then (v{°,...,v®) dominates (uP, ..., > ) as integration of
a continuous function ¢ in (7) is exchangeable with taking weak limits. Thus the
dominance order on distributions is continuous in the weak topology.

Let (p1,...,p,) be the distributions of posteriors induced by Z and let M be
the set of feasible distributions endowed with the weak topology. As M is compact
by Lemma 3 and the dominance order is continuous, there is a maximal element
(v1,...,v,) € M dominating (py, ..., i,). Since (v, ..., 1,) is feasible, it is induced
by some private private information structure Z’'. By the construction, Z' dominates

7 and is Pareto optimal. O

A.2 Proof of Proposition 2

We need to show that, given a private private information structure Z = (w, s1, .. ., $,)
with = {0,...m — 1}, there is an equivalent structure associated with a partition
A = (Ag,...,An_1) of [0,1]". The construction relies on two lemmas. Lemma 5
shows that assuming signals s; are uniform on [0, 1] is without loss of generality.
Hence it remains to show that there is an equivalent information structure where
signal realizations determine the state. This is done using a secret-sharing scheme

from Lemma 6.

Lemma 5. For any private private information structure T = (w, sq,...,Sy), there
is an equivalent private private information structure T' = (w, s}, ...,s) such that

ren

each s is uniformly distributed on [0, 1].

Proof. Consider the information structure J = (w,ty,...,t,) where t; = (s;,7;), and
each 7; is independent and uniformly distributed on [0,1]. Clearly, Z and J are
equivalent. As t; is nonatomic, and since all standard nonatomic probability spaces

are isomorphic, t; can be reparametrized to be uniform on [0, 1]. ]

We say that a signal ¢ is split into r; and ry if t is a function of r; and ry, i.e.,

t= f(?”l,rg).

Lemma 6. A signal t distributed uniformly on [0, 1] can be split into r1 and ro such
that each r; is uniformly distributed on [0,1] and the three random variables t, 11,
and ro are pairwise independent. Furthermore, if t' is an additional signal that is

independent of t, then we can take ri,ry to be independent of t'.
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This lemma extends the classic secret sharing idea from cryptography which ap-

plies to discrete random variables. The proof, by construction, is immediate.*

Proof. Denote by |x| the fractional part of x € R. Take r; independent of both ¢
and ¢’ and distributed uniformly on [0, 1], and let ro = |r; +¢|. Then t = |ry — 7|
and r1, 7o and t are easily seen to be pairwise independent and also independent of ¢’
altogether. O]

With the help of Lemmas 5 and 6, we are ready to prove Proposition 2.

Proof of Proposition 2. We are given a private private information structure Z =
(w, $1,...,5,) with sets of signal realizations S;, i = 1,...,n. We aim to construct

an equivalent one, Z', where each signal s is uniformly distributed on [0, 1] and the

realization of signals (s], ..., s!) determines the state or, equivalently, Z' is associated
with some partition A = (Ay,..., A1) of [0, 1]™.
By Lemma 5, we can find a private private information structure (w,ty,...,t,)

equivalent to Z where each ¢; is uniformly distributed in [0, 1]. If the signals (¢4, ..., t,)
determine the state, then the proof is completed.

Consider the case where (t1,...,t,) do not determine the state w. To capture the
uncertainty in w remaining after the signals have been realized, we construct a new
signal t as follows.

Let ¢ : [0,1]" — A(f2) be a conditional distribution of w given all the signals,
e, q(z1,...,x,)(k) = Plw=Fkl|t, =x1,...,t, = x,] for any k£ € Q. With each

distribution ¢ € A(Q2) we associate a partition of [0,1) into m intervals

k—1 k
Bi(q) = [Z q(), q(l)) . k=0,...,m—1.

1=0 1=

The length of By(g) equals the mass assigned by ¢ to w = k. Let t be a random
variable uniformly distributed on [0, 1] and independent of (¢i,...,%¢,). Consider a
new state variable w’ € € such that w’ = k whenever t € B (q(tl, o ,tn)). By
definition, the joint distributions of (w,ty,...,t,) and (', t1,...,t,) coincide and,
therefore, the two structures are equivalent.

The new state w’ is determined by the realizations of t1,. .., t, and the new signal

t. Using Lemma 6, we split the signal ¢ into r; and 7, that are independent of each

4We are thankful to Tristan Tomala for suggesting this construction.
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other, and where each r; is independent of ¢. Note that, by this lemma, we can take
r1 and 75 to be independent of (¢i,...,t,). Since each r; is uninformative of ¢, the
structure (W', (t1,71), (ta,72),t3,...,t,) where 7y is revealed to the first agent and ry
to the second one is a private private structure and is equivalent to Z. Since ¢t is a
function of r1 and ry, the signals (¢1,r1), (t2,72),t3, ..., t, determine the state.

It remains to reparameterize the signals of the first two agents so that, instead
of being uniform on [0, 1]?, they become uniform on [0,1]. Consider any bijection

h : [0,1]*> — [0,1] preserving the Lebesgue measure® and define s| = h(ty,r;),

sy = h(te,r9), and s, = t; for i = 3,...,n. The private private information structure
T = (W, s, 8h,...,8,) is equivalent to Z, all the signals are uniform on [0, 1], and
the realization of signals determines w’. O]

A.3 Proof of Theorem 3

We formulate and prove an extension of Theorem 3 applicable to non-binary sets of
states 2 = {0,1,...,m — 1}.

Consider a partition of [0,1]" into m measurable sets A = (Ao, ... A,,—1). Recall
that the structure Z = (w, s1,. .., Sy) is said to be associated with a partition A if
all the signals are uniform on [0, 1] and w = k whenever (sq,...s,) € Aj.

We say that two partitions A = (Ao, ... A1) and B = (By, ... B,,_1) are equal
if Ay and By differ by a set of zero Lebesgue measure for each k. Recall that the
projection of a measurable set A < [0,1]" on the ith coordinate is denoted by o

(see §5). The notion of sets of uniqueness from §5 extends to partitions as follows.

Definition 9. A partition A = (Ao, ..., An_1) is a partition of uniqueness if for
any partition B = (By, ..., By_1) such that af’“ = aP* for all i and k, it holds that
A=B.

Theorem 5 (Extension of Theorem 3 to m states). A private private information
structure I is Pareto optimal if and only if it is equivalent to a structure associated

with a partition of uniqueness A.

Note that in the case of m = 2 states, a set A; in a partition A = (Ao, A1) deter-
mines Ay = [0, 1]™\A;. Hence, A = (Ap, A1) is a partition of uniqueness if and only if

5Such a bijection exists since both are standard nonatomic spaces. It can be constructed explicitly
in the binary representation: h(x,y) = z, where © = 0.21T2232425%6 - - -, ¥ = 0.Y1Y2Y3Yays5Ys - - - and
z = 0.21Y122Y223Y3 - - ..
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Ay is a set of uniqueness. Hence, Theorem 3 is an immediate corollary of its extended
version. For an application of the theorem for m > 2, see the example contained in
Appendix B.2. This example also demonstrates that partitions of uniqueness are not
necessary composed of sets of uniqueness for m > 2 and, hence, the requirement of
a partition to be a partition of uniqueness does not boil down to restrictions on its

elements unless m = 2.

The proof of the theorem is split in a sequence of lemmas. We say that a private
private information structure is perfect if the information received by all the agents
together is enough to deduce the realization of w, i.e., there exists a function f :
S x...x S, > Qsuch that w = f(s1,...,$,). In particular, a structure with signals
uniform in [0, 1] is associated with some partition if and only if it is perfect.

The next lemma shows that perfection is necessary for Pareto optimality.

Lemma 7. If a private private information structure T = (w, $1, ..., 8y) is equivalent

to a structure that is not perfect, then I is not Pareto optimal.

The construction of the Pareto improvement resembles the proof of Proposition 2
except for the fact that the newly constructed signal is revealed entirely to one of the
agents, thus strictly improving her information (in the Blackwell order), by Corol-

lary 2.

Proof. Without loss of generality, Z itself is imperfect. Let ¢ : S x ... x S, — A(Q)
be the distribution of w conditional on s; = x1,...,8, = z,, i.e., q(z1,...,2,)(k) =
Plw=Fk|sy =x1,...,8, =x,], k =0,...,m— 1. Since Z is not perfect, we can find
a state kg € Q2 such that the event {w = ko} is not always determined by the signals.
That is, the random variable (s, ..., s,)(ko) does not always take values in {0, 1}.
Without loss of generality, we assume that ky = 0. With each ¢ € A(Q2) we associate
a partition of [0,1) = | |,., Bk(q), where

Bi(q) = [¢({0, ...,k —1}), q({0,...,k})), k=0,....m—1

so that the length of Bx(q) equals q(k).
We construct a new equivalent structure with an extra signal ¢ as in the proof
of Proposition 2. Let ¢ be a random variable uniformly distributed on [0, 1] and

independent of sq,...,s,. Define a new state w’ as a function of these variables in
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the following way:
w' =k whenever te By(q(s1,...,sn)).

The joint distribution of (w’, sq,...,s,) coincides with that of (w,si,...,s,) and,
hence, the two structures are equivalent.

To get a Pareto improvement, we reveal the realization of ¢ to the first agent and
obtain a private private information structure Z' = (', (s1,1), S2,...,S,). To argue
that 7’ is indeed a Pareto improvement we need to show that ¢ itself is an informative
signal about w’, i.e., the posterior p(t) € A(Q) is not equal to the prior p with a
positive probability. It is enough to show p(t)(kg) takes different values for ¢ in [0, €]
and in [1 —,1]. As we assume without loss of generality that ky = 0, the interval

By, is the leftmost one in the partition, and so

p(t)(ko) = p(t)(0) = P[t < q(s1,...,54)(0) [ 1]

That is, if we denote by @ the cumulative distribution function of ¢(s1,...,s,)(0),
then p(t)(ko) = 1 — G(t). Since G is a non-constant function on (0,1) by our as-
sumption on kg, the induced belief p(t)(ko) is not a constant. Thus ¢ is informative.
By Corollary 2, this implies that the signal (s1,¢) which the first agent receives in 7’
strictly dominates the signal s; received in Z. As the signals of all other agents are

the same in the two structures, Z’ strictly Pareto dominates Z. O

The next step is to show that only structures corresponding to partitions of unique-

ness can be Pareto optimal.

Lemma 8. If a private private information structure T = (w, sy,...,s,) is Pareto

optimal, then T is equivalent to a structure associated with a partition of uniqueness.

Proof. By Proposition 2, we can find a private private information structure J =
(w,ti,...,t,) equivalent to Z and associated with some partition A = (Ag, ..., Ap_1)
of [0, 1]™.

Let us demonstrate that A is a partition of uniqueness. Towards a contradiction,
assume that there is another partition A" = (Aj, ..., A],_;) not equal to A but such

that the projections a;'* = a?’“ for all 7 and k. So 7 is also equivalent to the structure
J = (w,t],... 1) associated with A’.
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By Lemma 7, to get a contradiction, it is enough to construct an information
structure Z’ that is equivalent to Z but not perfect, as this would imply the existence of
a strict Pareto improvement. We define 7’ as a structure where the joint distribution
of the state and signals is a convex combination of the corresponding distributions in
J and J’'. Formally, let s/,..., s be independent random variables each uniformly
distributed on [0,1] and let § € {0,1} be a symmetric Bernoulli random variable

independent of (s),...,s,). Define the state w’ as follows:

(s),...,8)€eA,and § =0
(sh,...,8,) €A, and 0 =1

Since elements of the partitions A and A’ have the same projections, the posterior
induced by observing t; = x in J is identical to the one induced by observing ¢, = x
in J'. Hence it is again identical to the posterior induced by observing s; = z in Z'.
As the partitions A and A’ are not equal, there are k # k' such that the intersection
A n A}, has a non-zero Lebesgue measure. Hence, if (s,...,s)) € Ay n A}, whether
w =k or w = k' is determined by 6. We conclude that, with positive probability, the
signals (s),...,s)) do not determine the state, so Z’ is not perfect and thus both Z’

and Z can be Pareto improved by Lemma 7. O]

We see that Pareto optimal structures are contained in those associated with par-
titions of uniqueness (up to equivalence of information structures). This shows one
direction of Theorem 5. It remains to demonstrate that any partition of unique-
ness leads to a Pareto optimal structure, i.e., the structures associated to different
partitions cannot dominate each other.

For this purpose we need two intermediate steps contained in the next two lemmas.
Lemma 9 shows that a garbling of an information structure is never perfect and
Lemma 10 implies that imperfect structures cannot be equivalent to those associated
with partitions of uniqueness. Recall that for a pair of information structures (w,?)
and (w, s), the signal ¢ is a garbling of s if, conditional on s, ¢, and w are independent.
A structure Z = (w,sy,...,8,) is a garbling of 7/ = (w,s],...,s)) if each s; is a
garbling of s and each s; is independent of (s});.;. The last requirement means
that each agent’s signal is garbled independently. Note that, by Blackwell’s Theorem
(Blackwell, 1951, Theorem 12), 7' (weakly) dominates Z if and only if Z is equivalent

to a garbling of Z'.
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Lemma 9. If T is a garbling of a private private information structure I', then T is

not perfect unless T and I’ are equivalent.

Proof. Suppose that Z is perfect, and sow = f(s1,...,s,) for some f: S;x...xS, —
Q. Our goal is to show that Z is equivalent to Z’'. For a given realization of s;, the
state w is a function of the remaining signals s;, j # 7. Since s} and s; are independent
for i # j, we see that w is independent of s} conditional on s;. In other words, s, is
also a garbling of s;. We conclude that both Z is a garbling of Z’ and Z’ is a garbling

of Z, so they are equivalent. O

The next lemma is used to show that imperfect private private information struc-
tures cannot correspond to partitions of uniqueness. Before stating it, we will need
to introduce the following concept. A fuzzy partition is a tuple (go, - .., gm) of mea-
surable functions g : [0,1]" — [0, 1] such that >, g = 1. We can identify this tuple
with a single function g: [0,1]" — A(£2). The case of a partition is one in which each
gk 1s the indicator of a set Ay, in a partition of [0, 1]". As with partitions, we identify
two fuzzy partitions if they agree almost everywhere. We denote the collection of
fuzzy partitions by G.

We define the projection of g to its ith coordinate by

alf (z;) = J gr(zi,x_y) de_.
[071]7171

When gy, is the indicator of a set Ay, the projection aiA * as defined in the main text
is equal to the projection of g,. With each partition A = (Ao, ..., A1) of [0,1]" we

associate the set
Gy = {9 e G such that VEk,i &gk _ O‘z'Ak}

of fuzzy partitions that have the same projections as A.

Lemma 10. A partition A = (Ao, ..., Am_1) of [0,1]" is a partition of uniqueness if

and only G 4 1is a singleton.

Note that G4 always contains at least one element, namely, the indicators of the
partition A, i.e., (1ay,...,14,_,) € G4. The idea behind the lemma is that all

extreme points of G4 are indicators of partitions with the same projections as A.
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Hence, if G4 is not a singleton it has at least two distinct extreme points, i.e., there
is at least one more partition with the same projections as A, which is incompatible
with the fact that A is a partition of uniqueness. This identification of extreme points
and indicators has appeared before in the context of sets of uniqueness (see Gutmann
et al., 1991).

Proof. First we show that G4 can be treated as a non-empty compact convex subset
of a locally convex Hausdorff vector space. Non-emptiness and convexity is straight-
forward and compactness is to be checked once an appropriate topology is defined.
Let M([0,1]") be the set of all finite signed measures on [0,1]" endowed with
the topology of weak convergence, making it a locally convex Hausdorff topolog-
ical vector space. We identify a bounded function g: [0,1]" — R with a mea-
sure gy on [0,1]™ having the density g with respect to the Lebesgue measure, i.e.,
dpg(zq, ..., x,) = gr(z)dxy...dz,. Hence, G4 can be identified with a subset of
<M([0, 1]”))Q Let A<([0,1]") be the set of sub-probability measures, i.e., non-
negative measures p with u([0,1]") < 1. The set A<([0,1]") is a compact subset of
M([0,1]™). As G4 is a subset of the compact set (A<([0, 1]”))9, compactness of G4
follows from its closedness. To check closedness, we rewrite the conditions defining

G 4 in an integrated form using as test functions the continuous functions A on [0, 1]™.

Q
The tuple of measures (uoq, . .., ftm_1) € <M([0, 1]”)) belongs to G4 if and only if

[ bt = 0 0
[0,1]"

ZJ h(z1, ..., zp)dug = J h(zy,...,z,)dxy ... dx, 9)
L [0,1]™ [0,1]™

f () dpig — f h(z:)a™ (z:)dz: (10)
[0,1]" [0,1]

forall k =0,...,m—1,i=1,...,n, and continuous functions h on [0, 1]" (in the
the last condition, h depends on one of the coordinates only). Condition (8) is non-
negativity, condition (9) is equivalent to )}, gx = 1, and condition (10) corresponds
to the equal projections condition a* = aiA *. By the definition of the weak topology,
integration of a continuous function commutes with taking weak limits. We conclude
that G 4 contains all its limit points and thus is closed.

By the Krein-Milman theorem, any compact convex subset of a locally convex
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Hausdorff vector space is the closed convex hull of its extreme points (see Aliprantis
and Border, 2006, Theorem 7.68). Thus G 4 is the closed convex hull of its extreme
points. Consequently, if G4 is not a singleton, it has at least two distinct extreme
points. To prove the lemma, it remains to demonstrate that all extreme points of G 4
correspond to partitions. Towards a contradiction, assume that ¢ = (go, ..., gm_1) i8
an extreme point of G4 but it is not a partition, i.e., there is a state kg such that
gro(z) ¢ {0,1} for = (z1,...,2,) in a set of positive Lebesgue measure. Since
> 9k = 1, there is k' # k such that the set of « where both gi(x) > 0 and gy (x) > 0
has positive measure. Hence, for some € > 0, the set D < [0, 1]" of x such that both
gr(x) > € and gp(z) > € also has positive measure. Without loss of generality, we
assume that k =0 and &’ = 1.

By Corollary 2 of Gutmann et al. (1991), for any D of positive measure, there are

two disjoint sets D1, Dy < D also of positive measure having the same projections,
Dy

ie., aP = aP? for any i = 1,...,n. Hence, the function a(z) = e(1p,(z) — 1p,(x))

has zero projections, is bounded by ¢ in absolute value, and is equal to zero outside
of the set D. For o € {—1, +1}, define

90 () = go(x) + o -alx),  g7(x) = gi(x) — 0 -a(z).

By definition, g and ¢y have the same projections as go and g;, they are non-negative,
and g§ + g7 = go + g1 (hence, g + g7 + oo gk = 1).

We conclude that the two tuples (g7, g7, 92,93, - - -, gm—1), 0 € {—1, +1}, belong to
G 4. They are not equal to each other as the sets D; and Dy are disjoint. Since the
original collection (go, . .., gm_1) is the average of the two constructed ones, it cannot
be an extreme point. This contradiction implies that all the extreme points of G4

correspond to partitions and completes the proof. O

Relying on the last two lemmas, we can demonstrate that any structure associated

with a partition of uniqueness is Pareto optimal.

Lemma 11. Let T be a private private information structure equivalent to a structure

associated with a partition of uniqueness, then I is Pareto optimal.

Proof. Without loss of generality, Z = (w,s1...,S,) is itself a structure associated

with a partition of uniqueness A = (A4 ..., A,,_1) of [0, 1]".
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Towards a contradiction, assume that there is a private private information struc-
ture J strictly dominating Z. By Blackwell’s theorem, Z is equivalent to some gar-
bling of J denoted by 7' = (w,s),...,s,). By Lemma 9, 7’ is not perfect. Let
ti = p(s;) € A(S2) be the posterior belief induced by s, and p; € A(A(R2)) be its
distribution. Consider the structure Z” = (w,t;,...,t,). It is equivalent to Z' (and
hence to Z) by Lemma 2. As t; is a function of s} and Z' is not perfect, Z” cannot be
perfect either (this is also a consequence of the fact that Z” is a garbling of 7).

Let f: A(Q) x ... x A(Q) —> A(Q) be the conditional distribution of w given the
realized signals t1, . . ., t,,. This function is defined p-everywhere with p = g X ... X iy,.
As T" is not perfect, there is a state kg € §2 such that fi, ¢ {0, 1} on a set of positive
[i-Imeasure.

Choose a fuzzy partition g: [0,1]" — A() so that the following identity holds

almost surely®

g(s1,...,80) = f(p(s1), .., p(sn)).

The distributions of posteriors (p(s1),...,p(s,)) and (p(t1),...,p(t,)) both coincide
with p as the structures Z and Z” are equivalent. Hence, g, # {0,1} on a set of
positive Lebesgue measure, i.e., g does not correspond to a partition. On the other

hand, ¢g has the same projections as the partition A. Indeed, let us compute o?*(z):

aff (z) = Elgk(s1, ..., 80) | si = ]

[gk(slv s 8im1, T, i1y - - - 7Sn)]

E
E[fk;(p(Sl), s >p(3i—1)7 Qap(si+1)> s 7p(8n))]7

where ¢ is the posterior induced by s; = z. Since the distribution of p(s;) is identical
to that of t;,

) (z)

E[fk(tla---ati—lyqati+17---atn)]
E[fr(t1,. .- tn) [ ti = ¢
(k),

6To construct such a g, define h;: [0,1] — A(Q) by hi(x;)(k) = Plw = k|s; = x;]. That is,
h; is the map that assigns to each signal realization the induced posterior, so that p(s;) = hi(s;)
holds as an equality of random variables. Then let g: [0,1]™ — A(Q) be given by g(z1,...,z,) =
f(hl(xl)» AR hn(mn))

I
2
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where in the last equality we rely on the fact that the belief induced by t; coincides
with ¢;. Since ¢ is the posterior induced by s; = x, the posterior ¢(k) is equal
Apg
to a; *(z).
We thus constructed g not equal to (La,,...,14, ,) but having the same pro-
jections. By Lemma 10, the partition A = (Ay,..., A, _1) cannot be a partition of
uniqueness. This contradiction shows that no structure can dominate the one associ-

ated with a partition of uniqueness, i.e., such structures are Pareto optimal. O
The proof of Theorem 5 is now immediate.

Proof of Theorem 5. By Lemma 8, for each Pareto optimal Z, we can find an equiv-
alent structure associated with a partition of uniqueness A = (Ay,...,An_1). By
Lemma 11, any structure admitting such an equivalent representation is Pareto opti-
mal. ]

A.4 Proof of Theorem 4

Proof. Lorentz (1949)’s characterization of two-dimensional sets of uniqueness uses
the idea of a non-increasing rearrangement ¢ of a function ¢ : [0,1] — [0,1]. The
function ¢ is defined almost everywhere by the following two properties: it is non-
increasing on [0, 1] and, for any ¢ € [0, 1], the lower-contour sets {t € [0, 1] : ¢(t) < ¢}
and {t € [0,1] : ¢(f) < ¢} have the same Lebesgue measure. A non-increasing
rearrangement exists and moreover is unique (as an element of L*([0, 1])).

Lorentz (1949) proved that A < [0,1]? is a set of uniqueness if and only if the

non-increasing rearrangements of its two projections are inverses of each other, i.e.,
A A\l

Formally, if the inverse (dA)_l(t) is not unique for some ¢, the equality (11) is to be
understood as the inclusion: &(t) € (d{‘)fl(t).

Let us demonstrate that the characterization from Theorem 4 is equivalent to the
original characterization of Lorentz (1949). That is, we need to check that a set A
is a rearrangement of an upward-closed set if and only if the condition (11) holds.

Note that for any downward-closed” set B, its image under the map z; — 1 — z;

"A set B < [0,1]? is downward-closed if, with each point (z;,w3), it contains all the points
(2}, 24) € [0,1]? such that ] < z; and x5 < z2.
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and x9 — 1 — x5 is upward-closed. Hence, it is enough to check the equivalence
between (11) and the existence of a downward-closed rearrangement of A.

Suppose that A is a rearrangement of a downward-closed set B. Towards showing
that (11) holds, note that any downward-closed set B can be represented through its
projections in two symmetric ways: B = {22 < af(x1)} and B = {z; < aZ(x2)} up
to a zero-measure set. Hence,

of = (aF) (12)

Since B is downward-closed, its projections are non-increasing. Moreover, the sets
{te[0,1] : aP(t) < ¢} and {t € [0,1] : a(t) < ¢} have the same measure for any i
and q as B is a rearrangement of A. Thus a” = &' and we obtain (11) from (12).
Now assume that the condition (11) is satisfied and construct the downward-closed
set B as follows:
B = {(z1,72) € [0,1]? : 2y < &' (21)}.

By the definition, the projection af equals &4!. For any downward closed set, the

projections satisfy the identity (12) and thus
B _ B\—1 (N A -1 WA
aQ—(a) —(CVl) = Qy,

where the last equality follows from (11). Hence, for any ¢ and ¢, the measure of
{aP(t) < q} coincides with that of {&}(t) < ¢} and thus with the measure of {af () <

q}. We conclude that B is a downward-closed rearrangement of A. O

A.5 Proof of Theorem 1

First, we show that the conjugate of a cumulative distribution function on [0, 1] is

also a cumulative distribution function.

Claim 2. The conjugate Fis a cumulative distribution function. Furthermore, it has
the same mean: Sxdﬁ’(a:) = {zdF(z).

Proof. To show that F'is a cumulative distribution function it suffices to show that
it is weakly increasing, right-continuous, that F'(0) > 0, and that F(1) = 1.
We first note that F~! is weakly increasing, by its definition at x as the minimum

of the preimage of [x,0) under F. Hence F'is also weakly increasing.
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To see that F is right continuous, let limy, 7, = z € [0, 1], with 2, < 2. Then

liin F(xy) = liin min{y : F(y) = xx}

=min{y : F(y) > x}
— )

where the penultimate equality follows from the fact that F' is right-continuous. Hence
F~1 is left-continuous, and so F is right-continuous.

It is immediate from the definitions that F(0) > 0 and F(1) = 1, and thus
F' is a cumulative distribution function. Finally, the expectations of F' and F are
identical since the shape under F' (whose measure is equal to its expectation), given
by {(z,y) € [0,1]> : y < F(x)} is congruent to the shape under F', since one maps to
the other by the measure preserving map (z,y) — (1 —y,1 — ). O

Now, we prove Theorem 1.

Proof. First, suppose Z is Pareto optimal. By Theorem 3, Z is equivalent to some
structure Z' associated with a set of uniqueness A. By Theorem 4, A is a rear-
rangement of an upward-closed set A’, whose associated structure Z” must also be
equivalent to Z. We show that the two agents’ posterior belief distributions induced
by Z" are conjugates of each other.

Define A : [0,1] — [0,1] by h(zy) = inf{xy : (z;,25) € A’}. We have that h is
a decreasing function since A is upward-closed. Define a left-continuous version of
h as h(x) = lim,_,,- h(z). For any ¢ € [0,1], in the structure associated with A’,
up to a measure-zero set of signals, agent 1 has a belief lower or equal to ¢ after
observing the signal z; if and only if h(x;) = 1 — ¢, so the cumulative distribution
function of agent 1’s posterior belief is Fj(q) = max{z; : h(z1) = 1 — ¢}. For agent
2, note that his posterior belief after any signal lower than zo = h(1 — ¢) is lower
or equal to ¢, while his belief at higher signals are strictly higher than ¢. So, the
cumulative distribution function of agent 2’s posterior belief is F5(q) = h(1—¢q). Note
that Fy, '(1—q) = min{y : h(1—y) = 1—q} = 1 —max{z, : h(r;) = 1—q} = 1-Fi(q),
so F) and F;, are conjugates.

Conversely, suppose the distributions of p(s;) and p(s) in a private private infor-
mation structure Z are conjugates. Write F’l and ﬁg for the cumulative distribution

functions of p(s;) and p(ss), and consider the set A < [0, 1]? where (x1,23) € A if and
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only if xo > FQ(]_ — 7). We show that the structure associated with A is equivalent
to Z; Figure 4 illustrates the construction. Let h(z) = Fy(1 — z), and define a left-
continuous version of & as h(z) = lim,_,, h(z). For the structure associated with A,
by the same argument as above, the distribution function of agent 2’s posterior belief
is Fy(q) = h(1 — q) = Fy(q). The distribution function of agent 1’s posterior belief,
by the same argument as above, is Fj(q) = max{z; : h(z;) > 1— ¢} = 1 — min{zy :
Fy(zy) = 1 —¢q} = 1 — F;Y(1 — q). Using the hypothesis that Fy and F, are conju-
gates, 1 — F; 1(1 — q) = Fi(q). So, the structure associated with A is equivalent to Z.
Because x; — Fg(l — x1) is a decreasing function, the set A is upward-closed. Using

Theorem 3 and Theorem 4, 7 is Pareto optimal. ]

A.6 Proof of Theorem 2

Proof. We are given (w, s;) and aim to construct a new signal s5 independent of s;
and such that any other signal s; independent of s; is dominated by sj.

As usual, p(s1) is the belief induced by s;. We sample s; uniformly from the
interval [1 — p(sy), 1] if the state is w = 1 and from [0, 1 — p(s;)] if w = 0. Hence,
conditioned on s;, the constructed signal is distributed uniformly on [0, 1] and so s}
is independent of s;. Denote by F' the cumulative distribution function of p(s;) and
compute the belief induced by s3. The conditional probability of w = 1 given s = ¢
is equal to P[1 —p(s1) <t]. Hence, p(s;) = 1 — F(1 — s5). Thus the distribution
function F™* of p(s%) is given by

F*(z) =P[p(s3) <z] =P[1-F(1-s3) <z] =P[s; <1-F'(1-2)],
where F~! is defined as in (1). Since s} is uniformly distributed on [0, 1], we get
F*(2) =1—F'(1—2) = F(z),

where F is the conjugate of F.

We conclude that (w, sy, s5) is a private private information structure and the
distributions of posteriors induced by s; and sj are conjugates. Thus (w, sy, s3) is
Pareto optimal by Theorem 1, and s} is an optimal private disclosure.

Now, let us show that any s, independent of s; is weakly dominated by s3. If

(w, 81, 52) is itself Pareto optimal, then, by Theorem 1, the cumulative distribution
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function of beliefs induced by s, is F and thus s, is equivalent to sj. Hence, it
suffices to consider the case where Z = (w, s1, $2) is not Pareto optimal. Let u; and
1o be the distributions of beliefs induced by s; and ss, respectively. Below we will
verify that there is a Pareto optimal structure Z' = (w, s}, s5) that dominates Z and
the distribution of p(s}) coincides with i, i.e., only the second signal becomes more
informative. Then, by Theorem 1, the distribution of beliefs induced by s is the
conjugate of uy. Hence, s} is equivalent to s5 and we conclude that s; must also
dominate ss.

We verify the existence of a Pareto optimal structure 7' = (w, s}, s5) such that
p(s}) is distributed according to pq and s, dominates s,. Consider the set M(u;) of
distributions p, of beliefs such that the pair (uq, pb) is feasible, i.e., there is a private
private information structure inducing these distributions. In particular, us belongs
to M(p1). By Lemma 3, M (1), as a closed subset of the feasible pairs M, is compact
in the weak topology. As the Blackwell order is continuous in the weak topology (see
the proof of Lemma 4), there is a maximal element p, € M(u;) dominating ps.
Let 7/ = (w, s, s5) be the private private information structure inducing the pair of
distributions (p1, p). The structure Z' must be Pareto optimal. Else, by Lemma 9,
there is an equivalent structure Z” = (w, s7, s5) where the signals do not determine
the state. Then, by the construction from Lemma 7, there exists an informative signal
t independent of s{ and sj. By revealing ¢ to the second agent, we obtain a strict
Pareto improvement of Z” where the distribution of beliefs induced by the first signal
remains fixed, but the distribution of beliefs induced by the second signal is improved
to py. So we have pf € M(py) and p4 strictly dominates pf,, which contradicts the
maximality of p5 in M(py). This contradiction implies the existence of the structure

7' and completes the proof. H

A.7 Proof of Proposition 1

Proof. Denote the indirect utility of agent i € {1,2} by Ui(q) = sup,.c4, ((1 — q) -
u;i(a;,0) + q - w;(ay, 1)) Since each wu; is bounded from above, the indirect utilities
are continuous convex functions. The social welfare for a private private information

structure Z = (w, $1, S2) can be rewritten as follows:

W(I) = E[Ul (p(sl)) + Us (p(SQ))],
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where, as usual, p(s;) is the belief induced by the signal s;. By the convexity of Uj;
the welfare is monotone in the Blackwell order, and is therefore always maximized by
a Pareto optimal structure.

Let Z be a Pareto optimal structure. By Theorem 1, the distributions of posteriors
p(s1) and p(sq) are conjugates. Denote the distribution of p(s;) by p, which can be an
arbitrary measure on [0, 1] with mean equal to the prior p. Denote the set of all such
measures by A,([0,1]). The choice of u e A,([0, 1]) determines the distribution /i of
p(s2). Thus, to maximize welfare over 7 it is enough to find p € A,([0, 1]) maximizing

the functional
w ) = 1/1 du + 1/2 dﬂ .
( ) ﬁ071] (Q) (Q) f[ (Q) (Q)

0,1]

Below we check that w(gu) is convex and continuous in the weak topology. Hence, by
Bauer’s principle, the optimum is attained at an extreme point of A,([0,1]). It is
well-known that the extreme points of this set are measures with the support of size
at most two: see, e.g., Winkler (1988). Since the optimal p is supported on at most
two points, its conjugate /i is supported on at most three points (see the discussion
after Theorem 1) and we conclude that there is an optimal structure Z where s; takes
at most two values and s, takes at most three values.

It remains to check that w(u) is convex and continuous in the weak topology. For
the first integral, this is immediate: it is linear in g (hence, convex) and continuous
thanks to the continuity of the integrand. To show that the two properties hold for
the second integral, we rewrite it through the cumulative distribution function F of u.
Assuming first that F is a bijection [0, 1] — [0, 1], we obtain

j Un(q)diq) = f Un(g)d (1 - F1(1— g)) = j Up(1— F(t)dt,  (13)
[0,1] [0,1]

[0,1]

by changing the variable ¢ = 1 — F(¢) in the second equality. Let us show that
the identities (13) hold even without the assumption that F' is a bijection. Since
any continuous function on [0, 1] can be approximated by a linear combination of

indicators 1y, in the sup-norm, it is enough to prove that

f Ljo,a(q)din(q) = f Lo (1 — F(t))dt
[0,1] [0,1]
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or, equivalently, that
Fla)=A({te[0,1]: 1 - F(t) < a}), (14)

where A stands for the Lebesgue measure. By the monotonicity of F', the set from
the right-hand side of (14) is an interval [t,, 1] where t, = min{t : F(t) > 1 —a}, i.e.,
t, = F71(1 — a) as defined in §4. We conclude that (14) holds as it is equivalent to
the equality F'(a) = 1 — F~'(1 — a) defining the conjugate distribution and thus (13)
holds as well.

Since U, is convex, we conclude that S[O,l] U2(1 - F (t))dt is a convex function
of F' and, hence, of u. To show the continuity, note that the weak convergence
pr — p implies the convergence of Fy(q) — F(q) for all points ¢ of continuity of F’
(see Aliprantis and Border, 2006, Theorem 15.3). Since any monotone function is
continuous almost everywhere with respect to the Lebesgue measure, the sequence
of functions Uy (1 — F k) converges almost everywhere in [0, 1] and is bounded thanks
to boundedness of U;. The Lebesgue dominated convergence theorem implies that
S0 U (1 — F%(t))dt converges to S0 U (1 — F(t))dt. We conclude that the second
integral in w(u) is a convex continuous function of . Thus the functional w(u) is

itself continuous and convex. O]

A.8 Proof of Proposition 3

Proof. We have I(w; (s1,...,5,)) < H(p), so this result follow from Lemma 1. O

A.9 Proof of Proposition 4
Proof. We have I(w; (s1,...,5,)) < H(p), so it suffices to show that

In2

?Ej(w; si) I (w; sj). (15)

1<j

Z](W;si) < I w; (S1,.-,80)) —

Similarly to the proof of Lemma 1, the result for general n follows from the result

for n = 2 via an inductive argument. Indeed, assume that the statement holds for
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n < ng with ng > 2 and show that it holds for n = ng + 1 as well:

[(w; (517 -5 Sngy 3n0+1))
= _[((,(}7 ((51,.--7Sn0)7sn0+1)>

In2
= ](w; (31, e sno)) + I(w; Spg+1) + ?I<w; (31, e sn0)> (W5 Sng+1)s
where we applied the two-signal version of (15) for the pair of signals (s1,. .., Sn,)
and Sp,+1. Estimating I(w; s1,...,S,,) from below via the ny-signal version of (15),
we get
[(w; (517 <+ Sngs 3n0+1)>
< In2
ZZI(w; 51-) + — Z I(w; si) -I(w; Sj) + I(w; Spgt1)+
; 8 =
=1 1<i<g<ng
In2 & In2
+?I(w; Sng+1) - <Zl(w; si) + 5 Z ](w; Si) -I(w; sj)>
i=1 1<i<j<ng

Eliminating all the cubic terms from the second line can only decrease the right-hand

side and leads to inequality (15) for n = ng + 1:

no+1
[<w;(317"'73n075n0+1)>>ZI((JJ;SZ')‘Fln?Q Z [(w,sl)I(w,s])

i=1 1<i<j<no+1

It thus remains to prove the result for n = 2. We aim to show that

Iw; s1) + I(w; s2) — I{w; s1,82) < —%](w; s1) - I(w; s9). (16)

Since (16) is symmetric with respect to the states, we can assume that the state w = 1
is more likely, i.e., p = 1/2 without loss of generality.

Denote the left-hand side of (16) by A and the posterior probabilities of the high

state by p; = Plw = 1]s;] and p1o = Plw = 1] s1,s2]. By the martingale property,

E[p12]s:] = pi and E[p;] = p. Thanks to the martingale property, we can represent
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I(w; s;) as follows:

; 1—p
Iw; s;) = E[pm log, (]i) + (1 — p12) log, ( b )];
p I—p

where p; outside of the logarithm was replaced by pi2. Hence,

A= E[p1210g2 (p1 'pQ) + (1 — pr2) log, <(1 —p)d _p2)>].

Pi2-Dp (1 —=pi2)(1 —p)

By the concavity of the logarithm, a convex combination of logarithms is at most the

logarithm of the convex combination. Therefore,

ser (22 g

Denote the centred posteriors by p; = p; — p and ps = ps — p. The right-hand side

simplifies to

B s, (2572 + C G ) | <l (14 5P |

Note that p%f;) belongs to the interval [—1, %]. By the assumption that p > /2,

this interval is contained in [—1, 1]. Consider the function f(z) = log,(1+ z). By the

Taylor formula, for any = € [—1, 1],

F@) = J0) + F(0) -+

for some y between 0 and . Computing the derivatives, we get

11 -1, 1 1,

= — — g— - =",
J@) = 3 S s 2" S’ st

where in the last inequality we used the fact that y € [—1,1]. We conclude that

sl (1 720 < el 2 - | (2 |

Since the expectation of the product is the product of expectations for the independent
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random variables p; and po,

1 P P2 . Dy P2 2 = — ! ar - Var
EE[IDG-}?J_81112E[(p(1—p)) ] TSP me [pa] - Varlpa].

It remains to lower-bound the variance by the mutual information. The Kullback—Leibler

divergence between Bernoulli random variables with success probabilities p and x is

defined as follows: Dy, (z||p) = xlog, ( > + (1 — z)log, (1""’>. Then I(w; s;) =

» =
E[Dxr(pi||p)]- Applying the inequality Int < t — 1 to both logarithms and taking

into account that log, ¢ = ﬁ Int, we obtain

Dralelly) < g (o (5 -1) + -0 (55 -1) ) = o lo =)

for x € [0,1]. Therefore,

Var[p;] = (p(1 —p)In2) - I(w; s;).

Thus we obtain

1 In2
“HE el Varlee] < == Tl ) M )
and conclude that
In2
A< —?'I(W; s1) - I(w; s2),
which is equivalent to the desired inequality (16). ]

A.10 Proof of Proposition 5

Proof. As in the proof of Proposition 3, we show a stronger statement:
ZI_(W, Si) < I_(w’ (817 BRI Sn))
i

This implies the statement of Proposition 5 since H is concave, and so, as with mutual

information, I(w; (s1,...,5,)) < H(p).

Applying the definition of I, and using the martingale property E[p(s;)] = E[p(s1, ..., 5,)]
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p, what we want to prove is that

20 2 Ellp(si) (k) = p(R)P] < Y E[[p(s1, - s0) (k) = p(B)]].
i keQ k
In fact, we prove an even stronger statement, showing that the inequality holds already
for each k € (2 separately, rather than only when summed over §2.

To this end, fix k, and denote the centered posteriors by p; = p(s;)(k) — p(k), so

that p; is a zero-mean bounded random variable. Likewise denote p = p(sy, ..., s,)(k)—
p(k). We want to prove that E[p?] = Y, E[p?].
Let V' be the vector space of zero-mean random variables spanned by {p, p1, . . ., Pn}-

As a subspace of L?, it is endowed with the inner product given by the expectation
of the product.

Since the structure is private private, E[p; - p;] = E[p;] - E[p;] = 0 for ¢ # j. That
is, the vectors {pi,...,p,} are orthogonal. Hence, V = span{q,p,...,D,} for some
g € V that is orthogonal to each p; (note that ¢ = 0 is allowed and corresponds to
the case where p can be represented as a linear combination of p;). Since p € V., we

can write
p=aq+ Z Q;D;
i

for some scalars «, oy, ..., q,. By the martingale property, E[p|p;] = p;, and so

E[(p — p:) - ps] = 0. That is, p — p; is orthogonal to p;. Hence o; = 1, and
p=aq+ 2151
Since {q, 1, - - ., Pn} are orthogonal,
E[p*] = o’E[¢’] + ) JE[5].

and in particular E[p?] = >, E[p?].
[l

Note that we used the assumption that the structure is private private only inas-

much as it implies that posteriors of different agents are uncorrelated.
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B Further Examples and Results

B.1 Comparative Statics along the Pareto Frontier

In this section we state and prove the following proposition.

Proposition 6. Consider two Pareto optimal private private information structures
(w, 81, 82) and (w,ty,ty) with binary state w. If t; dominates sy, then ty is dominated

by ss.

Proof. Since (w, s1,s2) is Pareto optimal, the signal s can be seen as an optimal
private disclosure corresponding to (w,s;). By Theorem 2, such s, dominates any
other signal s, independent of s;. Hence, to conclude that s, dominates t,, it is
enough to demonstrate that there is a private private information structure (w, s, s5)
such that s| is equivalent to s; and s, is equivalent to t. By the assumption, t;
dominates s; and, therefore, the signal s; is equivalent to some garbling s) of ¢;.
Putting s, = t9, we get the desired private private information structure (w, s}, s5)
and deduce that ¢, is dominated by s,. O

B.2 Non-Uniqueness of Optimal Private Disclosures for Non-Binary States

Theorem 2 shows that when the state is binary, there is a unique optimal private
disclosure s} for each s;. In this section we show that this does not hold for non-
binary states.

Consider the case of Q = {0, 1,2} where w € Q is distributed according to the
prior p = (1/47 12, 1/4). The signal s; is binary: if w = 2 then s; = 1, if w = 0 then
sy = 0, and if w = 1 then s; € {0,1} equally likely. The induced beliefs p(s;) are
equal to either (1/2, /2, ()) or (O, Lo, 1/2), each with probability 1/2.

To construct an optimal disclosure s5 we first build an auxiliary private private
information structure (w, t,ts), associated with the partition of [0, 1]? into three sets
Ap, Ay, and A, depending on a parameter 3 € [0, /2], as depicted in Figure 8. The
pair of signals (t1,ty) is uniformly distributed on [0,1]* and the state w equals k
whenever the pair of signals belongs to Ag. Since the area of A; is twice the area
of Ag and A,, and since the latter two areas are equal, w has the right distribution
p = (Ya,1/2,1).

Let us check that the signal ¢; is equivalent to sy, i.e., it induces the same posterior

distribution. Indeed, if the realization of ¢; belongs to [0, /2], half of each vertical
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1 0
2 A
3 1
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0 % 1 t

Figure 8: In the private private information structure associated with the partition
(Ag, A1, As), the signal ¢; induces the same distribution of posteriors as s;. For any
parameter [ € [0, /2], this partition is a partition of uniqueness and, hence, we get a
one-parametric family of non-equivalent optimal disclosures given by the signal t,.

slice of the square is covered by Ay and half by A;, and so the induced posterior
is p(t1) = (1/2,/2,0) with probability V2. Similarly, for ¢; € [V/2,1], we get p(t1) =
(0,Y/2,1/2) also with probability 1/2.

Let us check that for different values of S we obtain non-equivalent disclosures.
For this purpose, we compute the distribution of posteriors induced by t5. Note that
to is equivalent to a signal s3 taking four different values corresponding to different
pairs of sets (A;, A;) intersected by the horizontal slice of the square. We get the

following distribution of posteriors:

(0, /2, 1/2) with probability

(1/2, 0, 1/2) with probability /2 —
(0,1,0)  with probability 2 — 3

(1/2, /2, 0) with probability S

For different values of 8 we get different distributions, i.e., the constructed disclosures
are not equivalent.

It remains to show that for any value of 3, the signal s} is an optimal private
disclosure. To this end we check that the partition (Ag, A1, Ay) is a partition of
uniqueness (as defined in Appendix A.3). Therefore, by Theorem 5, the information
structure (w, t1,ts) is Pareto optimal. Thus ¢ is an optimal private disclosure and so

is s} as it is equivalent to t,.
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To show that (Ag, Ay, As) is a partition of uniqueness, we rely on the following
elementary but useful general observation: if in a partition (Ao, ..., A,—1) of [0, 1]™
all sets except for possibly one are sets of uniqueness, then the partition itself is a
partition of uniqueness. In our example, the set A, is upward-closed and hence is a
set of uniqueness by Theorem 4. The set A is a rearrangement of an upward-closed
set (since it can be made upward-closed via a measure-preserving reparametrization
of the axes) and so is a set of uniqueness by the same theorem. Thus the partition
(Ag, A1, Ag) is a partition of uniqueness and s} is an optimal disclosure for any value
of j.

The partition (A, A1, Ay) provides an interesting example of the fact that a parti-
tion of uniqueness is not necessary composed of sets of uniqueness. Indeed, for g # 0,
the set A; is not a set of uniqueness as it has the same marginals as the set obtained

by the reflection of A; with respect to the vertical line ¢, = 1/2.

B.3 Representing Private Private Signals for Binary w as Sets

To simplify notation, in this section we consider the case of n = 2 agents and a
binary state w € 2 = {0,1}. Nevertheless, the same ideas apply more generally to
finitely many agents and possible values of the state. By Proposition 2, any private
private information structure Z is equivalent to a structure associated with some set
A < [0,1]?, which we denote by Z4 = (w, s1,S2). In this section, we show how to
construct Z4 given Z. We begin with the case where 7 is uninformative and describe
Z4 for any prior p = Plw = 1]. Relying on this construction, we then describe how
to construct Z4 for any Z with a finite number of possible signal values.

Recall that in Zy4, the signals (s, s;) are uniformly distributed on [0, 1], the
state is w = T 4(sy, 82), and A is some measurable subset of [0,1]* with Lebesgue
measure A(A) = p so that p = P[w = 1]. Recall that the distribution of posteriors
induced by Z4 can be computed as follows: The conditional probability of the high
state given that agent 7 receives a signal s; = t is exactly a:}(t), the one-dimensional
Lebesgue measure of the cross-section {(y1,v2) € A : y; = t}. In other words, a:!(s;)
is ¢’s posterior corresponding to s; and the induced distribution of posteriors p; is
the image of the uniform distribution under the map o, i.e., p;([0,t]) equals the
Lebesgue measure of {z; € [0,1] : ai*(z;) < t}.

Ezxample 1 (Non-informative signals). Consider a private private information struc-

ture Z, where both agents receive completely uninformative signals, i.e., the induced
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posteriors are equal to the prior p almost surely.
To find an equivalent structure Z4, we need to construct a set A = A, < [0, 1]?
such that the Lebesgue measure of all its projections equals p. To this end, let Y be

any subset of [0, 1] with measure p (e.g., [0,p]), and let
A= {($171?2) € [0,1]% : |z + 5] € Y} 5

where |z] is the fractional part of x € R. Tt is easy to see that A indeed has the
desired property.

It turns out that the construction of an information structure Z,, representing
completely uninformative signals can be used to find a representation for any infor-

mation structure with a finite number of possible signal values.

Ezample 2 (Arbitrary finite number of signal values). Let Z = (w, s1, $2) be a private
private information structure with n = 2 agents and finite signal spaces S; and Ss.
Our goal is to construct a set A < [0, 1]? such that the structure Z associated with
A is equivalent to Z.

For each agent i € {1,2}, consider a disjoint partition of [0, 1] into intervals A,
s; € S;, so that the length of each A, coincides with the probability that the signal
s; € S; is sent under Z. Let ¢(s1, s2) € [0, 1] be the conditional probability of {w = 1}
given signals (s1, $2).

Recall that, in Example 1, we constructed a set A, < [0, 1]? such that its projection
to each of the coordinates has a constant density p. Now we construct A by pasting
the appropriately rescaled copy of Ay, s,) into each rectangle A, x A,,. Denote by
Tiab]x[c,d) an affine map R* — R? that identifies [0, 1]* with [a, b] x [c, d]:

Tap)x[c,d] (21, 29) = (a + (b —a)ry, c+ (d— 0)332)-

We define A as the following disjoint union:

A= |_| T'a, <A, (Aq(81782)>‘

51651, EPISED)

Let s, € [0,1] be a signal received by an agent ¢ in Z4. The signal s; falls into
A,, with the same probability that i receives the signal s; in Z. By construction,

the conditional probability of {w = 1} given s, is constant over each interval A;, and
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coincides with the posterior p;(s;) that ¢ gets under Z. We conclude that Z and Z4

induce the same distribution of posteriors and so are equivalent.
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