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Abstract

In a private private information structure, agents’ signals contain no infor-
mation about the signals of their peers. We study how informative such struc-
tures can be, and characterize those that are on the Pareto frontier, in the sense
that it is impossible to give more information to any agent without violating
privacy. In our main application, we show how to optimally disclose information
about an unknown state under the constraint of not revealing anything about
a correlated variable that contains sensitive information.
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1 Introduction

Economists have long used private information as a basic modeling tool to capture
settings where different people have different information about an uncertain state of
nature. Typically, each agent observes a signal that induces a belief over this state.
The same signal could also alter the agent’s belief over other people’s beliefs. In this
paper, we study a special case of private information where the information available
to each agent reveals nothing at all about the information available to her peers. That
is, we consider private signals that are literally private, which we call private private
signals.

As a simple example of private private information, suppose three agents each
receive an independent binary signal, and the unknown state of nature is the majority
of these three signals.1 Because of independence, each agent holds the same belief
about others’ signal realizations when her own signal is high and when it is low. And
yet, every signal is informative about the state. On the other hand, conditionally
independent private signals are not private private. For instance, consider a binary
state and conditionally independent binary signals that match the state with a certain
probability. Here, each agent’s signal contains information about the others’ signals:
when an agent observes a high signal, she becomes more confident that her peers also
got high signals.

The main question that we address in this paper is: how informative can private
private signals be? There is an inherent tension between the privacy of an information
structure and its informativeness. For example, it is clearly impossible for two agents
to both have signals that perfectly reveal the state while maintaining privacy. What
is the maximum amount of information that can be conveyed through private private
signals? We formalize this question using the notion of Pareto optimality with respect
to the Blackwell order: a private private information structure is Pareto optimal if it
is impossible to give more information to any agent—in the Blackwell sense—without
violating privacy.

In the case of two agents and a binary state, we give a simple description of the
Pareto frontier that allows for a straightforward test of optimality and a construc-
tive procedure for finding optimal structures. We also study Pareto optimality in

1Similar information structures are used in the social learning literature (Gale, 1996; Çelen and
Kariv, 2004a,b).
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the general case with any number of agents, where our characterization provides a
surprising connection to the field of mathematical tomography and the study of sets
of uniqueness. A subset of r0, 1sn is called a set of uniqueness if it is uniquely de-
termined by the densities of its projections to the coordinate axes. Understanding
such sets has been an active area of research since the 1940s (Lorentz, 1949). This
problem gained more prominence with the advent of tomography, a technology to re-
construct three-dimensional objects from their projections (Gardner, 1995). We show
that private private information structures for n agents can be identified with subsets
of r0, 1sn, and that the Pareto optimal ones correspond exactly to sets of uniqueness.
In the two-dimensional case—which corresponds to the case of two agents and a bi-
nary state—the complete characterization of the sets of uniqueness is known (Lorentz,
1949) and leads to our characterization of the Pareto frontier. With more agents, we
rely on more recent results on sets of uniqueness for n ě 3 (Fishburn et al., 1990)
to provide some sufficient conditions and some necessary conditions for Pareto opti-
mality. With three or more states, an analogous equivalence holds between between
Pareto optimality and a generalization of sets of uniqueness that we term partitions
of uniqueness.

Finally, using a information-theoretic approach, we provide simple constraints
on the informativeness of private private signals. We show that the sum of mutual
information of private private signals cannot exceed the entropy of the state, which is
not true for general information structures. We also prove an improved bound on the
sum of mutual information of private private signals, which might be of independent
interest in information theory.

Our focus on the maximal informativeness of private private signals is relevant to
a number of economic settings:

(1) In causal inference, a collider is a causal structure where a number of inde-
pendent random variables together determine a state (see, e.g., Pearl, 2009), as in the
majority signal example above. Characterizing Pareto optimality of private private
signals lets us bound the causal strengths of the various causes in a collider structure
(Janzing et al., 2013).

(2) Suppose agents compete in a zero-sum game, and a designer who knows the
state wishes to influence how agents’ actions correlate with the state. We show that
equilibrium signals must be private private. So, our bounds on the informativeness
of private private signals limit how much the designer can adapt the agents’ actions
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to the state and thus constrain the designer’s payoffs.
(3) In our main application of optimal private disclosure, we consider the problem

of designing a maximally informative signal about the state under the constraint
of not revealing any information about a correlated random variable. Consider an
employer deciding whether to hire an applicant. The employer wants to know an
unknown state, which is the applicant’s productivity type. The employer solicits a
letter from a recommender who knows the applicant’s type. Barring any constraints,
the recommender could perfectly reveal this state to the employer. But the obstacle is
that there is an additional piece of information—a health condition of the applicant—
that is also known to the recommender, that is correlated with the productivity
type, and that the recommender is not allowed to reveal. Indeed, we assume the
recommender’s message must be completely independent of the applicant’s health, so
that the employer learns nothing about the applicant’s health from the letter. Thus,
the applicant’s health condition and the recommender’s letter comprise two private
private signals about the applicant’s productivity type.

When the state is binary (i.e., the applicant’s productivity type takes one of two
values), our results on Pareto optimal private private information imply a complete
solution to the optimal private disclosure problem. As we show, in this case there is a
unique optimal private disclosure: a way to write the recommendation letter so that it
Blackwell dominates the information contained in any other letter that preserves the
applicant’s privacy. Our proof is constructive and gives a simple recipe for generating
this optimal signal.

Related literature. The question of which belief distributions can arise in private
private information structures was addressed in Gutmann et al. (1991) and Arieli et al.
(2021). They provide a characterization for two agents under additional symmetry
assumptions; we discuss the relation to our work below. More generally, a related
question is which joint belief distributions are feasible without the privacy constraint
(see, e.g., Dawid et al., 1995; Burdzy and Pal, 2019; Burdzy and Pitman, 2020; Arieli
et al., 2021; Cichomski and Osękowski, 2021). Hong and Page (2009) look at a special
case of private private signals where there are as many signals as there are states of
nature. But they do not characterize private private information in general or study
how informative these structures can be.

Private private signals arise as the worst-case information structure for the auc-
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tioneer in some problems of robust mechanism design: see Bergemann et al. (2017)
and Brooks and Du (2021). Private private signals also appear as counterexamples of
information aggregation in financial markets: see the discussion in Ostrovsky (2012)
and similar observations in the computer science literature (Feigenbaum et al., 2003).

Our application to influencing competitors in zero-sum games relates to the lit-
erature of information design in games (Bergemann and Morris, 2016; Taneva, 2019;
Mathevet et al., 2020). Our application to optimal private disclosure has a concep-
tual connection to Eliaz et al. (2020), who also consider an optimization problem on
random variables under an independence constraint.

As mentioned above, our work is related to the mathematics of sets of uniqueness
and mathematical tomography (Lorentz, 1949; Fishburn et al., 1990; Kellerer, 1993).
These techniques have been applied in economics, for example by Gershkov et al.
(2013) to show the equivalence of Bayesian and dominant strategy implementation in
an environment with linear utilities and one-dimensional types.

2 Model

We consider a group of agents N “ t1, . . . , nu where each agent i has a signal si
containing information about a state of nature ω taking value in Ω “ t0, 1, . . . ,m´1u,
and all agents start with a common, full-support prior belief about the state. We
call the tuple I “ pω, s1, . . . , snq an information structure. Formally, fix a standard
nonatomic Borel probability space pX,Σ,Pq, and let ω, s1, . . . , sn be random variables
defined on this space that take values in ΩˆS1ˆ¨ ¨ ¨ˆSn, where each Si is a measurable
space.2 The marginal distribution of ω is the prior over the state.

Denote by ppsiq the posterior associated with si. Formally, ppsiq is the random
variable taking value in ∆pΩq given by ppsiqpkq “ Prω “ k | sis. In the case of a
binary state (i.e., when Ω “ t0, 1u), we let ppsiq take value in r0, 1s by setting ppsiq “
Prω “ 1 | sis.

Definition 1. We say that I “ pω, s1, . . . , snq is a private private information struc-
ture if ps1, . . . , snq are independent random variables.

Private private signals should not be confused with conditionally independent
signals, where ps1, . . . , snq are independent given ω. This is a different notion, and

2An alternative approach would be to define an information structure as a joint distribution over
Ωˆ S1 ˆ ¨ ¨ ¨ ˆ Sn.
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indeed conditionally independent signals cannot be private private, unless they are
fully uninformative about the state.

As a simple example of a private private information structure for two agents and
a binary state, let s1, s2 be independently and uniformly distributed on r0, 1s, and
let ω be the indicator of the event that s1 ` s2 ą 1, as illustrated in Figure 1. The
distribution of ps1, s2q conditioned on ω “ 1 is the uniform distribution on the upper
right triangle of the unit square. Conditioned on ω “ 0, ps1, s2q have the uniform
distribution on the bottom left triangle. Note that the posterior beliefs are ppsiq “ si

in this information structure, so both agents have strictly informative signals. While
the two signals are independent, they are not conditionally independent given the
state ω.

s1

s2

1

1

0

Figure 1: The pair of signals ps1, s2q is uniformly distributed on the unit square,
with ω “ 1 in the black area and ω “ 0 in the white area. The induced posteriors
pps1q, pps2q coincide with the signals.

This paper focuses on characterizing the private private signals that are maximally
informative for the group of agents, formalized through the concept of Pareto optimal-
ity of private private information structures. For the single-agent case (n “ 1), recall
that an information structure pω, sq Blackwell dominates pω, ŝq if for every continuous
convex ϕ : ∆pΩq Ñ R it holds that Erϕpppsqqs ě Erϕpppŝqqs.

This notion captures a strong sense in which s contains more information about ω
than ŝ does: in any decision problem, an agent maximizing expected utility performs
better when observing s than when observing ŝ.

For more than one agent, our next definition introduces a partial order on private
private information structures that captures Blackwell dominance for each agent.
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s1
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0

Figure 2: The pair of signals ps1, s2q is uniformly distributed on the unit square,
with ω “ 1 in the black area and ω “ 0 in the white area. The induced posteriors
pps1q, pps2q are binary, and equally likely to be either 1/4 or 3{4.

Definition 2. Let I “ pω, s1, . . . , snq and Î “ pω, ŝ1, . . . , ŝnq be private private in-
formation structures. We say that I dominates Î, and write I ľ Î, if for every i it
holds that pω, siq Blackwell dominates pω, ŝiq. We say that I and Î are equivalent if
I ľ Î and Î ľ I.

It follows from this definition that I is equivalent to Î if and only if, for each i,
the distributions of ppsiq and ppŝiq coincide. Thus we can partition the set of private
private information structures into equivalence classes, with each class represented by
n distributions pµ1, . . . , µnq on ∆pΩq. A first question that arises is that of feasibility:
which n-tuples pµ1, . . . , µnq represent some private private information structure? We
address this question in §6.

Figure 2 illustrates another example of a private private information structure,
where the signals are again uniform on r0, 1s, but each agent’s posterior belief is
equally likely to be either 1{4 or 3{4. Thus this structure is equivalent to a structure
where agents receive binary signals. More generally, a structure pω, s1, . . . , snq is
always equivalent to the “direct revelation” structure pω, pps1q, . . . , ppsnqq in which
agent i observes the posterior belief induced by si.

We use the concept of dominance to define Pareto optimality: which private
private information structures provide a maximal amount of information to the agents,
so that more information cannot be supplied without violating privacy?

Definition 3. We say that a private private information structure I is Pareto optimal
if, for every private private information structure Î such that Î ľ I, the structure Î
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is equivalent to I.

In other words, I is Pareto optimal if there is no private private information
structure Î that gives as much information to each agent (in the Blackwell sense),
and gives a strictly Blackwell dominating signal to at least one agent. In the Appendix
(Lemma 4), we show that Pareto optimal structures exist, and that, moreover, every
private private information structure is weakly dominated by a Pareto optimal one.

As we explain in the introduction, there is some tension between the privacy of
an information structure and its informativeness. For example, the most informative
structure from the point of view of agent 1 is the one where s1 completely reveals
the state, i.e., pps1q “ δω. Likewise, agent 2 would benefit most from a structure
where s2 perfectly reveals the state. But then pps1q “ pps2q, and so s1 and s2 are
not independent. The question is thus: what are the ways to maximally inform the
agents, while still maintaining privacy?

3 Applications of Pareto Optimal Private Private Signals

Before turning to our main results, we provide some motivation for studying Pareto
optimal private private signals by discussing two applications.

3.1 Optimal Private Disclosure

Optimal private disclosure is the problem of an informed party who wishes to disclose
as much information as possible about the state of nature ω using a message s2, but
must not reveal any information about a correlated random variable s1 in the process.
In this application, we should interpret s1 not as the “signal” given to some agent,
but as a pre-existing trait that must be kept secret for legal or security reasons.

As a concrete example, suppose an uninformed company wants to learn about a
decision-relevant type ω of an applicant (e.g., whether she is a good fit for a job or
whether she will pay her rent on time), and an informed party (e.g., a recommender or
a credit-rating company) knows both this type and a legally protected trait s1 of the
applicant that correlates with the type: this could be the applicant’s private medical
information, or a protected attribute like gender or race. The informed party faces
the problem of optimal private disclosure: convey as much information as possible
about the applicant without revealing any information about her protected trait,
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so that the company’s downstream decision based solely on the disclosure will be
independent of the protected trait and therefore not cause disparate impact. Note
that even disclosure that does not explicitly contain the protected trait may cause
disparate impact, if such disclosure contains correlates of the trait.

A less economic (but more colorful) story is that of a government who would like
to reveal a piece of intelligence ω, but without revealing any information about the
identity of its source s1. These could be naturally correlated: for example, if ω is the
location of a weapons facility and the source s1 is likely to live close to it. So the
government’s disclosure s2 should contain as much information as possible about ω,
while not revealing any information about s1.

The problem of optimal private disclosure can be phrased in terms of finding a
Pareto optimal private private information structure for two “agents” with a given
marginal distribution on pω, s1q.

Definition 4. Given a one-agent information structure pω, s1q, a signal s2 is an
optimal private disclosure for pω, s1q if I “ pω, s1, s2q is a Pareto optimal private
private information structure.

When ω and s1 are correlated, s2 cannot be a completely revealing signal, as
it would provide information about s1. A priori, it is not obvious whether there
exists a unique solution to the optimal private disclosure problem, or whether there
are multiple Blackwell unordered signals s2 that are optimal for different decision
problems. Our characterization of the Pareto optimal private private signals will
show that the solution is unique and provide a simple recipe to calculate it, when the
state is binary.

3.2 Influencing Competitors in Zero-Sum Games

As another motivation for private private signals, we consider a zero-sum game played
by two players. The action set of player i P t1, 2u is Ai, which we take to be finite, and
the utilities are given by u1 “ ´u2 “ u for some u : A1 ˆ A2 Ñ R. We assume that
this game has a unique mixed Nash equilibrium, which holds for generic zero-sum
games (Viossat, 2008).

There is a random state ω taking value in Ω. The two players do not know the
state and their payoffs do not depend on it. But, there is another agent (the designer)
who knows the state and has a utility function ud : ΩˆA1 ˆA2 that depends on the
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state and the actions of the players. This can model a setting where a designer
wants to influence the actions of two competitors, with the designer’s preference over
actions given by his private type ω. The designer commits to a (not necessarily private
private) information structure pω, s1, s2q. When the state ω is realized, the designer
observes it and sends the signal s1 to player 1 and s2 to player 2. The players choose
their actions after observing the signals.

As a simple example, suppose the game is rock-paper-scissors, so that A1 “ A2 “

tR,P, Su and upa1, a2q equals 1 on tpP,Rq, pR, Sq, pS, P qu, zero on the diagonal, and
´1 on the remaining action pairs. The state ω takes values in t0, 1u and is equal to
1 with probability 1{2. The designer gets a payoff of 1 for each player who chooses
scissors in the high state or chooses rock in the low state.

A pure strategy of player i is a map fi : Si Ñ Ai, and a mixed strategy σi is a
random pure strategy. An equilibrium consists of an information structure together
with a strategy profile pσ1, σ2q such that each agent maximizes her expected utility
given her signal. That is, for every si P Si and ai P Ai

Eruipσipsiq, σ´ips´iqq|sis ě Eruipai, σ´ips´iqq|sis.

This is just the incentive compatibility condition of a correlated equilibrium, and so,
by a direct revelation argument, we can assume that Si “ Ai and that σi is always the
identity: in equilibrium, the designer recommends an action to each agent, and the
agents follow the recommendations. We refer to such equilibria as direct-revelation
equilibria.

The next claim shows that private private information structures arise endoge-
nously in this setting.

Claim 1. In every direct-revelation equilibrium, the information structure pω, s1, s2q

is a private private information structure.

Proof. A zero-sum game with a unique Nash equilibrium has a unique correlated
equilibrium which is equal to that Nash equilibrium (Forges, 1990). Thus ps1, s2q

form a Nash equilibrium, and in particular s1 must be independent of s2.

The intuition behind this result is simple: revealing to player i any information
about the recommendation given to player ´i gives i an advantage that she can
exploit to increase her expected utility beyond the value of the game. But player ´i
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can guarantee that i does not get more than the value, and hence si cannot contain
any information about s´i. Note that Claim 1 applies beyond generic zero-sum games
to any game with any number of players, provided that it has a unique correlated
equilibrium.3

In the rock-paper-scissors example above, the joint distribution of ps1, s2q must
be uniform over tR,P, Su ˆ tR,P, Su, by Claim 1. However, the designer is free to
choose the joint distribution between ps1, s2q and ω. Thus his problem is to maxi-
mize Erudpω, s1, s2qs over all structures in which ps1, s2q is uniform over tR,P, Su ˆ
tR,P, Su. Choosing ps1, s2q independently of ω yields a payoff of 6{9. A straight-
forward calculation shows that an optimal structure yields him a payoff of 8{9. By
comparison, in a relaxed problem where the designer is allowed to dictate the players’
actions without worrying about the privacy constraint, he can achieve utility 2 by
revealing the state to both players, telling them to both choose scissors when the
state is high and rock when the state is low.

Beyond the specifics of the rock-paper-scissors example, the fact that equilibrium
signals are private private means that any bound on the informativeness of private
private signals yields a bound on the designer’s equilibrium utility: if the designer’s
recommendations only contain a limited amount of information about the state, then
he cannot hope that the players’ actions efficiently adapt to the state and yield him
high utility. Thus our results below, including Theorem 1 and Propositions 3, 4 and
5, constrain what can be achieved by the designer in any such setting.

4 Pareto Optimality and Conjugate Distributions

The question of Pareto optimality of private private information structures is already
non-trivial in the case of two agents and a binary state. For example, is the structure
given in Figure 1 Pareto optimal? What about the structure in Figure 2? In this
section, we give a simple description of the Pareto frontier, making it easy to check
if a structure is Pareto optimal. In particular, our results imply that the structure in
Figure 1 is Pareto optimal while the one in Figure 2 is not.

3The set of games with a unique correlated equilibrium is open (Viossat, 2008), so a small
enough perturbation of (for example) the rock-paper-scissors game will still have a unique correlated
equilibrium, although it will not be zero-sum. As a side note, we are unaware of interesting examples
of three player games with a unique correlated equilibrium. In particular, the following question is
open, to the best of our knowledge: does there exist a three player game with a unique correlated
equilibrium in which no player plays a pure strategy?
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Figure 3: An example of a cumulative distribution function F and its conjugate F̂ .
The shapes under the curves are congruent: the transformation that maps one to
the other is reflection around the anti-diagonal. Qualitatively, F corresponds to the
belief distribution of a more informative signal, and F̂ corresponds to that of a less
informative signal.

To state this result, we introduce conjugate distributions on r0, 1s. Let F : r0, 1s Ñ

r0, 1s be the cumulative distribution function of a probability measure in ∆pr0, 1sq.
The associated quantile function, which we denote by F´1, is given by

F´1
pxq “ minty : F pyq ě xu. (1)

Since cumulative distribution functions are right-continuous, this minimum indeed
exists, and so F´1 is well defined. When F is the cumulative distribution function of a
full support and nonatomic measure, then F is a bijection and F´1 is its inverse. More
generally, F´1pxq is the smallest number y such that an x-fraction of the population
has value less than or equal to y.

Definition 5. The conjugate of a cumulative distribution function F : r0, 1s Ñ r0, 1s

is the function F̂ : r0, 1s Ñ r0, 1s, which is given by

F̂ pxq “ 1´ F´1
p1´ xq.

Graphically, px, yq is on the graph of F if and only if p1´ y, 1´xq is on the graph
of F̂ : in other words, F̂ is the reflection of F around the anti-diagonal of the unit
square. An example is depicted in Figure 3.

As we show in the Appendix (Claim 2), F̂ is also a cumulative distribution func-
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tion. Thus, given a measure µ P ∆pr0, 1sq, we can define its conjugate measure
µ̂ P ∆pr0, 1sq as the unique measure whose cumulative distribution function is the
conjugate of the cumulative distribution function of µ. It is easy to verify that the
conjugate of µ̂ is again µ.

The main result of this section is that Pareto optimality can be characterized in
terms of conjugates.

Theorem 1. For a binary state ω and two agents, a private private information
structure I “ pω, s1, s2q is Pareto optimal if and only if the distributions of beliefs
pps1q and pps2q are conjugates.

Our proof of Theorem 1 combines our more general characterization of Pareto
optimality in the n agents case (Theorem 3) together with a classical result of Lorentz
(1949) about so-called “sets of uniqueness,” which we discuss in detail in §5; these are
subsets of r0, 1sn that are uniquely determined by their projections to each of the n
axes.

Figure 3 suggests that on the Pareto frontier, when s1 is very informative, s2 must
be very uninformative. We formalize this in the Appendix (Proposition 6), where we
show that if both pω, s1, s2q and pω, t1, t2q are Pareto optimal, and if t1 dominates s1,
then t2 is dominated by s2. That is, giving agent 1 more information must come at
the cost of giving agent 2 less.

Note that for every pair of conjugate distributions µ and µ̂, there exists a private
private information structure I “ pω, s1, s2q where pps1q has the distribution µ and
pps2q has the distribution µ̂. By Theorem 1, this structure will be Pareto optimal. To
explicitly construct such a structure, calculate the cumulative distribution function
F of µ and its conjugate F̂ , choose ps1, s2q uniformly from the unit square (so that
they are independent and each distributed uniformly on r0, 1s), and let ω “ h be the
event that s2 ě F̂ p1´ s1q. A simple calculation shows that F̂ p1´ s1q is equal to the
posterior pps1q and has the distribution µ, and pps2q has the distribution µ̂. Figure 4
illustrates this construction.

We can use Theorem 1 to understand whether the structures of Figures 1 and 2 are
optimal. The uniform distribution on r0, 1s is its own conjugate. Hence, using Theo-
rem 1’s belief conjugacy test, we can conclude that Figure 1’s information structure
is Pareto optimal.
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1

1

0 s1

s2

Figure 4: A private private information structure, where the beliefs pps1q and pps2q are
distributed according to the pair of conjugate distributions F and F̂ from Figure 3:
the signals are uniform on r0, 1s2, and ω “ h if and only if s2 ě F̂ p1 ´ s1q (black
region).

To understand the structure of Figure 2, consider, more generally, a discrete dis-
tribution µ on r0, 1s with k atoms. Its conjugate µ̂ is also atomic: each atom of µ with
weight w corresponds to an interval of zero mass with length w for µ̂ and, symmetri-
cally, each interval of length l carrying no atoms in µ becomes an atom of weight l in
µ̂ (see Figure 5). In particular, µ̂ has either k´ 1, k or k` 1 atoms, corresponding to
the cases that (1) µ places positive mass on both 0 and 1, (2) µ places positive mass
on exactly one of t0, 1u, and (3) µ places zero mass on t0, 1u.

We conclude that the information structure of Figure 2, where both signals induce
beliefs 1{4 or 3{4 is not Pareto optimal, since two discrete distributions with the same
number of atoms can only be conjugates if each of them assigns a non-zero weight to
exactly one of t0, 1u.

4.1 Optimal Private Disclosures

Using Theorem 1, we solve the optimal private disclosure problem for binary states.

Theorem 2. For a binary state ω, there exists an optimal private disclosure s‹2 for
every pω, s1q. This disclosure is unique up to equivalence: the distribution of pps‹2q is
the conjugate of the distribution of pps1q. Furthermore, every signal s2 independent
of s1 is Blackwell dominated by s‹2.

The last statement in Theorem 2 implies that every decision maker would find the
signal s‹2 optimal, regardless of the decision problem at hand. For example, no s2 that
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Figure 5: The conjugate of a discrete distribution F with three atoms at 0.1, 0.4,
and 0.6. Each atom becomes an interval of zero measure with length equal to the
atom’s weight, and vice versa. Since F does not have atoms at the endpoints of r0, 1s,
the number of intervals of zero measure exceeds the number of atoms by one, so its
conjugate F̂ has four atoms at 0, 0.5, 0.8, and 1.

is independent of s1 can have higher mutual information with ω or lower quadratic
loss. This uniqueness of the optimal private disclosure is a rather surprising property
as one could expect that, for given pω, s1q, there are non-equivalent choices of s‹2 that
are both maximal and incomparable in the Blackwell order. In Appendix B.2, we
demonstrate that uniqueness is a feature of the binary-state case by considering an
example with three states, binary s1 and a continuum of optimal private disclosures.

Figure 6 shows the optimal private disclosure when the two states are equally likely
and s1 is a symmetric binary signal that matches the state with probability 3{4. The
optimal disclosure s‹2 is trinary: it completely reveals the state with probability 1{2, and
gives no information with the remaining probability. More generally, when the states
are equally likely and s1 is a symmetric binary signal that matches the state with
probability r P r1{2, 1s, the optimal disclosure will be trinary. It completely reveals
the state with probability 2p1´ rq, and gives no information with the complementary
probability. Thus, as the correlation between s1 and ω increases, the optimal private
disclosure becomes less informative.

We provide a simple practical procedure for generating an optimal private disclo-
sure s‹2, given realizations of pω, s1q. We know that s1 and s‹2 induce conjugate belief
distributions, so we can use the general procedure outlined in Figure 4 to construct
s‹2 as follows:
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Figure 6: Optimal private disclosure when a 3{4-binary signal s1 must be kept secret.
The left panel depicts the cumulative distribution function F of posteriors induced by
the symmetric binary signal s1 matching the state with probability 3{4. The optimal
private disclosure s‹2 corresponds to the conjugate distribution F̂ depicted in the right
panel. We see that s‹2 is trinary: it is completely uninformative with probability 1{2

and fully reveals the state with the complementary chance, inducing the posteriors 0
or 1 with equal probabilities.

• Calculate pps1q, the conditional probability of ω “ 1 given s1.

• If ω “ 1, sample s‹2 uniformly from the interval r1´ pps1q, 1s.

• If ω “ 0, sample s‹2 uniformly from the interval r0, 1´ pps1qs.

This procedure yields an s‹2 that, conditioned on s1, is distributed uniformly on r0, 1s,
and hence is independent of s1. It is simple to verify that s‹2 is optimal (see the proof
of Theorem 2).

This procedure can be simplified if the posterior pps1q only takes finitely many
values, in which case there exists an optimal private disclosure that is also finitely
valued. Let r0, 1s “

ŮK
k“0 Ik be a partition of the unit interval into subintervals using

the values of pps1q. The belief pps‹2q is constant when s‹2 ranges within Ik. Hence, the
constructed optimal private disclosure s‹2 with values in r0, 1s is equivalent to a signal
t‹2 P t0, . . . , Ku such that t‹2 “ k whenever s‹2 P Ik. The signal t‹2 is also an optimal
private disclosure and takes at most one more value than the number of values of
pps1q.

Consider the symmetric binary s1 matching ω with probability 3{4 from Figure 6.
An optimal private disclosure s‹2 of the state can be generated as follows. It takes
three values, t0, 1, 2u. If s1 “ ω, then s‹2 “ 2 ¨ ω, and if s1 ‰ ω then s‹2 “ 1 with
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probability 2{3 and s‹2 “ 2 ¨ ω with probability 1{3. As a result, the realization s‹2 “ 1

is completely uninformative and s‹2 P t0, 2u completely reveals ω.

4.2 Welfare Maximizing Private Private Information Structures

Suppose that each agent i P t1, 2u has to choose an action ai P Ai after observing
a signal si, and receives payoff according to a utility function uipω, aiq. Our only
assumption is that ui is bounded from above.

For a given binary ω, the social welfare of a given structure pω, s1, s2q is

ÿ

i“1,2

E
„

sup
σi:SiÑAi

uipω, σipsiqq



.

What are the private private information structures pω, s1, s2q that maximize social
welfare?

Clearly, every maximizing structure must lie on the Pareto frontier. But while
the Pareto frontier contains a rich set of information structures, including some that
induce a continuum of beliefs, the ones that maximize social welfare have a simpler
form.

Proposition 1. Given a binary ω, and given u1 and u2, there exists a welfare maxi-
mizing private private information structure pω, s1, s2q such that s1 takes two values,
s2 takes three values, and the distributions of beliefs induced by s1 and s2 are conju-
gates.

By permuting the roles of s1 and s2, we deduce that there is also a welfare-
maximizing structure in which s2 takes two values and s1 takes three. The proposition
is proved in Appendix A.7 using a combination of an extreme-point argument and the
characterization of Pareto optimal structures via conjugate distributions (Theorem 1).

For an example of a social welfare maximizing structure, consider the canon-
ical example with two equally likely states, Ai “ Ω “ t0, 1u, where each agent
gets utility 1 from matching the state and utility -1 from mismatching it, so that
u1pω, aq “ u2pω, aq “ 2|ω ´ a| ´ 1. If we reveal the state to agent 1 and give agent
2 no information, then the social welfare is 1. Consider instead a private private
information structure where each agent has a posterior belief of

a

1{2 with probability
a

1{2 and a posterior belief of 0 with the complementary probability. Such a structure
exists as this distribution is its own conjugate: see also Figure 7. Then the social
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Figure 7: A social welfare maximizing private private information structure for the
decision problem in which u1pω, aq “ u2pω, aq “ 2|ω ´ a| ´ 1 .

welfare is 4´ 2
?

2 « 1.17. Let us check that this is the highest possible social welfare
across all private private information structures.

By Proposition 1, we can assume that the distribution of posteriors µ induced
by s1 is supported on two points. It has mean 1{2 since the average posterior equals
the prior, and thus can be represented as α

α`β
δ 1

2
´β `

β
α`β

δ 1
2
`α for some constants

α, β P p0, 1{2s, where δx denotes the point mass at x. The contribution of the first
agent to the welfare is therefore 4αβ

α`β
.

The conjugate distribution µ̂ takes the form
`

1
2
´ α

˘

δ0`pα`βqδ β
α`β
`
`

1
2
´ β

˘

δ1.
As the problem is state-symmetric, we can assume β ě α without loss of generality
and, hence, the middle atom of µ̂ is above 1{2. Therefore, the second agent contributes
1´ 2α to the welfare, and the total welfare equals 4αβ

α`β
` 1´ 2α. A simple calculation

shows that this is maximized when β “ 1{2 and α “
a

1{2 ´ 1{2, which yields the
structure described above.

5 Pareto Optimality and Sets of Uniqueness

In this section, we study Pareto optimality of private private information in the
general setting of n agents and a state ω that takes value in Ω “ t0, . . . ,m ´ 1u.
Our main result shows that Pareto optimality can be characterized using “sets of
uniqueness”: subsets of r0, 1sn that are uniquely determined by their projections to
the n axes.

As a first step, we show that it is without loss of generality to focus on information
structures that are constructed similarly to the examples we have considered above:
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each si is distributed uniformly on r0, 1s, and each value of ω corresponds to some
subset of r0, 1sn. That is, ω is a deterministic function of the signals (see Figures 1
and 2, as well as 8 in the Appendix).

More formally, let A “ pA0, . . . , Am´1q be a partition of r0, 1sn into measurable
sets. That is, each Ak is a measurable subset of r0, 1sn, the sets in A are disjoint, and
their union is equal to r0, 1sn.

Definition 6. The private private information structure associated with a partition
A “ pA0, . . . , Am´1q is I “ pω, s1, . . . , snq where ps1, . . . , snq are distributed uniformly
on r0, 1sn and tω “ ku is the event that tps1, . . . , snq P Aku.

Note that if A and A1 are partitions such that each symmetric difference Ak4A1k
has zero Lebesgue measure, then both are associated with the same information
structure, in the strong sense that the joint distributions of pω, s1, . . . , snq coincide.
Accordingly, we henceforth consider two subsets of r0, 1sn to be equal if they only
differ on a zero-measure set.

Proposition 2. For every private private information structure I, there exists a
partition A whose associated information structure I 1 is equivalent to I.

While the general proof contained in Appendix A.2 is not constructive, for struc-
tures with a finite number of signals and a binary state, we show in Appendix B.3
how to construct a partition with an equivalent associated structure.

The ideas behind the proof of this proposition are the following. Using standard
results, one can always reparameterize the signals so that they are uniformly dis-
tributed in r0, 1s. Thus the main challenge is to ensure that the state is determined
by the signals. To this end, given signals that do not determine the state, we add a
signal t that resolves the remaining uncertainty, so that ω is a deterministic function
of ps1, . . . , sn, tq. Then, we use a “secret sharing” technique (Shamir, 1979) to create
a pair of independent random variables t1, t2 such that t is determined by the pair
pt1, t2q, but each ti is uninformative about the state and the other signals. We then
reveal to agents 1 and 2 the additional signals t1 and t2, respectively. Thus the infor-
mation structure

`

ω, ps1, t1q, ps2, t2q, . . . , sn
˘

is equivalent to pω, s1, . . . , snq, but now
the signals determine the state.

Proposition 2 implies that for the purpose of studying the Pareto optimality of
private private signals, one can assume without loss of generality that information
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structures are always associated with partitions. In particular, the question of Pareto
optimality can now be phrased as a question about partitions: when does a partition
A correspond to a Pareto optimal structure? Our next result answers this question.
We state this result for the case of a binary state, as it involves significantly simpler
notation; the result for a general finite state space is given in Appendix A.3. In the
case of a binary state, a partition A “ pA0, A1q is determined by A1, since A0 is its
complement. Hence we will represent A by a single set A “ A1. The information
structure associated with A will refer to the structure associated with the partition
pAc, Aq.

Given a measurable set A Ď r0, 1sn, we define n functions pαA1 , . . . , αAn q that cap-
ture the projections of A to the n coordinate axes. Denote by λ the Lebesgue measure
on r0, 1sn´1. The projection αAi : r0, 1s Ñ r0, 1s of A to the ith axis is

αAi ptq “ λpty´i : pyi, y´iq P A, yi “ tuq.

If pω, s1, . . . , snq is the information structure associated with A, then αAi ptq is the
posterior of agent i when she observes si “ t.

Definition 7. A measurable A Ď r0, 1sn is a set of uniqueness if for every measurable
B Ď r0, 1sn such that pαA1 , . . . , αAn q “ pαB1 , . . . , αBn q, it holds that A “ B.

Less formally, A is a set of uniqueness if it is determined by the projections
pαA1 , . . . , α

A
n q.

The main result of this section characterizes Pareto optimality in terms of sets of
uniqueness.

Theorem 3. A private private information structure is Pareto optimal if and only if
it is equivalent to a structure associated with a set of uniqueness A Ď r0, 1sn.

To prove that Pareto optimality implies that A is a set of uniqueness, suppose
A is not a set of uniqueness, so that B ‰ A has the same projections. Hence the
structure associated with A is equivalent to the one associated with B. By considering
a convex combination of the two structures, we arrive at another equivalent structure,
one in which the signals do not always determine the state. We resolve this residual
uncertainty via an additional informative signal t, which is independent of ps1, . . . , snq.
Now, revealing this new signal to agent 1 results in a private private information
structure

`

ω, ps1, tq, s2, . . . , sn
˘

that dominates the structure associated with A.
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Conversely, suppose the information structure associated with A is not Pareto
optimal. By considering a Pareto dominating information structure and garbling the
signals, we can find a density f : r0, 1sn Ñ r0, 1s that is not an indicator function, but
has the same marginals as A. We next apply a result of Gutmann et al. (1991): the set
of densities valued in r0, 1s with given marginals is a convex set whose extreme points
are indicator functions. Since f is not an indicator function, the corresponding convex
set is not a singleton and must have at least two different extreme points. There exists
some other set with the same marginals as A, so A is not a set of uniqueness.

Theorem 3 shows an equivalence between the two a priori unrelated notions of
Pareto optimality and sets of uniqueness; a similar result in Appendix A.3 estab-
lishes an analogous equivalence for arbitrary finite state spaces, generalizing sets of
uniqueness to partitions of uniqueness. This connection lets us use characterization
results about sets of uniqueness to study Pareto optimality. Sets of uniqueness have
been studied since Lorentz (1949), who gives a simple characterization in the two
dimensional case. A version of his characterization, as we explain below, leads to
Theorem 1. Beyond the two dimensional case, sets of uniqueness have also been more
recently studied in the mathematical tomography literature (e.g., Fishburn et al.,
1990). We discuss below how these newer results help us understand Pareto optimal
structures.

To characterize sets of uniqueness in two dimensions, we will need the following
definitions. Say that A Ď r0, 1s2 is a rearrangement of B Ď r0, 1s2 if for i “ 1, 2 and
every q P r0, 1s, the sets tt P r0, 1s : αAi ptq ď qu and tt P r0, 1s : αBi ptq ď qu have
the same Lebesgue measure. That is, αAi and αBi , when viewed as random variables
defined on r0, 1s, have the same distribution. This has a simple interpretation in
terms of information structures: A is a rearrangement of B if and only if the two
associated information structures are Blackwell equivalent. This is immediate, since
in the information structure associated with A, αAi ptq is the belief of agent i after
observing si “ t.

Recall that B Ď r0, 1sn is upward-closed if x “ px1, . . . , xnq P B implies that
y “ py1, . . . , ynq P B for all y ě x.

Theorem 4 (Lorentz (1949)). A measurable subset A Ď r0, 1s2 is a set of uniqueness
if and only if it is a rearrangement of an upward-closed set.

This formulation is different than the one that appears in the paper by Lorentz
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(1949). We therefore show in the Appendix that it is an equivalent characterization.
Theorem 1 is a consequence of Theorems 4 and 3.

When n ą 2, the known characterizations of sets of uniqueness are more involved
(Kellerer, 1993). Nevertheless, a simple sufficient condition for uniqueness (Fishburn
et al., 1990) is to be an additive set: this holds when there are bounded hi : r0, 1s Ñ R
such that

A “

#

x P r0, 1sn :
n
ÿ

i“1

hipxiq ě 0

+

.

In two dimensions a set is additive if and only if it is a rearrangement of an upward-
closed set, and so additivity provides another characterization of the sets of uniqueness
(and equivalently, of the Pareto optimal structures). In higher dimensions (i.e., with
three or more agents), the sufficiency of additivity implies that every additive set is
associated with a Pareto optimal structure. With n ě 3, Kemperman (1991) demon-
strated that there are sets of uniqueness that are not additive. However, additivity
is “almost necessary”: Kellerer (1993) characterizes the class of sets of uniqueness as
the closure, in a certain topology, of the class of additive sets.

6 Feasibility

In §2 we discussed the fact that a private private information structure pω, s1, . . . , snq

is equivalent to the “direct revelation” structure pω, pps1q, . . . , ppsnqq. Equivalence
classes of information structures correspond to n-tuples pµ1, . . . , µnq of measures on
∆pΩq, where µi is the distribution of ppsiq. In this section, we consider the question
of feasibility: which tuples pµ1, . . . , µnq represent some private private information
structure?

Definition 8. An n-tuple pµ1, . . . , µnq of probability measures on ∆pΩq is said to be
feasible if there exists a private private information structure I “ pω, s1, . . . , snq such
that µi is the distribution of ppsiq.

For example, Figure 2 shows that for symmetric binary states and two agents, it
is feasible for both agents to have binary signals that induce beliefs of either 1{4 or
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3{4. That is, pµ1, µ2q is feasible for

µ1 “ µ2 “
1

2
δ1{4 `

1

2
δ3{4.

The question of feasibility was studied by Gutmann et al. (1991) and Arieli et al.
(2021). The latter investigate feasibility for two agents, symmetric binary states,
and focus on the case of µ1 “ µ2. They show that if µ is symmetric to reflection
around 1{2 (i.e., to permuting the states), then pµ, µq is feasible if and only if µ is
a mean-preserving contraction of the uniform distribution on r0, 1s. It follows, for
example, that 3{4 is the strongest possible binary signal that two players can have in
a symmetric private private information structure with a symmetric binary state. To
the best of our knowledge, little is known about feasibility beyond this result.

A necessary condition for feasibility is given by the the so-called martingale con-
dition (i.e., by the law of iterated expectations). It implies that if the posterior ppsiq
has distribution µi then the expected posterior

ş

q dµipqq must equal to the prior dis-
tribution of ω. Thus a necessary condition for feasibility is that

ş

q dµipqq “
ş

q dµjpqq

for all agents i and j.
The question of feasibility is closely related to that of Pareto optimality. Indeed,

one answer is that pµ1, . . . , µnq is feasible if and only if there exists a Pareto optimal
structure represented by some pν1, . . . , νnq, such that each µi is a mean-preserving
contraction of νi. This holds since mean-preserving contractions of the posterior belief
distributions correspond to Blackwell dominance. By Blackwell’s Theorem, one can
take a structure with posteriors pν1, . . . , νnq, and apply an independent garbling to
each agent’s signal to arrive at a structure with posteriors pµ1, . . . , µnq.

This observation, together with Theorem 1, gives the following characterization
for the case of a binary state and two agents.

Corollary 1. The pair pµ1, µ2q of distributions on r0, 1s is feasible if and only if µ2

is a mean preserving contraction of the conjugate of µ1.

This result generalizes the symmetric case addressed in Proposition 2 of Arieli
et al. (2021): in our result, the two states need not be equally likely, the two agents
need not have the same belief distribution, and their belief distributions need not
be symmetric around 1{2. It offers a simple tool for checking feasibility. Indeed, by
applying a standard characterization of mean-preserving spreads, the pair pµ1, µ2q
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is feasible if and only if they have the same expectation, and the corresponding
cumulative distribution functions pF1, F2q satisfy

ż 1

y

F2pxq dx ě

ż 1

y

F̂1pxq dx

for every y P r0, 1s.

In the general case of m states and n agents, we do not have a simple characteriza-
tion of feasibility. Nevertheless, we now present a necessary condition for feasibility,
which relies on information-theoretic ideas. We will require two standard definitions.

The Shannon entropy of a measure q P ∆pΩq is

Hpqq “ ´
ÿ

kPΩ

qpkq log2pqpkqq. (2)

Given a signal pω, siq, denote the mutual information between ω and si by

Ipω; siq “ H pErppsiqsq ´ ErHpppsiqqs.

Note that Ipω; siq can be written in terms of the distribution of posteriors µi, and so
it is an equivalence invariant:

Ipµiq “ H

ˆ
ż

q dµipqq

˙

´

ż

Hpqq dµipqq. (3)

In this expression, the first expectation
ş

q dµipqq is the prior distribution of ω.
In information theory, entropy is often used to quantify the amount of randomness

in a distribution. Mutual information is then the expected reduction in this random-
ness, and is used as a measure for the amount of information contained in a signal.
These notions are also used in economics, e.g., in the rational inattention literature
(Sims, 2010; Matějka and McKay, 2015). In our setting, mutual information is use-
ful as it provides the following necessary condition for feasibility of private private
information structures.

Proposition 3. With n agents and m states, the tuple pµ1, . . . , µnq of distributions on
∆pΩq is feasible only if all µi have the same expectation p “

ş

q dµipqq and
ř

i Ipµiq ď

Hppq.
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The fact that Ipµiq ď Hppq follows immediately from the definition of mutual
information. For general information structures (e.g., conditionally independent sig-
nals), there are no further restrictions on the tuple pIpµ1q, . . . , Ipµnqq: each can take
any value between 0 and Hppq. Proposition 3 shows that the situation is different
when it comes to private private information structures. Here, the sum of mutual
information is bounded by the entropy of the prior over ω, so that the entropy of ω
behaves like a finite resource that needs to be split between the agents. The proof of
this proposition uses standard information-theoretic tools.

Proposition 3 raises a natural question: is this condition tight? That is, does the
picture of entropy as a finite resource to be split between the agents tell the whole
story, or is there a tighter inequality that relates

ř

i Ipµiq and Hppq?
Our next proposition shows that Proposition 3 can be strengthened in the case of

a binary state.

Proposition 4. The tuple pµ1, . . . , µnq of distributions on ∆pt0, 1uq is feasible only
if all µi have the same expectation p “

ş

q dµipqq and

ÿ

i

Ipµiq ď Hppq ´
ln 2

8

ÿ

iăj

IpµiqIpµjq.

As far as we know this proposition is a novel information-theoretic inequality,
which might have some independent interest. It shows that for a binary state, while
entropy is a finite resource, it cannot be fully divided among the agents: the sum of
mutual information is strictly less than the entropy of ω (as long as at least two signals
are informative). This is a special property of the binary-state setting. For example,
if ω is uniformly distributed over t0, 1uˆt0, 1u, then the structure in which s1 is equal
to the first coordinate of ω and s2 is equal to the second satisfies Proposition 3 with
equality.

The mutual information I is the expected utility associated with a particular
decision problem: one in which the indirect utility is given by a constant minus
the entropy. Does an analog of Proposition 3 hold for other decision problems?
A positive answer would give additional necessary conditions for feasibility. The
next proposition shows that for another natural indirect utility function—a quadratic
one—an analogous statement indeed holds. Curiously, the proof of this proposition
is different than that of Proposition 3, and we do not know of a unifying principle
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that yields both results. Moreover, we do not know of any other indirect utility that
yields the same type of result.

In analogy to (2) and (3), for q P ∆pΩq denote H̄pqq “
ř

kPΩ qpkqp1 ´ qpkqq, and
for a measure µ on ∆pΩq define

Īpµq “ H̄

ˆ
ż

q dµpqq

˙

´

ż

H̄pqq dµpqq.

Loosely speaking, for a distribution µ over posterior beliefs, Īpµq is the expected
reduction in the variance of the agent’s belief.

Proposition 5. With n agents and m states, the tuple pµ1, . . . , µnq of distributions on
∆pΩq is feasible only if all µi have the same expectation p “

ş

q dµipqq and
ř

i Īpµiq ď

H̄ppq.

While this statement is completely analogous to that of Proposition 3, the proof
uses a different technique, exploiting the L2 orthogonality of independent random vari-
ables. Indeed, we do not know of a unifying argument that implies both propositions,
and we furthermore do not know of additional decision problems that yield analogous
statements. We note that Proposition 5 is a generalization—from the binary state
case—of the “concentration of dependence” principle of Mossel et al. (2020). A very
similar idea appeared earlier in the economics literature (Al-Najjar and Smorodinsky,
2000) and is standard in the analysis of Boolean functions (see, e.g., Kahn et al., 1988;
O’Donnell, 2014).
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Appendix

A Omitted Proofs

Note that we sometimes prove results in a different order than the order that they
appear in the main text, since some of the results we state earlier are implied by some
of the later results.
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A.1 Preliminary Lemmas

Let I “ pω, s1, . . . , snq be a private private information structure. The signals
s1, . . . , sn can be combined into a new signal s “ ps1, . . . , snq. The following lemma
gives a lower bound on the informativeness of the combined signal s in terms of the
informativeness of the individual signals. It can be seen as superadditivity of mutual
information for independent signals.

Lemma 1. For a private private information structure pω, s1, . . . , snq the following
inequality holds

n
ÿ

i“1

I
`

ω ; si
˘

ď I
`

ω ; ps1, . . . , snq
˘

. (4)

Proof. The result for n ě 3 follows from the result for n “ 2 by applying it sequentially
to ps1, . . . , skq for k ď n. Consequently, in the rest of the proof we assume n “ 2.

Our goal is to show that

∆ “ I
`

ω ; ps1, s2q
˘

´ I
`

ω ; s1

˘

´ I
`

ω ; s2

˘

ě 0.

Let p1pkq “ pps1qpkq “ Prω “ k | s1s, define p2 likewise, and let p12pkq “ pps1, s2qpkq “

Prω “ k | s1, s2s. Let p denote the prior distribution of ω. By the martingale property
Erp12 | pis “ pi and Erpis “ p.

Using this notation and the definition of mutual information, we can write for
i P t1, 2u

I
`

ω ; si
˘

“ E

«

ÿ

k

pipkq log
ppkq

pipkq

ff

and I
`

ω ; s1, s2

˘

“ E

«

ÿ

k

p12pkq log
ppkq

p12pkq

ff

.

By the martingale property we can replace the first pi by p12:

I
`

ω ; si
˘

“ E

«

ÿ

k

p12pkq log
ppkq

pipkq

ff

.

Thus

∆ “ E

«

ÿ

k

p12pkq log
p1pkqp2pkq

p12pkqppkq

ff

.
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Applying Jensen’s inequality to the logarithm, we get that

∆ ě logE

«

ÿ

k

p12pkq
p1pkqp2pkq

p12pkqppkq

ff

.

Cancelling and rearraging we get

∆ ě log
ÿ

k

1

ppkq
Erp1pkqp2pkqs.

Since p1pkq and p2pkq are independent,

∆ ě log
ÿ

k

1

ppkq
Erp1pkqsErp2pkqs.

By the martingale property Erpipkqs “ ppkq, and so ∆ ě log
ř

k ppkq “ 0.

Note that this proof only used the independence of ps1, s2q to the extent that it
implies that pps1q is uncorrelated with pps2q.

To show that a given private private information structure I “ pω, s1, . . . , snq is
Pareto dominated, we will often use the following technique: construct an additional
informative signal t independent of s1, . . . , sn, and reveal it to one of the agents,
say, the first one. The new information structure I 1 “ pω, ps1, tq, s2, . . . , snq strictly
dominates I thanks to the following direct corollary of Lemma 1.

Corollary 2. Fix ω, and consider a pair of signals s and t such that

• s and t are independent, and

• t is not independent of ω.

Then the information structure pω, ps, tqq strictly dominates pω, sq with respect to the
Blackwell order.

Proof. Clearly pω, sq is weakly dominated by pω, ps, tqq. We show that this domination
is strict.

Since t is informative, Ipω; tq ą 0. Hence, by Lemma 1,

Ipω; ps, tqq ě Ipω; sq ` Ipω; tq ą Ipω; sq.
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Since Ipω; sq is the value of a particular decision problem (see the discussion in §6),
it follows that pω, ps, tqq strictly dominates pω, sq.

The next lemma shows that, without loss of generality, induced posteriors are
equal to signals, which can be seen a version of the revelation principle for private
private information structures.

Lemma 2. Any private private information structure I “ pω, s1, . . . , snq is equivalent
to J “ pω, t1, . . . , tnq where each agent’s signal ti is her posterior ppsiq in the structure
I.

Proof. By the law of total expectation, pptiq “ ti. It follows that ppsiq and pptiq have
the same distribution, and so are Blackwell equivalent.

For a private private information structure I “ pω, s1, . . . , snq, recall that we
denote by µi P ∆p∆pΩqq the distribution of the belief ppsiq. Let M Ă ∆p∆pΩqqn be
the set of feasible distributions µ1, . . . , µn, i.e., those that correspond to some private
private information structure I.

Lemma 3. The set of feasible distributions M is compact in the topology of weak
convergence.

Proof. Since the set of probability measures ∆p∆pΩqq is compact, to prove the com-
pactness of M, it is enough to check that it is closed. In other words, we need
to check that if a sequence of feasible distributions pµl1, . . . , µlnq weakly converges to
pµ81 , . . . , µ

8
n q as l Ñ 8, then the limit is also feasible.

Let I l “ pω, sl1, . . . , s
l
nq be an information structure inducing pµl1, . . . , µlnq. By

Lemma 2, we can assume without loss of generality that the signals sli are in ∆pΩq

and they coincide with the induced beliefs, i.e., p
`

sli
˘

“ si. Let ψl P ∆pΩ ˆ∆pΩqnq

be the joint distribution of ω and the beliefs sl1, . . . , sln. By compactness of the set of
probability measures, we can extract a subsequence of ψl converging to some ψ8. By
definition, the marginal of ψ8 on the belief coordinates equals µ81 ˆ . . .ˆ µ8n .

Consider a private private information structure I8 “ pω, s81 , . . . , s
8
n q, where

signals s8i belong to ∆pΩq and the joint distribution of the state and signals is given
by ψ8. Each signal s8i has distribution µ8i . Let us check that the induced beliefs
coincide with signals, i.e., p

`

s8i
˘

pkq “ s8i pkq almost surely for each k P Ω. We verify

31



an equivalent integrated version of this identity:

ż

˜

ÿ

k

hpk, s8i qpps
8
i qpkq

¸

dψ8 “

ż

˜

ÿ

k

hpk, s8i qs
8
i pkq

¸

dψ8 (5)

for any continuous function h on Ωˆ∆pΩq. Since the left-hand side is just the integral
of h, this is equivalent to

ż

hpω, s8i qdψ
8
“

ż

˜

ÿ

k

hpk, s8i qs
8
i pkq

¸

dψ8. (6)

For each l ă 8, the beliefs in I l coincide with the signals, i.e.,

ż

hpω, sliqdψ
l
“

ż

˜

ÿ

k

hpk, sliqs
l
ipkq

¸

dψl.

As integration of a continuous function commutes with taking weak limits, letting l
go to infinity, we obtain (6).

We conclude that each belief p
`

s8i
˘

in I8 coincides with the signal s8i and the
latter is distributed according to µ8i . Therefore, pµ81 , . . . , µ8n q is feasible and so the
set of feasible distributions is closed and thus compact.

The next lemma shows that our order on private private information structures is
well-behaved, in the sense that each structure is dominated by a Pareto optimal one:
each element of the partially ordered set of private private information structures is
upper bounded by a maximal element.

Lemma 4. For any private private information structure I “ pω, s1, . . . , snq, there
exists a Pareto optimal structure I 1 “ pω, s11, . . . , s1nq that weakly dominates I.

Proof. Recall that I ĺ J if for any continuous convex ϕ : ∆pΩq Ñ R and any agent
i “ 1, . . . , n,

ż

ϕpqqdµipqq ď

ż

ϕpqqdνipqq (7)

where µi and νi are the distributions of agent i’s beliefs in I and J , respectively.
We say that the collection of distributions pµ1, . . . , µnq is dominated by pν, . . . , νnq

if (7) holds. Hence, J dominates I if and only if the distributions of beliefs in J
dominate those in I. If µli Ñ µ8i and νli Ñ ν8i weakly as l Ñ 8 and pνl1, . . . , νlnq
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dominates pµl1, . . . , µlnq, then pν81 , . . . , ν8n q dominates pµ81 , . . . , µ8n q as integration of
a continuous function ϕ in (7) is exchangeable with taking weak limits. Thus the
dominance order on distributions is continuous in the weak topology.

Let pµ1, . . . , µnq be the distributions of posteriors induced by I and let M be
the set of feasible distributions endowed with the weak topology. As M is compact
by Lemma 3 and the dominance order is continuous, there is a maximal element
pν1, . . . , νnq PM dominating pµ1, . . . , µnq. Since pν1, . . . , νnq is feasible, it is induced
by some private private information structure I 1. By the construction, I 1 dominates
I and is Pareto optimal.

A.2 Proof of Proposition 2

We need to show that, given a private private information structure I “ pω, s1, . . . , snq

with Ω “ t0, . . .m ´ 1u, there is an equivalent structure associated with a partition
A “ pA0, . . . , Am´1q of r0, 1sn. The construction relies on two lemmas. Lemma 5
shows that assuming signals si are uniform on r0, 1s is without loss of generality.
Hence it remains to show that there is an equivalent information structure where
signal realizations determine the state. This is done using a secret-sharing scheme
from Lemma 6.

Lemma 5. For any private private information structure I “ pω, s1, . . . , snq, there
is an equivalent private private information structure I 1 “ pω, s11, . . . , s

1
nq such that

each s1i is uniformly distributed on r0, 1s.

Proof. Consider the information structure J “ pω, t1, . . . , tnq where ti “ psi, riq, and
each ri is independent and uniformly distributed on r0, 1s. Clearly, I and J are
equivalent. As ti is nonatomic, and since all standard nonatomic probability spaces
are isomorphic, ti can be reparametrized to be uniform on r0, 1s.

We say that a signal t is split into r1 and r2 if t is a function of r1 and r2, i.e.,
t “ fpr1, r2q.

Lemma 6. A signal t distributed uniformly on r0, 1s can be split into r1 and r2 such
that each ri is uniformly distributed on r0, 1s and the three random variables t, r1,
and r2 are pairwise independent. Furthermore, if t1 is an additional signal that is
independent of t, then we can take r1, r2 to be independent of t1.
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This lemma extends the classic secret sharing idea from cryptography which ap-
plies to discrete random variables. The proof, by construction, is immediate.4

Proof. Denote by txu the fractional part of x P R. Take r1 independent of both t

and t1 and distributed uniformly on r0, 1s, and let r2 “ tr1 ` tu. Then t “ tr2 ´ r1u

and r1, r2 and t are easily seen to be pairwise independent and also independent of t1

altogether.

With the help of Lemmas 5 and 6, we are ready to prove Proposition 2.

Proof of Proposition 2. We are given a private private information structure I “

pω, s1, . . . , snq with sets of signal realizations Si, i “ 1, . . . , n. We aim to construct
an equivalent one, I 1, where each signal s1i is uniformly distributed on r0, 1s and the
realization of signals ps11, . . . , s1nq determines the state or, equivalently, I 1 is associated
with some partition A “ pA1, . . . , Am´1q of r0, 1sn.

By Lemma 5, we can find a private private information structure pω, t1, . . . , tnq
equivalent to I where each ti is uniformly distributed in r0, 1s. If the signals pt1, . . . , tnq
determine the state, then the proof is completed.

Consider the case where pt1, . . . , tnq do not determine the state ω. To capture the
uncertainty in ω remaining after the signals have been realized, we construct a new
signal t as follows.

Let q : r0, 1sn Ñ ∆pΩq be a conditional distribution of ω given all the signals,
i.e., qpx1, . . . , xnqpkq “ Prω “ k | t1 “ x1, . . . , tn “ xns for any k P Ω. With each
distribution q P ∆pΩq we associate a partition of r0, 1q into m intervals

Bkpqq “

«

k´1
ÿ

l“0

qplq,
k
ÿ

l“0

qplq

¸

, k “ 0, . . . ,m´ 1.

The length of Bkpqq equals the mass assigned by q to ω “ k. Let t be a random
variable uniformly distributed on r0, 1s and independent of pt1, . . . , tnq. Consider a
new state variable ω1 P Ω such that ω1 “ k whenever t P Bk

`

qpt1, . . . , tnq
˘

. By
definition, the joint distributions of pω, t1, . . . , tnq and pω1, t1, . . . , tnq coincide and,
therefore, the two structures are equivalent.

The new state ω1 is determined by the realizations of t1, . . . , tn and the new signal
t. Using Lemma 6, we split the signal t into r1 and r2 that are independent of each

4We are thankful to Tristan Tomala for suggesting this construction.
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other, and where each ri is independent of t. Note that, by this lemma, we can take
r1 and r2 to be independent of pt1, . . . , tnq. Since each ri is uninformative of t, the
structure pω1, pt1, r1q, pt2, r2q, t3, . . . , tnq where r1 is revealed to the first agent and r2

to the second one is a private private structure and is equivalent to I. Since t is a
function of r1 and r2, the signals pt1, r1q, pt2, r2q, t3, . . . , tn determine the state.

It remains to reparameterize the signals of the first two agents so that, instead
of being uniform on r0, 1s2, they become uniform on r0, 1s. Consider any bijection
h : r0, 1s2 Ñ r0, 1s preserving the Lebesgue measure5 and define s11 “ hpt1, r1q,
s12 “ hpt2, r2q, and s1i “ ti for i “ 3, . . . , n. The private private information structure
I 1 “ pω1, s11, s

1
2, . . . , s

1
nq is equivalent to I, all the signals are uniform on r0, 1s, and

the realization of signals determines ω1.

A.3 Proof of Theorem 3

We formulate and prove an extension of Theorem 3 applicable to non-binary sets of
states Ω “ t0, 1, . . . ,m´ 1u.

Consider a partition of r0, 1sn into m measurable sets A “ pA0, . . . Am´1q. Recall
that the structure I “ pω, s1, . . . , smq is said to be associated with a partition A if
all the signals are uniform on r0, 1s and ω “ k whenever ps1, . . . snq P Ak.

We say that two partitions A “ pA0, . . . Am´1q and B “ pB0, . . . Bm´1q are equal
if Ak and Bk differ by a set of zero Lebesgue measure for each k. Recall that the
projection of a measurable set A Ď r0, 1sn on the ith coordinate is denoted by αAi

(see §5). The notion of sets of uniqueness from §5 extends to partitions as follows.

Definition 9. A partition A “ pA0, . . . , Am´1q is a partition of uniqueness if for
any partition B “ pB0, . . . , Bm´1q such that αAki “ αBki for all i and k, it holds that
A “ B.

Theorem 5 (Extension of Theorem 3 to m states). A private private information
structure I is Pareto optimal if and only if it is equivalent to a structure associated
with a partition of uniqueness A.

Note that in the case of m “ 2 states, a set A1 in a partition A “ pA0, A1q deter-
mines A0 “ r0, 1s

nzA1. Hence, A “ pA0, A1q is a partition of uniqueness if and only if
5Such a bijection exists since both are standard nonatomic spaces. It can be constructed explicitly

in the binary representation: hpx, yq “ z, where x “ 0.x1x2x3x4x5x6 . . ., y “ 0.y1y2y3y4y5y6 . . . and
z “ 0.x1y1x2y2x3y3 . . ..
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A1 is a set of uniqueness. Hence, Theorem 3 is an immediate corollary of its extended
version. For an application of the theorem for m ą 2, see the example contained in
Appendix B.2. This example also demonstrates that partitions of uniqueness are not
necessary composed of sets of uniqueness for m ą 2 and, hence, the requirement of
a partition to be a partition of uniqueness does not boil down to restrictions on its
elements unless m “ 2.

The proof of the theorem is split in a sequence of lemmas. We say that a private
private information structure is perfect if the information received by all the agents
together is enough to deduce the realization of ω, i.e., there exists a function f :

S1ˆ . . .ˆSn Ñ Ω such that ω “ fps1, . . . , snq. In particular, a structure with signals
uniform in r0, 1s is associated with some partition if and only if it is perfect.

The next lemma shows that perfection is necessary for Pareto optimality.

Lemma 7. If a private private information structure I “ pω, s1, . . . , snq is equivalent
to a structure that is not perfect, then I is not Pareto optimal.

The construction of the Pareto improvement resembles the proof of Proposition 2
except for the fact that the newly constructed signal is revealed entirely to one of the
agents, thus strictly improving her information (in the Blackwell order), by Corol-
lary 2.

Proof. Without loss of generality, I itself is imperfect. Let q : S1 ˆ . . .ˆ Sn Ñ ∆pΩq

be the distribution of ω conditional on s1 “ x1, . . . , sn “ xn, i.e., qpx1, . . . , xnqpkq “

Prω “ k | s1 “ x1, . . . , sn “ xns, k “ 0, . . . ,m´ 1. Since I is not perfect, we can find
a state k0 P Ω such that the event tω “ k0u is not always determined by the signals.
That is, the random variable qps1, . . . , snqpk0q does not always take values in t0, 1u.
Without loss of generality, we assume that k0 “ 0. With each q P ∆pΩq we associate
a partition of r0, 1q “

Ů

kPΩBkpqq, where

Bkpqq “
“

qpt0, . . . , k ´ 1uq, qpt0, . . . , kuq
˘

, k “ 0, . . . ,m´ 1

so that the length of Bkpqq equals qpkq.
We construct a new equivalent structure with an extra signal t as in the proof

of Proposition 2. Let t be a random variable uniformly distributed on r0, 1s and
independent of s1, . . . , sn. Define a new state ω1 as a function of these variables in
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the following way:

ω1 “ k whenever t P Bk

`

qps1, . . . , snq
˘

.

The joint distribution of pω1, s1, . . . , snq coincides with that of pω, s1, . . . , snq and,
hence, the two structures are equivalent.

To get a Pareto improvement, we reveal the realization of t to the first agent and
obtain a private private information structure I 1 “ pω1, ps1, tq, s2, . . . , snq. To argue
that I 1 is indeed a Pareto improvement we need to show that t itself is an informative
signal about ω1, i.e., the posterior pptq P ∆pΩq is not equal to the prior p with a
positive probability. It is enough to show pptqpk0q takes different values for t in r0, εs
and in r1 ´ ε, 1s. As we assume without loss of generality that k0 “ 0, the interval
Bk0 is the leftmost one in the partition, and so

pptqpk0q “ pptqp0q “ Prt ă qps1, . . . , snqp0q | ts.

That is, if we denote by Q the cumulative distribution function of qps1, . . . , snqp0q,
then pptqpk0q “ 1 ´ Gptq. Since G is a non-constant function on p0, 1q by our as-
sumption on k0, the induced belief pptqpk0q is not a constant. Thus t is informative.
By Corollary 2, this implies that the signal ps1, tq which the first agent receives in I 1

strictly dominates the signal s1 received in I. As the signals of all other agents are
the same in the two structures, I 1 strictly Pareto dominates I.

The next step is to show that only structures corresponding to partitions of unique-
ness can be Pareto optimal.

Lemma 8. If a private private information structure I “ pω, s1, . . . , snq is Pareto
optimal, then I is equivalent to a structure associated with a partition of uniqueness.

Proof. By Proposition 2, we can find a private private information structure J “

pω, t1, . . . , tnq equivalent to I and associated with some partition A “ pA0, . . . , Am´1q

of r0, 1sn.
Let us demonstrate that A is a partition of uniqueness. Towards a contradiction,

assume that there is another partition A1 “ pA10, . . . , A1m´1q not equal to A but such
that the projections αAki “ α

A1k
i for all i and k. So I is also equivalent to the structure

J 1 “ pω, t11, . . . , t
1
nq associated with A1.
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By Lemma 7, to get a contradiction, it is enough to construct an information
structure I 1 that is equivalent to I but not perfect, as this would imply the existence of
a strict Pareto improvement. We define I 1 as a structure where the joint distribution
of the state and signals is a convex combination of the corresponding distributions in
J and J 1. Formally, let s11, . . . , s1n be independent random variables each uniformly
distributed on r0, 1s and let θ P t0, 1u be a symmetric Bernoulli random variable
independent of ps11, . . . , s1nq. Define the state ω1 as follows:

ω1 “ k if

«

ps11, . . . , s
1
nq P Ak and θ “ 0

ps11, . . . , s
1
nq P A

1
k and θ “ 1

.

Since elements of the partitions A and A1 have the same projections, the posterior
induced by observing ti “ x in J is identical to the one induced by observing t1i “ x

in J 1. Hence it is again identical to the posterior induced by observing s1i “ x in I 1.
As the partitions A and A1 are not equal, there are k ‰ k1 such that the intersection
AkXA

1
k1 has a non-zero Lebesgue measure. Hence, if ps11, . . . , s1nq P AkXA1k1 , whether

ω “ k or ω “ k1 is determined by θ. We conclude that, with positive probability, the
signals ps11, . . . , s1nq do not determine the state, so I 1 is not perfect and thus both I 1

and I can be Pareto improved by Lemma 7.

We see that Pareto optimal structures are contained in those associated with par-
titions of uniqueness (up to equivalence of information structures). This shows one
direction of Theorem 5. It remains to demonstrate that any partition of unique-
ness leads to a Pareto optimal structure, i.e., the structures associated to different
partitions cannot dominate each other.

For this purpose we need two intermediate steps contained in the next two lemmas.
Lemma 9 shows that a garbling of an information structure is never perfect and
Lemma 10 implies that imperfect structures cannot be equivalent to those associated
with partitions of uniqueness. Recall that for a pair of information structures pω, tq
and pω, sq, the signal t is a garbling of s if, conditional on s, t, and ω are independent.
A structure I “ pω, s1, . . . , snq is a garbling of I 1 “ pω, s11, . . . , s

1
nq if each si is a

garbling of s1i and each si is independent of ps1jqj‰i. The last requirement means
that each agent’s signal is garbled independently. Note that, by Blackwell’s Theorem
(Blackwell, 1951, Theorem 12), I 1 (weakly) dominates I if and only if I is equivalent
to a garbling of I 1.
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Lemma 9. If I is a garbling of a private private information structure I 1, then I is
not perfect unless I and I 1 are equivalent.

Proof. Suppose that I is perfect, and so ω “ fps1, . . . , snq for some f : S1ˆ. . .ˆSn Ñ

Ω. Our goal is to show that I is equivalent to I 1. For a given realization of si, the
state ω is a function of the remaining signals sj, j ‰ i. Since s1i and sj are independent
for i ‰ j, we see that ω is independent of s1i conditional on si. In other words, s1i is
also a garbling of si. We conclude that both I is a garbling of I 1 and I 1 is a garbling
of I, so they are equivalent.

The next lemma is used to show that imperfect private private information struc-
tures cannot correspond to partitions of uniqueness. Before stating it, we will need
to introduce the following concept. A fuzzy partition is a tuple pg0, . . . , gmq of mea-
surable functions gk : r0, 1sn Ñ r0, 1s such that

ř

k gk “ 1. We can identify this tuple
with a single function g : r0, 1sn Ñ ∆pΩq. The case of a partition is one in which each
gk is the indicator of a set Ak in a partition of r0, 1sn. As with partitions, we identify
two fuzzy partitions if they agree almost everywhere. We denote the collection of
fuzzy partitions by G.

We define the projection of gk to its ith coordinate by

αgki pxiq “

ż

r0,1sn´1

gkpxi, x´iq dx´i.

When gk is the indicator of a set Ak, the projection αAki as defined in the main text
is equal to the projection of gk. With each partition A “ pA0, . . . , Am´1q of r0, 1sn we
associate the set

GA “
!

g P G such that @k, i αgki “ αAki

)

of fuzzy partitions that have the same projections as A.

Lemma 10. A partition A “ pA0, . . . , Am´1q of r0, 1sn is a partition of uniqueness if
and only GA is a singleton.

Note that GA always contains at least one element, namely, the indicators of the
partition A, i.e., p1A0 , . . . ,1Am´1q P GA. The idea behind the lemma is that all
extreme points of GA are indicators of partitions with the same projections as A.

39



Hence, if GA is not a singleton it has at least two distinct extreme points, i.e., there
is at least one more partition with the same projections as A, which is incompatible
with the fact that A is a partition of uniqueness. This identification of extreme points
and indicators has appeared before in the context of sets of uniqueness (see Gutmann
et al., 1991).

Proof. First we show that GA can be treated as a non-empty compact convex subset
of a locally convex Hausdorff vector space. Non-emptiness and convexity is straight-
forward and compactness is to be checked once an appropriate topology is defined.

Let Mpr0, 1snq be the set of all finite signed measures on r0, 1sn endowed with
the topology of weak convergence, making it a locally convex Hausdorff topolog-
ical vector space. We identify a bounded function gk : r0, 1sn Ñ R with a mea-
sure µk on r0, 1sn having the density gk with respect to the Lebesgue measure, i.e.,
dµkpx1, . . . , xnq “ gkpxqdx1 . . . dxn. Hence, GA can be identified with a subset of
´

Mpr0, 1snq
¯Ω

. Let ∆ďpr0, 1s
nq be the set of sub-probability measures, i.e., non-

negative measures µ with µpr0, 1snq ď 1. The set ∆ďpr0, 1s
nq is a compact subset of

Mpr0, 1snq. As GA is a subset of the compact set
`

∆ďpr0, 1s
nq
˘Ω, compactness of GA

follows from its closedness. To check closedness, we rewrite the conditions defining
GA in an integrated form using as test functions the continuous functions h on r0, 1sn.

The tuple of measures pµ0, . . . , µm´1q P

´

Mpr0, 1snq
¯Ω

belongs to GA if and only if

ż

r0,1sn

ˇ

ˇhpx1, . . . , xnq
ˇ

ˇdµk ě 0 (8)

ÿ

k

ż

r0,1sn
hpx1, . . . , xnqdµk “

ż

r0,1sn
hpx1, . . . , xnqdx1 . . . dxn (9)

ż

r0,1sn
hpxiqdµk “

ż

r0,1s

hpxiqα
Ak
i pxiqdxi (10)

for all k “ 0, . . . ,m ´ 1, i “ 1, . . . , n, and continuous functions h on r0, 1sn (in the
the last condition, h depends on one of the coordinates only). Condition (8) is non-
negativity, condition (9) is equivalent to

ř

k gk “ 1, and condition (10) corresponds
to the equal projections condition αgki “ αAki . By the definition of the weak topology,
integration of a continuous function commutes with taking weak limits. We conclude
that GA contains all its limit points and thus is closed.

By the Krein-Milman theorem, any compact convex subset of a locally convex
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Hausdorff vector space is the closed convex hull of its extreme points (see Aliprantis
and Border, 2006, Theorem 7.68). Thus GA is the closed convex hull of its extreme
points. Consequently, if GA is not a singleton, it has at least two distinct extreme
points. To prove the lemma, it remains to demonstrate that all extreme points of GA

correspond to partitions. Towards a contradiction, assume that g “ pg0, . . . , gm´1q is
an extreme point of GA but it is not a partition, i.e., there is a state k0 such that
gk0pxq R t0, 1u for x “ px1, . . . , xnq in a set of positive Lebesgue measure. Since
ř

k gk “ 1, there is k1 ‰ k such that the set of x where both gkpxq ą 0 and gk1pxq ą 0

has positive measure. Hence, for some ε ą 0, the set D Ď r0, 1sn of x such that both
gkpxq ą ε and gk1pxq ą ε also has positive measure. Without loss of generality, we
assume that k “ 0 and k1 “ 1.

By Corollary 2 of Gutmann et al. (1991), for any D of positive measure, there are
two disjoint sets D1, D2 Ď D also of positive measure having the same projections,
i.e., αD1

i “ αD2
i for any i “ 1, . . . , n. Hence, the function apxq “ ε

`

1D1pxq ´ 1D2pxq
˘

has zero projections, is bounded by ε in absolute value, and is equal to zero outside
of the set D. For σ P t´1,`1u, define

gσ0 pxq “ g0pxq ` σ ¨ apxq, gσ1 pxq “ g1pxq ´ σ ¨ apxq.

By definition, gσ0 and gσ1 have the same projections as g0 and g1, they are non-negative,
and gσ0 ` gσ1 “ g0 ` g1 (hence, gσ0 ` gσ1 `

ř

kě2 gk “ 1).
We conclude that the two tuples pgσ0 , gσ1 , g2, g3, . . . , gm´1q, σ P t´1,`1u, belong to

GA. They are not equal to each other as the sets D1 and D2 are disjoint. Since the
original collection pg0, . . . , gm´1q is the average of the two constructed ones, it cannot
be an extreme point. This contradiction implies that all the extreme points of GA

correspond to partitions and completes the proof.

Relying on the last two lemmas, we can demonstrate that any structure associated
with a partition of uniqueness is Pareto optimal.

Lemma 11. Let I be a private private information structure equivalent to a structure
associated with a partition of uniqueness, then I is Pareto optimal.

Proof. Without loss of generality, I “ pω, s1 . . . , snq is itself a structure associated
with a partition of uniqueness A “ pA, . . . , Am´1q of r0, 1sn.
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Towards a contradiction, assume that there is a private private information struc-
ture J strictly dominating I. By Blackwell’s theorem, I is equivalent to some gar-
bling of J denoted by I 1 “ pω, s11, . . . , s

1
nq. By Lemma 9, I 1 is not perfect. Let

ti “ pps1iq P ∆pΩq be the posterior belief induced by s1i and µi P ∆p∆pΩqq be its
distribution. Consider the structure I2 “ pω, ti, . . . , tnq. It is equivalent to I 1 (and
hence to I) by Lemma 2. As ti is a function of s1i and I 1 is not perfect, I2 cannot be
perfect either (this is also a consequence of the fact that I2 is a garbling of J ).

Let f : ∆pΩq ˆ . . .ˆ∆pΩq Ñ ∆pΩq be the conditional distribution of ω given the
realized signals t1, . . . , tn. This function is defined µ-everywhere with µ “ µ1ˆ. . .ˆµn.
As I2 is not perfect, there is a state k0 P Ω such that fk0 R t0, 1u on a set of positive
µ-measure.

Choose a fuzzy partition g : r0, 1sn Ñ ∆pΩq so that the following identity holds
almost surely6

gps1, . . . , snq “ f
`

pps1q, . . . , ppsnq
˘

.

The distributions of posteriors ppps1q, . . . , ppsnqq and pppt1q, . . . , pptnqq both coincide
with µ as the structures I and I2 are equivalent. Hence, gk0 ‰ t0, 1u on a set of
positive Lebesgue measure, i.e., g does not correspond to a partition. On the other
hand, g has the same projections as the partition A. Indeed, let us compute αgki pxq:

αgki pxq “ Ergkps1, . . . , snq | si “ xs

“ Ergkps1, . . . , si´1, x, si`1, . . . , snqs

“ Erfkppps1q, . . . , ppsi´1q, q, ppsi`1q, . . . , ppsnqqs,

where q is the posterior induced by si “ x. Since the distribution of ppsjq is identical
to that of tj,

αgki pxq “ Erfkpt1, . . . , ti´1, q, ti`1, . . . , tnqs

“ Erfkpt1, . . . , tnq | ti “ qs

“ qpkq,

6To construct such a g, define hi : r0, 1s Ñ ∆pΩq by hipxiqpkq “ Prω “ k | si “ xis. That is,
hi is the map that assigns to each signal realization the induced posterior, so that ppsiq “ hipsiq
holds as an equality of random variables. Then let g : r0, 1sn Ñ ∆pΩq be given by gpx1, . . . , xnq “

fph1px1q, . . . , hnpxnqq.
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where in the last equality we rely on the fact that the belief induced by ti coincides
with ti. Since q is the posterior induced by si “ x, the posterior qpkq is equal
to αAki pxq.

We thus constructed g not equal to p1A0 , . . . ,1Am´1q but having the same pro-
jections. By Lemma 10, the partition A “ pA0, . . . , Am´1q cannot be a partition of
uniqueness. This contradiction shows that no structure can dominate the one associ-
ated with a partition of uniqueness, i.e., such structures are Pareto optimal.

The proof of Theorem 5 is now immediate.

Proof of Theorem 5. By Lemma 8, for each Pareto optimal I, we can find an equiv-
alent structure associated with a partition of uniqueness A “ pA0, . . . , Am´1q. By
Lemma 11, any structure admitting such an equivalent representation is Pareto opti-
mal.

A.4 Proof of Theorem 4

Proof. Lorentz (1949)’s characterization of two-dimensional sets of uniqueness uses
the idea of a non-increasing rearrangement ϕ̀ of a function ϕ : r0, 1s Ñ r0, 1s. The
function ϕ̀ is defined almost everywhere by the following two properties: it is non-
increasing on r0, 1s and, for any q P r0, 1s, the lower-contour sets tt P r0, 1s : ϕptq ď qu

and tt P r0, 1s : ϕ̀ptq ď qu have the same Lebesgue measure. A non-increasing
rearrangement exists and moreover is unique (as an element of L8pr0, 1sq).

Lorentz (1949) proved that A Ď r0, 1s2 is a set of uniqueness if and only if the
non-increasing rearrangements of its two projections are inverses of each other, i.e.,

ὰA1 “
`

ὰA2
˘´1

. (11)

Formally, if the inverse
`

ὰA2
˘´1
ptq is not unique for some t, the equality (11) is to be

understood as the inclusion: ὰA2 ptq P
`

ὰA1
˘´1
ptq.

Let us demonstrate that the characterization from Theorem 4 is equivalent to the
original characterization of Lorentz (1949). That is, we need to check that a set A
is a rearrangement of an upward-closed set if and only if the condition (11) holds.
Note that for any downward-closed7 set B, its image under the map x1 ÞÑ 1 ´ x1

7A set B Ď r0, 1s2 is downward-closed if, with each point px1, x2q, it contains all the points
px1

1, x
1
2q P r0, 1s

2 such that x1
1 ď x1 and x1

2 ď x2.
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and x2 ÞÑ 1 ´ x2 is upward-closed. Hence, it is enough to check the equivalence
between (11) and the existence of a downward-closed rearrangement of A.

Suppose that A is a rearrangement of a downward-closed set B. Towards showing
that (11) holds, note that any downward-closed set B can be represented through its
projections in two symmetric ways: B “ tx2 ď αB1 px1qu and B “ tx1 ď αB2 px2qu up
to a zero-measure set. Hence,

αB2 “ pα
B
1 q
´1. (12)

Since B is downward-closed, its projections are non-increasing. Moreover, the sets
tt P r0, 1s : αBi ptq ď qu and tt P r0, 1s : αAi ptq ď qu have the same measure for any i
and q as B is a rearrangement of A. Thus αBi “ ὰAi and we obtain (11) from (12).

Now assume that the condition (11) is satisfied and construct the downward-closed
set B as follows:

B “ tpx1, x2q P r0, 1s
2 : x2 ď ὰA1 px1qu.

By the definition, the projection αB1 equals ὰA1 . For any downward closed set, the
projections satisfy the identity (12) and thus

αB2 “
`

αB1
˘´1

“
`

ὰA1
˘´1

“ ὰA2 ,

where the last equality follows from (11). Hence, for any i and q, the measure of
tαBi ptq ď qu coincides with that of tὰAi ptq ď qu and thus with the measure of tαAi ptq ď
qu. We conclude that B is a downward-closed rearrangement of A.

A.5 Proof of Theorem 1

First, we show that the conjugate of a cumulative distribution function on r0, 1s is
also a cumulative distribution function.

Claim 2. The conjugate F̂ is a cumulative distribution function. Furthermore, it has
the same mean:

ş

x dF̂ pxq “
ş

x dF pxq.

Proof. To show that F̂ is a cumulative distribution function it suffices to show that
it is weakly increasing, right-continuous, that F̂ p0q ě 0, and that F̂ p1q “ 1.

We first note that F´1 is weakly increasing, by its definition at x as the minimum
of the preimage of rx,8q under F . Hence F̂ is also weakly increasing.
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To see that F̂ is right continuous, let limk xk “ x P r0, 1s, with xk ď x. Then

lim
k
F´1

pxkq “ lim
k

minty : F pyq ě xku

“ minty : F pyq ě xu

“ F´1
pxq

where the penultimate equality follows from the fact that F is right-continuous. Hence
F´1 is left-continuous, and so F̂ is right-continuous.

It is immediate from the definitions that F̂ p0q ě 0 and F̂ p1q “ 1, and thus
F is a cumulative distribution function. Finally, the expectations of F and F̂ are
identical since the shape under F (whose measure is equal to its expectation), given
by tpx, yq P r0, 1s2 : y ď F pxqu is congruent to the shape under F̂ , since one maps to
the other by the measure preserving map px, yq ÞÑ p1´ y, 1´ xq.

Now, we prove Theorem 1.

Proof. First, suppose I is Pareto optimal. By Theorem 3, I is equivalent to some
structure I 1 associated with a set of uniqueness A. By Theorem 4, A is a rear-
rangement of an upward-closed set A1, whose associated structure I2 must also be
equivalent to I. We show that the two agents’ posterior belief distributions induced
by I2 are conjugates of each other.

Define h̃ : r0, 1s Ñ r0, 1s by h̃px1q “ inftx2 : px1, x2q P A
1u. We have that h̃ is

a decreasing function since A is upward-closed. Define a left-continuous version of
h̃ as hpxq “ limzÑx´ h̃pzq. For any q P r0, 1s, in the structure associated with A1,

up to a measure-zero set of signals, agent 1 has a belief lower or equal to q after
observing the signal x1 if and only if hpx1q ě 1 ´ q, so the cumulative distribution
function of agent 1’s posterior belief is F1pqq “ maxtx1 : hpx1q ě 1 ´ qu. For agent
2, note that his posterior belief after any signal lower than x2 “ hp1 ´ qq is lower
or equal to q, while his belief at higher signals are strictly higher than q. So, the
cumulative distribution function of agent 2’s posterior belief is F2pqq “ hp1´qq. Note
that F´1

2 p1´qq “ minty : hp1´yq ě 1´qu “ 1´maxtx1 : hpx1q ě 1´qu “ 1´F1pqq,

so F1 and F2 are conjugates.
Conversely, suppose the distributions of pps1q and pps2q in a private private infor-

mation structure I are conjugates. Write F̃1 and F̃2 for the cumulative distribution
functions of pps1q and pps2q, and consider the set A Ď r0, 1s2 where px1, x2q P A if and
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only if x2 ě F̃2p1 ´ x1q. We show that the structure associated with A is equivalent
to I; Figure 4 illustrates the construction. Let h̃pxq “ F̃2p1 ´ xq, and define a left-
continuous version of h̃ as hpxq “ limzÑx´ h̃pzq. For the structure associated with A,
by the same argument as above, the distribution function of agent 2’s posterior belief
is F2pqq “ hp1 ´ qq “ F̃2pqq. The distribution function of agent 1’s posterior belief,
by the same argument as above, is F1pqq “ maxtx1 : hpx1q ě 1 ´ qu “ 1 ´mintx2 :

F̃2px2q ě 1 ´ qu “ 1 ´ F̃´1
2 p1 ´ qq. Using the hypothesis that F̃1 and F̃2 are conju-

gates, 1´ F̃´1
2 p1´ qq “ F̃1pqq. So, the structure associated with A is equivalent to I.

Because x1 ÞÑ F̃2p1´ x1q is a decreasing function, the set A is upward-closed. Using
Theorem 3 and Theorem 4, I is Pareto optimal.

A.6 Proof of Theorem 2

Proof. We are given pω, s1q and aim to construct a new signal s‹2 independent of s1

and such that any other signal s2 independent of s1 is dominated by s‹2.
As usual, pps1q is the belief induced by s1. We sample s‹2 uniformly from the

interval r1 ´ pps1q, 1s if the state is ω “ 1 and from r0, 1 ´ pps1qs if ω “ 0. Hence,
conditioned on s1, the constructed signal is distributed uniformly on r0, 1s and so s‹2
is independent of s1. Denote by F the cumulative distribution function of pps1q and
compute the belief induced by s‹2. The conditional probability of ω “ 1 given s‹2 “ t

is equal to Pr1´ pps1q ď ts. Hence, pps‹2q “ 1 ´ F p1 ´ s‹2q. Thus the distribution
function F ‹ of pps‹2q is given by

F ‹pxq “ Prpps‹2q ď xs “ Pr1´ F p1´ s‹2q ď xs “ P
“

s‹2 ď 1´ F´1
p1´ xq

‰

,

where F´1 is defined as in (1). Since s‹2 is uniformly distributed on r0, 1s, we get

F ‹pxq “ 1´ F´1
p1´ xq “ F̂ pxq,

where F̂ is the conjugate of F .
We conclude that pω, s1, s

‹
2q is a private private information structure and the

distributions of posteriors induced by s1 and s‹2 are conjugates. Thus pω, s1, s
‹
2q is

Pareto optimal by Theorem 1, and s‹2 is an optimal private disclosure.
Now, let us show that any s2 independent of s1 is weakly dominated by s‹2. If

pω, s1, s2q is itself Pareto optimal, then, by Theorem 1, the cumulative distribution
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function of beliefs induced by s2 is F̂ and thus s2 is equivalent to s‹2. Hence, it
suffices to consider the case where I “ pω, s1, s2q is not Pareto optimal. Let µ1 and
µ2 be the distributions of beliefs induced by s1 and s2, respectively. Below we will
verify that there is a Pareto optimal structure I 1 “ pω, s11, s12q that dominates I and
the distribution of pps11q coincides with µ1, i.e., only the second signal becomes more
informative. Then, by Theorem 1, the distribution of beliefs induced by s12 is the
conjugate of µ1. Hence, s12 is equivalent to s‹2 and we conclude that s‹2 must also
dominate s2.

We verify the existence of a Pareto optimal structure I 1 “ pω, s11, s
1
2q such that

pps11q is distributed according to µ1 and s12 dominates s2. Consider the set Mpµ1q of
distributions µ12 of beliefs such that the pair pµ1, µ

1
2q is feasible, i.e., there is a private

private information structure inducing these distributions. In particular, µ2 belongs
toMpµ1q. By Lemma 3, Mpµ1q, as a closed subset of the feasible pairsM, is compact
in the weak topology. As the Blackwell order is continuous in the weak topology (see
the proof of Lemma 4), there is a maximal element µ12 P Mpµ1q dominating µ2.
Let I 1 “ pω, s11, s12q be the private private information structure inducing the pair of
distributions pµ1, µ

1
2q. The structure I 1 must be Pareto optimal. Else, by Lemma 9,

there is an equivalent structure I2 “ pω, s21, s22q where the signals do not determine
the state. Then, by the construction from Lemma 7, there exists an informative signal
t independent of s21 and s22. By revealing t to the second agent, we obtain a strict
Pareto improvement of I2 where the distribution of beliefs induced by the first signal
remains fixed, but the distribution of beliefs induced by the second signal is improved
to µ32 . So we have µ32 PMpµ1q and µ32 strictly dominates µ12, which contradicts the
maximality of µ12 in Mpµ1q. This contradiction implies the existence of the structure
I 1 and completes the proof.

A.7 Proof of Proposition 1

Proof. Denote the indirect utility of agent i P t1, 2u by Uipqq “ supaiPAi
`

p1 ´ qq ¨

uipai, 0q ` q ¨ uipai, 1q
˘

. Since each ui is bounded from above, the indirect utilities
are continuous convex functions. The social welfare for a private private information
structure I “ pω, s1, s2q can be rewritten as follows:

W pIq “ E
“

U1

`

pps1q
˘

` U2

`

pps2q
˘‰

,
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where, as usual, ppsiq is the belief induced by the signal si. By the convexity of Ui
the welfare is monotone in the Blackwell order, and is therefore always maximized by
a Pareto optimal structure.

Let I be a Pareto optimal structure. By Theorem 1, the distributions of posteriors
pps1q and pps2q are conjugates. Denote the distribution of pps1q by µ, which can be an
arbitrary measure on r0, 1s with mean equal to the prior p. Denote the set of all such
measures by ∆ppr0, 1sq. The choice of µ P ∆ppr0, 1sq determines the distribution µ̂ of
pps2q. Thus, to maximize welfare over I it is enough to find µ P ∆ppr0, 1sq maximizing
the functional

wpµq “

ż

r0,1s

U1pqqdµpqq `

ż

r0,1s

U2pqqdµ̂pqq.

Below we check that wpµq is convex and continuous in the weak topology. Hence, by
Bauer’s principle, the optimum is attained at an extreme point of ∆ppr0, 1sq. It is
well-known that the extreme points of this set are measures with the support of size
at most two: see, e.g., Winkler (1988). Since the optimal µ is supported on at most
two points, its conjugate µ̂ is supported on at most three points (see the discussion
after Theorem 1) and we conclude that there is an optimal structure I where s1 takes
at most two values and s2 takes at most three values.

It remains to check that wpµq is convex and continuous in the weak topology. For
the first integral, this is immediate: it is linear in µ (hence, convex) and continuous
thanks to the continuity of the integrand. To show that the two properties hold for
the second integral, we rewrite it through the cumulative distribution function F of µ.
Assuming first that F is a bijection r0, 1s Ñ r0, 1s, we obtain

ż

r0,1s

U2pqqdµ̂pqq “

ż

r0,1s

U2pqqd
`

1´ F´1
p1´ qq

˘

“

ż

r0,1s

U2

`

1´ F ptq
˘

dt, (13)

by changing the variable q “ 1 ´ F ptq in the second equality. Let us show that
the identities (13) hold even without the assumption that F is a bijection. Since
any continuous function on r0, 1s can be approximated by a linear combination of
indicators 1r0,as in the sup-norm, it is enough to prove that

ż

r0,1s

1r0,aspqqdµ̂pqq “

ż

r0,1s

1r0,as
`

1´ F ptq
˘

dt
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or, equivalently, that

F̂ paq “ λ
`

tt P r0, 1s : 1´ F ptq ď au
˘

, (14)

where λ stands for the Lebesgue measure. By the monotonicity of F , the set from
the right-hand side of (14) is an interval rta, 1s where ta “ mintt : F ptq ě 1´ au, i.e.,
ta “ F´1p1 ´ aq as defined in §4. We conclude that (14) holds as it is equivalent to
the equality F̂ paq “ 1´F´1p1´ aq defining the conjugate distribution and thus (13)
holds as well.

Since U2 is convex, we conclude that
ş

r0,1s
U2

`

1 ´ F ptq
˘

dt is a convex function
of F and, hence, of µ. To show the continuity, note that the weak convergence
µk Ñ µ implies the convergence of Fkpqq Ñ F pqq for all points q of continuity of F
(see Aliprantis and Border, 2006, Theorem 15.3). Since any monotone function is
continuous almost everywhere with respect to the Lebesgue measure, the sequence
of functions U2

`

1´ Fk
˘

converges almost everywhere in r0, 1s and is bounded thanks
to boundedness of U2. The Lebesgue dominated convergence theorem implies that
ş

r0,1s
U2

`

1´ Fkptq
˘

dt converges to
ş

r0,1s
U2

`

1´ F ptq
˘

dt. We conclude that the second
integral in wpµq is a convex continuous function of µ. Thus the functional wpµq is
itself continuous and convex.

A.8 Proof of Proposition 3

Proof. We have Ipω; ps1, . . . , snqq ď Hppq, so this result follow from Lemma 1.

A.9 Proof of Proposition 4

Proof. We have Ipω; ps1, . . . , snqq ď Hppq, so it suffices to show that

ÿ

i

Ipω; siq ď Ipω; ps1, . . . , snqq ´
ln 2

8

ÿ

iăj

Ipω; siqIpω; sjq. (15)

Similarly to the proof of Lemma 1, the result for general n follows from the result
for n “ 2 via an inductive argument. Indeed, assume that the statement holds for
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n ď n0 with n0 ě 2 and show that it holds for n “ n0 ` 1 as well:

I
´

ω ;
`

s1, . . . , sn0 , sn0`1

˘

¯

“ I
´

ω ;
`

ps1, . . . , sn0q, sn0`1

˘

¯

ě I
´

ω ;
`

s1, . . . , sn0

˘

¯

` Ipω ; sn0`1q `
ln 2

8
I
´

ω ;
`

s1, . . . , sn0

˘

¯

¨ Ipω ; sn0`1q,

where we applied the two-signal version of (15) for the pair of signals ps1, . . . , sn0q

and sn0`1. Estimating Ipω ; s1, . . . , sn0q from below via the n0-signal version of (15),
we get

I
´

ω ;
`

s1, . . . , sn0 , sn0`1

˘

¯

ě

n0
ÿ

i“1

I
`

ω ; si
˘

`
ln 2

8

ÿ

1ďiăjďn0

I
`

ω ; si
˘

¨ I
`

ω ; sj
˘

` Ipω ; sn0`1q`

`
ln 2

8
Ipω ; sn0`1q ¨

˜

n0
ÿ

i“1

I
`

ω ; si
˘

`
ln 2

8

ÿ

1ďiăjďn0

I
`

ω ; si
˘

¨ I
`

ω ; sj
˘

¸

Eliminating all the cubic terms from the second line can only decrease the right-hand
side and leads to inequality (15) for n “ n0 ` 1:

I
´

ω ;
`

s1, . . . , sn0 , sn0`1

˘

¯

ě

n0`1
ÿ

i“1

I
`

ω ; si
˘

`
ln 2

8

ÿ

1ďiăjďn0`1

I
`

ω ; si
˘

¨ I
`

ω ; sj
˘

.

It thus remains to prove the result for n “ 2. We aim to show that

Ipω ; s1q ` Ipω ; s2q ´ Ipω ; s1, s2q ď ´
ln 2

8
Ipω ; s1q ¨ Ipω ; s2q. (16)

Since (16) is symmetric with respect to the states, we can assume that the state ω “ 1

is more likely, i.e., p ě 1{2 without loss of generality.
Denote the left-hand side of (16) by ∆ and the posterior probabilities of the high

state by pi “ Prω “ 1 | sis and p12 “ Prω “ 1 | s1, s2s. By the martingale property,
Erp12 | sis “ pi and Erpis “ p. Thanks to the martingale property, we can represent
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Ipω ; siq as follows:

Ipω ; siq “ E
„

p12 log2

ˆ

pi
p

˙

` p1´ p12q log2

ˆ

1´ pi
1´ p

˙

,

where pi outside of the logarithm was replaced by p12. Hence,

∆ “ E
„

p12 log2

ˆ

p1 ¨ p2

p12 ¨ p

˙

` p1´ p12q log2

ˆ

p1´ p1qp1´ p2q

p1´ p12qp1´ pq

˙

.

By the concavity of the logarithm, a convex combination of logarithms is at most the
logarithm of the convex combination. Therefore,

∆ ď E
„

log2

ˆ

p1p2

p
`
p1´ p1qp1´ p2q

p1´ pq

˙

.

Denote the centred posteriors by p̄1 “ p1 ´ p and p̄2 “ p2 ´ p. The right-hand side
simplifies to

E
„

log2

ˆ

p1 ¨ p2

p
`
p1´ p1qp1´ p2q

p1´ pq

˙

“ E
„

log2

ˆ

1`
p̄1 ¨ p̄2

pp1´ pq

˙

.

Note that p̄1¨p̄2
pp1´pq

belongs to the interval
”

´1, 1´p
p

ı

. By the assumption that p ě 1{2,
this interval is contained in r´1, 1s. Consider the function fpxq “ log2p1`xq. By the
Taylor formula, for any x P r´1, 1s,

fpxq “ fp0q ` f 1p0q ¨ x`
f2pyq

2
x2

for some y between 0 and x. Computing the derivatives, we get

fpxq “
1

ln 2
x`

1

2 ln 2

´1

p1` yq2
x2
ď

1

ln 2
x´

1

8 ln 2
x2,

where in the last inequality we used the fact that y P r´1, 1s. We conclude that

E
„

log2

ˆ

1`
p̄1 ¨ p̄2

pp1´ pq

˙

ď
1

ln 2
E
„

p̄1 ¨ p̄2

pp1´ pq



´
1

8 ln 2
E

«

ˆ

p̄1 ¨ p̄2

pp1´ pq

˙2
ff

.

Since the expectation of the product is the product of expectations for the independent
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random variables p̄1 and p̄2,

1

ln 2
E
„

p̄1 ¨ p̄2

pp1´ pq



´
1

8 ln 2
E

«

ˆ

p̄1 ¨ p̄2

pp1´ pq

˙2
ff

“ ´
1

8p2p1´ p2q ln 2
Varrp1s ¨ Varrp2s.

It remains to lower-bound the variance by the mutual information. The Kullback–Leibler
divergence between Bernoulli random variables with success probabilities p and x is
defined as follows: DKLpx||pq “ x log2

´

x
p

¯

` p1 ´ xq log2

´

1´x
1´p

¯

. Then Ipω ; siq “

ErDKLppi||pqs. Applying the inequality ln t ď t ´ 1 to both logarithms and taking
into account that log2 t “

1
ln 2

ln t, we obtain

DKLpx||pq ď
1

ln 2

ˆ

x ¨

ˆ

x

p
´ 1

˙

` p1´ xq ¨

ˆ

1´ x

1´ p
´ 1

˙˙

“
1

pp1´ pq ln 2
px´ pq2

for x P r0, 1s. Therefore,

Varrpis ě ppp1´ pq ln 2q ¨ Ipω ; siq.

Thus we obtain

´
1

8p2p1´ p2q ln 2
Varrp1s ¨ Varrp2s ď ´

ln 2

8
¨ Ipω ; s1q ¨ Ipω ; s2q

and conclude that
∆ ď ´

ln 2

8
¨ Ipω ; s1q ¨ Ipω ; s2q,

which is equivalent to the desired inequality (16).

A.10 Proof of Proposition 5

Proof. As in the proof of Proposition 3, we show a stronger statement:

ÿ

i

Īpω; siq ď Īpω; ps1, . . . , snqq.

This implies the statement of Proposition 5 since H̄ is concave, and so, as with mutual
information, Īpω; ps1, . . . , snqq ď H̄ppq.

Applying the definition of Ī, and using the martingale property Erppsiqs “ Erpps1, . . . , snqs “
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p, what we want to prove is that

ÿ

i

ÿ

kPΩ

E
“

rppsiqpkq ´ ppkqs
2
‰

ď
ÿ

k

E
“

rpps1, . . . , snqpkq ´ ppkqs
2
‰

.

In fact, we prove an even stronger statement, showing that the inequality holds already
for each k P Ω separately, rather than only when summed over Ω.

To this end, fix k, and denote the centered posteriors by p̄i “ ppsiqpkq ´ ppkq, so
that p̄i is a zero-mean bounded random variable. Likewise denote p̄ “ pps1, . . . , snqpkq´

ppkq. We want to prove that Erp̄2s ě
ř

i Erp̄2
i s.

Let V be the vector space of zero-mean random variables spanned by tp̄, p̄1, . . . , p̄nu.
As a subspace of L2, it is endowed with the inner product given by the expectation
of the product.

Since the structure is private private, Erp̄i ¨ p̄js “ Erp̄is ¨Erp̄js “ 0 for i ‰ j. That
is, the vectors tp̄1, . . . , p̄nu are orthogonal. Hence, V “ spantq̄, p̄1, . . . , p̄nu for some
q P V that is orthogonal to each p̄i (note that q “ 0 is allowed and corresponds to
the case where p̄ can be represented as a linear combination of p̄i). Since p̄ P V , we
can write

p̄ “ αq `
ÿ

i

αip̄i

for some scalars α, α1, . . . , αn. By the martingale property, Erp̄ | p̄is “ p̄i, and so
Erpp̄´ p̄iq ¨ pis “ 0. That is, p̄´ p̄i is orthogonal to p̄i. Hence αi “ 1, and

p̄ “ αq `
ÿ

i

p̄i.

Since tq̄, p̄1, . . . , p̄nu are orthogonal,

E
“

p̄2
‰

“ α2E
“

q2
‰

`
ÿ

i

E
“

p̄2
i

‰

,

and in particular Erp̄2s ě
ř

i Erp̄2
i s.

Note that we used the assumption that the structure is private private only inas-
much as it implies that posteriors of different agents are uncorrelated.
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B Further Examples and Results

B.1 Comparative Statics along the Pareto Frontier

In this section we state and prove the following proposition.

Proposition 6. Consider two Pareto optimal private private information structures
pω, s1, s2q and pω, t1, t2q with binary state ω. If t1 dominates s1, then t2 is dominated
by s2.

Proof. Since pω, s1, s2q is Pareto optimal, the signal s2 can be seen as an optimal
private disclosure corresponding to pω, s1q. By Theorem 2, such s2 dominates any
other signal s12 independent of s1. Hence, to conclude that s2 dominates t2, it is
enough to demonstrate that there is a private private information structure pω, s11, s12q
such that s11 is equivalent to s1 and s12 is equivalent to t2. By the assumption, t1
dominates s1 and, therefore, the signal s1 is equivalent to some garbling s11 of t1.
Putting s12 “ t2, we get the desired private private information structure pω, s11, s12q
and deduce that t2 is dominated by s2.

B.2 Non-Uniqueness of Optimal Private Disclosures for Non-Binary States

Theorem 2 shows that when the state is binary, there is a unique optimal private
disclosure s‹2 for each s1. In this section we show that this does not hold for non-
binary states.

Consider the case of Ω “ t0, 1, 2u where ω P Ω is distributed according to the
prior p “

`

1{4, 1{2, 1{4
˘

. The signal s1 is binary: if ω “ 2 then s1 “ 1, if ω “ 0 then
s1 “ 0, and if ω “ 1 then s1 P t0, 1u equally likely. The induced beliefs pps1q are
equal to either

`

1{2, 1{2, 0
˘

or
`

0, 1{2, 1{2
˘

, each with probability 1{2.
To construct an optimal disclosure s‹2 we first build an auxiliary private private

information structure pω, t1, t2q, associated with the partition of r0, 1s2 into three sets
A0, A1, and A2 depending on a parameter β P r0, 1{2s, as depicted in Figure 8. The
pair of signals pt1, t2q is uniformly distributed on r0, 1s2 and the state ω equals k
whenever the pair of signals belongs to Ak. Since the area of A1 is twice the area
of A0 and A2, and since the latter two areas are equal, ω has the right distribution
p “

`

1{4, 1{2, 1{4
˘

.
Let us check that the signal t1 is equivalent to s1, i.e., it induces the same posterior

distribution. Indeed, if the realization of t1 belongs to r0, 1{2s, half of each vertical
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A2

A0

A0

A1

A1

t1

t2

1
2

1

1
2

β

1´ β

1

0

Figure 8: In the private private information structure associated with the partition
pA0, A1, A2q, the signal t1 induces the same distribution of posteriors as s1. For any
parameter β P r0, 1{2s, this partition is a partition of uniqueness and, hence, we get a
one-parametric family of non-equivalent optimal disclosures given by the signal t2.

slice of the square is covered by A0 and half by A1, and so the induced posterior
is ppt1q “

`

1{2, 1{2, 0
˘

with probability 1{2. Similarly, for t1 P r1{2, 1s, we get ppt1q “
`

0, 1{2, 1{2
˘

also with probability 1{2.
Let us check that for different values of β we obtain non-equivalent disclosures.

For this purpose, we compute the distribution of posteriors induced by t2. Note that
t2 is equivalent to a signal s‹2 taking four different values corresponding to different
pairs of sets pAi, Ajq intersected by the horizontal slice of the square. We get the
following distribution of posteriors:

pps‹2q “

$

’

’

’

’

&

’

’

’

’

%

`

0, 1{2, 1{2
˘

with probability β
`

1{2, 0, 1{2
˘

with probability 1{2´ β
`

0, 1, 0
˘

with probability 1{2´ β
`

1{2, 1{2, 0
˘

with probability β

For different values of β we get different distributions, i.e., the constructed disclosures
are not equivalent.

It remains to show that for any value of β, the signal s‹2 is an optimal private
disclosure. To this end we check that the partition pA0, A1, A2q is a partition of
uniqueness (as defined in Appendix A.3). Therefore, by Theorem 5, the information
structure pω, t1, t2q is Pareto optimal. Thus t2 is an optimal private disclosure and so
is s‹2 as it is equivalent to t2.
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To show that pA0, A1, A2q is a partition of uniqueness, we rely on the following
elementary but useful general observation: if in a partition pA0, . . . , Am´1q of r0, 1sn

all sets except for possibly one are sets of uniqueness, then the partition itself is a
partition of uniqueness. In our example, the set A2 is upward-closed and hence is a
set of uniqueness by Theorem 4. The set A0 is a rearrangement of an upward-closed
set (since it can be made upward-closed via a measure-preserving reparametrization
of the axes) and so is a set of uniqueness by the same theorem. Thus the partition
pA0, A1, A2q is a partition of uniqueness and s‹2 is an optimal disclosure for any value
of β.

The partition pA0, A1, A2q provides an interesting example of the fact that a parti-
tion of uniqueness is not necessary composed of sets of uniqueness. Indeed, for β ‰ 0,
the set A1 is not a set of uniqueness as it has the same marginals as the set obtained
by the reflection of A1 with respect to the vertical line t1 “ 1{2.

B.3 Representing Private Private Signals for Binary ω as Sets

To simplify notation, in this section we consider the case of n “ 2 agents and a
binary state ω P Ω “ t0, 1u. Nevertheless, the same ideas apply more generally to
finitely many agents and possible values of the state. By Proposition 2, any private
private information structure I is equivalent to a structure associated with some set
A Ď r0, 1s2, which we denote by IA “ pω, s1, s2q. In this section, we show how to
construct IA given I. We begin with the case where I is uninformative and describe
IA for any prior p “ Prω “ 1s. Relying on this construction, we then describe how
to construct IA for any I with a finite number of possible signal values.

Recall that in IA, the signals ps1, s2q are uniformly distributed on r0, 1s2, the
state is ω “ 1Aps1, s2q, and A is some measurable subset of r0, 1s2 with Lebesgue
measure λpAq “ p so that p “ Prω “ 1s. Recall that the distribution of posteriors
induced by IA can be computed as follows: The conditional probability of the high
state given that agent i receives a signal si “ t is exactly αAi ptq, the one-dimensional
Lebesgue measure of the cross-section tpy1, y2q P A : yi “ tu. In other words, αAi psiq
is i’s posterior corresponding to si and the induced distribution of posteriors µi is
the image of the uniform distribution under the map αAi , i.e., µipr0, tsq equals the
Lebesgue measure of txi P r0, 1s : αAi pxiq ď tu.

Example 1 (Non-informative signals). Consider a private private information struc-
ture I, where both agents receive completely uninformative signals, i.e., the induced
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posteriors are equal to the prior p almost surely.
To find an equivalent structure IA, we need to construct a set A “ Ap Ď r0, 1s

2

such that the Lebesgue measure of all its projections equals p. To this end, let Y be
any subset of r0, 1s with measure p (e.g., r0, ps), and let

A “
 

px1, x2q P r0, 1s
2 : tx1 ` x2u P Y

(

,

where txu is the fractional part of x P R. It is easy to see that A indeed has the
desired property.

It turns out that the construction of an information structure IAp representing
completely uninformative signals can be used to find a representation for any infor-
mation structure with a finite number of possible signal values.

Example 2 (Arbitrary finite number of signal values). Let I “ pω, s1, s2q be a private
private information structure with n “ 2 agents and finite signal spaces S1 and S2.
Our goal is to construct a set A Ď r0, 1s2 such that the structure IA associated with
A is equivalent to I.

For each agent i P t1, 2u, consider a disjoint partition of r0, 1s into intervals Asi ,
si P Si, so that the length of each Asi coincides with the probability that the signal
si P Si is sent under I. Let qps1, s2q P r0, 1s be the conditional probability of tω “ 1u

given signals ps1, s2q.
Recall that, in Example 1, we constructed a set Ap Ď r0, 1s2 such that its projection

to each of the coordinates has a constant density p. Now we construct A by pasting
the appropriately rescaled copy of Aqps1,s2q into each rectangle As1 ˆ As2 . Denote by
Tra,bsˆrc,ds an affine map R2 Ñ R2 that identifies r0, 1s2 with ra, bs ˆ rc, ds:

Tra,bsˆrc,dspx1, x2q “
`

a` pb´ aqx1, c` pd´ cqx2

˘

.

We define A as the following disjoint union:

A “
ğ

s1PS1, s2Ps2

TAs1ˆAs2

´

Aqps1,s2q

¯

.

Let s1i P r0, 1s be a signal received by an agent i in IA. The signal s1i falls into
Asi with the same probability that i receives the signal si in I. By construction,
the conditional probability of tω “ 1u given s1i is constant over each interval Asi and
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coincides with the posterior pipsiq that i gets under I. We conclude that I and IA
induce the same distribution of posteriors and so are equivalent.
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