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Abstract

We study when and how randomization can help improve the seller's revenue in

the sequential screening setting. Using a model with discrete ex ante types and a con-

tinuum of ex post valuations, we demonstrate why the standard approach based on

solving a relaxed problem that keeps only local downward incentive compatibility con-

straints often fails and show how randomization is needed to realize the full potential

of sequential screening. Under a strengthening of �rst-order stochastic dominance or-

dering on the valuation distribution functions of ex ante types, we introduce and solve

a modi�ed relaxed problem by retaining all local incentive compatibility constraints,

provide necessary and su�cient conditions for optimal mechanisms to be stochastic,

and characterize optimal stochastic contracts. Our analysis mostly focuses on the case

of three ex ante types, but our methodology of solving the modi�ed problem can be

extended to any �nite number of ex ante types.
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1 Introduction

Random allocations through rationing and lotteries are common for selling event tickets, ma-

terial inputs, or consumer products (see Gilbert and Klemperer (2000) for a list of examples).

For the static environments of monopoly pricing or auctions, the literature of mechanism de-

sign (Myerson (1981), Riley and Zeckhauser (1983), and Bulow and Roberts (1989), among

others) has established when and how randomization can help alleviate incentive problems.

Relatively little is known in dynamic environments, however, because almost all the dynamic

mechanism design literature adopts the standard approach which forms a relaxed problem

by dropping all local upward incentive compatibility constraints and then imposes strong

conditions under which the deterministic solution to the relaxed problem also solves the

original problem.

For example, consider the classic formulation of the two-period sequential screening prob-

lem by Courty and Li (2000) where a seller of an indivisible good designs a selling mechanism

for a buyer who knows which distribution that the valuation of the good is drawn from in

period one (his ex ante type) but his valuation is only realized in period two after agree-

ing to the mechanism. With discrete ex ante types and continuous ex post valuations, the

standard approach adapted to the sequential screening problem works as follows. One �rst

replaces the second-period incentive compatibility constraints (truthful reporting of the re-

alized valuation) by their corresponding �rst-order conditions and forms a relaxed problem

by keeping only local downward incentive compatibility constraints in the �rst period as well

as the individual rationality constraint of the lowest ex ante type. One then argues that all

these constraints must bind in the solution to the relaxed problem and hence the objective

function can be written as the sum of dynamic virtual surpluses of all types. As argued in

Riley and Zeckhauser (1983), the problem of maximizing the virtual surplus of each type

by choosing among all non-decreasing allocations necessarily has a deterministic solution.

Therefore, point-wise maximizers of the objective function of the relaxed problem are type-

wise deterministic. The last step of the standard approach is to �nd (strong) conditions

under which the deterministic solution associates with a monotone sequence of cuto�s and

hence satis�es the dropped local upward and non-local incentive compatibility constraints.
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Therefore, the deterministic solution to the relaxed problem, implementable by a menu of

option contracts, also solves the original problem.

The standard approach fails when these cuto�s of the solution to the relaxed problem fail

to be monotone, because the point-wise maximizers violate the dropped upward incentive

compatibility constraints. The existing literature on dynamic mechanism design is largely

silent on how to characterize optimal mechanisms in this case. The goal of this paper is to

characterize optimal mechanisms when the standard approach fails and shed light on the

role of randomization in alleviating incentive compatibility constraints.

Our analysis focuses mostly on the sequential screening problem with three ex ante types,

although it can be generalized to any �nite number of types. We need a minimum of three

types for stochastic contracts to be optimal because, with binary types ranked by �rst-

order stochastic dominance, the cuto�s associated with the deterministic solution to the

relaxed problem is necessarily monotone and hence satis�es all dropped incentive compati-

bility constraints. Intuitively, with two ex ante types, (deterministic) option contracts � each

represented by pair of advance payment and strike price � are su�cient for sequential price

discrimination. With three types, however, advance payment and strike price are generally

insu�cient to realize the full potential of sequential screening. In particular, upward as

well as downward incentive compatibility constraints might bind at an optimal mechanism.

When this happens, deterministic mechanisms are forced to have the same strike price for

two ex ante types. Randomization may be then needed to �ne tune sequential screening.

To �nd when the optimal contract involves randomization and to characterize the optimal

stochastic contract, we consider a modi�ed relaxed problem. In our relaxed problem, we im-

pose the same local downward incentive compatibility constraints and individual rationality

constraint to arrive at the same objective function of total dynamic virtual surpluses as in

the standard approach, but we retain the local upward incentive compatibility constraints.

We further simplify the relaxed problem by replacing local upward incentive compatibility

constraints by equivalent average monotonicity constraints of allocation rules. With three ex

ante types, the simpli�ed problem is to choose non-decreasing allocations of the middle and

low types to maximize the sum of the dynamic virtual surpluses of the two types, subject

to a weighted average of the middle type's allocation being greater or equal to the weighted
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average of the low type, which is equivalent to the upward incentive compatibility constraint

of the low type.

We �rst use our simpli�ed problem to uncover a new su�cient condition for optimal

mechanism to be deterministic when the standard regularity condition fails. The standard

approach would have no say about the optimality of deterministic mechanisms in this case.

This su�cient condition relies on comparisons of ratios of dynamic virtual surplus to in-

formation rent of each of the two types. Next we show that the failure of this su�cient

condition and the regularity condition, together with a strengthening of �rst order stochas-

tic dominance, implies that optimal mechanism must be stochastic. Third, we adapt the

standard ironing techniques, used for example, by Myerson (1981) to characterize optimal

auctions when the virtual value function is non-monotone, and by Riley and Zeckhauser

(1983) to show that monopoly pricing is optimal mechanism for selling an indivisible good,

to characterize optimal stochastic mechanisms. Finally, we use a class of examples with the

exponential distributions to illustrate the use of the simpli�ed problem and the characteri-

zations in terms of the surplus-to-rent ratios.

Our analysis of the modi�ed relaxed problem can be extended in a straightforward man-

ner to any number of �nite ex ante types. Both our su�cient and necessary conditions for

stochastic mechanisms to be optimal and our characterization of optimal stochastic mecha-

nisms have their counterparts with more than three types. We use the same class of examples

with the exponential distributions to illustrate this generalization. Unlike the model of three

types, more than a single monotonicity constraints can be binding. At this point we can not

state the necessary and su�cient conditions in terms of primitives of the model, or provide

a complete characterization for optimal stochastic mechanisms. We leave these tasks for

future work.

Bergemann, Casto and Weintraub (2020) study a sequential screening model with ex

post individual rationality constraints, and provide necessary and su�cient conditions for

optimal sequential screening to be stochastic. Our model di�ers from Bergemann, Casto

and Weintraub (2020) because we impose interim rather than ex post individual rationality

constraints. In their benchmark model with two ex ante types, every incentive compatibility

constraint in Bergemann, Casto and Weintraub (2020) is local. In contrast, even with
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three ex ante types, our model has both global as well as local incentive compatibility

constraints. Correspondingly, we impose a stronger condition than �rst order stochastic

dominance on ex ante types to construct the relaxed problem with only local incentive

compatibility constraints. Our surplus-to-rent ratio is inspired by the pro�t-to-rent ratio

de�ned in Bergemann, Castro and Weintraub (2020), although the form of our ratio arises

from the dynamic virtual surplus while theirs is static. A similar surplus-to-rent ratio is also

crucial in a sequential delegation setting of Krahmer and Kovac (2016) to determine whether

it is optimal to screen the agent's initial information. Their model share similar information

structure as our model, but their analysis is quite di�erent because there are no transfers.

2 The Model

A seller has one object for sale to a potential buyer. The seller and the buyer are risk-neutral,

and do not discount. The buyer's value ω ∈ Ω ≡ [ω, ω] for the good is initially unknown to

both the buyer and the seller. The seller's reservation value is known to be c. We assume

that c ∈ (ω, ω).

In period one, the buyer privately observes a signal θ ∈ Θ about ω, which we refer to

as his type. We assume that the buyer's type is ternary, Θ = {H,M,L}, with probability

ϕθ for each θ = H,M,L and
∑

θ ϕθ = 1. For each θ ∈ Θ, let Fθ(·) be the conditional

distribution function over Ω, and we assume that Fθ(·) has positive and �nite density fθ(·).

We assume that type H is higher than M , which is in turn higher than L in �rst order

stochastic dominance, that is, FH (ω) ≤ FM(ω) ≤ FL(ω) for all ω, with strict inequalities for

a positive measure of ω. In period two, the buyer observes his value ω. The non-participation

payo� of the buyer is normalized to 0 regardless of his ex ante type.

The seller chooses a direct revelation mechanism (xθ (ω) , tθ(ω)), where xθ (ω) is the allo-

cation rule and tθ (ω) is payment rule for reported type θ in period one and reported value

(θ, ω) in period two. The objective function of the seller's optimization problem is

max
(xθ,tθ)

∑
θ=H,M,L

ϕθ

∫ ω

ω

(tθ (ω)− cxθ (ω)) fθ (ω) dω.

There are three sets of constraints.
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First, we have the incentive compatibility constraints in period two: for each θ = H,M,L,

ωxθ(ω)− tθ(ω) ≥ ωxθ(ω
′)− tθ(ω

′),

for all ω, ω′ ∈ [ω, ω]. We refer to the above constraint as ICθ. Regardless of the buyer's true

type, the period-two incentive comparability constraint is the same once an ex ante type θ

is reported in the �rst period.

Second, we have the individual rationality constraints in period one: for each θ = H,M,L,∫ ω

ω

(ωxθ (ω)− tθ (ω)) fθ (ω) dω ≥ 0.

We refer to the above constraint as IRθ for each t. Since we do not impose individual

rationality constraints in period two, the buyer's ex post payo� may fall below his non-

participation payo� of 0.

Third, we have the incentive compatibility constraints in period one: for each θ =

H,M,L, ∫ ω

ω

(ωxθ (ω)− tθ (ω)) fθ (ω) dω ≥
∫ ω

ω

(ωxθ′ (ω)− tθ′ (ω)) fθ (ω) dω,

for all θ′ ̸= θ = H,M,L. We refer to the above constraint as ICθθ′ . In this setup, we do not

need to worry about double deviations of misreporting the ex ante type in period one and

then misreporting the realized valuation in period two.

3 A Simpli�ed Problem

We �rst state without proof a standard result, that allocation monotonicity with respect to

valuation together with an envelope condition is both necessary and su�cient for incentive

compatibility in period two.

Lemma 1 For each θ = H,M,L, ICθ holds if and only if xθ (ω) is non-decreasing in ω, and

ωxθ (ω)− tθ (ω) = uθ (ω) +

∫ ω

ω

xθ (s) ds (1)

for all ω, where uθ (ω) = ωxθ (ω)− tθ (ω).
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As an immediate implication of the above result, through integration by parts, we have:∫ ω

ω

(ωxθ (ω)− tθ (ω))Fθ′ (ω) dω = uθ (ω) +

∫ ω

ω

xθ (ω) (1− Fθ′ (ω)) dω (2)

for all θ, θ′ = H,M,L. We can now rewrite the seller's objective function as∑
θ=H,M,L

ϕθ

∫ ω

ω

(
ω − c− 1− Fθ (ω)

fθ (ω)

)
xθ (ω) fθ (ω) dω −

∑
θ=H,M,L

ϕθuθ (ω) . (3)

Individual rationality constraint IRθ for each type θ = H,M,L becomes

uθ (ω) +

∫ ω

ω

xθ (ω) (1− Fθ (ω)) dω ≥ 0,

and period one incentive compatibility constraint ICθθ′ for each pair θ ̸= θ′ = H,M,L

becomes

uθ (ω) +

∫ ω

ω

xθ (ω) (1− Fθ (ω)) dω ≥ uθ′ (ω) +

∫ ω

ω

xθ′ (ω) (1− Fθ (ω)) dω.

From now on we will use the lowest ex post indirect utilities uθ(ω), θ = H,M,L, instead of

the payment rule tθ, as the choice variables together with the allocation rule xθ.

Now we de�ne a �relaxed problem� by dropping the two non-local period one incentive

compatibility constraints ICHL and ICLH , the individual rationality constraints for the two

higher types IRH and IRM , and an upward period one incentive compatibility constraint

ICMH . The objective function is (3). The choice variables are xθ(ω) and uθ(ω) for each

θ = H,M,L. The constraints are: IRL, ICML, ICHM , and ICLM , together with weak

monotonicity of xθ(ω) for each θ = H,M,L. Unlike in a standard relaxed problem (Courty

and Li, 2000), we have kept one local upward period one incentive compatibility constraint,

ICLM . Nonetheless, as in the standard formulation, we can immediately identify the same

binding constraints.

Lemma 2 In any solution to the relaxed problem, IRL, ICML and ICHM bind.

The proof of Lemma 2 is standard and hence omitted. We can use the binding constraints

6



identi�ed in Lemma 2 to solve for uθ(ω) for each θ = H,M,L:

uL(ω) =−
∫ ω

ω

xL(ω)(1− FL(ω))dω,

uM(ω) =−
∫ ω

ω

xM(ω)(1− FM(ω))dω +

∫ ω

ω

xL(ω)(FL(ω)− FM(ω))dω,

uH(ω) =−
∫ ω

ω

xH(ω)(1− FH(ω))dω +

∫ ω

ω

xM(ω)(FM(ω)− FH(ω))dω

+

∫ ω

ω

xL(ω)(FL(ω)− FM(ω))dω.

By substitution, the objective function becomes∑
θ=H,M,L

∫ ω

ω

xθ(ω)ϕθδθ(ω)fθ(ω)dω,

where δθ(ω) is the dynamic virtual surplus function of type θ = H,M,L, given by

δH(ω) = ω − c,

δM(ω) = ω − c− ϕH(FM(ω)− FH(ω))

ϕMfM(ω)
,

δL(ω) = ω − c− (ϕM + ϕH)(FL(ω)− FM(ω))

ϕLfL(ω)
.

The choice variables are now just allocation rule xθ(ω) for θ = H,M,L. By Lemma 1, each

function xθ(ω) is required to be weakly increasing, with xθ(ω) ∈ [0, 1] for all ω ∈ [ω, ω].

There is only one additional constraint, ICLM . By Lemma 2, ICML is binding. Thus, ICLM

is equivalent to the following monotonicity constraint, obtained by adding up a binding ICML

and ICLM : ∫ ω

ω

(xM (ω)− xL (ω)) (FL (ω)− FM (ω)) dω ≥ 0. (4)

This requires a weighted average of type M 's allocation xM is greater than the average of

type L's allocation xL with the same weights. We refer to the above average monotonicity

constraint as MONML.

In any solution to the relaxed problem, allocation for the highest type, type H is e�cient

with xH(ω) = 1ω≥c. The relaxed problem thus simpli�es to

max
xM (ω),xL(ω)

∫ ω

ω

xM(ω)ϕMδM(ω)fM(ω)dω +

∫ ω

ω

xL(ω)ϕLδL(ω)fL(ω)dω, (5)
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subject to 0 ≤ xM(ω), xL(ω) ≤ 1 for all ω ∈ [ω, ω], xM(ω), xL(ω) both weakly increasing,

and MONML (4). We refer to the above problem as the �simpli�ed problem.�

In the rest of this section, we justify our approach of focusing on the simpli�ed problem.

There are two parts to the justi�cation. First, we provide conditions under which the solution

to the simpli�ed problem satis�es all dropped constraints, and thus corresponds an optimal

mechanism. Second, we explain why our approach may work when the standard relaxed

program fails.

In forming the relaxed problem, we have dropped the individual rationality constraints

except for the lowest type. As is true with the standard relaxed-program approach, any

solution to the simpli�ed problem is individually rational for the two higher types M and

H. This is formally stated in the following lemma whose proof is omitted.

Lemma 3 In any solution to the simpli�ed problem, IRH and IRM are satis�ed.

In the standard relaxed-program approach, where MONML is not imposed, the solution

is found by point-wise maximizing the two terms in the objective function (5). When the

virtual surplus functions δM(ω) and δL(ω) both cross 0 only once, and when the crossing

point of δM is smaller than or equal that of δL, the solutions to the relaxed problem are

deterministic, and satisfy the dropped period one incentive compatibility constraints ICHL,

ICMH and ICLH . The conditions on the distribution functions {Fθ}θ=H,M,L that ensure both

single-crossing of δM(ω) and δL(ω), and the �right� order of the crossing points are known

as �regularity conditions.� This approach however is silent about what happens when the

regularity conditions fail.

In contrast, our simpli�ed problem imposes MONML. This allows the solution to be

either deterministic or stochastic. If the solution is deterministic, then as in the standard

approach, it satis�es all dropped incentive compatibility constraints and therefore corre-

sponds an optimal mechanism. It is important to note, however, that the solution to our

simpli�ed problem could be deterministic even though the retained constraint MONML is

binding. In other words, our approach allows us to potentially identify conditions under

which the regularity conditions fail � because MONML is binding � and yet the optimal

mechanism remains deterministic (Proposition 1 in the next section). This is one insight we
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can obtain with our approach of including MONML in the simpli�ed problem.

A solution to the simpli�ed problem solves the seller's problem if it also satis�es the

dropped period one incentive compatibility constraints ICHL, ICMH and ICLH . Using the

expressions of uθ(ω), θ = L,M,H, from binding IRL, ICML and ICHM (Lemma 2), we �nd

that ICHL holds at any solution (xM , xL) to the simpli�ed problem if and only if∫ ω

ω

(xM (ω)− xL (ω)) (FM (ω)− FH (ω)) dω ≥ 0; (6)

ICMH holds if and only if∫ ω

ω

(xH (ω)− xM (ω)) (FM (ω)− FH (ω)) dω ≥ 0; (7)

and ICLH holds if and only if∫ ω

ω

xL(ω)(FL(ω)−FM(ω))dω+

∫ ω

ω

xM(ω)(FM(ω)−FH(ω))dω ≤
∫ ω

ω

xH(ω)(FL(ω)−FH(ω))dω.

(8)

For future reference, we summarize the above observation in the following lemma:

Lemma 4 Any solution to the simpli�ed problem that satis�es conditions (6), (7) and (8)

is an optimal mechanism.

From now on, we will focus our analysis on the above simpli�ed problem (5). By using

information we garner from the solutions to the simpli�ed problem, we will be able to provide

conditions to ensure that a solution to the simpli�ed problem satis�es conditions (6)-(8) and

therefore corresponds an optimal mechanism.

4 Optimality of Deterministic Mechanisms

The purpose of this paper is to characterize when a stochastic mechanism, as opposed to a

deterministic one, is optimal in sequential screening, and to characterize optimal random-

ization. To understand the necessity of randomization in maximizing the seller's pro�t, it

is instrumental to �rst characterize the �optimal deterministic mechanism� which is pro�t-

maximizing among mechanisms with deterministic allocation rules. If randomization can
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strictly improve the seller's pro�t upon the optimal deterministic mechanism, then optimal

mechanism is stochastic; otherwise optimal mechanism is deterministic.

We �rst use the simpli�ed problem de�ned in Section 3 to provide a characterization of

the optimal deterministic mechanism. A deterministic mechanism is given by an allocation

rule xθ and transfer rule tθ, θ = H,M,L, such that there is a threshold kθ for each θ with

xθ(ω) = 1ω≥kθ . We say that xθ(ω) = 1ω≥k∗θ
, θ = M,L, is a �deterministic solution� to the

simpli�ed problem, if (k∗
M , k∗

L) maximizes

SM(kM) + SL(kL)

subject to kM ≤ kL, where

Sθ(k) ≡
∫ ω

k

ϕθδθ(ω)fθ(ω)dω

for each θ = M,L.

Lemma 5 Any deterministic solution to the simpli�ed problem corresponds to an optimal

deterministic mechanism.

Proof. Under �rst order stochastic ranking of ex ante types, a deterministic mecha-

nism satis�es local downward and upward incentive compatibility constraints if and only

if kH ≤ kM ≤ kL. Further, non-local incentive compatibility constraints ICHL and ICLH

are redundant: ICHL is implied by ICHM and ICML, and ICLH is implied by ICLM and

ICMH . Then, we can de�ne a deterministic relaxed problem, with choice variables kθ and

uθ(ω), θ = H,M,L, by keeping only IRL, ICML and ICHM , together with kH ≤ kM ≤ kL.

As in Lemma 2, IRL, ICML and ICHM all bind at any solution to the deterministic relaxed

problem. At any solution to the deterministic relaxed problem, we have kH = c. Further,

we have kM ≥ c: otherwise, since δθ(ω) < 0 for each θ = M,L and for all ω < c, the value

of the objective function in the deterministic relaxed problem can be increased by reducing

kM and kL by the same amount and hence leaving the constraint kM ≤ kL una�ected, a

contradiction to optimality. Together with tθ(ω) given by (1) for each θ = H,M,L, we have

a solution to the original maximization problem. The lemma follows immediately.

We assume throughout that, for each θ = M,L, there is a unique maximizer of Sθ(k),

denoted as k̂θ. We have k̂θ > c for each θ = M,L, because a necessary condition for k̂θ is
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that δθ(k̂θ) = 0. If k̂M ≤ k̂L, then the constraint kM ≤ kL is not binding and (k̂M , k̂L) is the

deterministic solution to the simpli�ed problem, and by Lemma 5, corresponds to an optimal

deterministic mechanism. Further, the following result shows that the deterministic mech-

anism given by (k̂M , k̂L) is overall optimal; that is, the optimal mechanism is deterministic

and corresponds to (k̂M , k̂L).

Lemma 6 If k̂M ≤ k̂L, then the optimal mechanism is deterministic.

Proof. Consider the simpli�ed problem without MONML. The problem is then separable

in type M and type L. By Riley and Zeckhauser (1983), for each θ = M,L, there is a

deterministic solution to the problem of choosing xθ(ω) to maximize∫ ω

ω

xθ(ω)ϕθδθ(ω)fθ(ω)dω

subject to 0 ≤ xθ(ω) ≤ 1 for all ω ∈ [ω, ω] and xθ(ω) weakly increasing.1 By de�nition, this

solution is given by x̂θ(ω) = 1ω≥k̂θ
. Since k̂M ≤ k̂L, MONML is satis�ed and (k̂M , k̂L) is a

solution to the simpli�ed problem. Since this solution is deterministic with c < k̂M ≤ k̂L,

it satis�es the dropped constraints ICHL, ICMH and ICLH of (6)-(8). The result follows

immediately from Lemma 4.

A necessary condition for a stochastic mechanism to be optimal is thus k̂M > k̂L. Further,

we impose a mild regularity condition that at least for one type θ of the two types M and

L, Sθ(k) is single-peaked. This implies that the corresponding threshold k̂θ is the unique

local maximizer of Sθ(k), and thus when k̂M > k̂L, the constraint kM ≤ kL binds at any

deterministic solution to the simpli�ed problem. The optimal deterministic mechanism thus

has kM = kL. Further, the common threshold between type M and type L, denoted as k̂,

lies between k̂L and k̂M .2 Finally, for simplicity we assume that k̂ is the unique deterministic

solution to the simpli�ed problem and is interior when k̂M > k̂L.

1Riley and Zeckhauser (1983) study a monopoly pricing problem, and show that there is always a de-

terministic solution if we restate it as an optimal mechanism design problem. See also Myerson (1981) for

the same conclusion in an optimal auction problem when there is a single bidder. These conclusions are a

special case of a general result that there is always a deterministic solution in maximizing a linear functional

of a weakly increasing function.

2This does not rely on the regularity condition that k̂θ is the unique local maximizer. If k̂ > k̂M , the
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Optimal mechanism may still be deterministic even when k̂M > k̂L. Intuitively, when

the solution to the simpli�ed problem without MONML violates MONML, the deterministic

mechanism with common threshold k̂ may be optimal because it may be better to bring the

two thresholds together instead of introducing randomization for one or both types.

To formally characterize conditions under which the deterministic mechanism with com-

mon threshold k̂ is optimal, we introduce two de�nitions. First, we de�ne the average

surplus-to-rent ratio for type θ = M,L over the interval [w′, w′′] as

Rθ(w
′, w′′) =

∫ w′′

w′ ϕθδθ(ω)fθ(ω)dω∫ w′′

w′ (FL(ω)− FM(ω))dω
.

The two ratios RL and RM have the following interpretation.3 The numerator of RL(w
′, w′′)

is the total dynamic virtual surplus generated from type L by setting xL(ω) = 1 for all ω ∈

[w′, w′′]. Correspondingly, the numerator of RM(w′, w′′) is the total virtual surplus generated

from type M by setting xM(ω) = 1 for all ω ∈ [w′, w′′]. The denominator of RL(w
′, w′′) is

the same as that of RM(w′, w′′), and both have the interpretation of information rent but

going in opposite directions. For RL, the denominator represents the total incentive cost of

setting xL(ω) = 1 for all ω ∈ [w′, w′′], which arises because this allocation to type L makes

it harder to satisfy MONML, the monotonicity constraint (4). For RM , the denominator

represents the total incentive bene�t of setting xM(ω) = 1 for all ω ∈ [w′, w′′], which arises

because this allocation to type M makes it easier to satisfy MONML.

Second, we de�ne the point surplus-to-rent ratio at ω as

rθ(ω) =
ϕθδθ(ω)fθ(ω)

FL(ω)− FM(ω)
.

value of the objective function could be increased by lowering the threshold for type M from k̂ to k̂M without

violating MONML; if k̂ < k̂L, the value of the objective function could be increased by raising the threshold

for type L from k̂ to k̂L without violating MONML. In either case we have a contradiction to the optimality

of k̂.

3The construction of the ratio of dynamic virtual surplus to information rent is inspired by Bergemann,

Casto and Weintraub (2020). In their characterization of necessary and su�cient conditions for randomiza-

tion in a two-type sequential screening model with ex post individual rationality constraint, they make use

of a similar surplus-to-rent ratio.
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The average surplus-to-rent ratio Rθ(w
′, w′′) can be written in terms of rθ(ω) as

Rθ(w
′, w′′) =

∫ w′′

w′ rθ(ω)(FL(ω)− FM(ω))dω∫ w′′

w′ (FL(ω)− FM(ω))dω

for any [w′, w′′] ⊆ [ω, ω]. Thus, Rθ(w
′, w′′) is a weighted average of rθ(ω) over ω ∈ [w′, w′′].

At the same time, for any ŵ ∈ [w′, w′′],

rθ(ŵ) = lim
w′↑ŵ

Rθ(w
′, ŵ) = lim

w′′↓ŵ
Rθ(ŵ, w

′′).

That is, the point ratio rθ(ŵ) is the common limit of the average ratio Rθ(w
′, ŵ) from the

left and the average ratio Rθ(ŵ, w
′′) from the right.

Now we claim that when k̂M > k̂L, if for both types θ = M,L,

max
ω≤k̂

Rθ(ω, k̂) ≤ rθ(k̂) ≤ min
ω≥k̂

Rθ(k̂, ω), (9)

then the deterministic mechanism with common threshold k̂ is optimal. We establish the

claim by the method of Lagrangian relaxation. Let λ ≥ 0 be the multiplier associated with

MONML in the simpli�ed problem, and write the Lagrangian as∫ ω

ω

xM(ω) (ϕMfM(ω)δM(ω) + λ(FL(ω)− FM(ω))) dω

+

∫ ω

ω

xL(ω) (ϕLfL(ω)δL(ω)− λ(FL(ω)− FM(ω))) dω. (10)

We choose a particular non-negative value λ̂ for the multiplier λ, and show that with λ̂

the Lagrangian (10) is maximized by x∗
θ(ω) = 1ω≥k̂ for each θ = M,L, among all weakly

increasing functions xθ(ω). Since λ̂ ≥ 0, this maximum value of the Lagrangian is an upper

bound of the objective function of the simpli�ed problem (5) for any (xM , xL) that satis�es

MONML, and since the maximizers (x∗
M , x∗

L) bind MONML, the maximized value of the

Lagrangian is just the value of the objective function evaluated at (x∗
M , x∗

L). Therefore, the

deterministic solution given by k̂ solves the simpli�ed problem. Furthermore, it satis�es all

dropped constraints and hence optimal by Lemma 4.

Lemma 7 Suppose k̂M > k̂L and k̂ is interior. If condition (9) holds, then the deterministic

mechanism with common threshold k̂ is optimal.
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Proof. De�ne

λ̂ = rL(k̂).

We claim that λ̂ ≥ 0. To see this, note that since k̂ corresponds to the deterministic solution

to the simpli�ed problem and is interior, it satis�es the �rst order necessary condition

rL(k̂) + rM(k̂) = 0.

If λ̂ < 0, then

rM(k̂) > 0 > rL(k̂).

By continuity, there exists w′ < k̂ such that ϕMδM(ω)fM(ω) > 0 for all ω ∈ [w′, k̂], and

there exists w′′ > k̂ such that ϕLδL(ω)fL(ω) < 0 for all ω ∈ [k̂, w′′] > 0. It follows that the

value of the objective function of the simpli�ed problem (5) can be improved by changing

the threshold for type M from k̂ to w′ and the threshold for type L from k̂ to w′′. Such

changes satisfy MONML, contradicting the optimality of k̂ as the deterministic solution. This

contradiction establishes that λ̂ ≥ 0.

Now consider the second part of the Lagrangian (10), with λ replaced by λ̂. By Riley and

Zeckhauser (1983), it has a deterministic maximizer in a weakly increasing function xL(ω).

We claim that ∫ ω

ω̃

(
ϕLδL(ω)fL(ω)− λ̂(FL(ω)− FM(ω))

)
dω

≤
∫ ω

k̂

(
ϕLδL(ω)fL(ω)− λ̂(FL(ω)− FM(ω))

)
dω

for all ω̃. The above is the same as

RL(w, k̂) ≤ λ̂ ≤ RL(k̂, w
′)

for all w ≤ k̂ and w′ ≥ k̂, which is exactly condition (9).

From the �rst order necessary condition for k̂, we have

λ̂ = −rM(k̂).

A symmetric argument then establishes that for the �rst part of the Lagrangian (10), given

the above value of λ̂, the Lagrangian (10) is maximized by x∗
M(ω) = 1ω≥k̂ among all weakly
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increasing functions xM(ω). Since the maximum value of the Lagrangian is an upper bound

of the objective function of the simpli�ed problem, and since this value is achievable in the

simpli�ed problem, the deterministic solution solves the simpli�ed problem.

Since this solution to the simpli�ed problem is deterministic, it satis�es the dropped

constraints (6)-(8) of ICHL, ICMH and ICLH . By Lemma 4, this solution is also optimal.

Combining Lemma 6 and Lemma 7, we have established su�cient conditions for deter-

ministic mechanisms to be optimal.

Proposition 1 Optimal mechanism is deterministic if either one of the following two con-

ditions holds: (i) k̂M ≤ k̂L; (ii) k̂M > k̂L, k̂ is interior and condition (9) holds.

Condition (i) in Proposition 1 is well known in the literature of dynamic mechanism

design, and is often referred to as the �regular case� where deterministic allocations as un-

constrained maximizers of dynamic virtual surpluses are monotone in ex ante types. Condi-

tion (ii) is new. In this case, k̂M > k̂L, so the design problem is no longer regular and the

deterministic allocation (k̂M , k̂L) fails to satisfy the key monotonicity condition MONML.

Proposition 1 shows that in this case, whether a deterministic mechanism is optimal de-

pends on pairwise comparisons of average ratios of dynamic virtual surplus to information

rent associated with MONML. Each pair of ratios are evaluated at an interval below and an

interval above the common threshold k̂ of types M and L when the optimal deterministic

mechanism binds MONML. In particular, optimal mechanism remains deterministic and is

given by k̂ if for both types the average ratio below k̂ is always lower than the point ratio at

k̂ which in turn always exceeds the average ratio above k̂.

5 Optimality of Stochastic Mechanisms

In this section, we will establish su�cient conditions for an optimal mechanism to be stochas-

tic. Proposition 1 suggests that a necessary condition for randomization is k̂M > k̂L and

a failure of condition (9) for either type. It turns out that this necessary condition is also

su�cient for randomization. We establish this result by �rst showing that, if condition (9)

fails for type θ, we can perturb the allocation rule for type θ around k̂ to form a stochastic
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one that does strictly better than the optimal deterministic mechanism given by k̂ in the

simpli�ed problem. Then we provide su�cient conditions for the stochastic allocation re-

sulted from perturbation to satisfy the dropped IC constraints (6)-(8) and hence be feasible

in the seller's original problem.

Lemma 8 Suppose k̂M > k̂L and k̂ is interior. If k̂ satis�es

max
ω≤k̂

Rθ(ω, k̂) > min
ω≥k̂

Rθ(k̂, ω), (11)

for θ = L or θ = M , then the solution to the simpli�ed problem is stochastic.

Proof. Suppose (11) holds for θ = L. Since RL(ω, k̂) and RL(k̂, ω) are continuous in ω,

the maximum and the minimum in condition (11) are attained. Let w′ and w′′ attain the

maximum and the minimum respectively. Then, w′ ≤ k̂ ≤ w′′, with at least one strict

inequality. By continuity of RL(ω, k̂) and RL(k̂, ω) in ω, there exist w−
L and w+

L satisfying

w−
L < k̂ < w+

L , such that

RL(w
−
L , k̂) > RL(k̂, w

+
L ).

Now, starting with the deterministic allocation x̂M(ω) = x̂L(ω) = 1ω≥k̂, we keep x̂M(ω) for

type M but change allocation for type L to xL(ω), given by

xL(ω) =


0 if ω < w−

L

χL if ω ∈ [w−
L , w

+
L ]

1 if ω > w+
L

(12)

where

χL ≡
∫ w+

L

k̂
(FL(ω)− FM(ω))dω∫ w+

L

w−
L

(FL(ω)− FM(ω))dω
.

Since w−
L < k̂ < w+

L , we have χL ∈ (0, 1). Further,

χL

∫ k̂

w−
L

(FL(ω)− FM(ω))dω = (1− χL)

∫ w+
L

k̂

(FL(ω)− FM(ω))dω,

and thus MONML remains binding. The change in the value of the objective function in the

simpli�ed problem (5) is

χL

∫ k̂

w−
L

ϕLδL(ω)fL(ω)dω − (1− χL)

∫ w+
L

k̂

ϕLδL(ω)fL(ω)dω.
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With the expression of χL, the above has the same sign as

RL(w
−
L , k̂)−RL(k̂, w

+
L ),

which is positive.

A symmetric argument applies when (11) holds for θ = M . Therefore, when (11) holds for

either typeM or L, there is a stochastic allocation that gives a greater value for the objective

function of the simpli�ed problem (5) than the deterministic solution x̂M(ω) = x̂L(ω) = 1ω≥k̂.

It follows that any solution to the simpli�ed problem is stochastic.

The proof of Lemma 8 can be understood as constructing a particular class of pertur-

bations to the deterministic solution to the simpli�ed problem represented by the common

threshold k̂ for types M and L. These perturbations are piece-wise constant allocations for

each type θ = M,L separately, with the support for a random allocation spanning across

k̂ in such a way to bind the monotonicity constraint MONML. The pro�tability of any

such perturbation over the deterministic solution k̂, represented by inequality (11), is then

su�cient for randomization to be optimal.4

Next, we identify conditions on the distribution functions {Fθ}θ=H,M,L under which the

particular perturbations used to derive the su�cient condition for randomization in Lemma

8, together with xH(ω) = 1ω≥c, satisfy the dropped IC constraints (6), (7) and (8). These

conditions, together with the su�cient condition in Lemma 8, would allow us to conclude that

optimal mechanism is stochastic. Since the distribution functions {Fθ}θ=H,M,L are ranked

by �rst order stochastic dominance, we can uniquely de�ne a function α(ω) that maps [ω, ω]

to [0, 1] such that

FM(ω) = (1− α(ω))FL(ω) + α(ω)FH(ω). (13)

Proposition 2 Suppose k̂M > k̂L and k̂ is interior. Any optimal mechanism is stochastic if

either of the following two conditions holds: (i) condition (11) holds for θ = L and α(ω) is

non-increasing; (ii) condition (11) holds for θ = M and α(ω) is non-decreasing.

4Consistent with Lemma 6, condition (11) never holds if we replace k̂ with k̂θ for each θ = M,L. This

is because, by Reily and Zeckhauser (1983), 1ω≥k̂θ
maximizes the objective function (5) without MONML

among all weakly increasing allocations with range in [0, 1]. There is no perturbation to 1ω≥k̂θ
that achieves

a strictly greater value for (5).
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Proof. Since k̂M > k̂L, the deterministic solution to the simpli�ed problem is given by

x̂M(ω) = x̂L(ω) = 1ω≥k̂. By Lemma 4, this deterministic solution is an optimal deterministic

mechanism.

First, suppose that (11) is satis�ed for θ = L and α(ω) is non-increasing. By Lemma

8, there exist w−
L and w+

L satisfying w−
L < k̂ < w+

L , and χL ∈ (0, 1), such that a stochastic

allocation xL(ω) given by (12), together with x̂M , binds MONML, and yields a greater value

than (x̂M , x̂L) for the objective of the simpli�ed problem. Note that we can use the binding

MONML to rewrite the dropped ICLH constraint (8) as∫ ω

ω

(xH (ω)− xM (ω)) (FL (ω)− FH (ω)) dω ≥ 0. (14)

Since xH(ω) = 1ω≥c and x̂M(ω) = 1ω≥k̂ with k̂ > k̂L > c, it is straightforward to verify that

(x̂M , xL) satis�es the dropped ICLM constraint of (7) and ICLH constraint of (14).

For the dropped ICHL constraint of (6), we rewrite MONML as

χL

∫ k̂

w−
L

(FL(ω)− FM(ω))dω = (1− χL)

∫ w+
L

k̂

(FL(ω)− FM(ω))dω. (15)

Since α(ω) is non-increasing,

FM(ω)− FH(ω)

FL(ω)− FM(ω)
≤ FM(k̂)− FH(k̂)

FL(k̂)− FM(k̂)
≤ FM(ω′)− FH(ω

′)

FL(ω′)− FM(ω′)

for all ω ≤ k̂ ≤ ω′. Integrating the left ratio over ω ∈ [w−
L , k̂] and the right ratio over

ω′ ∈ [k̂, w+
L ] separately, we have∫ k̂

w−
L
(FM(ω)− FH(ω))dω∫ k̂

w−
L
(FL(ω)− FM(ω))dω

≤
∫ w+

L

k̂
(FM(ω)− FH(ω))dω∫ w+

L

k̂
(FL(ω)− FM(ω))dω

.

Together with MONML in the form of (15), the above implies

χL

∫ k̂

w−
L

(FM(ω)− FH(ω))dω ≤ (1− χL)

∫ w+
L

k̂

(FM(ω)− FH(ω))dω,

which is (6). Therefore, (x̂M , xL) satis�es the dropped IC constraints (6)-(8). It follows that

(x̂M , xL) is feasible in the seller's problem and generates a strictly higher revenue than the

optimal deterministic mechanism (x̂M , x̂L). Hence, optimal mechanism must be stochastic.
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Next, suppose that (11) is satis�ed for θ = M and α(ω) is non-decreasing. By Lemma

8, there exist w−
M and w+

M satisfying w−
M < k̂ < w+

M , and χM ∈ (0, 1), such that a stochastic

allocation xM(ω) given by

xM(ω) =


0 if ω < w−

M

χM if ω ∈ [w−
M , w+

M ]

1 if ω > w+
M

,

together with x̂L, binds MONML, and yields a greater value for the objective of the simpli�ed

problem than (x̂M , x̂L). Let w∗
M denote the maximizer of RM(w, k̂) over w ≤ k̂. We claim

that w∗
M ≥ c and hence we can always choose w−

M ≥ c to satisfy condition (11) for type M .

To prove the claim, we note that, for any z < z′ < k̂,

FM(z)− FH(z)

FL(z)− FM(z)
≥ FM(z′)− FH(z

′)

FL(z′)− FM(z′)
.

Integrating the left ratio over ω ∈ [z, z′] and the right ratio over ω ∈ [z′, k̂] separately, we

have ∫ z′

z
(FM(ω)− FH(ω))dω∫ z′

z
(FL(ω)− FM(ω))dω

≥
∫ k̂

z′
(FM(ω)− FH(ω))dω∫ k̂

z′
(FL(ω)− FM(ω))dω

,

and thus ∫ k̂

z
(FM(ω)− FH(ω))dω∫ k̂

z
(FL(ω)− FM(ω))dω

≥
∫ k̂

z′
(FM(ω)− FH(ω))dω∫ k̂

z′
(FL(ω)− FM(ω))dω

. (16)

By de�nition of δM(ω), we can rewrite RM(w, k̂) with w ≤ k̂ as

RM(w, k̂) =

∫ k̂

w
ϕM(ω − c)fM(ω)dω∫ k̂

w
(FL(ω)− FM(ω))dω

−
ϕH

∫ k̂

w
(FM(ω)− FH(ω))dω∫ k̂

w
(FL(ω)− FM(ω))dω

.

Suppose by contradiction that w∗
M < c. Note that by (16) the second term (without the

negative sign) of RM(w, k̂) is non-increasing in w. If the �rst-term is non-positive, then

RM(w∗
M , k̂) < RM(c, k̂). If the �rst term is positive, then it is increasing in w for w ≤ c,

and hence RM(w, k̂) is increasing in w for w ≤ c. Again, we have RM(w∗
M , k̂) < RM(c, k̂).

This is a contradiction to the assumption that w∗
M is the maximizer of RM(w, k̂). Therefore,

we must have w∗
M ≥ c. As a result, we can always choose w−

M ≥ c such that condition (11)

is satis�ed for θ = M . With w−
M ≥ c and xH(ω) = 1ω≥c, we can immediately verify that

(xM , x̂L) satis�es the dropped ICHM of (7) and ICLH of (8).
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For the dropped ICHL of (6), we can use a similar argument as the case of (11) holding

for θ = L to show that if α(ω) is non-decreasing, then a binding MONML, or

χM

∫ k̂

w−
M

(FL(ω)− FM(ω))dω = (1− χM)

∫ w+
M

k̂

(FL(ω)− FM(ω))dω

implies

χM

∫ k̂

w−
M

(FL(ω)− FM(ω))dω ≥ (1− χM)

∫ w+
M

k̂

(FL(ω)− FM(ω))dω,

which is (6). It follows that (xM , x̂L) is feasible in the seller's problem and generates a

strictly higher revenue than the optimal deterministic mechanism (x̂M , x̂L). Hence, optimal

mechanism must be stochastic.

We refer to the case where the relative weighting function α(ω) in (13) is constant as the

distributions (FH , FM , FL) satisfying the �alignment� condition. The proof of Proposition 2

shows that the optimal mechanism is stochastic if (11) is satis�ed for either type M or type

L. In fact, it is straightforward to see that under the alignment condition, any solution to

the simpli�ed problem corresponds to an optimal mechanism.5 For ICHL, note that (6) is

equivalent to MONML, while both ICMH as given by (7) and ICLH as given by (8) (when

MONML is binding) are equivalent to∫ ω

ω

(xH (ω)− xM (ω)) (FL (ω)− FM (ω)) dω ≥ 0.

Since xH(ω) = 1ω≥c, and xL(ω) = 0 for all ω < c (otherwise the value of the objective

function in the simpli�ed problem could be increased by reducing xL(ω) to 0 for all ω <

c without a�ecting MONML), the above is implied by binding MONML. By Lemma 4,

the alignment condition provides su�ciently strong restrictions for us on the primitives

to focus entirely on the simpli�ed problem, without needing to use any characterization

about solutions to the simpli�ed problem. In the next section, we will use this observation

repeatedly.

5The constant alignment condition was proposed in an earlier draft of Courty and Li (2000), where they

noted it is a su�cient condition for local incentive compatibility constraints to imply global ones. In the

same draft there were numerical examples with discrete valuations showing that stochastic mechanisms can

be optimal.
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6 Optimal Randomization

In this section we characterize optimal stochastic mechanisms. Our methodology is based

on the simpli�ed problem (5). We have commented at the end of the previous section that

under alignment the solution to the simpli�ed problem corresponds to an optimal mechanism.

However, the characterization itself does not rely on the alignment condition.

For the analysis of this section, we will repeatedly use Theorem 1 of Luenberger (1967,

p. 217). Applied to the simpli�ed problem, the theorem states that, if (x∗
L(ω), x

∗
M(ω)) solves

for simpli�ed problem, then there exists a multiplier λ ≥ 0 for MONML, such that for each

θ = M,L, x∗
θ(ω) maximizes the Lagrangian (10) among all weakly increasing xθ(ω) satisfying

xθ(ω) ∈ [0, 1] for all ω ∈ [ω, ω].6 We refer to it as the Luenberger Theorem.

We �rst show that there is always a solution to the simpli�ed problem with at most

one level of stochastic allocation for types M and L. That is, for each type θ = M,L, if

xθ(w), xθ(w
′) ∈ (0, 1) then xθ(w) = xθ(w

′). The result is due to the fact both the objective

function and the constraint MONML in the simpli�ed problem are linear functionals of non-

decreasing schedules xθ(·).

Lemma 9 There is a solution (x∗
L(ω), x

∗
M(ω)) to the simpli�ed problem such that for each

θ = L,M , there exist w−
θ and w+

θ with ω ≤ w−
θ ≤ w+

θ ≤ ω and χθ ∈ (0, 1), such that

x∗
θ(ω) = 0 for ω ∈ [ω,w−

θ ), x
∗
θ(ω) = χθ for ω ∈ [w−

θ , w
+
θ ), and x∗

θ(ω) = 1 for ω ∈ [w+
θ , ω].

Proof. We establish the lemma for type L; the proof for type M is the same. We �rst

show that there is a solution to the simpli�ed problem where x∗
L(ω) is piece-wise constant.

Suppose instead that x∗
L(ω) is continuously strictly increasing for all ω ∈ (w′, w′′). We claim

that the integrand of the Lagrangian (10)

ϕLδL(ω)fL(ω)− λ(FL(ω)− FM(ω))

is zero for all ω ∈ (w′, w′′). To see this, note that if it is strictly positive at some ŵ ∈ (w′, w′′),

we can �nd a neighborhood (ŵ − ϵ, ŵ + ϵ) of ŵ for some ϵ > 0 such that the integrand is

6To apply Theorem 1 of Luenberger (1967, p. 217), we need to show that that the feasible set in the

simpli�ed problem contains some (xM , xL) that satis�es MONML strictly. This is clearly true.
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strictly positive for all ω ∈ (ŵ − ϵ, ŵ + ϵ). But then by changing x∗
L(ω) for all ω in the

neighborhood to its highest value x∗
L(ŵ + ϵ) at ŵ + ϵ we can strictly increase the value of

the Lagrangian, which contradicts Luenberger's Theorem. A similar argument applies if the

integrand is strictly negative at any ω ∈ (w′, w′′). By the Intermediate Value Theorem, there

is a ŵ ∈ (w′, w′′) such that∫ w′′

w′
x∗
L(ŵ)(FL(ω)− FM(ω))dω =

∫ w′′

w′
x∗
L(ω)(FL(ω)− FM(ω))dω.

Since the integrand is zero for all ω ∈ (w′, w′′), we have∫ w′′

w′
x∗
L(ω)ϕLδL(ω)fL(ω)dω =

∫ w′′

w′
x∗
L(ŵ)ϕLδL(ω)fL(ω)dω.

Thus, the value of the part of the objective function associated with x∗
L(ω) for ω ∈ (w′, w′′)

is unchanged if we replace x∗
L(ω) with x∗

L(ŵ) for all ω ∈ (w′, w′′).

Next, we show that there is a solution where there is at most one intermediate value of

x∗
L(ω) strictly between 0 and 1. Suppose instead that there exist w′, ŵ and w′′, such that

x∗
L(ω) = χ for ω ∈ (w′, ŵ) and x∗

L(ω) = χ′ for ω ∈ (ŵ, w′′), with x∗
L(w

−) < χ < χ′ <

x∗
L(w

′′+). Consider changing x∗
L(ω) for ω ∈ (w′, ŵ) by ϵ, and simultaneously changing x∗

L(ω)

for ω ∈ (ŵ, w′′) by ϵ′, such that MONML is unchanged. This requires

ϵ

∫ ŵ

w′
(FL(ω)− FM(ω))dω + ϵ′

∫ w′′

ŵ

(FL(ω)− FM(ω))dω = 0.

The change in the value of the objective function is given by

ϵ

∫ ŵ

w′
ϕLδL(ω)fL(ω)dω + ϵ′

∫ w′′

ŵ

ϕLδL(ω)fL(ω)dω.

Since both ϵ > 0 > ϵ′ and ϵ < 0 < ϵ′ are feasible perturbations, and since x∗
L(ω) is optimal,

we must have

RL(w
′, ŵ) = RL(ŵ, w

′′).

Then there is also a solution to the simpli�ed problem with one fewer intermediate value

strictly between 0 and 1, by setting ϵ and ϵ′ such that χ+ ϵ = χ′ + ϵ′.

Using Lemma 9, and slightly abusing notation, for simplicity we denote as χ
[w−

θ ,w+
θ ]

θ the

random allocation xθ(ω) for type θ given by x∗
θ(ω) = 0 for ω ∈ [ω,w−

θ ), x
∗
θ(ω) = χθ for

ω ∈ [w−
θ , w

+
θ ), and x∗

θ(ω) = 1 for ω ∈ [w+
θ , ω]. This notation xθ(ω) includes deterministic
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allocations for type θ as special cases, if w−
θ = w+

θ , or χθ = 0, 1. Although Lemma 9 does

not establish that all solutions to the simpli�ed problem takes the form of χ
[w−

θ ,w+
θ ]

θ for each

θ = M,L, it does say that it is without loss to restrict to this form of solution when we want

to rule out certain allocations as solutions based on the value of the simpli�ed problem. In

a similar way, we now show that there is always a solution to the simpli�ed problem where

randomization occurs only for one of the two types M and L. This result is due to the fact

that there is a single constraint MONML in the simpli�ed problem for two non-decreasing

functions xM(·) and xL(·).

Lemma 10 There is a solution (x∗
L(ω), x

∗
M(ω)) to the simpli�ed problem such that for θ = L

or θ = M , or both, x∗
θ(ω) = 0 or 1 for all ω ∈ [ω, ω].

Proof. By Lemma 9, there is always a solution x∗
θ(ω) = χ

[w−
θ ,w+

θ ]

θ , θ = M,L, to the simpli�ed

problem. Suppose that w−
θ < w+

θ and χθ ∈ (0, 1) for each θ = M,L. Then, by Luenberger's

Theorem, since x∗
θ(ω) maximizes (10) among all non-decreasing xθ(·), for each θ = M,L, we

have ∫ w+
M

w−
M

(ϕMδM(ω)fM(ω) + λ(FL(ω)− FM(ω))) dω = 0∫ w+
L

w−
L

(ϕLδL(ω)fL(ω)− λ(FL(ω)− FM(ω))) dω = 0. (17)

The objective function of the simpli�ed problem (5) evaluated at the solution χ
[w−

θ ,w+
θ ]

θ , θ =

M,L, is

χM

∫ w+
M

w−
M

ϕMδM(ω)fM(ω)dω +

∫ ω

w+
M

ϕMδM(ω)fM(ω)dω

+χL

∫ w+
L

w−
L

ϕLδL(ω)fL(ω)dω +

∫ ω

w+
L

ϕLδL(ω)fL(ω)dω

If λ = 0 at the solution, then by (17) the objective function is independent of the values

of χM and χL. We can change χM to 1, which keeps MONML satis�ed, because the allocation

of type M is weakly increased for all ω. Thus, there is also a solution where the allocation

for type M is deterministic.
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If λ > 0, then by complementary slackness, MONML is binding, and thus

χM

∫ w+
M

w−
M

(FL(ω)− FM(ω))dω +

∫ ω

w+
M

(FL(ω)− FM(ω))dω

=χL

∫ w+
L

w−
L

(FL(ω)− FM(ω))dω +

∫ ω

w+
L

(FL(ω)− FM(ω))dω.

Then (17) implies that the objective function is again independent of the values of χM and

χL. As a result, if we replace either χM or χL with 0 or 1, then so long as MONML holds,

the resulting allocations, which have randomization for at most one type, yield the same

value for the objective function of the simpli�ed problem. Since MONML is binding, the set

[w−
L , w

+
L ]∩ [w−

M , w+
M ] has a positive measure. Then, there are four cases we need to consider:

(i) w−
L ≤ w−

M < w+
M ≤ w+

L , (ii) w
−
M ≤ w−

L < w+
M ≤ w+

L , (iii) w
−
M ≤ w−

L < w+
L ≤ w+

M , and (iv)

w−
L ≤ w−

M < w+
L ≤ w+

M . For case (i), MONML is satis�ed with either χ̃M = 1 and

χ̃L =

∫ w+
L

w−
M

(FL (ω)− FM (ω)) dω∫ w+
L

w−
L

(FL (ω)− FM (ω)) dω
∈ (0, 1] ,

or χ̃M = 0 and

χ̃L =

∫ w+
L

w+
M

(FL (ω)− FM (ω)) dω∫ w+
L

w−
L

(FL (ω)− FM (ω)) dω
∈ [0, 1) .

For case (ii), MONML is satis�ed with χ̃M = 0 and

χ̃L =

∫ w+
L

w+
M

(FL (ω)− FM (ω)) dω∫ w+
L

w−
L

(FL (ω)− FM (ω)) dω
∈ [0, 1) ,

or χ̃L = 1 and

χ̃M =

∫ w+
M

w−
L

(FL (ω)− FM (ω)) dω∫ w+
M

w−
M

(FL (ω)− FM (ω)) dω
∈ (0, 1] .

Case (iii) is symmetric to case (i), and case (iv) is symmetric to case (ii), both with roles of

the types switched. The lemma follows immediately.

Lemma 9 and Lemma 10 together imply that, if randomization occurs in a solution to the

simpli�ed problem, then there is always a solution (x∗
M , x∗

L) where for only one type θ = M,L,

and for only one non-degenerate interval [w−
θ , w

+
θ ] of valuations, xθ(ω) is some constant χθ
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strictly between 0 and 1. We denote such representative solution as xθ(ω) = χ
[w−

θ ,w+
θ ]

θ and

xθ′(ω) = 1ω≥kθ′
. From now on, unless explicitly mentioned, this notation presumes w−

θ < w+
θ

and χθ ∈ (0, 1), given by

χθ =

∫ w+
θ

kθ′
(FL(ω)− FM(ω))dω∫ w+

θ

w−
θ

(FL(ω)− FM(ω))dω
. (18)

Now we impose restrictions on where this interval [w−
θ , w

+
θ ] can be located, depending on

local characteristics of the point surplus-to-rent ratio function rθ.

Lemma 11 (i) If rθ(ω) is strictly increasing in ω ∈ (ωt, ωp) for some type θ = M,L, then

there is no solution (x∗
L(ω), x

∗
M(ω)) to the simpli�ed problem where x∗

θ(ω) = χ ∈ (0, 1) for

all ω ∈ (w,w′) ⊆ (ωt, ωp). (ii) If rθ(ω) is strictly decreasing in ω ∈ (ωp, ωt) for some type

θ = M,L, then in any solution (x∗
L(ω), x

∗
M(ω)) to the simpli�ed problem x∗

θ(ω) is constant

for all ω ∈ (ωp, ωt).

Proof. (i) Suppose that rθ(ω) is strictly increasing in ω ∈ [ωt, ωp] for some type θ = M,L,

and that x∗
θ(ω) = χ

[w−
θ ,w+

θ ]

θ with [w−
θ , w

+
θ ] ⊆ (ωt, ωp) is part of a solution to the simpli�ed

problem. Let θ = M ; the case of θ = L is symmetric. By Luenberger's Theorem, x∗
M(ω)

maximizes type M part of the Lagrangian (10)∫ ω

ω

xM(ω) (ϕMδM(ω)fM(ω) + λ(FL(ω)− FM(ω))) dω

among all weakly increasing xM(ω) with the range [ω, ω]. Since χM ∈ (0, 1), we have

ϕMδM(w−
M)fM(w−

M) + λ(FL(w
−
M)− FM(w−

M)) ≥ 0,

which is equivalent to rM(w−
M) ≥ −λ. Otherwise, an increase in w−

M would increase the value

of the Lagrangian without violating xM being non-decreasing. Similarly, χM ∈ (0, 1) implies

that rM(w+
M) ≤ −λ. Thus, rM(w−

M) ≥ rM(w+
M), contradicting the assumption that rM is

strictly increasing in [ωt, ωp] ⊇ [w−
M , w+

M ]. The �rst part of the lemma follows immediately.

(ii) Suppose that rθ(ω) is strictly decreasing in ω ∈ [ωp, ωt] for some type θ = M,L, and

x∗
θ(ω) is part of a solution to the simpli�ed problem but is not constant on ω ∈ [ωp, ωt].

Let θ = L; the case of θ = M is symmetric. By Lemma 9, we can assume that x∗
L is

piece-wise constant. Then, there exist w′, ŵ and w′′ satisfying ωp ≤ w′ < ŵ < w′′ ≤ ωt,
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such that x∗
L(ω) = x for all ω ∈ (w′, ŵ) and x∗

L(ω) = x′ for all ω ∈ (ŵ, w′′), and x < x′.

Consider replacing x∗
L(ω) with x̃L(ω), given by x̃L(ω) = x∗

L(ω) for all ω ≤ w′ and ω ≥ w′′,

and x̃L(ω) = χ for all ω ∈ (w′, w′′), where χ is given by

χ =
x
∫ ŵ

w′(FL(ω)− FM(ω))dω + x′ ∫ w′′

ŵ
(FL(ω)− FM(ω))dω∫ w′′

w′ (FL(ω)− FM(ω))dω
.

Then, x < χ < x′ and MONML remains satis�ed as we have not changed x∗
M(ω). The change

in the value of the objective function in (5) problem is given by

(χ− x)

∫ ŵ

w′
ϕLδL(ω)fL(ω)dω − (x′ − χ)

∫ w′′

ŵ

ϕLδL(ω)fL(ω)dω,

which has the same sign as

RL(w
′, ŵ)−RL(ŵ, w

′′).

The above is strictly positive because

rL(ω) > rL(ŵ) > rL(ω
′)

for all ω ∈ [w′, ŵ) and ω′ ∈ (ŵ, w′′], as rL(ω) strictly decreases in [w′, w′′] ⊂ [ωp, ωt]. The

second part of the lemma follows immediately.

Part (i) of Lemma 11 has an immediate implication. If for some type θ = M,L, the point

ratio of surplus-to-rent function rθ(ω) is strictly increasing for all ω ∈ [ω, ω], then there is

no randomization for type θ in any solution to the simpli�ed problem. This is therefore a

simple su�cient condition to rule out randomization for type θ in characterizing optimal

mechanisms. In contrast, part (ii) of Lemma 11 o�ers a way to rule in randomization for

type θ. If rθ(ω) is strictly decreasing for all ω ∈ [ω, ω], then since x∗
θ(ω) is constant for all

ω ∈ [ω, ω], in any solution to the simpli�ed problem the value of x∗
θ(ω) is either 0, 1, or some

χθ ∈ (0, 1). The �rst two cases are deterministic and lead to immediate characterizations of

the solution (x∗
M(ω), x∗

L(ω)). Only the third case, with the randomization support given by

w−
θ = ω and w+

θ = ω, is interesting.

We now go one step further than Lemma 11 and characterize necessary conditions for

solutions to the simpli�ed problem. This is accomplished by adapting the general ironing

techniques used in standard mechanism design problems (e.g., Fudenberg and Tirole, 1991).
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For simplicity, we guarantee the uniqueness of the characterization by assuming that for

each θ = M,L, the point ratio of surplus-to-rent function rθ is �single dipped,� in that if rθ

is decreasing at both w and w′ then it is decreasing at any convex combination of the two

valuations. Under this assumption, rθ has at most one interior peak, which we denote as

ωp
θ and which satis�es drθ(ω

p
θ)/dω = 0, and at most one interior trough, which we denote

as ωt
θ and which satis�es drθ(ω

t
θ)/dω = 0. If ωp

θ and ωt
θ both exist, then ωp

θ < ωt
θ. We will

further adopt the convention that rθ(ω) is not strictly increasing for all ω ∈ [ω, ω] if it is

single dipped.

Lemma 12 Suppose that rθ is single dipped for some type θ = M,L. There exist unique

ω∗−
θ < ω∗+

θ such that

rθ(ω
∗−
θ ) ≥ Rθ(ω

∗−
θ , ω∗+

θ ) ≥ rθ(ω
∗+
θ ), (19)

with rθ(ω
∗−
θ ) = Rθ(ω

∗−
θ , ω∗+

θ ) if ω∗−
θ > ω and rθ(ω

∗+
θ ) = Rθ(ω

∗−
θ , ω∗+

θ ) if ω∗+
θ < ω. Further, if

part of a solution to the simpli�ed problem is x∗
θ(ω) = χ

[w−
θ ,w+

θ ]

θ then w−
θ = ω∗−

θ and w+
θ = ω∗+

θ ,

and if it is x∗
θ(ω) = 1ω≥kθ then kθ ̸∈ (ω∗−

θ , ω∗+
θ ).

Proof. For now we assume that rθ has both an interior peak at ωp
θ , and a trough at

ωt
θ > ωp

θ . Since rθ is single dipped, rθ is strictly decreasing over [ωp
θ , ω

t
θ]. Thus, for any

r ∈ [rθ(ω
t
θ), rθ(ω

p
θ)], there exists a unique value of ẑ(r) ∈ [ωp

θ , ω
t
θ] such that rθ(ẑ(r)) = r. For

any r ∈ [rθ(ω
t
θ), rθ(ω

p
θ)], de�ne zp(r) ≤ ωp

θ as the unique value of ω such that rθ(z
p(r)) = r;

let zp(r) = ω if rθ(ω) > r for all ω ∈ [ω, ωp
θ ]. Similarly, for any r ∈ [rθ(ω

t
θ), rθ(ω

p
θ)], de�ne

zt(r) ≥ ωt
θ as the unique value of ω such that rθ(z

t(r)) = r; let zt(r) = ω if rθ(ω) < r for all

ω ∈ [ωt
θ, ω]. The three functions z

p(r), ẑ(r), zt(r) are well-de�ned for all r ∈ [rθ(ω
t
θ), rθ(ω

p
θ)],

and are all continuous functions.

By construction, zt(rθ(ω
t
θ)) = ẑ(rθ(ω

t
θ)). At r = rθ(ω

t
θ), since rθ(ω) > rθ(ω

t
θ) for all

ω ∈ (zp(rθ(ω
t
θ)), z

t(rθ(ω
t
θ))), we have

Rθ(z
p(rθ(ω

t
θ)), z

t(rθ(ω
t
θ)) > rθ(ω

t
θ).

Similarly, at r = rθ(ω
p
θ) we have zp(rθ(ω

p
θ)) = ẑ(rθ(ω

p
θ)), and rθ(ω) < rθ(ω

p
θ) for all ω ∈

(zp(rθ(ω
p
θ)), z

t(rθ(ω
p
θ))), and so

Rθ(z
p(rθ(ω

p
θ)), z

t(rθ(ω
p
θ)) < rθ(ω

p
θ).
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It follows from the Intermediate Value Theorem that there exists some r∗ ∈ (rθ(ω
t
θ), rθ(ω

p
θ))

such that

Rθ(z
p(r∗), zt(r∗)) = r∗.

The total derivative of Rθ(z
p(r), zt(r)) with respect to r, evaluated at r∗, has the same sign

as

− (FL(z
p(r∗))− FM(zp(r∗)))(rθ(z

p(r∗))− r∗)
dzp(r∗)

dr

+ (FL(z
t(r∗))− FM(zt(r∗)))(rθ(z

t(r∗))− r∗)
dzt(r∗)

dr
.

The �rst term is the above expression is 0 because either rθ(z
p(r∗)) = r∗, or zp(r∗) = ω and

thus dzp(r∗)/dr = 0. Similarly, the second term is also zero. It follows that r∗ is uniquely

de�ned.

If rθ has a peak at ωp
θ but no trough, then it is strictly decreasing for all ω ∈ [ωp

θ , ω]. In

this case, we set zt(r) = ω for all r ∈ [rθ(ω), rθ(ω
p
θ)]. Symmetrically, if rθ has a trough at

ωt
θ but no peak, then we set zp(r) = ω for all r ∈ [rθ(ω

t
θ), rθ(ω)]. Finally, if rθ has neither a

peak nor a trough, we set zp(r) = ω and zt(r) = ω for all r ∈ [rθ(ω), rθ(ω)]. The rest of the

proof goes through without change.

Let ω∗−
θ = zp(r∗) and ω∗+

θ = zt(r∗). These are uniquely de�ned because r∗ is. Further,

for any ω < ωp
θ , we have rθ(ω) ≤ Rθ(ω, z

t(rθ(ω))) if and only if ω ≤ ω∗−
θ . Symmetrically, for

any ω > ωt
θ, we have rθ(ω) ≥ Rθ(z

p(rθ(ω)), ω) if and only if ω ≥ ω∗+
θ .

For the second part of the proposition, let θ = L; the proof for the other case is symmetric.

By Luenberger's Theorem, if x∗
L(ω) is part of a solution to the simpli�ed problem, there exists

λ ≥ 0 such that x∗
L(ω) maximizes type L part of the Lagrangian (10)∫ ω

ω

xL(ω) (ϕLδL(ω)fL(ω)− λ(FL(ω)− FM(ω))) dω

among all weakly increasing xL(ω) with the range [0, 1].

Suppose that x∗
L(ω) = χ

[w−
L ,w+

L ]

L . Since χL ∈ (0, 1), we have

RL(w
−
L , w

+
L ) = λ,

for otherwise we could increase the value of the Lagrangian by either increasing or decreas-

ing χL. Similarly, we have rθ(w
−
θ ) ≥ λ and w−

θ ≥ ω, with complementary slackness, and
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rθ(w
+
θ ) ≤ λ and w+

θ ≤ ω, with complementary slackness. Thus, w−
θ and w+

θ satisfy (19), and

by the uniqueness of ω∗−
θ and ω∗+

θ , we have w−
θ = ω∗−

θ and w+
θ = ω∗+

θ .

Finally, suppose that x∗
L(ω) = 1ω≥kL for some kL. By Lemma 11, we have kL ̸∈ (ωp

θ , ω
t
θ).

Suppose that kL ∈ (ω∗−
θ , ωp

θ ]. Consider replacing x∗
L(ω) with χ[w,zt(rL(w))] for some w < kL,

where χ ∈ (0, 1) satis�es

χ

∫ kL

w

(FL(ω)− FH(ω))dω = (1− χ)

∫ zt(rL(w))

kL

(FL(ω)− FH(ω))dω.

This does not a�ect MONML. The change in the value of type L part of the objective

function in the simpli�ed problem has the same sign as

RL(w, kL)−RL(kL, z
t(rL(w))).

This is strictly positive for w su�ciently close to kL, because kL > ω∗−
L implies that

RL(kL, z
t(rL(w))) < rL(kL) and RL(w, kL) converges to rL(kL) as w converges to kL. We

have a contradiction to the assumption that x∗
L(ω) = 1ω≥kL is part of a solution to the

simpli�ed problem. A symmetric argument leads to a similar contradiction if kL ∈ [ωt
θ, ω

∗+
L ).

Under the assumption that rθ(ω) is single dipped for some type θ = M,L, Lemma 12

claims a unique candidate randomization support for type θ in any solution to the simpli�ed

problem (x∗
M , x∗

L), given by [ω∗−
θ , ω∗+

θ ]. The support is a superset of the interval [ωp
θ , ω

t
θ] over

which rθ(ω) is strictly decreasing. If x∗
θ is deterministic, Lemma 12 restricts the threshold

kθ to lie not just outside of [ωp
θ , ω

t
θ], but outside of the superset (ω

∗−
θ , ω∗+

θ ). Both these two

results generalize Lemma 11.

Now we are ready to present our �rst main characterization result on optimal stochastic

mechanisms. Under assumptions that either rule out or rule in one of the two types M and

L as having a random allocation in any solution to the simpli�ed problem, we show that

the allocations characterized in Lemma 12 lead to a solution to the simpli�ed problem, if

in addition they satisfy some cross-type restrictions. The additional restrictions allow us to

use Lagrangian relaxation in a similar way as in the proof of Lemma 7. Once again, the

role of alignment in the following proof is to reduce the optimal mechanism problem to the

simpli�ed problem.
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Proposition 3 (i) Suppose that rθ(ω) is single dipped and rθ′(ω) is strictly increasing, with

Rθ(ω
∗−
θ , ω∗+

θ ) ≤ 0 for θ = M and Rθ(ω
∗−
θ , ω∗+

θ ) ≥ 0 for θ = L. If there exists kθ′ ∈ (ω∗−
θ , ω∗+

θ )

such that rθ′(kθ′) = −Rθ(ω
∗−
θ , ω∗+

θ ), then x∗
θ(ω) = χ

[ω∗−
θ ,ω∗+

θ ]

θ and x∗
θ′(ω) = 1ω≥kθ′

solve the

simpli�ed problem for χθ given by (18). (ii) Suppose that rθ(ω) is single dipped and rθ′(ω)

is strictly decreasing, with Rθ′(ω, ω) ≤ 0 for θ′ = M and Rθ′(ω, ω) ≥ 0 for θ′ = L. If there

exists kθ ∈ (ω, ω∗−
θ ] or kθ ∈ [ω∗+

θ , ω) such that rθ(kθ) = −Rθ′(ω, ω), then x∗
θ(ω) = 1ω≥kθ and

x∗
θ′(ω) = χ

[ω,ω]
θ′ solve the simpli�ed problem for χθ′ given by (18). Further, under alignment

these solutions each correspond to an optimal mechanism.

Proof. (i) Let θ = L and θ′ = M ; the proof for the other case is symmetric. By assump-

tion, there exists kM such that rM(kM) = −RL(ω
∗−
L , ω∗+

L ). Consider the �rst part of the

Lagrangian (10) wth λ replaced with λ̂ = −rM(kM) ≥ 0. By Riley and Zeckhouser (1983),

it has a deterministic maximizer among all weakly increasing xM(ω) with the range in [0, 1].

Since by assumption rM(ω) is strictly increasing, for all k ∈ [ω, ω] we have∫ ω

k

(
ϕMfM(ω)δM(ω) + λ̂(FL(ω)− FM(ω))

)
dω

=

∫ ω

k

(rM(ω)− rM(kM)) (FL(ω)− FM(ω))dω

≤
∫ ω

kM

(rM(ω)− rM(kM)) (FL(ω)− FM(ω))dω.

Thus, x∗
M(ω) = 1ω≥kM maximizes the �rst part of (10) among all weakly increasing xM(ω)

with the range in [0, 1].

Next, consider the second part of the Lagrangian (10), with λ replaced with λ̂ = −rM(kM).

By Riley and Zeckhouser (1983), it has a deterministic maximizer in a weakly increasing

function xL(ω) with the range in [0, 1]. Since λ̂ = RL(ω
∗−
L , ω∗+

L ) by equations (19),∫ ω

ω∗−
L

(
ϕLδL(ω)fL(ω)− λ̂(FL(ω)− FM(ω))

)
dω

=

∫ ω

ω∗−
L

(
rL(ω)−RL(ω

∗−
L , ω∗+

L )
)
(FL(ω)− FM(ω))dω

=

∫ ω

ω∗+
L

(
rL(ω)−RL(ω

∗−
L , ω∗+

L )
)
(FL(ω)− FM(ω))dω.

Since rL(ω) is single dipped, rL(ω) < rL(ω
∗−
L ) for all ω < ω∗−

L and in this case, equations
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(19) require rL(ω
∗−
L ) = λ̂. Then, for all k < ω∗−

L ,∫ ω

k

(
ϕLδL(ω)fL(ω)− λ̂(FL(ω)− FM(ω))

)
dω

=

∫ ω

k

(
rL(ω)− rL(ω

∗−
L )

)
(FL(ω)− FM(ω))dω

<

∫ ω

ω∗−
L

(
rL(ω)− rL(ω

∗−
L )

)
(FL(ω)− FM(ω))dω.

By a symmetric argument, for all k > rL(ω
∗+
L ), we have rL(k) > rL(ω

∗+
L ) = λ̂, and thus∫ ω

k

(
ϕLδL(ω)fL(ω)− λ̂(FL(ω)− FM(ω))

)
dω

<

∫ ω

ω∗+
L

(
rL(ω)− rL(ω

∗+
L ))

)
(FL(ω)− FM(ω))dω.

Finally, consider k ∈ (ω∗−
L , ω∗+

L ). Since rL(ω) is single dipped, by Lemma 12, there exists

a unique ŵ ∈ (ω∗−
L , ω∗+

L ) such that rL(ω̂) = RL(ω
∗−
L , ω∗+

L ) = λ̂, rL(ω) ≥ rL(ŵ) for any

ω ∈ (ω∗−
L , ŵ), and rL(ω) ≤ rL(ŵ) for any ω ∈ (ŵ, ω∗+

L ). Thus∫ ω

k

(
ϕLδL(ω)fL(ω)− λ̂(FL(ω)− FM(ω))

)
dω

=

∫ ω

k

(rL(ω)− rL(ŵ)) (FL(ω)− FM(ω))dω

is decreasing for any k ∈ (ω∗−
L , ŵ) and increasing for any k ∈ (ŵ, ω∗+

L ). Therefore, any

k ∈ (ω∗−
L , ω∗+

L ) is dominated by either ω∗−
L or ω∗+

L .

We have veri�ed that x∗
L(ω) = χ

[ω∗−
L ,ω∗+]

L and x∗
M(ω) = 1ω≥kM maximize the Lagrangian

(10) among all weakly decreasing xL and xM . The maximum value of the Lagrangian achieved

by the allocations given by Lemma 12 is an upper bound of the objective function of the

simpli�ed problem. Since kM ∈ (ω∗−
L , ω∗+

L ) by assumption, χL given by (18) binds MONML.

Thus, the maximum value of the Lagrangian is achievable in the simpli�ed problem. It

follows that (x∗
M , x∗

L) solves the simpli�ed problem.

(ii) Let θ = M and θ′ = L; the proof for the other case is symmetric. Since by assumption

rL(ω) is strictly decreasing, from (19) in Lemma 12 we have ω∗−
L = ω and ω∗+

L = ω. Consider

the second part of the Lagrangian (10), with λ replaced with λ̂ = RL(ω, ω), which is non-

negative by assumption. By Riley and Zeckhouser (1983), it has a deterministic maximizer
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with some threshold k among all weakly increasing functions xL(ω) with the range in [0, 1].

We claim that the unique maximizer is k = ω. This is equivalent to∫ ω

k

(rL(ω)− λ̂)(FL(ω)− FH(ω))dω ≤
∫ ω

ω

(rL(ω)− λ̂)(FL(ω)− FH(ω))dω

for all k. Since λ̂ = RL(ω, ω), the right hand side above is equal to 0. Replace λ̂ on the left

hand side with rL(ŵ) where the unique ŵ is chosen such that rL(ŵ) = λ̂. Since rL is strictly

decreasing, the left hand side is negative for any k ≥ ŵ, and is strictly decreasing for any

k ∈ [ω, ŵ). Thus, the left hand side is maximized at k = ω.

Now consider �rst part of the Lagrangian (10) wth λ replaced with λ̂ = RL(ω, ω), which

by assumption equals −rM(kM). By Riley and Zeckhouser (1983), it has a deterministic

maximizer with some threshold k among all weakly increasing functions xM(ω) with the

range in [0, 1]. We claim that the unique maximizer is given by k = kM . This is equivalent

to ∫ ω

k

(rM(ω) + λ̂)(FL(ω)− FH(ω))dω ≤
∫ ω

kM

(rM(ω) + λ̂)(FL(ω)− FM(ω))dω

for all k. Suppose �rst that kM ≤ ω∗−
M ; by Lemma 12, kM < ωp

M where ωp
M is the interior

peak of rM . Since rM(ω) is strictly increasing for ω < kM and since λ̂ = −rM(kM), the above

inequality holds for all k < kM . For k > kM , we rewrite the above inequality as

RM(kM , k) ≥ rM(kM).

As in the proof of Lemma 12, de�ne ẑ ∈ [ωp
M , ωt

M ] such that rM(ẑ) ≥ rM(kM) and ẑ ≤ ωt
M ,

with complementary slackness, and de�ne zt ≥ ωt
M such that rM(zt) ≥ rM(kM) and zt ≤ ω,

with complementary slackness, where ωt
M is the interior trough of rM . For all k ∈ [kM , zt],

rM(k) ≥ rM(kM), so the desired inequality holds. For k ≥ ẑ, we have rM(k) ≤ rM(kM) for

k ∈ [ẑ, zt] and rM(k) ≥ rM(kM) for k > ẑ. Therefore, the desired inequality holds for all

k ≥ ẑ as long as RM(kM , zt) ≥ rM(kM). In the proof of Lemma 12, we have shown that

kM ≤ ω∗−
M implies that RM(kM , zt) ≥ rM(kM). Thus, RM(kM , k) ≥ rM(kM) for all k ≥ kM .

The argument is symmetric if kM ≥ ω∗+
M .

We have veri�ed that x∗
L(ω) = χ

[ω,ω]
L and x∗

M(ω) = 1ω≥kM maximize the Lagrangian (10)

among all weakly decreasing xL and xM . The maximum value of the Lagrangian achieved

by the allocations given by Lemma 12 is an upper bound of the objective function of the
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simpli�ed problem. Since kM ∈ (ω, ω) by assumption, χL given by (18) binds MONML.

Thus, the maximum value of the Lagrangian is achievable in the simpli�ed problem. It

follows that (x∗
M , x∗

L) solves the simpli�ed problem.

Finally, under the alignment condition, any solution to the simpli�ed problem corresponds

to an optimal mechanism. The conclusion follows immediately.

In a similar way as Proposition 2 extends Lemma 8, we can generalize Proposition 3 to

�weak alignment� where the relative weight function α(ω) on the intermediate distribution

FM is monotone rather than constant. The proof of the following result is similar to that in

Proposition 2 and skipped.7

Corollary 1 (i) Suppose that rθ(ω) is single dipped and rθ′(ω) is strictly increasing, with

Rθ(ω
∗−
θ , ω∗+

θ ) ≤ 0 and α(ω) non-decreasing for θ = M , and Rθ(ω
∗−
θ , ω∗+

θ ) ≥ 0 and α(ω) non-

increasing for θ = L. If there exists kθ′ ∈ (ω∗−
θ , ω∗+

θ ) such that rθ′(kθ′) = −Rθ(ω
∗−
θ , ω∗+

θ ),

then x∗
θ(ω) = χ

[ω∗−
θ ,ω∗+

θ ]

θ and x∗
θ′(ω) = 1ω≥kθ′

correspond to an optimal mechanism for χθ

given by (18). (ii) Suppose that rθ(ω) is single dipped and rθ′(ω) is strictly decreasing, with

Rθ′(ω, ω) ≤ 0 and α(ω) non-decreasing for θ′ = M , and Rθ′(ω, ω) ≥ 0 and α(ω) non-

increasing for θ′ = L. If there exists kθ ∈ (ω, ω∗−
θ ] or kθ ∈ [ω∗+

θ , ω) such that rθ(kθ) =

−Rθ′(ω, ω), then x∗
θ(ω) = 1ω≥kθ and x∗

θ′(ω) = χ
[ω,ω]
θ′ correspond to an optimal mechanism for

χθ′ given by (18).

To make use of Proposition 3 to examine speci�c examples, we strengthen the alignment

condition (13) by imposing the monotone likelihood ratio property. (i) We assume that for

some α ∈ (0, 1),

fM(ω) = (1− α)fH(ω) + αfL(ω)

for all ω ∈ [ω, ω]. This implies that α(ω) given by (13) is constant and equal to α. (ii) We

assume that fH(ω)/fL(ω) is strictly increasing in ω. Then, so long as fM(ω)/fL(ω) > α,

7The argument that ICHL is satis�ed by the solution to the simpli�ed problem depends on whether the

solution has stochastic allocation for type M or for type L. In either case, it is the same as the argument in

the proof of Proposition 2. The argument for ICMH and ICLH also depends. When xL is stochastic, we can

show that kM > c; when xM is stochastic, we can show that ω∗−
M > c. In either case, (7) and (8) hold, and

thus ICMH and ICLH are satis�ed by the solution to simpli�ed problem.
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the implied {Fθ}θ=H,M,L is feasible. We refer to speci�cations of {Fθ}θ=H,M,L satisfying

conditions (i) and (ii) above as �strong alignment.�

Although the characterization results on optimal randomization so far all treat type

M and type L symmetrically, under strong alignment we expect in any stochastic optimal

mechanism, randomization is more likely to occur for type L than for type M , at least for

su�ciently small c. To see this, note that under strong alignment, by condition (i) we have

RM(w,w′) =

∫ w′

w
ϕM(ω − c)fM(ω)dω∫ w′

w
(FL(ω)− FM(ω))dω

− αϕH

1− α
,

RL(w,w
′) =

∫ w′

w
ϕL(ω − c)fL(ω)dω∫ w′

w
(FL(ω)− FM(ω))dω

− (ϕM + ϕH),

for any w ≤ w′. By condition (ii),

fM(ω)

fL(ω)
<

fM(ŵ)

fL(ŵ)
<

fM(ω′)

fL(ω′)

for any ω < ŵ < ω′. Thus, if RM(w, ŵ) > RM(ŵ, w′) for some c < w < ŵ < w′, then

RL(w, ŵ) > RL(ŵ, w
′). It follows that for su�ciently small c, whenever the su�cient con-

dition (11) for randomization is satis�ed for type M , it is also satis�ed for type L. The

following result shows that, in fact, for c = ω, whenever an optimal mechanism involves

randomization for type M , it must also involve randomization for type L.

Proposition 4 Suppose c ≤ ω. Under strong alignment, if no deterministic mechanism is

optimal, then in any optimal mechanism randomization occurs for type L.

Proof. Suppose that there is no deterministic mechanism that is optimal, but that there is

an optimal mechanism with randomization for type M only. By strong alignment, there is

no deterministic solution to the simpli�ed problem, and there is a solution (x∗
M , x∗

L) where

x∗
M is random but x∗

L is deterministic. By Lemma 9, we can assume that x∗
M(ω) = χ

[w−
M ,w+

M ]

M

and x∗
L(ω) = 1ω≥kL . By Luenberger's Theorem,

(
χ
[w−

M ,w+
M ]

M ,1ω≥kL

)
maximizes (10) for some

λ ≥ 0 among all weakly increasing allocations for type M and type L.

First, we claim that λ > 0. Suppose instead λ = 0. Then, since χM ∈ (0, 1), we have∫ w+
M

w−
M

ϕMδM(ω)fM(ω)dω = 0.
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It follows that replacing x∗
M(ω) = χ

[w−
M ,w+

M ]

M with 1ω≥w−
M

does not change the value of the

objective function in the simpli�ed problem. Since the allocation for type M is weakly

increased for all valuations, MONML remains satis�ed. This contradicts the optimality of

(x∗
M , x∗

L), and establishes that λ > 0. By complementary slackness, MONML binds. It follows

that kL ∈ (w−
M , w+

M), and χM is given by equation (18).

Next, we claim that RM(w−
M , kL) ≥ RM(kL, w

+
M). Suppose not. Then by replacing x∗

M(ω)

with 1ω≥kL , we continue to bind MONML, and the total change in the objective function of

the simpli�ed problem (5) is given by

−χM

∫ kL

w−
M

ϕMδM(ω)fM(ω)dω + (1− χM)

∫ w+
M

kL

ϕMδM(ω)fM(ω)dω,

which is strictly positive because RM(w−
M , kL) < RM(kL, w

+
M).

Under condition (ii) of strong alignment, since c ≤ ω ≤ w−
M , we have that RM(w−

M , kL) ≥

RM(kL, w
+
M) impliesRL(w

−
M , kL) > RL(kL, w

+
M). Then, by replacing x∗

L(ω) with χM(w−
M , w+

M),

we continue to bind MONML, and the total change in the objective function of the simpli�ed

problem (5) is given by

χM

∫ kL

w−
M

ϕLδL(ω)fL(ω)dω − (1− χM)

∫ w+
M

kL

ϕLδL(ω)fL(ω)dω,

which is strictly positive because RM(w−
M , kL) ≥ RM(kL, w

+
M) implies that RL(w

−
M , kL) >

RL(kL, w
+
M). This contradicts the assumption that (x∗

M , x∗
L) is a solution to the simpli�ed

problem.

Proposition 4 does not rule out the possibility that there is an optimal mechanism with

randomization for both type M and type L. By Lemma 10, in this case there is another

optimal mechanism with randomization for at most one of the two types. Proposition 4 then

implies that these other optimal mechanisms necessarily involve randomization for type L

only.8

8In the proof of Lemma 10, we go through all four cases where a solution to the simpli�ed problem

involves randomization for both type M and type L. In cases (ii), (iii) and (iv), there is another optimal

mechanism with randomization for type M only. By Proposition 4, these cases cannot happen under strong

alignment and c = ω. It follows that case (i), with strict inequalities, is the only case when randomization

for type M occurs.
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We will use a class of examples with explicit distributions to illustrate how to apply our

main characterization results Proposition 3 and Proposition 4. In the next section, we discuss

how our methodology for �nding optimal mechanisms can be extended to more than three

types. The class of examples will be introduced in the section after the next to illustrate

both the main model with three ex ante types and the extension in the next section to more

than three types.

7 An Extension

In our analysis of stochastic sequential screening mechanisms, the simpli�ed problem plays

the central role. This problem is obtained from the original maximization problem by bind-

ing the lowest type's individual rationality constraint and each local downward incentive

compatibility constraint to make non-decreasing allocations as choice variables, subject only

to monotonicity constraints that are equivalent to local upward incentive compatibility con-

straints, dropping individual rationality constraints of all types higher than the lowest type

and all non-local incentive compatibility constraints. As is standard under �rst order stochas-

tic dominance ordering of ex ante types, by an inductive argument, individual rationality

constraints of each typer higher than the lowest type is implied by the local downward in-

centive compatibility constraint and the lower type's individual rationality constraint. For

all non-local incentive compatibility constraints, we impose the alignment condition to en-

sure they are satis�ed by any solution to the simpli�ed problem. With only three types,

high, middle and low, alignment also allows us to drop the monotonicity constraint between

the high type and the middle type, and thus dropping the high type's allocation from the

simpli�ed problem altogether.

The methodology of focusing on the simpli�ed problem can be easily extended to more

than three ex ante types. Let Θ = {1, . . . , I} be the ex ante type space, with type 1 being the

lowest type, ϕi being the fraction of type i, fi(·) and Fi(·) being the conditional density and

conditional distribution of valuations respectively, i ∈ Θ. The counterpart of the alignment

condition that α(ω) given by (13) is constant, is that, for each i = 1, . . . , I,

fi(ω) = (1− αi)fI(ω) + αif1(ω) (20)
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for some αi ∈ [0, 1], with 1 = α1 > α2 > . . . > αI = 0. Proposition 4 extends immediately:

under alignment, any non-local incentive compatibility constraint is implied by a chain of

local ones in the same direction and a single monotonicity constraint. In particular, for

all i ≥ j + 2, the downward incentive compatibility constraint ICi,j is implied ICi,i−1, ... ,

ICj+1,j, and ICj,j+1, for all i ≤ j − 2, the upward incentive compatibility constraint ICi,j is

implied ICi,i+1, ... , ICj−1,j, and ICj,j−1. As is true with three ex ante types, under alignment

we can focus on the following simpli�ed problem:

max
{xi(·)}i∈Θ

∑
i∈Θ

∫ ω

ω

xi(ω)ϕiδi(ω)fi(ω)dω,

where δi(ω) is the dynamic virtual surplus function of type i = 1, . . . , I − 1, given by

δi(ω) = ω − c−
∑I

i′=i+1 ϕi′(Fi(ω)− Fi+1(ω))

ϕifi(ω)
,

with δI(ω) = ω − c, subject to each xi(·) non-decreasing with the range of [0, 1], and mono-

tonicity constraint MONi+1,i∫ ω

ω

(xi+1(ω)− xi(ω))(Fi(ω)− Fi+1(ω))dω ≥ 0,

for each i = 1, . . . , I − 1.

Under alignment, we can replace the �weighting function� Fi(ω)−Fi+1(ω) for all MONi+1,i

with a single function F1(ω)− FI(ω). That is, we can write MONi+1,i as∫ ω

ω

(xi+1(ω)− xi(ω))(F1(ω)− FI(ω))dω ≥ 0.

For the same reason, we de�ne the average ratio of surplus-to-rent for type i = 1, . . . , I − 1

as

Ri(w,w
′) =

∫ w′

w
ϕiδi(ω)fi(ω)dω∫ w′

w
(F1(ω)− FI(ω))dω

for all w < w′, the corresponding point ratio as

ri(ω) =
ϕiδi(ω)fi(ω)

F1(ω)− FI(ω)

for all ω.
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Su�cient conditions for optimal mechanism to be stochastic are a straightforward ex-

tension of Proposition 8. De�ne {ŵi}i=1,...,I as a deterministic solution to the simpli�ed

problem:

max
{wi}i=1,...,I

I∑
i=1

Si(wi),

where

Si(wi) =

∫ ω

wi

ϕiδi(ω)fi(ω)dω,

subject to that wi is weakly decreasing in i. If

max
ω≤ŵi

Ri(ω, ŵi) > min
ω≥ŵi

Ri(ŵi, ω),

for any i = 1, . . . , I, then the solution to the simpli�ed problem is stochastic, and thus any

optimal mechanism is stochastic. The argument extends the proof of Proposition 8. If there

exist w′ < ŵi < w′′ for some i such that

Ri(w
′, ŵi) > Ri(ŵi, w

′′),

then by replacing 1ω≥ŵi
with χ[w′,w′′], where χ ∈ (0, 1) satis�es

χ

∫ ŵi

w′
(F1(ω)− FI(ω))dω = (1− χ)

∫ w′′

ŵi

(F1(ω)− FI(ω))dω,

both MONi+1,i and MONi,i−1 are una�ected,
9 but the change in the value of type i part of

the objective function is

χ

∫ ŵi

w′
ϕiδi(ω)fi(ω)dω − (1− χ)

∫ w′′

ŵi

ϕiδi(ω)fi(ω)dω,

which is strictly positive since Ri(w
′, ŵi) > Ri(ŵi, w

′′).

Unlike in the three-type case, the su�cient conditions above are no longer necessary. This

is because, with more than a single monotonicity constraint in the simpli�ed problem, it is

generally di�cult to know which ones of them are binding at the deterministic solution to

the simpli�ed problem. Following the same steps of the proof of Proposition 7, let λi+1,i ≥ 0

be the multiplier associated with MONi+1,i in the simpli�ed problem for each i = 1, . . . , I−1,

and write the Lagrangian as∑
i∈Θ

∫ ω

ω

xi(ω) (ϕiδi(ω)fi(ω) + (λi,i−1 − λi+1,i)(F1(ω)− FI(ω))) dω,

9Only MON2,1 is present if i = 1, and only MONI,I−1 is present if i = I.
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with the convention of λ1,0 = λI+1,I = 0. With three types, we are able to show that MONHM

is equivalent to ICMH and holds at any solution to the simpli�ed problem (Proposition

4), and so we have a single multiplier λML. In the proof of Proposition 7, this allows us

to guess that λML = rL(k̂) if the solution to the simpli�ed problem is deterministic with

common threshold k̂ for types M and L, and establish an upper bound on the value of the

simpli�ed problem when the reverse of condition (11) holds. By Lagrangian relaxation, k̂

indeed represents the solution to the simpli�ed problem. With more than three types and

more than one monotonicity constraint possibly binding if the solution to the simpli�ed

problem is deterministic, we can no longer guess the values of the multipliers at the solution.

Nonetheless, conditional on these values of the multipliers λ̂i+1,i, i = 1, . . . , I − 1, using

the same logic as in the proof of Proposition 7 we can write the su�cient conditions for

the solution to the simpli�ed problem to be deterministic, or equivalently, the necessary

conditions for randomization, as

max
ω≤ŵi

Ri(ω, ŵi) ≤ λ̂i+1,i − λ̂i,i−1 ≤ min
ω≥ŵi

Ri(ŵi, ω),

for each i = 1, . . . , I. Thus, to the extent that �nding the deterministic solution to the

simpli�ed problem and corresponding multipliers is straightforward, the above conditions

are not much harder to verify than in the three-type case.

With more than three types and more than a single monotonicity constraint, characteriz-

ing optimal stochastic mechanisms becomes more involved, but most of our characterization

results generalize, at least partially, to provide restrictions we can use to construct optimal

stochastic mechanisms. Lemma 9 continues to hold: randomization occurs at more than one

level strictly between 0 and 1 for each type i ∈ Θ, and so without loss we can write the

solution to the simpli�ed problem as
{
χ
[w−

i ,w+
i ]

i

}
i∈Θ

.10 Of course, we do not expect Lemma

10 to hold, as generally randomization occurs for more than one type in any solution to the

simpli�ed problem; indeed we will construct such an example in the next section.11

Since they deal with necessary conditions for allocations of individual types, both Lemma

10The argument is simply noting that we can treat the di�erence in multipliers λi,i−1 − λi+1,i as a single

multiplier in the proof of Lemma 9.

11The �rst part of the proof of Lemma 10 can be generalized: if at some solution {χ[w−
i ,w+

i ]
i }i∈Θ there exist

some i1, i2 ∈ Θ with i2 ≥ i1 + 1 such that MONi1,i1−1 and MONi2+1,i2 are both slack, and λi+1,i > 0 for all

39



11 and Lemma 12 completely generalize. In particular, a generalization of Lemma 11 states

that no solution to the simpli�ed problem can have randomization for some type i ∈ Θ with

a support a subset of an interval (w,w′) over which type i's point ratio ri of surplus-to-rent is

strictly increasing; and in any solution type i's allocation is constant on any interval (w,w′)

over which ri is strictly decreasing.12 For Lemma 12, if a type i = 1, . . . , I − 1 has a point

ratio of surplus-to-rent function ri that is single dipped, then there exist unique ω∗−
i < ω∗+

i

satisfying

ri(ω
∗−
i ) ≥ Ri(ω

∗−
i , ω∗+

i ) ≥ ri(ω
∗+
i ),

and ω∗−
i ≥ ω and ω∗+

θ ≤ ω, both with corresponding complementary slackness, such that,

in any solution to the simpli�ed problem, the support for randomization in the allocation

for type i is [ω∗−
i , ω∗+

i ] if it is random, and the threshold ki lies outside of [ω
∗−
i , ω∗+

i ] if it is

deterministic.

Extending Proposition 3 is di�cult without additional information about the shape of

each point ratio of surplus-to-rent ri and the structure of binding monotonicity constraints,

although the general idea of using Lagrangian relaxation to construct a solution to the sim-

pli�ed problem is applicable in speci�c examples. We can learn more about the structure of

randomization in an optimal stochastic mechanism if we assume strong alignment. Suppose

that (i) condition (20) holds, and (ii) fI(ω)/f1(ω) is strictly increasing for all ω ∈ [ω, ω]. We

have

Fi(ω)− Fi+1(ω) = (αi − αi+1)(F1(ω)− FI(ω))

for each i = 1, . . . , I − 1, and thus

Ri(w1, w2) =

∫ w2

w1
ϕi(ω − c)fi(ω)dω∫ w2

w1
(F1(ω)− FI(ω))dω

− (αi − αi+1)
I∑

i′=i+1

ϕi′ ,

i = i1, . . . , i2 − 1, then the value of the simpli�ed problem does not depend on χi, i = i1, . . . , i2. However, in

general we no longer have the freedom to change the values of χi to reduce the number of random allocations

between i1 and i2, because changing χi for any i = i1, . . . , i2 can violate MONi+1,i and/or MONi,i−1.

12Even though the allocation of type i a�ects two monotonicity constraints MONi+1,i and MONi,i−1 (if

i ≥ 2 and i ≤ I−1), under alignment the weighting function F1(ω)−FI(ω) is the same for all i. This implies

that whenever we switch type i's allocation xi(ω) from a random one to a deterministic one, or vice versa,

so long as we keep as �xed the weight average of xi(ω), neither of the two relevant monotonicity constraints

is una�ected. The proof of Lemma 11 goes through without change.
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for all w1 < w2, and

ri(ω) =
ϕi(ω − c)fi(ω)

F1(ω)− FI(ω)
− (αi − αi+1)

I∑
i′=i+1

ϕi′ ,

for all ω. Then, ri(ω) ≥ ri(ω
′) for any ω > ω′ > c implies that ri′(ω) > ri′(ω

′) for all i, i′ ∈ Θ

with i′ ≥ i + 1. Under the assumption that ri(ω) is single dipped for each i = 1, . . . , I,

with (ωp
i , ω

t
i) being the largest interval over which ri(ω) is strictly decreasing, if c = ω, then

the intervals are all ordered by type, so that ωp
i′ ≥ ωp

i with strict inequality if ωp
i > ω, and

ωt
i′ ≤ ωt

i with strict inequality if ωt
i < ω. Further, if c = ω, then i′ ≥ i+1 implies that either

ω∗−
i′ ≥ ω∗−

i or ω∗+
i′ ≤ ω∗+

i , with at least one holding as a strict inequality.13 These results

can help us make the correct guesses about the values of the multipliers in order to apply

the argument of Proposition 3. This will be illustrated in the next section with the class of

examples with explicit distribution functions.

Under strong alignment with c = ω, the argument in Proposition 4 can be extended to

more than three types. We can show that randomization for any type i = 2, . . . , I at an

optimal mechanism implies we cannot have both a deterministic allocation for type i − 1

and a binding MONi,i−1. This suggests that in optimal stochastic stochastic mechanisms

randomization occurs in �clusters,� where each cluster of adjacent types has binding mono-

tonicity constraints among them, and clusters are separated from each other. In the next

section, we will use a class of examples with explicit distributions to illustrate this idea.

13To see this, assume for simplicity ri(ω
∗−
i ) = Ri(ω

∗−
i , ω∗+

i ) = ri(ω
∗+
i ). This implies that ωp

i′ > ωp
i

and ωt
i′ < ωt

i are all interior. By Lemma 12, there exists ŵ ∈ (ωp
i , ω

t
i) ⊂ (ω∗−

i , ω∗+
i ) such that ri(ŵ) =

Ri(ω
∗−
i , ω∗+

i ). If ri′(ŵ) < ri′(ω
t
i′) then ω∗−

i′ > ŵ > ωp
i > ω∗−

i , and if ri′(ŵ) > ri′(ω
p
i′) then ω∗+

i′ <

ŵ < ωt
i < ω∗+

i . Suppose ri′(ω
t
i′) ≤ ri′(ŵ) ≤ ri′(ω

p
i′). By condition (ii) of strong alignment with c = ω,

ri(ω
∗−
i ) < ri(ŵ) < ri(ω

∗+
i ) implies ri′(ω

∗−
i ) < ri′(ŵ) < ri′(ω

∗+
i ). Then there exist zp ∈ (ω∗−

i , ωp
i′ ], and

w̌ ∈ [ωp
i′ , ω

t
i′ ] and zt ∈ [ωt

i′ , ω
∗+
i ) such that ri′(z

p) = ri′(w̌) = ri′(z
t), with either Ri′(z

p, zt) ≥ ri′(z
p),

or Ri′(z
p, zt) ≤ ri′(z

t), or both. By Lemma 12, in the �rst case ω∗−
i′ ≥ zp > ω∗−

i ; in the second case

ω∗+
i′ ≤ zt < ω∗+

i .
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8 Examples

In this section, we explicitly solve for optimal mechanisms for a class of sequential screening

problems. This class of problems satis�es conditions (i) and (ii) of strong alignment. We use

them illustrate the results from both the main model with three ex ante types in Section 6

and the extension with more than three types in Section 7. Since the model in Section 6 is a

special case of the model in Section 7, we use the latter, and specialize to three types when

necessary. In addition to illustrating how to characterize optimal mechanisms, the examples

solved in this section also demonstrate an often more convenient alternative to verifying the

su�cient and necessary conditions (11) for randomization in Propositions 8 and 7.

For all ω ∈ [0,∞), let

fi(ω) = γie
−γiω,

for i = 1 and i = I ≥ 3, with γ1 > γI > 0, and for each i = 1, . . . , I let

fi(ω) = (1− αi)γIe
−γIω + αiγ1e

−γ1ω

for some αi ∈ [0, 1], with 1 = α1 > α2 > . . . > αI = 0. The resulting class of distributions

{Fi(ω)}i=1,...,I satis�es conditions (i) and (ii) of strong alignment. We have δI(ω) = ω − c,

and for each i = 1, . . . , I − 1,

δi(ω) = ω − c−
(αi − αi+1) (e

−γIω − e−γ1ω)
∑I

i′=i+1 ϕi′

((1− αi)γIe−γIω + αiγ1e−γ1ω)ϕi

,

and

ri(ω) =
ϕi(ω − c) ((1− αi)γIe

−γIω + αiγ1e
−γ1ω)

e−γIω − e−γ1ω
− (αi − αi+1)

I∑
i′=i+1

ϕi′ .

It is straightforward to verify that ri(0) = −∞ and dri(0)/dω = ∞ if c > 0, and if c = 0,

ri(0) =
ϕi((1− αi)γI + αiγ1)

γ1 − γI
− (αi − αi+1)

I∑
i′=i+1

ϕi′

and
dri(0)

dω
=

ϕi((1− αi)γI − αiγ1)

2
.

Also, r1(∞) = −(1 − α2)(1 − ϕ1), and ri(∞) = ∞ for i = 2, . . . , I − 1. We �rst derive two

claims we need for explicit characterizations of optimal mechanisms. The proofs are in the

appendix.

42



Claim 2 For each i = 1, . . . , I − 1, ri(ω) is single dipped. Further, if c = 0, then r1(ω) is

strictly decreasing, and for any i = 2, . . . , I − 1 there exists a strictly positive and �nite ωt
i

such that ri(ω) is strictly decreasing for any ω < ωt
i and strictly increasing for any ω > ωt

i . If

c > 0, then there exists a strictly positive and �nite ωp
1 such that r1(ω) is strictly increasing

for any ω < ωp
1 and strictly decreasing for any ω > ωp

1, and ri(ω) is strictly increasing in ω

if (1− αi)γI ≥ αiγ1.

For each i = 1, . . . , I − 1, the total dynamic virtual surplus of type i under a threshold

allocation rule 1ω≥k is given by

Si(k) =

∫ ∞

k

ri(ω)
(
e−γIω − e−γ1ω

)
dω.

The following claim provides a characterization of Si(k). Let k̂i be the smallest maximizer

of Si(k), i = 1, . . . , I − 1.

Claim 3 If c = 0, then k̂1 = 0 when S1(0) ≥ 0 and k̂1 = ∞ otherwise, and for each

i = 2, . . . , I − 1, k̂i is uniquely de�ned by ri(k̂i) = 0 and dri(k̂i)/dω > 0 when Si(k̂i) ≥ Si(0),

and k̂i = 0 otherwise. If c > 0, then k̂1 = ∞ when r1(ω
p
1) ≤ 0, and is otherwise uniquely

de�ned by r1(k̂1) = 0 and dr1(k̂1)/dω > 0, and k̂i is uniquely de�ned by ri(k̂i) = 0 for any i

such that (1− αi)γI ≥ αiγ1.

Now we are ready to illustrate explicitly constructed optimal mechanisms through a series

of examples. For the �rst two examples, we have I = 3. We revert back to the notation

of H, M and L. So type I becomes type H, and type 1 becomes type L, with α ∈ (0, 1)

representing the weight on fL in fM . The �rst example provides a straightforward application

of part (i) of Proposition 3.

Example 1: I = 3 and c > 0. We assume (1 − α)γH ≥ αγL. By Claim 3, k̂M is interior

and given by rM(k̂M) = 0, and k̂L is given by rL(k̂L) ≤ 0 and k̂L ≤ ∞, with complementary

slackness.

First, suppose that k̂M ≤ k̂L. By Lemma 6, the optimal mechanism is deterministic, with

threshold allocation for all three types: the threshold for type H is c, the threshold for type

M is k̂M , and the threshold for type L is k̂L. This corresponds to the regular case that the

existing literature focuses on.
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Second, suppose instead k̂M > k̂L. This requires k̂L < ∞ and thus rL(ω
p
L) > 0, where ωp

L

is the unique interior peak of rL by Claim 2. The deterministic solution k̂ to the simpli�ed

problem is uniquely determined by rL(k̂) + rM(k̂) = 0, and is strictly between k̂L and k̂M .

By Claim 2, rM is strictly increasing because (1 − α)γH ≥ αγL. Lemma 11 then implies

that, if there is a stochastic solution to the simpli�ed problem then randomization occurs

only for type L. By Claim 2, rL(ω) has a unique interior peak at ωp
L with rL(0) = −∞ and

rL(∞) = 0. By Lemma 12, in any stochastic solution (x∗
M , x∗

L) to the simpli�ed problem,

equations (19) imply the support of type L's random allocation x∗
L(ω) is given by [ω∗−

L ,∞),

with ω∗−
L uniquely de�ned by

RL(ω
∗−
L ,∞) = rL(ω

∗−
L ),

implying that rL(ω
∗−
L ) > 0 and so ω∗−

L ∈ (k̂L, ω
p
L). Part (i) of Proposition 3, with θ = L and

θ′ = M , then establishes that if there exists kM > ω∗−
L such that14

rM(kM) = −RL(ω
∗−
L ,∞) = −rL(ω

∗−
L ),

then x∗
L(ω) = χ

[ω∗−
L ,∞)

L and x∗
M(ω) = 1ω≥kM solve the simpli�ed problem, with

χL =

∫∞
kM

(FL(ω)− FM(ω))dω∫∞
ω∗−
L
(FL(ω)− FM(ω))dω

,

and thus corresponds to an optimal stochastic mechanism.15 Since rM is strictly increasing,

such kM exists if and only if

rL(ω
∗−
L ) + rM(ω∗−

L ) < 0.

If the above condition is violated, there is no stochastic solution to the simpli�ed problem.

The solution is deterministic with a common threshold k̂, and the optimal mechanism is

deterministic. We have an example of optimal mechanism that is deterministic even though

the unconstrained solution to the simpli�ed problem violates MONML. ■

14Consistent with Lemma 6, the condition below cannot be satis�ed if k̂M ≤ k̂L. To see this, note that

by Claim 2, rL(ω) crosses 0 only once at k̂L from below. Since rL(ω
∗−
L ) > 0, we have ω∗−

L > k̂L and thus

rM (ω∗−
L ) > rM (k̂L) ≥ rM (k̂M ) = 0. As a result, rL(ω

∗−
L ) + rM (ω∗−

L ) > 0.

15Since ω∗−
L ∈ (k̂L, ω

p
L) and since rM is strictly increasing, rL(ω

∗−
L ) + rM (ω∗−

L ) < 0 implies that ω∗−
L < k̂,

where k̂ satis�es rL(k̂) + rM (k̂) = 0. The proof of Lemma 12 establishes that rL(ω) ≥ RL(ω,∞) if and only

ω ≥ ω∗−
L . Thus, when rL(ω

∗−
L ) + rM (ω∗−

L ) < 0, we have rL(k̂) > RL(k̂,∞), and the su�cient condition for

randomization (11) in Proposition 8 is satis�ed for type L.
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Our second example assumes c = 0 and uses Proposition 4 and Lemma 12 to pin down a

unique candidate solution to the simpli�ed problem when the unconstrained solution violates

MONML. We then apply part (ii) of Proposition 3 to establish a su�cient condition to

validate the candidate solution and thus correspond to an optimal stochastic mechanism.

Example 2: I = 3 and c = 0. By Claim 3, we have k̂L = 0 if SL(0) ≥ 0, and otherwise

k̂L = ∞. For type M , by Claim 2, there is a unique minimizer ωt
M of rM(ω). By Claim 3, a

su�cient condition for k̂M to be interior is rM(0) < 0.

First, suppose that k̂L = ∞, or k̂L = k̂M = 0. By Lemma 6, the optimal mechanism is

deterministic, with threshold allocation for all three types: the threshold for type H is 0,

the threshold for type M is k̂M , and the threshold for type L is k̂L.

Second, suppose that k̂L = 0 and k̂M > 0. If k̂ > 0, then since rL(ω) is strictly decreasing

by Claim 2, Proposition 8 implies that any solution to the simpli�ed problem is stochastic.

If k̂ = 0, Proposition 8 does not apply, and the solution to the simpli�ed problem may

be stochastic, or deterministic given by x∗
M(ω) = x∗

L(ω) = 1ω≥0. By Proposition 4, if

randomization occurs in any optimal mechanism, it occurs for type L and takes the form

of x∗
L(ω) = χ

[w−
L ,w+

L ]

L and x∗
M(ω) = 1ω≥kM . By Lemma 12, since rL(ω) is strictly decreasing,

equations (19) imply that w−
L = ω∗−

L = 0 and w+
L = ω∗+

L = ∞. Further, since rM has a

unique interior trough and rM(∞) = ∞, we have ω∗−
M = 0 and ω∗+

M is uniquely de�ned by

rM(ω∗+
M ) = RM(0, ω∗+

M ).

Since k̂L = 0, we have SL(0) ≥ SL(∞) = 0, and thus RL(0,∞) ≥ 0. By part (ii) of

Proposition 3, with θ = M and θ′ = L, if there exists kM ≥ ω∗+
M such that16

rM(kM) = −RL(0,∞),

then x∗
L(ω) = χ

[0,∞)
L and x∗

M(ω) = 1ω≥kM solve the simpli�ed problem, with

χL =

∫∞
kM

(FL(ω)− FM(ω))dω∫∞
0
(FL(ω)− FM(ω))dω

,

16If k̂M = 0, then SM (0) ≥ SM (ω) for all ω. This implies that RM (0, ω) ≥ 0 for all ω, and in particular,

rM (ω∗+
M ) = RM (0, ω∗+

M ) ≥ 0. If k̂L = 0, we also have RL(0,∞) ≥ 0. Thus, consistent with Lemma 6, the

condition RL(0,∞) + rM (ω∗+
M ) < 0 can never be satis�ed if k̂M = k̂L = 0.

45



and thus corresponds to an optimal stochastic mechanism. Since rM(ω) is strictly increasing

for ω > ω∗+
M , the above condition is equivalent to17

RL(0,∞) + rM(ω∗+
M ) ≤ 0.

If RL(0,∞) + rM(ω∗+
M ) > 0, there is no stochastic solution to the simpli�ed problem, and

deterministic allocations x∗
M(ω) = x∗

L(ω) = 1ω≥0 correspond to an optimal mechanism. ■

The third example below illustrates what we call randomization clusters with I = 4 and

c = 0. We construct an optimal mechanism where types 1 and 2 have random allocations

while types 3 and 4 have deterministic allocations. To do so, we �rst use Lemma 12 to

propose the unique candidate solution to the simpli�ed problem that is consistent with

this randomization cluster. We then apply the same Lagrangian relaxation method used

in Proposition 3 to establish a su�cient condition for the candidate solution to solve the

simpli�ed problem and thus correspond to optimal stochastic mechanisms.

Example 3: I = 4 and c = 0. We consider a solution {x∗
i (ω)}i=1,2,3 to the simpli�ed problem

of the form x∗
i (ω) = χ

[w−
i ,w+

i ]
i for i = 1, 2, and x∗

3(ω) = 1ω≥k3 . By Claim 2, r1(ω) is strictly

decreasing, and both r2(ω) and r3(ω) have a unique interior trough. It follows from Lemma

12 that w−
1 = ω∗−

1 = 0 and w+
1 = ω∗+

1 = ∞, w−
2 = ω∗−

2 = 0 and w+
2 = ω∗+

2 , and k3 ≥ ω∗+
3

with ω∗−
3 = 0, where ω∗+

i is uniquely de�ned by

ri(ω
∗+
i ) = Ri(0, ω

∗+
i )

for each i = 2, 3. As we have argued in Section 7, since ω∗−
2 = ω∗−

3 , we have ω∗+
2 > ω∗+

3 . We

claim that if R1(0,∞) ≥ 0, R1(0,∞) + r2(ω
∗+
2 ) ≥ 0, and

−r3(ω
∗+
2 ) < R1(0,∞) + r2(ω

∗+
2 ) ≤ −r3(ω

∗+
3 ),

17Su�cient conditions for optimal mechanisms to be stochastic are RL(0,∞) > 0 and rL(0) + rM (0) < 0.

Since RL(0,∞) > 0 we have SL(0) > 0 and thus k̂L = 0 by Claim 3. It is straightforward to verify

that RL(0,∞) > 0 implies that rL(0) > 0. Since rL(0) + rM (0) < 0, we have rM (0) < 0, which is

su�cient for k̂M > 0. Since rL(ω) is strictly decreasing, and since rM (ω∗+
M ) < rM (0), we have RL(0,∞) +

rM (ω∗+
M ) < rL(0) + rM (0) < 0. Indeed, rL(0) + rM (0) < 0 is su�cient for k̂ to be interior, as it implies that

dSL(k)/dk + dSM (k)/dk is strictly positive for k arbitrarily close to 0. Since rL(ω) is strictly decreasing,

condition (11) is satis�ed for type L, and by Proposition 8, any optimal mechanism is stochastic.
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then there exists a unique value of k3, together with some χ1, χ2 ∈ (0, 1), such that x∗
1(ω) =

χ
[0,∞)
1 , x∗

2(ω) = χ
[0,ω∗+

2 ]
2 , and x∗

3(ω) = 1ω≥k3 form a solution to the simpli�ed problem, and

thus correspond to an optimal mechanism.

The claim is established by a generalization of the Lagrangian relaxation argument in

Proposition 3. Since r3(ω) is strictly increasing for ω ≥ ω∗+
3 with r3(∞) = ∞, under the

stated conditions there exists a unique k3 ∈ [ω∗+
3 , ω∗+

2 ) such that

R1(0,∞) + r2(ω
∗+
2 ) + r3(k3) = 0.

We choose the multipliers as follows: λ2,1 = R1(0,∞) and λ3,2 = R1(0,∞) + r2(ω
∗+
2 ). By

assumption, λ2,1, λ3,2 ≥ 0. With these values of the multipliers, we argue that for each

type i = 1, 2, 3, the given allocation x∗
i (ω) maximizes the part of the Lagrangian function

associated with type i among all weakly increasing functions xi(ω) with the range of [0, 1].

For type 1, given by that λ2,1 = R1(0,∞), the argument is the same as for type θ′ in

part (ii) of Proposition 3. For type 2, given that R2(0, ω
∗+
2 ) = r2(ω

∗+
2 ) = λ3,2 − λ2,1, the

argument is the same as for type θ in part (i) of Proposition 3. Finally, for type 3, given

that λ3,2 = R1(0,∞) + r2(ω
∗+
2 ) = −r3(k3) and k3 ≥ ω∗+

3 , the argument is the same for type

θ in part (ii) of Proposition 3. The claim is then established by noting that since k3 < ω∗+
2 ,

we can �nd values of χ1 and χ2 to bind MON1,2 and MON3,2:

χ1 =

∫∞
k3
(F1(ω)− F4(ω))dω∫∞

0
(F1(ω)− F4(ω))dω

, χ2 =

∫ ω∗+
2

k3
(F1(ω)− F4(ω))dω∫ ω∗+

2

0
(F1(ω)− F4(ω))dω

.

By complementary slackness, the value of the Lagrangian function achieved by the proposed

solution x∗
1(ω) = χ

[0,∞)
1 , x∗

2(ω) = χ
[0,ω∗+

2 ]
2 , and x∗

3(ω) = 1ω≥k3 is feasible in the simpli�ed

problem. It follows that the proposed solution solves the simpli�ed problem, and thus

corresponds to an optimal mechanism. ■
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Appendix

Proof of Claim 2. By taking derivatives, we can show that dri(ω)/dω has the same sign

as

(1− αi)γI
(
e(γ1−γI)ω − 1

)
+ αiγ1

(
1− e−(γ1−γI)ω

)
− (γ1 − γI)((1− αi)γI + αiγ1)(ω − c).

Thus, dr1(ω)/dω > 0 if and only if

1− e−(γ1−γI)ω > (γ1 − γI)(ω − c).

The left-hand side is strictly concave in ω, with a derivative equal to γ1 − γI at ω = 0. It

follows that if c = 0, then dr1(ω)/dω < 0 for all ω, and if c > 0, there exists a strictly

positive and �nite ωp
1 which equates the two sides of the inequality above, such that r1(ω) is

strictly increasing for any ω < ωp
1 and strictly decreasing for any ω > ωp

1.
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Next, �x any i = 2, . . . , I − 1. At any ω̂ such that dri(ω̂)/dω = 0, the sign d2ri(ω̂)/dω
2

is the same as

(1− αi)γIe
(γ1−γI)ω̂ + αiγ1e

−(γ1−γI)ω̂ − ((1− αi)γI + αiγ1).

The sign of the above is the same as

(1− αi)γIe
(γ1−γI)ω̂ − αiγ1.

Thus, the sign of d2ri(ω̂)/dω
2 at any ω̂ such that dri(ω̂)/dω = 0 can only change from

negative to positive. It follows that ri(ω) is single dipped. If c = 0, then since dri(0)/dω < 0

and ri(∞) = ∞, and since ri(ω) is single dipped, ri(ω) has a unique interior trough. If c > 0,

then (1−αi)γI ≥ αiγ1 implies that d2ri(ω̂)/dω
2 > 0 at any ω̂ such that dri(ω̂)/dω = 0. As a

result, ω̂ is a local minimum of ri(ω). Since dri(0)/dω = ∞, and since ri(ω) is single dipped,

it cannot have a local minimum without having a local maximum. This is a contradiction,

and it follows there is no ω̂ such that dri(ω̂)/dω = 0 when (1− αi)γI ≥ αiγ1. Thus, ri(ω) is

strictly increasing in ω. ■

Proof of Claim 3. We have that dSi(k)/dk has the same sign as −ri(k). At any ω̂ such

that dSi(ω̂)/dω = 0, the sign of d2Si(ω̂)/dk
2 is the same as −dri(ω̂)/dk.

Suppose that c = 0. By Claim 2, since r1(ω) is strictly decreasing, S1(k) has no interior

local maximum. It follows that S1(k) is maximized at either k̂1 = 0 or k̂1 = ∞. Since

S1(∞) = 0, the maximum is either attained at k̂1 = 0 if S1(0) ≥ 0, or else at k̂1 = ∞.

For any i = 2, . . . , I − 1, by Claim 2, since ri(ω) has a unique interior trough at ωt
i , there

are three cases. If ri(ω
t
i) ≥ 0, then Si(k) is strictly decreasing for all k. The maximum of

Si(k) is reached at k̂i = 0. If ri(0) < 0, then since dri(0)/dω < 0 and ri(∞) = ∞, there

exists a unique ŵ strictly positive and �nite, satisfying ri(ŵ) = 0 with dri(ŵ)/dω > 0, such

that Si(k) is strictly increasing for all k ∈ (0, ŵ) and strictly decreasing for all k > ŵ. The

maximum of Si(k) is reached at k̂i = ŵ. If ri(ω
t
i) < 0 ≤ ri(0), then there is a unique ŵ > ωt

i

such that ri(ŵ) = 0, with dri(ŵ)/dω > 0. In this case ŵ is a local maximizer of Si(k). The

maximum of Si(k) is reached at k̂i = ŵ if Si(ŵ) ≥ Si(0) and otherwise at k̂i = 0.

Suppose that c > 0. By Claim 2, r1(ω) has a unique interior peak at some ωp
1. If

r1(ω
p
1) ≤ 0, then S1(k) is increasing for all k, and is therefore maximized at k̂1 = ∞.
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Otherwise, by Claim 2 there exists a unique ŵ such that r1(ŵ) = 0 and dr1(ŵ)/dω > 0. It

follows that S1(k) is maximized at k̂1 = ŵ. For any i = 2, . . . , I − 1, by Claim 2, r1(ω) is

strictly increasing in ω when (1 − αi)γI ≥ αiγ1. Since ri(0) = −∞ and ri(∞) = ∞, there

exists a unique ŵ such that ri(ŵ) = 0. It follows that Si(k) is maximized at k̂i = ŵ. ■
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