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Abstract

We consider a market that may be segmented and is served by a single

seller. The surplus of each consumer in a segment depends on the price that

the seller optimally charges, and this optimal price depends on the set of con-

sumers in that segment. This gives rise to a novel cooperative game between

consumers that determines market segmentation. We study several solution

concepts. The most demanding solution concept, the core, requires that there

is no objection to the segmentation by a coalition of consumers who benefit by

forming a new segment. We show that the core is empty except for trivial cases.

We then introduce a new solution concept, stability. A segmentation is stable

if for each possible objection by a coalition, there is a counter-objection by a

coalition in the original segmentation. We characterize stable segmentations

as ones that are efficient and “saturated,” which means that the segments are

maximal in some sense. We use this characterization to constructively show

that stable segmentations exist. Even though stable segmentations are effi-

cient, they need not maximize average consumer surplus, and segmentations

that maximize average consumer surplus need not be stable. Our weakest so-

lution concept, fragmentation-proofness, rules out objections by coalitions that

include consumers from more than one segment. We show that a segmentation

is fragmentation-proof if and only if it is efficient.
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1 Introduction

An ongoing debate in academia and policy-making is about how much control con-

sumers should have over their data, and in what forms. To answer these questions,

it is important to understand the consequences of consumers’ control over their data.

A primary consequence of consumers’ decisions about what data to disclose is that

it affects market segmentation: the seller can use the available data to segment the

market and to make targeted offers to different segments. Thus by controlling their

data, consumers effectively choose market segmentation.

We develop a cooperative game to explore how markets are segmented by con-

sumers. There is a seller who observes the segmentation that is chosen by consumers,

and chooses a profit-maximizing price for each segment. The profit-maximizing price

that the seller chooses in each segment depends on the distribution of values in that

segment. Thus the surplus of each consumer in a segmentation depends on other con-

sumers that are in the same segment with that consumer. Because consumers may

have different preferences over segmentations, it is important to model how consumers

interact to determine the segmentation. We model this novel interaction among con-

sumers as a cooperative game with non-transferable utility, in which each consumer’s

utility from a coalition is her payoff when facing the profit-maximizing price that is

offered uniformly to all consumers in that coalition.

We study three solution concepts, the core, stability, and fragmentation-proofness,

each more permissive than the previous one. A segmentation is in the core of the

game if no subset of consumers objects to it, in the sense that they would benefit

from deviating from the segmentation and forming their own segment. We show that

the core is non-empty if and only if it is profit-maximizing for the seller to serve the

unsegmented market efficiently, that is, the “market is efficient,” in which case the

unsegmented market is essentially the unique segmentation in the core. Because many

markets are inefficient, the core is often empty. So the core seems too demanding as

a solution concept.

The next solution concept, stability, is new and requires that for any alternative

segmentation, the stable segmentation contains a segment that objects to the alter-

native segmentation. This means that even though there may be objections to a

stable segmentation, these objections are not credible in the sense that any resulting

segmentation will have a counter-objection by a segment in the original segmentation.
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So if consumers are forward-looking, such a non-credible objection will not succeed

in deviating from the segmentation.

We show that stable segmentations always exist and provide a characterization.

The characterization shows that a segmentation is stable if and only if it is efficient

and “saturated,” which means that consumers in each segment are not willing to

accept additional consumers from another segment because doing so will increase

the price in their own segment. We also show that stable segmentations are Pareto

undominated, that is, there is no other segmentation that makes all consumers better

off.

We use our characterization to show that a stable segmentation always exists. We

also show that multiple stable segmentations may exist. One stable segmentation

is the maximal equal-revenue segmentation, first discussed in Bergemann, Brooks,

and Morris (2015). They show that this segmentation maximizes average consumer

surplus over all segmentations. Because we show that this segmentation is stable,

a natural question is whether maximizing consumer surplus implies stability or vice

versa. We give negative answers to both questions.

Our notion of stability is closely related to the stable set of Morgenstern and

Von Neumann (1953). In our setting, a set of segmentations is a stable set if it satisfies

internal and external stability. External stability requires that for any segmentation

not in the set, there is a segmentation in the set and a segment in this segmentation

that objects to the segmentation that is not in the set. Internal stability requires

that no segmentation in the set should contain a segment that objects to another

segmentation that is also in the set. It follows from our definition of stability that in

our setting any singleton set that contains only one stable segmentation is a stable

set. Thus, the existence of stable segmentations implies the existence of singleton

stable sets. This is notable because in general games neither stable sets nor singleton

stable sets are guaranteed to exist. We characterize stable sets and show that any

stable set must be a singleton set. A singleton set is a stable set if and only if the

segmentation in it is Pareto undominated and satisfies a weak notion of satiation.

Because the set of segmentations that are Pareto undominated and satisfy this weak

notion of satiation is strictly larger than the set of stable segmentations, there exist

singleton stable sets that contain one segmentation that is not stable.

Our third solution concept, fragmentation-proofness, only allows objections by

coalitions of consumers that belong to the same segment. We show that a segmenta-
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tion is fragmentation-proof if and only if it is efficient.

Our work sheds light on the consequences of giving complete control to consumers

over how markets are segmented. This control is complete because any coalition

of consumers can deviate from a segmentation and form their own segment. Our

cooperative game takes a reduced-form view of a segmentation and does not explicitly

model how segmentations arise from decisions by consumers. But to see one possibility

of how disclosure decisions may allow any coalition of consumers to form a segment,

suppose that each consumer has a unique identifier that distinguishes that consumer

from all other consumers. If the consumer wishes, she can prove to the seller via a

verifiable evidence that her identifier is in a set (so she has a verifiable evidence for

every set of identifiers that contains her identifier). Now if a coalition of consumers

want to form their own segment, each consumer in the coalition can verifiably disclose

to the seller that they belong to this set (and this set only). The seller then learns

with certainty that all these consumers belong to this coalition (and that this coalition

cannot contain any other consumer), and will offer a profit-maximizing price to the

coalition. For instance, for consumers with identifiers 2 and 15 to form a coalition,

they can each disclose the evidence {2, 15} to the seller, proving to the seller that

each of them belongs to this set but not allowing the seller to distinguish the from

each other. Because no other consumers can disclose this evidence, the seller offers

to these two consumers a price that is profit-maximizing to sell to this coalition.

1.1 Related literature

Our paper studies how coalition formation by agents affects market outcomes. In

this sense, our work is related to Peivandi and Vohra (2021) who consider stability

of centralized markets against deviations by coalitions of agents. They show that

fragmentation of such markets is unavoidable, despite its efficiency costs, except in

special circumstances. They study a bilateral trade setting that is different than ours

with a population of consumers and a seller. Further, in cases where centralized mar-

kets are fragmented, their paper does not provide a prediction of what the resulting

segmentation looks like, and doing so is a main focus of our paper. Another important

difference is that in Peivandi and Vohra (2021), a coalition can choose the trading

mechanism, whereas in our setting the seller chooses a profit-maximizing price to sell

to the coalition.
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A recent literature on third-degree price discrimination studies surplus across all

possible segmentations of a given market. Bergemann, Brooks, and Morris (2015)

identify the set of producer and consumer surplus pairs that result from all seg-

mentations of a given market. An implication of their results is a specification of

segmentations that maximize average consumer surplus. Cummings et al. (2020)

study an extension in which only certain segmentations may be chosen. Glode, Opp,

and Zhang (2018) study optimal disclosure by an informed agent in a bilateral trade

setting, and show that the optimal disclosure policy leads to socially efficient trade,

even though information is revealed only partially. Ichihashi (2020), Hidir and Vel-

lodi (2018), Braghieri (2017), and Haghpanah and Siegel (2022) consider maximum

average consumer surplus when a multi-product seller offers different products in each

market segment. These papers can be seen as identifying segmentations that are cho-

sen ex ante by a consumer who does not know her own type, because such a consumer

chooses the segmentation that maximizes her expected payoff. In contrast, in this

paper we study market segmentation ex post by consumers who know their own type.

Because agents who know their types have different preferences over segmentations,

we need to model the interaction between them, which we do as a cooperative game.

The related papers that study disclosure decisions by agents who know their own

types model these interactions as non-cooperative games. Ali, Lewis, and Vasserman

(2020) consider voluntary disclosure of data by a single consumer, and analyze the

welfare implications of various disclosure policies in both a monopolistic and a com-

petitive environment. Sher and Vohra (2015) study a disclosure setting in which the

seller can commit the mechanism that she would use after receiving information. In

our setting, the seller cannot commit and will choose a profit-maximizing price for

each segment. Acemoglu et al. (2019) and Bergemann, Bonatti, and Gan (2020) also

study the consequences of consumers’ disclosure decisions on prices and other market

outcomes. The main difference between these papers and ours is that we model the

interaction between consumers as a cooperative game.

The value of privacy in our game is defined endogenously in equilibrium: the

payoff of each consumer depends on the set of other agents who reveal the same

information to the seller and are thus pooled together with this consumer. Our

work therefore relates to the literature that endogenizes privacy costs (Taylor, 2004;

Calzolari and Pavan, 2006; Conitzer, Taylor, and Wagman, 2012; Cummings et al.,

2016; Bonatti and Cisternas, 2020; Argenziano and Bonatti, 2021). In these papers
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privacy is valuable because of dynamic considerations: what an agent reveals today

may be shared and used by other agents in the future. In our setting, in contrast,

privacy is valuable because it allows a consumer to pool with others and by doing so

she can buy the product more cheaply.

2 Model

A monopolistic seller faces a unit mass of consumers uniformly distributed on the

interval [0, 1]. Consumers have unit demand for the monopolist’s product, whose

production cost is normalized to zero. The value of the product for consumer c ∈ [0, 1]

is v(c) ∈ V = {v1, . . . , vn} ⊆ R+, where vi increases in i. Let µ be the Borel measure

on the unit interval. The measure of consumers with value vi is f(vi) = µ({c : c ∈
[0, 1], v(c) = vi}). We assume without loss of generality that f(vi) > 0 for every

i ≤ n.

A coalition is a measurable subset C ⊆ [0, 1] of consumers. Let fC(vi) = µ({c :

c ∈ C, v(c) = vi}) denote the measure of consumers with value v in coalition C. A

price p ∈ V is optimal for a coalition C if it maximizes the revenue from selling the

product to consumers in C, that is, for any other price p′ ∈ V ,

p
∑
i:vi≥p

fC(vi) ≥ p′
∑

i:vi≥p′
fC(vi).

Since for each p /∈ V , there exists a price in V with a weakly higher revenue, we do

not need to consider prices that are not in V .

A segment is a pair (C, p), where C is a coalition and p is an optimal price for

that coalition. A segmentation S is a finite set of segments {(Cj, pj)}j=1,...,k such

that C1, . . . , Ck partitions the set of consumers [0, 1]. In words, a segmentation is a

partitioning of a the set of all consumers into coalitions, and for each coalition, an

optimal price. A segmentation S is trivial if |S| = 1. Such a segmentation contains

a single segment {([0, 1], p)}, where p is an optimal price for the set of all consumers

[0, 1]. There may be multiple trivial segmentations because multiple prices may be

optimal for the set [0, 1] of all consumers.

Let CS(c, p) = max(v(c)− p, 0) denote the surplus of consumer c if she is offered

the product at price p. If consumer c belongs to an segment (C, p), then her surplus is

CS(c, p). Each consumer c ∈ [0, 1] belongs to a unique segment in any segmentation
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S. Let pS(c) denote the price in that segment. Then CS(c, S) = CS(c, pS(c)) specifies

the surplus of consumer c in segmentation S.

In our setting, there are many possible segmentations because there are many

possible ways to partition the set of all consumers (and there may be multiple optimal

prices for a given coalition). The rest of the paper develops different solution concepts

that predict what segmentations would arise as the outcome of strategic choices by

coalitions of agents.

3 The core

We start with the most demanding solution concept, the core. A segmentation is

in the core if no segment (C, p) “objects” to it in the sense that the consumers in

the coalition would benefit from jointly deviating from the segmentation and forming

their own segment, as formalized below.

Definition 1 (Objections) A segment (C, p) objects to a segmentation S if CS(c, p) ≥
CS(c, S) for all consumers c ∈ C, with a strict inequality for some positive measure

of consumers c ∈ C.

Notice that if a segment (C, p) objects to S, then (C, p) is not in S, as otherwise

the surplus of each consumer in the coalition is the same in the segment and in

the segmentation. Also notice that the definition would be vacuous if we require

the inequality to be strict for all (or even just almost all) consumers in C, because

optimality of p for C requires that the surplus of consumers with the lowest value

in segment (C, p) is zero, and the surplus of any consumer in any segmentation is at

least zero. So with strict inequality, there would be no objection to any segmentation.

We define the core to be the set of segmentations to which there is no objection.

Definition 2 (Core) The core is a set of segmentations. A segmentation S is in

the core if there exists no segment that objects to S.

Our first result characterizes when the core is empty, and shows that when the

core is non-empty then it contains an essentially unique segmentation. We say that

two segmentations S and S ′ are surplus-equivalent if the surplus of each consumer

is the same in the two segmentations, that is, CS(c, S) = CS(c, S ′) for almost all
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c ∈ [0, 1]. Recall that a segmentation is trivial if it has a single segment containing

all consumers.

Proposition 1 If price v1 is optimal for the set of all consumers [0, 1], then the core

consists of all segmentations that are surplus-equivalent to the trivial segmentation

{([0, 1], v1)}. Otherwise, the core is empty.

Proof. Suppose that v1 is optimal for the set of all consumers. Then the coalition-

price pair ([0, 1], v1) is a segment and there is no objection to the trivial segmentation

{([0, 1], v1)} because in any segment (C, p), the price is at least v1. For the same

reason, any segmentation that is surplus-equivalent to {([0, 1], v1)} is also in the core.1

Now consider a segmentation S that is not surplus-equivalent to {([0, 1], v1)}, which

means that the price in some segment is higher than v1. So for a positive measure

of consumers c, we have CS(c, S) < max(v(c)− v1, 0). Also because the price in any

segment is at least v1, for all consumers c we have CS(c, S) ≤ max(v(c)−v1, 0). Then

the segment ([0, 1], v1), in which any consumer c obtains surplus equal to max(v(c)−
v1, 0), objects to S and so S cannot be in the core. We conclude that the core

consists of all segmentations that are surplus-equivalent to the trivial segmentation

{([0, 1], v1)}.
Now suppose that v1 is not optimal for the set of all consumers. We first claim that

in any segmentation, there must be a segment in which the price is strictly higher than

v1. Suppose for contradiction that there exists a segmentation S = {(Cj, v1)}j=1,...,k.

Because (Cj, v1) is a segment, v1 is optimal for Cj. That is, for any p′ ∈ V we have

v1
∑

i:vi≥v1

fCj(vi) ≥ p′
∑

i:vi≥p′
fCj(vi).

Because the segments C1, . . . , Ck partition [0, 1], we have
∑k

j=1 f
Cj(vi) = f(vi) for

each vi. Therefore, summing the above inequality over all j, we have

v1
∑

i:vi≥v1

f(vi) ≥ p′
∑

i:vi≥p′
f(vi).

This is a contradiction to the assumption that v1 is not optimal for the set of all

consumers.
1There are infinitely many surplus-equivalent segmentations to the trivial segmentation. For

example, we can divide [0, 1] into two coalitions C1, C2 such that the relative measure of all the values
is the same in C1, C2, and [0, 1], and so {(C1, v1), (C2, v1)} is a surplus-equivalent segmentation.
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Figure 1: Example 1

So any segmentation S must have a segment (C, p) such that p > v1. Because the

price is higher than v1, there are consumers with some value vi (e.g., consumers with

the highest value in C) in C whose surplus is strictly lower than vi−v1. Now consider

a coalition C ′ consisting of a positive measure of some such consumers from C and

some consumers with value v1 (from any segment). If fC′
(vi) is small enough relative

to fC′
(v1), then price v1 is optimal for C ′, and so (C ′, v1) is a segment. The surplus

of value vi consumers strictly increases to vi − v1, and the surplus of consumers with

value v1 does not change because their surplus is zero in any segment. Therefore,

the segment (C ′, v1) is an objection to S and so S is not in the core. Because this

argument applies to any segmentation S, the core is empty.

4 Stable Segmentations

Given Proposition 1, the core as a solution concept seems too demanding. This

is because the core is empty except for “uninteresting” cases where to sell to the

set of consumers, it is optimal for the seller to offer the lowest possible price and

give each consumer the highest possible surplus. We here develop a notion of stable

segmentations and show that such segmentations always exist.

To gain some intuition, consider the following example. In the example, the core

is empty. But its examination leads to our notion of stability.

Example 1 There are two values 1 and 2 with measures 0.4 and 0.6, respectively, as

shown in Figure 1.

Because there is a strictly higher measure of value 2 consumers than value 1

consumers, price 1 is not optimal for the set of all consumers. So by Proposition 1,

the core is empty.

To understand this emptiness better, consider segmentation S = {[0, 0.6], 1), ((0.6, 1], 2)}.
There is an “obvious” objection to this segmentation of the form ([0, 0.8], 1). The
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coalition [0, 0.8] in this segment consists of some consumers from the second coalition

in S who join all the consumers from the first coalition in S. Because the price offered

to the consumers in the first coalition does not go up, they are willing to form this

objection.

What about the segmentation S = {([0, 0.8], 1), ((0.8, 1], 2)}? There are no objec-

tions of the form discussed above because if some consumers leave the second segment

and join the first segment, then the price in the first segment goes up, and so the

surplus of consumers [0.4, 0.8] strictly goes down. But there are other objections to

this segmentation. Instead of joining the first segment, consumers in the second seg-

ment can “steal” the consumers with value 1 from the first segment. For instance,

the segment ([0, 0.4] ∪ [0.8, 1], 1) is an objection to S.

However, one could argue this objection may not be credible because there is a

counter-objection to it. To see this, consider what happens after ([0, 0.4] ∪ [0.8, 1], 1)

objects to S. A possibility for the resulting segmentation is S ′ = {([0, 0.4]∪[0.8, 1], 1), ((0.4, 0.8), 2)}.
But notice that S ′ itself has an objection by segment ([0, 0.8], 1) in S. So if consumers

are forward looking and it is expected that a transition from S to S ′ will face a counter-

objection that takes S ′ back to S, then the consumers in coalition [0, 0.4]∪ [0.8, 1] do

not expect any benefit in deviating from S, and so this deviation will not occur. The

segmentation S is therefore in a sense immune to such an objection. If a segmenta-

tion is in the same sense immune to all possible objections, then we call it stable. In

other words, suppose that whenever two segmentations S and S ′ have segments that

object to each other, we give “priority” to the objection from segment S and remove

the objection in S ′. Then S is stable if it has no objection among the remaining

objections.

To define stability formally, we first define the notion of a blocking segmentation.

Definition 3 (Blocking) A segmentation S ′ blocks a segmentation S if there exists

a segment (C ′,M ′) in S ′ that objects to S.

Like an objection by a segment, blocking by a segmentation specifies a deviation by

a group of consumers. But unlike an objection, a blocking segmentation specifies not

only the objecting segment, but also how the other consumers re-group into segments

Definition 4 (Stability) A segmentation is stable if it blocks any segmentation that

is not surplus-equivalent to it.
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It is not immediately obvious that stability is a less demanding notion than being

in the core. It is in principle possible that a segmentation S is in the core and there is

another segmentation S ′ that contains no objecting segment to S but S also contains

no objecting segment to S ′, so S is not stable. We show that stability is indeed less

demanding by first showing that the two solution concepts coincide when the core is

non-empty, and later that stable segmentations exist even when the core is empty.

Proposition 2 If the core is non-empty, then it is equal to the set of all stable seg-

mentations.

Proof. Recall from Proposition 1 that if the core is non-empty, then it consists

of the trivial segmentation {([0, 1], v1)} and all its surplus-equivalent segmentations.

These segmentations are clearly stable because any such segmentation S only contain

segments of the form (C, v1), so in any non-surplus-equivalent segmentation some

consumers are offered a price higher than v1, and then there is a segment in S that

objects to the other segmentation. If a segmentation is not surplus-equivalent to the

trivial segmentation, then some consumers must be offered a price higher than v1, so

that segmentation does not block {([0, 1], v1)} and is therefore not stable.

For the rest of the paper we study stable segmentations in the general case where

the core may be empty. We show that stable segmentations exist and characterize

them. Because we use our characterization to prove existence, we start with the

characterization.

4.1 Characterization

To present our characterization, we start by formulating a canonical representation

of a segmentation so that surplus-equivalent segmentations have the same canonical

representation. For this, we say a segmentation is canonical if no two segments have

the same price (so any two different segments in it have different prices). Each seg-

mentation S is surplus-equivalent to a unique canonical segmentation, which we call

the induced canonical segmentation of S. To obtain the induced canonical segmenta-

tion we can marge all segments that have the same price into a single segment with

that price and a coalition that is the union of all the coalitions that face that price.

Our characterization says that a segmentation is stable if and only if its induced

canonical segmentation satisfies two properties. The first properties is efficiency. A
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segmentation is efficient if for any segment (C, p) in the segmentation, the price p

is equal to the lowest value v(C) := min{v : fC(v) > 0} in C. So all consumers

efficiently buy the product. The second properties is saturation. A segmentation is

saturated if for any segment (C, p) in the segmentation, whenever we add consumers

from segments with higher prices than p to C, price p is no longer optimal for this

larger coalition. That is, for any two segments (C, p) and (C ′, p′) where p < p′,

any optimal price for any coalition C ′′ that contains all consumers in C and some

consumers in C ′ is strictly larger than p. This property can be expressed more

succinctly by looking at the set of prices that are optimal for C. A segmentation

is saturated if for any two segments (C, p) and (C ′, p′) in the segmentation where

p < p′, there exists p̂ that is optimal for C such that p < p̂ ≤ v(C). If such a price p̂

exists, then by adding consumers from C ′ to C, all of whom have value at least v(C ′),

the revenue of price p̂ increases more than the revenue of price p. And because both

p and p̂ are optimal for C, p is no longer is optimal when we add these consumers.

Conversely, if no such p̂ exists, then we can add a small amount of consumers with

value v(C ′) from C ′ to C without changing the optimal price in C. This alternative

representation of saturation shows that if we add some consumers to C from possibly

more than one other segments where the price is higher than C, then the price also

has to go up.

To prove the result, we use another property which we call Pareto dominance. We

say that a segmentation S Pareto dominates another segmentation S ′ if CS(c, S) ≥
CS(c, S ′) for all consumers c ∈ [0, 1], with strictly inequality for a positive mea-

sure of consumers. And a segmentation S is Pareto undominated if there exists no

segmentation S ′ that Pareto dominates S.

Lemma 1 If a segmentation is Pareto dominated, then it is not stable.

Proof. If S is Pareto dominated by S ′, then no segment in S objects to S ′, and S ′

is not surplus-equivalent to S. Therefore, S is not stable.

We now state and prove our main result.

Theorem 1 A segmentation is stable if and only if its induced canonical segmenta-

tion is efficient and saturated.

Proof. To see the necessity of efficiency, consider any segmentation S ′ with an

induced canonical segmentation S. Suppose that S is inefficient, so there is a segment
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(C, p) in S such that p > v(C). Consider a subset C̄ of C that contains all the

consumers with value lower than p from C and also a small enough measure of highest

value consumers from C. Then any optimal price p′ for C̄ is strictly lower than p,

so (C̄, p′), p′ < p, is a segment. Notice that p remains optimal for C\C̄. To see

this, first notice that removing the consumers who are excluded in C does not change

the optimal price. In addition, if we remove consumers of the highest value from

a coalition, then the optimal price may only go down, but because p is already the

lowest possible value after removing all consumers with value lower than p, then

p remains optimal. Now consider a segmentation S̄ that is identical to S, except

segment (C, p) is replaced with two segments (C\C̄, p) and (C̄, p′). The consumers

in C̄ who have value higher than v(C̄) have a strictly higher surplus in S̄ compared

to S (such consumers exist because C̄ contains consumers of at least two different

values), and all the other consumers have the same surplus in the two segmentations,

so S̄ Pareto dominates S and therefore S ′. So by Lemma 1, S ′ is not stable.

To see the necessity of saturation, consider any segmentation S ′ with an induced

canonical segmentation S. Suppose that S is not saturated. If S is inefficient, then

the argument above implies that S ′ is not stable. So suppose that S is efficient,

which together with non-saturation implies that there are two segments (C, v(C))

and (C ′, v(C ′)) in S such that v(C) < v(C ′) and exists no p̂ that is optimal for C

such that v(C) < p̂ ≤ v(C ′). So if we add some consumers of value v(C ′) to C, price

v(C) remains optimal. That is, price v(C) is optimal for any coalition C̄ = C ∪ C ′′

where C ′′ is any set of measure small enough δ > 0 of consumers with value v(C ′)

from C ′. Let C ′′ be such that it contains a positive measure of consumers with value

v(C ′) from every segment in S ′ where the price is v(C) (recall that S ′ need not be

canonical). Now consider a segmentation S̄ that is equivalent to S except (C, v(C))

and (C ′, v(C ′)) are replaced with (C̄, v(C)) and (C ′\C̄, p), where p is any optimal price

for C ′\C̄. Segmentations S ′ and S̄ are not surplus-equivalent, because consumers in

C ′′ have zero surplus in S ′ but a positive surplus in S̄.

To show that S ′ is not stable, we next argue that S ′ does not block S̄. First, notice

that the surplus of consumers from any segment in S ′ where the price is neither v(C)

nor v(C ′) does not change in S̄, so these segments do not object to S̄. Also all

consumers that are in a segment in S ′ with price v(C) are in segment (C̄, v(C)) in

S̄, so these segments do not object to S̄ either. Finally, notice that for any segment

(C ′′′, v(C ′)) in S ′, some of the value v(C ′) consumers who get a surplus of 0 in S ′ are
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put in segment (C̄, v(C)) where their surplus is strictly positive, so (C ′′′, v(C ′)) does

not object to S̄. We conclude that S ′ does not block S̄ so S ′ is not stable.

We now show sufficiency of efficiency and saturation. So consider a segmentation

S ′ with a canonical segmentation S that is efficient and saturated. Consider any

segmentation S̄ that is not blocked by S ′. Then the canonical representation of S̄ is

also not blocked by S ′, so suppose without loss of generality that S̄ is canonical. Write

the two segmentations as S = {(C1, v1), . . . , (Cn, vn)} and S̄ = {(C̄1, v1), . . . , (C̄n, vn}
where each Ci or C̄i may be empty. We show using induction that S̄ must be surplus-

equivalent to S ′ by showing that Ci = C̄i for all i (for the rest of this proof, Ci = C̄i

is in the “almost all” sense, that is the measure of consumers in Ci but not in C̄i is

zero, and the same holds for consumers in C̄i but not in Ci).

Suppose that Cj = C̄j for all j < i (the basis of the induction is when i = 1). This

means that a consumer is in a segment where the price is vi or higher in S if an only

that consumer is in such a segment in S̄. This means in particular that consumers

in Ci are offered a price of vi or higher in S̄. We show that Ci = C̄i. If i = n,

then we are done because coalitions in S and S̄ partition the same set of consumers.

So suppose that i < n. First notice that consumers in Ci with value higher than vi

must be in C̄i, otherwise these consumers are offered a price strictly higher than vi

in S̄ and so their surplus decreases, and therefore any segment in S ′ that contains

some of these consumers objects to S̄. So Ci and C̄i are identical, except C̄i may not

contain some consumers of value vi from Ci and may contain some consumers from

coalitions Ci+1, . . . , Cn, all of whom have value higher than vi. In either case, if Ci

and C̄i are not identical, because vi is optimal for C̄i, vi must have a strictly higher

revenue for Ci than any other price. But this contradicts saturation because we can

add consumers to Ci without increasing the price.

To verify the stability of a segmentation, it is important that we establish the

efficiency and saturation of its canonical representation. Below is an example with a

non-canonical segmentation that is efficient and saturated, but is not stable.

Example 2 There are four values 1 to 4 with measures 0.5, 0.25, 0.125, 0.125, respec-

tively, as shown in Figure 2.

Consider the segmentation {(C1, 1), (C2, 1), (C3, 4)} with coalitions C1, C2, C3 shown

in the figure.
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Consumers
0 1

Values

1
2

3
4

7
8

1 2 3 4

C1

1
4

3
4

C2

7
8

3
4

1
4

0

C3

7
8

1

Figure 2: Example 2.

For coalition C1, prices 1 and 2 are both optimal. For coalition C2, prices 1 and

3 are both optimal. So it is not possible to take consumers from segment (C3, 4)

where the price is high and add them to either segment (C1, 1) or (C2, 1) where the

price is low without increasing the price. So this segmentation is saturated. This

segmentation is also efficient.

But notice that for coalition C1∪C2, price 1 is the unique optimal price. So we can

combine these two coalitions and add some consumers with value 4 without changing

the price. In particular, consider segmentation S ′ = {([0, 7
8

+ ε), 1), ([7
8

+ ε, 1], 4)} for

some small ε > 0. The segmentation S ′ Pareto dominates S, and so S is not stable.

4.2 Existence

We now use our characterization to establish existence of stable segmentations. We

start with an example which leads to an algorithm to construct stable segmentations.

Example 3 (Maximal Equal-revenue Segmentation) There are three values 1, 2, 3

with measures 1
3
, 1
6
, 1
2
, respectively, as shown in Figure 3.

Consider the segmentation S = {(C1, 1), (C2, 2), (C3, 3)} as shown the figure.

Coalition C1 is the largest “equal-revenue” coalition that includes all values. That

is, the measure of the three values 3
9
, 1
9
, 2
9

in coalition C1 are such that all prices 1, 2,

and 3 are optimal, and further C1 is the largest such coalition because it contains all
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7
9

1

C2
11
18

4
9

C3

11
18

7
9

Figure 3: Example 3.

the value 1 consumers (any two coalitions C,C ′ for which all three prices are optimal

are proportional, i.e., fC(v) = αfC′
(v) for some α, so the largest such coalition is

well-defined). Segment (C1, 1) is efficient. Also notice that because C1 contains all

value 1 consumers, consumers not in C1 have value either 2 or 3, so adding them to

C1 means that price 1 is no longer optimal.

We can now define the segmentation recursively on the remaining consumers,

hence guaranteeing efficiency and saturation.

The remaining consumers have value either 2 or 3, and their measures are 1
18

and
5
18

, respectively. Coalition C2, in which values 2 and 3 have measures 1
18

and 2
18

, is the

largest coalition where both prices 2, 3 are optimal. The segment (C2, 2) is efficient

and adding any of the remaining consumers, all of whom have value 3, increases the

price.

The last segment is (C3, 3), which is efficient. We have established that the seg-

mentation S is efficient and saturated. Because this segmentation is also canonical,

it is stable.

We now formally define the maximal equal-revenue segmentation. Let F̄C(vi) be

the cumulative measure of consumers with values vi or higher in C. If in a coalition

C, the measures of consumers of values at least vi or vj satisfies viF̄
C(vi) = vjF̄

C(vj),

then prices vi and vj are equally profitable for the seller. A coalition C is an equal-

revenue coalition if viF̄
C(vi) is constant for all vi such that fC(vi) > 0, that is,

revenue is constant for all values that are included in it. A maximal equal-revenue
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segmentation is defined recursively. The first coalition C1 is the largest equal-revenue

coalition that includes all values V . Formally, let

λ = min
vi∈V

f(vi)
1
vi
− 1

vi+1

, (1)

and let F̄C1(vi) = λ/vi for all vi. Then viF̄
C1(vi) = λ for all vi ∈ V and all prices

are optimal. Further, fC1(vi) = F̄C1(vi) − F̄C1(vi+1) = λ( 1
vi
− 1

vi+1
) ≤ f(vi) for all

vi, and since the value vi at which the right hand side of (1) is minimized satisfies

λ( 1
vi
− 1

vi+1
) = f(vi), we have fC1(vi) = f(vi). That is, coalition C1 contains all

consumers with value vi, and adding any other positive measure of consumers would

make price vi sub-optimal. Therefore segment C1 cannot be any larger. The first

segment in an equal-revenue segmentation is (C1, v1), and the rest of the segmentation

is defined recursively, where Cj is the largest equal-revenue coalition that includes

all the values that remain after having removed consumers in C1, . . . , Cj−1, that is,

{vi : fCj(vi) > 0} = {vi : fC\∪j′<jCj′ (vi) > 0}, and the price in the j’th segment

is min{vi : fCj(vi) > 0}. This process ends because in each step, the number of

remaining values decreases by at least 1.

The maximal equal-revenue segmentation is not necessarily canonical. For exam-

ple, it could be that the first equal-revenue coalition C1 exhausts some value other

than v1, in which case the second coalition is also going to include consumers with

value v1. So to establish that this segmentation is stable, we need to consider its

induced canonical segmentation and show that it is efficient.

Proposition 3 The maximal equal-revenue segmentation is stable.

Proof. Given Theorem 1, it is sufficient to show that the induced canonical seg-

mentation of the maximal equal-revenue segmentation satisfies the two properties of

Theorem 1. The maximal equal-revenue segmentation is efficient by construction, so

is its canonical representation. We show that the induced canonical segmentation of

the maximal equal-revenue segmentation is saturated.

Sort the segments by their optimal price, from low to high (break ties arbitrarily

if multiple segments have the same price). Let Cj be the lowest coalition in the

equal-revenue segmentation where the price is not v1, and let vi be the lowest value

in segment Cj. Value vi must also be in any segment C1, . . . , Cj−1, and in fact must

be an optimal price in any of those segments. In the induced canonical segmentation,
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segments (C1, v1), . . . , (Cj−1, v1) are merged into a single segment (C ′1, v1), and all

segments where the price is vi are merged into an segment (C ′2, vi). Since price vi

is also optimal in each of those segments, it must also be optimal in segment C ′1.

Therefore, adding any consumers from C ′2 to C ′1 necessarily increases the price in C ′1.

A recursive argument shows that the induced canonical segmentation is saturated.

The maximal equal-revenue segmentation is not the unique stable segmentation.

Here is an informal description of another algorithm that leads to a stable segmen-

tation. Put all consumers of value v1 in the first coalition, and continually add con-

sumers of the lowest remaining value to the first coalition until some price vi other

than v1 also becomes optimal. The first segment is (C, v1). Repeat this process with

the remaining consumers. This segmentation is canonical, efficient, and saturated.

Saturation follows because value vi becomes optimal for C only when we have already

added all the lower values to C, so any consumer in a segment with a higher price

must have value at least vi, and so adding them to the first segment must necessarily

increase the optimal price. This segmentation is also in general different than the

maximal equal-revenue segmentation because generally the first segment does not

include all values. We proved the existence of stable segmentations using the maxi-

mal equal-revenue segmentation because it is special in the sense that it maximizes

average consumer surplus, as we discuss next.

4.3 Stability vs. maximizing average consumer surplus

The maximal equal-revenue segmentation was first introduced in Bergemann, Brooks,

and Morris (2015). They show that this segmentation maximizes average consumer

surplus, but is not necessarily the only segmentation that does so. So one may wonder

if stability either implies or is implied by maximizing average consumer surplus. This

is not the case, as the following two examples show.

Example 4 (A stable segmentation that does not maximize average con-

sumer surplus) There are three values 1, 2, 3 with measures 1
3
, 1
3
, 1
3
, respectively, as

shown in Figure 4.

Consider a segmentation S = {(C1, 1), (C2, 3)} shown in Figure 4 in which C1

contains all consumers with values 1 and 2 and C3 contains all consumers with value

3. This segmentation is canonical, efficient, and saturated. It is therefore stable.
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Consumers
0 1

Values

1
3

2
3

1 2 3

C1

0 2
3

C2

12
3

Figure 4: Example 4

But this segmentation does not maximize average consumer surplus. One way

to see this is to compare the average consumer surplus of this segmentation, 1
3
, to

the average consumer surplus of the maximal equal-revenue segmentation, 2
3
.2 But a

more illuminating way is to study a marginal improvement over the average consumer

surplus of S that is obtained from swapping the same measure of value 2 and 3

consumers. In particular, consider a coalition C ′1 that is C1 minus an ε measure of

value 2 consumers plus an ε measure of value 3 consumers, and a coalition C ′2 that

contains the remaining consumers. If ε > 0 is small enough, price 1 is optimal for

C ′1 and price 3 is optimal for C ′3. So S ′ = {(C ′1, 1), (C ′3, 3)} is a segmentation. To

see the change in average consumer surplus, we can focus only on the value 2 and 3

consumers who are swapped. The value 2 consumers lose 1 unit of surplus each: their

surplus in the original segmentation is 1, but their surplus in S ′ is 0. The value 3

consumers gain 2 units of surplus each: their surplus in the original segmentation is

0, but their surplus in S ′ is 2. Because the measures of these two sets are the same,

the change increases average consumer surplus.

Notice that if we consider the change in the offered price, this change is 2 for the

value 2 consumers (from 1 to 3), and is −2 for the value 3 consumers (from 3 to 1).

So even though this change has the same absolute value, in terms of surplus it is more

important to the value 3 consumers because for the value 2 consumers, some of the

change has no effect on surplus: an increase in the price offered from 1 to 2 does not

2The maximal equal-revenue segmentation is {(C1, 1), (C2, 2)} where (fC1(1), fC1(2), fC1(3)) =
( 1
3 ,

1
9 ,

2
9 ) and (fC2(1), fC2(2), fC2(3)) = (0, 2

9 ,
1
9 ). The surplus of value 2 and 3 consumers is 1 and 2

in the first segment, and the surplus of value 3 consumers is 1 in the second segment. So the average
consumer surplus is 1

9 · 1 + 2
9 · 2 + 1

9 · 1 = 2
3 .
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change their surplus.

Example 5 (A segmentation that maximizes average consumer surplus and

is not stable) Consider again the example from Example 3 with three values 1, 2, 3

and measures 1
3
, 1
6
, 1
2

and a segmentation S = {(C1, 1), (C2, 2)} with coalitions C1 =

[0, 1
3
] ∪ [5

6
, 1] and C2 = (1

3
, 5
6
).

Coalition C1 contains all the value 1 consumers and some of the value 3 consumers

in such a way that both prices are optimal. Coalition C2 contains value 2 and 3

consumers in such a way that both prices are optimal. Segmentation S maximizes

average consumer surplus over all possible segmentations.3

But the segmentation is not stable. This segmentation is canonical and efficient.

So to show that it is not stable, we show that it is not saturated. The reason is that

there are no value 2 consumers in coalition C1. So adding a small measure of value 2

consumers to C1 does not change the fact that price 1 is optimal: if this measure is

small enough, price 2 is not going to become optimal, and this addition increases the

revenue of price 1 but does not change the revenue of price 3. This segmentation is

therefore not saturated and not stable.

4.4 Pareto dominance and efficiency

Recall from Section 4.1 that any stable segmentation is Pareto undominated and

efficient. Bergemann, Brooks, and Morris (2015) show that any segmentation that

maximizes average consumer surplus is also Pareto undominated and efficient. So we

here study the connection between Pareto undominance and efficiency.

Proposition 4 Any Pareto undominated segmentation is efficient.

Proof. Consider any inefficient segmentation S. We show that S must be Pareto

dominated by some other segmentation. By definition there must be a segment (C, p)

in S such that p is higher than the lowest value v(C) in C. Construct a coalition

C ′ ⊆ C that contains all the consumers of lowest value v(C) from C, and an ε fraction

of consumers of each other value from C. If ε is small enough, price v(C) is optimal

3The segmentation is efficient so it maximizes the total surplus. It also minimizes the seller’s
revenue over all segmentation. This is because the same price that is optimal for the set of all
consumers, 3, is also optimal for each coalition.
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in C ′, so (C ′, v(C)) is a segment. Also, price p remains optimal in the remaining

segment C\C ′. To see this, first notice that v(C) is lower than all values in C\C ′,
and so price v(C) is not optimal for C\C ′. Second, for any vi > v(C), we have

fC\C′
(vi) = (1− ε)fC(vi). Therefore the revenue of any price p′ ∈ V \{v(C)} in C\C ′

is

p′
∑
vi≥p′

fC\C′
(vi) = (1− ε)(p′

∑
vi≥p′

fC(vi)),

which is maximized at p′ = p since price p is optimal in C.

Now consider a segmentation S ′ that is identical to S, except the segment (C, p) is

replaced with two segments (C ′, v(C)) and (C\C ′, p). Since the price in the segment

(C ′, v(C)) is lower than that in (C, p), all consumers other than those with value v(C)

are strictly better off in C ′ relative to C, and the consumers with value v(C) have

zero surplus in either case. Further, since the prices in segments (C\C ′, p) and (C, p)

are the same, the surplus of each consumer in C\C ′ remains unchanged. Therefore

S ′ Pareto dominates S.

Notice that there exist efficient segmentations that are not Pareto efficient. For

instance, the segmentation that puts all the consumers of each value in a different

segment is efficient but is not Pareto undominated.

4.5 Relationship with the stable set

Our notion of stability is related to the notion of a stable set from Morgenstern and

Von Neumann (1953). The stable set is defined for any cooperative game, but here we

present only the application of this solution concept to our game. Notice that whereas

in Morgenstern and Von Neumann (1953), state below, stability is a property of a set

of segmentations, our definition of stability is a property of a single segmentation.

Definition 5 (Stable set, Morgenstern and Von Neumann, 1953) A set of seg-

mentations S is a stable set if it satisfies the following two properties:

1. Internal Stability: For all S ∈ S, there exists no S ′ ∈ S that blocks S.

2. External Stability: For all S /∈ S, there exists S ′ ∈ S that blocks S.

If a segmentation S is stable, then the set of all segmentations that are surplus-

equivalent to S is a stable set. This is easy to see: internal stability is trivially
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satisfied because a segmentation does not block a surplus-equivalent segmentation,

and external stability is satisfied by definition of stability. So stable sets exist in our

setting. This is noteworthy because stable sets may not exist for a general game.

Further, in some games in which stable sets exists, they must necessarily contain

multiple elements. In contrast, our proposition below shows that any stable set

contains an essentially unique element in the sense that it consists of all segmentations

that are surplus-equivalent to some segmentation S.

Surprisingly, however, the set of segmentations that are surplus-equivalent to S

may be a stable set even if S is not stable. This is because stability is a strong notion:

it requires that a single segmentation blocks any other non-surplus-equivalent segmen-

tation; the stable set, on the other hand, requires that any non-surplus-equivalent

segmentation to S be blocked by some segmentation that is surplus-equivalent to S,

and it could in fact be the case that S does not block S ′ but a surplus-equivalent

segmentation to S does. To see this, suppose that S is canonical but not stable. So

there exists another segmentation S ′ that is not blocked by S. This does not mean,

however, that there exists no segmentation S ′′ that is surplus-equivalent to S that

blocks S ′. Take a segment (C, p) in S that does not object to S ′. This segment may

contain some consumers who prefer S to S ′, and some consumers who prefer S ′ to

S. Now if we replace (C, p) with two segments (C ′, p) and (C\C ′, p), it could be that

all the consumers in C ′ prefer this new segmentation to S ′, and so this segmentation

that is surplus-equivalent to S blocks S ′. The following example illustrates this.

Example 6 There are three values 1, 2, 3 with measures 6
21
, 4
21
, 11
21

, respectively, as

shown in Figure 4, and a segmentation S = {(C1, 1), (C2, 2)} where C1 = [0, 6
21

) ∪
[18
21
, 1] and C2 = [ 6

21
, 18
21

).

Segmentation S is not stable because it is not saturated. This is because we can

add some consumers with value 2 from C2 to C1 without changing the price in the

first segment. For example, segmentation S ′ = {(C ′1, 1), (C ′2, 3)} with coalitions C ′1 =

[0, 7
21

) ∪ [18
21
, 1] and C ′2 = [ 7

21
, 18
21

) shown in the figure is not blocked by S. Segment

(C1, 1) in S does not object to S ′ because all consumers in C1 are indifferent between

the two segmentations. Segment (C2, 2) does not object to S ′ either because the

value 2 consumers who join the first segment in S ′ strictly prefer S ′ to S. However,

this segmentation S ′ is blocked by the segmentation S ′′ = {(C ′′1 , 1), (C ′′2 , 2), (C ′′′2 , 2)},
with coalitions C ′′1 = [0, 6

21
) ∪ [18

21
, 1], C ′′2 = [ 6

21
, 7
21

) ∪ [16
21
, 18
21

), and C ′′′2 = [ 7
21
, 16
21

),
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Figure 5: Example 6

which is surplus-equivalent to S. In particular, segment (C ′′′2 , 2) objects to S ′ because

these consumers are offered price 2 in S ′′ but price 3 in S ′. The proposition below

characterizes stable sets and shows that the set of all segmentations that are surplus-

equivalent to S is in fact a stable set.

To state the proposition, we first define a weak notion of saturation. We say that

a segmentation S is weakly saturated if we can add all of consumers of one value

that is optimal for one segment from that segment to segments with lower prices

without increasing the prices in any of those lower priced segments. In particular,

for a segment (C, p) and a value v > p, let ν(C, p, v) denote the largest measure of

value v consumers that can be added to C while maintaining the optimality of price

p. A segmentation is weakly saturated if for any segment (C, p) and any price v that

is optimal for C, we have fC(v) >
∑

(C′,p′)∈S,p′<p ν(C ′, p′, v).

The segmentation S in Example 6 is weakly saturated because adding all the con-

sumers with value 2 from C2 to C1 increases the optimal price in the first segment

to 2, and adding all the consumers with value 3 from C2 to C1 increases the optimal

price in the first segment to 3. Notice that a saturated segmentation is weakly sat-
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urated because for any two segments (C, p) and (C ′, p′) with p′ < p and any value

v in the support of C, we have ν(C ′, p′, v) = 0. Recall from Lemma 1 that a stable

segmentation is also Pareto undominated. So the result below, which shows that

the set of all surplus-equivalent segmentations to a canonical segmentation that is

Pareto undominated and weakly saturated is a stable set, implies that the set of all

surplus-equivalent segmentations to a stable segmentation is a stable set.

Proposition 5 A set of segmentations is a stable set if and only if it consists of

all segmentations that are surplus-equivalent to some canonical, Pareto undominated,

and weakly saturated segmentation.

Proof. To see the necessity of these conditions, consider any stable set S. We

first show that any segmentation in S must be Pareto undominated. Suppose for

contradiction that there exists a segmentation S in S that is Pareto dominated by

another segmentation S ′. If S ′ is S, then internal stability is violated because S ′

blocks S. If S ′ is not in S, then by external stability, there is a segmentation S ′′

in S that blocks S ′. But then S ′′ also blocks S, and so again internal stability is

violated. Pareto undominance in particular implies that any segmentation in S must

be efficient.

We next show that any two segmentations in S must be surplus-equivalent. Sup-

pose for contradiction that there are two segmentations S1 and S2 in S that are not

surplus-equivalent. So their induced canonical segmentations S ′1 and S ′2 are also not

surplus-equivalent, so there must be segments (C1, p) in S ′1 and (C2, p) in S ′2 such

that p = v(C1) = v(C2) but C1 6= C2 (in the “almost all” sense). Suppose without

loss of generality that p is the lowest such value, so any consumer in C1 is either in

C2 or in a segment with a higher price, and similarly any consumer in C2 is either in

C1 or in a segment with a higher price. Because C1 6= C2, we either have C1\C2 6= ∅
or C2\C1 6= ∅. Suppose without loss of generality that C1\C2 6= ∅.

First suppose that C1\C2 contains only consumers with value p. So C2 has a lower

measure of value p consumers, and in addition may have some higher value consumers.

Because p is optimal for C2, it must be strictly optimal for C1. But this means that

S ′1 is Pareto dominated because for any segment (C ′, p′) in S ′1 where p′ > p, we can

add some of the highest value consumers from C ′ to C1 without increasing the price

in either segment. As we argued above, a Pareto dominated segment cannot be in S.
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So suppose that C1\C2 contains some consumers with value higher than p. Because

by assumption, these consumers are not offered a lower price in S ′2, they must be

offered a strictly higher price in S ′2. Consider any segment (C ′′, p) in S1 that contains

some such consumers. These consumers are offered price at least p in S2, and some

of them have a strictly higher surplus in S1 than in S2. So S1 blocks S2, which

contradicts internal stability.

So we have established that any stable set S may only contain segmentations that

are surplus-equivalent to a Pareto undominated segmentation S. If some S ′ that is

surplus-equivalent to S is not in S, then no segmentation in S blocks S ′ so external

stability is violated. So S must contain all segmentations that are surplus-equivalent

to a Pareto undominated segmentation S, which we can assume to be canonical

without loss of generality. So to complete the necessity direction, it only remains to

show that the canonical segmentation S must be weakly saturated.

Suppose that S is not weakly saturated. Because S is Pareto undominated, it is

efficient by Proposition 4. So there is a segment (C, v(C)) in S and a price p that

is optimal for C such that we can add all the consumers with value p from C to

segments with lower price without increasing the price in those segments. Let S ′

be the resulting segmentation. We argue that no segmentation S ′′ that is surplus-

equivalent to S blocks S ′, violating external stability. Indeed, any consumer that is

not in C ′ has the same surplus in both segmentations. Now consider any segment in

S ′′ in which the price is v(C). Any such segment must contain some consumers of

value p from C. These consumers strictly prefer S ′ to S ′′. So S ′′ does not block S ′.

To establish sufficiency, consider any canonical segmentation S = {(C1, v1), . . . , (Cn, vn)}
that is Pareto efficient and weakly saturated (Ci may be empty for some i). Suppose

for contradiction that there is a segmentation S ′ that is not blocked by any segmen-

tation that is surplus-equivalent to S. We can assume without loss of generality that

S ′ is canonical, so S ′ can be written as S ′ = {(C ′1, v1), . . . , (C ′n, vn)}. Because S is

Pareto efficient, some consumers must strictly prefer S to S ′. Consider the lowest

segment (Ci, vi) in S that contains some consumer that strictly prefers S to S ′.

We show inductively that Cj ⊆ C ′j for all j < i. It must be that C1 ⊆ C ′1,

as otherwise (C1, v1) objects to S ′. Suppose that C1 ⊆ C ′1, . . . , Cj−1 ⊆ C ′j−1 for

some j < i. Coalition Cj′ cannot have a non-empty intersection with C ′1, . . . , C
′
j−1

because then segment (Cj, vj) contains some consumers that strictly prefer S to S ′,

contradicting the assumption that (Ci, vi) is the lowest such segment. Also Cj cannot
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have a non-empty intersection with C ′j+1, . . . , C
′
n, because then (Cj, vj) objects to S ′.

We conclude inductively that Cj ⊆ C ′j for all j < i.

Now suppose that for all values v that are optimal for Cj, not all consumers with

value v from Cj are in C ′1 to C ′i−1. So there exist some consumers with value v in

Cj that weakly prefer S to S ′. Then we can construct a segmentation S ′′ that is

surplus-equivalent to S that blocks S ′. This segmentation is the same as S, except

(Cj, vj) is replaced with two segments (C ′, vj) and (Cj\C ′, vj) such that C ′ contains

a small measure of each value v that is optimal for Cj that weakly prefers S to S ′,

and a small measure of the consumers that strictly prefer S to S ′. It must therefore

be that for some v that is optimal for Cj, all consumers with value v from Cj are in

C ′1 to C ′i−1. But this contradicts weak saturation.

4.6 Two values

We have seen examples showing that in general, stability, maximizing average con-

sumer surplus, and Pareto undominance are different concepts. We show here that

with two values, all these concepts coincide. And further, there is essentially a

single segmentation that satisfies these properties, in a slightly weaker sense than

surplus-equivalence. Formally, two segmentations are weakly surplus-equivalent if

the induced canonical representation of each segmentation can be obtained from the

induced canonical representation of the other one via a measure-preserving mapping

that for each value, maps the set of consumers with that value to itself. Any two

surplus-equivalent segmentations are weakly surplus-equivalent.

Proposition 6 Suppose that there are two values. The following three are equivalent

for any segmentation S:

1. S is stable.

2. S is Pareto undominated.

3. S maximizes average consumer surplus.

Segmentations that satisfy these three equivalent properties are weakly surplus-equivalent.

Proof. Suppose first that v1 is optimal for [0, 1]. Then the trivial segmentation

{([0, 1]), v1} gives the highest possible surplus to all consumers, and so a segmenta-

tion is Pareto undominated if and only if it maximizes average consumer surplus if
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and only if it is surplus-equivalent (and therefore weakly surplus-equivalent) to this

segmentation. And we have argued already in Proposition 2 that if v1 is optimal for

[0, 1], then all stable segmentations are surplus-equivalent to {([0, 1]), v1}.
Now suppose that v1 is not optimal for [0, 1], that is, v1(f

[0,1](v1) + f [0,1](v2)) <

v2f
[0,1](v2). Consider any segmentation S = {(C1, v1), (C2, v2)}, where C1 contains

all the value 1 consumers and as many value 2 consumers as possible, so v1(f
C1(v1) +

fC1(v2)) = v2f
C1(v2), and C2 contains the remaining value 2 consumers. We show

that any segmentation that satisfies either of the three properties, stability, Pareto

undominance, and maximizing average consumer surplus, is weakly surplus-equivalent

to S.

Consider the induced canonical segmentation S ′′ = {(C ′′1 , v1), (C ′′2 , v2)} of any

segmentation S ′. The surplus of value v2 consumers in C ′′1 is v2− v1, and the surplus

of all other consumers is zero. So S ′ maximizes average consumer surplus if and only

if it is Pareto undominated if and only there are as many value v2 consumers in C ′′1 .

That is fC′′
2 (v1) = 0 and v1(f

C′′
1 (v1) + fC′′

1 (v2)) = v2f
C′′

1 (v2) because otherwise in the

first case we can add some consumers of value v1 and v2 from the second segment to

the first segment, or in the second case just add some consumers with value v2 from

the second segment to the first segment. So S ′ is weakly surplus-equivalent to S.

Also, fC′′
2 (v1) = 0 and v1(f

C′′
1 (v1) + fC′′

1 (v2)) = v2f
C′′

1 (v2) mean that S ′′ is saturated

and efficient and so S ′ is stable.

5 Fragmentation-proofness

We now discuss our last solution concept, fragmentation-proofness. Fragmentation-

proofness rules out objections by coalitions that include consumers from more than

one segment. In other words, a fragmentation-proof segmentation does not have an

objection by coalition that is a subset of consumers in an existing segment.

Definition 6 A segmentation S is fragmentation-proof if there exists no objection

(C, p) to S such that C ⊆ C ′ for some segment (C ′, p′) in S.

We show that fragmentation-proofness is equivalent to efficiency.

Proposition 7 A segmentation is fragmentation-proof if and only if it is efficient.
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Proof. Consider an efficient segmentation and any segment (C, p) in it. Because the

segmentation is efficient, p is equal to the lowest value in C. Then the optimal price

for any subset C ′ of C is at least p. So there exists no objecting segment (C ′, p′)

where C ′ ⊆ C.

Now consider an inefficient segmentation S. So there must exist a segment (C, p)

in the segmentation such that p is strictly higher than the lowest value in C. Consider

a coalition C ′ that contains all the value v(C) consumers from C, and a small measure

of the consumers with the highest value from C. Then the unique optimal price for

C ′ is v(C), so (C ′, v(C)) is a segment. This segment objects to S and C ′ ⊆ C. So S

is not fragmentation-proof.

Notice that even though stable segmentations are efficient, an efficient segmen-

tation need not be stable. For instance, a segmentation that has a segment (Ci, vi)

for each vi where Ci consists of all consumers with value vi is efficient. But this

segmentations is not stable because it is not saturated. We can add some consumers

with value vi > v1 to the first segment (C1, v1) without changing the price in the first

segment. Thus fragmentation-proofness is a less demanding notion than stability.

6 Conclusions

We develop a cooperative game to study what markets segmentations arise when

they are controlled by consumers. The surplus of each consumer depends on the

coalition of consumers that are in the same segment. We capture this novel interaction

with a game in which consumers choose coalitions and then the seller offers a profit-

maximizing price for each coalition.

We study several solution concepts, including the core, stability, and fragmentation-

proofness. The core is empty except for uninteresting cases. When the core is empty,

our results are shown in Figure 6. The sets of stable segmentations and the ones that

maximize average consumers surplus have a non-empty intersection which includes

the maximal equal-revenue segmentation denoted MER in Figure 6, but neither set is

contained in the other. Both of these sets are contained in the set of Pareto undom-

inated segmentations, which is itself contained in the set of efficient segmentations.

The set of efficient segmentations is the set of segmentations that are fragmentation-

proof. When the core is non-empty, all five notions (the core, stable segmentations,

segmentations that are Pareto undominated, those that maximize average consumer
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Segmentations

Efficient = Fragmentation-proof

Pareto undominated

Stable
Max
ACS

MER

Figure 6: Summary of the relationship between different notions.

surplus, and efficient segmentations) collapse into a single segmentation, the trivial

segmentation.

With two values, if the core is empty, then stable segmentations, those that are

Pareto undominated, and those that maximize average consumer surplus are the

same. They contain a class of segmentations that are not surplus-equivalent but are

weakly surplus-equivalent.

The assumption that any coalition of consumers can form a segment can be seen

as a richness assumption on the set of verifiable messages that each agent may send to

the seller. In particular, for any consumer and any set that contains her, the consumer

can prove to the seller that she belongs to the coalition. Therefore, any coalition of

consumers can form a segment if each of the consumers in any coalition verifiably

disclose to the seller that they belong to the coalition. In many real-world settings,

the information that consumers can reveal to the seller may be limited. Our work

abstracts away from such limitations in order to focus on the main economics forces

that arise when consumers have control over their data, and we leave investigations
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of models that explicitly specify what information can be revealed to the seller as

future work.
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