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Abstract

A screening instrument is costly if it is socially wasteful and productive other-

wise. A principal screens an agent with multidimensional private information and

quasilinear preferences that are additively separable across two components: a one-

dimensional productive component and a multidimensional costly component. Can

the principal improve upon simple one-dimensional mechanisms by also using the

costly instruments? We show that if the agent has preferences between the two com-

ponents that are positively correlated in a suitably defined sense, then simply screen-

ing the productive component is optimal. The result holds for general type and al-

location spaces, and allows for nonlinear and interdependent valuations. We discuss

applications to optimal regulation, labor market screening, and monopoly pricing.
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1 Introduction

Actions convey information. The effort to obtain credentials conveys information about

the ability of a job applicant. The time spent waiting in line conveys information about

the willingness to pay of a consumer. The undertaking of a lengthy patent application

process conveys information about the confidence of an inventor. The endurance of phys-

ical activity conveys information about the health status of an individual.1

At the same time, as Stiglitz (2002) emphasizes, “There is a much richer set of actions

which convey information beyond those on which traditional adverse selection models

have focused.”

These actions are often costly in that they are socially wasteful. However, because the

preferences over these actions are correlated in some way with the private information

that affects the allocation of productive assets, the informational content from these costly

actions can be potentially useful for screening.2 Under what conditions should we expect

the costly instruments to be used in the design of optimal contracts?

The inherent difficulty of this problem is that it is multidimensional by nature. Not

only are the costly instruments often complex and difficult to summarize in a single di-

mension but, more fundamentally, it is crucial to understand the interplay between the

use of the costly instruments and other aspects of the screening contract. Stiglitz (2002)

gives the following example: An insurance company “might realize that by locating itself

on the fifth floor of a walk-up building, only those with a strong heart would apply. [...]

More subtly, it might recognize that how far up it needs to locate itself depends on other

elements of the strategy such as premium charged.”

In this paper, we study the effectiveness of costly instruments in a general multidi-

mensional screening model. The model consists of two components: (i) a standard one-

dimensional productive component which the principal intrinsically cares about (such

as insurance coverage), and (ii) a multidimensional costly component which the princi-

pal may utilize to help screening but destroys social surplus (such as walking up stairs).

Our main result states that if the agent has preferences between the two components

that are positively correlated in a suitably defined sense, then simply screening the one-

dimensional productive component is optimal (and essentially uniquely optimal).

In the model, the principal designs a mechanism to assign the productive allocations

in a one-dimensional space X and the costly actions in an arbitrary space Y . Monetary

1The New York Times reports, “The [Wal-Mart’s] memo suggests that the company could require all jobs
to include some component of physical activity, like making cashiers gather shopping carts.” Wal-Mart’s
health care struggle is corporate America’s, too, The New York Times, October 29, 2005.

2Zeckhauser (2021) argues that socially wasteful ordeals play a prominent role in health care.
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transfers are allowed. Both the principal and the agent have quasilinear preferences that

are additively separable across the two components X and Y . We say that the agent has

preferences that are positively correlated between the two components if the type who has

higher willingness to pay for the productive allocations tends to have higher willingness

to pay for the costly actions in the stochastic dominance sense. We also provide a par-

tial converse showing that for a given negative correlation structure, there exist utility

functions such that the optimal contract must involve costly screening. More fundamen-

tally, we also show that the main result holds even for environments in which monetary

transfers can be imperfect.

For example, in labor market screening, a higher ability applicant tends to find both

accomplishing the job easier (productive component) and education less costly (costly

component); in monopoly regulation, a more efficient firm typically has a lower cost of

operation (productive component) and finds it easier to pass performance inspections

(costly component). Our result then implies that a monopsonistic firm should not make

its offers contingent on the costly signals from an applicant despite the fact that the firm

prefers a higher ability applicant; a regulator’s tax and subsidy schedule should not de-

pend on the performance of a regulated firm on the inspections despite the fact that

the regulator prefers a more efficient firm. In the case of selling insurance, however, an

individual with a higher risk tends to have a higher willingness to pay for the insurance

(productive component) and find it harder to pass various health tests (costly component).

Only in cases like this can the principal potentially benefit from the costly instruments.

To understand how these seemingly contradictory implications follow from the same

underlying principle, we emphasize a key assertion of our result: The effectiveness of

costly instruments is driven by the agent’s instead of the principal’s preferences. A naïve

intuition for the result is that since monetary transfers are allowed, instead of using the

costly instruments the principal can simply use money, which does not destroy social

surplus. This reasoning, albeit intuitive, is not what drives the result. In particular, how

the agent’s preferences are correlated between the two components does not appear in

this reasoning.

The correct intuition comes from a deeper understanding of both the functionality of

costly instruments and the structure of one-dimensional screening problems. A costly

instrument can be thought of as a special kind of currency whose value depends on the

private information of the agent. Using these special kinds of currency, the principal can

loosen some incentive constraints but is forced to tighten other incentive constraints. In

particular, we show that if the agent’s preferences are positively correlated between the

two components, then the costly instruments loosen upward incentive constraints and
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tighten downward incentive constraints. Next, we show that the set of downward incen-

tive constraints is sufficient for any standard one-dimensional screening problem satis-

fying a single-crossing condition. Therefore, loosening the upward incentive constraints

with costly instruments cannot benefit the principal under positive correlation.

From the literature on monopoly regulation, it is well known that the information

about a monopolist’s production costs can be helpful for designing regulatory policies

(Laffont and Tirole, 1986). Indeed, if a regulator observes non-manipulable data corre-

lated (positively or negatively) with the monopolist’s production costs, then the optimal

mechanism is contingent on that information. In our application to monopoly regula-

tion (see Section 6.1), by contrast, the data can be manipulated by the monopolist at a

cost. Our result demonstrates that once the information has to be elicited from the agent,

whether it is used in the optimal mechanism depends on how the agent’s preferences are

correlated between the productive allocations and the costly actions.

From the literature on selection markets, it is well known that costly signals are impor-

tant for markets involving adverse selection (Spence 1973a, 1974). The major difference

in our application to labor market screening is that we study monopsonistic firms and

allow for contracts that screen with both work allocations and costly signals (see Sec-

tion 6.2). To make this clear, in Appendix B.1, we study a competitive screening model

analogous to the main model and show how costly screening can emerge in equilibrium.

In light of this analysis, our result demonstrates that whether costly instruments appear

in a market depends crucially on the distribution of market power.3,4

Besides the literal interpretation, our framework also delivers insights into settings

that do not explicitly involve costly instruments. For example, consider a multiple-good

monopolist selling different qualities of bundles. A common selling strategy in streaming

services is to offer the bundle of all content at a range of monthly fees depending on the

level of quality. When is such a strategy optimal? We argue that it is useful to view selling

the bundle of all goods as the productive component, and selling smaller bundles instead

of the grand bundle as the costly instruments for screening values of the grand bundle.

Using this perspective, in Section 5.2, we generalize a recent finding of Haghpanah and

Hartline (2021), who derive sufficient conditions for the optimality of pure bundling, to

a multiple-good monopoly setting that allows for both probabilistic bundling and quality

3Monoposony and labor market power have recently received resurgent interest from empirical studies
of labor markets. See e.g. Azar et al. (2020), Dube et al. (2020), and Prager and Schmitt (2021).

4In his pioneering work, Spence (1974) also compares monopolistic and competitive screening in the
labor market context. In contrast to us, he studies a one-dimensional problem where the wage schedule
can only depend on the signal level. He gives local optimality conditions and finds, in a similar spirit to us,
that a monopolist induces people to underinvest in the signal. Subsequent to this finding, he writes, “One
might have guessed the reverse. [...] I do not, however, find this an intuitively obvious result.”
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discrimination. The optimal mechanism in our setting generally involves price discrimi-

nation but does so only along the vertical (quality) dimension.

We are far from being the first to study screening problems involving costly instru-

ments. This question goes back at least as far as Spence (1973b). In that paper, he pro-

poses the idea that willingness to spend time can be and is used as a screening device in

various contexts. Even though he does not give a formal treatment of this problem, he

points out its importance: “Let me put the matter another way. The argument is that non-

price signaling and screening in economic and social contexts deserve more attention, in

spite of the fact that they are frequently inefficient.” Since then, however, there is still no

general framework for understanding when costly instruments are effective or ineffective

in the design of optimal contracts.

Several previous papers have analyzed mechanism design with a costly instrument

when monetary transfers are not feasible. That line of work studies the design of mech-

anisms for surplus maximization with multiple agents engaging in a one-dimensional

costly activity (Hartline and Roughgarden 2008, Condorelli 2012, Chakravarty and Ka-

plan 2013).5 We study a single-agent contract design problem allowing for both monetary

transfers and multidimensional costly instruments. The principal in our model does not

maximize social surplus and may have arbitrary interdependent valuations.

Conceptually, Acemoglu and Wolitzky (2011) ask a question similar to ours. They

study how labor coercion, which is socially wasteful, can benefit the principal in the

design of employment contracts. The agent in their setting, however, has no private in-

formation but takes unobservable actions. So their focus is on the moral hazard instead of

the adverse selection aspect of contract design. Labor coercion in their model is a punish-

ment on the agent for rejecting a contract, and directly influences the agent’s reservation

utility. We study a screening problem. The costly instruments in our model do not af-

fect the agent’s reservation utility but are used in combination with other elements of the

contract through the agent’s self-selection.

There is a substantial literature on multidimensional screening. The structure of mul-

tidimensional screening differs significantly from its single-dimensional counterpart and

remains elusive to characterize despite much research over the past decades (Rochet and

Stole, 2003). Much of the work focuses on the linear multiple-good monopoly problem.6

In that problem, the principal cares only about transfers and the agent has linear utility

functions. When there is a single good, the optimal mechanism is simply a posted price

5See also Akbarpour et al. (2020) and Malladi (2020) for related problems.
6A notable exception is Carroll (2017) who allows the agent to have arbitrary preferences within each

additive component; however, he focuses on characterizing the worst-case optimum with known marginals.
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(Myerson 1981, Riley and Zeckhauser 1983). However, as soon as there is more than one

good, seemingly simple special cases remain poorly understood. Significant progress has

been made in developing duality approaches to certify optimality of candidate mecha-

nisms (Rochet and Chone 1998, Daskalakis et al. 2017; Cai et al. 2016, Carroll 2017). In

response to the analytical difficulty, several recent papers study either approximately op-

timal mechanisms (Li and Yao 2013, Babaioff et al. 2014, Cai et al. 2016, Hart and Nisan

2017), or worst-case optimal mechanisms (Carroll 2017, Koçyiğit et al. 2021, Che and

Zhong 2021, Deb and Roesler 2021).

In contrast to past work, we consider a multidimensional screening model in which

all dimensions except one are surplus destructive. The multiple-good monopoly problem

can be viewed as a special case of our framework by redefining the allocation space. In

this sense, our model offers an alternative perspective — it separates the screening effect

from the surplus-generating effect of the additional dimensions. After shutting down

the surplus-generating effect, we show that simple conditions, like positive correlation of

preferences, are sufficient to eliminate the screening effect of the additional dimensions,

and thereby characterize the exact Bayesian optimal mechanism in our setting. Our result

holds for general type spaces, general allocation spaces, general utility functions. Impor-

tantly, motivated by applications — including regulation, labor markets, and insurance

markets — our model also allows for interdependent preferences.

Part of our proof technique builds on the approach of path decomposition that par-

titions the multidimensional type space into one-dimensional paths (Wilson 1993, Arm-

strong 1996, Eso and Szentes 2007, Haghpanah and Hartline 2021). The method in Hagh-

panah and Hartline (2021) is most closely related to ours. Our method shares with theirs

the focus on Strassen-type decompositions and downward incentive constraints. Our

method differs in that we take a primal instead of dual approach. They use a delicate

construction of the dual variables to certify the optimality of a particular mechanism

(pure bundling) with the linear programming duality method in Cai et al. (2016) and

Carroll (2017).7 Our problem in general is not linear or even convex. The optimum gen-

erally requires ironing on an infinite menu of options. Our proof makes no appeal to

any duality approach. Instead, we use a “shift” argument and tackle the primal problem

directly. This approach, when applicable, bypasses the difficulty in constructing dual

variables, especially when one has no particular candidate mechanism in mind.

The remainder of the paper proceeds as follows. Section 2 presents our model. Sec-

tion 3 presents the main result and a partial converse. Section 4 presents the proof of the

7Constructing appropriate dual variables is a major difficulty in duality-based approaches. See Berge-
mann et al. (2021) for a recent development following Haghpanah and Hartline (2021)’s duality approach.
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main result. Section 5 presents a stronger result in a special case of the model and its ap-

plication to multiple-good monopoly pricing. Section 6 discusses additional applications.

Section 7 concludes.

2 Model

A principal wants to screen an agent. The agent has private information summarized by

a multidimensional type θ = (θA,θB), where θA ∈ ΘA ⊆ R and θB ∈ ΘB ⊆ RN for a finite

N ; for convenience, sometimes we also refer to θA as θ0 and θB as (θ1, . . . ,θN ). We use

the superscripts A, B to indicate the productive and costly components, respectively.

Both ΘA and ΘB are assumed to be compact. Let Θ := ΘA ×ΘB denote the type space;

let ∆(Θ) denote the space of Borel probability measures on Θ, equipped with the weak-∗

topology. The agent’s type is drawn from a commonly known distribution γ ∈ ∆(Θ).

The space of productive allocations X 3 x is a compact subset of R; the space of costly

instruments Y 3 y is an arbitrary measurable space.

Both the principal and the agent have quasilinear preferences that are additively sep-

arable across the two components: The principal’s (ex post) payoff is given by

vA(x,θA) + vB(y,θB) + t ,

and the agent’s payoff is given by

uA(x,θA) +uB(y,θB)− t ,

where t stands for transfers. The utility functions for the productive component uA, vA

are assumed to be continuous onX×ΘA; those for the costly component uB, vB are allowed

to be any bounded measurable functions on Y ×ΘB. The principal has interdependent

preferences if vA or vB depends on the agent’s type.

The (ex post) surplus functions for the two components are denoted by

sA(x,θA) := uA(x,θA) + vA(x,θA) , sB(y,θB) := uB(y,θB) + vB(y,θB) .

The defining feature of the costly component is that any allocation is socially wasteful

under complete information: for all y ∈ Y and all θB ∈ΘB,

sB(y,θB) ≤ 0 . (1)
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There is an element y0 ∈ Y (with {y0}measurable) representing no costly screening:

vB(y0,θ
B) = uB(y0,θ

B) = 0 .

We say the instruments are strictly costly if (1) holds strictly for all y , y0 and all θB.

A mechanism is a measurable map

(x,y, t) : Θ→X ×Y ×R

satisfying the usual incentive compatibility (IC) and individual rationality (IR) constraints:

uA(x(θ),θA) +uB(y(θ),θB)− t(θ) ≥ uA(x(θ̂),θA) +uB(y(θ̂),θB)− t(θ̂) for all θ, θ̂ ∈Θ ;

uA(x(θ),θA) +uB(y(θ),θB)− t(θ) ≥ 0 for all θ ∈Θ .

LetM(Θ) denote the space of mechanisms. The principal wants to solve

sup
(x,y,t)∈M(Θ)

E[vA(x(θ),θA) + vB(y(θ),θB) + t(θ)] .

A mechanism (x,y, t) involves no costly screening if y(θ) = y0 for all θ and (x, t) does not

depend on θB, in which case the mechanism screens only the productive component. A

mechanism (x,y, t) almost surely involves no costly screening if y(θ) a.s.= y0.8

We make the following assumptions on the productive component.

Assumption A1 (Productive Component).

(1.1) uA(x,θA) is nondecreasing in θA.

(1.2) uA(x,θA) has strict increasing differences: for any x < x̂, θA < θ̂A,

uA(x̂,θA)−uA(x,θA) < uA(x̂, θ̂A)−uA(x, θ̂A) .

(1.3) sA(x,θA) has weak single-crossing differences: for any x < x̂, θA < θ̂A,

sA(x̂,θA)− sA(x,θA) > 0 =⇒ sA(x̂, θ̂A)− sA(x, θ̂A) > 0 .

To state our notion of positive correlation of preferences between the two components,

we introduce some notation. Let �st denote the usual stochastic order for RN -valued ran-

8As usual we use notation a.s.= for almost sure equality and d= for equality in distribution.
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dom variables, i.e. X �st Y if E[f (X)] ≤ E[f (Y )] for all bounded nondecreasing (measur-

able) functions f : RN → R. Let θB|θA denote the regular conditional distribution of θB

given θA.9

Assumption A2 (Positive Correlation of Preferences).

(2.1) uB(y,θB) is nondecreasing in θB.

(2.2) θB|θA �st θB|θ̂A for all θA < θ̂A in the support.

2.1 Discussion of Assumptions

Mechanism Space. As formally defined, our model restricts attention to deterministic

mechanisms. However, when there are finitely many pure allocations, we may be able to

redefine the allocation spaces to be the probabilities. We take this approach in Section 5.2

where we show how probabilistic bundling by a multiple-good monopolist is nested in

this framework.

In the model, there is no feasibility constraint across the allocation spaces X and Y .

However, for any subset S ⊆ X ×Y , we may constrain the feasible allocations by requiring

(x,y) : Θ→S . Provided that X×{y0} ⊆ S , our main result is unaffected by such constraints

(since the optimum in the original problem would still be feasible).

Monetary Transfers. In the model, money is perfectly transferable. However, by rescal-

ing, our model accommodates some environments in which monetary transfers can be

imperfect. Suppose for any mechanism (x,y, t) the principal’s payoff is given by

E[vA(x(θ),θA) + vB(y(θ),θB) +αt(θ)] ,

where α is any positive constant (that may represent, for example, adjustment for tax).

We can factor out α and see that the principal’s problem is equivalent to that with the

scaled objective

E

[1
α
vA(x(θ),θA) +

1
α
vB(y(θ),θB) + t(θ)

]
.

If vA satisfies the weak increasing differences condition10 and vB = 0, then this problem

automatically fits our model. These assumptions may hold in, for example, monopoly

pricing with costly signals (see Section 5.1) and labor market screening (see Section 6.2).

9See e.g. Klenke (2013, pp. 180-185).
10That is, vA(x̂,θA)− vA(x,θA) ≤ vA(x̂, θ̂A)− vA(x, θ̂A) for all x < x̂, θA < θ̂A.
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As in most screening models, we assume that the range of transfers is not restricted

(i.e. no liquidity constraints). This can be modified to only allowing for bounded transfers

t : Θ → [−K,K] provided that K ∈ R+ is sufficiently large. With a substantial constraint

on the transfers (K small enough), our result in general will not hold, since in the extreme

case of K = 0 the principal can only screen with the costly instruments.

Productive Component. Assumptions (1.1) and (1.2) are the classic assumptions of one-

dimensional screening problems. For future reference, we say a one-dimensional screen-

ing problem is standard if it satisfies Assumptions (1.1) and (1.2). Assumption (1.3) is a

sorting condition on the surplus function. It is weaker than the usual single-crossing dif-

ferences condition for monotone comparative statics as in Milgrom and Shannon (1994).11

It is satisfied in common one-dimensional screening problems. For example, any of the

following conditions is sufficient: (i) sA is strictly increasing in x; (ii) sA12 ≥ 0; or (iii) the

principal’s preferences are not interdependent (provided that Assumption (1.2) holds).

This assumption ensures that there is a monotone efficient allocation rule. It is not satis-

fied when the principal’s preference to trade with low types is so strong that any socially

efficient allocation rule is not monotone. In Section 4, we show that some sorting condi-

tion on the surplus function is necessary for the result (see Remark 2 and Example 2).

Positive Correlation. Assumption (2.1) says that θB encodes the strength of the agent’s

preferences on the costly component such that higher θB represents higher willingness to

pay for any y. Assumption (2.2) then defines the positive correlation structure between

the agent’s preferences for the two components. The condition is known as stochastic

monotonicity (Müller and Stoyan, 2002). We say θB is stochastically nondecreasing in θA

whenever Assumption (2.2) holds. This is an asymmetric condition. It says that observing

a high θA conveys good news about θB in the sense of stochastic dominance. A sufficient

condition for Assumption (2.2) is that (θ0,θ1, . . . ,θN ) are affiliated in the sense of Milgrom

and Weber (1982). Assumption (2.2) is weaker than affiliation. For example, when N = 2,

(θ1,θ2) may be negatively correlated with each other, while θB = (θ1,θ2) is positively

correlated with θA according to this notion.

11The usual single-crossing differences condition requires, in addition, that sA(x̂,θA)− sA(x,θA) ≥ 0 =⇒
sA(x̂, θ̂A)− sA(x, θ̂A) ≥ 0 for all x < x̂, θA < θ̂A.
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3 Main Result

Our main result says that if the agent has positively correlated preferences between the

productive and costly components, then simply screening the one-dimensional produc-

tive component is optimal and essentially uniquely optimal:

Theorem 1. Suppose Assumptions A1 and A2 hold. Then:

(i) There exists an optimal mechanism that involves no costly screening.

(ii) If the instruments are strictly costly, then every optimal mechanism almost surely in-

volves no costly screening.

In the case of negatively correlated preferences, we show a partial converse. We say

the utility functions uA, uB, vA, vB are admissible if they satisfy all the assumptions in

Section 2 including the strict version of (1). For a real-valued continuous random variable

X, let β(X) = 1X≥median(X) denote the “binarization” of X.

Proposition 1. Suppose θ is absolutely continuous; |X | > 1, |Y | > 1; and there exists some

i ∈ {1, . . . ,N } such that θi is stochastically nonincreasing in θ0 and β(θi), β(θ0) are not inde-

pendent. Then, there exist admissible utility functions such that any mechanism screening only

the productive component is strictly dominated by a mechanism involving costly screening.

We postpone the explanation and proof of Theorem 1 to Section 4. Proposition 1 can

be shown by a simple construction that sets vA = vB = 0. The intuition is as follows. The

principal can always create a menu of two nontrivial options for the agent: (i) getting

the favorite allocation in X at a high price, and (ii) getting the same allocation at a low

price but with some costly activity. The proof shows that if θi is negatively correlated

with θ0 as defined in the statement, then there exist some admissible utility functions

for the agent such that this way of price discrimination is always more profitable for the

principal than selling the elements in X alone. The appendix provides details.

4 Proof of the Main Result

The intuition behind the proof of Theorem 1 can be understood in two parts.

In the first part, we demonstrate that what costly instruments do is loosen one class

of IC constraints while tightening another class of IC constraints. The argument runs as

follows. Fix any mechanism that involves costly screening. We modify the mechanism

by shifting the costly component payoffs to monetary transfers, assuming all types report
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truthfully. Of course, there is no reason for the modified mechanism to be incentive

compatible; the modification can easily break a large set of IC constraints.12

A key observation is that it still maintains all the downward IC constraints on the costly

component: no type (θA,θB) has an incentive to imitate (θ̂A, θ̂B) if θ̂B < θB. The reason

is simple. All types obtain the same payoffs as before if reporting truthfully. Any type

deviating from truthful reporting will now receive transfers instead of costly allocations.

Because a type with higher θB enjoys the costly instruments more, such change lowers

the deviating payoff for any downward deviation.

So far, we have not used that the agent’s preferences between the two components

are positively correlated. The positive correlation of types converts the downward IC

constraints on the costly component to the downward IC constraints on the productive

component. Indeed, given the positive correlation, when receiving a report of low θ̂B, the

principal has statistical reasons to believe that θ̂A should also be low. This is precisely

the case when the support of (θA,θB) falls on a monotonic path in RN+1. More generally,

our notion of positive correlation allows us to represent the distribution of (θA,θB) as a

mixture of such monotonic paths.

Therefore, for any IC mechanism involving costly screening, there exists a downward

IC mechanism that involves no costly screening and provides each type the same payoff
under truthful reporting. That is, using costly instruments instead of monetary transfers

can only help in dealing with the upward not the downward IC constraints. Moreover,

because costly instruments do not generate social surplus, the only purpose they serve is

to loosen the upward IC constraints.

In the second part of the analysis, we show that in any standard one-dimensional

screening problem, the set of downward IC constraints including the nonlocal ones is

sufficient if the surplus function satisfies the weak single-crossing differences condition.

To solve for the principal’s problem, one may simply ignore all upward IC constraints.

Because costly instruments only help loosen upward IC constraints when the agent’s pref-

erences are positively correlated, they are thus completely ineffective.

We prove the downward sufficiency result first for finite type spaces and then for

general type spaces by approximation. We also show that the downward sufficiency result

may not hold if no sorting condition is imposed on the surplus function, which can then

lead to a reverse in the use of costly instruments (see Remark 1 and Remark 2). The

difficulty of working only with the downward IC constraints arises from two factors: (i)

there is no appropriate envelope condition because each type is not fully optimizing, and

12It is then imprecise to call it a mechanism; however, we will sometimes abuse the notion by referring
to any measurable map as a mechanism and be clear about whether it satisfies the IC and IR constraints.
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(ii) the set of (downward IC) implementable allocations is unknown (in the finite-type

case we will show that any allocation is implementable by a downward IC mechanism).

With this outline in mind, we now dive into the details. For clarity, the proof proceeds

in a slightly different order. We break it down into four steps: (i) decompose the type

distribution into paths, (ii) “shift” the space of mechanisms, (iii) solve the downward IC

screening problem for finite type spaces, and (iv) approximate.

Step 1: We start with path decomposition. The idea is that we reveal some information

to the principal about θB that is orthogonal to θA. We let the principal design a mecha-

nism conditional on the information. This provides an upper bound on what the principal

can achieve. We then check that the resulting mechanism is actually implementable.

Suppose for illustration that θ = (θ0,θ1). Let ε be an independent uniform [0,1] draw.

Note that the random vector (θ0,θ1) can be simulated by sampling θ0 and then setting

θ1 = F−1(ε | θ0) ,

where F−1( · |θ0) is the generalized inverse function of F( · |θ0). Our positive correlation

condition states that θ1|θ0 shifts upward in the sense of stochastic dominance as θ0 in-

creases. This implies that F−1(ε | · ) is a nondecreasing function. Therefore, if we reveal the

realization of ε to the principal, then the principal believes that (θ0,θ1) falls on a mono-

tonic path. This then reduces stochastic monotonicity to deterministic monotonicity.

There is a canonical representation generalizing the above by inductively decompos-

ing the joint distribution into the “initial” private information θ0 and i.i.d. shocks εi .13

If (θ0,θ1, . . . ,θN ) are affiliated, then revealing the realization of the shocks ε would give a

monotone decomposition similar to above. In fact, it is a classic result on stochastic dom-

inance (dating back to Strassen 1965) that a monotone decomposition (coupling) always

exists given stochastic monotonicity.14 In particular, we use the following result:

Lemma 1 (Kamae and Krengel (1978)15). If θB is stochastically nondecreasing in θA, then

there exist a measurable space E; an E-valued random variable ε, independent of θA; and a

measurable function h : ΘA ×E →ΘB nondecreasing in the first argument such that

θ
d= (θA,h(θA;ε)) .

13See Eso and Szentes (2007) and Pavan et al. (2014, Example 1).
14This type of decomposition was used earlier in Haghpanah and Hartline (2021).
15See Theorem 6 of Kamae and Krengel (1978). Joint measurability of h follows from that the sam-

ple path in their proof of Theorem 6 is left-continuous except possibly at a fixed countable set of points.
Appendix B.2 provides details.
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Let Θε = {(θA,θB) : θB = h(θA;ε),θA ∈ΘA} be the decomposed monotonic path given a

realization ε. For any type space Θ, recallM(Θ) is the set of IC and IR mechanisms. Let

v(x,y,θ) = vA(x,θA) + vB(y,θB). It then follows that

sup
(x,y,t)∈M(Θ)

E[v(x(θ), y(θ),θ)− t(θ)] ≤ Eε
[

sup
(x,y,t)∈M(Θ)

E
[
v(x(θ), y(θ),θ)− t(θ) | ε

]]
≤ Eε

[
sup

(x,y,t)∈M(Θε)
E
[
v(x(θ), y(θ),θ)− t(θ) | ε

]]
. (2)

Because ε is independent of θA, the inner expectation integrates with respect to the same

marginal distribution of θA regardless of the realization of ε.

We will establish that (i) for all realizations of ε,

sup
(x,y,t)∈M(Θε)

E
[
v(x(θ), y(θ),θ)− t(θ) | ε

]
(3)

can be attained by a single mechanism that involves no costly screening; and (ii) if the

instruments are strictly costly, then all optimal solutions to (3) satisfy P(y(θ) = y0 | ε) = 1.

Any mechanism in M(Θε) that involves no costly screening is in M(Θ). Thus, the first

part of Theorem 1 follows. If a mechanism (x,y, t) in M(Θ) has y(θ) , y0 for a positive

measure of θ, then we have P(y(θ) = y0 | ε) < 1 for a positive measure of ε. Hence,

if the instruments are strictly costly, then (x,y, t) is strictly dominated by any optimal

mechanism involving no costly screening, and thus the second part of Theorem 1 follows.

Step 2: We fix a realization of ε and suppress the dependency on ε whenever clear. Let

us fix a mechanism (x,y, t) ∈ M(Θε). Because θB is now determined by θA, the relevant

private information is summarized in θA; thus it is without loss to let (x,y, t) only depend

on the report θ̂A. We use a “shift” argument as follows. Consider the modification:

x̃(θA) = x(θA) , ỹ(θA) = y0 , t̃(θA) = t(θA)−uB(y(θA),h(θA)) .

The modification (x̃, ỹ, t̃) maintains the same allocations for the productive component,

involves no costly screening, and uses transfers to keep all types at their previous utility

levels, assuming they report truthfully.

Assuming truthful reporting, this increases the total surplus while giving the same

surplus to the agent, and therefore increases the principal’s payoff. Indeed, the change in

14



principal’s payoff is

E
[
vB(y0,h(θA))− vB(y(θA),h(θA))−uB(y(θA),h(θA))

]
= E

[
− sB(y(θA),h(θA))

]
≥ 0 .

The last inequality is strict if P(y(θA) , y0) > 0 and the instruments are strictly costly.

Because the modification maintains the utility for each type under truthful reporting,

(x̃, ỹ, t̃) satisfies all IR constraints. However, this mechanism is not necessarily IC. Indeed,

suppose for illustration that uB(y, ·) and h(·) are strictly increasing, and for some θ̂A > θA,

IC[θA→ θ̂A] binds under (x,y, t). Consider the same deviation under (x̃, ỹ, t̃):

uA(x̃(θA),θA)− t̃(θA) = uA(x(θA),θA) +uB(y(θA),h(θA))− t(θA)

= uA(x(θ̂A),θA) +uB(y(θ̂A),h(θA))− t(θ̂A)

< uA(x(θ̂A),θA) +uB(y(θ̂A),h(θ̂A))− t(θ̂A)

= uA(x̃(θ̂A),θA)− t̃(θ̂A) , (4)

where the first and the last line follow by construction, the second line uses the binding IC

constraint, and the third line uses that uB(y, ·) and h(·) are strictly increasing. Therefore,

IC[θA→ θ̂A] is not satisfied under (x̃, ỹ, t̃).

This demonstrates that the modification does not work directly. However, the same

reasoning also shows that all downward IC constraints are still satisfied after this modi-

fication. Indeed, consider a downward deviation [θA→ θ̂A] for any θ̂A < θA:

uA(x̃(θA),θA)− t̃(θA) = uA(x(θA),θA) +uB(y(θA),h(θA))− t(θA)

≥ uA(x(θ̂A),θA) +uB(y(θ̂A),h(θA))− t(θ̂A)

≥ uA(x(θ̂A),θA) +uB(y(θ̂A),h(θ̂A))− t(θ̂A)

= uA(x̃(θ̂A),θA)− t̃(θ̂A) , (5)

where the first and the last line follow by construction, the second line follows from

(x,y, t) being IC, and the third line follows from that uB(y, ·) and h(·) are nondecreasing.

Therefore, (x̃, ỹ, t̃) satisfies all downward IC constraints.

Let M̃(Θε) denote the set of mechanisms that are IR, involve no costly screening, and

satisfy all downward IC constraints. We summarize the above discussion into a lemma:

Lemma 2. Any mechanism (x,y, t) ∈M(Θε) is dominated by some mechanism (x̃, ỹ, t̃) ∈ M̃(Θε)

(assuming truthful reporting). If the instruments are strictly costly and P(y(θ) = y0 | ε) < 1,

then (x,y, t) is strictly dominated by (x̃, ỹ, t̃) (assuming truthful reporting).
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Step 3: By Lemma 2, it is, therefore, always an upper bound for the principal to opti-

mize over the “shifted” space of mechanisms M̃(Θε). Because vB(y0,θ
B) = uB(y0,θ

B) = 0,

the dependency of θB drops out in this problem. The principal then solves the following:

sup
(x,t): ΘA→X×R, measurable

E[vA(x(θA),θA) + t(θA)] (6)

subject to uA(x(θA),θA)− t(θA) ≥ uA(x(θ̂A),θA)− t(θ̂A) for all θA > θ̂A ,

uA(x(θA),θA)− t(θA) ≥ 0 for all θA .

This problem does not depend on ε and is a standard one-dimensional screening problem

except all upward IC constraints are ignored. For future references, we use (6)† to denote

the version of problem (6) with all IC constraints.

If we show that there exists (x∗, t∗) solving problem (6) and satisfying also all upward

IC constraints, then Theorem 1 follows; that is, we want to show the set of downward IC

constraints is sufficient for any standard one-dimensional screening problem, provided

that the ex post surplus function satisfies our sorting condition. From now on, we drop

the superscript A whenever clear, as we will focus only on the productive component.

Proposition 2 (Downward sufficiency). Consider any standard one-dimensional screening

problem. Suppose the surplus function s(x,θ) satisfies the weak single-crossing differences con-

dition. Then, there exists an optimal solution to (6) that satisfies all IC constraints.

To proceed, we first prove Proposition 2 for the case of finite Θ and then for the general

case in Step 4 using approximation. Let us suppose |Θ| = n < ∞ and order types by

θ1 < θ2 < · · · < θn. Let µ ∈ ∆(Θ) denote the distribution of θ. We assume µ has full

support. Without loss of generality, suppose 0 ≤ θ1 and θn ≤ 1. A mechanism is then

specified by (x1,x2, . . . ,xn) and (t1, t2, . . . , tn). The principal’s problem is given by

max
(x,t)∈X n×Rn

∑
i

µ(θi)(v(xi ,θi) + ti) (7)

subject to u(xi ,θi)− ti ≥ u(xj ,θi)− tj for all i > j ,

u(xi ,θi)− ti ≥ 0 for all i .

We replace sup to max as the existence of the solution is easy to see by compactness

arguments. We divide our analysis into two sub-steps. We first characterize the set of

implementable x and the corresponding optimal transfers (Step 3.1), and then show by

contradiction that any optimal solution to (7) must satisfy all IC constraints (Step 3.2).16

16This proves a stronger claim than Proposition 2 for finite Θ: relaxing upward IC constraints results in
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Step 3.1: Fix any allocation rule x ∈ X n. We show that it is downward IC implementable

and solve for the optimal transfer rule to implement it. To be precise, we want to solve

max
t∈Rn

∑
i

µ(θi)(v(xi ,θi) + ti) (8)

subject to the same IC and IR constraints as in (7).

We first identify regions where x is not monotone as follows. We start with x1 and

check if xi+1 < xi as we increase i. When this first happens, we denote o1 = i, which marks

the origin of our first U -shaped region. We then look for the next smallest index j such

that xj > xo1
. We denote d1 = j, which marks the destination of our first U -shaped region.

We then start our index i at d1 and repeat this process. Denote rl = {ol , . . . ,dl} as the lth

U -shaped region.17 Let L denote the number of such regions. Note that two U -shaped

regions may share at most one point. Let

Q =
{
1 ≤ j ≤ n : j < rl for all l, or j = dl , ol+1for some l

}
be the set of all indices in the monotonic regions including the end points dl but excluding

the starting points ol .

For notational convenience, we write IC[i→ j] (or simply [i→ j]) and IR[i] as a short-

hand for IC[θi → θj] and IR[θi], respectively. We show the following claim:

Claim 1. (i) There exists a unique optimal solution to (8). (ii) The optimal solution to (8) is

the unique solution to a system of equations defined by the following constraints with equality:

IR[1], IC[(i + 1)→ i] for all i ∈Q\{n}, and IC[i→ ol] for all i ∈ rl\{ol} and all l.

Figure 1 illustrates how the U -shaped regions and the binding constraints in Claim 1

are identified. In short, the local IC constraints bind until one travels into a U -shaped

region (beginning with, say, index o) where the binding constraints all point toward θo.

Proof of Claim 1. Relax all the constraints in (8) except the ones indicated in Claim 1. We

will show the following: First, these constraints must bind in the relaxed problem. Sec-

ond, these constraints binding imply all downward IC constraints and all IR constraints.

Third, there is a unique solution to the system of equations defined by these binding

constraints. Claim 1 then follows.

exactly the same set of solutions. For general Θ, our proof method will not extend this property. However,
Proposition 2 suffices for our purpose.

17The end point may not be defined for the last U -shaped region. This does not pose any issue in the
proof. Formally, let d = n+ 1 in that case and ignore any index i > n in the proof.
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Figure 1: U -shaped regions and binding constraints for a fixed allocation rule

Note that for every i > 1, there is precisely one corresponding constraint [i → j] for

some j. If this constraint does not bind at some mechanism (x, t), then simply set t̃i = ti+ε

for some ε > 0 small enough so that [i→ j] still holds. This clearly increases the objective.

It also does not distort other IC constraints. Indeed, the only other IC constraints this

change affects are of the form [k→ i] for some k, but

u(xk ,θk)− tk ≥ u(xi ,θk)− ti ≥ u(xi ,θk)− t̃i .

Therefore, all the IC constraints identified in Claim 1 must bind. Similarly, IR[1] binds.

Given that these constraints bind, we now show that they imply all the downward IC

constraints in (8). We first collect two lemmas:

Lemma 3 (Local to global). Let i > j > k. If [i→ j], [j→ k] hold and xj ≥ xk, then [i→ k].

Lemma 4 (Global to local). Let i > j > k. If [i→ k], [j→ k] bind and xj ≤ xk, then [i→ j].

Lemma 3 is standard; it follows from a revealed-preference argument using the single-

crossing property of u (we include a proof in the appendix for completeness). Lemma 4

appears to be new; it requires two binding IC constraints and follows from a revealed-

preference argument that subtracts the two constraints. The appendix provides details.

We show all downward IC constraints are satisfied by induction on the number of U -

shaped regions L. When L = 0, all downward IC constraints hold by successively applying

Lemma 3 and building up from the adjacent local downward constraints. Suppose the

claim holds for L − 1. Let us denote the last region as r with starting index o and end
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index d. By the inductive hypothesis, all downward IC constraints [i→ j] are satisfied if

j < i ≤ o. We divide the remaining pairs (j, i) with j < i into two cases:

Case (1): o ≤ j < i. We make the following observations:

(a) if o ≤ j < i ≤ d, then [i → j] follows by the binding IC constraints [i → o],

[j→ o], xj ≤ xo, and Lemma 4;

(b) if d ≤ j < i, then [i→ j] follows by successively applying Lemma 3;

(c) if j < d < i, then [i → j] follows by [i → d] from (b), [d → j] from (a), xd ≥ xj ,
and Lemma 3.

Case (2): j < o < i. Note that xj ≤ xo for all j < o. Then, [i → j] follows by [i → o]

from Case (1), [o→ j] from the inductive hypothesis, xo ≥ xj , and Lemma 3.

Together, these cover all the downward IC constraints and prove the inductive step.

The IR constraints follow easily from IR[1] and IC[i→ 1] and that u(x, ·) is nondecreasing.

The binding constraints define a system of n equations for t. It is not hard to see that

these equations can be solved successively starting from the lowest one. By induction, the

binding constraints uniquely define the following transfer formula:

ti = u(xi ,θi)−
∑

j=1,2,...,i−1: j∈Q

(
u(xj ,θj+1)−u(xj ,θj)

)
︸                                         ︷︷                                         ︸

local

−
∑

l=1,2,...,L: ol<i

(
u(xol ,θdl∧i)−u(xol ,θol )

)
︸                                          ︷︷                                          ︸

nonlocal

,

(9)

where we use the notation a∧b := min(a,b). The first sum arises from the local downward

IC constraints, and the second sum arises from the nonlocal ones.

If x is monotonic, then the binding IC constraints are the local downward ones, and

the transfer formula reduces to the standard solution. Note however that, in contrast to

the standard setting with all IC constraints, any x ∈ X n can be implemented by a down-

ward IC mechanism and the corresponding optimal transfers depend on the shape of x.

Step 3.2: We now show the following claim:

Claim 2. Any optimal solution to (7) must have a monotonic allocation rule: x1 ≤ x2 ≤ · · · ≤ xn.

Proof of Claim 2. Suppose, for contradiction, that there is an optimal solution (x, t) such

that x is not monotone. The proof idea is to perturb the allocation rule (as well as the

optimal transfer rule implementing it) and show a strict improvement. Because x is not
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monotone, there exists aU -shaped region. Let r be the firstU -shaped region, o its starting

index, and d its end index. Moreover, let

g = min
{
j > o : xj ≥ xo

}
denote the first index after o with associated allocation no less than xo. Put g = n+1 if the

above set is empty. Either g = d or g is the first index in r\{o} such that xg = xo. Let

x̂ = max
{
xj : o < j < g

}
denote the largest allocation for indices strictly between o and g. We have x̂ < xo. Let

j∗ ∈ {o,o+ 1, . . . , g} be the first index achieving the maximum and let θ̂ = θj∗ . Let

k = min
{
j : xj > x̂

}
denote the first index whose associated allocation is strictly higher than x̂. Since xo > x̂,

we have k ≤ o. Because r is the first U -shaped region, we have

x̂ < xk ≤ xk+1 ≤ · · · ≤ xo .

Consider the following perturbation: Let x̃ be the same as the original allocation rule

except x̃j = x̂ for all j = k,k + 1, . . . , o. Let t̃ be the optimal transfer rule implementing x̃.

Figure 2 illustrates.

θk θo θ

x

x̂

xo

θ̂ θdθg

Figure 2: Perturbation of the allocation rule
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This perturbation creates minimal changes to the shape of x. In particular, we show

that the set of binding constraints for the transfers (identified in Claim 1) is preserved

under the perturbation. This is easy to see for the ones pointing from {k,k + 1, . . . , o}: by

Claim 1, these are the local downward IC constraints both before and after the pertur-

bation. For the ones in the U -shaped region r, by Claim 1, they are of the form [j → o]

before the perturbation. If g = d, then after perturbation the binding constraints are the

same since the U -shaped region stays essentially the same.18 If g < d, then xg = xo and we

can split the region r into {o,o + 1, . . . , g} and {g,g + 1, . . . ,d} by replacing [j→ o] to [j→ g]

for g < j ≤ d. Because the perturbation moves xk ,xk+1, . . . ,xo downward, by Claim 1, the

binding constraints afterward are still of the form [j → o] for o < j ≤ g and [j → g] for

g < j ≤ d. Therefore, the set of binding constraints is preserved under the perturbation

(after splitting if necessary).

Because the set of binding constraints is preserved, the objective takes the same form

before and after perturbation. We show that the objective weakly increases on the parts

involving xk ,xk+1, . . . ,xo−1 (which may be an empty set) and strictly increases on the parts

involving xo (which always exist). To start, fix some j ∈ {k,k+1, . . . , o−1}. Plugging (9) into

the objective of (7) and collecting terms involving xj gives

s(xj ,θj)µ(θj)−
(
u(xj ,θj+1)−u(xj ,θj)

)∑
i>j

µ(θi) . (10)

This is the discrete analog of the virtual surplus function multiplied by µ(θj). Now con-

sider the terms involving xj∗ . Because o < j∗ < g, there is no IC constraint pointing toward

j∗. Therefore, there is only one such term:

s(xj∗ ,θj∗)µ(θj∗) .

Note that xj ∈ X is feasible to assign to θj∗ . Moreover, doing so does not change the shape

of x since xj ≤ xo, thus generating a payoff also according to the above formula. The fact

that x is optimal then implies

s(x̂, θ̂) ≥ s(xj , θ̂) ;

that is,

s(xj , θ̂)− s(x̂, θ̂) ≤ 0 .

18If j∗ > o + 1, then the U -shaped region stays exactly the same. Otherwise, j∗ = o + 1 and the U -shaped
region starts with o+1 afterward but we can simply replace all constraints [j→ o+1] by [j→ o] as x̃o = x̃o+1.
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Because xj > x̂ and θj < θ̂, by the weak single-crossing differences property of s,

s(xj ,θj)− s(x̂,θj) ≤ 0 . (11)

Moreover, because xj > x̂, by the strict increasing differences property of u,

u(xj ,θj+1)−u(xj ,θj) > u(x̂,θj+1)−u(x̂,θj) . (12)

Combining (11) and (12) gives

s(xj ,θj)µ(θj)−
(
u(xj ,θj+1)−u(xj ,θj)

)∑
i>j

µ(θi) ≤ s(x̂,θj)µ(θj)−
(
u(x̂,θj+1)−u(x̂,θj)

)∑
i>j

µ(θi) ,

proving that the part of the objective involving xj increases. Because this holds for all

j ∈ {k,k+1, . . . , o−1}, to conclude our proof, it remains to show that the part of the objective

involving xo strictly increases. Recall that we split the region r into {o,o + 1, . . . , g} and

{g,g + 1, . . . ,d} if g < d. Plugging (9) into (7) and collecting terms involving xo gives

s(xo,θo)µ(θo)−
g∑

i=o+1

µ(θi)
(
u(xo,θi)−u(xo,θo)

)
−
(
u(xo,θg)−u(xo,θo)

)∑
i>g

µ(θi) .

By the same argument as the previous case, we have

s(xo,θo) ≤ s(x̂,θo) .

For any i > o, by the strict increasing differences property of u,

u(xo,θi)−u(xo,θo) > u(x̂,θi)−u(x̂,θo) .

Together they imply

s(xo,θo)µ(θo)−
g∑

i=o+1

µ(θi)
(
u(xo,θi)−u(xo,θo)

)
−
(
u(xo,θg)−u(xo,θo)

)∑
i>g

µ(θi)

< s(x̂,θo)µ(θo)−
g∑

i=o+1

µ(θi)
(
u(x̂,θi)−u(x̂,θo)

)
−
(
u(x̂,θg)−u(x̂,θo)

)∑
i>g

µ(θi) ,

where the strict inequality also uses that µ has full support.

To finish the proof of Proposition 2 for finite type spaces, we recall the following:
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Lemma 5. If x is monotone and [(i + 1)→ i] binds for all i, then all upward IC constraints are

satisfied.

This result is standard (we include a proof in the appendix for completeness). It fol-

lows from that binding local downward IC constraints with monotonicity of x imply local

upward IC constraints and that local upward IC constraints with monotonicity of x imply

all upward IC constraints.

Now fix any optimal solution (x, t) to (7). By Claim 2, we have x is monotone. Then,

by Claim 1, all local downward IC constraints bind. Hence, by Lemma 5, we have Propo-

sition 2 hold for finite type spaces.

Step 4: We prove Proposition 2 for general type space Θ by approximation.19 Because

this step is mostly technical, we give a sketch of the argument and leave the details to the

appendix. Let µ ∈ ∆(Θ) denote the distribution on Θ. Recall that (6)† denotes the version

of program (6) with all IC constraints (both downward and upward). Let V (Θ,µ) denote

the optimal value of (6)† given (Θ,µ). We show that V (Θ,µ) equals to the optimal value

of (6). Suppose, for contradiction, there exists some (x̂, t̂) feasible for (6) such that

V (Θ,µ) < Eµ[v(x̂(θ),θ) + t̂(θ)] . (13)

We first construct an appropriate sequence {(Θ(n),µ(n))} approximating (Θ,µ).

Lemma 6. Suppose v(x,θ) is Lipschitz continuous on X ×Θ. Then, there exists a sequence

{(Θ(n),µ(n))} with Θ(n) ⊆Θ finite and µ(n) ∈ ∆(Θ(n)) full support such that

(i) µ(n)→w µ ;

(ii) limsup
n→∞

V (Θ(n),µ(n)) ≤ V (Θ,µ) .

Because atomic measures are dense in ∆(Θ) (with the weak-∗ topology), one can eas-

ily find a sequence satisfying (i). However, the upper semicontinuity property (ii) does

not necessarily hold for an arbitrary approximation sequence. We construct a particular

approximation sequence such that for each (Θ(n),µ(n)), we can convert the optimal mecha-

nism there into a mechanism for the problem with (Θ,µ), with small loss in the objective.

The argument relies on the problem being one-dimensional.

19The results so far imply a version of Theorem 1 for finite type spaces. One may hope to approximate
directly in the original problem as in Carroll (2017). However, Carroll (2017)’s approximation argument is
based on Madarász and Prat (2017)’s result, which relies crucially on there being no interdependent values.
Our problem allows for interdependent values, and so requires a different approximation argument.
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Now note that (x̂, t̂) restricted to Θ(n) is a feasible solution to the finite-type version of

(6) with (Θ(n),µ(n)). By Step 3, we have

V (Θ(n),µ(n)) ≥ Eµ
(n)

[v(x̂(θ),θ) + t̂(θ)] .

Suppose for a moment that x̂, t̂ are continuous on Θ and v is Lipschitz continuous. Then

v(x̂(θ),θ)+ t̂(θ) is a bounded continuous function on Θ. Using Lemma 6 and taking limits

on both sides of the above, we have

V (Θ,µ) ≥ limsup
n→∞

V (Θ(n),µ(n)) ≥ limsup
n→∞

Eµ
(n)

[v(x̂(θ),θ) + t̂(θ)] = Eµ[v(x̂(θ),θ) + t̂(θ)] ,

contradicting (13).

In general, the situation is more delicate. We prove it first for Lipschitz continuous v

and then for all continuous v by extension (via the Stone–Weierstrass theorem). For any

measurable x̂, t̂, we invoke Lusin’s theorem to identify a compact set Θ̃ ⊂ Θ such that x̂, t̂

are continuous on Θ̃ with µ(Θ\Θ̃) sufficiently small. Let µ̃ be the conditional measure

of µ on Θ̃. Because x̂, t̂ are continuous on Θ̃, the above argument applies to (Θ̃, µ̃). The

proof shows that the difference of objective values between (Θ̃, µ̃) and (Θ,µ) can be made

arbitrarily small. This then gives a contradiction.

Finally, to conclude Proposition 2, it suffices to show the existence of an optimal solu-

tion to the full IC program (6)†. Even though this is a standard one-dimensional problem,

the existence result appears to be new at this generality. As it may be of independent in-

terest, we record it in the following lemma:

Lemma 7. Any standard one-dimensional screening problem has a solution.

The proof (in the appendix) proceeds by showing the space of IC and IR mechanisms

is sequentially compact in the product topology. The argument uses a generalized version

of Helly’s selection theorem from Fuchino and Plewik (1999). Q.E.D.

Remark 1. The following example shows that some sorting condition on the surplus func-

tion is needed for Proposition 2:

Example 1. Suppose Θ = X = {0,1}; types are uniformly distributed; u(x,θ) = θx, v(x,θ) =

κ(1
2−θ)x for some κ > 2. The efficient allocation is to assign x(0) = 1, x(1) = 0. The optimal

downward IC mechanism is to set x(0) = 1, t(0) = 0 and x(1) = 0, t(1) = −1. This does not

satisfy all IC constraints: IC[0→ 1] is violated.

Remark 2. Building on the above example, the next example shows that some sorting

condition on the surplus function sA is needed for Theorem 1:

24



Example 2. In the setting of Example 1, we set κ = 2.5 and add another component,

ΘB = {−1,0}, Y = {0,1}; uB(y,θB) = θBy, vB(y,θB) = 0; types are uniformly distributed and

comonotonic. Screening only with x yields at most a payoff of 0. However, with the costly

instrument, the menu {(1,0,0), (0,1,−1)} yields a payoff of 1
8 > 0.

5 Monopoly Pricing with Costly Signals

Before discussing other applications of Theorem 1 in Section 6, we specialize the main

model to a setting of monopoly pricing with costly signals. In this setting, a monopolist

sells a spectrum of quality-differentiated goods and can make the menu of offers contin-

gent on the costly actions that a buyer may take.

In Section 5.1, we show that if the buyer’s utility functions are multiplicatively separa-

ble within each component, then the positive correlation of preferences condition can be

weakened to the positive correlation between the preferences for the productive compo-

nent and the marginal rates of substitution between the productive and costly components.

In Section 5.2, we consider a multiple-good monopolist selling different qualities of

bundles (with no costly signals). This environment generalizes the classic multiple-good

monopoly problem by allowing for both probabilistic bundling and quality discrimina-

tion. We show that (a relaxation of) this problem can be mapped to a monopolist selling

a spectrum of quality-differentiated goods without bundling but with costly signals as in

Section 5.1. A key insight is that one can view selling the grand bundle as the productive

component, and selling a smaller bundle instead of the grand bundle as a costly instru-

ment for screening a consumer’s value for the grand bundle. Using this perspective, we

generalize a result of Haghpanah and Hartline (2021). In particular, we show that under

their stochastic ratio monotonicity condition, the general feature of the optimal mecha-

nism is to post a menu of different qualities of the grand bundle — the monopolist screens

only the productive component and does not use any of the “costly signals.”

Setup. A monopolist sells a quality-differentiated spectrum of goods. A buyer of type

θA ∈ ΘA receives utility uA(x,θA) from consuming the good of quality x ∈ X . The seller

incurs a cost C(x,θA) to produce the good of quality x for type θA. Suppose uA(x,θA) is

nondecreasing in θA and has strict increasing differences, and that the surplus function

uA(x,θA)−C(x,θA) has weak single-crossing differences. (The continuity and compactness

assumptions in Section 2 are also maintained.)

Besides offering a menu of products of different qualities and prices, the monopolist

can make the offers contingent on various costly signals (e.g. waiting in line, collecting
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coupons, walking up stairs). A costly signal is represented by y ∈ Y . To obtain a signal y,

a buyer of type θB ∈ΘB incurs a cost c(y,θB) that is nonincreasing in θB (so θB represents

the willingness to endure various costly activities).

Theorem 1 then says that if θB is positively correlated with θA according to our notion,

then the monopolist never makes more profits by using these costly signals. Therefore, if

the monopolist in fact uses these instruments, then we should expect that the consumers

with higher willingness to pay tend to incur higher costs to obtain the signals (both mea-

sured with respect to the constant marginal value for money). In fact, sometimes we can

say more when the buyer’s utility functions are multiplicatively separable within each

component, which we turn to next.

5.1 Marginal Rates of Substitution Between Two Components

We follow the notation in the above setup, and let X be [0,1], Y any measurable space,

ΘA any compact subset of R++, and ΘB any compact subset of RN− . We say that the buyer

has multiplicatively separable utilities within each additive component if for any quality x,

signal y, and price t, the buyer’s payoff can be written as

θAu(x) +θB · c(y)− t

where u : X → R is a continuous and strictly increasing function satisfying u(0) = 0, and

c : Y →RN+ is a bounded measurable function satisfying c(y0) = 0 for some y0 ∈ Y .20

We say that the monopolist’s cost function is not interdependent if C(x,θA) does not

depend on θA, in which case without loss of generality we let C(0) = 0.

Recall the notation θB = (θ1, . . . ,θN ). Let r i = θi

θA
and rB = (r1, . . . , rN ). Note that rB ≤ 0.

We interpret rB as the (negative) marginal rates of substitution between the productive and

costly components.21 In this setting, we show that our assumption of positive correlation

between θA and θB can be weakened to that between θA and rB.22

Proposition 3. Suppose the seller’s cost function C is continuous, nondecreasing in x, and not

interdependent; the buyer’s utilities are multiplicatively separable; and rB is stochastically non-

decreasing in θA. Then, there exists an optimal mechanism that involves no costly screening.

The intuition behind this result can be understood in the same way as in the proof

of the main result (Section 4). We show that when the marginal rates of substitution

20Note that a utility of the form f A(θA)u(x)+ f B(θB) ·c(y) provides (essentially) no additional generality.
21The substitution here is between the utility u(x) from the productive component and the disutility c(y)

from the costly component, and hence has negative marginal rates.
22This is in general not necessarily a weaker condition; it is so in this case because θB ≤ 0.
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are increasing in the values, instead of using the costly signals, the principal can simply

adjust the allocations of the productive component while maintaining the downward IC

constraints. Because downward IC constraints are sufficient, the result follows. Unlike

in Section 4, in this case we substitute the costly signals with a decrease in the produc-

tive allocations holding the monetary transfers fixed, which is why the marginal rates of

substitution between the two components play an important role here.

Proof of Proposition 3. By Lemma 1, as in Step 1 of Section 4, it suffices to show the case

where rB = h(θA) for some nondecreasing function h : ΘA → RN . Thus, we may assume

for all i, r i is deterministic conditional on θA and nondecreasing in θA. Fix any (x,y, t)

that is IC and IR. We may assume t ≥ 0, because the monopolist can simply replace all

options with negative profits in the menu with (0, y0,0) and weakly increase the total

profit (since the monopolist’s cost function does not depend on the buyer’s type). Now

we apply a “shift” argument as follows. Consider the modification: t̃ = t, ỹ = y0, and

x̃(θ) = u−1
(
u(x(θ)) +

1
θA

[θB · c(y(θ))]
)
.

Because u(·) is continuous and strictly increasing with u(0) = 0, u−1 is defined on [0,u(1)].

Moreover, because (x,y, t) is IR and t ≥ 0, we have 0 ≤ u(x(θ)) + 1
θA

[θB · c(y(θ))] ≤ u(x(θ))

for all θ. So the modification is well-defined and 0 ≤ x̃ ≤ x pointwise. In other words, the

modified mechanism decreases the productive allocation to substitute the costly screen-

ing so that all types have the same utilities as before, assuming truthful reporting.

Because C(·) is nondecreasing, this modification increases the objective, assuming

truthful reporting. It is IR by construction. Moreover, it is downward IC: for any θ̂A < θA,

θAu(x̃(θ))− t̃(θ) = θAu(x(θ)) +θB · c(y(θ))− t(θ)

≥ θAu(x(θ̂)) +θB · c(y(θ̂))− t(θ̂)

= θA
(
u(x(θ̂)) + rB · c(y(θ̂))

)
− t(θ̂)

≥ θA
(
u(x(θ̂)) + r̂B · c(y(θ̂))

)
− t(θ̂) = θAu(x̃(θ̂))− t̃(θ̂) .

The first inequality holds because (x,y, t) is IC. The second inequality holds because r̂B ≤
rB and c ≥ 0. Invoking Proposition 2 concludes the proof.

5.2 Bundling and Quality Discrimination

We now show an application to a multiple-good monopoly problem allowing for both

probabilistic bundling and quality discrimination.
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A monopolist sells G many goods to a unit mass of consumers. For each bundle b, a

random consumer has value vb for getting the highest quality version of the bundle with

probability one. We assume that vb ≤ vb′ for all b ⊂ b′ and v∅ = 0. The monopolist can

use probabilistic bundling, captured by a bundling allocation rule v 7→ α(v) ∈ ∆(2G). In

addition, the monopolist can adjust the quality of each bundle, captured by a quality

allocation rule v 7→ q(v) ∈ [0,1]2G . A type-v consumer’s payoff is given by∑
b

αbqbvb − t .

The monopolist incurs a cost to improve the quality of a bundle, with a payoff given by

−
∑
b

αbC(qb) + t ,

where C(·) is a continuous, nondecreasing, and convex function on [0,1] with C(0) = 0.

This cost structure assumes that the cost of producing a bundle of some quality does not

depend on the size of the bundle, which is perhaps more suitable for digital goods.

Let v∗ be the value of a random consumer for the grand bundle and τ = (v
b

v∗ )b=1,...,2G be

the profile of values for each bundle relative to the grand bundle.

Proposition 4. If τ is stochastically nondecreasing in v∗, then an optimal mechanism exists

and can be implemented by a menu of prices for different qualities of the grand bundle.

This result is a natural consequence of Proposition 3 once one views selling the grand

bundle as the productive component, and selling a smaller bundle instead of the grand

bundle as a costly instrument for screening a consumer’s value for the grand bundle.

Proof of Proposition 4. By convexity of C(·) and Jensen’s inequality, we have∑
b

αb(v)C(qb(v)) ≥ C
(∑

b

αb(v)qb(v)
)
.

Therefore, it is an upper bound on the monopolist’s revenue to maximize the objective

E

[
−C

(∑
b

αb(v)qb(v)
)

+ t(v)
]
. (14)

For this auxiliary problem, let us also relax the constraint
∑
bα

b = 1 to
∑
bα

b ≤ 1. Then,

because α,q enter both the consumer’s utility and the objective in the same way, it is

without loss of generality to let qb = 1 for all b.
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We now reformulate this problem as a problem of monopoly pricing with costly sig-

nals. Let θA = v∗ be the value of the grand bundle. For any proper bundle b, let

θb = vb − v∗

be the difference of values for bundle b and the grand bundle b∗. In words, θb is the

negative value for getting bundle b instead of b∗. Let N = 2G − 1, and let θB = (θ1, . . . ,θN )

be the profile of the differences.

We use x : Θ→ [0,1] to denote the initial allocation of the grand bundle, and y : Θ→
[0,1]N to denote the allocation of the “costly signals” as follows. An assignment yb ∈ [0,1]

represents assigning bundle b with probability yb while decreasing the probability of the

grand bundle b∗ also by yb. The consumer’s payoff can be rewritten as

θAx+θB · y − t .

For any substochastic allocation α (i.e.
∑
bαb ≤ 1), we can replicate it by setting

x =
∑
b

αb , yb = αb for all b , b∗

Therefore, the auxiliary problem (14) can be further relaxed to

sup
(x,y,t)∈M(Θ)

E[−C(x(θ)) + t(θ)] . (15)

For any b = 1, . . . ,N , we have vb
v∗ = θA+θb

θA
= 1 + θb

θA
. Since τ is stochastically nondecreasing

in v∗, we have rB := 1
θA
θB is stochastically nondecreasing in θA. So Proposition 3 applies

to (15). Let (x∗,0, t∗) be the optimal solution to (15) that involves no costly screening.

We construct an allocation rule in the original problem as follows:

αb
∗

= 1, αb = 0 for all b , b∗; qb
∗

= x∗, qb = 0 for all b , b∗.

Because probabilities and qualities enter the consumer’s utility in the same way and

(x∗,0, t∗) is IC and IR, (α,q, t∗) is also IC and IR. The revenue of the monopolist under

(α,q, t∗) is

E[−C(qb
∗
(θ)) + t∗(θ)] = E[−C(x∗(θ)) + t∗(θ)] ,

the optimal value of (15). Hence, (α,q, t∗) is optimal for the monopolist in the original

problem; moreover, (α,q, t∗) screens using only the qualities of the grand bundle.
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Remark 3. Proposition 4 says that under the stochastic ratio monotonicity condition, the

monopolist can restrict attention to selling only the grand bundle at various qualities.

Because that is a one-dimensional problem à la Mussa and Rosen (1978), the solution

can be explicitly characterized. When there is no cost for quality improvement (C = 0),

the optimal mechanism is to sell the grand bundle at the highest quality with a posted

price. This special case is due to Haghpanah and Hartline (2021). In general, however,

the optimal mechanism involves price discrimination. But Proposition 4 shows that such

price discrimination is only done by creating different qualities of the grand bundle.

Remark 4. In independent work, Bergemann et al. (2021) also use the term “marginal

rates of substitution” but for a different condition. (They study the optimality of a menu

of nested bundles in a multiple-good monopoly problem without quality choices.)

6 Additional Applications

6.1 Optimal Regulation

Consider the monopoly regulation problem first analyzed by Baron and Myerson (1982).

For simplicity, we follow the formulation of Laffont and Tirole (1993). Let x be the quan-

tity of production; p(x) the inverse demand curve; and ψ(x,θA) the cost function for a

firm of type θA, decreasing in θA. Suppose the marginal cost ψx(x,θA) is decreasing in θA

so that a higher efficiency parameter θA represents a firm with lower marginal cost. Let

S(x) =
∫ x

0
(p(q)− p(x))dq

denote the consumer surplus at quantity x. The regulator wants to maximize the sum

of consumer surplus and firm profits. Moreover, for any (lump-sum) tax t collected, the

regulator can reduce distortionary taxes elsewhere and generate benefits (1+λ)t for some

λ > 0.23 The regulator’s payoff is thus given by S(x) + p(x)x −ψ(x,θA) +λt. After scaling,

we may let the regulator’s utility function be

vA(x,θA) =
1
λ

(
S(x) + p(x)x −ψ(x,θA)

)
.

The firm’s utility function is given by

uA(x,θA) = p(x)x −ψ(x,θA) .

23This is equivalent to assuming that the regulator places some weights on both surplus and revenue.
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Suppose the regulator can observe some inspection outcomes correlated with the firm’s

production efficiency.24 Let y ∈ {0,1, . . . , k} represent a certificate level. Without exerting

any effort, the firm can achieve a performance level θB, or any level less than that if the

firm chooses to do so. The firm may exert effort to increase from its baseline θB; there is

a cost C > 0 for each level above θB. So achieving level y for a firm of type θB costs

c(y,θB) = Cmax{y −θB,0} .

Such effort does not affect the real cost of production. So for a quantity x, tax t, and

certificate level y, a type-θ firm gets a payoff

p(x)x −ψ(x,θA)− c(y,θB)− t .

Suppose the baseline level θB is positively correlated with the efficiency parameter θA

according to our notion. Our result then says that it is optimal for the regulator not to

make the tax and subsidy schedule contingent on the inspection outcomes in any way.

Remark 5. If the regulator were able to directly observe θB as in Laffont and Tirole (1986),

then the data would always be helpful as they alleviate the information asymmetry. Be-

sides that the outcomes are manipulable, another important feature of this setup is that

no effort is needed to decrease the performance on an inspection.

6.2 Labor Market Screening

A monopsonistic firm wants to hire a worker. The firm gets a profit v(x,θ0)−w for hiring

a worker of ability θ0 to produce x amount of work at wage w. Suppose the marginal

productivity vx is nondecreasing in the ability θ0. A worker of ability θ0 incurs a cost

ψ(x,θ0) decreasing in θ0 to produce x amount of work. Suppose the marginal cost ψx is

decreasing in the ability θ0.

The firm has many costly instruments at its disposal; for example, it can ask the appli-

cant to participate in various interviews or pass some tests.25 Suppose there are N such

activities. For i = 1, · · · ,N , let ci(yi ,θi) denote the cost of obtaining a level-yi signal in

activity i that is nonincreasing in the cost type θi . For an offer (x,w) contingent on the

24For example, the regulator may observe the outcomes from energy performance inspections.
25We assume away many realistic features that may be important in labor markets, such as verification

aspects of interviews and potential moral hazard problems after hiring.
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costly signals (y1, . . . , yN ), the agent gets a payoff

w −ψ(x,θ0)−
N∑
i=1

ci(yi ,θi) .

Suppose θB = (θ1, . . . ,θN ) is positively correlated with θ0 according to our notion so that

a higher ability worker tends to find the costly activities easier. Our result then says that

the firm should not make the menu of job offers contingent on any costly activity.

Remark 6. This implication contrasts with the common perception of costly signals in

competitive labor markets. To clarify the difference, in Appendix B.1 we consider a com-

petitive screening model in which multiple firms compete and are allowed to screen with

both work allocations and costly instruments. We show that costly screening can appear

in equilibrium. The intuition can be understood from the direction of binding incentive

constraints, just as we have seen in Section 4. Suppose, for contradiction, there is no costly

screening involved. Then the game reduces to a standard one-signal game. Because the

firms compete, each type captures all surplus generated. But then it is the upward IC con-

straint that binds as the firms want to trade with the high type; the work assignment to

the high type is distorted upward. A firm can then lower the work assignment and profit

from the additional surplus generated. To deter the low type from imitating the high

type, the firm can ask for a small amount of costly signals. If a small y costs much less

for the high type, then it can deter upward deviation without destroying much surplus.

6.3 Monopoly Pricing with Costly Production

Consider a monopolist selling a quality-differentiated spectrum of goods as in the setting

of Section 5 but with no costly signals. That is, a buyer of type θA ∈ R receives utility

uA(x,θA) from consuming the good of quality x. The seller incurs a cost C(x,θA) to pro-

duce the good of quality x for type θA. Suppose that uA(x,θA) is nondecreasing in θA

and has strict increasing differences, and that the surplus function uA(x,θA) − C(x,θA)

has weak single-crossing differences.

The monopolist also produces a different kind of goods; it costs CB(y,θB) to produce

the second good of quality y for type θB, and the consumer has a utility function uB(y,θB)

nondecreasing in θB. For the second good, however, the costs exceed the potential values:

CB(y,θB) ≥ uB(y,θB) for all y and θB. Suppose θA, θB are positively correlated as in our

definition. Our result then says that it is optimal for the monopolist not to sell the second

good of any quality. This is generally not true when the preferences are negatively corre-
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lated. A related intuition is that negative correlation of values makes bundling profitable

(Adams and Yellen, 1976). For a concrete example, consider the following:

Example 3. Suppose ΘA = ΘB = {1,2}; the types are uniformly distributed on {(1,2), (2,1)}.
The consumer has linear utility functions. Item A costs 0 to produce, and item B costs 2

to produce. Selling the bundle at price 3 and item A at price 2 gives a profit of 1.5, strictly

higher than the monopoly profit of 1 from selling item A.

Remark 7. The intuition here still differs from that for bundling versus separate sales. In

particular, it is known from Carroll (2017) that separate sales can be suboptimal even

when the values are maximally positively correlated (i.e. on a monotonic path).

7 Concluding Remarks

This paper studies the effectiveness of costly instruments in a general multidimensional

screening model. The model consists of two components: a one-dimensional productive

component and a multidimensional costly component. Our main result says that if the

agent’s preferences are positively correlated between the two components in a suitably

defined sense, then the costly instruments are ineffective — the optimal mechanism sim-

ply screens the one-dimensional productive component.

Our proof also provides clear insights into why this result holds. First, we show that

costly instruments can loosen upward but not downward IC constraints on the costly

component. Next, we show that positive correlation of preferences then converts the

IC constraints on the costly component to those on the productive component without

changing the direction. Finally, we show that the set of downward IC constraints is suf-

ficient for any standard one-dimensional screening problem satisfying a single-crossing

condition. Therefore, costly instruments cannot help the principal when the agent’s pref-

erences are positively correlated between the two components.

Armed with this understanding, we have also shown how additional results follow

naturally. With negatively correlated preferences, we show a partial converse. With

multiplicatively separable preferences within each component, we show a stronger re-

sult in terms of the marginal rates of substitution between the two components. Using

the perspective of screening with costly instruments, we also show new results even in

multidimensional screening models without any costly instruments.

Our model assumes that the principal has full commitment power. However, this

assumption can be somewhat relaxed as a consequence of our result. In particular, con-

sider a game in which the agent takes a costly action y ∈ Y first, and then the principal
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contracts with the agent on the productive allocations and transfers with commitment

after observing the agent’s costly action. Suppose the actions are costly to the agent, i.e.

uB ≤ 0. Then note that the optimal contract screening only the productive component

can be supported in a perfect Bayesian equilibrium of this game by letting the principal’s

belief be the prior γ at every history y ∈ Y .

We view this paper as a starting point toward a systematic understanding of how

costly instruments interact with the traditional design of optimal contracts. As we have

demonstrated, the direction of binding incentive constraints, when no costly instrument

is used, plays a key role in determining whether costly instruments should be used at all.

In models different from the monopolistic screening model we consider, the binding in-

centive constraints may very well be different. However, our insights may still be helpful,

just as we have seen with competition in labor market screening.

A Omitted Proofs

Proof of Proposition 1. Without loss of generality, we may assume i = 1. Let vA = vB = 0.

Because θ0 has a continuous distribution, there exists some constant m0 such that

P(θ0 > m0) = P(θ0 ≤m0) =
1
2
.

Similarly define m1 for θ1. Since θ1 is stochastically nonincreasing in θ0, we have θ1

and −θ0 are positively upper orthant dependent (see e.g. Müller and Stoyan (2002), pp.

121-125), and hence

P(−θ0 > −m0,θ1 > m1) ≥ P(−θ0 > −m0)P(θ1 > m1) =
1
4
.

Because β(θ0), β(θ1) are not independent, we have

P(θ0 < m0,θ1 > m1) >
1
4

and thus

P(θ0 > m0,θ1 < m1) >
1
4
.

Define

f (θ0) =

1 if θ0 ≤m0

2 if θ0 > m0
, g(θ1) =

−1 if θ1 ≤m1

−ε if θ1 > m1
,
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where ε > 0 will be determined shortly. Let f̃ be a continuous approximation of f such

that f̃ (θ0) = f (θ0) for all θ0 < (m0 − ε,m0 + ε). It is clear that we may select f̃ to be

nondecreasing. Let x0 = minX and x̂ = maxX . Since |X | > 1, x̂ , x0. Since |Y | > 1, there

exists some ŷ , y0 ∈ Y . Now let

uA(x,θA) = f̃ (θ0)
x − x0

x̂ − x0
, uB(y,θB) = g(θ1)1y,y0

.

This construction gives admissible utility functions. Consider offering the following

menu of three options: {
(x̂, y0,2− ε), (x̂, ŷ,1− ε), (x0, y0,0)

}
.

Let the agent choose among these, breaking tie in favor of the principal. This yields a

payoff of at least

r(ε) := (1− ε)P(θ1 > m1) + (2− ε)P(θ0 ≥m0 + ε,θ1 ≤m1)

for the principal. Screening the productive component alone yields a payoff of at most

q(ε) := 2P(m0 − ε ≤ θ0 ≤m0 + ε) + 1

for the principal. Note that r(ε),q(ε) are both continuous on (0, 1
2 ), and

lim
ε↓0

r(ε) =
1
2

+ 2P(θ0 > m0,θ1 < m1) > 1 = lim
ε↓0

q(ε) .

Thus, there exists some ε∗ > 0 such that r(ε∗) > q(ε∗). With this choice of ε∗, the above

construction then gives admissible utility functions such that the menu of three options

strictly dominates any mechanism screening only the productive component.

Proof of Lemma 3. Write out [i→ j] and [j→ k]:

u(xi ,θi)− ti ≥ u(xj ,θi)− tj ;

u(xj ,θj)− tj ≥ u(xk ,θj)− tk .

Adding these two yields

u(xi ,θi)− ti +u(xj ,θj)− tj ≥ u(xj ,θi)− tj +u(xk ,θj)− tk .
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Hence,

u(xi ,θi)− ti ≥ (u(xj ,θi) +u(xk ,θj)−u(xj ,θj))− tk .

Using xj ≥ xk, θi > θj , and the strict increasing differences property of u, we have

u(xj ,θi) +u(xk ,θj)−u(xj ,θj) ≥ u(xk ,θi) .

Thus [i→ k] follows.

Proof of Lemma 4. Write out the binding constraints [i→ k] and [j→ k]:

u(xi ,θi)− ti = u(xk ,θi)− tk ;

u(xj ,θj)− tj = u(xk ,θj)− tk .

Subtracting these two yields

u(xi ,θi)−u(xj ,θj)− ti = u(xk ,θi)−u(xk ,θj)− tj .

Hence,

u(xi ,θi)− ti = (u(xj ,θj) +u(xk ,θi)−u(xk ,θj))− tj .

Using xk ≥ xj , θi > θj , and the strict increasing differences property of u, we have

u(xj ,θj) +u(xk ,θi)−u(xk ,θj) ≥ u(xj ,θi) .

Thus [i→ j] follows.

Proof of Lemma 5. Write out the binding constraint [(i + 1)→ i]:

u(xi+1,θi+1)− ti+1 = u(xi ,θi+1)− ti .

By monotonicity of x and the strict increasing differences property of u, we have

u(xi+1,θi+1)−u(xi ,θi+1) ≥ u(xi+1,θi)−u(xi ,θi) .

Therefore,

ti+1 − ti ≥ u(xi+1,θi)−u(xi ,θi) ,
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which is equivalent to [i→ (i + 1)]. Now suppose [i→ j] and [j → k] hold, with i < j < k.

As in the proof of lemma 3, adding these two gives

u(xi ,θi)− ti +u(xj ,θj)− tj ≥ u(xj ,θi)− tj +u(xk ,θj)− tk .

Hence,

u(xi ,θi)− ti ≥ (u(xj ,θi) +u(xk ,θj)−u(xj ,θj))− tk .

Using xk ≥ xj , θj > θi , and the strict increasing differences property of u, we have

u(xj ,θi) +u(xk ,θj)−u(xj ,θj) ≥ u(xk ,θi) .

Thus [i→ k] follows. It is now immediate that all upward incentive constraints hold.

Proof of Lemma 6. We maintain the notation of Step 4 in Section 4. Without loss, let Θ ⊆
[0,1) and 0 ∈ Θ. The construction works as follows. Fix any n ∈ N. Partition [0,1) into

intervals {[ i−1
n ,

i
n )}i=1,...,n. Let

I =
{
i : µ([

i − 1
n
,
i
n

)) > 0
}
.

For any i ∈ I , let

θ
(n)
i = min

{
[
i − 1
n
,
i
n

)∩Θ
}
.

(The minimum is attained since Θ is compact.) For notational convenience, we reindex i

so that it runs over from 1 to |I |. Let

Θ(n) = {θ(n)
i }i∈I ;

µ(n)(θ(n)
i ) = µ([θ(n)

i ,θ
(n)
i+1)) .

We have Θ(n) ⊆Θ finite and µ(n) ∈ ∆(Θ(n)) full support. Note that

µ({θ ∈Θ : θ ∈ [θ(n)
i ,θ

(n)
i+1) and |θ −θ(n)

i | >
1
n
}) = 0 . (A.1)

We first show property (ii) in the statement. Recall that for this lemma we assume v is

Lipschitz continuous on X ×Θ. Then, there exists some constant K > 0 such that for any

θ,θ′ ∈Θ,

max
x∈X
|v(x,θ′)− v(x,θ)| ≤ K |θ′ −θ| . (A.2)
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Let (x(n), t(n)) be any optimal solution to the full IC program (6)† with (Θ(n),µ(n)). Let x̄(n)

be the extension of x(n) to the right:

x̄(n)(θ) = x(n)(θ(n)
i ) for all θ ∈ [θ(n)

i ,θ
(n)
i+1) .

Note that x̄(n) is a monotonic function on [0,1). Define t̄(n) in the same way. We claim

(x̄(n), t̄(n)), when restricted to Θ, is a feasible solution to (6)† with (Θ,µ). To see this, offer

the menu {(x(n)
i , t

(n)
i )}i∈I to all types in Θ. Type θ(n)

i+1 is indifferent between (x(n)
i+1, t

(n)
i+1) and

(x(n)
i , t

(n)
i ). Type θ(n)

i finds (x(n)
i , t

(n)
i ) optimal. Therefore, any type θ between θ(n)

i and θ(n)
i+1

finds (x(n)
i , t

(n)
i ) optimal since u has strict increasing differences. By construction,

V (Θ(n),µ(n)) = Eµ
(n)

[v(x̄(n)(θ),θ) + t̄(n)(θ)] .

Since (x̄, t̄) is feasible to (6)† with (Θ,µ), we have

V (Θ,µ) ≥ Eµ[v(x̄(n)(θ),θ) + t̄(n)(θ)] .

Because x̄(n), t̄(n) are constant over each interval [θ(n)
i ,θ

(n)
i+1), by (A.1) and (A.2), we have∣∣∣∣Eµ[v(x̄(n)(θ),θ) + t̄(n)(θ)]−Eµ

(n)
[v(x̄(n)(θ),θ) + t̄(n)(θ)]

∣∣∣∣
=

∣∣∣∣∫ v(x̄(n)(θ),θ)dµ−
∫
v(x̄(n)(θ),θ)dµ(n)

∣∣∣∣
≤

∑
i∈I
µ(n)(θ(n)

i ) sup
θ∈[θ(n)

i ,θ
(n)
i + 1

n ]∩Θ

{
max
x∈X

∣∣∣v(x,θ)− v(x,θ(n)
i )

∣∣∣}
≤

∑
i∈I
µ(n)(θ(n)

i )
K
n

=
K
n
. (A.3)

Then, it follows that

V (Θ,µ) ≥ V (Θ(n),µ(n))− K
n
.

Taking limsup on both sides gives property (ii) in the statement.

We now show property (i) in the statement. It suffices to prove the weak convergence

in ∆([0,1]). Let F, F(n) be the CDFs of µ, µ(n). We have F(n)(1) = F(1) = 1. Fix any θ ∈ [0,1).

Note that µ(n) � µ in the stochastic dominance order, and hence

F(n)(θ) ≥ F(θ) . (A.4)
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Let i be such that [θ(n)
i ,θ

(n)
i+1) 3 θ. Note that

F(n)(θ) = µ(n)([0,θ]) ≤ µ(n)([0,θ(n)
i+1)) = µ([0,θ(n)

i+1)) .

If θ + 1
n ≥ θ

(n)
i+1, then we have

µ([0,θ(n)
i+1)) ≤ F(θ +

1
n

) .

Otherwise, since θ + 1
n ≥ θ

(n)
i + 1

n , we have µ([θ + 1
n ,θ

(n)
i+1)) = 0. Thus,

µ([0,θ(n)
i+1)) = µ([0,θ +

1
n

)) ≤ F(θ +
1
n

) .

Hence, in either case, we have

F(n)(θ) ≤ F(θ +
1
n

) . (A.5)

Using (A.4), (A.5), and that F is right-continuous, we have

F(θ) ≤ lim
n→∞

F(n)(θ) ≤ lim
n→∞

F(θ +
1
n

) = F(θ) .

Therefore, F(n) converges to F pointwise, and hence µ(n)→w µ.

Proof of Lemma 7. RecallM(Θ) is the set of IC and IR mechanisms for the one-dimensional

type space Θ. We want to show the following program has a solution:

sup
(x,t)∈M(Θ)

E[v(x(θ),θ) + t(θ)] .

We first show that it is without loss to restrict the range of t to some interval [−K,K]

for K large enough. By the IR constraints, we have t(θ) ≤ maxx,θ |u(x,θ)|. By the IC

constraints, for any θ,θ′, we have

|t(θ)− t(θ′)| ≤ 2max
x,θ
|u(x,θ)| .

Hence, for all θ,

t(θ) ≥ −3max
x,θ
|u(x,θ)| − 2max

x,θ
|v(x,θ)| , (A.6)

because if the above is violated at any type θ, the principal gets strictly less than

−max
x,θ
|u(x,θ)| −max

x,θ
|v(x,θ)|
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but that can be easily obtained by offering a single option. Thus, the claim holds for

K = 3maxx,θ |u(x,θ)|+ 2maxx,θ |v(x,θ)|.
Then,M(Θ) ⊆ XΘ × [−K,K]Θ (with the product topology); we use the notation XΘ :=

×θ∈ΘX . By the dominated convergence theorem, the objective is sequentially continuous

onM(Θ). It is clear thatM(Θ) is nonempty. The existence result follows once we show

M(Θ) is sequentially compact. Fix any sequence {(x(n), t(n))}n inM(Θ). Let

U (n)(θ) = u(x(n)(θ),θ)− t(n)(θ)

be the equilibrium payoff of type θ. For any θ̂ < θ, by IC[θ→ θ̂], we have

U (n)(θ̂) = u(x(n)(θ̂), θ̂)− t(n)(θ̂) ≤ u(x(n)(θ̂),θ)− t(n)(θ̂) ≤U (n)(θ) .

Therefore, U (n) ∈ [−K,K]Θ is a monotone function (increase K if necessary). Since u has

strict increasing differences, x(n) ∈ XΘ is also a monotone function. Note that Θ,X ⊂ R
are linearly ordered and sequentially compact sets. By the Helly’s selection theorem for

monotone functions on linearly ordered sets (Fuchino and Plewik 1999, Theorem 7), there

exists a subsequence {x(nk)} that converges pointwise. Applying the same theorem again

on {U (nk)}, we obtain a subsubsequence {U (nkl )} that converges pointwise. Therefore,

t(nkl )(θ) = u(x(nkl )(θ),θ)−U (nkl )(θ)

also converges pointwise by continuity of u. Thus, there exists some (x∗, t∗) ∈ XΘ ×
[−K,K]Θ such that

(x(nkl ), t(nkl ))→ (x∗, t∗)

in the product topology. Being the pointwise limit of measurable real-valued functions,

x∗ is measurable; so is t∗. Moreover, for any θ, θ̂ ∈Θ,

u(x∗(θ),θ)− t∗(θ) = lim
l→∞

(
u(x(nkl )(θ),θ)− t(nkl )(θ)

)
≥ lim
l→∞

(
u(x(nkl )(θ̂),θ)− t(nkl )(θ̂)

)
= u(x∗(θ̂),θ)− t∗(θ̂)

by continuity of u and that (x(n), t(n)) ∈ M(Θ) for all n. Therefore, (x∗, t∗) satisfies all IC

constraints. Similarly, (x∗, t∗) satisfies all IR constraints. So (x∗, t∗) ∈ M(Θ), and hence

M(Θ) is sequentially compact.
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Completion of Proof of Proposition 2. We complete the proof of Proposition 2 by filling in

the details of Step 4 in Section 4.

Recall that we want to show the optimal value of (6) equals to V (Θ,µ). We first show

it for Lipschitz continuous v, and then extend it to all continuous v. Without loss, we

assume 0 ∈Θ ⊆ [0,1]. Suppose for contradiction that there exist some (x̂, t̂) feasible for (6)

and some ε > 0 such that

V (Θ,µ) + ε ≤ Eµ[v(x̂(θ),θ) + t̂(θ)] . (A.7)

Let S̄ = 3maxx,θ |u(x,θ)| + 3maxx,θ |v(x,θ)|. By Lusin’s theorem (see e.g. Aliprantis and

Border 2006, Theorem 12.8), there exists a compact set Θ̃ ⊆Θ such that x̂, t̂ are continuous

on Θ̃ and α := µ(Θ\Θ̃) < ε/(3S̄). Since Θ̃ is compact, Θ̃ := min{Θ̃} is attained. If Θ̃ > 0, we

augment Θ̃ by adding θ = 0. Since {0} is a singleton disjoint from the compact set Θ̃, we

have x̂, t̂ continuous on the augmented set as well. Since (x̂, t̂) is IR, t̂(θ) ≤maxx,θ |u(x,θ)|,
and hence

Eµ[v(x̂(θ),θ) + t̂(θ)] ≤ (1−α)Eµ̃[v(x̂(θ),θ) + t̂(θ)] +αS̄ , (A.8)

where µ̃ is the distribution of θ conditional on θ ∈ Θ̃. We pick an approximation sequence

{(Θ(n),µ(n))} for (Θ̃, µ̃) according to Lemma 6. By (A.3), for all n large enough, we have

Eµ
(n)

[v(x̄(n)(θ) + t̄(n)(θ)]− ε
3(1−α)

≤ Eµ̃[v(x̄(n)(θ) + t̄(n)(θ)] , (A.9)

where (x(n), t(n)) is an optimal solution to the full IC problem (6)† with (Θ(n),µ(n)), and

(x̄(n), t̄(n)) is the extension of (x(n), t(n)) to the right, as defined in the proof of Lemma 6. As

in the proof of Lemma 6, (x̄(n), t̄(n)) satisfies all IC and IR constraints for type space Θ. As

in the proof of Lemma 7, (A.6) then holds for t̄(n). By feasibility, (A.6), and (A.9), we have

V (Θ,µ) ≥ Eµ[v(x̄(n)(θ),θ) + t̄(n)(θ)]

≥ (1−α)Eµ̃[v(x̄(n)(θ),θ) + t̄(n)(θ)]−αS̄

≥ (1−α)Eµ
(n)

[v(x̄(n)(θ),θ) + t̄(n)(θ)]− 2
3
ε

= (1−α)V (Θ(n),µ(n))− 2
3
ε

≥ (1−α)Eµ
(n)

[v(x̂(θ),θ) + t̂(θ)]− 2
3
ε .

In the last inequality, we have used that (x̂, t̂) is a downward IC and IR mechanism for

(Θ(n),µ(n)) and that Proposition 2 holds for finite type spaces (see Step 3 in Section 4).
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Because x̂, t̂ are bounded and continuous on Θ̃, and v is continuous on the compact space

X ×Θ, we have v(x̂(θ),θ) + t̂(θ) is bounded and continuous on Θ̃. But, since µ(n)→w µ̃ in

∆(Θ̃), taking limits on both sides of the above and using (A.8), we see that

V (Θ,µ) ≥ (1−α)Eµ̃[v(x̂(θ),θ) + t̂(θ)]− 2
3
ε

≥ Eµ[v(x̂(θ),θ) + t̂(θ)]−αS̄ − 2
3
ε

> Eµ[v(x̂(θ),θ) + t̂(θ)]− ε ,

which is a direct contradiction to (A.7).

Now we let v be any continuous function on X × Θ. Since X × Θ is compact, as a

consequence of the Stone–Weierstrass theorem (see e.g. Aliprantis and Border (2006),

Theorem 9.13), the set of Lipschitz continuous real-valued functions on X ×Θ is dense in

the space of continuous functions on X ×Θ (with the sup norm). Therefore, there exists

a sequence of Lipschitz continuous functions {vk} converging uniformly to v. Passing to a

subsequence if necessary, we may assume that for all k,

sup
x∈X ,θ∈Θ

|vk(x,θ)− v(x,θ)| < 1
k
.

Using the above and the earlier result applied to vk, we have for all k,

sup
(x,t)∈M̃(Θ)

E
[
v(x(θ),θ) + t(θ)

]
− 1
k
≤ sup

(x,t)∈M̃(Θ)
E
[
vk(x(θ),θ) + t(θ)

]
≤ sup

(x,t)∈M(Θ)
E
[
vk(x(θ),θ) + t(θ)

]
≤ sup

(x,t)∈M(Θ)
E
[
v(x(θ),θ) + t(θ)

]
+

1
k
.

Taking k→∞ then gives the desired inequality.

Invoking the existence result of Lemma 7, we conclude the proof of Proposition 2.
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B Online Appendix

B.1 Competitive Screening

Our main model assumes monopolistic screening. It delivers a prediction different from

the usual perception of costly screening in competitive labor markets (see Remark 6).

In this appendix, we formulate a stylized competitive screening model consisting of two

screening devices and show how competition can reverse the use of costly instruments.

There are two types of workers θH > θL ≥ 0 in a perfectly competitive labor market.26

A type-θi worker incurs a cost ψi(x) for producing x ∈ [0,1] units of work where ψi is a

strictly increasing, continuously differentiable, and strictly convex function on [0,1] with

ψi(0) = 0. A firm gets a payoff θix from x units of work by a type-θi worker.

Suppose the marginal cost is lower for the higher type: ψ′H (x) < ψ′L(x) for all x ∈ [0,1].

The efficient amount of production for type θi is xei := (ψ′i)
−1(θi), assumed to be in the

interior of [0,1]. Suppose that

θLx
e
L −ψL(xeL) < θHx

e
H −ψL(xeH )

so the low type wants to imitate the high type when given the menu of the efficient allo-

cations with competitive prices. Without this assumption, there is no adverse selection

problem. Suppose also there exists some x ≥ xeL such that θLx
e
L −ψL(xeL) ≥ θHx −ψL(x) so

it is possible to separate the types using only the work allocations.

There is one costly instrument. For a level y ∈ [0,1] of the costly activity, a type-θi
worker incurs a cost ci(y) where ci is a strictly increasing, continuously differentiable

function on [0,1] with ci(0) = 0. Suppose c′L(0) > ψ′L(1) and c′H (0) = 0. This says that a

small amount of y costs nothing for the high type but a lot for the low type.

The firms commit to a set of offers. Each offer specifies an amount of work x, a level of

costly activity y, and a wage w. The literature has not reached a consensus on the choice

of solution concept for competitive screening models. We say a set of offers {(x,y,w)} is a

separating set if (i) the types separate and (ii) the firms earn zero payoff on each offer. A

set of offers is a Pareto-optimal separating set if it is (constrained) Pareto-optimal among all

separating sets. This solution concept is weaker than the Pareto-dominant separating set,

which is known to be equivalent to the reactive equilibrium of Riley (1979) in settings

with one screening device (Engers and Fernandez, 1987).

This competitive screening model is analogous to the labor market application in Sec-

tion 6.2. However, costly screening now emerges in equilibrium:
26This part of the setup is standard; see e.g. Spence (1978) and Stantcheva (2014).
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Proposition 5. A Pareto-optimal separating set exists and any Pareto-optimal separating set

involves costly screening.

Proof of Proposition 5. We first prove the second part. Suppose for contradiction that

there exists a Pareto-optimal separating set {(x,y,w)} that does not involve costly screen-

ing (y = 0). By the definition of a separating set, xH ,xL must differ. By the single-crossing

property of ψ, we then have xH > xL. Note that xH cannot be xeH because if so IC[θL→ θH ]

will be violated:

θLxL −ψL(xL) ≤ θLxeL −ψL(xeL) < θHx
e
H −ψL(xeH ) ,

where the first inequality holds by definition of xeL and the second inequality holds by

assumption. Therefore, IC[θL→ θH ] must be binding. To see this, note that if the upward

IC constraint is not binding, then one can move xH by small enough δ toward xeH without

breaking the upward IC constraint. Since the surplus function θHx − ψH (x) is strictly

concave, the modification increases the payoff of the high type and hence also preserves

the downward IC constraint. But this means that the original set of offers is dominated

by a separating set and hence impossible.

Since xH > xL and the upward IC constraint is binding, the downward IC constraint

must be slack by the single-crossing property of ψ. This implies that xL = xeL because

otherwise moving xL slightly toward xeL gives a contradiction by the same argument as

above. We claim that xH > x
e
H . To see this, let

f (x) = (θHx −ψL(x))− (θLx
e
L −ψL(xeL)) .

Note that it is concave on [xeL,x
e
H ]. Moreover, f (xeL) = (θH −θL)xeL > 0, and f (xeH ) = (θHx

e
H −

ψL(xeH )) − (θLx
e
L −ψL(xeL)) > 0 by assumption. Thus, f (x) > 0 for all x ∈ [xeL,x

e
H ] and hence

xH cannot be in that region. Therefore, xH > x
e
H .

Now consider the menu {(xL,0,θLxL), (xH −ε,ε,θH (xH −ε))} for ε > 0. We claim that for

ε small enough, the offer (xH − ε,ε,θH (xH − ε)) increases the payoff of the high type. Let

uH (ε) = θH (xH − ε)−ψH (xH − ε)− cH (ε) .

It is a continuously differentiable function of ε. The right derivative of this function at 0

is strictly positive because

∂+uH (0) = −(θH −∂−ψH (xH ))−∂+cH (0) = −(θH −∂−ψH (xH )) > 0 ,

where the second equality holds by assumption, and the last inequality holds by strict

48



concavity of ψH and that xH > x
e
H . Therefore, there exists some ε > 0 such that u′H (s) > 0

for all s ∈ [0,ε]; the claim follows immediately.

We also claim that for ε > 0 small enough, the modification still deters the low type

from imitating the high type. To see this, let

ûL(ε) = θH (xH − ε)−ψL(xH − ε)− cL(ε) .

It is a continuously differentiable function of ε. The right derivative of this function at 0

is strictly negative because

∂+ûL(0) = −θH +∂−ψL(xH )−∂+cL(0) ≤ ∂−ψL(1)−∂+cL(0) < 0 ,

where the first inequality uses convexity of ψL and the second inequality holds by as-

sumption. Therefore, there exists some ε > 0 such that û′L(s) < 0 for all s ∈ [0,ε]; the claim

follows immediately.

Hence, for ε > 0 sufficiently small, the proposed menu is a separating set that Pareto-

improves on the original one. Contradiction.

For the first part of the statement, consider the following optimization problem:

max
(x,y)∈[0,1]2

θHx −ψH (x)− cH (y)

subject to θLx
e
L −ψL(xeL) ≥ θHx −ψL(x)− cL(y) .

An optimizer (x∗, y∗) exists by standard compactness arguments. Moreover, y∗ , 0 because

otherwise it can be strictly improved by the argument above.

We claim that {(xeL,0,θLx
e
L), (x∗, y∗,θHx∗)} is a separating set. The low type chooses the

first offer by construction. To see that the high type chooses the second offer, recall that

by assumption there exists some x ≥ xeL such that θLx
e
L −ψL(xeL) ≥ θHx −ψL(x). Since this

inequality is violated at xeL, by continuity, there exists some xH > xeL such that θLx
e
L −

ψL(xeL) = θHxH − ψL(xH ). Then, by the single-crossing property of ψ, θHxH − ψH (xH ) >

θLx
e
L −ψH (xeL). Thus,

θHx
∗ −ψH (x∗)− cH (y∗) ≥ θHxH −ψH (xH ) > θLx

e
L −ψH (xeL) ,

where the first inequality uses that (xH ,0) is a feasible solution. So the high type chooses

the second offer.

Observe that {(xeL,0,θLx
e
L), (x∗, y∗,θHx∗)} must be Pareto-optimal among all separating
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sets. Suppose for contradiction that there is a separating set that Pareto-dominates it.

Then the separating set must provide strictly higher payoff for the high type and maintain

the same payoff for the low type because the low type already gets the maximal payoff.

But that is impossible subject to IC[θL→ θH ] by the construction of (x∗, y∗).

B.2 Additional Proofs

In this appendix, we adapt the proof of Theorem 6 in Kamae and Krengel (1978) to prove

Lemma 1. We start with a technical lemma.

Lemma 8. Suppose X, Y are two Θ-valued random variables where Θ is a compact subset of

RN . Let �st and �′st denote the stochastic dominance partial orders on ∆(RN ) and ∆(Θ) (i.e.

X �′st Y if E[f (X)] ≤ E[f (Y )] for all bounded nondecreasing measurable f : Θ → R). Then

X �st Y if and only if X �′st Y .

Proof of Lemma 8. ( ⇐= ) Suppose X �′st Y . Note that for any bounded monotone mea-

surable f : RN → R, the restriction f |Θ : Θ→ R is also a bounded monotone measurable

function, and moreover E[f (X)] = E[f |Θ(X)] ≤ E[f |Θ(Y )] = E[f (Y )] since X, Y are Θ-

valued and X �′st Y . So X �st Y .

( =⇒ ) Suppose X �st Y . To show X �′st Y , by Theorem 1 of Kamae et al. (1977), it

suffices to show that for any increasing set B ⊆Θ closed in Θ, we have E[1X∈B] ≤ E[1Y∈B]

(we say a set B is increasing if 1B is a nondecreasing function).

Fix any such B. Let B↑ := {y ∈ RN : y ≥ x,x ∈ B} be the increasing hull of B in RN . We

claim that B↑ is closed in RN . To see this, fix any yn → y in RN where yn ∈ B↑. Since

yn ∈ B↑, there exists xn ∈ B such that yn ≥ xn. Since B is a closed subset of a compact set Θ,

B is compact. Therefore, there exists a subsequence xnl converging to some x ∈ B. Passing

to this subsequence, we have y = lim
l→∞

ynl ≥ lim
l→∞

xnl = x ∈ B and hence y ∈ B↑. This proves

that B↑ is closed in RN , and hence measurable.

Because X is Θ-valued, we have E[1X∈B↑] = E[1X∈B↑∩Θ]. We claim that B↑ ∩Θ = B.

Since B ⊆ Θ and B ⊆ B↑, we have B ⊆ B↑ ∩Θ. Now take any y ∈ B↑ ∩Θ. Then y ∈ Θ and

there exists some x ∈ B such that y ≥ x. But because B itself is an increasing set in Θ, we

must have y ∈ B. Thus B↑ ∩Θ ⊆ B. Therefore, B↑ ∩Θ = B. Now, we have

E[1X∈B] = E[1X∈B↑∩Θ] = E[1X∈B↑] ≤ E[1Y∈B↑] = E[1Y∈B↑∩Θ] = E[1Y∈B]

where the inequality follows from that X �st Y and B↑ is a measurable increasing set in

RN . Since this holds for all closed increasing sets B in Θ, the claim follows.
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Proof of Lemma 1. Let BΘB be the Borel σ -algebra of ΘB. Let κ : ΘA × BΘB → [0,1] be

the regular conditional distribution of θB given θA. For any t ∈ ΘA, define measure

Pt( · ) = κ(t, · ). Let S be the support of θA. By assumption, {Pt}t∈S is a stochastically non-

decreasing family of probability measures on RN . By Lemma 8, it is also a stochastically

nondecreasing family of probability measures on ΘB.

Let

ϕ(s) =

max{t : t ≤ s, t ∈ S} if s ≥min(S)

min(S) otherwise
.

Because (−∞, s]∩ S is compact, we have ϕ(s) ∈ S. For all s < S, define Ps = Pϕ(s). Because

ϕ( · ) is nondecreasing and ϕ(s) = s for all s ∈ S, {Pt}t∈R is a stochastically nondecreasing

family of probability measures on ΘB. Invoking Theorem 6 of Kamae and Krengel (1978),

we have a ΘB-valued stochastic process {Xt}t∈R on a probability space (Ω,ν) such that (i)

Xs(ω) ≤ Xt(ω) for all s < t and all ω and (ii) Pt is the distribution of Xt for all t.

By the proof of Theorem 6 in Kamae and Krengel (1978), there exists a dense countable

set D ⊂R such that for all ω and all s <D

Xs(ω) = lim
t→s; t∈D,t≤s

Xt(ω) .

Let Xit denote the i-th coordinate of Xt. We claim that for all i and all ω, the sample path

Xit (ω) is left-continuous at all t < D. To see this, fix any i, ω ∈ Ω, t < D, and ε > 0. By

construction, Xit (ω) = lim
k→∞

Xitk (ω) for some sequence tk ↑ t, with tk ∈ D. So there exists

some K ∈N such that Xit (ω)−XitK (ω) < ε. But then for any s ∈ (t−δ, t) where δ := t− tK , we

have |Xit (ω)−Xis(ω)| ≤ Xit (ω)−XitK (ω) < ε by monotonicity of Xit (ω).

Because D is countable, Dc is dense in R. Pick any dense countable set Q ⊂Dc. For all

ω, define X̄t(ω) = Xt(ω) for all t ∈Dc and

X̄t(ω) = lim
s→t;s∈Q,s≤t

X̄s(ω)

for all t ∈ D. Note that {X̄t}t∈R is also a nondecreasing stochastic process. By a similar

argument as above, X̄it (ω) is left-continuous at all t ∈ D. Moreover, for any t ∈ Dc, and

any sequence tk ↑ t, with tk ∈ Q, we have X̄it (ω) = Xit (ω) = lim
k→∞

Xitk (ω) = lim
k→∞

X̄itk (ω) by left

continuity of Xit (ω) at t ∈ Dc. Therefore, by a similar argument as above, X̄it (ω) is also

left-continuous at all t ∈ Dc. So {X̄t}t∈R is a left-continuous stochastic process, and thus

the map (t,ω) 7→ X̄it (ω) is jointly measurable (see e.g. Karatzas and Shreve 1998, p. 5).

SinceD is countable, (t,ω) 7→ Xit (ω)1t∈D is also jointly measurable. Then, because Xit (ω) =
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X̄it (ω)1t<D +Xit (ω)1t∈D , (t,ω) 7→ Xit (ω) is jointly measurable. Therefore, (t,ω) 7→ Xt(ω) is

jointly measurable.

Let E = Ω and h(θA;ε) = XθA(ε) for all θA ∈ ΘA and ε ∈ E. Then h : ΘA × E → ΘB is

jointly measurable and nondecreasing in the first argument. Let µ denote the marginal

distribution of θA. By the construction of h, for any (a,b) ∈R×RN , we have

(µ× ν)({(θA, ε) : θA ≤ a, h(θA;ε) ≤ b}) =
∫
1θA≤a1θA∈S

(∫
1h(θA;ε)≤bdν(ε)

)
dµ(θA)

=
∫
1θA≤a1θA∈Sκ(θA, {θB : θB ≤ b})dµ(θA)

=
∫
1θA≤aκ(θA, {θB : θB ≤ b})dµ(θA)

= P(θA ≤ a, θB ≤ b) ,

where we have also used µ(S) = 1 and Fubini’s theorem. Thus, θ d= (θA,h(θA, ε)) when

θA, ε are independently drawn from µ, ν respectively.
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