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Abstract

This paper studies the principal-agent framework in which the principal (e.g., the
decision-maker or the seller) wants to implement his �rst-best action that is monotone
in the unknown state. The principal privately selects a signal structure about the state
of the agent (e.g., the sender or the buyer) whose preferences depend on the action
and potentially on the state as well as on a privately known agent�s type. The agent
privately observes the signal generated by the signal structure and sends a message to
the principal. We show that by randomizing between two perfectly informative signal
structures, the principal can elicit perfect information from the agent about the state
and implement the �rst-best action regardless of the agent�s type. We provide the
precise characterization of such signal structures. The key idea is that signal structures
form posterior beliefs, which induce actions that react oppositely to agent�s messages.
This sustains agent�s truthtelling and allows the principal to perfectly learn the state
and implement his �rst-best decision. As to the economic application, we consider the
bilateral-trade model and show that the seller can extract the full surplus from the
privately informed buyer with non-quasilinear preferences.

JEL classi�cation: C72, D81, D82, D83

Keywords: information design; Bayesian persuasion; mechanism design, surplus
extraction.

1 Introduction

This paper studies the bene�ts of private information design as a novel implementation tool
in economic environments. The term �private information design� refers to a situation in
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which the precision of the signal structure, i.e., the information technology, which generates
players�information and is a choice of the information designer, is privately known to the
designer only. At the same time, the information generated by the technology remains private
knowledge of the addressee. Speci�cally, we apply the private information design to the
general principal-agent framework. As the main result, we show that the principal can elicit
perfect information from the agent and implement her �rst-best outcome in a simple way by
privately designing the agent�s signal structure.
Before discussing the results, we start with a brief introduction of the economic

environment. The generality of our principal-agent framework stems from several factors.
First, the agent�s preferences are of the general form rather than quasi-linear (as commonly
assumed in the mechanism design), or quadratic (which is the standard assumption in models
of delegation or communication). Second, the agent�s information is multidimensional.
Speci�cally, it is represented by the state and the agent�s type (or simply the type). The
state a¤ects the payo¤s of both players. It re�ects, for example, the product quality, which
determines the valuation of the object by the buyer and is proportional to the cost of
the seller. The agent�s type a¤ects the payo¤ of the agent only. It broadly re�ects the
characteristics of the agent�s payo¤ function, for example, the sensitivity of her preferences
with respect to the state and payment, the magnitude of her risk-aversion, etc. As a special
case, the agent�s preferences may be independent of the state and/or the type. In our leading
economic application� the bilateral-trade model� the key di¤erence between the state and
the type is that the agent�s payo¤ is (weakly) monotone in the state, while the dependence
on the type can be arbitrary. Another key di¤erence, which is also the third factor, is that
the agent is a priori perfectly and privately informed about her type, but uninformed about
the state. The uncertainty about the state is a key motive in an interaction between the
agent and the principal.
The role of the principal in our framework is dual. First, he wants to implement an

action, which is a monotone function of the state. In turn, the action monotonically a¤ects
the payo¤ of the agent. Second, the principal selects a private signal structure of the agent.
This implies that the principal randomizes between publicly known signal structures, where
the realized signal structure is known to the principal only. Once the principal assigns this
signal structure to the agent (without informing the agent about it), the structure generates
a signal about the state. The signal is privately observed by the agent, who then sends a
report about it to the principal. Finally, the principal takes an action based on the report
and the realized signal structure.
The �rst main result of the paper establishes that the principal can elicit perfect

information about all states and implement his �rst-best decision regardless of the agent�s
type. That is, perfect implementation is robust to the agent�s privately known preferences
under some local conditions on her preferences. Moreover, it can be achieved in a simple
way by randomizing between two deterministic and perfectly informative signal structures
(called signal functions). That is, each signal function maps the state into a single signal,
and knowing this function allows one to perfectly infer the state from the agent�s signal.
The key idea behind this result is that a randomization between signal structures can

sustain agent�s truthtelling due to the uncertainty about the impact of her message on the
principal�s action, which is also based on the realized signal structure. The principal can
exploit this uncertainty by selecting signal functions with the �opposite monotonicities�in
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the state. That is, a signal generated by one signal function is increasing in the state, while
the signal generated by the other signal function is decreasing. As a result, the posterior
states, which are induced by the signal under di¤erent signal functions, react to the agent�s
message in opposite ways. Because the principal�s action is monotone in the state, and the
agent�s payo¤ is monotone in the principal�s action, di¤erent reactions of posterior states
induced by the agent�s message create the trade-o¤ for her. Speci�cally, any distortion of
the signal by the agent in an attempt to increase her payo¤ under one signal function is
o¤set by the marginal losses under the other signal function. By balancing these e¤ects
via properly selecting signal functions, the principal can sustain agent�s truthful reporting.
Finally, because the principal knows the realized signal function, he can infer the state from
the agent�s report and implement his �rst-best action.
Furthermore, this result is robust to the agent�s privately known type under the

separability condition on the agent�s payo¤. This condition requires the agent�s marginal
payo¤ with respect to the action at the principal�s �rst-best action be factorizable into
separate functions of the state and the type. Notably, this condition is local and holds, for
example, if the payo¤ function depends on the di¤erence between the principal�s action and
the state. As a result, it holds for a broad range of payo¤ functions. An implication of this
condition is that the �rst-order conditions in the agent�s problem of maximizing the posterior
payo¤ and, hence, the optimal signal structures, become invariant to the agent�s type.
Potential applications of our results can be illustrated by the following example.1 Consider

an organization (e.g., a university, a �rm, etc.) with a standard vertical organizational
structure: the upper leadership, the middle management, and regular employees. The
upper leadership wants to collect the decision-relevant information from employees about
some parameter, say, the perceived organizational e¤ectiveness, by conducting a survey.
The employees� responses, however, are aggregated and reported by the middle manager
whose bene�ts (reputation, bonuses, career opportunities) are increasing in this parameter.
The manager thus has the incentive to misreport the acquired information.2 In order to
preclude her manipulations, the upper leadership can randomize between two surveys whose
questions are known to the leadership, but not to the manager.3 The key idea is that the
survey questions are formulated quantitatively, where the relationship between the reported
number and the parameter� that is, an increasing or a decreasing signal function� is known
only to the upper leadership. One survey, for example, might ask respondents to rate
the department�s e¤ectiveness on a scale of 0 to 100, which corresponds to an increasing
signal function. The other survey, however, would ask to evaluate the ine¤ectiveness, with a
score of 100 indicating a completely unproductive and/or mismanaged department. Because
the middle manager remains uncertain about the actual survey upon receiving employees�
responses, then misreporting would distort the signal in the �wrong direction�with a positive
probability and thus stochastically penalize her.
As the leading economic application of our framework, we consider the generalized

bilateral-trade model with non-quasilinear preferences and multidimensional information

1I am thankful to Heski Bar-Isaac for suggesting it.
2In a survey by the consulting �rm McKinsey & Company (2007), 36% of top executives responded that

managers hide, restrict, or misrepresent information at least �somewhat�frequently.
3It is also assumed that the manager cannot access the questions in another way, for example, by spying

on employees.
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of the buyer. Similar to Bergemann and Pesendorfer (2007) and Li and Shi (2019), the
seller determines: i) the terms of trade, i.e., a mechanism, which enforces an allocation and
payments on the basis of the buyer�s report; and ii) the precision of the buyer�s information,
i.e., her private signal structure.4 In our model, the buyer�s information is represented by two
variables: the state and the type. The state re�ects the product quality, which determines
the buyer�s willingness to pay for the product and can also a¤ect the seller�s payo¤.5 The
buyer�s type a¤ects her payo¤ only. The players�payo¤s are increasing in the state, while the
dependence of the buyer�s payo¤ on her type is arbitrary. The buyer is a priori uninformed
about the state and perfectly informed about her type. Upon observing a private signal
generated by the signal structure and learning the type, the buyer sends a message to the
mechanism, which enforces the terms of trade. Similarly to the main framework, the output
of the mechanism depends on both the buyer�s message and the privately known signal
structure. This creates the uncertainty for the buyer regarding the impact of her message on
the mechanism. The seller�s preferences are quasilinear and depend on the state only. The
goal of the seller is to maximize the surplus extracted from the buyer.
Our second main result shows that the seller can extract the full surplus from the buyer

upon eliciting the perfect information about the state. This result is also robust to the
buyer�s knowledge of her type under local conditions on her payo¤ function and achieved
by employing private signal structures similar to those in the implementation model. The
only di¤erence is that it they are applied to the target subset of states in which the
buyer�s willingness to pay (that is, the highest payment, which make her indi¤erent between
trading and taking an outside option) exceeds the seller�s payo¤ from keeping the object.6

Speci�cally, the optimal private signal structure randomizes between two signal functions
with the opposite reactions of signals to states. Also, the seller sells the product if and only
if the posterior state belongs to the target subset and charges the buyer with her willingness
to pay in each posterior state. Then, the opposite monotonicities of signal functions in the
state imply the opposite monotonicities of buyer�s payments in her message under these
signal functions. That is, any marginal bene�ts from distorting the observed signal in an
attempt to reduce the payment under one signal function are o¤set by the higher payment
under the other signal function. This trade-o¤ sustains the incentive-compatibility of the
mechanism. Furthermore, it does not depend on the absolute value of the buyer�s payments.
As a result, the mechanism can extract the full surplus upon learning the state by charging
the buyer with her willingness to pay, which does not depend on the buyer�s type.
In this light, our paper extends the related models in the mechanism design literature

in three dimensions. First, it does not assume that the buyer�s preferences are quasilinear.
It is a conceptual extension. If the parties�preferences are quasilinear in the state, and the
seller�s payo¤ from the product is constant, then he can extract the full surplus by informing
the buyer whether her valuation of the object is above or below that of the seller and setting

4In practice, sellers often allow buyers to try or test the product before purchasing, provide a demo version
of the product, or let buyers gather additional information about products in order to assess their quality.

5In general, the buyer�s and seller�s valuations can depend on the same information. For example, if there
is another market in which buyers� valuations are correlated with the product quality, then this quality
determines the seller�s expectation about his opportunity cost and, hence, his valuation of the object.

6For low states, the precision of the buyer�s information is not substantial. In fact, the seller can select
identical perfectly informative signal functions for these states. Thus, the buyer perfectly infers the state
from the signal.
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the price at the higher posterior value (Saak, 2006). This construction, however, cannot be
extended to setups in which the players�preferences take a more general form. For example,
if the buyer is risk-averse, then hiding information about the product valuation reduces her
willingness to pay and, as a consequence, does not allow the seller to extract the full surplus.
In addition, if the seller�s payo¤ also depends on the buyer�s type, then he must also learn
this information before making a decision about selling the object. Otherwise, there is a
chance of selling the object whose value to the seller is above the price. This results in the
allocative ine¢ ciency, which does not allow the seller to extract all gains from trade.
Second, we show that the full surplus extraction is robust to the buyer�s privately

knowledge of her preferences. It is a hard and generally unsolvable problem even if the
seller uses the private information design in the simplest model with quasilinear preferences
(Krähmer, 2020). As we show, the problem can be circumvented under two conditions on the
buyer�s payo¤ function. First, the buyer�s willingness to pay is solely determined by the state
(i.e., the product quality). Second, the buyer�s marginal payo¤with respect to the payment at
the payment equal to the buyer�s willingness to pay can be factorized into separate functions
of the state and the type. Notably, both conditions are local as they must hold only for
the payment equal to the buyer�s willingness to pay or equivalently, along the diagonal in
the state-payment space. In the leading example, we show that these conditions hold for all
payo¤ functions that depend on: i) the di¤erence between the state and the payment; and ii)
the type. This class of functions is very broad and includes many commons ones, for example,
linear-quadratic and hyperbolic absolute risk aversion (HARA) functions. In turn, the latter
one includes such functions as linear, quadratic, exponential (constant absolute risk-averse,
isoelastic (constant relative risk-averse), and logarithmic. For these functions, the buyer�s
type represents the parameter, which determines the degree of risk aversion. Because this
information is the buyer�s private knowledge, the seller may be uncertain about the shape
of the payo¤ function, for instance, linear or exponential. However, he is still able to extract
the full surplus by using the private signal functions, which are robust to the buyer�s private
information about her type.
Third, in contrast to most of the literature on the full surplus extraction, the set of

states in our model is continuous. It is also not a purely technical extension. The reason
is that eliciting information about discrete states is a less di¢ cult problem, since the set
of states that the buyer can mimic and, thus, the set of the buyer�s incentive-compatibility
constraints, is substantially smaller. Importantly, the buyer cannot distort the state locally
by mimicking nearby states. However, the local incentive-compatibility plays a crucial role in
the mechanism design (Myerson, 1981). Extracting both perfect information and full surplus
from a continuum of states is a more complicated problem as the buyer can mimic states
arbitrarily close to the actual one.

Literature

The most related paper from the technical aspect is a recent work by Ivanov and Sam
(2022) who �rst suggested the idea of randomization over signal functions with the opposite
monotonicities in the state to extract information from the sender in the cheap-talk model.
Despite the similarity in private signal structures, the main di¤erence between the two papers
is that our environment is broader in several dimensions. The �rst dimension is the intensity
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of the con�ict of interest with respect to the principal�s action. It is not extreme in cheap-talk
models. That is, even though players prefer di¤erent outcomes� the state-action pairs� the
di¤erence between the �rst-best outcomes is relatively small. Our setup, on the other hand,
allows for any level of con�ict of interest, including extreme cases. For example, in the
bilateral-trade model, the buyer prefers to minimize her payment to the seller while the
seller wants to maximize it regardless of any characteristics of the model. Because of the
extreme con�ict of interest with respect to payment, eliciting meaningful information from
the buyer becomes a substantially harder problem. For example, using the mechanism design
alone does not allow the seller to extract the full surplus from the privately informed buyer
(Myerson, 1981). The second crucial di¤erence between the two papers is that standard
cheap-talk models, including Ivanov and Sam (2022), assume the monotonicity of the agent�s
�rst-best action in the state. That is, the agent bene�ts from a higher action if the state
increases.7 Our setup does not require this assumption. Furthermore, the agent�s payo¤ can
be independent of the state. Finally, Ivanov and Sam (2022) focus mostly on the case of the
ex-ante uninformed sender, while the agent in our model can be privately informed about
her type. As a result, our framework covers a substantially broader class of models than
their.
In the context of the mechanism design, the most relevant paper to ours is Krähmer

(2020) who �rst used the private information design to demonstrate the possibility of
the full surplus extraction in the bilateral-trade model. There are several key distinctions
between our and Krähmer�s papers. First, he considers the quasilinear preferences of the
buyer, whereas the buyers�preferences in our model are of a general form. Second, Krähmer
demonstrates the full-surplus extraction result for an a priori uninformed buyer only, while we
establish it even if the buyer is privately informed about her type. Third, Krähmer�s and our
constructions utilize conceptually di¤erent properties of private signal structures to extract
the full information and surplus from the buyer. Signal structures in Krähmer (2020) are
designed to monitor the buyer and detect his deviations from truthtelling. In particular, each
signal structure is endowed with an individual signal set. This set is privately known to the
seller, while the buyer privately observes the signal realization only. Thus, after receiving an
�incorrect�signal, the seller infers that the buyer lies and takes a penalizing action. A threat of
this action enforces the buyer�s incentive-compatibility.8 In our model, the signal structures
share a common signal space, which implies that the buyer�s deviations are undetectable.
However, a randomization between signal structures creates the uncertainty for the buyer
about her payments contingent on the realized signal structure. As a result, signal distortions
create a trade-o¤between her marginal bene�ts and losses. Fourth, a private signal structure
in our model randomizes between two deterministic signal structures, whereas private signal
structures in Krähmer (2021) are based on a randomization over a continuum of signal
structures with individual signal spaces. Finally, our construction employs the continuity of
the state space, whereas Krähmer�s approach relies on its discreteness.
Our paper is also related to the literature on the buyer�s surplus extraction by using

the mechanism and/or information design. This topic drew signi�cant attention due to a
seminal work by Crémer and McLean (1988), who demonstrated the possibility of the full
surplus extraction by using the mechanism design approach, which employs the correlation

7Formally, the payo¤ function of the agent must be strictly supermodular.
8Krähmer (2021) uses a similar idea in the cheap-talk context.
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among buyers�values. On the other hand, recent developments in information design inspired
by Kamenica and Gentzkow (2011) have demonstrated that it can also be a powerful tool
for the seller to extract surplus from the buyer(s). Lewis and Sappington (1994), Johnson
and Myatt (2006), Bergemann and Pesendorfer (2007), Esö and Szentes (2007), Ganuza and
Penalva (2010), Li and Shi (2019), and Ivanov (2021) show that the seller(s) can bene�t by
designing or a¤ecting the buyers�information about the product in standard bilateral trade
or auction environments. Ivanov (2013) and Hwang et al. (2019) demonstrate the same e¤ect
in competitive markets with horizontally di¤erentiated products. Bergemann and Wambach
(2015) show that the seller can extract the full surplus by disclosing information to the buyer
gradually over time. Zhu (2021) and Larionov et al. (2021) consider the implementation
problem with multiple agents who can acquire additional information about their types.
They demonstrate the possibility of implementing any social choice rule by using Shannon�s
(1949) encryption technique. Pastrian (2021) demonstrates the full surplus extraction in the
reduced form framework of McAfee and Reny (1992) with a behavioral subset of buyer�s types
that are always truthful. Fu et al. (2021) consider a setup with a �nite number of possible
distributions of buyers�values, where the seller has access to a �nite number of independent
draws from the true distribution. They establish that the full surplus extraction is feasible
if the number of draws is large enough. Neither of these papers, however, considers private
signal structures.
The rest of the paper is organized as follows. Section 2 introduces the general

implementation model. Section 3 provides the main result for this framework. Section 4
applies these results to the bilateral-trade model. Finally, Section 5 concludes the paper.

2 Model

We consider the framework with two players, an agent (she) and a principal (he). The
principal�s goal is to implement his �rst-best (or ideal) action y (�) 2 A � R from a closed
and convex action setA, where y (�) depends on the ex-ante unknown state �. The state � is a
random variable drawn from the state space � =

�
�; ��
�
� A according to a continuous density

f (�), such that f > 0. (Hereafter, u > 0 for a function u : X ! Y means u (x) > 0 for all
x 2 X.) We assume that y (�) is continuous and strictly increasing in �. As a normalization,
it is without loss of generality to put y (�) = �.9 Thus, � is also a set of the principal�s ideal
actions induced by states.
The agent�s payo¤ is given by the function V (a; �; 
), which depends on the principal�s

action a, the state �, and the privately known buyer�s type (or type) 
. As a special case,
V can be independent of � and/or 
. The type 
 is drawn randomly from the type space T
according to the cdf H (
). In general, we do not impose any restrictions on T and H (
),
however, there can be bounds on T for some speci�c V in order to guarantee that the payo¤
function respects the conditions imposed below. The variables � and 
 are independent.
We assume that V (a; �; 
) is continuously di¤erentiable in (a; �) and pseudo-concave in

a for all (a; �; 
) 2 �2 � T.10 Next, consider the function V 0a (a; �; 
), which represents the
9Otherwise, if y (�) 6= �, then the monotone transformation z = y (�) results in y (z) = z.
10A di¤erentiable function V (a) is pseudo-concave on a convex set A � R if for every (a; y) 2 A2,

V (a) < V (y) implies V 0 (a) (y � a) > 0. If V 0 (y) = 0 for y 2 A, then y is a maximizer of V (Proposition 2.4
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agent�s marginal payo¤ with respect to the principal�s action. This function has another
interpretation, which we employ through the paper. Because the principal wants to match
the action to the state, V 0a (a; �; 
) can be interpreted as the agent�s marginal payo¤ from
inducing the principal�s (wrong) posterior belief that the state is a rather than �. In other
words, it represents the agent�s marginal bene�ts or losses from manipulating the principal�s
action via his posterior belief. We impose the following separability condition on this function.
Speci�cally, for a given subset of states �0 � �, we require that V 0a (�; �; 
) at a = � can be
expressed as

V 0a (�; �; 
) = g (
) � (�) for (�; 
) 2 �0 �T; (1)

where g (
) > 0 for all 
 2 T and � (�) 6= 0 for all � 2 �0. That is, the agent�s marginal
payo¤ with respect to the action (or, equivalently, the induced posterior state a) at point
a = � can be factorized into g (
) and � (�), which are sole functions of the agent�s type 

and state �, respectively. For a given state �, the condition (1) is local as the factorization is
required at the single point a = � only. Because g > 0, this implies that V 0a (�; �; 
) R 0 if and
only if � (�) R 0 for � 2 �0. For concreteness, hereafter we assume that � (�) < 0 for � 2 �0.
This results in V 0a (�; �; 
) < 0 for (�; 
) 2 �0 �T. The case of � (�) > 0 is symmetric.
Signal structures/functions. A signal structure � (sj�) is a probability distribution

over signals s conditional on the state �. A signal set S� � R is the support of �. A signal
structure � is called a signal function if it maps each state � 2 � into a signal s = � (�).
In this case, the signal set S� is the image of �. A signal function is perfectly informative if
it is injective. Hereafter, we restrict the codomain C of each signal function � by its image
S�. Hence, a perfectly informative � : � ! C is bijective and thus has the inverse function
(hereafter called the inverse) ' = ��1 : C ! �', where �' is the image of '. Similarly to
signal functions, we restrict the codomain of ' by its image �'. Because of the restrictions
on the codomains of � and ', the existence of a function � : � ! C (or ' : C ! �) also
implies that the image of � is C (or �). Let I be the space of all signal structures. A private
signal structure � 2 �I is a probability distribution over signal structures whose realization
� is privately observed by the principal. Denote � (�) the probability of drawing � by �, and
I� the support of �.
Timing. The game is played as follows. The agent is a priori uninformed about � and

perfectly informed about 
. That is, her information about � is determined by the prior
density f (�). At the beginning of the game, the principal publicly selects a private signal
structure � 2 �I and an action y� (m).11 Then, the state � and the signal structure � 2 I� are
randomly drawn according to f and �, respectively, where � becomes the private information
of the principal.12 The agent then privately observes a signal s generated by � from � and
sends a message m from the message space M to the principal who takes an action y� (m).
Hereafter, we assume that M = S =

S
�2I�

S�, that is, the message space is large enough to

convey all information about signals.

in Hadjisavvas et al., 2005).
11Formally, the principal�s action y can also be based on the private signal structure �. Because neither of

our results is driven by the dependance of y on �, we omit it for simplicity of notation.
12Since the probability � (�) does not depend on �, � and � are independent random variables. Hence,

knowing � does not provide any additional information about � to the principal.

8



Two comments are necessary here. First, the principal can either commit to action y� (m)
ex-ante, or it can be interim-optimal, that is, endogenously determined as a solution to
the problem of maximizing the the principal�s expected payo¤ conditional on the available
information, � and m. In other words, the nature of the principal�s action y� (m) is not
essential. Second, because y� (m) depends on the signal structure �, this implies that � is
veri�able ex-post. That is, the agent can infer ex-post all information that can be jointly
derived from her signal s and the signal structure �. Obviously, this information is weakly
more precise than the information that the principal can derive from � and m (with equality
if the agent reports truthfully).

Conditional on � and y� (m), the following subgame is the decision problem with a
privately and imperfectly informed agent. A strategy of the agent m (s; 
; �) 2 �S speci�es
a (possibly random) message m given her information: the observed signal s 2 S, the type

, and the private signal structure �. An optimal strategy m� (s; 
; �) is a maximizer of the
agent�s posterior payo¤

EV (mjs; 
; �) =
Z
I�

Z
�

V (y� (m) ; �; 
) dq (�js; �) d� (�) ; (2)

where q (�js; �) 2 �� is the agent�s posterior belief, which is a probability distribution over
� derived from s and � by using Bayes� rule.13 We say that the state � is posterior and
induced by a signal s under a private signal structure � if � is in the support of q (:js; �).
In particular, if the support I� of � contains only perfectly informative signal functions �,
then � = '� (s) = ��1 (s) represents the posterior state induced by a signal s under a signal
function �, and thus the support of q (�js; �) is given by f'� (s) : � 2 I�g.
Finally, the agent�s truthful strategy is optimal under � if m� (s; 
; �) = s is in the set of

maximizers of (2) for � and all (s; 
) 2 S�T. Equivalently,

EV (sjs; 
; �) = max
m2S

EV (mjs; 
; �) for all (s; 
) 2 S�T. (3)

3 Perfect information extraction and implementation

Before starting the general construction (hereafter, a construction) of private signal
structures, which elicit the perfect information about the state from the agent and allow
the principal to implement his ideal action, we provide an illustrative example. This
example shows that perfect implementation can be achieved by randomizing between two
perfectly informative signal functions. Notably, we consider the agent�s preferences, which are
independent on the state and the agent�s type. (The second example below considers general
preferences, which depend on both state and type.) The state-independent preferences of the
agent make the principal�s problem more di¢ cult because two reasons. First, because the
information about the state has no value to the agent, the principal cannot exploit the agent�s
incentive to acquire this information for his bene�t.14 Second, the agent is more willing to

13Since 
 and � are independent, q (�js; �) does not depend on 
.
14In the case of state-dependant agent�s preferences, her incentives to acquire information can play a critical

role for information extraction. For example, Ivanov (2015, 2016) shows that the principal can elicit perfect
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share her information upon learning it if her preferences are closely aligned with those of the
principal. Since the principal�s ideal action depends on the state, while the agent�s one does
not, the players�preferences are substantially con�icting. Together, these factors suppress
the agent�s incentives to share her information truthfully.

3.1 Example A: state-independent agent�s preferences

Suppose that the state is uniformly distributed on the unit interval, i.e., f (�) = 1; � 2 � =
[0; 1] and the agent�s payo¤ function is of the form

V (a; �; 
) = V (a) = �ab;

where a 2 A = R+ and b � 1 is a known parameter. Because V is strictly decreasing in a
for a � 0, the agent�s payo¤ is maximized at a0 = 0.15
Now, consider the private signal structure �o, which randomizes with equal probabilities

between two perfectly informative signal functions

�1 (�) = � and �2 (�) =
�
1� � b+12

� 2
b+1
: (4)

Because the images of functions �1 and �2 are identical and equal to S = [0; 1], then any
agent�s deviation from truthtelling is undetectable by the principal. On the other hand, the
agent cannot infer the realized signal function and, thus, the state � upon observing the
signal s. In particular, a signal s generates the agent�s posterior beliefs

q (�js; �o) = Pr f�js; �og =

8>><>>:
1

1+j'02(s)j if � = '1 (s) ;

j'02(s)j
1+j'02(s)j if � = '2 (s) , and

0 if � =2 f'1 (s) ; '2 (s)g ;

(5)

where

'1 (s) = �
�1
1 (s) = s and '2 (s) = ��12 (s) =

�
1� s b+12

� 2
b+1

are the inverses of �1 and �2, respectively. Denote

qi (s; �) = Pr f� = 'i (s) js; �g = q ('i (s) js; �) (6)

the probability of the posterior state �i = 'i (s).
Suppose that the principal believes that the agent is truthful. Then, sending a message

m 2 S induces the action
y�i (m) = �i = 'i (m) ; i = 1; 2

information from the agent and implement the ideal actions in the cheap-talk framework by exploiting these
incentives in a dynamic way.
15Formally, V 0a (0) = 0 for b > 1, which violates the condition V 0a < 0. However, since V (a) is strictly

decreasing in a, neither of our results is a¤ected by this technicality.

10



Figure 1: Signal functions �i (�) ; i = 1; 2 and the posterior probability q1 (s; �o) for f (�) = 1
and V (a) = �a2.

under the signal function �i. Therefore, the agent posterior payo¤ (2) is given by

EV (mjs; �o) = q1 (s; �o)V (y�1 (m)) + q2 (s; �o)V (y�2 (m))
= q1 (s; �

o)V ('1 (m)) + q2 (s; �
o)V ('2 (m))

= �q1 (s; �o) ('1 (m))b � q2 (s; �o) ('2 (m))b :

As an illustration, consider the quadratic payo¤ function V (a) = �a2, i.e., b = 2. Fig. 1
depicts the signal functions �1; �2, and the posterior probability q1 (s; �o) for this function.
In this case,

'2 (s) = �2 (s) =
�
1� s3=2

�2=3
;

q1 (s; �
o) =

�
1� s3=2

�1=3
s1=2 + (1� s3=2)1=3

; q2 (s; �
o) =

s1=2

s1=2 + (1� s3=2)1=3
, and

EV (mjs; �o) = �
�
1� s3=2

�1=3
m2 + s1=2

�
1�m3=2

�4=3
s1=2 + (1� s3=2)1=3

:

By using basic calculations, it is easy to verify that EV (mjs; �o) is maximized at m = s for
all s 2 S, i.e., the agent reports truthfully.
Intuitively, this example demonstrates the keys factors of private signal structures, which

sustain agent�s truthtelling. Speci�cally, the induced posterior states �1 = '1 (m) and �2 =
'2 (m) associated with signal structures �1 and �2, respectively, react oppositely to an agent�s
message m. Next, the principal�s ideal action y (�i) = �i is monotone in the induced posterior
state �i; i = 1; 2. Finally, the agent�s payo¤ V (a; �; 
) is monotone in the principal�s action
a. Together, these factors create the trade-o¤ for the agent: any distortion of the signal in
an attempt to marginally bene�t from the receiver�s action taken under one signal function
are o¤set by the marginal losses caused by the action taken under the other signal function.
At the same time, the magnitude of the trade-o¤ between the agent�s marginal bene�ts
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and losses from distortions is driven by the shapes of signal functions, speci�cally, their
inverses '1 and '2. Their e¤ect on the trade-o¤ is dual. First, they determine the marginal
e¤ects of an agent�s message on the agent�s posterior payo¤ via actions taken under di¤erent
signal structures. Second, they reallocate the agent�s posterior beliefs between the posterior
states. We now explain in detail the relationship between the shapes of the inverses and their
overall e¤ect on the agent�s incentives to report truthfully.
In order to explain the �rst e¤ect, recall that the principal�s action ai = y�i (m) taken

under a signal structure �i in response to the agent�s message m is equal to the induced
posterior state �i, which is given by the inverse function 'i (m). That is, ai = y�i (m) =
�i = 'i (m). As a result, the shape of 'i (m) determines the marginal e¤ect of an agent�s
message m on the principal�s action ai. Next, note that the agent�s payo¤ function V (a) is
strictly concave in the principal�s action a for b > 1. Hence, the agent�s marginal bene�ts
jV 0 (a)j from a decrease in a are larger for high values of a. As a result, the overall e¤ect
of signal distortions on the agent�s posterior payo¤ depends on the interaction between the
inverses '1 and '2 and the marginal payo¤ V 0 (a). Speci�cally, note that the �rst inverse
'1 is linear in s. Therefore, the marginal e¤ect of the signal s on the principal�s action
a1 = '1 (s) is constant, '01 (s) = 1. On the other hand, because '2 is strictly concave, the
absolute value of the marginal e¤ect j'0 (s)j on a2 = '2 (s) is increasing in s. This implies
that the �counter-moving�action a2 will increase at the faster rate in response to downward
distortions if the signal s is high, whereas the rate of a decrease in the �co-moving�action a1
is constant. In other words, the marginal penalty from downward distortions caused by the
unfavorable action a2 relative to the bene�ts from the favorable action a1 is increasing in an
agent�s signal s. Because the agent has the stronger incentives to decrease the action a1 if it
high and, thus, is associated with a high signal s, then understating such signals will result
in the higher losses from the action a2. The balance between these forces sustains agent�s
truthtelling.
Second, the shapes of the inverses reallocate the agent�s posterior beliefs between posterior

states �1 = '1 (s) and �2 = '2 (s). As follows from (5), the higher absolute value of the slope
j'02j of the inverse '2 decreases the probability q1 (s; �) of the posterior state �1 = '1 (s)
and increases the probability q2 (s; �) of the posterior state �2 = '2 (s). Because the value of
j'02 (s)j is increasing in s, the posterior probability of �2 and, hence, the probability of the
penalizing action a2 is increasing in s.
Given these observations, it is easy to notice the complementarity between the marginal

e¤ects of actions and their probabilities on the agent�s incentives to report truthfully.
Speci�cally, an increase in the slope j'02 (s)j in response to the higher signal s results in both
the higher marginal penalty from the counter-moving action a2 and the higher probability
q2 (s; �) of inducing this action. In other words, the higher magnitude of one e¤ect intensi�es
the second e¤ect as well. Altogether, this implies that the agent�s expected losses from
downward distortions are increasing in her signal.
Finally, it is worth noting that the agent remains truthful regardless of the precision

of her information (measured, for instance, by the variance of posterior states). In fact, if
ŝ = 2�2=3 ' 0:63, then the agent is perfectly informed about the posterior state �̂ = ŝ.
However, she still cannot use this information in her favor.
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3.2 Optimal private signal structures

We start the general construction with the following lemma. It demonstrates how the sender�s
posterior beliefs are shaped by a private signal structure, which randomizes between two
perfectly informative signal functions.

Lemma 1 (Ivanov and Sam, 2022) Consider a private signal structure �, which randomizes
between di¤erentiable signal functions �1 : � ! S and �2 : � ! S with probabilities p1 2
(0; 1) and p2 = 1� p1, respectively, where S = [s0; s1] ; s1 > s0, and �0i 6= 0. Denote 'i = ��1i
the inverse of �i. Then,

qi (s; �) =
pif('i (s)) j'0i (s)j

p1f('1 (s)) j'01 (s)j+ p2f('2 (s)) j'02 (s)j
: (7)

Intuitively, the lemma highlights a key feature of signal functions, speci�cally, the
possibility to induce the agent�s posterior beliefs qi (s; �) about posterior states �1 = '1 (s)

and �2 = '2 (�) anywhere between 0 and 1 by varying the ratio
j'02(s)j
j'01(s)j of the slopes of the

inverses '0i. To see this feature, suppose p1 = p2 =
1
2
and f is uniform, i.e., f (�) = 1

���� .
It follows then that q1 (s; �) = 1

1+
j'02(s)j
j'01(s)j

and q2 (s; �) = 1 � q1 (s; �). By varying the ratio

j'02(s)j
j'01(s)j between 0 and 1, the principal can induce qi; i = 1; 2 anywhere between 0 and 1. An
implication of this lemma is that the principal can reallocate the agent�s posterior beliefs
from less to more favorable posterior states, for example, to those in which the agent�s and
the principal�s preferences are more aligned or the principal receives higher bene�ts.16

General construction. Consider the signal space S = [s; �s] and a private signal
structure �, which randomizes with equal probabilities between two perfectly informative
signal functions �1 and �2 with the inverses 'i = ��1 : S ! � de�ned as follows. First,
select a di¤erentiable '1 : S ! �, such that '01 > 0. Thus, '1 (s) = � and '1 (�s) = ��. The
principal�s problem is to derive '2 : S! �, such that the private signal structure � sustains
the agent�s truthtelling and, thus, allows the principal to implement y (�) upon inferring �
from m and �i. Importantly, the signal sets, that is, the images of functions �1 and �2 are
identical and equal to S. First, this implies that the agent is unable to infer the realized �i
upon observing the signal s. Second, any agent�s deviation from truth telling is undetectable
by the principal.
Given the agent�s truthful strategy m� (s; 
; �) = s for (s; 
) 2 S�T, the principal�s best

response to message m under the signal structure �i is

y�i (m) = 'i (m) ; i = 1; 2: (8)

16Ivanov and Sam (2022) explain in detail how the slopes of the inverses '0i; i = 1; 2 can be used to
reallocate the posterior probabilities qi (s; �) for principal�s bene�ts in the cheap-talk framework.
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The agent�s problem upon receiving a signal s is to maximize her posterior payo¤ (2)
over messages m 2 S. Using (8), the posterior payo¤ can be expressed as

EV (mjs; 
; �) =
2X
i=1

qi (s; �)V ('i (m) ; 'i (s) ; 
) for (m; s; 
) 2 S2 �T: (9)

Then, the agent�s marginal posterior payo¤ is given by

@

@m
EV (mjs; 
; �) =

2X
i=1

qi (s; �)V
0
m ('i (m) ; 'i (s) ; 
) (10)

=
2X
i=1

qi (s; �)V
0
a ('i (m) ; 'i (s) ; 
)'

0
i (m) :

The truthful strategy of the agent is optimal if and only if

EV (sjs; 
; �) = max
m2S

EV (mjs; 
; �) for all (s; 
) 2 S�T: (11)

By using (10), the �rst-order condition for the agent�s maximization problem (11) is

@

@m
EV (mjs; 
; �) jm=s =

2X
i=1

qi (s; �)V
0
a ('i (s) ; 'i (s) ; 
)'

0
i (s) (12)

= 0 for all (s; 
) 2 S�T:

Next, invoking condition (1) results in

V 0a ('i (s) ; 'i (s) ; 
) = g (
) � ('i (s)) ;

where g > 0 and � > 0. This means that (12) is independent of 
 and thus can be written as

@

@m
EV (mjs; �) jm=s =

2X
i=1

qi (s; �) � ('i (s))'
0
i (s) = 0 for all s 2 S:

By using Lemma 1, (12) can be written as a separable di¤erential equation with respect
to '2 for a given '1:

'01 (s) j'01 (s)j f('1 (s))� ('1 (s)) + '02 (s) j'02 (s)j f('2 (s))� ('2 (s)) = 0; (13)

The equation (13) is identical to equation (9) in Ivanov and Sam (2022) for probabilities
p1 = p2 =

1
2
. By applying their analysis, it follows that '02 < 0 and (13) can be expressed as

'01 (s)h('1 (s)) = �'02 (s)h('2 (s)); (14)

where
h (�) =

p
�f(�)� (�):
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Note that h > 0 due to f > 0 and � < 0.
By Lemma 2 in Ivanov and Sam (2022), the solution to (14) with the boundary condition

'2 (s) = �� is given by:

'2 (s) = 	
�1 �	(�) + 	 �����	('1 (s))� ; (15)

where 	(x) =
Z
h (x) dx is the antiderivative of h.17

In general, a pair of inverses 'i : S ! �; i = 1; 2 related by (15) is not necessarily a
solution to the agent�s maximization problem (11) as the second-order conditions might not
hold. The following regularity condition addresses this issue.

Condition 1 Given �0 � �, � (a; �; 
) = V 0a(a;�;
)
h(a)

is decreasing in a for all (a; �; 
) 2 �20�T .

Notably, this condition is imposed on the model primitives only, that is, the payo¤
function V (a; �; 
) and the prior density f (�). Therefore, the truthful and thus perfectly
informative strategy can be optimal for various pairs f'1; '2g parameterized by the inverse
'1.
It is easier to explain this condition by noting that � (a; �; 
) is the ratio of two functions,

V 0a (a; �; 
) and h (�) =
p
�f(�)� (�). The �rst function V 0a (a; �; 
) is the marginal payo¤with

respect to the principal�s action or equivalently, the induced posterior state. It is decreasing
in a if V (a; �; 
) is concave in a, and increasing if V 0a (a; �; 
) is convex in a. The second
function h (�) re�ects the marginal payo¤ � (�) weighted by the prior density f (�). In this
light, Condition 1 requires the function V 0a (a; �; 
) be �not very convex�in a, and the agent�s
marginal payo¤ � (�) weighted by the prior density f (�) be �relatively decreasing�in � (since
V 0a < 0 and h > 0 imply � < 0).

18

Given these preliminaries, the following theorem establishes the main result of the paper.
Consider the private signal structure ��, which randomizes with equal probabilities between
signal functions �1 = '�11 and �2 = '�12 , such that the relationship between '1 and '2 is
given by (15). Then �� allows the principal to elicit the perfect information about � from
the agent and implement his ideal action y (�) under the above regularity condition.

Theorem 1 Suppose V satis�es (1) and (f; V ) satisfy Condition 1 for �0 = �. Consider
di¤erentiable '1 : S! �; i = 1; 2, such that '01 > 0 and '2 is given by (15), and the private
signal structure �� that randomizes between �1 = '�11 and �2 = '�12 with equal probabilities.
Then the agent�s truthful strategy is optimal under �� for all (�; 
) 2 ��T.

This theorem generalizes Theorem 1 in Ivanov and Sam (2022) in three dimensions.
First, in their model the agent is ex-ante uninformed, while our setup allows the agent to
be privately informed about her type 
. Second, their model assumes the existence of the
agent�s ideal action yA (�) for each state �. Third, they assume the strict supermodularity of
the agent�s preferences in (a; �). This implies the dependence of the agent�s payo¤ on state
�. Our setup does not require the existence of the agent�s ideal action, the dependence of

17Note that '1 (�s) = �� implies '2 (�s) = �, which means that functions '1 and '2 have identical images S.
18If V 0a > 0, then � > 0. In this case, Condition 1 implies that the prior density f (�) must be �relatively

increasing�in �.
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her payo¤ function on the state, or the supermodularity. All these assumptions are replaced
with the strict monotonicity of the agent�s payo¤ in the principal�s action. Speci�cally, recall
that the opposite monotonicities of inverses 'i (s) ; i = 1; 2 in signal s and the monotonicity
of the principal�s action y (�) = � in � imply that the principal�s actions ai = 'i (m) ; i = 1; 2
under di¤erent signal functions �i react oppositely in response to the agent�s message m.
Then, the monotonicity of the agent�s payo¤ V in the principal�s action a implies that the
opposite reactions of 'i (m) ; i = 1; 2 to m are mapped in the opposite marginal payo¤s to
the agent. That is, agent�s misreporting in an attempt to obtain extra gains under one signal
function are o¤set by the extra losses under the other signal function. These marginal e¤ects
are balanced by the relationship (15) between the inverses 'i (s) = 1; 2 in order to sustain
agent�s truthtelling. Notably, the logic above does not depend on the concavity of the agent�s
preferences in a. As a result, theorem holds for non-concave payo¤ functions V as long as
they satisfy Condition 1 and (1).
At the same time, the proofs of the two theorems share common features. In both

theorems, the critical part is to establish the optimality of the agent�s truthtelling strategy
under the private signal structure �. The main technical tension comes from three facts.
First, the agent�s posterior payo¤ EV is a convex combination of pseudo-concave functions
V (a; �; 
), which is generally not pseudo-concave. Second, each payo¤ V ('i (m) ; 'i (s) ; 
)
is a composite function of V and 'i. As a result, the pseudo-concavity of the composite
function is violated if the pseudo-concavity of V in a is dominated by the convexity of
'i (s). Third, '1 and '2 are functionally dependent by (15). Therefore, the posterior payo¤
is pseudo-concave if each composite function V ('i (m) ; 'i (s) ; 
) ; i = 1; 2 is pseudo-concave
in m, and a convex combination of these functions is also pseudo-concave.
Condition 1 resolves all three issues. Speci�cally, the necessary and su¢ cient condition

for the pseudo-concavity of EV (mjs; 
; �) is the pseudo-monotonicity of the marginal
posterior payo¤ @

@m
EV (mjs; 
; �) (Hadjisavvas et al., 2005).19 To show that this function is

pseudo-monotone, we use the results by Quah and Strulovici (2012) who establish conditions
for the pseudo-monotonicity of a convex combination of pseudo-monotone functions. We
apply these conditions to composite functions V ('i (m) ; 'i (s) ; 
) ; i = 1; 2, and use the
functional relationship (14) between '1 and '2. This completes the proof of theorem.

4 Application: bilateral trade

As the leading economic application of the results above, we consider the bilateral trade
model with generalized buyer�s preferences. Speci�cally, her preferences are non-quasilinear
and generally depend on two random variables, the state and the buyer�s type. The buyer is
privately informed about her type 
, which a¤ects her payo¤ only. The seller determines the
buyer�s information about the state �, which can be interpreted as the product quality. As
the main result, we demonstrate that the seller can extract the perfect information about
the state and the full buyer�s surplus by using a private signal structure that randomizes
between two perfectly informative signal functions.

19A function � (x) is pseudo-monotone on a convex set A � R if for every (x; y) 2 A2, � (x) (y � x) � 0
implies � (y) (y � x) � 0. Equivalently, � (x) � 0 implies � (y) � 0 for all y > x.
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4.1 Setup

A buyer (she) and a seller (he) are involved in trading a single indivisible object. The buyer�s
net utility from obtaining the object and making a payment t to the seller is determined
by the payo¤ function V (t; �; 
). Similarly to the general setup above, � denotes the state,
which represents intrinsic characteristics of the object, for example, its quality. It can also
a¤ect the seller�s payo¤ in the case of keeping the object. Also, 
 denotes the buyer�s type,
which represents some properties of her function. This variable has some antecedents in
the mechanism design literature. For instance, in Dworczak et al. (2021), a privately known
variable re�ects the marginal value for money of agents in a market. In our model, the
meaning of 
 is broader. As shown below, it can re�ect the marginal (dis-)utility with respect
to the state � and payment t similarly to Dworczak et al. (2021). In addition, it can determine
the concavity of the buyer�s payo¤ function (i.e., the magnitude of the risk-aversion) or other
characteristics.
The state � is a random variable drawn according to a continuous density f (�) > 0 from

the state space � =
�
�; ��
�
� R+, where �� > �. The type 
 is drawn randomly from the type

space T according to the cdf H (
). The variables � and 
 are independent.

Seller�s preferences. The seller�s preferences are quasilinear, and the seller�s payo¤from
keeping the object in state � is U (�), which is continuous in �. The seller�s goal is to extract
the maximum surplus from the buyer. As a result, he wants to sell the product if the buyer�s
willingness to pay, which is also represented by �, exceeds his payo¤, i.e., � � U (�) at the
highest price that the buyer is willing to accept. Denote the subset of these �target�states
�0 = [� 2 �j� � U (�)]. We assume that �0 is a subinterval of high types, i.e., �0 =

�
�0; ��

�
,

where �0 2 �. It is the case under mild conditions on U (�).20

Buyer�s preferences. The buyer�s payo¤ function V (t; �; 
) is continuously
di¤erentiable in (t; �), pseudo-concave in t, and V 0� (t; �; 
) > 0 > V 0t (t; �; 
) for all
(t; �; 
) 2 �2�T. As a normalization, we assume that not obtaining the object is equivalent
to obtaining the object of quality � = 0 and V (0; 0; 
) = 0. Equivalently, 0 is the value of
the buyer�s outside option, which she receives in the case of not obtaining the object and not
making a payment. Also, t = � represents the maximum payment, which makes the buyer
indi¤erent between paying it for the object and taking the outside option. In other words, �
represents the buyer�s willingness to pay. We assume that this value does not depend on 
.
For example, if V depends on the di¤erence ��t between the object�s quality � and payment
t, then 
 does not a¤ect the maximum acceptable payment t = � (as we show below). At the
same time, the buyer�s payo¤ for t 6= � can depend on 
. That is, for a given state � 2 �,
the payment t = � is a solution to the equation

V (t; �; 
) = 0 for all 
 2 T: (16)

We assume that this equation has a solution for all � 2 �. Furthermore, since V 0t (t; �; 
) <
0, then t = � is the unique solution to (16). This implies

V (�; �; 
) � 0 for all (�; 
) 2 ��T: (17)

20For example, �0 =
�
�0; ��

�
for �0 2 � if U (�) is di¤erentiable, U (�) � �; U

�
��
�
� ��, and U 0 (�) � 1 for

all � 2 �.
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Finally, we assume that the separability condition (1) holds for the subset of target
states �0, i.e., the buyer�s marginal payo¤ with respect to the payment at point t = � can
be expressed as

V 0t (t; �; 
) jt=� = g (
) � (�) for (�; 
) 2 �0 �T; (18)

where g (
) > 0 for all 
 2 T. Because V 0t < 0, it follows that � (�) < 0 for all � 2 �0.
Trade. The terms of trade are enforced by a trading mechanism (hereafter, amechanism)

M de�ned as follows. A mechanismM = (M; Q� (m) ; t� (m)) consists of a message space
M, an allocation rule Q� (m) 2 [0; 1], and a transfer rule t� (m) � 0. Here, Q and t are
the buyer�s probability of obtaining the object and her payment to the seller, respectively.
Importantly, Q and t depend on both the buyer�s message m and the realized structure �
privately known to the seller (i.e., the mechanism).21 This implies that � is veri�able ex-post.
That is, the buyer can infer ex-post all information that can be jointly derived from her signal
s and �. Obviously, this information is weakly more precise than the information that that
seller can derive from � and m (with the equality if the buyer reports truthfully).

Timing. The game is played as follows. The buyer is a priori perfectly informed about 

and uninformed about �. At the beginning of the game, the seller publicly selects a private
signal structure � 2 �I and a mechanismM = (M;Q� (m) ; t� (m)). Then, the state � and
the signal structure � 2 I� are randomly drawn according to f and �, respectively, where �
becomes the private information of the seller.22 The buyer then privately observes a signal s
generated by � from � and decides whether to participate in trade or take the outside option.
In the former case, the buyer sends a message m 2 M to the mechanism M. Finally, the
terms of trade are enforced by the mechanism.

Because � is publicly observable, the following subgame is a standard selling mechanism
with a privately and imperfectly informed buyer. Thus, we can invoke the Revelation
Principle and restrict attention to direct interim incentive-compatible mechanisms, that is,
such that M = S =

S
�2I�

S� and the buyer is truthful for all signals generated by the private

signal structure �. Direct mechanisms are denoted M = (Q� (s) ; t� (s)) hereafter. We also
require mechanisms be interim individually-rational. This implies that the buyer does not
receive a negative posterior payo¤ from trade upon receiving any signal (since the value of
her outside option is normalized to 0). Thus, hereafter we consider only those mechanisms,
which are interim incentive-compatible (IC) and interim individually-rational (IR), i.e., those
which satisfy the following conditions:

EVB (sjs; 
; �) = max
m2S

EVB (mjs; 
; �) for all (s; 
) 2 S�T, (IC) (19)

EVB (sjs; 
; �) � 0 for all (s; 
) 2 S�T, (IR) (20)

21In general, Q and t may also depend on the private signal structure �. Since our results do not rely on
this dependence, we omit it in notation.
22Since the probability � (�) does not depend on �, � and � are independent random variables. Hence,

knowing � does not provide any additional information about � to the seller.
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where

EVB (mjs; 
; �) =
Z
I�

Z
�

Q� (m)V (t� (m) ; �; 
)+(1�Q� (m))V (t� (m) ; 0; 
) dq (�js; �) d� (�) :

Given this framework, we start with an example, which provides the key insights into
the general construction of private signal structures and mechanisms that extract the full
information and the surplus from the buyer.

4.2 Example B: non-quasilinear buyer�s preferences

Suppose that the prior density of states is uniform on the unit interval, that is, f (�) = 1; � 2
� = [0; 1]. The type 
 2 T is drawn randomly according to the cdf H (
). The variables �
and 
 are independent. The seller�s preferences are quasilinear with the payo¤ from keeping
the object U (�), which intersects � once from above at �0 2 �. Thus, the subset of target
states is �0 = [� 2 �j� � U (�)] = [�0; 1].
The buyer�s payo¤ from consuming the product and making a payment t is given by the

function
V (t; �; 
) = v (� � t; 
) ; (21)

where v (x; 
) is strictly increasing, concave, and continuously di¤erentiable in x. Thus,
V (t; �; 
) is concave in t. Also, we put v (0; 
) = 0 for all 
 2 T. This property and (21)
imply that the buyer�s willingness to pay is � for all (�; 
) 2 � � T. That is, (21) satis�es
condition (17). Furthermore, (21) implies

V 0t (t; �; 
) jt=� = �v0x (0; 
) ;

that is, condition (18) holds, where g (
) = v0x (0; 
) > 0 and � (�) = �1.
Next, we verify that Condition 1 also holds. First, note that h (�) =

p
�f(�)� (�) = 1.

Second, because v (x; 
) is concave in x, then V 0t (t; �; 
) = �v0x (� � t; 
) is decreasing in t.
As a result, the function � (t; �; 
) = �v0x(��t;
)

h(t)
is decreasing in t.

An example of function (21) is the linear-quadratic function v (x; 
) = 
x � x2, where

 > 2. In this case, the buyer�s type 
 determines the weight of the linear component in the
payo¤ and, hence, the marginal payo¤ with respect to the di¤erence �� t at t = �. Another
example is the hyperbolic absolute risk aversion (HARA) payo¤ function

v (x; 
) =
1� 




�
�

1� 
x+ �
�

� 1� 




�
;

where � > 0 and �
1�
x+� > 0.

23 Depending on values of 
; �, and �, this form encompasses
many standard payo¤ functions, such as linear, exponential (constant absolute risk aversion),
power (and, hence, constant relative risk aversion), and logarithmic.24 For this payo¤

23The HARA function is de�ned as v (x; 
) = 1�




�
�
1�
x+ �

�

. Adding the constant term � 1�



 �
 is a

normalization, which guarantees that v (0; 
) = 0 for all 
.
24See Ingersoll (1987).
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Figure 2: Signal functions �i (�) ; i = 1; 2 for �0 = 1
3
.

function, the buyer�s type 
 determines the degree of risk aversion. Because the value of

 is the buyer�s private information, the seller can be uncertain about the speci�c shape of
the payo¤ function, for example, power or exponential.
Now, consider the private signal structure �c, which randomizes with equal probabilities

between two perfectly informative signal functions

�1 (�) = �, and

�2 (�) =

�
� if � < �0;
1 + �0 � � if � � �0:

(22)

Fig. 2 depicts signal functions �i (�) ; i = 1; 2. The signal sets, that is, the images of �1
and �2 are identical and equal to S = [0; 1]. Thus, any buyer�s deviation from truthtelling
is undetectable by the seller. Also, the buyer perfectly infers � = s upon observing a signal
s < �0, but is uncertain about � upon observing s � �0. In the latter case, the posterior
probability q (�js; �c) of state � induced by signal s under a private signal structure �c is the
binary distribution, which places probabilities 1

2
on the posterior states

�1 = '1 (s) = s, and

�2 = '2 (s) =

�
s if s < �0;
1 + �0 � s if s � �0:

where 'i = ��1i ; i = 1; 2.
Also, consider the direct mechanism Mc =

�
Qc�i (s) ; t

c
�i
(s)
�
; i = 1; 2 with the message
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setM = S = [0; 1], such that

Qc�i (s) = Q
c (s) =

�
0 if s < �0;
1 if s � �0;

tc�i (s) =

�
0 if s < �0;
'i (s) if s � �0:

Given the pair (�c;Mc), the buyer�s posterior payo¤ is

EVB (mjs; 
; �c) = 0 if m < �0; s 2 S, and
EVB (mjs; 
; �c) = q (�1js; �c)V

�
tc�1 (m) ; �1; 


�
+ q (�2js; �c)V

�
tc�2 (m) ; �2; 


�
=
1

2
v ('1 (s)� '1 (m) ; 
) +

1

2
v ('2 (s)� '2 (m) ; 
)

=

�
1
2
v (s�m; 
) + 1

2
v (m� s; 
) if m � �0; s � �0;

1
2
v (s�m; 
) + 1

2
v (s� (1 + �0 �m) ; 
) if m � �0; s < �0:

It is straightforward to show that EVB (mjs; 
; �c) is maximized at m = s for all (s; 
) 2
S�T, and EVB (sjs; 
; �c) = 0 for all s 2 S. Hence, the interim incentive-compatibility
constraints (19) and the interim individual-rationality constraints (20) hold. Furthermore,
the buyer�s ex-post payo¤ for �i = 'i (s) � �0 is

V
�
'i (s) ; t

c
�i
(s) ; 


�
= v

�
'i (s)� tc�i (s) ; 


�
= v ('i (s)� 'i (s) ; 
) = 0 if s � s0; 
 2 T; i = 1; 2:

This implies that the seller extracts the full surplus in each state � � �0 for any type 
 2 T
upon inferring � from m and �i.
Intuitively, the possibility for the seller to extract the full information and surplus from

the buyer without violating her interim incentive-compatibility and individual-rationality
constraints is driven by a combination of three factors. First, the object is sold to the buyer
if and only if the mechanism infers that the state is above the cuto¤ �0. That is, the object
is allocated to the buyer if and only if her ex-post acceptable payment exceeds the seller�s
ex-post bene�ts from keeping the object. Second, the incentive-compatibility in these state is
sustained by the opposite reactions of the buyer�s payments under di¤erent signal functions.
That is, any buyer�s deviation in an attempt to reduce the payment under one signal function
is o¤set by the larger payment under the other signal function. A proper selection of '1 and
'2 eliminates the buyer�s marginal bene�ts from both local distortions (that is, when s � �0
and m � �0) and global ones (that is, when s < �0 and m � �0) and thus sustains buyer�s
truthtelling.25 As a result, the mechanism perfectly infers the posterior state �i from m and
the realized signal function �i. Third, the above e¤ect does not depend on the absolute values
of buyers�payments. Thus, the seller can charge the buyer with the maximum payment, which
precludes her from selecting the outside option. Because the value of this payment does not
depend on the buyer�s type 
, the mechanism extracts the full surplus from the buyer in all
target states.

25Verifying thatM is interim incentive-compatible for other combinations of s and m is trivial.
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Two comments are worth mentioning. First, similarly to Example A, the full surplus
extraction is feasible regardless of the precision of the buyer�s information. In particular,
if s = 1+�0

2
, then the buyer is perfectly informed about the posterior state �̂ = ŝ = 1+�0

2
.

However, she is still unable to receive a positive payo¤ by using this information.
Second, the analysis above does not require the strict concavity of V (t; �; 
) in t. Hence,

it is equally applicable to the buyer�s payo¤ function, which is linear in � and t for all 
:26

V (t; �; 
) = v (� � t; 
) = � (
) (� � t) :

Because the buyer is risk-neutral in this case, her interim payo¤EVB is una¤ected by lotteries
over payments under di¤erent signal functions, which are induced by her message. In other
words, the buyer is indi¤erent between all messages upon receiving a signal s � �0:

EVB (mjs; 
; �c) =
1

2
v (s�m; 
) + 1

2
v (m� s; 
) = 0 for m 2 S; s � �0.

4.3 Full surplus extraction

In this subsection we establish the possibility of the full information and surplus extraction
for states above an arbitrary cuto¤ �0 2 � in the general case. Consider the private signal
structure ��, which randomizes with equal probabilities between signal functions �1 = '�11 :
�! S and �2 = '�12 : �! S, where S = [s; �s] ; '01 > 0, and

'2 (s) =

�
'1 (s) if s < s0;
	�1

�
	(�0) + 	

�
��
�
�	('1 (s))

�
if s � s0;

(23)

where s0 = �1 (�0), or equivalently, '1 (s0) = �0. Thus, upon receiving a signal s < s0 the
buyer perfectly infers the state � = '1 (s). For s � s0, the buyer�s posterior belief is a binary
distribution over f'1 (s) ; '2 (s)g, where '2 (s) satis�es the di¤erential equation (14) with
the boundary condition '2 (s0) = ��.

Next, consider a mechanismM�� =
�
Q�

�

�i
(s) ; t�

�

�i
(s)
�
, such that

Q�
�

�i
(s) = Q�

�
(s) =

�
0 if s < s0;
1 if s � s0;

(24)

t�
�

�i
(s) =

�
0 if s < s0;
'i (s) if s � s0:

(25)

The theorem below establishes that the pair
�
��;M��

�
extracts the full information and

surplus from the buyer for states � � �0 under Condition 1.

Theorem 2 Suppose V satis�es (17)�(18) and (f; V ) satisfy Condition 1 for �0. Consider
the private signal structure �� that randomizes between �1 = '�11 and �2 = '�12 with equal
probabilities, where '1 : S ! � is di¤erentiable, '01 > 0, and '2 is given by (23). Then �

�

and the mechanismM�� =
�
Q�

�

�i
(s) ; t�

�

�i
(s)
�
extract the full surplus for (�; 
) 2 �0 �T.

26In general, v (� � t; 
) = � (
) (� � t) + � (
). However, the condition v (0; 
) = 0 for all 
 2 T results in
� (
) = 0.
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The proof of theorem consists of two parts. The �rst part demonstrates that the
mechanism M�� is interim individually-rational under the private signal structure ��.
Speci�cally, for signals s < s0, the buyer receives the outside option with value 0. For
s � s0, the buyer pays �i in each posterior state �i = 'i (s) ; i = 1; 2, which is equal to her
willingness to pay. That is, the mechanism extracts the buyer�s full surplus upon learning
the state � from m = s and �i.
The main part of the proof is to establish the interim incentive-compatibility of the

mechanismM��, which is done in a few steps depending on the values of a signal s and a
message m. For s � s0 and m � s0, the interim incentive-compatibility is an implication
of Theorem 1. First, the incentive-compatibility for these values of s and m is equivalent to
the optimality of the truthful strategy in the implementation model with the state space �0,
the prior density f0 (�) = f (�j� 2 �0), the signal set S0, and the private signal structure
�0 that randomizes between �1 (�) and �2 (�) with the domains restricted to �0. Second,
the inverses '1 and '2 satisfy the �rst-order condition (14) with the boundary condition
'1 (s0) = �0 in the equivalent implementation model. Third, because V and f satisfy (21)
and Condition 1 for �0, then applying Theorem 1 to the equivalent implementation model
means that the agent�s truthful strategy is optimal. This in turn results in the interim
incentive-compatibility ofM�� for (s;m) 2 S20. Next, for m < s0 the incentive-compatibility
holds as the buyer receives her outside option of value 0 for all s 2 S, which is identical
to her payo¤ from truthful reporting. This is because truthful reporting provides the buyer
with the outside option for s < s0. For s � s0, truthful reporting results in the full surplus
extraction, so the buyer receives 0 as well. The �nal step is to show that the buyer with a
signal s < �0 cannot bene�t from deviating tom � s0. This step is based on the monotonicity
of the buyer�s payo¤ V (t; �; 
) in � and the fact that the buyer with signal s � s0 does not
receive a positive surplus. This completes the proof of the theorem.
Two other remarks are necessary. First, conditions (1) and (17) are essential for the

full surplus extraction. Without additional assumptions about the impact of buyer�s private
information on her preferences, the seller cannot extract the full surplus by using the private
information design even in the simplest model with quasi-linear preferences.27 Importantly,
these conditions are local. This is because for a given state �, they must hold only at the �
full surplus extraction�point t = �, i.e., for the payment equal to the buyer�s willingness to
pay. Equivalently, they must holds only along the diagonal (�; �) in the (t; �) space.
Second, the construction can be equally applied to the setup with a single product and

many buyers if their states and types are distributed independently. In this case, the seller
can utilize the pair of the optimal signal structure ��j and the mechanismM��j

j to elicit the
perfect information about state �j from each buyer j. If the highest willingness to pay among
buyers is �k = maxj �j � �0, the seller then sells the product to buyer k for price t = �k.28

27See Remark 8 in Krähmer (2020).
28Even though each buyer can in�uence the probability of getting the object by manipulating her signal,

she cannot bene�t from it as her interim (and ex-post payo¤) is at most 0 in either case.
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5 Conclusion and discussion

This paper adds to the literature on the agency problem by showing how the principal can
use private information design in a simple way to implement her ideal action for a target
subset of states or the entire state space. The result holds even if the agent�s preferences are
non-quasilinear, non-convex, depend on the privately known component, and are independent
of the state.
We conclude the paper by suggesting possible avenues for future research. First, the

proposed construction of private signal structures can be potentially used in other economic
environments. These may include models in which players�ideal actions are non-monotone
to the unknown information or the buyer�s payo¤ is non-monotone in the principal�s action.
Intuitively, truthtelling of the agent is driven by opposite monotonicities of the payo¤s in
her message for di¤erent posterior states. In general, each of these payo¤s is a composition
of three functions: i) the payo¤ as a function of the principal�s action; ii) the principal�s ideal
action as a function of the posterior state; and iii) the induced posterior state as a function
of the agent�s message, which is the inverse of the signal function.29 In our paper, we assume
the strict monotonicity of the �rst two functions. If one or both of these functions are
non-monotone, then the monotonicity of the composite function can be potentially restored
by selecting a non-monotone (but bijective and, hence, perfectly informative) inverse.
Another avenue for future research is to extend the setup to multidimensional state and

action spaces. If the agent�s payo¤ function is additively separable, then our construction
can be easily applied coordinatewise.30 However, the question of whether our construction
can be extended to multidimensional spaces in the case of payo¤ functions of the general
form remains open.

Appendix

Proof of Theorem 1 Consider functions 'i : S! �; i = 1; 2, such that '1 is di¤erentiable,
'01 > 0, and '2 is given by (15). By construction, the pair f'1; '2g satis�es the �rst-order
condition (12). Because '2 : S ! � is such that '02 < 0, then it is bijective. Hence, the
functions �i = '�1i : � ! S; i = 1; 2 exist and are perfectly informative signal functions.
Consider the private signal structure ��, which randomizes between �1 and �2 with equal
probabilities.
Next, the truthful strategy is optimal for the agent if EV (mjs; 
; ��) given by (9)

is pseudo-concave in m for all (s; 
) 2 � � T. To establish the pseudo-concavity of

29The agent�s posterior payo¤ is EV (mjs; 
; �) =
2P
i=1

qi (s; �)V (y ('i (m)) ; 'i (s) ; 
). Hence, the payo¤

conditional on the posterior state �i = 'i (s) is given by V (y ('i (m)) ; 'i (s) ; 
).

30Consider, for instance, V
�
~a; ~�

�
= �

2P
i=1

(ai � �i � bi)2, where ~a = (a1; a2) ; ~� = (�1; �2), and ~� is

uniformly distributed on [0; 1]2. Then the private signal structure, which randomizes between signal functions

�1

�
~�
�
= ~� and �2

�
~�
�
= (1; 1)� ~� with equal probabilities, sustains agent�s truthtelling.
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EV (mjs; 
; ��) in m, it is su¢ cient to show that the function

� (mjs; 
; ��) = @

@m
EV (mjs; 
; ��)

is pseudo-monotone in m on S for all (s; 
) 2 S�T (Proposition 2.5, Hadjisavvas et
al. 2005). A function � (mjs; 
; ��) is pseudo-monotone in m on an interval S � R if
� (m1js; 
; ��) (m2 �m1) � 0 implies � (m2js; 
; ��) (m2 �m1) � 0 for all (m1;m2) 2 S2.
To guarantee the pseudo-monotonicity of � (mjs; 
; ��), we use the aggregation result by

Quah and Strulovici (Proposition 1, 2012). It says that a linear combination �1V1 (m) +
�2V2 (m) of two pseudo-monotone functions V1 (m) and V2 (m) is pseudo-monotone for all
�i � 0; i = 1; 2 if and only if: (i) �V1(m)

V2(m) is decreasing in m for all m such that V1 (m) > 0
and V2 (m) < 0; and (ii) �V2(m)

V1(m) is decreasing in m for all m such that V1 (m) < 0 and
V2 (m) > 0.31
Fix (s; 
) 2 S�T. It follows from (12) that

� (mjs; 
; ��) =
2X
i=1

qi (s; �
�)V 0a ('i (m) ; 'i (s) ; 
)'

0
i (m) =

2X
i=1

qi (s; �
�)Vi (m; s; 
) ;

where
Vi (m; s; 
) = V 0a ('i (m) ; 'i (s) ; 
)'0i (m) ; i = 1; 2:

Because V 0a < 0; '
0
1 > 0, and '

0
2 < 0, we have

V1 (m; s; 
) < 0 and V2 (m; s; 
) > 0 for all (m; s; 
) 2 S2 �T:

Thus, � (mjs; 
; ��) is pseudo-monotone in m for qi (s; ��) � 0; i = 1; 2 if and only if

�V2 (m; s; 
)V1 (m; s; 
)
= �V

0
a ('2 (m) ; '2 (s) ; 
)'

0
2 (m)

V 0a ('1 (m) ; '1 (s) ; 
)'
0
1 (m)

is decreasing in m. By using (14), we get

�V2 (m; s; 
)V1 (m; s; 
)
=
V 0a ('2 (m) ; '2 (s) ; 
)

V 0a ('1 (m) ; '1 (s) ; 
)

p
�f('1 (m))� ('1 (m))p
�f('2 (m))� ('2 (m))

=
� ('2 (m) ; '2 (s) ; 
)

� ('1 (m) ; '1 (s) ; 
)
;

where

� (a; �; 
) =
V 0a (a; �; 
)p
�f (a) � (a)

=
V 0a (a; �; 
)

h (a)
:

Because V 0a < 0 and h > 0, it follows that � (a; �; 
) < 0 for all (a; �; 
) 2 �2 � T. Also,
'i 2 �; i = 1; 2. Then, '01 > 0 and Condition 1 imply that � ('1 (m) ; '1 (s) ; 
) is decreasing
31Quah and Strulovici (2012) use the term single crossing �, which is equivalent to a pseudo-monotone

��. Formally, a single crossing function can intersect the x�axis at a single interval from below, whereas a
pseudo-monotone function can intersect the x�axis at a single interval from above.
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in m for all (s; 
) 2 S�T. Similarly, '02 < 0 and Condition 1 imply that � ('2 (m) ; '2 (s) ; 
)
is increasing in m for all (s; 
) 2 S � T. By combining these arguments, it follows that
�V1(m;s;
)
V2(m;s;
)

is decreasing in m for all (s; 
) 2 S�T.

Proof of Theorem 2 Consider functions 'i : S ! �; i = 1; 2, such that '1 is
di¤erentiable, '01 > 0, and '2 is given by (23). Because '2 : S ! � is piecewise continuous
and strictly monotone for s < �0 and s � �0, and '2 (s) < �0 � '2 (z) for all s < �0 � z,
then '2 is bijective. Hence, the functions �i = '�1i : � ! S; i = 1; 2 exist and are perfectly
informative signal functions. Next, consider the private signal structure ��, which randomizes
with equal probabilities between �1 and �2, and the mechanismM�� with the allocation and
payment rules given by (24) and (25), respectively.
First, the interim individual-rationality constraints (20) hold and are binding for all s 2 S.

If s < s0, then Q
��

�i
(s) = 0 and t�

�

�i
(s) = 0; i = 1; 2. That is, the buyer receives the outside

option, and her posterior payo¤ EVB (sjs; 
; �) = V (0; 0; 
) = 0 for all s < s0 and 
 2 T. If
s 2 S0 = [s0; �s], then Q�

�

�i
(s) = 1 and t�

�

�i
(s) = 'i (s) ; i = 1; 2. This results in

EVB (sjs; 
; ��) =
2X
i=1

qi (s; �
�)V ('i (s) ; 'i (s) ; 
) = 0 for all (s; 
) 2 S0 �T: (26)

where the second equality holds because (17) implies V ('i (s) ; 'i (s) ; 
) = 0 for (s; 
) 2
��T; i = 1; 2.
Second, we prove the interim incentive-compatibility of the pair

�
��;M��

�
by considering

three cases depending on the values of (m; s) 2 S2.
(i) (s;m) 2 S20. Because Q

��

�i
(m) = 1 and t�

�

�i
(m) = 'i (m) ; i = 1; 2 for m 2 S0, we have

EVB (mjs; 
; ��) =
2X
i=1

qi (s; �
�)V ('i (m) ; 'i (s) ; 
) for (m; s; 
) 2 S20 �T: (27)

Next, note that states � 2 �0 generate signals si = '�1i (�) 2 S0; i = 1; 2 under ��. Hence,
the agent�s posterior belief induced by a signal s 2 S0 is the binary distribution over states
�i = 'i (s) 2 �0; i = 1; 2. By using (7), the posterior probability of �i is

qi (s; �
�) =

f('i (s))'
0
i (s)

f('1 (s))'01 (s)� f('2 (s))'02 (s)

=
f0('i (s))'

0
i (s)

f0('1 (s))'01 (s)� f0('2 (s))'02 (s)
= qi

�
s; �0

�
; i = 1; 2:

Here, f0 (�) = f (�j� 2 �0) = f(�)
1�F (�0) is the prior density of � conditional on � 2 �0; F (�) is

the cdf of �, and �0 is the private signal function that randomizes with equal probabilities
between �01 and �

0
2 , where �

0
i = �i : �0 ! S0 is a signal function �i with the domain restricted

by �0 and, thus, the image S0.
Now, consider the implementation model with the signal set S0, the prior density f0 (�),

and the private signal structure �0 (called the equivalent implementation model hereafter).
By combining the arguments above and comparing (27) with (9), it follows that the interim
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incentive-compatibility condition (19) for (s; 
) 2 S0�T on the restricted message space S0
is identical to the optimality condition (11) for the agent�s truthful strategy in the equivalent
implementation model. Next, '2 (�) given by (23) satis�es the �rst-order condition (14) with
the boundary condition '1 (s0) = �0 in this model. Also, conditions (21) and 1 hold for �0.
Then, by applying Theorem 1 to the equivalent implementation model, it follows that the
agent�s truthful strategy is optimal. This means that the incentive-compatibility constraints
in the bilateral-trade model hold for (s;m) 2 S20.
(ii) s 2 S;m < s0. Then Q

��

�i
(m) = 0; t�

�

�i
(m) = 0; i = 1; 2, and

EVB (mjs; 
; ��) = V (0; 0; 
) = 0 = EVB (sjs; 
; ��) ;

where EVB (sjs; 
; ��) = 0 for (s; 
) 2 S�T follows from the interim individual-rationality
ofM��.
(iii) s < s0;m � s0. Since s < s0, then 'i (s) < �0 = '1 (s0) ; i = 1; 2. Also, m � s0

implies Q�
�

�i
(m) = 1 and t�

�

�i
(m) = 'i (s) ; i = 1; 2. Then, we have

EVB (mjs; 
; ��) =
2X
i=1

qi (s; �
�)V ('i (m) ; 'i (s) ; 
) <

2X
i=1

qi (s; �
�)V ('i (m) ; '1 (s0) ; 
)

�
2X
i=1

qi (s; �
�)V ('i (m) ; 'i (s0) ; 
) �

2X
i=1

qi (s; �
�)V ('i (s0) ; 'i (s0) ; 
)

= EVB (s0js0; 
; ��) = 0;

where the �rst inequality holds since 'i (s) < '1 (s0) ; i = 1; 2 and V 0� (t; �; 
) > 0 imply
V ('i (m) ; 'i (s) ; 
) < V ('i (m) ; '1 (s0) ; 
) ; i = 1; 2, the second inequality holds due to
'2 (s0) = �� � �0 = '1 (s0) and V 0� (t; �; 
) > 0, and the last one holds since m = s0
maximizes EVB (mjs0; 
; �) over m � s0.
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