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Abstract

We study the payoffs that can arise under some information structure from

an interim perspective. There is a set of types distributed according to some

prior distribution and a payoff function that assigns a value to each pair of a

type and a belief over the types. Any information structure induces an interim

payoff profile which describes, for each type, the expected payoff under the

information structure conditional on the type. We characterize the set of all

interim payoff profiles consistent with some information structure. We illus-

trate our results through applications.
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1 Introduction

Consider a finite set of types distributed according to a given prior distribution.

Our primitive is a payoff function that assigns a value to each pair of a type and

a posterior belief over types. An information structure associates to each type a

distribution over signals and hence, via Bayes’ rule, a distribution over posterior

beliefs (Kamenica and Gentzkow, 2011). Thus, each information structure induces

an interim payoff profile, which describes for each type the expected payoff under

this information structure conditional on this type. We denote such a profile by an

IP-profile and denote the set of all IP-profiles by the IP-set. The goal of this paper is

to study the IP-set.

The IP-set is the object of interest in many applications, two of which we describe

now. First, the types may represent the characteristics of agents in a population. An

IP-profile then captures the payoffs of agents with different characteristics under a

given information structure. In turn, the IP-set describes the choice set of a social

planner who can control the information structure and may care about its impact

on different agents beyond the average payoff in the population.1 Second, the types

may represent private information of an informed principal who can commit to an

information structure only after observing her type, as in Perez-Richet (2014) and

Koessler and Skreta (2021). In this case, the IP-set is the key ingredient to describe

the incentive constraints that the information structure must satisfy for it to be con-

sistent with an equilibrium.

Our main result, Theorem 1, characterizes the IP-set via the convex-hull of a vector-

valued function. In doing so, we extend the geometric characterizations of Aumann

and Maschler (1995) and Kamenica and Gentzkow (2011) of the feasible set of ex

ante payoffs to the characterization the set of interim payoff profiles. While an IP-

profile depends on the distribution over posteriors conditional on each type, we

show that it can be alternatively expressed as the unconditional expectation over

posteriors of an adjusted payoff function, where the adjustment is proportional to

the posterior likelihood ratio of each type.2 The adjusted payoff function evaluated

at a given type allows us to characterize the interim payoffs that type may obtain un-

der some information structure. In turn, interpreting the adjusted payoff function

1This would be the case, for instance, if the social planner assigns welfare weights to each type
that are different from the prior distribution, or if the social planner evaluates a given IP-profile
according to Rawls’ criterion.

2Instead, Levy et al. (2021) provide a characterization of which conditional distributions over
posteriors are feasible.
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as a vector-valued function, for all types at once, allows us to capture the across-

type restrictions imposed by Bayes’ rule and precisely characterize the IP-set.

The IP-set is convex, so we can alternatively characterize it via its supporting hy-

perplanes. We use this observation to show in Theorem 2 that the IP-profiles in

the boundary of the IP-set are induced by information structures that solve a series

of standard Bayesian persuasion problems, indexed by the slope of the supporting

hyperplane. This characterization allows us to reinterpret two classical informa-

tion design results in the language of IP-profiles. The supporting hyperplane in

the direction of the prior characterizes the optimal expected payoff in the model

of Kamenica and Gentzkow (2011). More generally, for any given direction in the

simplex, the supporting hyperplane in that direction characterizes the optimal ex-

pected payoff in the heterogeneous-priors model of Alonso and Camara (2016),

where the direction corresponds to the sender’s prior belief. We use Theorem 2

throughout the paper to characterize optimal information structures in specific ap-

plications.

Section 4 enriches our characterization in the case in which the payoff function

is equal to the expectation of a one-dimensional random variable, the support of

which we call the reputation vector. This special case constitutes a natural bench-

mark and is commonly used in the literature on career concerns (Holmström, 1999),

social image (Bénabou and Tirole, 2006, Tirole, 2021), and repeated games (Au-

mann and Maschler, 1995, Mailath and Samuelson, 2006). Theorem 3 shows that

an interim payoff profile belongs to the IP-set if and only if it can be represented, up

to a constant factor, as the product between the reputation vector and a completely

positive matrix (Berman, 1988).3 In addition, we show that the Bayesian persuasion

problems that characterize the boundary points of IP-set correspond to instances

of the problem of Rayo and Segal (2010). It follows that the information structures

that attain the payoffs in the boundary of the IP-set can be characterized using the

graph-theoretic approach of Rayo and Segal (2010).

Section 5 demonstrates the usefulness of our machinery in several applications.

Section 5.1 characterizes the largest and the smallest payoff that a particular type

can obtain in the setting of Section 4. Section 5.2 applies our results to Bayesian per-

suasion: Section 5.2.1 characterizes the sender’s optimal payoff when the sender is

ambiguity averse, whereas Section 5.2.2 provides a characterization of the commu-

3A matrix C ∈RN×N is completely positive if non-negative vectors c1, . . . , cK ∈RN
+ exist such that

C =
∑K

i=1 ci cT
i .
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nication equilibrium payoffs in the model of Lipnowski and Ravid (2020). Along the

way, we illustrate our primitive payoff function using the more familiar Bayesian

persuasion ingredients.

Section 6 extends our framework by lifting two implicit assumptions in the anal-

ysis described so far: First, the variable on which payoffs are conditioned is the

same variable the information structure provides information about; Second, all

information structures are allowed. We achieve this by distinguishing between

an agent’s cohort (the variable on which we condition payoffs on), the state (the

variable of interest for the information user), and the data source (the variable we

provide information about). Theorem 4 shows that the characterization in Theo-

rem 1 extends verbatim to this setting. Furthermore, Proposition 1 illustrates how

data sources of different precision limit the set of IP-profiles that can be generated.

These results provide a general analytical framework to study adverse features of

data collection, such as algorithmic bias, on different statistical groups.

Related Literature: Our work contributes to the literature on information de-

sign reviewed throughout the introduction. The seminal work of Kamenica and

Gentzkow (2011) characterizes the set of ex ante payoffs that can be obtained under

some information structure. Instead, we characterize the interim payoff profiles

that ultimately give rise to these ex ante payoffs, thus providing a finer description

of feasibility. Starting from the work of Kamenica and Gentzkow (2011), a series of

papers investigate the limits imposed by common knowledge of Bayesian rational-

ity (cf. Aumann, 1987). Our approach is similar in that we are interested in charac-

terizing the payoff profiles that are consistent with some information structure.

In addition, our results contribute to the broader literature on strategic commu-

nication and mechanism design, where interim payoff profiles are the key object

of interest. As mentioned before, in the informed principal papers of Perez-Richet

(2014) and Koessler and Skreta (2021), the sender’s interim payoff profile is used

to describe the incentive compatibility constraints that the sender’s information

structure must satisfy. Similarly, in the study of mechanism design with limited

commitment, Doval and Skreta (2020) describe the principal’s mechanism as an

information structure which must satisfy the agent’s incentive constraints. Simi-

lar constraints appear in the studies of information design without commitment

of Fréchette et al. (2019); Lipnowski and Ravid (2020); Salamanca (2021) and in the

analysis of tests subject to participation constraints of Rosar (2017).4 As the analysis

4In solving their respective design problems, Rosar (2017); Quigley and Walther (2019); Doval
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in Section 5 highlights, our tools also open the doors to the study of new problems.

Finally, our work contributes to the literature on higher-order beliefs. Indeed, when

the payoff function is linear in beliefs as in Section 4, an interim payoff profile can be

seen as a profile of second-order expectations. Starting with Samet (1998), a body

of work uses Markov matrices to represent such higher-order beliefs and expec-

tations of higher-order beliefs for a given information structure (see, for instance,

Cripps et al., 2008; Golub and Morris, 2017; Libgober, 2021). Instead, our result in

Theorem 3 identifies the set of matrices that can correspond to some information

structure. In this regard, our work relates to Saeedi and Shourideh (2019) who also

characterize the set of feasible second-order expectations, even though within a

particular application and under additional constraints, thus obtaining a different

characterization.

2 Model

Notation: Any vector x ∈ RN is taken to be a column vector; we denote its i t h

component by xi or x (θi ) interchangeably. If x ∈ RN is a column vector, then xT

denotes its transpose. If x, y are two vectors, then x ∗ y denotes their Hadamard

(element-wise) product and x/y denotes their Hadamard division. We denote by

e ∈RN the vector with e1 = · · ·= eN = 1.

Setting: We are given a finite set of types, denoted by Θ = {θ1, . . . ,θN }, distributed

according to a full support distribution µ0. We denote by∆(Θ) the set of all proba-

bility distributions on the set Θ.

An information structure Π = (π,S ) consists of a countable set of labels S , and a

mapping π, which associates to each type θ a distribution over signals π(· | θ ) ∈
∆(S ). Given an information structure Π and a signal realization s ∈ S , define the

corresponding posterior belief µs ∈∆(Θ) obtained by Bayes’ rule to be

µs (θ ) =
µ0(θ )π(s | θ )

∑

θ ′∈Θµ0(θ ′)π(s | θ ′)
.

The main primitive of our model is an (ex post) payoff function w :∆(Θ)×Θ 7→R that

represents for each posterior belief µ and each type θ , the value w (µ,θ ) associated

and Skreta (2020) do observe that the distribution over posterior beliefs conditional on the agent’s
type can be written in terms of the modified unconditional distribution. However, neither paper
provides the characterization result contained in Theorem 1.
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to that belief when the type is θ . Throughout, we assume that w is bounded.

Definitions 1 and 2 define our main objects of study:

Definition 1. Given an information structure Π, the interim payoff profile,5 or IP-

profile generated byΠ is wΠ(·), where for each type θ ∈Θ

wΠ(θ )≡EΠ [w (µ,θ ) | θ ] =
∑

s∈S

π(s | θ )w (µs ,θ ). (1)

That is wΠ(θ ) assigns to each typeθ the expected payoff induced by the information

structureΠ conditional on θ .

Definition 2. The interim payoff set, or IP-set, is

W ≡
�

w ∈RN : ∃Π s.t. wi =wΠ(θi ) ∀i ∈ {1, . . . , N }
	

. (2)

That is W consists of all interim payoff profiles that may arise under some informa-

tion structure.

Throughout the paper, we use the following stylized example to illustrate the main

concepts:

Example 1 (Online Marketplace). An online marketplace has two equally likely

seller types: low quality θ1, and high quality θ2, µ0 = (1/2, 1/2). Consumers prefer to

buy from high quality sellers. Thus, the seller’s profit in the marketplace depends on

the likelihoodµ that the consumer attaches to the seller being of high quality. In par-

ticular, we assume that the sellers’ profits as a function of the consumers’ beliefs are

as follows:

w (µ,θ ) =











0 if µ ∈ [0, 1/3)

1/2 if µ ∈ [1/3, 2/3)

1 if µ ∈ [2/3, 1]

, (3)

so that w is type-independent. The set W then represents the set of profit profiles of

different seller types that can arise on the platform under some information structure.

5We follow the terminology of Perez-Richet (2014), who uses the term “interim" to denote the
expected payoff from a statistical experiment conditional on the state of the world.

5



2.1 Interpretation

Our model admits at least two interpretations:

Population perspective: In line with our running example, the interpretation we

favor and maintain throughout the paper is the following. There is a population of

agents with different characteristics indexed by θ , where µ0(θ ) represents the fre-

quency of agents with characteristic θ in the population. There is a market who ob-

serves the realization of the information structure and updates their beliefs about

the agents’ types based on the realization. The function w (µ,θ ) represents a payoff

of an agent with characteristic θ when the market’s perception is equal to µ. An

IP-profile then captures expected payoffs of agents with different characteristics.

Under this interpretation, the set W represents the utility possibility set in an econ-

omy where the allocations are given by information structures. This set is of inter-

est in many applications since it allows us to describe the welfare effects that dif-

ferent information structures have for agents with different characteristics, such as

grading schemes in the case of schooling (Ostrovsky and Schwarz, 2010), disclosure

about job performance (Mukherjee, 2008), affirmative action in the case of college

admissions or the job market, rating systems in the case of platforms (Saeedi and

Shourideh, 2019).

Bayesian persuasion: Alternatively, one can think of the Bayesian persuasion

model introduced by Kamenica and Gentzkow (2011). Under this interpretation,

Θ stands for the set of states of the world, µ0 is the receiver’s prior belief about the

state,6 and w (µ,θ ) is the sender’s indirect utility function when her type is θ .

In this case, the set W represents the profiles of interim payoffs that the sender can

achieve for a given information structure. The set W is the relevant object of study

in problems where either the sender does not have commitment as in Lipnowski

and Ravid (2020), or the sender can commit to the information structure but only

chooses the information structure after observing the realization of the state θ , as

in Perez-Richet (2014) and Koessler and Skreta (2021). In each of these cases, equi-

librium considerations imply incentive constraints that may be written in terms of

the sender’s interim payoff profiles.

6As it will become clear in Section 3, it is not necessary that the sender shares the receiver’s prior
for the Bayesian persuasion interpretation of the model.
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3 Characterization

Section 3 presents our two main characterization results. Theorem 1 character-

izes the set W via the convex hull of the graph of a vector-valued function. Theo-

rem 2 characterizes the boundary points of W as the solution to Bayesian persua-

sion problems.

Theorem 1 shows that the set W can be characterized using the belief approach of

Kamenica and Gentzkow (2011). An apparent obstacle in using the belief approach

is that the elements of W are expressed in terms of expectations conditional on a

given type θ ∈Θ, rather than unconditional expectations. However, as we illustrate

next, any element w ∈W can be expressed as the unconditional expectation of an

adjusted version of the payoff function. To see this, let supp(Π) denote the support

of the posterior belief distribution induced by Π. Then, for a given type θ , their

interim payoff under information structureΠ can be written as follows:

wΠ(θ ) =EΠ
�

w (µ,θ ) | θ
�

=
∑

µ∈supp(Π)

∑

s∈S :µs=µ

π(s | θ )w (µ,θ ) (4)

=
∑

µ∈supp(Π)

∑

s∈S :µs=µ

PrΠ(s )
1

µ0(θ )
µ0(θ )π(s | θ )

PrΠ(s )
w (µ,θ )

=
∑

µ∈supp(Π)

∑

s∈S :µs=µ

PrΠ(s )
µ(θ )
µ0(θ )

w (µ,θ )

=
∑

µ∈supp(Π)

∑

s∈S :µs=µ

PrΠ(s )ŵ (µ,θ ) =EΠ
�

ŵ (µ,θ )
�

.

Equation 4 shows that the expectation of w conditional on θ can be expressed as

the unconditional expectation of the function ŵ , where

ŵ (µ,θ )≡
µ(θ )
µ0(θ )

w (µ,θ ) (5)

is the payoff function w (µ,θ ) adjusted by the likelihood ratio µ(θ )/µ0(θ ). For any given

posterior beliefµ, the likelihood ratio µ(θ )/µ0(θ )measures the representation of typeθ

relative to its ex ante representation underµ0. To interpret the role of the likelihood

ratio in the function ŵ , consider the case in which w is type independent. In this

case, ŵ is type-dependent even if w is not, precisely because different beliefs imply

different likelihood ratios across types. In this case, the likelihood ratio can be seen

as a measure of how much type θ enjoys the payoff w (µ) when the information

structure induces posterior belief µ. Indeed, for any given µ, the likelihood ratios

{µ(·)/µ0(·) : θ ∈ Θ} can be regarded as stochastic weights with unit mean from an ex
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ante perspective:

Eµ0

�

µ(θ )
µ0(θ )

�

=
∑

θ∈Θ

µ0(θ )
µ(θ )
µ0(θ )

= 1.

Thus, each type on the support of µ obtains a share µ(θ )/µ0(θ ) of the payoff, w (µ).

While Equation 4 immediately allows us to characterize the feasible interim payoffs

for any given type by the concavification method of Aumann and Maschler (1995)

and Kamenica and Gentzkow (2011), it does not deliver the characterization of the

IP-set. The reason is that it ignores the cross-type restrictions imposed by Bayes’

rule. For instance, Equation 5 highlights that only types on the support of a belief

µ get to enjoy the payoff from the induced belief being µ. Instead, the characteri-

zation of the IP-set can be obtained by applying the concavification method simul-

taneously to all types by considering the vector-valued function ŵ, ŵ :∆(Θ) 7→RN ,

where for each i ∈ {1, . . . , N }, ŵi (µ)≡ ŵ (µ,θi ). We have:

Theorem 1. The IP-set W satisfies the following:

W =
�

w ∈RN : (µ0, w) ∈ co
�

graph ŵ
�	

. (6)

The proof of Theorem 1 and of other results is in the Appendix.

Theorem 1 provides a geometric characterization of the set W: it is the section at

the prior of the convex hull of the graph of the adjusted payoff function ŵ. Theo-

rem 1 utilizes the result in Kamenica and Gentzkow (2011) that any Bayes’ plausi-

ble distribution over posteriors is the outcome of some information structure7 and

characterizes a more primitive object, the set of interim payoff profiles that can be

generated by some information structure. Indeed, whereas the main result in Ka-

menica and Gentzkow (2011) characterizes the ex ante payoff that an agent with

payoff function w can obtain, Theorem 1 describes the payoff profiles that differ-

ent types can obtain under some information structure.

We illustrate Theorem 1 using Example 1:

Example 1 (Calculating the IP-set.). Figure 1 illustrates the functions w and ŵ for

our running example. Figure 1a depicts the payoff function w defined in Equa-

tion 3. In contrast, Figure 1b depicts the adjusted function ŵ . Whereas w is type-

independent, the adjusted payoff function ŵ accounts for the relative likelihood ra-

7See also Aumann (1987); Rayo and Segal (2010).
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Figure (a) The payoff function w .
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Figure (b) The adjusted payoff function ŵ .

Figure 1: The functions w and ŵ in Example 1.
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Figure (a) The convex hull of the graph of ŵ .
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Figure (b) The IP-set W.

Figure 2: The construction of the IP-set in Example 1; wF and wN denote the
profiles of interim profits under full and no information, respectively.

tio term and, thus, differs across types. Indeed, applying Equation 5 to the payoff

function in Equation 3, we obtain:

(ŵ (µ,θ1), ŵ (µ,θ2)) =











(0, 0) if µ ∈ [0, 1/3)

(1−µ,µ) if µ ∈ [1/3, 2/3)

(2(1−µ), 2µ) if µ ∈ [2/3, 1]

. (7)

Applying Theorem 1, the resulting interim payoff set W is the section of the convex

hull of the graph of ŵ at µ0 = 1/2.

Further, Figure 2a shows the convex hull of the graph of the adjusted payoff function
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ŵ . Figure 2b presents the IP-set and thus illustrates which profit profiles are jointly

feasible. For instance, since the platform can always choose to fully reveal or conceal

a seller’s type, the full and no disclosure profiles, labelled wF and wN , are feasible.

However, it is not possible to give both seller types a payoff of 1: This would require

that consumers believe that they are facing a high quality seller with probability at

least 2/3, but in that case, the likelihood ratio correction to w implies that a new seller

earns at most two thirds of that payoff. This illustrates how the likelihood ratio cor-

rection to the payoff function reflects the limits that Bayesian rationality imposes on

the interim payoff profiles. Lastly, the horizontal and vertical segments in Figure 2b

illustrate that information can be used to create or erode the profit of one seller type,

without necessarily affecting that of another type. For instance, the vertical segment

joining the IP-profiles (0, 0.5) and (0, 1) illustrates that it is possible to lower a high

quality seller’s profit by pooling established and new sellers, without this increasing

the new sellers profits. Similarly, the horizontal segment joining the IP-profiles (0, 1)

and (0.5, 1) illustrates that increasing the profits of low quality sellers by pooling them

with high quality sellers is not necessarily detrimental to the high quality sellers’ prof-

its.8

Finally, note that in this example the IP-set is not closed, which is illustrated by the

dashed lines in the boundary of W in Figure 2b. We return to this point at the end

of this section, where we relate this issue to the role of upper semicontinuity in Ka-

menica and Gentzkow (2011). In Section 5.2, we show that in the standard Bayesian

persuasion model the IP-set is always closed.

Theorem 1 has an immediate implication for the cardinality of the information

structures that generate points in W:

Corollary 1. Let w ∈W. Then, there exists an information structure Π with at most

2N −1 signals such that wi =wΠ(θi ) for all i ∈ {1, . . . , N }.

As we illustrate next using Example 1, the bound in Corollary 1 is tight. As such,

Corollary 1 stands in contrast with the result in Bayesian persuasion that it is always

possible to find an information structure that delivers the same payoff to the sender

and employs at most N posteriors. The difference arises because in our setting we

do not care just about the payoff of one player, but of N , one for each type θ ∈Θ.

Example 1 (Number of Signals). Recall that Figure 2b illustrates the set W in our

8This discussion is reminiscent of Bergemann et al. (2015). Whereas Bergemann et al. (2015)
focus on how information affects the ex ante payoffs of a buyer and a seller, our focus is on how
information affects a given agent’s interim payoffs.
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running example. Consider now the following point in the Pareto frontier of W, w =

(6/10, 9/10). It turns out that w can only be generated by an information structure that

employs at least three signals. One such information structure is given by:

π :

�

1/5 2/5 2/5

0 1/5 4/5

�

.

Intuitively, the adjusted payoff function features three disconnected segments (recall

Figure 1b). Thus, to obtain some IP-profiles, it is necessary to randomize over the

points belonging to each graph segment and, hence, induce at least three distinct

posterior beliefs.

Another immediate consequence of Theorem 1 is that W is convex. This allows us

to provide an alternative characterization of the boundary points of W that proves

useful in the analysis that follows. Indeed, the supporting hyperplane theorem ap-

plies and implies that for any point w in the boundary of W, there exists a direction

λ such that

λT w= sup
�

λT w̃ : w̃ ∈W
	

= sup
�

λTEτ [ŵ(µ)] :Eτ[µ] =µ0

	

(8)

= sup{Eτ
�

λT ŵ
�

:Eτ [µ] =µ0},

where the first equality follows from Theorem 1: For any w̃ ∈W there exists a Bayes’

plausible distribution over posteriors τ, such that w̃i =Eτ[ŵ (µ,θi )], and vice versa.

Equation 8 can be interpreted in two ways. First, we can interpretλT w as the expec-

tation with respect to θ of the payoff vector w under the (signed) measureλ. In this

case, Equation 8 implies that w is the vector of interim payoffs of an information

designer with indirect utility function w and “prior” λ. For instance, when λ = µ0,

so that the sender and the receiver’s prior belief are the same, the above problem

coincides with that considered by Kamenica and Gentzkow (2011). Instead, when-

ever the direction λ is any element of∆(Θ), the above problem coincides with that

considered by Alonso and Camara (2016). Alternatively, we can consider the prob-

lem of a social planner who assigns weight λ(θ ) to type θ and wishes to maximize

the weighted sum of utilities of each type. Under this interpretation, w is a solution

to the social planner’s problem.9

Theorem 2 summarizes the above discussion:
9Thus, one can always interpret the heterogeneous priors model in Alonso and Camara (2016)

as a model in which the sender assigns weights different than those under the priorµ0 to each of his
possible types.
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Theorem 2. w ∈RN is a boundary point of the IP-set W in the direction λ ∈RN \ {0}
if and only if it corresponds to the sender’s interim payoffs in a Bayesian persuasion

problem where the sender has “prior” λ, the receiver has prior µ0, and the sender’s

indirect utility function is w (µ,θ ).

Theorem 2 has two practical implications. First, in order to characterize the bound-

ary points of W, it suffices to solve a series of standard Bayesian persuasion prob-

lems. Indeed, if w ∈ ∂W is a boundary point in the direction λ, then w is generated

by a distribution over posteriors that solves a standard Bayesian persuasion prob-

lem, BPλ, whenever the solution to this program exists:

max
τ∈∆(∆(Θ))

§

Eτ
�

Eµ
�

λ(θ )
µ0(θ )

w (µ,θ )
��

:Eτ[µ] =µ0

ª

. (BPλ)

Note that in program BPλ, the sender and the receiver share the same prior µ0,

while the sender’s ex post payoff when the belief is µ and his type is θ is given by
λ(θ )/µ0(θ )w (µ,θ ). Thus, Theorem 2 provides us with a way to characterize the set W

in applications and, in particular, in our analysis in Section 4. Second, when w is an

extreme point of W, Theorem 2 implies that there exists an information structure

that employs at most N signals and generates w.10

We now use Example 1 to illustrate how the presence of participation constraints

may lead one to select boundary points in a direction λ different from the prior µ0.

As it will become clear, this does not depend on the particular form of the payoff

function in Equation 3.

Example 1 (Participation Constraints). Suppose that each seller type has the choice

between selling their products on the platform or offline. Conditional on selling their

products in the platform, w represents their profits. Instead, the value of staying

offline is given by w (θ ). Assume that the platform acts as a gatekeeper: the seller only

has access to the platform’s customers by participating on the platform. However, the

platform cannot control the perception of the seller’s product outside the platform.

This is why the seller’s outside option is independent of the perception of the seller’s

quality inside the platform.

Suppose that the platform wishes to select a rating system so as to induce full par-

ticipation and does so in a way in which it maximizes the seller’s expected profits.11

10Instead, the point w = (6/10, 9/10) in Example 1 corresponds to a boundary point that is not an
extreme point.

11Even for a profit-maximizing platform, the seller welfare maximizing benchmark is relevant.
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Thus, the platform choosesΠ to solve:

sup
w̃∈W

µT
0 w̃

s.t. w̃ (θ )≥w (θ ) for all θ ∈Θ.

Appealing to Theorem 1 we can write this as:

sup
τ∈∆(∆(Θ))

µT
0 Eτ [ŵ(µ)]

s.t.

¨

Eτ[ŵ (µ,θ )]≥w (θ ) for all θ ∈Θ
Eτ[µ] =µ0

.

Up to the set of constraints, the platform is solving a standard Bayesian persuasion

problem, where the sender’s indirect utility function is given by w (µ) and his prior be-

lief isµ0. Because of the participation constraints, however, the optimal information

structure will be obtained as if the platform used a slightly different prior. Indeed, let

η(θ )≥ 0 denote the Lagrange multiplier on type θ ’s participation constraint and let

λ(θ ) =µ0(θ ) +η(θ ). Thus, the platform’s policy solves:

sup
τ∈∆(∆(Θ))

λTEτ[ŵ(µ)]−ηT w

s.t. Eτ[µ] =µ0

Thus, in this example the direction λ arises endogenously as a result of the platform

maximizing the seller’s welfare subject to the participation constraints. In particular,

Theorem 2 implies that the IP-profile that solves the platform’s problem is a boundary

payoff of W in direction λ.

The boundary of W: The analysis so far has remained silent as to when the set

W is closed. To be concrete, consider again Example 1 and recall that in this case

w (µ,θ ) is as defined in Equation 3. The specification of w at µ ∈ {1/3, 2/3} ensures

that λT ŵ(µ) is upper semicontinuous whenever λ≥ 0. Instead, for other directions

λ, λT ŵ(µ)may fail to be upper semicontinuous, so that we cannot replace the sup

with the max in the problem defined in Equation 8. To see this, consider Figure 3:

The left panel illustrates the objective function in Equation 8 for λ = (1/2, 1/2),

whereas the right panel illustrates the same objective function but for direction

λ = (−1/2,−1/2). Consistent with the Bayesian persuasion interpretation, when

After all, it describes an upper bound on the surplus the platform can extract from the sellers.
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µ

λT ŵ

Figure (a) λ= (1/2, 1/2)

µ
λT ŵ

Figure (b) λ= (−1/2,−1/2)

Figure 3: Objective function in Equation 8 for Example 1

the direction is (1/2, 1/2), ties are broken in favor of choosing “higher actions”,

and hence λT ŵ(µ) is upper-semicontinuous. Instead, the policies that achieve the

boundary points when the direction is (−1/2,−1/2) attempt to minimize the pay-

offs of the seller’s different types. Thus, in order to guarantee that the indirect utility

function in Equation 8 is upper-semicontinuous, ties should be broken in favor of

“lower actions.”

This discussion highlights yet another aspect in which our problem differs from a

standard information design problem: Different directions λ are akin to assigning

different weights to different types. Thus, it should not be surprising that as we vary

these weights we also need to consider different “tie-breaking” rules.

While W is not closed in the setting of Example 1, there are two important settings

in which the IP-set is guaranteed to be closed. First, as we illustrate in Section 5.2,

the set is closed if the sender gets to choose, together with the information struc-

ture, the way in which ties are broken. Second, the set is closed whenever w (·,θ ) is

continuous for all types. This is the case, for instance, when w (·,θ ) is linear, which

is the focus of the next section.

4 Expected Reputation

In this section, we study the special case in which the agent’s payoff is equal to the

expectation of some one-dimensional variable of interest, such as the agent’s pro-

ductivity, quality, or trade value. This is a standard way to model reputation, image,

or career concerns in economics (Holmström, 1999, Bénabou and Tirole, 2006). In
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this case, the payoff function w is type-independent and linear in beliefs; we refer

to it as the agent’s reputation. Formally, we assume that there exists a reputation

vector ρ ∈RN such that for all θi ∈Θ

w (µ,θi ) =Eµ[ρ(θ )] =
N
∑

j=1

µ(θ j )ρ(θ j ) =µ
T ρ. (9)

Without loss of generality, ρ is labelled in increasing order, that is, ρ1 ≤ · · · ≤ ρN .

The analysis in this section allows us to draw a sharp distinction with the literature

on information design. In a standard information design problem, a linear indirect

utility function is, in a sense, not interesting: all information policies lead to the

same expected payoff to the designer. Instead, as the results in this section illus-

trate, not all information policies lead to the same interim payoff profiles and thus,

the chosen information structure determines the payoff distribution across the in-

formation designer’s types, even if the ex ante payoff µT
0 w does not depend on the

chosen information structure.

When w (µ,θ ) is given by Equation 9, we can provide an alternative characterization

of the set W. From Section 3, it follows that w ∈W if and only if we can find a Bayes’

plausible distribution over posteriors τ such that

w=Eτ [ŵ(µ)] =D0Eτ
�

µµT
�

ρ, (10)

where D0 denotes a diagonal matrix with (i , i )-th element equal to 1/µ0(θi ).

Equation 10 shows that an IP-profile can be represented as the product of three

terms: the reputation vector ρ, the prior-normalizing matrix D0, and the matrix

Eτ[µµT ]. Furthermore, the matrix Eτ
�

µµT
�

satisfies the following two properties.

First, it is an example of what Berman (1988) denotes a completely positive ma-

trix: An N ×N matrix C is completely positive if it can be written as
∑M

m=1 xmxT
m for

some finite collection of non-negative vectors xm ∈ RN
+ .12 Second, the rows of the

matrix Eτ
�

µµT
�

add up to the prior belief: Eτ
�

µµT
�

e = Eτ
�

µ(µT e)
�

= Eτ [µ] = µ0.

Theorem 3 shows that these two properties, in fact, fully characterize the set of IP-

profiles:13

12Completely positive matrices play an important role in the optimization theory, machine learn-
ing, and other applications and have been studied extensively (Berman and Shaked-Monderer,
2003). Any completely positive matrix is symmetric and positive-semidefinite, with positive ele-
ments; for N < 5, the converse is also true.

13An analogous characterization appears in concurrent work by Sayin and Basar (forthcoming).
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Theorem 3. Given the reputation vector ρ, w ∈W if and only if there exists a com-

pletely positive matrix C ∈RN×N such that Ce=µ0 and

w=D0Cρ,

where D0 is a diagonal matrix with (i , i )-th element equal to 1/µ0(θi ).

Putting together the properties in Theorem 3, we obtain that any IP-profile w is the

product of the reputation vector ρ with a matrix P, where P ≡D0C is the transition

matrix of a time-reversible Markov chain with invariant distribution µ0. That is, (i)

µT
0 P = µT

0 , (ii) Pe = e, and (iii) P satisfies the detailed balance conditions, that is,

for all i , j ∈N ,µ0(θi )Pi j =µ0(θ j )Pj i . The first property captures that in the expected

reputation setting all information policies yield the same ex ante payoffµT
0 w=µT

0 ρ.

As such, we can interpret an information structure as redistributing this ex ante

payoff across different types. In particular, the second property implies that any IP-

profile can be viewed as a garbled version of the full information profileρ. The third

property delineates the limits of how payoffs can be redistributed by linking how

much ofρ(θi ) can be attributed toθ j and vice versa. Indeed, since P is the transition

matrix of a time-reversible Markov chain, we obtain that there is mean reversion in

the redistribution of payoffs across types. To see this, note that if w= Pρ ∈W, then

Pw is also an IP-profile.14 Since µ0 is the invariant distribution of P, we have that

Pk w→k→∞ (µT
0 w) ∗e= (µT

0 ρ) ∗e=wN, where wN is the no information profile.

Finally, we note a connection with the literature on majorization (Hardy et al., 1952).

Consider the special case in which all types are equally likely, that is, µ0(θi ) = 1/N for

all i . Then, Theorem 3 implies that in fact, ρmajorizes w, because the correspond-

ing matrix P is doubly stochastic. However, not any profile majorized by ρ is a valid

IP-profile: There are doubly stochastic matrices that are not symmetric, and hence

do not satisfy the detailed balance conditions.

Illustration: We now illustrate the expected reputation case for the cases of N = 2

and N = 3. Figure 4a depicts in blue the IP-set W when N = 2 for ρ = (0, 1) and

µ0 = (0.5, 0.5). As we explained above, all the IP-profiles satisfy thatµT
0 w=µT

0 ρ = 0.5.

However, not all points that satisfy this condition are IP-profiles. Indeed, it is im-

mediate to see that the θ1 cannot obtain a payoff higher than the average reputation

µT
0 ρ. Likewise, θ2 cannot obtain a payoff higher than that corresponding to full dis-

closure. These three constraints pin down the set W: As noted above, all IP-profiles

14P2e= Pe= e and P2 =D0C′, where C′ ≡CD0C is completely positive because C is symmetric.
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can be obtained by “garbling” the full information IP-profile, ρ.
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0.5

1
wF

wN

w1

w2

Figure (a) N = 2 and ρ = (0, 1)
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Figure (b) N = 3 and ρ = (0, 0.5, 1)

Figure 4: The blue color marks the IP-set W. The dashed segments outline the
cartesian product of the payoffs that are individually feasible for each type.

Figure 4 also highlights the difference between the interim payoffs that are individ-

ually feasible for each type (the dash-bounded area in the figure) and those that are

jointly feasible (the blue set). Indeed, using the adjusted payoff function ŵ (·,θ ) for

each type θ , it is immediate to see that any payoff between ρ1 = 0 and µT
0 ρ is feasi-

ble for θ1, whereas any payoff between µT
0 ρ and ρ2 = 1 is feasible for θ2. While the

cartesian product [ρ1,µT
0 ρ]× [µ

T
0 ρ,ρ2] is an upper bound (in the sense of set inclu-

sion) of the IP-set W, as Figure 4 suggests, it is a rather lax bound. For instance, it

should be immediate that the payoff profile (µT
0 ρ,ρ2) is not an IP-profile: we cannot

simultaneously maximize the expected reputation of both types.

Figure 4b provides the similar observations for N = 3 and highlights that once there

are more than two types the boundary of the IP-set is non-linear.

The expected reputation case allows us to highlight one way in which information

differs from other instruments to distribute welfare in an economy: given an initial

information structure, and hence an IP-profile, (wΠ(θ ))θ∈Θ, it may not be possible

to find an alternative IP-profile that Pareto dominates (wΠ(θ ))θ∈Θ. Indeed, when the

payoff function w is linear as in this section, it is impossible to find such a Pareto

improvement: The constraint µT
0 w= µT

0 ρ implies that it is not possible to simulta-

neously improve the welfare of all types.

Truth-drifting: Claim 1 below illustrates further the idea that reputation cannot

be redistributed in any particular way: Whereas an information structure can occa-
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sionally “deceive” the market about the identity of a true type, or any other event, it

cannot systematically do so. Formally, consider any event X that is correlated with

types according to the conditional probability function β ∈ [0, 1]N , βi ≡ Pr(X | θi ),

so that the prior probability of the event is Pr(X ) = µT
0 β.15 If all βi ∈ {0, 1}, then the

event effectively indicates a subset of types. More generally, the event may involve

extraneous uncertainty, and the types may be only imperfectly informative about

it. In any scenario, we show that if the event is true, then the average posterior prob-

ability that the observer attaches to this event must be at least as large as the prior

probability:

Claim 1 (Truth-drifting). For any event X and information structureΠ,

EΠ [Pr(X | s ) | X ]≥ Pr(X ).

Theorem 3 and Claim 1 are related to a strand of literature that analyzes the fea-

sible evolution of beliefs (see, for instance, Samet, 1998; Cripps et al., 2008). Hart

and Rinott (2020) obtain a version of Claim 1 in the special case of X ⊆ Θ by using

the monotone-likelihood ratio property. Francetich and Kreps (2014) obtain the

analog of our more general result from the general properties of Kullback-Leibler

divergence. Instead, we obtain the result by utilizing the implied positive semi-

definiteness of a generating matrix C.

Boundary information structures: Recall that Theorem 2 provides us with a way

to characterize the boundary points of the set W by means of Bayesian persuasion

problems. Under the ongoing payoff assumption (9), the set W is closed, so that the

Bayesian persuasion problem BPλ can be used to characterize the boundary of W.

Furthermore, as we show next, the problem BPλ has a particular structure. Indeed,

fix a direction λ and consider the induced Bayesian persuasion problem:

max
τ∈∆(∆(Θ))

Eτ
�

λT ŵ(µ)
�

= max
τ∈∆(∆(Θ))

Eτ

��

λ

µ0

T

µ

�

�

ρTµ
�

�

= max
τ∈∆(∆(Θ))

Eτ
�

Eµ
�

λ(θ )
µ0(θ )

�

Eµ
�

ρ(θ )
�

�

,

(11)

where the first equality uses the form of w and the definition of ŵ . Equation 11

shows that if an information structureΠ delivers a profile w on the boundary of W,

then the information structure solves an instance of the information design prob-

15For concreteness, X can be set to be located in the space Θ× [0, 1] equipped with a probability
measure that agrees with µ0 on Θ (cf. Green and Stokey, 1978; Gentzkow and Kamenica, 2017).
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lem in Rayo and Segal (2010). To be precise, Rayo and Segal (2010) consider the

following problem. A sender owns a prospect and his objective is that the receiver

accepts it. When the sender’s type is θ and the receiver accepts the prospect, the

sender and the receiver obtain a payoff γ(θ ) and ρ(θ ), respectively. Instead, if the

receiver rejects the prospect, the sender obtains a payoff of 0, whereas the receiver

obtains a payoff u ∼U [0, 1]. The sender has commitment and chooses an informa-

tion structure Π, without observing the realization of u . Thus, when Π induces a

belief µ, the sender expects that the receiver accepts the project with probability,

ρTµ. It follows that the last term in Equation 11 represents the sender’s expected

payoff when γ(θ )≡ λ(θ )/µ0(θ ) and the information structureΠ induces a distribution

over posteriors that coincides with τ.

Proposition 1. w ∈ ∂W if and only if there exists λ ∈ RN \ {0} and τ that solves the

problem defined in Equation 11 such that w is generated by τ.

Proposition 1 allows us to rely on the graph-theoretic approach of Rayo and Se-

gal (2010) to characterize the shape of the information structures that achieve the

boundary points of W. Indeed, Rayo and Segal (2010) propose the following graph-

ical depiction of an information structure. Given a directionλ, plot in the plane the

points ( λ(θ j )
µ0(θ j )

,ρ(θ j )) = (γ j ,ρ j ) for j = 1, . . . , N . An information structure is depicted

by edges between these points. That is, (γ j ,ρ j ) and (γk ,ρk ) are connected by an edge

iff there is a signal s such that π(s | θ j ) ∗π(s | θk )> 0. Rayo and Segal (2010) denote

the set of types that have positive probability under s as the pooling set of signal s .

Rayo and Segal (2010) show that an optimal information structure for the points

{(γ j ,ρ j )}Nj=1 satisfies the following properties. First, any pooling set is a segment.

That is, if Θ′ is the pooling set of s , then the points {(γi ,ρi ) : θi ∈ Θ′} lie on a line.

Second, each pooling segment has negative slope: If γi > γ j andρi > ρ j , then θi and

θ j are not pooled. In particular, given the distribution over posteriors associated

to an information structure, consider the points {(Eµ[γ(θ )],Eµ[ρ(θ )]) : µ ∈ supp τ}.
Then, these points can be ordered: IfEµ[γ(θ )]≥Eµ′[γ(θ )], thenEµ[ρ(θ )]≥Eµ′[ρ(θ )].
Third, pooling segments intersect only at their endpoints. Finally, under a generic-

ity condition,16 the pooling segment of any signal contains at most two types. We

exploit this connection in Section 5.1.

16Namely, Rayo and Segal (2010) assume that the collection {(γ j ,ρ j )}Nj=1 satisfies the following
condition. For every subset J ′ ⊆N with |J | ≥ 3, the points {(γ j ,ρ j )} j∈J ′ are linearly independent.
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5 Illustrations

Section 5 presents three illustrations of the tools developed so far. Section 5.1 char-

acterizes the information structures that deliver maximal (or minimal) payoffs to a

given type in the framework of Section 4. This provides a rough way to bound the

set W. Section 5.2 illustrates our model within the sender-receiver framework of

Kamenica and Gentzkow (2011) and introduces two additional applications. Sec-

tion 5.2.1 considers the problem of Bayesian persuasion when the sender is ambi-

guity averse, so that the sender evaluates the outcome of any information structure

using the worst case prior. In turn, Section 5.2.2 shows that the set W arises natu-

rally when studying communication equilibrium in sender-receiver games.

5.1 Reputation Bounds

In line with the discussion in Section 4, suppose that ρ(θ ) denotes the quality of a

job candidate of type θ and let Eµ[ρ(θ )] denote the probability that the candidate

is accepted for a job when the market’s perception of the job candidate’s ability is

µ. Suppose we are interested in policies that maximize or minimize the probability

that a candidate of a given target type θi is accepted. That is, our objective is

max
w∈W

wi . (12)

Note that this problem corresponds to the problem in Equation 8 in the direction

λ = (0−i ,µ0(θi )). As such we can apply the graph-theoretic approach of Rayo and

Segal (2010) to gain insights into an information structure that solves the problem

in Equation 12. The setting translates into a collection of N points located on a

plane: N −1 points at the coordinates (0,ρ j ) and one point at the coordinate (1,ρi ).

Figure 5 illustrates the case of N = 4 and i = 2. Recall that any information structure

corresponds to a graph on these points with two points being connected if and only

if the corresponding types are pooled with positive probability in some signal.

The properties derived by Rayo and Segal (2010) provide an insight into the shape

of an optimal policy. First, the information structure never pools the target type θi

with any types θ j , j < i , because it would correspond to the segment with a positive

slope. Second, the target typeθi is pairwise pooled withθ j , j > i because the pooled

types should correspond to points lying on straight lines. Following this discussion,

define the particular class of information structures:
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Figure 5: Optimality of a bi-pooling policy. Each black node represents a pair
(γi ,ρi ), each segment represents the support of a signal in the optimal policy.

Definition 3 (Bi-Pooling Policy). An information structure is a bi-pooling policy that

pools target type θi with the set Θ̂ ⊆ Θ if S = Θ, and the likelihood function π satis-

fies:17

π(s = θ j | θ j ) = 1[θ j ∈ Θ̂],

π(s = θ j | θi ) =

¨

= 0, if θ j 6∈ Θ̂,

> 0, if θ j ∈ Θ̂.

In other words, a bi-pooling policy pairwise pools a target type θi with all types in

a given set Θ̂, and separates all other types. We have the following result:

Proposition 2. There exists a threshold θk ≥ θi such that a bi-pooling policy that

pools type θi with all types above the threshold solves the problem maxw∈W wi .

One part of Proposition 2 is straightforward: If one wishes to increase the percep-

tion of θi ’s ability, then θi should be separated from all lower types. What might be

less obvious is that whenever θi is pooled with some type, then θi should be pooled

with it pairwise. In a sense, pooling several types together redistributes the repu-

tation from the higher types to the lower types. Pairwise pooling then allows the

target type to appropriate maximal reputation gains from the higher types without

sharing the gains with any intermediary types.18

17The naming follows Arieli et al. (2021) who study a more general class of bi-pooling policies.
18The optimal bi-pooling policy can be viewed as a particular assortative information structure

in which a single type is pairwise matched with many others. Assortative information policies are
shown to be optimal in a variety of Bayesian persuasion problems by Kolotilin and Wolitzky (2020).
It also resembles a falsification strategy of Perez-Richet and Skreta (2021).
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Any bi-pooling policy is characterized by the pooling probabilities {π(s j | θi )}Nj=1,

with the strictly positive probabilities determining the pooling set. We can gain ad-

ditional understanding into the optimal information structure by seeing how the

optimal pooling probabilities are determined. By definition, these probabilities

should maximize
∑N

j=1π(s j | θi )E[ρ(θ ) | s j ] over all possible probability distribu-

tions. Each element of the sum is strictly concave in the corresponding probability

π(s j | θi ) with the derivative at 0 equal to θ j .19 At the optimum, the pooling proba-

bilities are chosen to equalize the marginal impact of each element in the sum. The

solution depends both on the reputation vector ρ and on the prior probability µ0;

however, as a general property, the target type is more likely to be pooled at signals

that induce higher posterior expectations. This conforms with the Rayo and Segal

(2010)’s result that the points {(Eµ[γ(θ )],Eµ[ρ(θ )]) : µ ∈ supp τ} are ordered in an

optimal policy.

Whereas Proposition 2 identifies the maximum interim payoff of a given type, this

result also characterizes the lower bound of the interim payoffs corresponding to

the direction λ= (0−i ,−µ0i ), simply because the reputation vector can be mirrored

into negative values:

Corollary 2. There exists a threshold θk ≤ θi such that a bi-pooling policy that pools

type θi with all types below the threshold solves the problem minw∈W wi .

5.2 Bayesian Persuasion

Section 5.2 discusses two applications of our results to the Bayesian persuasion

model of Kamenica and Gentzkow (2011). Section 5.2.1 considers the problem of

an ambiguity-averse sender, whereas Section 5.2.2 applies our results to the model

of Lipnowski and Ravid (2020). In what follows, we introduce the notation and

concepts that are common to both applications, providing along the way a micro-

foundation for our model in terms of the more primitive concepts in the Bayesian

persuasion literature. In line with the Bayesian persuasion literature, we use the

sender-receiver terminology.

As before, let Θ = {θ1, . . . ,θN } denote the set of types and µ0 denote the receiver’s

prior belief about Θ. The receiver is endowed with a finite set of actions denoted

by A. Let u (a ,θ ), v (a ,θ ) denote the receiver’s and the sender’s payoffs respectively,

when the receiver takes action a and the sender’s type is θ .

19Straightforward calculations show that the second derivative of π(s j | θi )E[ρ(θ ) | s j ] with re-
spect to π(s j | θi ) is equal to −2(ρ j −ρi )l

2
j i/(l j i+π(s j |θi ))3 < 0, where l j i ≡ µ0 j/µ0i
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Given an information structureΠ, we wish to calculate the sender’s interim payoffs

induced by Π. To do this, we need to first describe the receiver’s best response.

Given a belief µ, let

A∗(µ) = arg max
a∈A

∑

θ∈Θ

µ(θ )u (a ,θ ),

denote the receiver’s best-response correspondence. Let ΛB R denote the set of se-

lections from the receiver’s best-response correspondence. That is, the set of all

mappings α :∆(Θ) 7→∆(A) such that α(µ) ∈∆(A∗(µ)) for all µ ∈∆(Θ).

GivenΠ and the receiver’s best response α, the sender’s interim payoff fromΠ is:

vΠ(α,θ ) =
∑

s∈S

π(s | θ )
∑

a∈A

α(µs )(a )v (a ,θ ). (13)

The set of interim payoff profiles for the sender, denoted by V, is then defined as:

V = {v ∈RN : ∃α ∈ΛB R ,Π s.t. vi = vΠ(α,θi ) ∀i ∈ {1, . . . , N }}. (14)

That is, a payoff profile is in V if there exist an information structure Π and a re-

ceiver’s best response α that generate this payoff profile.

Similar steps to those leading to Equation 4 imply that vΠ(α,θ ) can be written as:

vΠ(α,θ ) =
∑

s∈S

Pr(s )

�

µs (θ )
µ0(θ )

∑

a∈A

α(µs )(a )v (a ,θ )

�

. (15)

Given a selection α, with a slight abuse of notation, define the sender’s adjusted

payoff function:

v̂ (α,µ,θ )≡
µ(θ )
µ0(θ )

∑

a∈A

α(µ)(a )v (a ,θ ). (16)

For a fixed selection from the receiver’s best-response correspondence, the function

v̂ (α, ·) is the analogue of ŵ (·) in Section 3.

Define the payoff correspondence V̂ : ∆(Θ) ⇒ RN so that for each µ ∈ ∆(Θ), V̂ (µ)
collects the set of sender payoff profiles as we vary the receiver’s best response. For-

mally, V̂ (µ) = {(v̂ (α,µ,θ ))θ∈Θ :α ∈ΛB R }.

Under the Bayesian persuasion interpretation, we have the following result:
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Proposition 3. The set V is compact and satisfies the following:

V =
�

v : (µ0, v) ∈ co
�

graph V̂
�	

. (17)

Thus, under the Bayesian persuasion interpretation, the property that the IP-set V

is closed arises by considering all possible ways in which the receiver might break

ties. Nevertheless, it should be immediate that it is not necessary to consider all

possible selections from the receiver’s best-response correspondence in order to

calculate the set V. Instead, fixed a selection α, one could apply Theorem 1 to the

function v̂ (α,µ, ·), thus obtaining the corresponding IP-set. It is immediate to verify

that the closure of the latter set coincides with the set V.

We conclude this analysis with the observation that in the Bayesian persuasion set-

ting any incentive compatible mapping from types into actions can be induced by

an information structure that uses at most as many signals as actions. Thus, we can

refine the minimal upper bound on the number of signals necessary to induce an

IP-profile:

Proposition 4. Let v ∈ V. Then, there exists an information structure with at most

min{2N −1, |A|} signals that induces v.

This result follows by the revelation principle argument of Myerson (1982), Ka-

menica and Gentzkow (2011), and Bergemann and Morris (2016) which is standard

and omitted.

5.2.1 Cautious Bayesian Persuasion

Recent work addresses the design of information structures that are robust either to

the receiver’s prior (Kosterina, 2020), to adversarial equilibrium selection (Moriya

and Yamashita, 2020; Morris et al., 2020), or to the possibility that the receivers ob-

tain information beyond that provided by the information designer (Dworczak and

Pavan, 2020). Instead, we use the tools developed so far to study the design of in-

formation structures which are robust to the sender’s prior, or, equivalently, to the

type realization.

Formally, we consider the setting in Section 5.2 and assume that the sender is am-

biguity averse: Faced with uncertainty about the distribution ofΘ, the sender eval-
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uates the outcome of an information structureΠ as follows:

min
µ∈∆(Θ)

max
α∈ΛB R

∑

θ∈Θ

µ(θ )vΠ(α,θ ), (18)

where recall thatΛB R denotes the set of selections from the receiver’s best response

correspondence. Consistent with the Bayesian persuasion literature, this assumes

that ties are broken in favor of the sender. Given a selectionα, the discussion in Sec-

tion 3 implies thatµT vΠ(α, ·) is the sender’s payoff in a Bayesian persuasion problem

where the sender has priorµ and the receiver has priorµ0, as in Alonso and Camara

(2016). The sender’s payoff defined in Equation 18 shows that not only the sender

may not share the receiver’s prior, but also that the sender is ambiguity averse: He

evaluates his payoff from an information structure by using the worst case prior

over Θ.

Under these assumptions, an optimal information structure solves

max
Π

min
µ∈∆(Θ)

max
α∈ΛB R

∑

θ∈Θ

µ(θ )vΠ(α,θ ) (19)

Proposition 5 immediately follows from the analysis in Section 3:

Proposition 5. The sender’s problem in Equation 19 is equivalent to

max
v∈V

min
i∈{1,...,N }

vi , (20)

where V is the set defined in Equation 14.

Proposition 5 states that the solution to the sender’s problem in Equation 19 cor-

responds to solving a Rawlsian welfare problem on the set V. Indeed, the problem

defined in Equation 20 selects from the set V the payoff profile that maximizes the

minimum sender’s interim payoff over sender types. Clearly, it follows that if v is a

solution to the problem in Equation 20, then v is in the Pareto frontier of V.

Example 1 (Cautious Platform). If the platform is cautious and aims to maximize

the seller’s payoffs, then it will solve the problem defined in Equation 20 over the set

W in Figure 2b. In the example, this corresponds to selecting the IP-profile (2/3, 5/6),

which can be generated by the following information structure:

π :

�

1/3 2/3

2/3 1/3

�

.
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We note two properties of the IP-profile (2/3, 5/6). First, it is induced by an informa-

tion structure which never induces an extreme belief and in some sense hedges the

platform’s risks stemming from an adverse type distribution. Second, in contrast to

the Rawlsian criterion in the case of transferable utility, the resulting payoffs are not

equal across types, but the established sellers do better than the new ones. The reason

is that, except for the uninformative information structure, Bayesian updating im-

plies that the established sellers expected profits are at least as high as the new sellers’

expected profits. However, there are information structures where both types of sellers

are better off than when no information is revealed, leading the platform to choose

an uneven IP-profile.

5.2.2 Communication Equilibria in Sender–Receiver Games

We illustrate in this section how the IP-set can be used to describe the set of com-

munication equilibria in the setting of Lipnowski and Ravid (2020).20 Formally, we

consider the case in which v (a ,θ ) ≡ v (a ), so that the sender only cares about the

receiver’s action.

A communication equilibrium is a joint probability Q ∈∆(Θ×A) such that the fol-

lowing hold.21 First, the sender finds it optimal to report his true type, that is, for all

θ ∈Θ,
∑

a∈A

v (a )Q (θ , a )≥
∑

a∈A

v (a )Q (θ ′, a ).

Second, the receiver finds it optimal to obey the received recommendation, that is,

for all a in the support of Q (Θ× ·),

∑

θ∈Θ

u (a ,θ )Q (θ , a )≥
∑

θ∈Θ

u (a ′,θ )Q (θ , a ) ∀a ′ ∈ A.

Letting µ ∈∆(Θ) denote the distribution overΘ induced by Q (a , ·), the second con-

dition implies that a ∈ A∗(µ). Thus, we can think of a communication equilibrium

as a mapping π : Θ 7→∆(∆(Θ)) that satisfies the following inequalities for all θ ∈ Θ
and all θ ′ 6= θ :

∑

µ∈∆(Θ)

π(µ | θ )

�

∑

a∈A

α(µ)(a )v (a )

�

≥
∑

µ∈∆(Θ)

π(µ | θ ′)

�

∑

a∈A

α(µ)(a )v (a )

�

, (21)

where α is a selection from the receiver’s best response correspondence. Note that

20See also Salamanca (2021).
21To keep the presentation simple, we assume that the support of Q is countable.
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the left hand side of the above equation corresponds to vΠ(α,θ ), whereas the right

hand side corresponds to vΠ(α,θ ′). We have the following result:

Proposition 6. The sender can achieve an IP-profile v in a communication equilib-

rium if and only if v ∈V and vi = v j for all i , j ∈ {1, . . . , N }.

Example 1 (Seller Incentives). Suppose that the platform still wishes to maximize

the sellers’ profits, but does not have direct access to their types. Instead, the plat-

form must rely on the unverifiable information provided by the sellers themselves.

Proposition 6 implies that, irrespective of the way the platform collects and trans-

mits this information, the unique equilibrium payoff profile is the no information

profile (1/2, 1/2), as this is the only profile w ∈ W with w1 = w2. Even though it is

possible to improve the profits of both types of sellers by appropriately disclosing the

seller’s private information to consumers, these gains cannot be realized in equilib-

rium because of the misreporting possibility.

6 Cohorts and Data

There are two assumptions implicit in the analysis so far. First, the variable on

which payoffs are conditioned is the same variable the information structure pro-

vides information on. Second, all information structures are allowed.

There are applications of interest in which these assumptions do not necessarily

hold. As a first example, consider the case of a consumer seeking credit, who is char-

acterized by their credit risk and their race. Furthermore, assume that the credit

agency only cares about a consumer’s credit risk. It is natural to consider informa-

tion structures that provide evidence about the consumer’s credit risk, for instance,

as a function of past credit scores and repayments. However, we may be interested

in understanding the impact that disclosing information about credit risk has on

the payoffs of consumers conditional on their race. As a second example, consider

the case of an agent seeking a job, who is characterized by their ability and their

gender. In many settings, disclosing information about gender may not be allowed

for, so it is natural to consider information structures only on the agent’s ability,

even though we are ultimately interested in the agent’s payoffs conditional on their

ability and gender.

Formally, we extend the setting in Section 2 as follows. There are three random vari-

ables (c ,ω, d ) taking values in a finite set C ×Ω×D . The first variable c , which we

refer to as the agent’s cohort, is the variable that we condition payoffs on: the con-
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sumer’s race in the first example and the agent’s ability and gender in the second

example. The second variable, which we refer to as the state, is the variable of in-

terest for the receiver of information: the consumer’s credit risk in the first example

and the agent’s ability in the second example. Finally, the third variable d , which

we refer to as data, allows us to capture the limits of the information that can be

disclosed aboutω: in the first example, d coincides with the consumer’s credit risk

and hence, there are no limits to how much information can be disclosed about the

state. In contrast, in the second example, d is the applicant’s ability and hence, not

all information can be disclosed about the state.

In line with the above description, we model the joint distribution P ∈∆(C ×Ω×D )

of cohort-state-data tuples as follows. LetPC×Ω ∈∆(C ×Ω) denote the marginal ofP
on C ×Ω. For each cohort-state pair (c ,ω), letφ : C ×Ω 7→∆(D ) denote the stochas-

tic matrix which describes the likelihood of each realization d ∈ D conditional on

(c ,ω).

An information structure is now defined as a tuple (π,S ), where π : D 7→∆(S ). Sim-

ilarly, we now define the payoff function as w : ∆(Ω)×Ω × C 7→ R. This is inline

with the model in Section 2, where the payoff function depends on the (unmod-

eled) receiver’s belief, which in this case is about the state of the worldω. However,

note that given P and an information structure π : D 7→ ∆(S ), updating on (c ,ω),

and hence onω, depends only on the updated belief about d . To be precise, let η0

denote the marginal of P on D and note that upon observing signal s ∈ S , we have

that

Ps (c ,ω, d ) =
P(c ,ω, d )π(s |d )

∑

(c ′,ω′,d ′)P(c ′,ω′, d ′)π(s |d ′)
=P(c ,ω|d )

η0(d )π(s |d )
∑

d∈D η0(d ′)π(s |d ′)
=P(c ,ω|d )ηs (d ),

where ηs is the marginal of Ps on D . Thus, without loss of generality, we can define

the payoff function as depending on beliefs about d rather than about ω, that is

we can write the payoff function as w (µ(η),ω, c ). In a slight abuse of notation, we

denote w (µ(η),ω, c ) by w†(η,ω, c ).

Given an information structure (π,S ), the agent’s expected payoff conditional on

belonging to cohort c is given by:

wΠ(c )≡EΠ [w†(η̃,ω̃, c̃ )|c̃ = c ] =
∑

η∈supp(Π)

∑

s∈S :ηs=η

∑

(ω,d )

P(ω, d |c )π(s |d )w†(η,ω, c ), (22)
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whereas the IP-set is defined as

W = {w ∈R|C | : (∃Π) : (∀c ∈C )wc =wΠ(c )}.

We now show that the analysis in Sections 3-4 extends verbatim. Indeed, consider

the expectation of payoff w induced by information structure (π,S ) conditional on

c :

wΠ(c )≡EΠ [w†(η̃,ω̃, c̃ )|c̃ = c ] =
∑

η∈supp(Π)

∑

s∈S :ηs=η

∑

(ω,d )

P(ω, d |c )π(s |d )w†(η,ω, c ) (23)

=
∑

η∈supp(Π)

∑

s∈S :ηs=η

∑

(ω,d )

P(ω, d |c )
η0(d )π(s |d )

∑

d ′∈D η0(d ′)π(s |d ′)

∑

d ′∈D η0(d ′)π(s |d ′)
η0(d )

w†(η,ω, c )

=
∑

η∈supp(Π)

∑

s∈S :ηs=η

PrΠ(s )
∑

(ω,d )

P(ω, d |c )
ηs (d )
η0(d )

w†(η,ω, c )

=
∑

η∈supp(Π)

∑

s∈S :ηs=η

PrΠ(s )ŵ†(η, c ),

where the adjusted payoff function ŵ† now takes the form:

ŵ†(η, c ) =
∑

(ω,d )

P(ω, d |c )
η(d )
η0(d )

w†(η,ω, c ). (24)

Equation 24 allows us to provide further insight into the adjusted payoff function

in the model of Section 2. Note that the likelihood correction is now based on the

variable d , highlighting that it corresponds to the variable on which information

is being provided. Instead, the term P(ω, d |c ) highlights the distinction between

the variable on which payoffs are conditioned, c , and the limits on information

provision as described by d .

The significance of Equation 23 is that we can immediately extend Theorem 1 to

this setting:

Theorem 4. The IP-set can be calculated as:

W =
�

w ∈R|C | : (η0, w) ∈ co
�

graphŵ†

�	

. (25)

Once the notions of cohorts, states, and data are clearly separated, it is natural to

think about how different data sources translate into different IP-sets. This can be

easily seen in the extreme cases where data provides no or full information about
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the state and cohort. When data provides no information about the state and co-

hort, there is no scope to provide different payoffs to agents in different cohorts, so

that the IP-set effectively collapses to a point. Instead, when data perfectly reveals

the state and cohort, the scope for payoff redistribution across the cohorts is the

largest. In general, we should expect that as data becomes less precise, the IP-set

should shrink. As Proposition 1 shows, the notion of less precise corresponds to the

notion of garbling as in Blackwell (1951).

Formally, for a given joint distribution over C ×Ω, PC×Ω, we wish to understand the

effect of different data sources, as described by the stochastic matricesφ : C ×Ω→
∆(D ) for some data set D . Following Blackwell (1951), we say thatφ′ : C×Ω→∆(D ′)

is a garbling of φ if a stochastic matrix G : D 7→ ∆(D ′) exists such that for every

cohort-state pair (c ,ω),

φ′(d ′|c ,ω) =
∑

d∈D

G (d ′|d )φ(d |c ,ω).

Fix w :∆(Ω)×Ω×C 7→R and the joint distribution PC×Ω. In a slight abuse of nota-

tion, we let W(D ,φ) denote the IP-set as we vary the data source (D ,φ)while hold-

ing fixed (w ,PC×Ω).

Proposition 1. If (D ′,φ′) is a garbling of (D ,φ), then

W(D ′,φ′)⊆W(D ,φ).

Proof. The proof is analogous to the corresponding part of the Blackwell’s theo-

rem. If (D ′,φ′) is a garbling of (D ,φ), then any distribution of signals conditional

on cohorts and states attainable by some information structure under data source

(D ′,φ′) is attainable under data source (D ,φ). Consequently, any interim payoff

profile that can be achieved by some information structure under (D ′,φ′) can be

achieved under (D ,φ), which is equivalent to the statement of the proposition.

While less precise data limits possibilities of payoff redistribution, it does so un-

equally across cohorts. We illustrate with our running online platform example.

Example 1 (Noisy Data). Consider now the case in which the platform only has a

noisy estimate of the seller’s type as captured by a data source that reveals the seller’s

type with a fixed precision σ ∈ [1/2, 1]. Formally, let D = {d1, d2} and P(di = θi ) =σ.

(In this case, the state and the cohort coincide and are equal to the seller’s type.) When
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Figure 6: IP-set for different values ofσ ∈ {0.55, 0.7, 0.85, 1}.

σ = 1, the data is perfectly informative about the type; when σ = 1/2, the data is

pure noise. More generally, if σ<σ′, then the data source that corresponds to σ is a

garbling of the data source which corresponds toσ′.

Figure 6 illustrates the IP-set W for different values of the precision σ ∈
{0.55, 0.7, 0.85, 1}. In line with Proposition 1, IP-sets resulting from data sources with

lower precision are subsets of those with higher precision. Whenσ=1, the IP-set nat-

urally coincides with the one in Figure 1.

There are two features worth noting. First, lower data precision has asymmetric ef-

fects across types: It decreases the maximal payoff of a high type without affecting his

minimal payoff, yet it increases the minimal payoff of the low type without affect-

ing his maximal payoff. Indeed, for sufficiently low values of σ, the unique Pareto

efficient information structure is the one that maximizes the payoff of the low type.

That is, in this example, lower data precision benefits low seller types. Second, while

it is immediate that the IP-set consists of only one point whenσ= 1/2, the IP-set actu-

ally collapses to the no disclosure payoff wN around σ = 2/3. The reason is that once

σ< 2/3 it is not possible to generate distributions over posteriors with support outside

the interval [1/3, 2/3] and in this interval w is constant.
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7 Conclusion

There are two ways to assess the value of an information structure in a Bayesian

setting. First, one may take an ex ante perspective and calculate the average pay-

off that the information structure delivers across all types. Second, one may take

take an interim perspective and compute the profile of conditional payoffs that this

information structure delivers to each of the types.

Following the interim perspective, we developed in this paper a methodology to

characterize the set of interim payoff profiles consistent with some information

structure. As we illustrated throughout the paper, our tools can be used to shed

new light into classic problems, such as information design with an informed prin-

cipal and strategic communication, and open the door to new ones, such as the

analysis of the welfare impact of different information policies in a population.
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A Omitted Proofs

A.1 Omitted proofs in Section 5.2

Proof of Theorem 1. By definition, the point (µ0, w) ∈ co
�

graph ŵ
�

if and only if there

exists a distribution over beliefs such that E[µ] = µ0 and E[ŵ
�

µ
�

] = w. At the same

time, an information structure can induce a distribution over beliefs if and only if

E[µ] =µ0. By Equation 4, the result follows.

A.2 Omitted proofs in Section 4

Proof of Theorem 3. Sufficiency follows from noting that

w ∈W↔w=D0

M
∑

m=1

αmµmµm
T

︸ ︷︷ ︸

C

ρ.

C is completely positive because it is the convex combination of rank-one non-

negative matrices, µmµ
T
m . That Ce=µ0 follows by definition.
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For necessity, consider w=D0Cρ, for some completely positive matrix C such that

Ce=µ0. Then, there exist {x1, . . . , xM} ⊆RN
+ such that

C =
M
∑

m=1

xmxm
T . (26)

Let
p
αm =

∑N
j=1 xm j and note that xm/(

p
αm )≡µm ∈∆(Θ).

C =
M
∑

m=1

αm

�

xmp
αm

��

xmp
αm

�T

=
M
∑

m=1

αmµmµm
T

It remains to show that
∑M

m=1αm = 1 and that
∑M

m=1αmµm = µ0. Note that for all

i ∈ {1, . . . , N }:

(Ce)i =
∑

m

αmµmi

N
∑

j=1

µm j =µ0(θi ). (27)

Furthermore,

N
∑

i=1

µ0(θi ) = 1=
N
∑

i=1

M
∑

m=1

αmµmi =
M
∑

m=1

αm . (28)

Thus, there exists an information structure that generates {αm ,µm}Mm=1. Therefore,

w ∈W.

Proof of Claim 1. If Pr(X ) = 0, then the statement is trivial. If Pr(X )> 0, then denote

by Pi· the i-th row of the matrix P, presented as a row-vector. By Bayes’ rule, Pr (X ) =

µT
0 β and Pr(θi | X ) = (µ0iβi )/(µT

0 β) so:

EΠ [Pr(X | s ) | θi ] =
N
∑

j=1

EΠ
�

Pr
�

θ j | s
�

| θi

�

Pr(X | θ j ) = Pi·β,

EΠ [Pr (X | s ) | X ] =
N
∑

i=1

Pr (θi | X )EΠ [Pr (X | s ) | θi ] =
N
∑

i=1

µ0iβi

µT
0 β

Pi·β.

Hence, the truth-drifting condition can be restated as:

N
∑

i=1

µ0iβi

µT
0 β

Pi·β≥µT
0 β.

Define Ĉ ≡ PD0 = D0CD0. By Theorem 3, Ĉ is a completely positive matrix such
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that Ĉµ0 = e and µT
0 Ĉµ0 = 1. Hence, the truth-telling condition can be restated in a

matrix form as:

�

µ0 ∗β
µT

0 β

�T

Ĉ

�

µ0 ∗β
µT

0 β

�

≥µT
0 Ĉµ0.

The term ζ ≡ (µ0 ∗ β)/(µT
0 β) is an element of simplex ∆(Θ), equal to µ0 when β =

e. Hence, to confirm the condition it suffices to show that µ0 is a minimizer of a

quadratic form ζT Ĉζamong all ζ ∈∆(Θ). Lagrangian approach applies. At ζ=µ0 the

derivative of the form is collinear to e, hence, collinear to the space of ∆ (Θ); first–

order conditions are satisfied. At the same time, Ĉ is completely positive and thus

positive semi-definite; second–order conditions are satisfied. The result follows.

A.3 Omitted proofs in Section 5

Proof of Proposition 2. By Corollary 1, there exists an optimal information structure

with at most 2N − 1 signals. Consider an arbitrary information structure Π with a

finite number of signals. We show that this information structure can be gradually

improved upon with the result being a bi-pooling policy. First, if some signals oc-

cur with positive probability under the target type θi and some lower types, then

separate the lower types into separate signals: This modification strictly improves

the expected reputation conditional on those signals and hence the objective. Sec-

ond, consider the highest type θN and any signal s with π(s | θN )> 0. Create a new

signal ŝ that is sent only for types θi and θN and such that E
�

ρ | ŝ
�

=E
�

ρ | s
�

: Shift

the probability mass from π(s | θi ) and π(s | θN ) to π(ŝ | θi ) and π(ŝ | θN ) at a ratio

µ0(θN )(θN −E
�

ρ | s
�

)/µ0(θi )(E
�

ρ | s
�

− θi ) until either π(s | θi ) or π(s | θN ) gets de-

pleted. This adjustment preserves the objective. If the resulting π′(s | θi ) = 0 then

allocate the leftover π′(s | θN ) to signal ŝ and all likelihoods from other states into a

signal f ; this strictly improves the objective wheneverπ′(s | θN )> 0 andπ(s | θi )> 0.

If π′(s | θN ) = 0 but π′(s | θi ) > 0, then repeat the procedure for any other original

signal s with π(s | θN ) > 0, and so on. At the end of the round, θN is pooled exclu-

sively with θi , possibly over many signals ŝ . Merge all these signals together; this

preserves the objective.

Repeat this procedure starting with the second highest state and so on. The al-

gorithm finishes in finitely many iterations and results in a bi-pooling policy. The

principal’s objective is weakly improved at each step.
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We complete the proof by arguing that an optimal bi-pooling policy must be with a

subset of types above some threshold. Indeed, if a target bi-pooling pairwise pools

a target type θi with a type θl ≥ θi in a signal sl thenE[ρ | sl ]≤ θl . If the information

structure doesn’t pool type θi with a type θm > θl , then it can be strictly improved

by pooling θm into signal sl . The result follows.

Proof of Proposition 3:

Lemma 1. The correspondence V̂ has closed values and is upper hemicontinuous.

Proof. To see that V̂ has closed values, fix µ ∈ ∆(Θ) and consider a sequence

(vn )n∈N ⊆ V̂ (µ) such that vn → v∗. Then, there exists (αn )n∈N ∈ΛB R (µ) such that

vn (θ ) = v̂ (αn ,µ,θ ) =
µ(θ )
µ0(θ )

∑

a∈A

αn (a )v (a ,θ ),

for all θ ∈ Θ. Up to a subsequence, αn → α∗ ∈ ΛB R (µ), since ΛB R (µ) has compact

values by the Maximum Theorem. Thus, for each type θ , vn (θ ) converges to

µ(θ )
µ0(θ )

∑

a∈A

α∗(a )v (a ,θ ).

It follows that

v∗ = v̂ (α∗,µ, ·) ∈ V̂ (µ).

Since V̂ has closed values, in order to show that V̂ is upper hemicontinuous, it suf-

fices to show that for all sequences (µn )n∈N, v∗ ∈ RN and all vn ∈ V̂ (µn ) such that

µn → µ∗ and vn → v∗, we have that v∗ ∈ V̂ (µ∗). Consider such a sequence. Then, we

have that

vn (·) =
µn (·)
µ0(·)

∑

a∈A

αn (a )v (a , ·), αn ∈ΛB R (µn ).

Note that for all n ∈N, αn ∈ΛB R (µn ), µn →µ∗, so that up to a subsequence we have

thatαn →α∗ ∈ΛB R (µ∗). The latter follows from the Measurable Maximum Theorem.

We obtain that

vn →
µ∗(·)
µ0(·)

∑

a∈A

α∗(a )v (a , ·), (29)

and by uniqueness of the limit, the right-hand side of the above expression must
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correspond to w ∗. It follows that v∗ ∈ V̂ (µ∗).

Corollary 3. V̂ has a closed graph.

Proof. The result follows from Lemma 1 and the closed graph theorem.

It follows that V is compact.
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