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Abstract

I consider a duopoly model with di�erentiated substitutes, price competition, and

uncertain demand, in which one �rm has an information advantage over a competitor.

I study the incentives of the informed �rm to share its private information with its

competitor and the incentives of a regulator to constrain or enforce disclosure in order to

bene�t consumers. I show that full disclosure of information is optimal for the informed

�rm, because it increases price correlation and surplus extraction from consumers. A

regulator can increase expected consumer surplus and welfare by restricting disclosure,

but consumers can bene�t from the regulator privately disclosing some information

to the competitor. Disclosure increases the ability of �rms to extract surplus from

consumers, but private disclosure creates a coordination failure in �rm pricing. Private

partial disclosure is optimal for consumers when �rms o�er su�ciently close substitutes.

My �ndings highlight the e�ect of an uneven distribution of consumer data between

�rms on welfare allocation. They also inform an ongoing policy debate about how to

control the dissemination of information between �rms to protect consumers.
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Some �rms can gather more information than their competitors about market features like

demand, given their size or incumbency status. For instance, online platforms like Amazon

engage in massive data analysis and demand estimation by gathering information generated

through trade and consumer searches that other sellers on the platform can't replicate. As

sellers themselves, they can use this information to guide their own pricing, control the

information observed by other sellers, and potentially make price recommendations as in

Amazon's Seller's coaching program. In settings of information asymmetry, information

disclosure between �rms a�ects �rm behavior and therefore also impacts consumers and

welfare. The use of private information as a competitive advantage by online platforms

and the role of price recommendations as a collusive device have attracted the attention

of regulatory entities in the US and Europe.1 This is because, when there is an uneven

distribution of consumer data between �rms, regulatory interventions to control information

disclosure can redistribute surplus between �rms and consumers, as well as impact welfare.

In this paper, I study the role of information disclosure as a pricing persuasion device

through which a �rm with an information advantage or a regulator can in�uence the pric-

ing of a competing �rm. I examine the informed �rm's incentives to commit to share its

private information with its competitor and the role of a regulator who commits to control

information disclosure between �rms to bene�t consumers. Speci�cally, this paper analyzes

a stylized duopoly model with information asymmetry about demand and a binary state,

with an informed �rm which privately learns the level of the demand and an uninformed

�rm that has no private information. Demand is linear and �rms face uncertainty about its

level, which can be either low or high. Firms o�er di�erentiated goods, such that consumer

willingness to pay for a good depends on its substitutability with the competitor's. Firms

compete by simultaneously and non-cooperatively setting prices to maximize their expected

pro�ts. In this context, I address the following questions: What is the informed �rm's op-

timal disclosure policy as a competitor in the market? How can a regulator constrain or

enforce information disclosure to bene�t consumers?

I characterize the optimal disclosure for �rms and consumers. The welfare implications

of disclosure are determined by the degree of di�erentiation between goods, because it deter-

mines the extent to which disclosure a�ects �rm pricing and relative demand across markets.

Regarding optimal disclosure for �rms, with substitutes, �rm choices are strategic comple-

ments and the informed �rm thus bene�ts from sharing its private information with the

uninformed �rm through increased price correlation. As a result, full disclosure is optimal

1See for example media coverage in Fung (2020), Green (2018) and Lardieri (2019).
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for the informed �rm. Full disclosure also maximizes producer surplus, because the unin-

formed �rm also bene�ts from price correlation as well as from learning about the state. This

result highlights that an informed �rm may have incentives to share information even when

it has no information to gain in return, because it can in�uence the pricing of its competitor.

Furthermore, I generalize this result by showing that the informed �rm's optimal disclosure

doesn't rely on the linearity of demand: when the informed �rm's expected equilibrium pro�t

is supermodular in the state and the choice of the uninformed �rm, �rms' choices are strate-

gic complements and, accordingly, full disclosure is optimal. Also, no disclosure is optimal

when the informed �rm's expected equilibrium pro�t is submodular.2

Regarding optimal disclosure for consumers, a regulator should restrict information dis-

closure, at least partially.3 However, some information disclosure is not necessarily detrimen-

tal to consumers. First, I show that the optimal disclosure is private, such that the informed

�rm doesn't observe the signal realization of the uninformed �rm. Second, Proposition 2

shows that optimal disclosure is determined by the degree of di�erentiation between goods.

Partial disclosure is optimal if �rms o�er su�ciently close substitutes and no disclosure is

optimal otherwise. Information disclosure creates a trade-o� for consumers. On the one

hand, it reduces the uninformed �rm's uncertainty about the state, improving the ability of

�rms to extract surplus from consumers by increasing price correlation. On the other hand,

private partial disclosure introduces uncertainty about the information observed by a �rm's

competitor. This expands the range of prices in each state, since �rms price according to

the expected price of its competitor and its own expected level of demand. Namely, the un-

informed �rm may observe a signal which con�icts with the realized state, but the informed

�rm doesn't observe the signal and therefore cannot adjust, creating a coordination failure.

Consumers can bene�t from this price heterogeneity by choosing from which �rm to buy

after observing prices. Overall, the regulator trades-o� the opportunity to create this coor-

dination failure in prices with allowing �rms to better extract surplus from consumers. The

net e�ect depends on the di�erentiation between goods, because it determines consumers'

willingness to substitute between goods and therefore the extent to which disclosure a�ects

relative demand across �rms.

2When the informed �rm's pro�ts are supermodular in the state and the choice of the uninformed �rm,

an increase in the uninformed �rm's price has a increasing e�ect on the informed �rm's pro�ts as the state

increases. Focusing instead on decision problems, Kolotilin and Wolitzky (2020) shows that supermodularity

of a sender's objective function with respect to the state and the receiver's action is a su�cient condition

for the optimality of full disclosure.
3Luco (2019) presents empirical evidence that full disclosure can be detrimental for consumers in the

gasoline market in Chile.
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To maximize expected welfare, the regulator trades o� the e�ect of disclosure on con-

sumers and �rms. When �rms o�er su�ciently di�erentiated goods, no disclosure is optimal,

since the expected loss from disclosure for consumers exceeds the expected gain for �rms.

Conversely, when �rms o�er su�ciently close substitutes, full disclosure is optimal. For

intermediate levels of di�erentiation, partial disclosure maximizes expected welfare.

When partial disclosure is optimal, I also fully characterize the consumer and welfare op-

timal disclosure policies. Signals act as equilibrium price recommendations, recommending

a price to each �rm conditional on the state subject to obedience constraints. Proposition 3

shows that the regulator recommends at most two prices. One of the prices is only recom-

mended when the state is low, revealing the state to the uninformed �rm. The other price

is recommended in both states, obfuscating the level of demand. The optimality of partial

disclosure contrasts with previous work focusing on �rm incentives, highlighting that optimal

disclosure is more nuanced when considering implications for consumers and welfare.

My analysis emphasizes the wide scope for intervention by a regulator, based on product

di�erentiation and their objective function. My results are of particular interest given current

policy debates on the use of private information by �rms who act as both a trading platform

and a competitor in the market, as well as the debate about whether retail price recommen-

dations act as a collusive device. As I show, it can be optimal for a regulator to intervene by

completely preventing or forcing information disclosure, or by designing disclosure policies

to partially inform the uninformed �rm. Since disclosure policies can be interpreted as price

recommendations, these recommendations can help consumers, and abstaining from regula-

tion minimizes consumer surplus. Lastly, my results highlight that it is crucial to consider

the strategic environment to understand the welfare consequences of information sharing.

Related literature. This paper contributes to the literature on strategic information shar-

ing in oligopolies with commitment and the literature on information design in games.4

Incentives for information sharing about demand among competing �rms with symmetric

private information and normally distributed linear demand were �rst studied in Novshek

and Sonnenschein (1982), Clarke (1983) as well as Vives (1984), and later generalized in

Raith (1996).5 In these papers, �rms commit to share their private information with an

4Papers like Benoit and Dubra (2006) show that agents' ex-ante and ex-post incentives for information

sharing can be disaligned, such that commitment is key.
5Other papers in this literature include Gal-Or (1985), Li (1985), Kirby (1988) and Vives (1990). In-

formation sharing about costs are studied in papers like Fried (1984), Gal-Or (1986), Sakai (1986) and

Shapiro (1986), in which incentives to share information are reversed for �rms. Information sharing about

costs with Bertrand competition is strategically equivalent to sharing about values in �rst price auctions
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intermediary, which then discloses a common signal to all �rms to maximize industry-wide

pro�ts. These papers focus on the producer surplus optimal public disclosure and on the

regulation of industry-wide information sharing by trading organizations. They show the

optimality of full disclosure for �rms when they compete by choosing prices and o�er imper-

fect substitutes. Instead, I study the incentives of an individual �rm to share information

to in�uence its competitor's behavior in a setting of informational advantage, in which the

distribution of the uninformed �rm's signal is unrestricted.6 My results show that it can be

optimal for a �rm to unilaterally disclose information about demand to a competitor even

without receiving information in return, because disclosure in�uences competitor behavior

and acts as a pricing persuasion device.7 Further, full disclosure is not only optimal for the

informed �rm, but also for producer surplus. The intuition for this result relates to Angele-

tos and Pavan (2007), who study the social value of information with normally distributed

signals and �nd that producer surplus increases with the precision of both public and private

signals.

In contrast with this literature, I also analyze the e�ects of information disclosure on

consumers. Vives (1984) and Calzolari and Pavan (2006) show that information disclosure is

not necessarily harmful to consumers. Vives (1984) illustrates this by comparing the utility of

a representative consumer across full and no disclosure when �rms share symmetric normally

distributed private information. Calzolari and Pavan (2006) study a sequential setting in

which the Stackelberg leader must provide incentives to consumers to reveal their private

information to be able to share it with its follower. They focus on the leader's optimal

disclosure policy, whereas I focus on the optimal disclosure for consumers. Regarding welfare,

Vives (1984) also shows that full disclosure dominates no disclosure if and only if �rms o�er

su�ciently close substitutes, yet I show that restricting to full and no disclosure is with

loss of generality since partial disclosure can be consumer and welfare optimal. My results

regarding welfare relate to Ui and Yoshizawa (2015), who study the social value of information

restricted to symmetric normally distributed signals and symmetric equilibria. They show

that welfare decreases in the precision of private information and increases in the precision

of public information if goods are close substitutes, intuitively related to the optimality of

(Engelbrecht-Wiggans et al. (1983), Fang and Morris (2006), and Bergemann et al. (2017)).
6Bergemann and Morris (2013), Bergemann et al. (2015b) and Eliaz and Forges (2015) analyze producer

optimal disclosure in Cournot settings with perfect substitutes and information symmetry. They show that

it is with loss of generality to restrict attention to a common and, hence, perfectly correlated disclosure.
7In sequential settings, the role of current choices as a costly persuasion device to in�uence the precision of

future information has been studied in Mailath (1989), Mirman et al. (1993), Mirman et al. (1994), Harrington

(1995), Keller and Rady (2003), Taylor (2004), Bernhardt and Taub (2015), Bonatti et al. (2017).
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either full or private partial disclosure as I fully characterize in this paper.

More broadly, the paper contributes to the literature on information design in games

as studied in papers like Taneva (2019) and Mathevet et al. (2020). I characterize the op-

timal recommendation mechanism in a Bertrand setting with product di�erentiation and

information asymmetry.8 It is most closely related to the literature on consumer optimal

information design, which analyzes the e�ect of information about buyers' valuation on pric-

ing and welfare allocation. This literature has focused on buyer optimal learning, consumer

optimal market segmentation and on the incentives of consumers to disclose their prefer-

ences to �rms. Within the buyer optimal learning literature, Roesler and Szentes (2017)

analyzes the e�ect of a buyer's information on monopoly pricing and characterizes opti-

mal buyer learning. In a duopoly setting, Armstrong and Zhou (2019) studies competition

between �rms when consumers observe a private signal about their valuation and charac-

terizes consumer optimal learning. Within the consumer optimal segmentation literature,

Bergemann et al. (2015a) analyzes the welfare consequences of a monopolist having access

to additional information about consumer preferences and characterize the feasible welfare

outcomes achieved by segmentation. Li (2020) extends the insights from Bergemann et al.

(2015a) to an oligopoly setting and characterizes the consumer-optimal market segmenta-

tion in competitive markets. Elliott et al. (2020) studies how information about consumer

preferences should be distributed across �rms which compete by o�ering personalized dis-

counts to consumers and provides necessary and su�cient conditions under which perfect

segmentation can be achieved. Lastly, Ichihashi (2020) studies the welfare e�ects of con-

sumers disclosing information about their valuation with a monopolist, whereas Ali et al.

(2020) analyzes the consumer optimal disclosure of information about their preferences in

monopolistic and competitive markets. In contrast, I focus on the welfare consequences of an

unequal distribution of consumer data across �rms and the e�ect of information disclosure

between �rms. In particular, I characterize the consumer optimal disclosure policy between

�rms, which a�ects consumers indirectly by a�ecting prices.

The remainder of the paper is organized as follows: Section 1 presents the model, Section

2 derives the informed �rm optimal disclosure, Section 3 derives the consumer optimal dis-

closure, Section 4 derives the producer and welfare optimal disclosures, Section 5 discusses

extensions and robustness of results, and Section 6 concludes.

8In contrast, Bergemann et al. (2021) study a setting in which identical �rms o�er an homogeneous

good, compete by setting prices and are uncertain about the number of price quotes a consumer receives.

They identify how the equilibrium price dispersion depends on the distribution of the price count and the

information �rms have.
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1 The model

Two symmetric �rms o�er horizontally di�erentiated substitutes and compete by simultane-

ously setting prices. Firm pro�ts depend on the realization of a binary payo�-relevant state,

θ ∈ Θ = {θL, θH} with θH > θL > 0. Firms share a common prior about the state where the

probability of θ ∈ Θ is denoted by µθ ∈ (0, 1). Firm i's demand, qi((pi, p−i); θ), is given by

qi((pi, p−i); θ) = max{0, θ − api + bp−i} (1)

where a and b are known parameters with a > b > 0.9 As can be seen from (1), the state

represents the level of demand and, since �rms o�er substitutes, both the state and the price

of the competitor are positive demand shifters which increase quantity demanded at every

price. De�ne δ as the ratio of b and a, which measures the degree of di�erentiation. As

δ converges to 0, goods are more di�erentiated and as δ converges to 1, goods are closer

substitutes. I restrict attention to distributions of the payo�-relevant state that satisfy

Assumption 1.

Assumption 1 The support of the payo�-relevant state's distribution satis�es θH < 4a2−b2
2a2−b2 θL.

Assumption 1 imposes an upper bound on the high state, ensuring that equilibrium prices

and quantities are strictly positive for both �rms, for any information they may have about

the state. This assumption restricts attention to the e�ect of information disclosure on prices,

isolating it from the potential e�ect of inducing a �rm to be �priced out" of the market when

it selects prices that are not competitive.

Further, assume that �rms' costs are zero.10 Hence, �rm i's ex-post pro�ts, Πi : R2
+×Θ→

R, correspond to

Πi((pi, p−i); θ) = pi · qi((pi, p−i); θ).

Given the state and prices (pi, p−i), ex-post consumer surplus in the market of �rm i is the

di�erence between consumers' ex-post willingness to pay for the good and the equilibrium

price. The ex-post willingness to pay of consumers in market i is characterized by the ex-post

inverse demand, pi(qi; p−i, θ), given by

pi(qi; p−i, θ) = max

{
0,
θ + bp−i − qi

a

}
9The relationship between a and b implies that demand is more sensitive to a �rm's own price than the

price of its competitor, ensuring that equilibrium prices are �nite.
10Including linear or quadratic costs has no impact on the results.
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where demand is generated by a continuum of heterogeneous consumers making discrete

choices (Armstrong and Vickers, 2015).11 Then, ex-post consumer surplus in market i,

CSi : R2
+ ×Θ→ R, corresponds to

CSi((pi, p−i); θ) =
1

2

[
θ + bp−i

a
− θ + bp−i − qi((pi, p−i); θ)

a

]
qi((pi, p−i); θ) =

1

2a
qi((pi, p−i); θ)

2,

(2)

where the term in square brackets corresponds to the di�erence between the demand inter-

cept and the equilibrium price.

Information environment. Firm 1 (the informed �rm) learns the state, whereas �rm

2 (the uninformed �rm) initially has no information beyond the common prior. Assume

that a designer can restrict (or require) information sharing between �rms by choosing the

information observed by the uninformed �rm. The designer selects and commits to an

information structure before the realization of the state which discloses none, some, or all

of the informed �rm's private information to the uninformed �rm. Let S2 be the set of

signal realizations observed by �rm 2. An information structure consists of a set of signal

realizations S2 and a family of conditional distributions ψ2 : Θ → ∆(S2). The information

structure is observed by both �rms but signal realizations are private.

Speci�cally, the timing is as follows: (i) the designer selects and commits to an infor-

mation structure (S2, ψ2) observed by both �rms; (ii) the state θ is realized and privately

observed by the informed �rm; (iii) the signal realization is realized and privately observed

by the uninformed �rm according to (S2, ψ2); (iv) �rms update their beliefs according to

Bayes' rule and simultaneously choose prices; (v) payo�s are realized.

Signals play two roles. First, they act as a coordination device by providing information

about the actions of others, even when there is no uncertainty about the state. Second,

they inform the uninformed �rm about the state which in�uences �rms' pricing choices. All

correlation between �rms' choices is generated through the state.

11Assume a continuum of consumers with heterogeneous preferences. Consumer ` has valuation v`,i for one

unit of the good o�ered by �rm i, where v = (v`,1, v`,2) is drawn from a joint cumulative distribution G(v).

Consumer ` attaches no value to more than one unit of either good and wishes to buy either a single unit of

one good or to not buy any of them. Then, consumer ` buys from �rm i if v`,i − pi ≥ maxj 6=i{0, v`,j − pj},
where the outside option is normalized to zero. The demand for product i, qi(p), is then the measure of

consumers ` who satisfy v`,i− pi ≥ maxj 6=i{0, v`,j − pj}. Armstrong and Vickers (2015) show that the linear

demand model de�ned by (1) can be micro-founded by this discrete choice model. In this context, consumer

` who buys from �rm i receives surplus v`,i − pi and the consumer surplus in market i is simply the sum of

the surpluses of consumers ` who purchase good i, which coincides with (2).
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Two assumptions on the information structure warrant further discussion. First, the

commitment assumption is standard in the literature and can be interpreted as a reputation

concern.12 In practice, Amazon shares data with other �rms through algorithmic price

recommendations based on consumer searches and purchases. We should expect that Amazon

commits to these automated recommendations, rather than designing a new algorithm each

time demand for a given product is realized. Second, Lemma 16 shows that, for any disclosure

policy, consumers are better o� when signals are private, while it has no e�ect on optimal

disclosure for �rms.13 One interpretation of private disclosure is that the informed �rm

observes the uninformed �rm's signal realization, but doesn't condition its pricing on it.

For example, Amazon may observe the recommendations made to sellers, but any given

recommendation typically does not feed back into its pricing.

Pricing game. Fixing the information structure (S2, ψ2), �rms play a pricing game in

which they condition their pricing on their information by selecting mappings

β̂1 : Θ→ ∆(R+) and β̂2 : S2 → ∆(R+)

to maximize their expected pro�ts.14 The solution concept is Bayes Nash equilibrium (BNE).

A strategy pro�le (β̂1, β̂2) is a BNE if, for all pi ∈ supp β̂i,∫
S2

∫
R+

Π1((p1, p2); θ)dβ̂2(p2|s2)dψ2(s2|θ) ≥
∫
S2

∫
R+

Π1((p′1, p2); θ)dβ̂2(p2|s2)dψ2(s2|θ) (3)

for all p′1 ∈ R+ and θ ∈ Θ and∑
θ∈Θ

µθ

∫
R+

Π2((p2, p1); θ)dβ̂1(p1|θ) ≥
∑
θ∈Θ

µθ

∫
R+

Π2((p′2, p1); θ)dβ̂1(p1|θ) (4)

for all p′2 ∈ R+ and s2 ∈ S2. Denote by Ê(S2, ψ2) the set of BNE in the pricing game.

For any information structure (S2, ψ2), the existence and uniqueness of the BNE is guar-

anteed by Ui (2016), which provides su�cient conditions for the existence and uniqueness of

the BNE in Bayesian games with concave and continuously di�erentiable payo� functions.

This result is formalized in Lemma 1. The proofs of this result and all subsequent others are

in Appendix A.3.

Lemma 1 For all information structures (S2, ψ2), the set of BNE in the pricing game

Ê(S2, ψ2) is a singleton.
12See for example Vives (1984), Novshek and Sonnenschein (1982) or Bergemann et al. (2015b).
13Similarly, Bergemann et al. (2015b) shows in a Cournot setting that it is with loss of generality to restrict

attention to public information disclosure, since it comes at the cost of ex-ante welfare.
14Note that di�erent information structures (S2, ψ2) induce di�erent optimal strategies for both �rms.
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Information disclosure. The choice of information structure (S2, ψ2) determines the equi-

librium in the pricing game. The designer chooses an information structure to maximize its

ex-ante expected payo� such that (β̂∗1(p1|θ), β̂∗2(p2|s2)) is the BNE of the pricing game. I

consider four objective functions for the designer:

i) Informed �rm expected pro�ts:

E [Π1((p1, p2); θ)] =
∑
θ∈Θ

µθ

∫
S2

∫
R+

∫
R+

Π1((p1, p2); θ)dβ̂∗2(p2|s2)dβ̂∗1(p1|θ)dψ2(s2|θ)

ii) Expected consumer surplus:

E [CS((p1, p2); θ)] =
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
S2

∫
R+

∫
R+

qi((pi, p−i); θ)
2dβ̂∗1(p1|θ)dβ̂∗2(p2|s2)dψ2(s2|θ)

iii) Expected producer surplus:∑
i=1,2

E [Πi((p1, p2); θ)] =
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
S2

∫
R+

∫
R+

Πi((pi, p−i); θ)dβ̂
∗
1(p1|θ)dβ̂∗2(p2|s2)dψ2(s2|θ)

iv) Expected welfare:

E [W ((p1, p2); θ)] := E [CS((p1, p2); θ)] +
∑
i=1,2

E [Πi((p1, p2); θ)] .

The interpretation of the role of the designer varies depending on their objective function.

If the designer's objective is to maximize the informed �rm's expected pro�ts, then it is as

if the informed �rm is choosing how much information to disclose to its competitor. If the

designer's objective is to maximize expected producer surplus, it is as if there is a collusive

agreement between �rms to determine optimal disclosure of information among them. If the

designer's objective is to maximize expected consumer surplus or welfare, the interpretation

of the designer is as a regulator.

The main e�ects of information disclosure are captured by the trade o�s arising from

the informed �rm and the consumer optimal disclosures. The insights obtained by analyzing

them extend to the producer surplus and welfare optimal disclosures.

Equivalence to recommendation mechanisms. The revelation principle of games of

communication simpli�es the information design problem by constraining the set of informa-

tion structures. Taneva (2019) shows that it is without loss of generality to restrict attention

to information structures where signals are equilibrium recommendations conditional on the

state. I present an extension to compact action spaces and bounded, continuous real-valued
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payo� functions, restricting attention to pi ∈
[
0, θH

a−b

]
for all i ∈ {1, 2}.15 In a recommenda-

tion mechanism, the pricing rule σ : Θ → ∆
([

0, θH
a−b

]2)
recommends a price for each �rm

such that the obedience constraints are satis�ed, ensuring that �rms are willing to follow

the recommendation. Any pricing rule which satis�es the obedience constraints is a Bayes

Correlated Equilibrium (BCE) as introduced by Bergemann and Morris (2013).16 That is, a

pricing rule σ : Θ→ ∆
([

0, θH
a−b

]2)
is a BCE if

∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

for all pi ∈ supp σ, p′i ∈
[
0, θH

a−b

]
, and i ∈ {1, 2}, such that the distribution of the informed

�rm's price given the state is degenerated.17 Every possible BCE distribution can be repli-

cated as a BNE by appropriately choosing the information structure. A detailed discussion

of this equivalence is presented in Appendix A.2.

2 Informed �rm optimal disclosure

In this section, the informed �rm directly determines its optimal information disclosure.

That is, assume that the designer's objective is to maximize the informed �rm's expected

pro�ts,

E(µ,σ)[Π1((p1, p2); θ)] =
∑
θ∈Θ

µθ

∫
Π1((p1, p2); θ)dσ((p1, p2)|θ).

The informed �rm chooses a feasible obedient recommendation mechanism σ to maximize its

expected equilibrium pro�ts in the pricing game. From its point of view, whether disclosure

is private or public has no impact on the optimal disclosure policy.18 Proposition 1 states

that it is optimal for the informed �rm to share its information.

Proposition 1 (Informed �rm optimal disclosure) It is optimal for the informed �rm

to fully reveal its private information to the uninformed �rm.

The optimal disclosure policy is determined by the fact that pricing choices are strategic

complements, which determines the e�ect of changes in the precision of the uninformed �rm's

15This is without loss of generality, since any price above θH
a−b induces no trade and zero pro�ts for �rm i.

16In my model, unlike in Bergemann and Morris (2013) in which both players are uninformed about the

state, �rm 1 learns the state before selecting prices. The de�nition of BCE is adapted to account for this.
17The informed �rm observes a perfectly informative signal and its equilibrium prices are pσ1 (θ) = θ+Eσ[p2|θ]

2a .
18See the discussion in Section 5 and details in Appendix A.5.
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signal on the informed �rm's expected pro�ts. In particular, using the uninformed �rm's best

response function, the informed �rm's expected equilibrium pro�ts, E(µ,σ)[Π
∗
1((p1, p2); θ)], can

be expressed as

E(µ,σ)[Π
∗
1((p1, p2); θ)] = aEµ

[(
θ + bEσ[p2|θ]

2a

)2
]
,

where the expectation is taken with respect to the prior µ and the recommendation mecha-

nism σ since �rm 1 commits to a recommendation mechanism before learning the state. Note

that the informed �rm's expected equilibrium pro�ts are convex with respect to the condi-

tional expectation of the uninformed �rm's price. Then, maximizing the informed �rm's

expected equilibrium pro�ts is equivalent to maximizing the distance between the expected

equilibrium prices set by the uninformed �rm across states, Eσ[p2|θL] and Eσ[p2|θH ]. In-

creasing the precision of the signal observed by the uninformed �rm increases the correlation

between its expected price and the state and, therefore, variation in its expected price. As

a result, full disclosure maximizes the informed �rm's expected pro�ts.19

Intuitively, increasing the precision of the signal observed by the uninformed �rm in-

creases its certainty about the state, increasing (decreasing) expected demand when its pos-

terior beliefs suggest that the high (low) state is more likely. Accordingly, the uninformed

�rm increases its expected equilibrium price in the high state and decreases it in the low

state. As a result, with substitutes, more precise information disclosure increases (decreases)

the informed �rm's expected demand in the high (low) state. In the high state, a higher

expected demand allows it to increase its price. The informed �rm then increases its pro�ts

by raising the price on inframarginal consumers who were already buying its product and by

gaining marginal consumers from the uninformed �rm's market. The opposite is true in the

low state since it charges a lower price and faces lower demand, but the expected pro�t gain

in the high state exceeds the expected loss in the low state given the larger size of the market.

Hence, the informed �rm bene�ts from price correlation and its expected equilibrium pro�ts

increase in the precision of the uninformed �rm's signal. Since this precision is maximized

by full disclosure, it is optimal for the informed �rm to fully disclose its private information.

This result is intuitively related to Kamenica and Gentzkow (2011), which �nds that

full disclosure is optimal when a sender's expected payo� is strictly convex. However, this

19This result relies on Assumption 1. Otherwise, if the high state is su�ciently high and the uninformed

�rm observes a su�ciently uninformative signal about demand, its prices can be only competitive when

the state is high. Then, the informed �rm can be e�ectively a monopolist when demand is low if it shares

su�ciently imprecise information about the state. Therefore, from the informed �rm's perspective, sharing

their private information could harm it, because it can induce more competition when demand is low.
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result doesn't directly apply to my setting, since the informed �rm (the sender) and the

uninformed �rm (the receiver) play a game after the uninformed �rm privately observes

its signal realization. As such, payo�s not only depend on the state and the action of the

uninformed �rm, but also on the action of the informed �rm. My results highlight that

their intuition holds more broadly, not only in decision problems, but also in games in which

payo�s are supermodular in the state and the actions of others.

Indeed, I show that the optimality of full disclosure doesn't rely on the convexity of

payo�s or, equivalently, on the linearity of demand. As formalized in Proposition 6 in

Appendix A.4, full disclosure is optimal if the informed �rm's expected equilibrium pro�ts

are supermodular in the state and the uninformed �rm's price. I also show that no disclosure

is optimal if the informed �rm's expected equilibrium pro�ts are submodular in the state and

the uninformed �rm's price. This implies that it is optimal for the informed �rm to reveal no

information to its competitor when they compete by setting prices and o�er di�erentiated

complement goods. Kolotilin and Wolitzky (2020) obtain a related result in a setting in

which the sender and the receiver do not interact. They show that supermodularity of the

sender's objective function with respect to the state and the receiver's action is a su�cient

condition for the optimality of full disclosure in decision problems. My results strengthen

�ndings from previous work (Vives (1984), Vives (1990) and Raith (1996)), by showing the

optimality of either full or no information disclosure in a setting of information asymmetry

where the distribution of the uninformed �rm's signal and the correlation with the informed

�rm's signal are unrestricted.20 One takeaway is that it can be optimal for a �rm to disclose

information to a competitor even when it has no information to gain in return, because the

�rm can use disclosure to in�uence competitor prices.

3 Consumer optimal disclosure

In this section, I interpret the designer as a regulator whose objective is to maximize expected

consumer surplus. We can interpret the regulator as a consumer protection agency who

requires the informed �rm to make its private information available to them. It can then

privately share all or a subset of this information with the uninformed �rm.21

In particular, assume that the designer's objective is to choose an obedient price recom-

20They also strengthen results from Novshek and Sonnenschein (1982), Clarke (1983) and Gal-Or (1985),

given that Cournot with substitutes (complements) is equivalent to Bertrand with complements (substitutes)

from the point of view of �rms, as discussed in Raith (1996).
21Alternatively, the regulator can require the informed �rm to directly share a speci�c subset of its infor-

mation with the uninformed �rm, as long as the informed �rm's pricing cannot be conditioned on it.
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mendation mechanism σ that maximizes expected consumer surplus, given by

E(µ,σ)[CS((p1, p2); θ)] =
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
qi((pi, p−i); θ)

2dσ((pi, p−i)|θ).

The optimal disclosure is formalized in Proposition 2. Partial disclosure is optimal for

consumers when �rms o�er su�ciently close substitutes. Otherwise, no disclosure is optimal.

Disclosure allows the uninformed �rm to better tailor its price to the state, which in turns

increases the ability of �rms to extract surplus from consumers. But, private disclosure

increases the bene�t for consumers of reallocating across markets by creating a potential

coordination failure in �rm pricing.

Proposition 2 (Consumer optimal disclosure) If the designer's objective is to maxi-

mize expected consumer surplus, there exists α̂ ∈ (0, 1) such that partial disclosure is optimal

if δ ∈ (α̂, 1) and no disclosure is optimal otherwise.

Intuitively, the impact of disclosure on consumer surplus is determined through two chan-

nels. On the one hand, disclosure provides the uninformed �rm with information about the

state, which increases the correlation between its pricing and the state. Indirectly, this also

increases pricing correlation across �rms. Accordingly, in expectation, �rms more accurately

tailor their prices to the demand they face, allowing them to better extract surplus from con-

sumers. On the other hand, it creates uncertainty in �rms' pricing decisions, because both

�rms now have private information. Even if disclosure increases expected price correlation

between �rms, uncertainty about the signal realization observed by their competitor gener-

ates a pricing coordination failure with positive probability. That is, the uninformed �rm

may observe a signal realization that mismatches with the state, setting a price tailored to

the incorrect state. In contrast, the informed �rm sets a price tailored to the realized state.

When the mismatch occurs and �rms set di�erent prices, consumers bene�t by selecting from

which �rm to purchase after observing prices.

The relative impact of these e�ects is determined by the degree of di�erentiation between

goods. When goods are close substitutes, a price di�erential between �rms caused by par-

tial private disclosure induces a large segment of the market to buy from the �rm with a

comparatively low price, creating large gains in consumer surplus with positive probability.

In contrast, when goods are not close substitutes, the pricing coordination failure has lit-

tle impact on the demand that �rms face, yielding negligible bene�ts. Accordingly, when
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goods are su�ciently close substitutes, private partial disclosure creates a large enough ex-

pected bene�t from a potential price coordination failure for the regulator to impose partial

disclosure. Otherwise, no disclosure is optimal.

The sketch of the proof is as follows. First, I verify that no disclosure is always better

for consumers than full disclosure. Second, I show that the di�erence between the expected

consumer surplus with partial and no disclosure is a continuous and strictly increasing func-

tion of the degree of substitution. Third, I show that there exists a cuto� in the degree of

di�erentiation above which partial disclosure is optimal.

More speci�cally, the di�erence between expected consumer surplus with partial and

no disclosure is a linear combination of three moments: the variance of the uninformed

�rm's price, V(µ,σ)[p2], the covariance between the uninformed �rm's price and the state,

Cov(µ,σ)(θ, p2), and the variance of the conditional expectation of the uninformed �rm's

price conditional on the state, Vµ[Eσ[p2|θ]]. The expected gain in consumer surplus:

i) increases in V(µ,σ)[p2], because it increases the opportunity for consumers to bene�t from

price di�erences between �rms and substitute between them.

ii) decreases in Cov(µ,σ)[p2, θ], because it captures surplus extraction from consumers through

the uninformed �rm's better pricing decision.

iii) decreases in Vµ[Eσ[p2|θ]], because it reduces the informed �rm's uncertainty about the

uninformed �rm's pricing and increases price correlation between �rms.

Increasing information disclosure increases all three moments, but their relative magni-

tude is determined by the degree of di�erentiation, which pins down optimal pricing and

consumers' willingness to substitute between goods. In particular, the bene�t for consumers

increases as �rms o�er closer substitutes, whereas the ability of �rms to extract surplus

decreases due to decreased market power. As a result, partial disclosure is optimal for

consumers when �rms o�er su�ciently close substitutes.

The information environment I consider represents a lower bound on the potential bene�ts

for consumers, because the bene�ts of private disclosure are minimized when there is complete

information asymmetry between �rms. That is, when the informed �rm learns the state and

the uninformed �rm has no private information. This is because, when the informed �rm is

only partially informed, the regulator can induce a coordination failure in �rm pricing with

higher probability.

Furthermore, consumers can also bene�t from disclosure when the uninformed �rm's

signal realization is noisily observed by the informed �rm. As long as the informed �rm is

su�ciently uncertain about the information observed by the uninformed �rm, it is possible for
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the regulator to create the coordination failure in prices with su�ciently high probability.

Therefore, the optimality of partial disclosure doesn't rely on the fact that information

disclosure is private, even though private disclosure maximizes the probability of inducing

the coordination failure and is, as a result, optimal for consumers.

Next, when partial disclosure is optimal, I characterize the optimal partially informative

recommendation mechanism in Proposition 3. The optimal price recommendation mecha-

nism recommends at most two prices: a low price only recommended in the low state and a

high price recommended in both states. The recommended prices maximize the uninformed

�rm's expected pro�ts given its beliefs about the state. Then, the optimal price recommen-

dation mechanism is characterized by the probability of recommending the low price in the

low state, denoted by λ∗, where λ∗ determines the recommended prices p̂L and p̂H and is

chosen to maximize expected consumer surplus subject to �rm optimal pricing.22

Proposition 3 (Consumer optimal recommendation mechanism) Any consumer op-

timal recommendation mechanism recommends at most two prices. If an optimal mechanism

discloses information, then there exists an optimal mechanism that recommends one price

p̂L only when the state is low and another price p̂H in both states, where

p̂L =
4a2[1− µLλ∗]θL + b2µH [(1− λ∗)θH − θL]

(2a− b) [4a2(1− µLλ∗)− b2µHλ∗]
, p̂H =

4a2 [µHθH + µL(1− λ∗)θL]− b2µHλ∗θH
(2a− b) [4a2(1− µLλ∗)− b2µHλ∗]

,

and λ∗ := σ(p̂L|θL) ∈ (0, 1) maximizes expected consumer surplus.

Intuitively, consumers gain from disclosure when there are di�erences in �rm pricing.

When the state is high and the informed �rm sets a corresponding high price, recommending

an intermediate rather than a low price to the uninformed �rm would provide less bene�t to

consumers, implying that it is best for consumers for at most a low and a high price to be

recommended. Given that no intermediate price would be recommended in the high state,

an intermediate price recommendation would reveal to the uninformed �rm that the state is

low, but the uninformed �rm would only be willing to set the low price in that case. Hence,

an optimal price recommendation mechanism recommends at most two prices.

With linear demand, recommending a unique price in the low or the high state is equiv-

alent. Both options yield the same expected consumer surplus given that consumers bene�t

from price di�erentials induced by uncertainty among �rms. Without loss of generality, I

22In this context, the price coordination failure occurs when the low state is realized and the uninformed

�rm is recommended to price high.
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focus on the case in which two prices are recommended in the low state, which minimizes

the level of prices set by �rms.23

The sketch of the proof of Proposition 3 is as follows. First, I show that at most two prices

are recommended in a state if only one price is recommended in the other state. If a unique

price p̂ is recommended in one state, observing any other recommendation p2 6= p̂ reveals

the state to the uninformed �rm. When the uninformed �rm knows the level of demand, the

obedience constraint implies that there is a unique price that it is willing to set. As a result,

it is not possible to recommend more than two obedient prices across states. Second, I show

that it is optimal for the regulator to recommend a unique price in one state. These results

imply that the optimal information structure sends at most two price recommendations.

Some of the intuition behind the characterization of the optimal disclosure relates to

Kamenica and Gentzkow (2011). They show that there exists an optimal mechanism which

induces a distribution of posteriors whose support has no more than |Θ| elements, here

corresponding to at most two prices. However, as they discuss themselves, their results do

not apply to settings with multiple receivers whose payo�s depend on each others' actions

and in which the designer (the regulator) can send private signals to each receiver. This is

because, for a given set of beliefs that �rms hold after observing their signals, their actions

may vary as a function of the disclosure policy that produced those beliefs. Accordingly, I

extend the intuition behind their results to a setting in which �rms privately observe a signal

about demand before engaging in Bertrand competition with di�erentiated goods.

4 Producer surplus and welfare optimal disclosure

Information disclosure impacts surplus allocation between �rms and between �rms and con-

sumers, with implications for total welfare. In this section, I �rst characterize the disclosure

policy that maximizes expected producer surplus and, combining this result with the con-

sumer optimal disclosure, derive the expected welfare maximizing disclosure policy.

23The �rst order conditions of the regulator's maximization problem are collinear. As a result, it is possible

to set either the probability of recommending a low price in the low state or a high price in the high state to

1, since the optimality conditions de�ne a relationship between them. In contrast, with a quadratic demand

given by qi(pi, p−i; θ) = max{0, θ + bp−i − api − cp2
i } where c is positive and su�ciently small, it is optimal

to recommend two prices in the low state and one price in the high state.
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4.1 Producer Surplus optimal disclosure

In this section, I interpret the designer as a collusive agreement between �rms whose objective

is to choose a disclosure policy to maximize expected producer surplus given by∑
i=1,2

E(µ,σ)[Πi((pi, p−i); θ)] =
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
Πi((pi, p−i); θ)dσ((pi, p−i)|θ).

First, it is optimal for the uninformed �rm to learn the state, as stated in Lemma 2,

because it increases the correlation between its pricing decisions and the state.

Lemma 2 The expected pro�ts of the uninformed �rm are maximized by full disclosure.

Proposition 1 and Lemma 2 indicate that full disclosure is optimal for both �rms. Thus,

full disclosure maximizes expected producer surplus.

4.2 Welfare optimal disclosure

Assume that the designer, interpreted as a regulator, wants to maximize expected welfare,

de�ned as the sum of expected consumer and producer surplus. The regulator trades o� the

e�ect of information disclosure on �rms and consumers, given their con�icting preferences

over disclosure policies. In particular, �rms' expected pro�ts are maximized by full disclosure,

whereas expected consumer surplus is maximized by no or partial disclosure. However, the

bene�ts from disclosure for both �rms and consumers increase as �rms o�er closer substitutes.

As a result, the optimal disclosure is again determined by the degree of di�erentiation, as

stated in Proposition 4.

Proposition 4 (Welfare optimal disclosure) If the designer's objective is to maximize

expected welfare, there exists α̃1 ∈ (0, 1) and α̃2 ∈ (0, 1) such that α̃1 ≤ α̃2 and

i) no disclosure is optimal when δ ∈ (0, α̃1].

ii) partial disclosure is optimal when δ ∈ (α̃1, α̃2).

iii) full disclosure is optimal when δ ∈ [α̃2, 1).

When �rms o�er su�ciently close substitutes, full disclosure is optimal since it is optimal

for �rms and their expected gains exceed expected losses for consumers. When �rms o�er

su�ciently di�erentiated substitutes, no disclosure maximizes expected welfare since it is
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optimal for consumers and the expected gains for �rms from disclosure are small. For

intermediate levels of di�erentiation, partial disclosure is optimal.24

Ui and Yoshizawa (2015) reach a similar conclusion, restricting attention to symmetric

normally distributed private and public signals. When �rms o�er substitutes, they show

that welfare decreases in the precision of private information and increases in the precision

of public information, related to the optimality of either partial or full disclosure.

Proposition 5 characterizes the welfare optimal partially informative disclosure policy.

Incentives for partial disclosure are driven by the e�ect of disclosure on consumer surplus.

The qualitative features of the policy are shared with the consumer optimal one stated in

Proposition 3. That is, any optimal partially informative recommendation mechanism has

binary support, recommends one price only when the state is low, and another price in both

states.

Proposition 5 (Welfare optimal recommendation mechanism) Any welfare optimal

recommendation mechanism recommends at most two prices. If the optimal mechanism dis-

closes information, then it recommends one price p̂L only when the state is low and another

price p̂H in both states, where

p̂L =
4a2[1− µLλ]θL + b2µH [(1− λ)θH − θL]

(2a− b) [4a2(1− µLλ)− b2µHλ]
, p̂H =

4a2 [µHθH + µL(1− λ)θL]− b2µHλθH
(2a− b) [4a2(1− µLλ)− b2µHλ]

,

and λ∗ := σ(p̂L|θL) ∈ (0, 1) maximizes expected welfare.

These results suggest that a regulator whose objective is to maximize welfare faces a trade

o� between consumer and producer surplus, and must take into account the relationship

between markets. They highlight that the task of a regulator can be more nuanced than

simply banning or releasing information: the exact design of information matters.

5 Robustness of results

In this section, I discuss the robustness of the results and how they change as I enrich the

model. A detailed discussion and proofs are provided in Appendix A.5.

First, consumers are better o� when signal realizations are private instead of public since

they bene�t from the induced uncertainty between �rms, whereas �rms' optimal disclosure

24Suppose instead that the regulator maximizes the weighted sum of producer and consumer surplus,

where ω ∈ [0, 1] represents the weight assigned to consumers. The cuto�s α̃1 and α̃2 increase with ω: for

su�ciently high ω, only no or partial disclosure can be optimal; for su�ciently low values of ω, full disclosure

is always optimal.
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remains the same. When signals are public, the gain from partial disclosure disappears and

no disclosure is optimal for consumers. However, consumers can also bene�t from disclosure

when the uninformed �rm's signal realization is noisily observed by the informed �rm. As

long as the informed �rm is su�ciently uncertain about the information observed by the

uninformed �rm, it is possible for the regulator to create the coordination failure in prices

with su�ciently high probability. Therefore, the optimality of partial disclosure doesn't rely

on information disclosure being private.

Second, consumers bene�t more from partial disclosure as the asymmetry in market size

between �rms increases, implying that their bene�ts from partial disclosure are minimized

when �rms face markets of the same size. While �rm preferences for information remain

unaltered, partial disclosure increases consumer surplus in the informed �rm's market and

reduces it in the uninformed �rm's market. Then, when the informed �rm faces a bigger

market than the uninformed �rm, incentives for partial disclosure are larger. Hence, par-

tial disclosure is optimal for a bigger range of degrees of di�erentiation. In practice, this is

specially relevant since �rms with an information advantage may often be larger, like Ama-

zon. Lastly, the features of the consumer and welfare optimal recommendation mechanism

generalize to this case.

Third, the main intuition of the consumer optimal disclosure extends to the case in

which N �rms compete à la Bertrand and the designer selects an information structure from

a constrained set. I consider the case in which the designer commits to an information

structure with private signals to share all of the informed �rm's private information with a

subset of �rms and no information with the rest. The informed �rm's expected equilibrium

pro�ts are maximized by sharing its private information with all other �rms, because it

bene�ts from price correlation. However, if the designer's objective is to maximize expected

consumer surplus, information disclosure between �rms is at least partially restricted. The

optimal information structure is determined by the degree of substitution and the number

of �rms in the market. It is optimal to share information with more �rms as the number of

�rms increase in the market and as �rms o�er closer substitutes, but it is optimal to leave

at least a fraction of �rms uninformed. By leaving some �rms uninformed, the designer is

able to increase price heterogeneity, bene�ting consumers.

Fourth, the informed �rm's incentives to share information are ampli�ed if it can charge

a fee to the other �rm to use its platform, but that consumer optimal and welfare optimal

disclosures remain unaltered. Furthermore, the producer surplus optimal disclosure remains

unchanged, since this represents a transfer between �rms.

Fifth, the informed �rm's incentives for information sharing are reversed when �rms o�er
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complements and the producer surplus optimal disclosure depends on the degree of comple-

mentary between goods. When goods are complements, disclosure increases the uninformed

�rm's pro�ts, but reduces the informed �rm's pro�ts. In particular, if goods are su�ciently

complementary, competitor prices have a signi�cant impact on demand. Then, the negative

e�ect of increased pricing correlation on the informed �rm's pro�ts exceeds the positive e�ect

of learning about the state on the uninformed �rm's pro�ts. As a result, no disclosure is

optimal. Otherwise, full disclosure is optimal.

Sixth, the proofs of Proposition 1 and Proposition 2 hold more generally for [θL, θH ],

whereas the characterization of the optimal disclosure policy, Proposition 3, holds for {θL, θH}.
In particular, considering more states would require increasing the number of price recom-

mendations.

6 Conclusion

This paper studies information disclosure in a setting where two competing �rms face ex-

ante information asymmetry about the level of demand. I examine the incentives of an

informed �rm to share its private information with a competitor in a market with product

di�erentiation and price competition. I show that the informed �rm can have incentives to

fully disclose its private information even without receiving information in return, because

it allows it to in�uence competitor pricing. When �rms o�er substitutes, they bene�t from

price correlation, which implies that it is optimal for the informed �rm to fully reveal its

private information to the uninformed �rm. When �rms o�er complements, it is optimal for

the informed �rm to not share any private information, which reduces the expected pro�ts of

its competitor. Accordingly, it can be optimal for a designer with the objective of maximizing

producer surplus or maintaining competition to intervene and force information disclosure.

Information disclosure also impacts consumers. Even though complete information dis-

closure can help �rms, it hurts consumers. I �nd that a regulator with the objective of

protecting consumers would either completely restrict information disclosure between �rms

or only allow private partial disclosure, determined by the degree of di�erentiation between

goods. If goods are su�ciently close substitutes, partial disclosure is optimal, because it in-

creases the bene�t for consumers to reallocate across markets. The consumer optimal partial

disclosure reveals low levels of demand and obfuscates high levels to the uninformed �rm.

Moreover, preferences for information disclosure between �rms and consumers are not

aligned. When �rms o�er substitutes, optimal disclosure depends on the degree of sub-

stitution, which determines the e�ect of disclosure on consumers and �rms. If �rms o�er

su�ciently di�erentiated goods, no disclosure maximizes expected welfare. If �rms o�er suf-
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�ciently close substitutes, full disclosure is optimal. For intermediate levels of di�erentiation,

partial disclosure is optimal. Since incentives for partial disclosure arise from consumers, the

optimal partial disclosure also reveals low levels and obfuscates high levels to the uninformed

�rm. My results highlight the wide scope for potential intervention by regulators, depending

on their objective function and product di�erentiation.

This paper speaks in a preliminary form about the competition issues that arise when

there is an unequal distribution of consumer data among �rms. An important aspect not

considered in this paper is the e�ect of information disclosure on �rm entry and exit deci-

sions. In particular, the informed �rm could reduce its information disclosure, reducing its

current pro�ts to increase its market share and future pro�ts by inducing uninformed �rms

to exit the market. In this context, a regulator may have incentives to force information

disclosure between �rms to maintain competition, which could indirectly bene�t consumers.

Furthermore, if �rms could choose their product o�ering and the state re�ected consumer

preferences over horizontally di�erentiated goods, an informed �rm may not want to disclose

information if it would lead their competitor to o�er a similar product and intensify price

competition.
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A Appendix

A.1 Benchmark: binary signals

In this section, I derive the optimal information structures for the benchmark case in which

signals are restricted to be binary and given by S = {sL, sH}2. The joint distribution over

signals is represented in Table 1, where the set of feasible distributions, denoted by D, is
D := {(xL, xH) ∈ [0, 1]2 : xL + xH ≥ 1}.

θ = θL s2 = sL s2 = sH

s1 = sL xL 1− xL
s1 = sH 0 0

θ = θH s2 = sL s2 = sH

s1 = sL 0 0

s1 = sH 1− xH xH

Table 1: Binary distribution of signals

Lemma 3 (Binary Consumer optimal disclosure) If the designer's objective is to max-

imize expected consumer surplus, partial disclosure is optimal if δ ∈ (ĉ, 1) and no disclosure

is optimal, otherwise.

Proof. Lemma 3. De�ne ∆E[CS](xL, xH) as the di�erence between the expected

consumer surplus with no disclosure and with disclosure (xL, xH). First, full disclosure is

never optimal since

∆E[CS](1, 1) ≥ µLµH (a4 + b4) (θH − θL)2

8a3(2a− b)2
≥ 0,

implying that either no or partial disclosure maximizes consumer surplus.

Second, I show that there exists ĉ ∈ (0, 1) such that partial disclosure is optimal if δ ≥ ĉ

and no disclosure is optimal otherwise. Note that the sign of ∆E[CS](xL, xH) is determined

by

Φ(a, b, (xL, xH)) : = f1(a, b)V[s2] + f2(a, b)µLµH(xL + xH − 1)2 − f3(a, b)E[V[s2|θ]],

where fk(a, b) > 0 for all k ∈ {1, 2, 3} and min{f1(a, b), f3(a, b)} > f2(a, b). Furthermore,

there exists ĉ ∈ (0, 1) such that f1(a, b) > f3(a, b) if and only if δ < ĉ. This implies that

f1(a, b)V[s2] > f3(a, b)E[V[s2|θ]] for δ < ĉ since f1(a, b) > f3(a, b) and V[s2] > E[V[s2|θ]].
Thus, no disclosure is optimal when δ ≤ ĉ. Otherwise, partial disclosure is optimal since for

all δ > ĉ, there exists (xL, xH) ∈ D such that Φ(a, b, (xL, xH)) < 0.
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Lemma 4 (Binary Welfare optimal disclosure) Assume that the designer's objective is

to maximize expected welfare. Then: i) if δ ∈ (0, c̃1], no disclosure is optimal; ii) if δ ∈
(c̃1, c̃2), partial disclosure is optimal; and iii) if δ ∈ [c̃2, 1), full disclosure is optimal.

Proof. Lemma 4. It is straightforward to show that there exists c ∈ (0, 1) such that

full disclosure yields higher welfare than no disclosure if and only if δ ≥ c̃. Consider �rst the

case in which δ ≥ c and de�ne ∆E[TS1](xL, xH) as the di�erence in expected welfare with

full and partial disclosure (xL, xH). The sign of ∆E[TS1](xL, xH) is determined by

ρ1(a, b, µ, (xL, xH)) = f4(a, b)V[s2] + f5(a, b)E[V[s2|θ]] + µLµHf6(a, b)(xL + xH − 1)2 where

f4(a, b) = 16a5(3b− a), f5(a, b) = 4a2b2
(
5a2 − b2

)
and f6(a, b) = b2(16a4 − 12a3b+ a2b2 − b4).

Note that there exists c̃2 ∈ (c, 1) such that ρ1(a, b, µ, (xL, xH)) > 0 for all (xL, xH) ∈ D if

δ ≥ c̃2 and there exists (xL, xH) ∈ D such that ρ1(a, b, µ, (xL, xH)) < 0 if δ < c̃2. Thus, full

disclosure is optimal if δ ≥ c̃2 and partial is optimal when δ ∈ (c, c̃2]. Similarly, consider the

case in which δ < c and de�ne ∆E[TS2](xL, xH) as the di�erence of expected welfare with

no and partial disclosure (xL, xH). Analogously, it is possible to show that no disclosure is

optimal when δ ≤ c̃1 and that partial disclosure is optimal when δ ∈ (c̃1, c]. In summary, no

disclosure is optimal if δ ≤ c̃1, partial disclosure is optimal if δ ∈ (c̃1, c̃2] and full disclosure

is optimal if δ > c̃2.

A.2 Preliminary results

A.2.1 Equivalence to recommendation mechanisms

This section simpli�es the information design problem by constraining the set of information

structures. Taneva (2019) shows that it is without loss of generality to restrict attention

to information structures where signals are equilibrium recommendations conditional on

the state. I present an extension to compact action spaces and bounded, continuous real-

valued payo� functions, restricting attention to pi ∈
[
0, θH

a−b

]
for all i ∈ {1, 2}.25 In a

recommendation mechanism, the pricing rule σ̃ : Θ→ ∆
([

0, θH
a−b

]2)
recommends a price for

each �rm such that the obedience constraints are satis�ed, ensuring that �rms are willing to

follow the price recommendation. Any pricing rule which satis�es the obedience constraints

is a Bayes Correlated Equilibrium (BCE), as introduced by Bergemann and Morris (2013).26

25This is without loss of generality, since any price above θH
a−b induces pro�ts of zero for �rm i.

26Unlike in Bergemann and Morris (2013) in which both players are uninformed about the state, �rm 1

learns the state before selecting prices. The de�nition of BCE is adapted to take this into account.
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A pricing rule σ̃ : Θ→ ∆
([

0, θH
a−b

]2)
is a BCE if∫

p2∈
[
0,
θH
a−b

] Π1((p1, p2), θ)dσ̃((p1, p2)|θ) ≥
∫
p2∈

[
0,
θH
a−b

] Π1((p′1, p2), θ)dσ̃((p1, p2)|θ)

for all p1 ∈ supp σ̃, p′1 ∈
[
0, θH

a−b

]
and

∑
θ∈Θ

µθ

∫
p1∈

[
0,
θH
a−b

] Π2((p2, p1), θ)dσ̃((p2, p1)|θ) ≥
∑
θ∈Θ

µθ

∫
p1∈

[
0,
θH
a−b

] Π2((p′2, p1), θ)dσ̃((p2, p1)|θ)

for all p2 ∈ supp σ̃ and p′2 ∈
[
0, θH

a−b

]
.

Consider an analogous information environment in which both �rms observe a signal

about the state with private signal realizations such that the informed �rm's signal is per-

fectly informative. In what follows, I show that it is without loss of generality to interpret

signals (s1, s2) as equilibrium recommendations in which each signal recommends a price

to each �rm. De�ne the information structure as the joint distribution of signals. Let Si

be the set of private signal realizations for �rm i. An information structure consists of a

set of signal realizations and a family of conditional distributions ψ : Θ → ∆(S), where

S = S1 × S2 = {sL, sH} × S2. Let ψi : Θ → ∆(Si) be the marginal distribution of signal

si ∈ Si given the information structure (S, π). The distribution ψ1 is fully informative, which

implies that the probability of observing signal sk conditional on state θk is 1.

Given the information structure (S, ψ), �rms play a pricing game in which they condition

their pricing choices on their signal realization by selecting a mapping βi : Si → ∆(
[
0, θH

a−b

]
)

to maximize their expected pro�ts. A strategy pro�le (β1, β2) is a BNE if, for all pi ∈
[
0, θH

a−b

]
with βi(pi|si) > 0 for all i, we have

∑
θ∈Θ

µθ

∫
S−i

∫ θH
a−b

0
Πi((pi, p−i); θ)dβ−i(p−i|s−i)dψ((si, s−i)|θ)

≥
∑
θ∈Θ

µθ

∫
S−i

∫ θH
a−b

0
Πi((p

′
i, p−i); θ)dβ−i(p−i|s−i)dψ((si, s−i)|θ) (5)

for all p′i ∈
[
0, θH

a−b

]
, s ∈ S and i ∈ {1, 2}. Denote by E(S, ψ) the set of BNE.

Similarly, we can de�ne a pricing rule σ : Θ→ ∆
([

0, θH
a−b

]2)
which is a BCE if

∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

(6)
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for all pi ∈ supp σ, p′i ∈
[
0, θH

a−b

]
, and i ∈ {1, 2}, in which the distribution of the informed

�rm's price given the state is degenerated.27

First, Lemma 5 is an equivalence result stating that every possible BCE distribution can

be replicated as a BNE by appropriately choosing the information structure. Intuitively, any

correlation between obedient pricing choices can be generated as a BCE. In a BNE, all the

correlation between pricing choices is generated through the information structure (S, ψ).

Lemma 5 The set of BCE coincides with ∪(S,ψ)E(S, ψ).

Second, Lemma 6 implies that it is without loss of generality to restrict attention to

recommendation mechanisms. Formally, an information structure (S, ψ) is a recommenda-

tion mechanism if S =
[
0, θH

a−b

]2
. In a recommendation mechanism, signals act as pricing

recommendations which �rms are willing to follow as long as their competitor does as well.

Lemma 6 For every σ ∈ ∪(S,ψ)E(S, ψ), there exists a recommendation mechanism
([

0, θH
a−b

]2
, σ
)

such that σ ∈ E
([

0, θH
a−b

]2
, σ
)
.

A.2.2 Existence of optimal recommendation mechanism

The existence of the optimal recommendation mechanism stated in Lemma 7 is guaranteed by

the Weierstrass extreme value theorem. First, the existence of correlated equilibria for games

in which players receive private signals and simultaneously choose actions from compact sets

is established in Stinchcombe (2011). Second, the set of BCE is compact in the weak*

topology, since it is the set of all probability measures on a compact set.28 Then, the

designer's problem is to maximize a continuous function of σ over a non-empty compact set.

Lemma 7 The optimal recommendation mechanism exists.

27The informed �rm's equilibrium prices are given by pσ1 (θ) = θ+Eσ [p2|θ]
2a .

28With full disclosure, equilibrium prices are

pF (θ) =
θ

2a− b
.

It follows that �rms have no incentives to set prices above pF (θH) or below pF (θL), because such prices

would never be part of a BNE of the pricing game. Hence, the support of any obedient recommendation

mechanism must be a subset of [pF (θL), pF (θH)]2. See Appendix A.3 for a formal argument.
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A.3 Proofs

A.3.1 Preliminary results: proofs

Proof. Lemma 1. The pricing game is a smooth concave game since Πi((·, p−i); θ) : R+ →
R is concave and continuously di�erentiable for each p−i ∈ R+ since the demand is linear in

p−i. De�ne the payo� gradient as

∇Π(p, θ) :=

(
∂Πi((pi, p−i); θ)

∂pi

)
i∈{1,2}

,

where �rm i's ex-post payo� function is given by Πi((pi, p−i); θ) = pi(θ − api + bp−i). Then,

the payo� gradient, given by

∇Π(p, θ) = (θ + bp−i − 2api)i∈{1,2} ,

is continuously di�erentible. The Jacobian matrix of the payo� gradient, given by

F∇Π(p, θ) :=

(
∂2Π1((p1,p2);θ)

∂p21

∂2Π1((p1,p2);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)

∂p22

)
=

(
−2a b

b −2a

)
,

is negative de�nite because −2a < 0 and 4a2 − b2 > 0 since a > |b|. This implies that the

payo� gradient ∇Π(p, θ) is strictly monotone by Lemma 4 from Ui (2016). Furthermore,

since for all p, there exists c > 0 such that

pTF∇Π(p, θ)p < −cpTp,

the payo� gradient is also strongly monotone by the same lemma. Then, the uniqueness

of the Bayesian Nash equilibrium of the pricing game follows from Proposition 1 from Ui

(2016), which states that if the payo� gradient is strictly monotone, the Bayesian game as at

most one Bayesian Nash equilibrium. The existence of a unique Bayesian Nash equilibrium

follows from Proposition 2 from Ui (2016).
Proof. Lemma 5. First, I show that the set of BCE is a subset of ∪(S,ψ)E(S, ψ). Assume

σ ∈ BCE. Then, σ satis�es∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ) (7)

for all pi ∈ supp σ, p′i ∈
[
0, θH

a−b

]
and i ∈ {1, 2}.

Consider an information structure
([

0, θH
a−b

]2
, ψ∗
)
where

[
0, θH

a−b

]2
is the set of signal

realizations and ψ∗ : Θ→ ∆(
[
0, θH

a−b

]2
) coincides with σ, i.e. σ = ψ∗. Let

β∗i (pi|p′i) =

1 if pi = p′i

0 otherwise
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be the obedient strategy. Then, the right-hand side of (7) can be written as∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

=
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dψ

∗((pi, p−i)|θ)

=
∑
θ∈Θ

µθ

∫
s−i∈

[
0,
θH
a−b

]
∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i); θ)dβ

∗
−i(p−i|s−i)dψ∗((si, s−i)|θ)

The �rst equality holds by de�nition of ψ∗. The second equality holds by de�nition of the

obedient strategy and Fubini's theorem since, �xing θ, Πi((pi, p−i); θ) is σ-integrable because

Πi|θ :
[
0, θH

a−b

]2 → R+ is a bounded and continuous real-valued function on a compact

set.29 Hence, the BNE incentive-compatibility constraints are implied by the BCE obedience

constraints. This, in turn, implies that if σ ∈ BCE, then σ is also a BNE of the game. Thus,

the set of BCE is a subset of the set of BNE of the game.

Second, I show that ∪(S,ψ)E(S, ψ) is a subset of BCE. Consider a BNE composed by

an information structure (Ŝ, ψ̂) with ψ̂ : Θ → ∆(S) and measurable behavioral strategies

(β̂i, β̂−i).
30 Given the behavioral strategies (β̂i, β̂−i), de�ne β̂ : S → ∆

([
0, θH

a−b

]2)
as the joint

measure. Let σ̂ : Θ → ∆
([

0, θH
a−b

]2)
be the composition of ψ̂ and β̂, de�ned as σ̂ = β̂ ◦ ψ̂.

Then, by de�nition σ̂ ∈ ∪(S,ψ)E(S, ψ). The de�nition of BNE implies that (Ŝ, ψ̂) and β̂

satisfy: ∑
θ∈Θ

µθ

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i); θ)dβ̂−i(p−i|s−i)dψ̂((si, s−i)|θ)

≥
∑
θ∈Θ

µθ

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i); θ)dβ̂−i(p−i|s−i)dψ̂((si, s−i)|θ) (8)

for all p′i ∈
[
0, θH

a−b

]
, s ∈ S and i ∈ {1, 2}. Integrating both sides of the BNE incentive-

compatibility constraint, we have∑
θ∈Θ

µθ

∫
Ŝi

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i); θ)dβ̂i(pi|si)dβ̂−i(p−i|s−i)dψ̂(s|θ)

≥
∑
θ∈Θ

µθ

∫
Ŝi

∫
Ŝ−i

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i); θ)dβ̂i(pi|si)dβ̂−i(p−i|s−i)dψ̂(s|θ)

29See theorem 11.27 from Aliprantis and Border (2013) where the condition of theorem are satis�ed by

Proposition 3.3 and Theorem 4.4 from from Royden (1968)
30Behavioral strategies βi : Si → ∆

([
0, θHa−b

])
for all i ∈ {1, 2} are de�ned as a regular conditional

probabilities as de�ned in Appendix C from Bass (2011).
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Then, (8) implies that∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈

[
0,
θH
a−b

] Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

Proof. Lemma 6. Consider a distribution σ ∈ ∪(S,ψ)E(S, ψ). Lemma 5 implies that

σ ∈ BCE. Consider the recommendation mechanism (
[
0, θH

a−b

]2
, ψσ) where ψσ = σ for all

(p1, p2) ∈
[
0, θH

a−b

]2
and θ ∈ Θ and the obedient behavioral strategy

β∗i (pi|p′i) =

1 if pi = p′i

0 otherwise
.

The interim expected payo� of �rm i when �rm −i follows β∗−i is

∑
θ∈Θ

µθ

∫
S−i

∫ θH
a−b

0

Πi((p
′
i, p−i); θ)dβ

∗
−i(p−i|p′−i)dψσ((pi, p

′
−i)|θ)

=
∑
θ∈Θ

µθ

∫ θH
a−b

0

Πi((p
′
i, p−i); θ)dψσ((pi, p−i)|θ)

=
∑
θ∈Θ

µθ

∫ θH
a−b

0

Πi((p
′
i, p−i); θ)dσ((pi, p−i)|θ) (9)

for all i. Hence, the de�nition of BCE and (9) imply

∑
θ∈Θ

µθ

∫ θH
a−b

0

Πi((pi, p−i); θ)dψσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫ θH
a−b

0

Πi((p
′
i, p−i); θ)dψσ((pi, p−i)|θ)

for all p′i ∈
[
0, θH

a−b

]
and i. The distribution of prices conditional on the state θ under β∗ and

(
[
0, θH

a−b

]2
, σ) is ψσ = σ. Thus, σ ∈ E

([
0, θH

a−b

]2
, σ
)
.

Lemma 8 The support of the distribution σ((p1, p2)|θ) is a subset of [pF (θL), pF (θH)]2 for all θ ∈
Θ, where pF (θ) is the equilibrium price with full disclosure when the state θ is realized.

Proof. Lemma 8. The minimum and maximum price in any equilibrium is charged

when both �rms know that the state is low and that the state is high, respectively. That

is, the highest and lowest equilibrium prices occur with full disclosure. Under full disclosure
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σF , both �rms learn the state. Let pF (θ) be the equilibrium price under full disclosure when

the state is θ, where

pF (θL) =
θL

(2a− b)
and pF (θH) =

θH
(2a− b)

Hence, any obedient recommendation mechanism must recommend prices in the set of fea-

sible equilibrium prices denoted by [pF (θL), pF (θH)]2.

Proof. Lemma 7. The set of BCE is the collection of distributions σ : Θ→ ∆([pF (θL), pF (θH)]2)

such that

i) σ((p1, p2)|θ) ≥ 0 for all (p1, p2) ∈ [pF (θL), pF (θH)]2 and θ ∈ Θ,

ii)

∫
dσ((p1, p2)|θ) = 1 for all θ ∈ Θ and

iii)
∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

for all pi ∈ supp σ, p′i ∈ R+ and i ∈ {1, 2}.

First, Theorem A from Stinchcombe (2011) establishes the existence of Correlated equi-

librium in games in which players receive private signals and then simultaneously choose

actions from compact sets. Formally, consider a game in which the set of players I is �nite

and for each i, the type ωi belongs to the measure space (Ωi,Fi). Each player i simulta-

neously chooses an action from a compact set Ai and denote by ∆i the set of countably

additive Borel probabilities in Ai, with the weak* topology. Let Bi(Fi) be the set of i's

behavioral strategies, de�ned as the Fi-measurable functions from Ωi to ∆i. Given a vector

b ∈ B := ×iBi(Fi), player i's expected utility if b is played is de�ned by

uPi (b) =

∫
Ω

〈ui(ω),×ibi(ω)〉P (dω)

where 〈f, ν〉 :=
∫
A
f(a)ν(da) for f : A→ R and Borel probabilities ν, and ×ibi is the product

probability on A having bi as the marginal. (Bi(Fi), uPi )i∈I) denotes the normal form game.

Then, Theorem A shows that all games (Bi(Fi), uPi )i∈I) have correlated equilibria.

In the pricing game, two �rms simultaneously choose a price to maximize their expected

equilibrium pro�ts, ∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((pi, p−i), θ)dσ((pi, p−i)|θ).

Note that pi ∈
[
0, θH

a−b

]
for all i ∈ {1, 2}. Hence, �rms simultaneously choose prices from

compact sets. Thus, this result implies that the set of BCE is non-empty.
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Second, the set of BCE is the collection of distributions

σ : Θ→ ∆([pF (θL), pF (θH)]2),

which corresponds to the set of all probability measures on [pF (θL), pF (θH)]2 for each θ ∈ Θ

where Θ is �nite. Then, the set of BCE is compact since [pF (θL), pF (θH)]2 is compact in the

weak* topology, by Theorem 15.11 from Aliprantis and Border (2013).

The designer's objectives are

i) Informed �rm optimal :
∑
θ∈Θ

µθ

∫
Π1((p1, p2), θ)dσ((p1, p2)|θ)

ii) PS optimal :
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
Πi((pi, p−i), θ)dσ((pi, p−i)|θ)

iii) CS-optimal :
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
qi((pi, p−i); θ)

2dσ((pi, p−i)|θ)

and

iv) Welfare-optimal :
∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
Πi((pi, p−i), θ)dσ((pi, p−i)|θ)

+
1

2a

∑
i∈{1,2}

∑
θ∈Θ

µθ

∫
qi((pi, p−i); θ)

2dσ((pi, p−i)|θ)

Third, the continuity of all objective functions in the weak* topology follows from Corol-

lary 15.7 from Aliprantis and Border since because both Πi((pi, p−i), θ) and qi((pi, p−i), θ) are

continuous and bounded functions. Hence, the integral
∫

Πidσ((pi, p−i)|θ) and
∫
q2
i dσ((pi, p−i)|θ)

is continuous in σ. Thus, the designer's problem is to maximize a continuous objective func-

tion in a compact set. The existence of a solution is guaranteed by the Weierstrass extreme

value theorem.

A.3.2 Informed �rm optimal disclosure

Proof. Proposition 1. The fully disclosing information structure recommends prices

(pF (θ), pF (θ)) with probability 1 for all θ ∈ Θ. Full disclosure is optimal for the informed

�rm if her expected equilibrium payo�s with full disclosure exceed her expected equilibrium

payo�s induced by any other obedient recommendation mechanism. That is,∑
θ∈Θ

µθΠ1((pF (θ), pF (θ)); θ) ≥
∑
θ∈Θ

µθ

∫
Π1((p1, p2); θ)dσ((p1, p2)|θ) (10)
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for all σ : Θ → ∆([pF (θL), pF (θH)]2) that satisfy the obedience constraints and p1. The
obedience constraints requires that p1 must be a best response for �rm 1. Then, for all
recommendation mechanism σ that satisfy the obedience constraints, the RHS of (10) is
given by∑

θ∈Θ

µθ

∫
Π1((p1, p2); θ)dσ((p1, p2)|θ) =

∑
θ∈Θ

µθ

∫
θ + bEσ[p2|θ]

2a

[
θ + bp2 −

θ + bEσ[p2|θ]
2

]
dσ(p1, p2|θ)

= aEµ

[(
θ + bEσ[p2|θ]

2a

)2
]

= aEµ[pσ1 (θ)2]

The �rst equality holds since Π1((p1, p2); θ) = p1(θ + bp2 − ap1) and since �rm 1's best

response, denoted by pθ1(θ), is

pσ1 (θ) =
θ + bEσ[p2|θ]

2a
.

When �rms o�er substitutes, �rm 1's expected equilibrium pro�t is an increasing and

convex function of the expected equilibrium price p2. Then, Jensen's inequality implies

that maximizing expected equilibrium pro�ts is equivalent to maximizing the distance be-

tween the expected equilibrium prices set by �rm 2, Eσ[p2|θ] (or, equivantly, by maxi-

mizing the distance between pσ1 (θ)). When �rms o�er substitutes, Lemma 8 shows that

supσ((p1, p2)|θ) ∈ [pF (θL), pF (θH)]2 for all θ ∈ Θ. Hence, recommending (pF (θL), pF (θL)))

in the low state and (pF (θH), pF (θH))) in the high state maximizes expected equilibrium

pro�t which implies that full disclosure is optimal for the informed �rm.31

A.3.3 Consumer optimal disclosure

Proof. Proposition 2. Consider any partial disclosure policy σ and de�ne σ(s2|θ) the

distribution of price recommendation p2 conditional on the state θ. Expected consumer

surplus, denoted by E(µ,σ)[CS((p1, p2); θ)], is

E(µ,σ)[CS((p1, p2); θ)] =
1

2a

∑
θ∈Θ

µθ

[∫
(θ + bp2 − ap1)2dσ((p1, p2)|θ) +

∫
(θ + bp1 − ap2)2dσ((p1, p2)|θ)

]
(11)

where, in the unique BNE, p1 satis�es

p1 =
1

2a

[
θ + b

∫
p2dσ(p2|θ)

]
.

31That is, to maximize the expectation of a quadratic function in an interval, it is necessary to put all

mass on the extremes of such interval.
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First, Lemma 3 shows that full disclosure is never optimal for consumers. Second, de�ne
∆E[CS](σ) as the di�erence in expected consumer surplus with partial and no disclosure.
This di�erence is

∆E[CS](σ) =
a

2

(
δ2 + 1

)
V(µ,σ)[p2]−

[(
1− δ2

2

)(
δ

2
+ 1

)
− δ

4

]
Cov(µ,σ)(θ, p2)− bδ

8

(
7− δ2

)
Vµ[Eσ[p2|θ]],

where the equality holds by the law of iterated expectations, the de�nition of variance,

conditional expectation, conditional variance and covariance and the law of total variance.

Note that ∆E[CS](σ) is a continuous in δ. Third, Lemma 3 also implies that ∆E[CS](σ)

converges to a positive number as δ → 1. This, in turn, implies that

b >
2Cov(µ,σ)[θ, p2]

4V(µ,σ)[p2]− 3Vµ[Eσ[p2|θ]]
,

which is a su�cient condition that ensures that ∆E[CS](σ) is a strictly increasing in δ.

Similarly, when δ → 0, ∆E[CS](σ) converges to

∆E[CS](σ) →
δ→0

a

2
V(µ,σ)[p2]− Cov(µ,σ)[θ, p2] = −Cov(µ,σ)

[
θ − a

2
p2, p2

]
.

The price p2 is an increasing function of θ since the state is a positive demand shifter and

∂p2

∂θ
≤ 1

2a− b
≤ 2

a

since a > b > 0. Then, the covariance between θ− a
2
p2 and p2 is the covariance between two

increasing functions of θ. Hence, this covariance is positive, which implies that ∆E[CS](σ)

converges to a negative number when δ → 0.

Lastly, since Lemma 3 shows that ∆E[CS](σ) > 0 for all δ ∈ (ĉ, 1), the Intermediate

Value theorem implies that there exists α̂ ∈ (0, ĉ] such that ∆E[CS](σ) = 0 when δ = α̂.

Moreover, since ∆E[CS](σ) is strictly increasing in δ, partial disclosure is optimal for all

δ ∈ (α̂, 1) where α̂ ∈ (0, ĉ] and no disclosure is optimal otherwise.

Lemma 9 Assume that σ is partially informative and σ(p2|θ) is degenerated, placing all

mass on p̂ ∈ [pFL , p
F
H ]. For any obedient σ, supp σ(p2|θ′) = {p̂, p̂′} for all θ 6= θ′.

Proof. Lemma 9. The recommendation mechanism σ is not fully informative. First,

I show that p̂ ∈ supp σ(p2|θ′). Suppose not. Then, supp σ|θ ∩ supp σ|θ′ = ∅ which implies

that price recommendations fully reveal the state. However, this contradicts the assumption

that σ is partially informative. Hence, p̂ ∈ supp σ(p2|θ′).
Second, I show that the support of σ(p2|θ′) is binary. Firm i's obedience constraint is
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∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((pi, p−i), θ)dσ((pi, p−i)|θ) ≥
∑
θ∈Θ

µθ

∫
p−i∈R+

Πi((p
′
i, p−i), θ)dσ((pi, p−i)|θ)

for all i, pi ∈ supp σ and p′i ∈ [pFL , p
F
H ]. The left-hand side of the uninformed �rm obedience

constraint can be simpli�ed as follows:

∑
θ∈Θ

µθ

∫
p1∈[pFL ,p

F
H ]

p2 (θ + bp1 − ap2) dσ((p1, p2)|θ) =
∑
θ∈Θ

µθ

∫
p1∈[pFL ,p

F
H ]

p2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

]
dσ((p1, p2)|θ)

=
∑
θ∈Θ

µθp2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

] ∫
p1∈[pFL ,p

F
H ]

dσ((p1, p2)|θ)

=
∑
θ∈Θ

µθp2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

]
σ(p2|θ)

The �rst equality holds by the best response function of �rm 1. The last equality holds

since
∫
p1∈[pFL ,p

F
H ]

dσ((p1, p2)|θ) = σ(p2|θ). Hence, the uninformed �rm obedience constraint is

∑
θ∈Θ

µθp2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap2

]
σ(p2|θ) ≥

∑
θ∈Θ

µθp
′
2

[
θ + b

(
θ + bEσ[p2|θ]

2a

)
− ap′2

]
σ(p2|θ)

for all p2 ∈ supp σ(p2|θ) and p′2 ∈ [pFL , p
F
H ]. The obedience constraint for p2 = p̂ is

µθ′σ(p̂|θ′)p̂
[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap̂

]
+ µθp̂

[
θ + b

(
θ + bp̂

2a

)
− ap̂

]
≥ µθ′σ(p̂|θ′)p′2

[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap′2

]
+ µθp

′
2

[
θ + b

(
θ + bp̂

2a

)
− ap′2

]
for all p′2 ∈ [pFL , p

F
H ]. Similarly, the obedience constraint of σ for p2 6= p̂ is

p2

[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap2

]
≥ p′2

[
θ′ + b

(
θ′ + bEσ[p2|θ′]

2a

)
− ap′2

]
(12)

for all p′2 ∈ [pFL , p
F
H ]. The uninformed �rm's pro�ts are strictly concave in p2 which implies

there exists a unique p̂′ ∈ [pFL , p
F
H ] that satis�es (12) and p̂′ 6= p̂. Hence, the support of σ̂|θ′

is binary and given by {p̂, p̂′}.

Lemma 10 Assume that σ is partially informative and σ(p2|θH) is degenerated, placing all
mass on p̂H ∈ [pFL , p

F
H ]. For any obedient σ, supp σ(p2|θL) = {p̂L, p̂H} where λ = σ(p̂L|θL),

p̂L =
4a2[1− µLλ]θL + b2muH [(1− λ)θH − θL]

(2a− b) [4a2(1− µLλ)− b2µHλ]
and p̂H =

4a2 [µHθH + µL(1− λ)θL]− b2µHλθH
(2a− b) [4a2(1− µLλ)− b2µHλ]

.
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Proof. Lemma 10. Lemma 9 implies that the support of σ(p2|θL) is binary and given

by {p̂L, p̂H} if the support of σ(p2|θH) is degenerated and given by p̂H . De�ne σ(p̂L|θL) =

1− σ(p̂H |θL) := λ ∈ (0, 1). By de�nition,

Eσ[p2|θL] = λp̂L + (1− λ)p̂H and Eσ[p2|θH ] = p̂H .

Then, taking Eσ[p2|θL] and Eσ[p2|θH ] as given, p̂L and p̂H are characterized by

p̂L = arg max
p2

p2

[
θL + b

(
θL + bEσ[p2|θL]

2a

)
− ap2

]
p̂H = arg max

p2

µL(1− λ)p2

[
θL + b

(
θL + bEσ[p2|θL]

2a

)
− ap2

]
+ µHp2

[
θH + b

(
θH + bEσ[p2|θH ]

2a

)
− ap2

]
The �rst order conditions of the previous maximization problems are

p̂L =
1

2a

[
θL +

b

2a
(θL + bEσ[p2|θL])

]
p̂H =

µL(1− λ)
[
θL + b

2a (θL + bEσ[p2|θL])
]

+ µH
[
θH + b

2a (θH + bEσ[p2|θH ])
]

2a (µL(1− λ) + µH)

Using the de�nition of Eσ[p2|θL] and Eσ[p2|θH ], we have that p̂L and p̂H are given by

p̂L =
4a2[1− µLλ]θL + b2µH [(1− λ)θH − θL]

(2a− b) [4a2(1− µLλ)− b2µHλ]
and p̂H =

4a2 [µHθH + µL(1− λ)θL]− b2µHλθH
(2a− b) [4a2(1− µLλ)− b2µHλ]

where λ fully characterizes σ.

Proof. Proposition 3. This proof applies to a more general result which states that

is optimal for the designer to select σ(p2|θ) to be degenerated for any θ. Here I present the

proof for σ(p2|θH) but the proof for the other case is analogous.

Suppose not. Assume that the optimal recommendation mechanism σ∗ = {σ∗(p2|θ)}θ∈Θ

is partially informative where both σ∗(p2|θ) are not degenerated. Consider an alternative

partially informative recommendation mechanism σ̂ in which σ̂(p2|θH) is degenerated and

places all its mass on one point p̂H ∈ [pF (θL), pF (θH)] = [pFL , p
F
H ] where p̂H ∈ supp σ̂(p2|θL).

By Lemma 10, for any obedient σ̂, the support of σ̂|θL is {p̂L, p̂H} where p̂L and p̂H are

de�ned in Lemma 9 and λ = σ̂(p̂L|θL) fully characterizes σ̂. Next, I show that there exists

λ ∈ (0, 1) such that ∆E[CS](σ̂) ≥ ∆E[CS](σ∗). Given that Eσ[p2] = Eσ′ [p2] for all feasible

σ, σ′,32 the di�erence between ∆E[CS](σ̂) and ∆E[CS](σ∗), denoted as ∆E[CS]σ̂−σ∗ , is

32Note that Eπ[p2] = Eπ′ [p2] for all feasible π, π′ since

Eπ[p2] =
1

2a

[
E[θ]

(
1 +

b

2a

)
+
b2

2a
Eπ[p2]

]
⇔ Eπ[p2] =

Eµ[θ]

2a− b
.

The equality holds by the uninformed �rm's and informed �rm's best response functions and by the law of

iterated expectations. Then, Eπ[p2] doesn't depend on π. Given the equivalence between π2 and σ, it also

follows that Eσ[p2] = Eσ′ [p2] for all feasible σ, σ′.
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∆E[CS]σ̂−σ∗ =
a

2

(
1 + δ2

) (
Eσ̂[p2

2]− Eσ∗ [p2
2]
)
−
[(

1− δ2

2

)(
1 +

δ

2

)
− δ

4

]
(Eσ̂[θ · p2]− Eσ∗ [θ · p2])

− bδ

8
(7− δ2)

(
Eσ̂[E[p2|θ]2]− Eσ∗ [E[p2|θ]2]

)
For any feasible σ∗, the expectation Eσ∗ [p2|θL] satis�es

Eσ∗ [p2|θL] ∈
(

θL
2a− b

,
Eµ[θ]

2a− b

)
.

Moreover, by de�nition, Eσ̂[p2|θL] = λp̂L + (1− λ)p̂H , and

Eσ̂[p2|θL] =
θL

2a− b
if λ = 1 and Eσ̂[p2|θL] =

E[θ]

2a− b
if λ = 0.

The intermediate value theorem implies that there exists λ̃ ∈ (0, 1) such that Eσ̂[p2|θL] =

Eσ∗ [p2|θL] since Eσ̂[p2|θL] is a continuous function of λ. Since Eσ[p2] = Eσ′ [p2] for all feasible

σ and σ′, λ̃ also satis�es Eσ̂[p2|θH ] = Eσ∗ [p2|θH ]. Then, the di�erence between ∆E[CS](σ̂)

and ∆E[CS](σ∗) for σ̂ characterized by λ̃ is

∆E[CS]σ̂−σ∗ =
a

2

(
1 + δ2

) [
Eσ̂[p2

2]− Eσ∗ [p2
2]
]

=
a

2

(
1 + δ2

) [
µL

(
λ̃p̂2

L + (1− λ̃)p̂2
H − Eσ∗ [p2

2|θL]
)

+ µH
(
p̂2
H − Eσ∗ [p2

2|θH ]
)]

Hence, Eσ̂[p2
2] ≥ Eσ∗ [p2

2] by Jensen's inequality. Then, for all demand parameters and σ∗

such that δ ≤ ĉ, there exists λ ∈ (0, 1) such that ∆E[CS]σ̂−σ∗ ≥ 0. This contradicts the

optimality of σ∗. Thus, the optimal partially informative recommendation mechanism is

such that supp σ|θH = {p̂H} and supp σ|θL = {p̂L, p̂H}.
Lastly, the optimal recommendation mechanism is characterized by λ∗ ∈ arg maxλ∈[0,1] ∆E[CS](λ)

where

∆E[CS](λ) =
a

2

(
δ2 + 1

)
µLλ [µL(1− λ) + µH ] (p̂H − p̂L)2

−
[(

1− δ2

2

)(
δ

2
+ 1

)
− δ

4

][
µLθL [λp̂L + (1− λ)p̂H ] + µHθH p̂H −

(µLθL + µHθH)2

2a− b

]

− bδ

8

(
7− δ2

) [
µL [λp̂L + (1− λ)p̂H ]2 + µH p̂

2
H − [µLλp̂L + (1− µLλ)p̂H ]2

]
and p̂L and p̂H are functions of λ de�ned in Lemma 9. The optimal λ∗ ∈ (0, 1) is character-

ized by the �rst order condition of ∆E[CS](λ) and it is given by

λ∗ =
4
[
δ(1− 3δ2) + 6(1− δ2)

]
µHδ5 + 2µHδ4 − (12− µH)δ3 − 6(4− µH)δ2 + 4(1− µH)δ + 24(1− µH)

.
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A.3.4 Producer surplus optimal disclosure

Proof. Lemma 2. For the uninformed �rm, the di�erence in expected pro�ts with full

disclosure σF and any disclosure σ is

Π2(σF )−Π2(σ) = aEµ

[(
θ

2a− b

)2

− 2
θ

2a− b
Eσ[p2|θ] + Eσ[p2

2|θ]

]
+
b2

2a
Eµ
[

θ

2a− b
Eσ[p2|θ]− Eσ[p2|θ]2

]
Then, this di�erence is positive since

Π2(σF )−Π2(σ) ≥ aEµ

[(
θ

2a− b
− Eσ[p2|θ]

)2
]

+
b2

2a

∑
θ∈θ

µθ

[
Eσ[p2|θ]

(
θ

2a− b
− Eσ[p2|θ]

)]

≥ aEµ

[(
θ

2a− b
− Eσ[p2|θ]

)2
]
≥ 0

The �rst inequality holds by Jensen's inequality. The second since a > |b| > 0,

θL
2a− b

≤ Eσ[p2|θL] ≤ Eσ[p2|θH ] ≤ θH
2a− b

and
∑
θ∈Θ

µθEσ[p2|θ] =
Eµ[θ]

2a− b

for all feasible σ. Hence, Π2(σF ) ≥ Π2(σ) which implies that full disclosure is optimal for the

uninformed �rm.

A.3.5 Welfare optimal disclosure

Proof. Proposition 4. First, there exists α̃ ∈ (0, 1) such that full disclosure yields a higher

expected welfare than no disclosure if and only if δ ≥ α̃. Hence, if δ ≥ α̃, either full or partial

disclosure is optimal whereas if δ < α̃, either no or partial disclosure is optimal.

Consider δ < α̃. The di�erence in welfare with partial and no disclosure is given by

E(µ,σ) [W ((p1, p2); θ)]− E(µ,σN ) [W ((p1, p2); θ)]

=
δ

2

[
δ

(
δ

2
+ 1

)
+

3

2

]
Cov(µ,σ)[θ, p2]− a

2

(
1− δ2

)
V(µ,σ)[p2]− b

8
δ
(
1− δ2

)
Vµ[Eσ[p2|θ]].

This di�erence is a continuous and strictly increasing in δ. Moreover, as δ converges to 0,

the di�erence in expected consumer surplus converges to

E(µ,σ) [W ((p1, p2); θ)]− E(µ,σN ) [W ((p1, p2); θ)] →
δ→0
−a

2
V(µ,σ)[p2] < 0

and Lemma 4 shows that E(µ,σ) [W ((p1, p2); θ)] > E(µ,σN ) [W ((p1, p2); θ)] for all δ > c̃1. Then,

the intermediate value theorem implies that there exists a α̃1 ∈ (0, c̃1] such that

E(µ,σ) [W ((p1, p2); θ)] = E(µ,σN ) [W ((p1, p2); θ)] .
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Also, since this di�erence is strictly increasing in δ, this also implies that

E(µ,σ) [W ((p1, p2); θ)] > E(µ,σN ) [W ((p1, p2); θ)] for all δ > α̃1 and

E(µ,σ) [W ((p1, p2); θ)] < E(µ,σN ) [W ((p1, p2); θ)] for all δ < α̃1.

That is, partial disclosure is optimal when δ ∈ [α̃1, α̃) whereas no disclosure is optimal when

δ < α̃1.

Now, consider δ ≥ α̃ and de�ne the di�erence in welfare with full and with partial

disclosure as follows:

E(µ,σF ) [W ((p1, p2); θ)]− E(µ,σ) [W ((p1, p2); θ)]

=
bδ

2

(
δ2 − 3

2

)
Eµ

[(
θ

2a− b

)2

− Eσ[p2|θ]2
]
− bδ

2
Eµ
[
Eσ[p2

2|θ]− Eσ[p2|θ]2
]

+ δ

(
3

4
+
δ

2
+
δ2

4

)
Eµ
[
θ

(
θ

2a− b
− Eσ[p2|θ]

)]
− a

2
Eµ

[(
θ

2a− b

)2

− Eσ[p2
2|θ]

]
,

which is a continuous function of δ. Analogously, we can show that full disclosure is optimal

when δ > α̃2 and partial disclosure is optimal when δ ∈ [α, α̃2). In summary, full disclosure

is optimal if δ ≥ α̃2, partial disclosure is optimal if δ ∈ (α̃1, α̃2) and no disclosure is optimal

if δ ∈ (0, α̃1].

Proof. Proposition 5. The proof is analogous to the proof of Proposition 3.

A.4 Non-linear demand

Consider the same environment as before but assume �rm i's demand, q(pi, p−i; θ), is con-

tinuous and di�erentiable and satis�es the following properties:

i)
∂q(pi, p−i; θ)

∂pi
≤ 0, ii)

∂q(pi, p−i; θ)

∂θ
> 0, and iii) |∂q(pi, p−i; θ)

∂pi
| > |∂q(pi, p−i; θ)

∂p−i
|

The �rst condition ensures that quantity demanded decreases as price increases, the second

condition implies that the state is a positive demand shifter and, lastly, the third condition

implies that goods are di�erentiated and that a change of its own price has a bigger e�ect on

the demand than a change of the price of a competitor.33 Assume that �rm's ex-post pro�ts

are strictly concave in pi. That is,

pi
∂2q(pi, p−i; θ)

∂p2
i

< −2
∂q(pi, p−i; θ)

∂pi
for all pi.

33This ensures that equilibrium prices are �nite.
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Furthermore, assume that

∂2Πi(pi, p−i; θ)

∂p2
i

∂2Π−i(p−i, pi; θ)

∂p2
−i

≥
(
∂2Πi(pi, p−i; θ)

∂pi∂p−i

)2

.

Firms o�er substitutes (complements) if

∂q(pi, p−i; θ)

∂p−i
> 0(< 0).

When �rms o�er substitutes, assume that the elasticity of demand of �rm i is a non-increasing

function of the other �rm' price and that the demand is supermodular in the state θ and the

price of the other �rm p−i, i.e.,

∂2q(pi, p−i; θ)

∂pi∂p−i
≥ 0 for all (pi, p−i) and

∂2q(pi, p−i; θ)

∂θ∂p−i
≥ 0.

Similarly, when �rms o�er complements, assume that the elasticity of demand of �rm i is a

non-decreasing function of the other �rm' price and that the demand is submodular in the

state θ and the price of the other �rm. That is,

∂2q(pi, p−i; θ)

∂pi∂p−i
≤ 0 for all (pi, p−i) and

∂2q(pi, p−i; θ)

∂θ∂p−i
≤ 0.

Note that these assumptions imply that �rms choices are strategic complements (substitutes)

when they o�er substitutes (complements).

Pricing game equilibrium. For all information structures (S2, π2), the existence and

uniqueness of the BNE is guaranteed by Ui (2016), which provides su�cient conditions for

the existence and uniqueness of BNE in Bayesian games with concave and continuously

di�erentiable payo� functions. This is formalized in Lemma 11.

Lemma 11 For all information structures (S2, π2), the set of Bayesian Nash equilibria in

the pricing game Ê(S2, π2) is a singleton.

Simpli�cations. The strict concavity of �rm's ex-post pro�ts in pi imply that �rms' pro�ts

are bounded and continuous functions and that there exists p such that it is without loss of

generality to restrict attention to the compact action space pi ∈ [0, p]. The equivalence to

recommendation mechanism σ is established in Lemma 5 and Lemma 6. The existence and

uniqueness of BNE imply that it is su�cient to restrict attention to the distribution σ(p2|θ)
since for any obedient recommendation mechanism there exists a function p1(θ, σ(p2|θ))
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which represents �rm 1's best response when the state is θ and the price recommendations

are given by σ where

p1(θ, σ(p2|θ)) = arg max
p1

∫
p2

v1(p1, p2; θ)dσ(p2|θ).

By Leibniz rule, p1(θ, σ(p2|θ)) is implicitly characterized by∫
p2

q(p1, p2; θ)dσ(p2|θ) + p1

∫
p2

∂q(p1, p2; θ)

∂p1

dσ(p2|θ) = 0.

Then, �rm 1's expected equilibrium pro�ts given information structure σ are

E(µ, σ)[Π∗1(p1, p2; θ)] =
∑
θ∈Θ

µθEσ[Π∗1(p1, p2; θ)|θ] =
∑
θ∈Θ

µθ

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θ)

Furthermore, for any information structure σ, the set of recommended equilibrium prices

for �rm 2 in the pricing game is a subset of the interval between the equilibrium prices with

full disclosure. This is formalized in Lemma 12.

Lemma 12 The support of any obedient distribution σ(p2|θ) is a subset of [pF (θL), pF (θH)]

for all θ ∈ Θ where pF (θ) is the equilibrium price with full disclosure when the state θ is

realized.

Informed �rm optimal disclosure. Assume the designer wants to maximize the in-

formed �rm's expected equilibrium payo�s. First, I show that when �rms o�er substitutes,

the informed �rm's expected equilibrium payo� conditional on the state is supermodular in

the state and the price of the other �rm. Similarly, I also show that the informed �rm's

expected equilibrium payo� conditional on the state is submodular in the state and the price

of the other �rm when �rms o�er complements. This is formalized in Lemma 13.

Lemma 13 When �rms o�er substitutes (complements), Eσ[Π∗1(p1, p2; θ)|θ] is supermodular

(submodular) in θ and p2.

Second, I show that it is optimal for the informed �rm to share all its private information

with the uninformed �rm when the informed �rm expected equilibrium pro�ts are super-

modular in the state and the uninformed �rm's price. I also show that it is optimal for the

informed �rm to share none of its private information with the uninformed �rm when the

informed �rm expected equilibrium pro�ts are submodular in the state and the uninformed

�rm's price. This is formalized in Proposition 6.
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Proposition 6 If Eσ[Π∗1(p1, p2; θ)|θ] is supermodular in p2 and θ, full disclosure is optimal

for the informed �rm. Similarly, if Eσ[Π∗1(p1, p2; θ)|θ] is submodular in p2 and θ, no disclosure

is optimal for the informed �rm.

These two results imply that full disclosure is optimal for the informed �rm when �rms

o�er substitutes and no disclosure is optimal when �rms o�er complements. These results

also extend to Cournot competition using same equivalence arguments as before.

A.4.1 Proofs

Proof. Lemma 11. The pricing game is a smooth concave game since Πi(·, p−i; θ) : R+ → R
is concave and continuously di�erentiable for each p−i ∈ R+ since

∂2Πi(pi, p−i; θ)

∂p2
i

< 0 for all p−i ∈ R+.

De�ne the payo� gradient as

∇Π(p, θ) :=

(
∂Πi((pi, p−i); θ)

∂pi

)
i∈{1,2}

.

The payo� gradient is continuously di�erentible. The Jacobian matrix of the payo� gradient,

given by

F∇Π(p, θ) :=

(
∂2Π1((p1,p2);θ)

∂p21

∂2Π1((p1,p2);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)
∂p1∂p2

∂2Π2((p2,p1);θ)

∂p22

)
,

is negative de�nite because

∂2Πi(pi, p−i; θ)

∂p2
i

< 0 and
∂2Πi(pi, p−i; θ)

∂p2
i

∂2Π−i(p−i, pi; θ)

∂p2
−i

≥
(
∂2Πi(pi, p−i; θ)

∂pi∂p−i

)2

.

This implies that the payo� gradient ∇Π(p, θ) is strictly monotone by Lemma 4 from Ui

(2016). Furthermore, since for all p := (pi, p−i), there exists c > 0 such that

pTF∇Π(p, θ)p < −cpTp,

the payo� gradient is also strongly monotone by the same lemma. Then, the uniqueness

of the Bayesian Nash equilibrium of the pricing game follows from Proposition 1 from Ui

(2016), which states that if the payo� gradient is strictly monotone, the Bayesian game as at

most one Bayesian Nash equilibrium. The existence of a unique Bayesian Nash equilibrium

follows from Proposition 2 from Ui (2016).
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Proof. Lemma 12. With full disclosure, there is no uncertainty about the state. Each

�rm chooses pi : Θ→ R+ to maximize Πi(pi, p−i; θ). That is, �rm i's best response to p−i is

implicitly de�ned by

q(pi, p−i; θ) + pi
∂q(pi, p−i; θ)

∂pi
= 0

In equilibrium, both �rms choose the same price, denoted by pF (θ). Since q(p2, p1; θL) <

q(p2, p1, θH), the highest (lowest) equilibrium price the uninformed �rm is willing to price is

when both �rms are certain that the state is high (low). Hence, the support of any obedient

recommendation σ(p2|θ) is a subset of [pF (θL), pF (θH)].

Proof. Lemma 13. By de�nition, Eσ[Π∗1(p1, p2; θ)|θ] is given by

Eσ[Π∗1(p1, p2; θ)|θ] =

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θ)

When �rms o�er substitutes, for any obedient σ(p2|θ) we have that∫
p2

q(p1, p2; θ)dσ(p2|θH) ≥
∫
p2

q(p1, p2; θ)dσ(p2|θL) and∫
p2

∂q(p1, p2; θ)

∂p1
dσ(p2|θH) ≥

∫
p2

∂q(p1, p2; θ)

∂p1
dσ(p2|θL) for all p1 and θ (13)

since q(p1, p2; θ) is strictly increasing in p2,
∫ x

0
dσ(p2|θL) ≥

∫ x
0

dσ(p2|θH) for all x and
∂2q(p1,p2;θ)
∂p1∂p2

> 0. Then, since p1(θ, σ(p2|θ)) is implicitly de�ned by∫
p2

q(p1, p2; θ)dσ(p2|θ) + p1

∫
p2

∂q(p1, p2; θ)

∂p1
dσ(p2|θ) = 0,

(13) implies that p1(θ, σ(p2|θH)) ≥ p1(θ, σ(p2|θL)) for all θ ∈ Θ. Then, ∂2q(p1,p2,θ)
∂p1∂p2

≥ 0 also

implies that∫
p2

q(p1(θ, σ(p2|θH)), p2; θ)dσ(p2|θH) ≥
∫
p2

q(p1(θ, σ(p2|θL)), p2; θ)dσ(p2|θL).

Then, when �rms o�er substitutes,∫
p2

Π1(p1(θ, σ(p2|θH)), p2; θ)dσ(p2|θH)−
∫
p2

Π1(p1(θ, σ(p2|θL)), p2; θ)dσ(p2|θL) ≥ 0 (14)
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for all θ ∈ Θ. By Leibnitz rule,

∂
∫
p2

Π1(p1(θ, σ(p2|θH)), p2; θ)dσ(p2|θH)

∂θ

=

∫
p2

∂p1(t, σ(p2|θH))

∂t

∣∣∣∣
t=θ

[
q(p1(θ, σ(p2|θH)), p2; θ) + p1(θ, σ(p2|θH))

∂q(p1, p2; t)

∂p1

]
dσ(p2|θH)

+

∫
p2

p1(θ, σ(p2|θH))
∂q(p1(θ, σ(p2|θH)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θH)

=

∫
p2

p1(θ, σ(p2|θH))
∂q(p1(θ, σ(p2|θH)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θH)

where the last inequality holds by the �rst order condition of the informed �rm's pricing
decision. Similarly,

∂
∫
p2

Π1(p1(θ, σ(p2|θL)), p2; θ)dσ(p2|θL)

∂θ
=

∫
p2

p1(θ, σ(p2|θL))
∂q(p1(θ, σ(p2|θL)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θL)

Then, the left-hand side of (14) is non-decreasing in θ since∫
p2

p1(θ, σ(p2|θH))
∂q(p1(θ, σ(p2|θH)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θH) ≥
∫
p2

p1(θ, σ(p2|θL))
∂q(p1(θ, σ(p2|θL)), p2; t)

∂t

∣∣∣∣
t=θ

dσ(p2|θL)

because p1(θ, σ(p2|θH)) > p1(θ, σ(p2|θL)) and ∂2q(p1,p2;θ)
∂θ∂p2

> 0. Thus, when �rms o�er substi-

tutes,∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH)−
∫
p2

Π1(p1(θH , σ(p2|θL)), p2; θH)dσ(p2|θL)

≥
∫
p2

Π1(p1(θL, σ(p2|θH)), p2; θL)dσ(p2|θH)−
∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

which implies that Eσ[Π∗1(p1, p2; θ)|θ] is supermodular in θ and p2. The proof for the com-

plement case is analogous.

Proof. Proposition 6. Consider �rst the case in which Eσ[Π∗1(p1, p2θ)|θ] is supermod-

ular in p2 and θ. Next, I show that for all σ and p2 ∈ [pF (θL), pF (θH)],

EσF [Π∗1(p1, p2; θL)|θL] ≤ Eσ[Π∗1(p1, p2; θL)|θL] ≤ Eσ[Π∗1(p1, p2; θH)|θH ] ≤ EσF [Π∗1(p1, p2; θH)|θH ].

That is,

Π1(p1(θL, σ
F (p2|θL)), pF (θL); θL) ≤

∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤ Π1(p1(θH , σ
F (p2|θH)), pF (θH); θH)
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First,∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL) ≥
∫
p2

Π1(p1(θL, σ
F (p2|θL)), p2; θL)dσF (p2|θL)

= Π1(p1(θL, σ
F (p2|θL)), pF (θL); θL) (15)

since σF (p2|θL) recommends pF (θL) with probability 1, the informed �rm's demand is in-

creasing in p2 and p1(θL, σ(p2|θL)) ≥ p1(θL, σ
F (p2|θL)).34 Similarly,∫

p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤
∫
p2

Π1(p1(θH , σ
F (p2|θH)), p2; θH)dσF (p2|θH)

= Π1(p1(θH , σ
F (p2|θH)), pF (θH); θH) (16)

because σF (p2|θH) recommends pF (θH) with probability 1, the informed �rm's demand is

increasing in p2 and p1(θH , σ(p2|θH)) ≤ p1(θH , σ
F (p2|θH)).

Second, supermodularity implies that∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL) ≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) (17)

since p1(θL, σ(p2|θL)) ≤ p1(θH , σ(p2|θH)), ∂2q(p1,p2;θ)
∂θ∂p2

> 0 and the state is a positive demand

shifter, implying that σ(p2|θH) recommends on average higher prices than σ(p2|θL). Thus,

(15), (16) and (17) imply that

Π1(p1(θL, σ
F (p2|θL)), pF (θL); θL) ≤

∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤ Π1(p1(θH , σ
F (p2|θH)), pF (θH); θH)

Then,

EσF ,µ[Π∗1(p1, p2; θ)] =
∑
θ∈Θ

µθΠ1(p1(θ, σF (p2|θ)), pF (θ); θ)

≥
∑
θ∈Θ

µθ

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θ)

= Eσ,µ[Π∗1(p1, p2; θ)]

where the inequality holds by Jensen's inequality.

34The proof of p1(θL, σ(p2|θL)) ≥ p1(θL, σ
F (p2|θL)) follows an analogous argument as in Lemma 13.
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Consider now the case in which Eσ[Π∗1(p1, p2; θ)|θ] is submodular in θ and σ(p2|θ). Anal-
ogously as in the supermodular case, it is possible to show that

Π1(p1(θL, σ
N(p2|θL)), pN ; θL) ≤

∫
p2

Π1(p1(θL, σ(p2|θL)), p2; θL)dσ(p2|θL)

≤
∫
p2

Π1(p1(θH , σ(p2|θH)), p2; θH)dσ(p2|θH) ≤ Π1(p1(θH , σ
N(p2|θH)), pN ; θH)

which in turn implies that

EσN ,µ[Π∗1(p1, p2; θ)] =
∑
θ∈Θ

µθΠ1(p1(θ, pN), pN ; θ)

≥
∑
θ∈Θ

µθ

∫
p2

Π1(p1(θ, σ(p2|θ)), p2; θ)dσ(p2|θH)

= Eσ,µ[Π∗1(p1, p2; θ)]

where the inequality holds by Jensen's inequality.

A.5 Extensions

Firm optimal disclosure with complements. In this section, I show that the informed

�rm's incentives for information sharing are reversed when �rms o�er complements and that

the producer surplus optimal disclosure depends on the degree of complementary between

goods. Formally, assume b ∈ (−a, 0) and de�ne the degree of complementary between goods

as δ = | b
a
|. When goods are complements, disclosure increases the uninformed �rm's pro�ts,

as stated in Lemma 2, but reduces the informed �rm's pro�ts, as formalized in Proposition 6

in Appendix A.4. The optimal disclosure policy is determined by comparing the gains of

the uninformed �rm to the losses of the informed �rm, which are determined by the degree

of complementarity between goods. In particular, if goods are su�ciently complementary

(δ ≥ γ̂), competitor prices have a signi�cant impact on demand. Then, the negative e�ect

of increased pricing correlation on the informed �rm's pro�ts exceeds the positive e�ect

of learning about the state on the uninformed �rm's pro�ts. As a result, no disclosure is

optimal. Otherwise, the informed �rm's expected loss from information disclosure is smaller

than the uninformed �rm's expected gain, implying that full disclosure is optimal. These

results are stated in Lemma 14.

Lemma 14 (Producer surplus optimal disclosure) If the designer's objective is to max-

imize expected producer surplus and �rms o�er complements, full disclosure is optimal if

δ ∈ (0, γ̂). Otherwise, no disclosure is optimal.
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Eliaz and Forges (2015) study the producer surplus optimal disclosure policy in a Cournot

duopoly with no private information and unknown demand. They show that it is optimal to

fully inform one of the duopolists and disclose no information to the other when �rms o�er

perfect substitutes. They also show that the producer surplus optimal disclosure consists of

fully informing both �rms when they o�er perfect complements. Given the correspondence

between Cournot and Bertrand discussed in Raith (1996), my results for complements and

substitutes nest theirs, while allowing for more general patterns of complementarity and sub-

stitution between goods. Relatedly, Angeletos and Pavan (2007) show that producer surplus

increases with the precision of public and private normally distributed signals when �rms

o�er substitutes, related to the optimality of full disclosure. When �rms o�er complements,

they show that producer surplus increases in the precision of private information, but can

decrease in the precision of public information. In my context, this is exempli�ed by the

designer who may have incentives to force information disclosure between �rms when they

o�er complementary goods, decreasing the informational advantage of the informed �rm at

the bene�t of its competitor.

Public signals. In this section, I characterize the optimal disclosure with public signals

and show that consumers are better o� when signal realizations are private instead of pub-

lic since consumers bene�t from the induced uncertainty between �rms. Assume that the

designer commits to an information structure (S2, π2) with public signal realizations. Given

the information structure, �rms play a pricing game in which they condition their choices

on their information by selecting a mapping p1 : Θ× S2 → ∆(R+) and p2 : S2 → ∆(R+) to

maximize their expected pro�ts.

The next two lemmas �x the disclosure policy σ, which represents the information con-

veyed to �rm 2, and compare the case in which �rm 1 observes �rm 2's signal realization

(public disclosure) to the case in which �rm 1 doesn't observe it (private disclosure).

Lemma 15 For any disclosure policy σ, the informed �rm's pro�ts are higher with public

disclosure than private disclosure.

Public signals reinforce the informed �rm's incentives to disclose information when �rms

o�er substitutes, implying that full disclosure is optimal for the informed �rm. When �rms

o�er complements, it is optimal for the informed �rm to disclose no information, by the

same reasoning as with private signals. In contrast, consumers are better o� with private

disclosure, since they can bene�t from information asymmetry as stated in Lemma 16.
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Lemma 16 For any disclosure policy σ, expected consumer surplus is higher with private

disclosure than public disclosure.

When signals are public, the gain from partial disclosure disappears and, as a result, no

disclosure is optimal for consumers as stated in Lemma 17.

Lemma 17 With public disclosure, no disclosure is optimal for consumers.

Consumers can also bene�t from disclosure when the uninformed �rm's signal realization

is noisily observed by the informed �rm. As long as the informed �rm is su�ciently uncertain

about the information observed by the uninformed �rm, it is possible for the regulator to

create the coordination failure in prices with su�ciently high probability. Therefore, the

optimality of partial disclosure doesn't rely on information disclosure being private.

Informed �rm as the owner of an online platform. In this section, I show that the

informed �rm incentives to share information are ampli�ed if it can charge a fee to the other

�rm to use its platform. Consider the case in which trade occurs on an online platform run

by the informed �rm. The informed �rm charges the uninformed �rm a percentage of its

sales for the use of the platform. Given the disclosure policy σ, the informed �rm's expected

equilibrium payo� is

E(µ,σ)[Π
∗
1((p1, p2); θ)] = aEµ

[(
θ + bEσ[p2|θ]

2a

)2
]

+ αΠ∗2(σ),

where α ∈ [0, 1] is the percentage of sales charged to the uninformed �rm.

The informed �rm's incentives for information sharing are minimized by setting α = 0,

since the uninformed �rm always bene�ts from observing information. When �rms o�er

substitutes, the informed �rm optimal disclosure doesn't change with α > 0. In this case,

the informed �rm discloses all of its private information for any α ∈ [0, 1]. When �rms o�er

complements, the informed �rm optimal disclosure shares the same qualitative properties

as the producer surplus maximizing disclosure with α = 0. Full disclosure is optimal if

the degree of complementarity is below a certain cuto�, no disclosure is optimal above the

cuto�, and the cuto� is an increasing function of α. Furthermore, the producer surplus

optimal disclosure remains unchanged, since α represents a transfer between �rms. Lastly,

the consumer and welfare optimal disclosure also remain unchanged, since they are not

a�ected by transfers between �rms.
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Asymmetric �rm-size. In this section, I show that consumers bene�t more from partial

disclosure as the asymmetry in market size between �rms increases, implying that the bene�ts

from partial disclosure for consumers are minimized when �rms face markets of the same

size. To see this, assume

q1((p1, p2); θ) = max{0, θ − ap1 + bp2} and q2((p2, p1); θ) = max{0, κθ − ap2 + bp1},

where κ ∈ (0, 1]. Firms' preferences for information disclosure remain unaltered, imply-

ing that full disclosure maximizes expected producer surplus. Similarly, the features of the

optimal disclosure policy for consumers also remain unaltered. Lemma 18 generalizes Propo-

sition 2 and Proposition 3 to the case in which κ ∈ (0, 1]. In particular, for any κ ∈ (0, 1],

partial disclosure is optimal for consumers when �rms o�er su�ciently close substitutes and

no disclosure is optimal otherwise. Moreover, the features of the optimal recommendation

mechanism also generalize to this case.

Lemma 18 If the designer's objective is to maximize expected consumer surplus, for all

κ ∈ (0, 1) there exists an α̂(κ) ∈ (0, ĉ(κ)] such that partial disclosure is optimal if δ ∈ (α̂(κ), 1)

and no disclosure is optimal otherwise, where ĉ(κ) is the cuto� for binary information struc-

tures and is decreasing in κ. A partially informative recommendation mechanism recom-

mends two prices: one price when the state is low and another price in both states.

From the perspective of consumers, partial disclosure increases their surplus in the in-

formed �rm's market and reduces it in the uninformed �rm's market. Then, when the

informed �rm faces a bigger market than the uninformed �rm (κ ∈ (0, 1)), incentives for

partial disclosure are larger than when market sizes are symmetric (κ = 1). This implies

that the cuto� in the degree of di�erentiation ĉ(κ) must be a decreasing function of κ.

From the point of view of welfare, Proposition 4 and Proposition 5 also generalize to this

setting, with the cuto�s that characterize optimal disclosure also decreasing with κ. The

intuition is analogous to the case in which �rms face markets of the same size.

N �rms with constrained disclosure policies. In this setting, I show that the main

intuition of the consumer optimal disclosure extends to the case in which N �rms compete

a la Bertrand. Consider a setting with N ≥ 3 �rms who compete by choosing prices. The

level of demand depends on the state θ ∈ {θL, θH} with θH > θL > 0 such that �rms are

active in the market in both states. Firms share a common prior about the state, where the

probability of θ is denoted by µθ ∈ (0, 1). Firm i's demand is given by

qi(p) = θ − api +
b

N − 1

∑
j 6=i

pj
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where a and b are known parameters with a > b > 0. Firms' costs are zero.

The designer commits to an information structure with private signals, denoted by ψ̂k,

to share all of the informed �rm's private information with k �rms and no information with

N − 1 − k �rms, where k ∈ {0, 1, 2, ..., N − 1}. Firms who observe a perfectly informative

signal condition their pricing choices on the state and select a mapping pF : Θ → R+ to

maximize their expected pro�ts, whereas �rms who observe no information select a price

pN ∈ R+ to maximize their expected pro�ts. The optimal disclosure is stated in Lemma 19.

Lemma 19 If the designer's objective is to maximize the informed �rm's expected equilib-

rium pro�ts or to maximize expected producer surplus, it is optimal to share the informed

�rm's private information with all other �rms. In contrast, if the designer's objective is

to maximize expected consumer surplus, it is optimal to share the informed �rm's private

information with k∗(N, δ) �rms where k∗(N,δ)
N
≤ 2

3
.

First, the informed �rm's expected equilibrium pro�ts are maximized by sharing its

private information with all other �rms because it bene�ts from price correlation. Similarly,

when the designer's objective is to maximize expected producer surplus, it is optimal to

share information with all �rms, eliminating information asymmetry between �rms, allowing

them to better extract surplus from consumers.

Second, if the designer's objective is to maximize expected consumer surplus, information

disclosure between �rms is at least partially restricted. The optimal information structure,

characterized by k∗(N, δ), is determined by the degree of substitution and the number of

�rms in the market. In particular, it is optimal to not disclose information to any other �rm

when δ ≤ 3
4
. When δ > 3

4
, optimal disclosure is determined by the number of �rms in the

market and δ. In particular, the optimal k∗(N, δ) increases in both δ and N , and k∗(N,δ)
N
≤ 2

3
.

This means that it is optimal to share information with more �rms as the number of �rms

increase in the market and as �rms o�er closer substitutes, but that it is optimal to leave at

least a third of �rms uninformed. By leaving some �rms uninformed, the designer is able to

increase the heterogeneity of prices, bene�ting consumers.

A.5.1 Extensions proofs

Proof. Lemma 14. Proposition 1 and Lemma 2 imply that full disclosure is optimal if

�rms o�er imperfect substitutes. If �rms o�er complements, the informed �rm prefers to

not disclose her private information whereas the uninformed �rm prefers to learn the state.

First, full disclosure yields higher producer surplus than no disclosure if and only if δ < 2
1+
√

2
.
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Next, I show that full disclosure is optimal when �rms o�er complements if δ < 2
1+
√

2
and

no disclosure is optimal otherwise.
Consider �rst the case in which δ < 2

1+
√

2
. The di�erence in expected producer surplus

of full disclosure σF and disclosure policy σ is

PS(σF )− PS(σ) ≥
(
a+ b− b2

4a

)
Eµ

[(
θ

2a− b
− Eσ[p2|θ]

)2
]
≥ 0

The �rst inequality holds by Jensen's inequality, a > |b| and b < 0, whereas the second one

holds for all δ < 2
1+
√

2
. Hence, full disclosure is optimal if δ < 2

1+
√

2
.

Consider now the case in which δ ≥ 2
1+
√

2
. The di�erence in expected producer surplus

of no disclosure σN and disclosure policy σ is

PS(σN )− PS(σ) = aV(µ,σ)[p2]− (1− δ) Cov(µ,σ)[p2, θ] +
3b

4
· δVµ[Eσ[p2|θ]]

Note that this di�erence is a strictly increasing function of δ because

∂PS(σN)− PS(σ)

∂δ
= Cov(µ,σ)[p2, θ] +

3b

4
Vµ[Eσ[p2|θ]],

Cov(µ,σ)[p2, θ] > 2aV(µ,σ)[p2], δ < 1 and V(µ,σ)[p2] ≥ Vµ[Eσ[p2|θ]] ≥ 0.

This implies that

PS(σN)− PS(σ) ≥ aV(µ,σ)[p2]−
(

1− 2

1 +
√

2

)
Cov(µ,σ)[p2, θ] +

3b

4
· 2

1 +
√

2
Vµ[Eσ[p2|θ]] ≥ 0

for all δ > 2
1+
√

2
since Cov(µ,σ)[p2, θ] ∈

[
2aV(µ,σ)[p2], (2a− b)V(µ,σ)[p2]

]
and V(µ,σ)[p2] ≥

Vµ[Eσ[p2|θ]].35 Hence, no disclosure is optimal if δ > 2
1+
√

2
.

Proof. Lemma 15. With public signals, the informed �rm's expected equilibrium

pro�ts, given by

E(µ,σPub)[Π
∗
1((p1, p2); θ)] = aEµ

[
EσPub

[(
θ + bp2

2a

)2 ∣∣∣∣θ
]]

,

35The highest covariance between prices and the state occurs with full disclosure. In this case, p2(θ) = θ
2a−b .

Hence,

Cov(µ,σ)[p2, θ] ≤ Cov(µ,σ)[p2, (2a− b)p2] = (2a− b)V(µ,σ)[p2]
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are higher than its expected equilibrium pro�ts with private signals. This holds because

E(µ,σPub)[Π
∗
1((p1, p2); θ)] = aEµ

[
EσPub

[(
θ + bp2

2a

)2 ∣∣∣∣θ
]]
≥ aEµ

[(
EσPub

[
θ + bp2

2a

∣∣∣∣θ])2
]

= aEµ

[(
θ + bEσPub [p2|θ]

2a

)2
]

= aEµ

[(
θ + bEσPriv [p2|θ]

2a

)2
]

= E(µ,σPriv)[Π
∗
1((p1, p2); θ)]

where the inequality holds by Jensen's inequality.

Proof. Lemma 16. The expected consumer surplus with public disclosure is given by

CS(σPub) =
1

2a
Eµ

[
EσPub

[
q1

(
θ + bp2

2a
, p2; θ

)2

+ q2

(
p2,

θ + bp2

2a
; θ

)2 ∣∣∣∣θ
]]

,

whereas expected consumer surplus with private disclosure is

CS(σPriv) =
1

2a
Eµ

[
EσPriv

[
q1

(
θ + bEσPriv [p2|θ]

2a
, p2; θ

)2

+ q2

(
p2,

θ + bEσPriv [p2|θ]
2a

; θ

)2 ∣∣∣∣θ
]]

.

The di�erence between expected consumer surplus with private and public disclosure is

CS(σPriv)− CS(σPub) =
b2

8a

(
7− b2

a2

)(
E(µ,σ)[p

2
2]− Eµ

[
Eσ[p2|θ]2

])
Then, CS(σPriv) ≥ CS(σPub) because a > |b| and

E(µ,σ)[p
2
2]− Eµ

[
Eσ[p2|θ]2

]
= Eµ[Eσ[p2

2|θ]]− Eµ
[
Eσ[p2|θ]2

]
≥ 0

where the equality holds by the law of iterated expectations and the inequality by Jensen's

inequality.

Proof. Lemma 17. First, no disclosure is optimal when �rms o�er complements since

CS(σPub) ≤ CS(σPriv). Similarly, no disclosure is optimal when �rms o�er substitutes and

�rms o�er su�ciently far substitutes (δ < ĉ). Consider then the case in which �rms o�er

substitutes (b > 0) and δ ≥ ĉ. The expected gain of consumer surplus with public disclosure

with respect to no disclosure is given by:

CS(σPub)− CS(σN ) ≤ 1

2a

(a
2
V(µ,σPub)[p2]− Cov(µ,σPub)(θ, p2)

)
< 0

where the �rst inequality holds by de�nition of variance, covariance and δ. The second

inequality holds because CS(σPub) < CS(σN) for δ = 0.

55



Proof. Lemma 18. The proof of this lemma is analogous to Proposition 2 and Proposi-

tion 3. Using an analogous argument as in Lemma 3, it is possible to show that full disclosure

of information is never optimal for consumers. The expected di�erence in expected consumer

surplus with partial σ and no disclosure, ∆E[CS](σ), now is

∆E[CS](σ) =
a

2

(
1 + δ2

)
V(µ,σ)[p2]−

[(
1− δ2

2

)(
κ+

δ

2

)
− δ

4

]
− bδ

8

(
7− δ2

)
Vµ[Eσ[p2|θ]]

For all κ ∈ (0, 1], using analogous arguments as in Proposition 2, I show that ∆E[CS](σ)

is continuous and strictly increasing in δ, ∆E[CS](σ) converges to a negative value when

δ → 0 and to a positive one when δ → 1. The result follows then from the Intermediate

Value Theorem. It is also straightforward to show that ĉ(κ) is decreasing in κ. The same

argument as in Proposition 3 implies that it is optimal to recommend at most two prices,

one price when the state is low and another price in both states.

Proof. Lemma 19. The designer commits to an information structure with private

signals, denoted by ψ̂k, to share all the informed �rm's private information with k �rms and

share no information with N−1−k �rms, where k ∈ {0, 1, 2, ..., N−1}. Firms who observe a

perfectly informative signal condition their pricing choices on the state and select a mapping

pF : Θ→ R+ to maximize their expected pro�ts, whereas �rms who observe no information

select a price pN ∈ R+ to maximize their expected pro�ts. Equilibrium prices are

pF (θL) =
θL(2a(N − 1)− bk) + bµH(N − k − 1) (θH − θL)

(2a− b)(2a(N − 1)− bk)
,

pF (θH) =
θH(2a(N − 1)− bk)− bµL(N − k − 1) (θH − θL)

(2a− b)(2a(N − 1)− bk)
, and

pN =
µLθL + µHθH

2a− b
.

Consider �rst the case in which the designer's objective is to maximize the informed

�rm's expected equilibrium pro�ts, given by

E[Π∗1(ψ̂k)] = a
∑
θ∈Θ

µθp
F (θ)2.

The informed �rm's expected equilibrium pro�ts are maximized by sharing its private in-

formation with all other �rms (k∗ = N − 1). Similarly, when the designer's objective is to

maximize expected producer surplus, given by

PS(ψ̂k) = (N − k − 1)a(pN)2 + (k + 1)a
∑
θ∈Θ

µθp
F (θ)2,
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it is optimal to share information with all �rms (k∗ = N − 1), eliminating all information

asymmetry between �rms.

In contrast, if the designer's objective is to maximize expected consumer surplus, infor-

mation disclosure between �rms is at least partially restricted. Expected consumer surplus,

given by,

CS(ψ̂k) =
(k + 1)

2a

∑
θ∈Θ

µθ

[
θ + b

(N − k − 1)

N − 1
pN −

(
a− b k

N − 1

)
pF (θ)

]2

+
(N − k − 1)

2a

∑
θ∈Θ

µθ

[
θ + b

k + 1

N − 1
pF (θ)−

(
a− bN − k − 2

N − 1

)
pN
]2

The optimal information structure, characterized by k∗(N, δ), is determined by the degree

of substitution and the number of �rms in the market, where

k∗(N, δ) =


0 if δ ≤ 3

4 for all N ≥ 3

0 if δ ∈
(

3
4 , 0.76

)
and N ∈

[
3, 1 + 1

2

√
δ2

4δ−3 −
δ
2

]
f(N, δ) otherwise

and

f(N, δ) = d
2(N − 1)

(
δ3 + δ2(4N − 5) + δ(4N − 7)(N − 1)− 3(N − 1)2

)
δ (δ + (N − 1)) (δ + 3(N − 1))

e

if

CS

[
π̂
d 2(N−1)(δ3+δ2(4N−5)+δ(4N−7)(N−1)−3(N−1)2)

δ(δ+(N−1))(δ+3(N−1))
e

]
≥ CS

[
π̂
b 2(N−1)(δ3+δ2(4N−5)+δ(4N−7)(N−1)−3(N−1)2)

δ(δ+(N−1))(δ+3(N−1))
c

]
and

f(N, δ) = b
2(N − 1)

(
δ3 + δ2(4N − 5) + δ(4N − 7)(N − 1)− 3(N − 1)2

)
δ (δ + (N − 1)) (δ + 3(N − 1))

c,

otherwise.
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