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Abstract

We study ex post implementation in collective decision problems where

monetary transfers cannot be used. We find that deterministic ex post im-

plementation is impossible if the underlying environment is neither almost an

environment with private values nor almost one with common values. Thus, de-

sirable properties of ex post implementation such as informational robustness

become difficult to achieve when preference interdependence and preference

heterogeneity are both present in the environment.
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1. Introduction

Collective decision-making takes place everywhere, from a committee choosing which

job candidates to hire, a congress deciding whether to pass a bill, to a country electing

its next president. When designing a decision mechanism for such situations, an

important consideration is informational robustness: The mechanism should function

effectively for a wide range of information structures, i.e., what agents know and

believe about each other’s information. Robustness is important because decision

mechanisms are often institutionalized for repeated use, each time tackling a new

problem with a different information structure. Thus, robust, all-purpose mechanisms

are best suited for institutions such as committees, legislatures or elections. Moreover,

even in a single decision problem, there is usually uncertainty about the underlying

information structure. Thus, narrowly tailored mechanisms may misfire if the actual

information structure turns out to be different from what was expected.

One might then ask: Are robust decision mechanisms viable? If monetary transfers

are allowed, then the answer can be positive — even if one requires robustness against

all possible information structures, which, by Bergemann and Morris (2005), amounts

to the mechanism in question admitting an ex post equilibrium. More specifically, it

is known that in interdependent value environments, non-trivial, even efficient, social

choice functions can be ex post incentive compatible (EPIC), i.e., implementable in an

ex post equilibrium of some mechanism, if private information is one-dimensional.1

There are limits to ex post implementation with transfers, though, as Jehiel et al.

(2006) show: If private information is continuous and multi-dimensional, then deter-

ministic EPIC social choice functions must be constant in generic environments.

However, in many collective decision problems, including the examples mentioned

above, monetary transfers cannot be used. Is non-trivial ex post implementation

still possible without transfers? In this paper, we give a largely negative answer to

this question. Specifically, for collective decision problems with a continuous state

space, we show that if transfers are not allowed, then deterministic EPIC social choice

1For public goods provision, see Section 5 in Chung and Ely (2003). In auction settings, efficient
social choice functions are ex post implementable when preferences satisfy appropriate single-crossing
conditions; see Bergemann and Välimäki (2002), Crémer and McLean (1985), Dasgupta and Maskin
(2000), Jehiel and Moldovanu (2001), Maskin (1992), and Perry and Reny (2002).
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functions must be constant, i.e. trivial, as long as there is a “small amount” of prefer-

ence interdependence and preference heterogeneity in the environment, regardless of

whether types are one- or multidimensional. If there are only two alternatives, then

the conclusion even extends to stochastic social choice functions. Thus, we sharpen

the findings of Jehiel et al. (2006) for settings without transfers — we will compare

the two papers in more detail after taking a closer look at our result first.

Let us elaborate on the setting. A group of n agents must collectively choose

one of finitely many alternatives. Each agent i’s private information — her type —

is a number or vector θi, whereas the collection of everyone’s types, θ = (θ1, ..., θn),

constitutes the payoff-relevant state. An agent’s preferences over the alternatives

depend on the state, which includes others’ as well as her own information.

The sufficient condition for our impossibility result can be more precisely stated

as follows: if in state θ some agents are indifferent between two alternatives (a, b),

then among the indifferent agents there exists a certain agent i whose indifference

between (a, b) is broken by a slight change in the information of another agent j,

and moreover, the preferences of i and j regarding (a, b) do not agree entirely in

any arbitrary neighborhood around θ. Thus, locally around θ, there is preference

interdependence because the preference of i depends non-trivially on j’s information,

and there is preference heterogeneity because the preferences of i and j differ.

There are three reasons why we suggest that this sufficient condition requires

only a “small amount” of preference interdependence and heterogeneity. First, the

condition only imposes restrictions on those “indifference” states where agents are

actually indifferent between alternatives. Second, the “magnitude” of preference in-

terdependence and heterogeneity, locally at a state, need not be large. Indeed, the

condition is satisfied at θ even if i’s preference is barely sensitive to j’s information,

and their preferences are almost but not entirely identical. Third, for an indifference

state and a corresponding pair of alternatives, we merely need two agents, i and j,

whose preferences are interdependent and heterogeneous. In other words, two agents

are enough to disrupt ex post implementation.

The range of environments where our impossibility theorem applies is not only

broad in theory, but also relevant in practice: decision-relevant information is of-

ten dispersed across individuals with diverse intentions and tastes, which formally
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translates into interdependence and heterogeneity of preferences. In terms of how

mechanisms such as voting or deliberation procedures operate in the real world, our

result therefore predicts that equilibrium outcomes are likely sensitive to what agents

believe about each others’ information.

Although, as we have argued above, the sufficient condition for our impossibility

result is satisfied in a broad range of environments, there are two prominent types

of environments in which it is violated: environments with private values, where

agents’ preferences never depend on the information of others, and environments

with common values, where agents share the same preferences in every state. It

is therefore not surprising that these environments admit non-constant EPIC social

choice functions. In the case of private values, EPIC is known to be equivalent to

strategy-proofness. There, dictatorships are strategy-proof, and further non-constant

social choice functions become strategy-proof when the famous Gibbard-Satterthwaite

Theorem (Gibbard, 1973; Satterthwaite, 1975) is circumvented through restrictions

on the underlying preference domain.2 In the case of common values, the social

choice function that chooses the common first-best alternative in each state is clearly

EPIC. Yet, as we have seen, the possibility of ex post implementation quickly fades as

we move away from these two extremes, when both preference interdependence and

heterogeneity come into play. In particular, not even dictatorship is EPIC when values

are interdependent,3 and various exceptions to Gibbard-Satterthwaite are killed by

even a small amount of preference interdependence.

We already mentioned that our result strengthens the finding of Jehiel et al.

(2006) for settings without transfers: while Jehiel et al. (2006) show that deterministic

ex post implementation with multi-dimensional types is generically impossible, even

when transfers are available, we show that shutting down transfers further limits the

scope of ex post implementation, especially in environments with one-dimensional

types and in important ”non-generic” environments that survive Jehiel et al. (2006),

such as those with separable preferences.

What distinguishes us from Jehiel et al. (2006) is not just a strengthened con-

2See, for example, Moulin (1980) and Saporiti (2009).
3The reason is that a dictator who decides based on her own information would revise her choice

in some states after learning about other agents’ information. Also see Jehiel et al. (2006) for
disambiguation of the term dictatorship in interdependent value environments.
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clusion. Our contribution also lies in how we arrive at this conclusion, namely by

identifying an easily interpretable sufficient condition that rules out the possibility

of ex post implementation and by arguing that the condition is satisfied in many

economically relevant and practically prevalent situations. In contrast, Jehiel et al.

(2006) identify a geometric condition that is necessary for ex post implementation

and argue that it cannot be satisfied generically in a topological or measure-theoretic

sense. In other words, while Jehiel et al. (2006) show that ex post implementation is

difficult, we further elucidate what makes ex post implementation difficult.

Finally, Jehiel et al. (2006) only consider a two-agent, two-alternative model,

which is sufficient for their goal of establishing generic impossibility. However, since

our focus is not just on generic impossibility, there is merit in considering a more

general setting with many agents and alternatives. For example, our result holds

in environments where subsets of agents have aligned preferences over subsets of

alternatives, which is economically relevant despite being non-generic, and it is a

priori unclear whether such partial alignment of preferences would facilitate ex post

implementation or not.

There are only a few other papers on ex post implementation without trans-

fers. Che, Kim, and Kojima (2015) and Fujinaka and Miyakawa (2020) as well as

Pourpouneh, Ramezanian, and Sen (2020) study specific settings, namely object as-

signment and matching problems, respectively. In these settings, non-trivial ex post

implementation is typically possible: our preference interdependence condition en-

tails allocative externalities, which are typically assumed away in the assignment and

matching literature; see Section 5 for a more detailed discussion. The impossibility

of ex post implementation can be overcome in the same way when transfers are avail-

able: genericity in the sense of Jehiel et al. (2006) also entails allocative externalities.

In fact, Bikhchandani (2006) shows by construction that non-trivial ex post imple-

mentation is possible in environments with private objects and multi-dimensional

types.

For more general settings, Barberà, Berga, and Moreno (2019, 2022) and Feng

and Wu (2020, Section 4.3) also discuss necessary and sufficient conditions for the

impossibility of ex post implementation. Unlike us, these papers impose no topological

structure on the state space, making their conditions more general yet also more
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abstract and harder to interpret and verify than our conditions. Indeed, it is precisely

because we are working with a continuous state space that we are able to obtain a

much sharper result about ex post implementability.

This paper is organized as follows. Section 2 illustrates the main insight in a

simple example. Section 3 sets up the general model. Section 4 presents the main

result. Section 5 discusses ex post implementation in situations where our result is

silent: (1) allowing transfers; (2) matching and assignment problems; (3) discrete

state spaces; (4) stochastic social choice with three or more alternatives. All proofs

are in the Appendix.

2. Example

Two agents, 1 and 2, need to make a collective choice from two alternatives, S(afe)

and R(isky), e.g., whether or not to pass a law, implement a project, or convict a

defendant. The value of S is always 0 to both agents, whereas the value of R depends

on an unknown state θ = (θ1, θ2), which can take any value from Θ = [−1, 1]2.

Specifically, the value of R to agent i = 1, 2 is given by

vRi (θ) = θi + βθ−i

where β ∈ [0, 1].

Agent i can observe θi but not θ−i. Thus, each agent only has partial information

about the true payoff-relevant state, and β is a parameter that captures the degree

to which agent i’s valuation depends on the information of the other agent −i. Note

that when β = 0, this is a private value environment where an agent’s preference

depends only on her own information, whereas when β = 1, this is a common value

environment where the agents preferences are identical. We will return to these special

cases in a moment.

We first focus on an intermediate case β = 1
2
. Since each agent’s valuation for R

is twice as sensitive to her own information as to the other agent’s information, the

two agents do not always agree on which alternative is better. Indeed, in Figure 1a,

which graphically represents the setting, the two agents’ indifference curves ICi =

{θ | vRi (θ) = 0}, i.e., the respective sets of states where 1 and 2 are indifferent between
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Figure 1: An illustration of the example

S and R, partition the state space into four regions, {RR,RS, SR, SS}, where region

XY has the interpretation that within it, agent 1 strictly prefers alternative X and

agent 2 strictly prefers alternative Y .

Which deterministic social choice functions φ : [−1, 1]2 → {S,R} are EPIC when

β = 1
2
? φ is EPIC if and only if it is optimal for each agent i to truthfully report

her type θi to the direct mechanism induced by φ in every state, given that the other

agent also reports truthfully. Obviously, any constant φ is EPIC. It turns out that

the converse is also true: Any EPIC φ must be constant.

Let us briefly sketch the gist of the formal argument. Note that if an agent has

the same preference across two states that differ only in her own information, then

an EPIC social choice function must choose the same alternative in both states. As

an example, consider the two states θ and θ′ in Figure 1a. These states are aligned

vertically (thus differ only in agent 2’s information) and are respectively located in

RR and SR (thus agent 2 strictly prefers R in both states). If some φ chose different

alternatives in θ and θ′, then agent 2 would be decisive in either state: she could

induce the choice of one alternative by reporting her information truthfully, or the

choice of the other alternative by misreporting her information to be dimension 2 of

the other state. But since she strictly prefers R in both states, she would induce the

choice of R in one of the states by misreporting her private information, contradicting

EPIC.
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Now, any EPIC φ must be constant within each of the four regions where both

agents’ preferences are strict and constant because we could otherwise find two states

in the same region that differ only in one agent’s information but where different

alternatives are chosen, contradicting our previous observation about EPIC.

In addition, φ must choose the same alternative across any two adjacent regions

because we can always find states such as θ and θ′ that link two regions through an

agent whose preference is the same. It follows that any EPIC φ must choose the same

alternative across all four regions.4

It is worth noting that the linking argument across regions relies on the existence

of the two states (θ, θ′) that (1) differ only in one dimension j ∈ {1, 2}, and in which

(2) agent i 6= j has different ordinal preferences but (3) agent j has the same ordinal

preference. Conditions (1) and (2) jointly entail preference interdependence between

the agents: the change of agent j’s information leads to a change in agent i’s ordinal

preference. Conditions (2) and (3) jointly entail preference heterogeneity : the agents’

ordinal preferences do not always agree, so that a change in the state may cause a

change in one agent’s preference but not in the other’s. In short, that φ is constant

relies on the presence of preference interdependence and heterogeneity.

Not surprisingly, there exist non-constant EPIC φ if preference interdependence

is absent as in the private value case β = 0 (Figure 1b) or if preference heterogeneity

is absent as in the common value case β = 1 (Figure 1c) because we cannot find the

desired linking states (θ, θ′) in either case. For example, the function φ that chooses

R only in RR is EPIC in both cases.

On the other hand, the argument goes through for any β ∈ (0, 1), i.e., when there

is at least some preference interdependence and heterogeneity, regardless of how close

β is to one of the two exceptional cases. In this sense, if we think of the environments

with interdependent values as a spectrum parametrized by β ∈ [0, 1] with private

values at one end and common values at the other, then even a slight departure from

the two extremes leads to an impossibility of ex post implementation. This insight,

as formalized and generalized in Theorem 1, is the main contribution of the paper.

4In this example, it is easy to show that φ must then also choose the same alternative on the
indifference curves IC1 and IC2. In general, one can only show this for the interior of the state
space; see the Appendix.

8



3. Model

A group of agents N = {1, . . . , n} must collectively choose an alternative from a finite

set A without using monetary transfers. The valuation of agent i ∈ N for alternative

a ∈ A depends on an underlying state θ ∈ Θ, where Θ is the set of all possible states.

We represent i’s valuation for alternative a by a valuation function vai : Θ → R. In

addition, we let vabi (θ) := vai (θ) − vbi (θ) denote i’s relative valuation function for a

versus another alternative b. Thus, i weakly prefers a over b in state θ if and only if

vabi (θ) is non-negative.

Preference interdependence among the agents is typically modeled by assuming

that each agent is only partially informed about the payoff-relevant state θ. Specif-

ically, θ consists of n components, θ = (θ1, ..., θn), and each agent i only observes θi

— her type. The state space Θ is therefore
∏

i∈N Θi. We assume Θi = [−1, 1]di where

di ∈ N is the dimension of agent i’s type and thus allow for multidimensional types.5

Valuation functions are continuously differentiable. Given a relative valuation

function vabi , let ∇vabi denote its gradient, and let ∇θjv
ab
i denote the dj−dimensional

vector of components of ∇vabi with respect to the type of agent j. We follow Jehiel et

al. (2006) in assuming that an agent’s indifference between two alternatives is broken

by a slight change in her own information. More precisely,

∀i ∈ N, ∀θ ∈ Θ, ∀a, b ∈ A : a 6= b,
(
vabi (θ) = 0 =⇒ ∇θiv

ab
i (θ) 6= 0

)
.6 (RESP)

As motivated in the introduction, we are interested in the ex post implementability

of social choice functions. By the Revelation Principle, we can focus on those that

are truthfully ex post implementable in direct mechanisms, or in other words, ex post

incentive compatible. Specifically, a (deterministic) social choice function φ : Θ→ A

is ex post incentive compatible (EPIC) if truth-telling is an ex post equilibrium of the

5Our result still obtains if each Θi is a subset of a Euclidean space with connected interior.
Moreover, Θ need not be a product state space, provided its interior is connected. Our proof
explicitly assumes only these properties of the state space.

6This assumption is not necessary for the gist of our result but simplifies statement and proof:
without (RESP), the result’s conclusion must be slightly weakened, making the result harder to
communicate. See Feng and Wu (2020) for an earlier version of the result without (RESP).
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direct mechanism induced by φ, i.e.

∀i ∈ N, ∀θ ∈ Θ, ∀θ̃i ∈ Θi, v
φ(θi,θ−i)
i (θ) ≥ v

φ(θ̃i,θ−i)
i (θ). (EPIC)

Following Jehiel et al. (2006), we say that social choice function φ is trivial if it is

constant on the interior of Θ.

Although we have set up the model in terms of cardinal valuation functions, our

findings can be easily transferred to a model where preferences are ordinal. After all,

only ordinal preferences matter for ex post incentives when there are no transfers and

mechanisms are deterministic. In Section 5, we discuss this alternative specification

in more detail.

4. Impossibility of Ex Post Implementation

Let us first formally present the main result and explain it in more detail right after.

For a pair of distinct alternatives (a, b), let

Iab(θ) = {i ∈ N | vabi (θ) = 0}

denote the set of agents who are indifferent between this pair in state θ. If Iab(θ) is

nonempty, we say that (a, b) is an indifference pair of θ. Moreover, we say that θ is

an indifference state if it has at least one indifference pair.

Theorem 1. Suppose for any indifference state θ and any of its indifference pairs

(a, b), there exists an agent i ∈ Iab(θ) and another agent j ∈ N such that:

(1) (local interdependence) ∇θjv
ab
i (θ) 6= 0;

(2) (local heterogeneity) j /∈ Iab(θ) or ∇vabi (θ) 6= λ∇vabj (θ) for any λ ≥ 0.

Then, all EPIC social choice functions are trivial.

To better understand the result, let us parse the statement. Note first that the suf-

ficient condition only constrains indifference states regarding their indifference pairs.

That is, only for the indifference states θ and their indifference pairs (a, b) do we need

to find two agents i and j whose preferences regarding (a, b) are interdependent but

nonetheless heterogeneous locally around θ. More precisely, local interdependence
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means that i, who is indifferent between (a, b) in θ, is no longer indifferent follow-

ing some small change in j’s type, i.e., the ordinal preference of i depends on j’s

information around θ. Local interdependence is satisfied in Figure 1a but not in Fig-

ure 1b because it requires agent 1’s indifference curve IC1 to not be entirely vertical

and agent 2’s indifference curve IC2 to not be entirely horizontal. Local heterogeneity

means that i and j disagree on whether a or b is better in or near state θ. Specifically,

if j /∈ Iab(θ), then heterogeneity in θ is immediate: i is indifferent, but j is not. On the

other hand, if j is also indifferent in θ, then the condition that ∇vabi (θ) 6= λ∇vabj (θ) for

any λ ≥ 0, i.e., that the two gradients are not co-directional at θ, implies that there is

an arbitrarily close state in which i and j rank (a, b) differently.7 Local heterogeneity

is satisfied in Figure 1a but not in Figure 1c because it requires that IC1 and IC2

cross each other when they intersect,8 as only then would the gradients, which are

respectively normal to the indifference curves, be misaligned at the intersection.

We view Theorem 1 as a strong negative result — an “impossibility” theorem

— for the following reasons. First, its sufficient condition only puts restrictions on

indifference states, which typically compose a very small subset of all states.9 Second,

local interdependence only rules out the knife-edge case that ∇θjv
ab
i (θ) is exactly

equal to 0, and likewise, in case j ∈ Iab(θ), local heterogeneity only rules out the

knife-edge case that ∇vabi (θ) and ∇vabj (θ) are exactly co-directional. In other words,

the sufficient condition is satisfied even if, locally around θ, there is only a minimal

amount of preference interdependence and heterogeneity. Third, for there to be local

interdependence and heterogeneity, we only need two agents whose preferences jointly

satisfy the respective requirements, and these agents need not be the same across

indifference states or even pairs. In particular, our result still holds if subsets of

agents, say, parties in a parliament, have identical preferences as long as there is

preference interdependence and heterogeneity between parties.

In fact, the result can be further strengthened. First, what we prove in the

7Another way to think of this condition is that there are two pieces of information in state θ
between which i and j have different marginal rates of substitution.

8For local heterogeneity to hold at the intersection, the indifference curves of i and j may be
tangent only when their preferences regarding (a, b) are diametrically opposed in a neighborhood of
the intersection, which is not possible in the example for any β ∈ [0, 1].

9Clearly, for any continuous distribution on Θ, the set of indifference states has measure zero.
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Appendix is actually stronger (Theorem 2): non-trivial social choice functions do

not exist even under the weaker notion of local ex post incentive compatibility, which

requires that no agent i has an incentive to slightly misrepresent her true type θi

as some θ̃i that is close to θi. Moreover, the presence of local interdependence and

heterogeneity in every indifference state is an overkill for deriving the impossibility

result. All that is needed is a specific discrete set of indifference states satisfying the

conditions; see Remark 1 in the Appendix.

Why is the existence of a minimal amount of preference interdependence and het-

erogeneity in some indifference states already enough to disrupt even local ex post

implementation? With transfers absent and mechanisms deterministic, incentives are

determined by preference rankings only. Thus, it is local incentives around indifference

states that matter most to implementation because indifference states are precisely

those where preference rankings change. Moreover, since minimal movements around

an indifference state are enough to change an agent’s preference ranking, EPIC admits

no “margin of error” there when it comes to the magnitude of preference interdepen-

dence or heterogeneity. The implied discontinuity in implementability between pure

private/common value environments and interdependent value environments reflects

how chokingly stringent EPIC is as a constraint on mechanism design.

5. Discussion

5.1. An Ordinal Framework

As we have mentioned earlier, when transfers are absent and mechanisms are de-

terministic, ex post incentives are determined by preference rankings only, whereas

cardinal valuations per se are irrelevant. We nonetheless choose to work in the car-

dinal framework because it (1) is used in most related work, allowing for easier com-

parison, (2) facilitates our discussion of transfers and stochastic social choice below,

where preference intensities matter, and (3) greatly simplifies the exposition.

Although the key conditions for our analysis — those about local interdependence

and local heterogeneity — are formulated in terms of cardinal valuations, they are

essentially about how ordinal preferences change from an indifference state to nearby

states. In principle, these conditions can be alternatively defined in terms of ordinal
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preferences, but one can imagine that such definitions would be more tedious to

formulate and use for our analysis. Since our result hinges on preferences in and

around indifference states, we have imposed mild regularity conditions on valuation

functions to ensure that the set of indifference states is well-behaved. In the ordinal

model, if we were to impose analogous conditions on the boundaries that separate the

regions where a given agent’s preferences are constant, then our analysis would go

through analogously with the appropriately modified notions of local interdependence

and heterogeneity.10

5.2. Transfers

In the introduction, we mentioned that transfers facilitate ex post implementation. If

transfers are allowed and an agent only cares about her own transfer, as is typically

assumed, then she is indifferent between any two outcomes where the chosen non-

monetary alternative and her own transfer are the same, despite differences in the

other agents’ transfers. These indifferences persist across states and thus violate both

local interdependence and (RESP), rendering our result silent. Transfers can be used

to overcome preference interdependence or heterogeneity — the two roadblocks to ex

post implementation suggested by our result — by either making values effectively

private or by aligning the agents’ interests.11 In the following, we illustrate these two

possibilities in the context of our leading example.

Example (continued from Section 2). Suppose monetary transfers are now allowed

and agents have quasi-linear utilities: ui(θ) = vXi (θ) + ti(θ), where X is the chosen

alternative and ti is the transfer agent i receives.

First, consider the transfer scheme (ti)i=1,2 where ti(θ) = −βθ−i if R is chosen and

ti = 0 if S is chosen. Agent i’s “post-transfer” utility is then θi if R is chosen and 0 if

S is chosen. Thus, transfers eliminate preference interdependence and transform the

environment into one of private values as in Figure 1b. Consequently, mechanisms

such as dictatorship or majority voting are EPIC.

10With continuous preferences, these boundaries are nothing but the agent’s indifference curves.
Whether or not the agent is actually indifferent in states where her preferences change is not relevant
for the result.

11See Section 5 in Chung and Ely (2003) for further discussion on how transfers can be used to
align individual interests in collective choice problems.
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Second, consider the transfer scheme (t′i)i=1,2 where t′i(θ) = (1 − β)θ−i if R is

chosen and ti = 0 if S is chosen. Both agents have the same “post-transfer” utility,

namely θ1+θ2 if R is chosen and 0 if L is chosen. Thus, transfers eliminate preference

heterogeneity and transform the environment into one of common values as in Figure

1c. Consequently, the mechanism that chooses R if and only if θ1 + θ2 > 0 is EPIC.

5.3. Assignment and Matching Problems

A common assumption in matching is that each agent only cares about her own as-

signed object or match. Thus, similar to the case of transfers, local interdependence

and (RESP) generally fail to hold in such problems.12 It is therefore not surprising

that non-trivial EPIC social choice functions exist even when preferences are interde-

pendent.13 However, as Che, Kim, and Kojima (2015) show, such EPIC social choice

functions cannot be efficient, at least in the housing allocation problem where each

agent is assigned exactly one object. Moreover, our negative result can still apply

to assignment or matching problems with allocative externalities, e.g., when students

not only care about which dorm room they get but also which rooms their friends

get.

5.4. Discrete State Spaces

We have assumed that the state space is a connected subset of a Euclidean space.

If instead the state space is discrete, then counterexamples to our result are easy to

find. For instance, see Feng and Wu (2020). One way to understand the discrepancy

between discrete and continuous state spaces is to think of a discrete state space

as a low-resolution discretization of a continuous space. For example, suppose each

agent’s underlying type can be any number between −1 and 1, yet each agent is only

aware of whether her type is above or below 0, making her effective type space binary.

Since the agents’ indifference curves are then being squeezed into a discrete grid, they

tend to become more aligned, and this alignment gives leeway to non-trivial ex post

12The housing allocation problem with two objects and two agents is an exception since the
assignment of one object to one agent implies that the remaining object must be assigned to the
other agent. See also the illustrative example in Che, Kim, and Kojima (2015).

13This observation echoes how Jehiel et al. (2006) relies on allocative externalities; also see
Bikhchandani (2006).
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implementation.

5.5. Stochastic Social Choice Functions

What if we allow for randomization so that the collective choice can be a lottery over

alternatives? It turns out that Theorem 1 still holds as long as there are only two

alternatives. The reason is simple: an agent is indifferent between lotteries if and only

if she is indifferent between the two underlying alternatives, and she otherwise prefers

lotteries in which her preferred alternative is chosen with a higher rather than lower

probability. Thus, our arguments immediately extend to stochastic implementation

with two alternatives. However, if there are three or more alternatives, then an agent

can get the same expected utility from different lotteries despite having strict prefer-

ences over the underlying alternatives. In the following example, these indifferences

can indeed be used to construct a non-trivial stochastic EPIC social choice function.

Example (continued from Section 2). Agents 1 and 2 now decide between three

alternatives, R, S, and P . For i = 1, 2, still assume Θi = [−1, 1], vRi = θi + 1
2
θ−i, and

vSi = 0. Additionally, assume vPi = −1. Theorem 1 applies here, so any deterministic

EPIC social choice function must be trivial. However, consider the stochastic social

choice function φ = (φR, φP , φS) given by

φR(θ) =
4 + 2θ1 + 2θ2

11
, φP (θ) =

θ21 + θ1θ2 + θ22
11

, φS(θ) = 1− φR(θ)− φP (θ),

where φX(θ) denotes the probability that alternative X will be chosen in state θ. It

is readily verified that φ is EPIC.

Appendix: Proof of Theorem 1

Endow Θ with the norm topology. Let Bε(θ) denote the open ball with radius ε > 0

centered at θ. A social choice function φ is said to be locally EPIC if there exists

some ε > 0 such that for any θ ∈ Θ, φ restricted to Bε(θ) is EPIC, i.e.
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∀i ∈ N, ∀θ ∈ Θ, ∀θ̃i ∈ Θi : (θ̃i, θ−i) ∈ Bε(θ) =⇒ v
φ(θi,θ−i)
i (θ) ≥ v

φ(θ̃i,θ−i)
i (θ).

(LEPIC)

Let Θ := {θ ∈ int Θ | ∀i ∈ N, ∀a, b ∈ A : a 6= b, vabi (θ) 6= 0} denote the set of

interior states where all agents have strict preferences, and let C denote the set of all

connected components of Θ. Θ is open because valuation functions are continuous.

Similarly, each connected component C ∈ C is open. Note that the ordinal preferences

of all agents are strict and constant on each C ∈ C.

Lemma 1. If φ is locally EPIC, then φ is constant on each C ∈ C.

Proof. Suppose φ satisfies (LEPIC) for some ε > 0. Pick any C ∈ C. Suppose for

the sake of contradiction that φ is not constant on C, then there exists some θ ∈ C
and ε̃ ∈ (0, ε) such that Bε̃(θ) ⊂ C and φ(θ) 6= φ(θ′) for some θ′ ∈ Bε̃(θ). Clearly we

can find a sequence of states (θ0, ..., θn) in Bε̃(θ) where θ0 = θ, θn = θ′, and for every

k = 0, ..., n − 1, θk and θk+1 differ at most in the k + 1th entry. Thus φ(θ) 6= φ(θ′)

implies that φ(θk) 6= φ(θk+1) for some k. By construction, θk and θk+1 differ only in

the type of agent k + 1 who has the same strict ordinal preferences in both states.

Therefore, she either could profit from misreporting her type as θkk+1 in state θk+1 or

from misreporting her type as θk+1
k+1 in state θk, contradicting (LEPIC).

Given Lemma 1, it causes no confusion to write φ(C) for the choice by φ on C ∈ C.
Distinct C,C ′ ∈ C are said to be adjacent at θ ∈ int Θ if (1) θ ∈

[
clC∩clC ′

]
, and

moreover (2) Bε(θ) ⊂
[

clC ∪ clC ′
]

for some ε > 0. In addition, we consider every

C ∈ C as being adjacent to itself (at every θ ∈ clC).

A collection X of vectors are said to be collinear if for any x,y ∈ X, x = λy for

some λ ∈ R, i.e., these vectors lie on a common line passing through the origin. If,

in addition, for any x,y ∈ X, x = λy for some λ ≥ 0, i.e., these vectors lie on a

common ray emanating from the origin, then they are said to be co-directional.

Lemma 2. Suppose φ is locally EPIC. If C,C ′ ∈ C are adjacent at θ ∈ int Θ, and

φ(C) := a 6= b =: φ(C ′), then

(1) ∇θjv
ab
i (θ) = 0 for any i ∈ Iab(θ) and j ∈ N \ Iab(θ), and
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(2)
(
∇vabi (θ)

)
i∈Iab(θ) are co-directional.

Proof. The lemma’s premises imply that we can find ε > 0 such that (1) (LEPIC)

holds for Bε(θ), (2) Bε(θ) ⊂
[

clC ∪ clC ′
]
, and (3) for any agent i and any distinct

pair of alternatives (x, y), if i strictly prefers x to y in θ, then she strictly prefers x

to y in every state in Bε(θ).

Arbitrarily pick alternatives x, y, w, z ∈ A where x 6= y and w 6= z and agents

i ∈ Ixy(θ) and j ∈ Iwz(θ). Claim that ∇vxyi (θ) and ∇vwzj (θ) are collinear. Indeed,

if not, then we can find θ′, θ′′ ∈ Bε(θ) such that vxyi (θ′) = 0 but vwzj (θ′) 6= 0, and

vxyi (θ′′) 6= 0 but vwzj (θ′′) = 0.

By (RESP), we can find two states arbitrarily close to θ′ (hence within Bε(θ))

in which j has the same strict preference regarding (w, z) but i has different strict

preferences regarding (x, y). Similarly, we can find two states arbitrarily close to θ′′

(hence also within Bε(θ)) in which i has the same strict preference regarding (x, y)

but j has different strict preferences regarding (w, z). Thus Bε(θ) must intersect at

least three distinct connected components of Θ as it contains at least three profiles of

strict preferences of the agents. This contradicts that Bε(θ) only intersects two such

components, namely C and C ′.

Towards proving part (1), suppose for the sake of contradiction that there exists

i ∈ Iab(θ) and j ∈ N\Iab(θ) such that∇θjv
ab
i 6= 0. Thus, we can find ρ > 0 sufficiently

small such that θ′ := (θj + ρ∇θjv
ab
i (θ), θ−j) ∈ Bε(θ), θ

′′ := (θj − ρ∇θjv
ab
i (θ), θ−j) ∈

Bε(θ), and

vabi (θ′)vabi (θ′′) < 0, vabj (θ′)vabj (θ′′) > 0.

In other words, agent i has different strict preferences regarding (a, b) in θ′ and

θ′′, whereas agent j has the same strict preference. By the collinearity observation

above, we can further conclude that, for ρ small enough, any agent k who is indifferent

between any pair (x, y) in θ has different strict preferences regarding this pair in θ′

and θ′′. Together with θ′, θ′′ ∈ Bε(θ) we thus establish θ′, θ′′ ∈ Θ, i.e., all agents have

strict preferences in both states. Moreover, θ′ and θ′′ must be in distinct connected

components of Θ — one in C, the other in C ′ — because i’s preferences differ across

the two states. Since agent j has the same strict preference regarding (a, b) in θ′ and

θ′′ and since the two states differ only in j’s type, (LEPIC) implies φ(θ′) = φ(θ′′), a
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contradiction.

Now we show part (2). From the collinearity observation we conclude that∇vabi (θ)

and ∇vabj (θ) are collinear for any i, j ∈ Iab(θ). If, for the sake of contradiction, for

some i, j ∈ Iab(θ) the two gradients are not also co-directional, then they must be

diametrically opposed. By (RESP), we can find ρ > 0 sufficiently close to 0 such that

the following three statements are true. First, i strictly prefers a to b and j strictly

prefers b to a in both of the following two states:

θ̂ := (θi + ρ∇θiv
ab
i (θ), θ−i) and θ̃ := (θj − ρ∇θjv

ab
j (θ), θ−j).

Second, i strictly prefers b to a and j strictly prefers a to b in both of the following

two states:

θ̂′ := (θi − ρ∇θiv
ab
i (θ), θ−i) and θ̃′ := (θj + ρ∇θjv

ab
j (θ), θ−j).

Third, the above two pairs of states are in Bε(θ). Following the argument in the

previous paragraph, the four states are also in Θ and thus either in C or in C ′. In

addition, one pair must fall in C and the other pair must fall in C ′ because the

preferences of agent i (equivalently, j) regarding (a, b) are the same within each pair

but differ across pairs. Therefore, φ(θ̂) = φ(θ̃) but φ(θ̂) 6= φ(θ̂′). (LEPIC) implies

that φ(θ̂) = a for otherwise i would misreport her type as θ̂′i in state θ̂. Similarly,

φ(θ̃) = b for j not to misreport, but then φ(θ̂) 6= φ(θ̃), a contradiction.

Lemma 3. For any C,C ′ ∈ C there exists a finite sequence of connected components

C0, . . . , CK ∈ C and a finite sequence of indifference states θ1, . . . , θK ∈ int Θ such

that C0 = C,CK = C ′, and Ck and Ck+1 are adjacent at θk+1 for every k = 0, . . . , K−
1.

Proof. Pick any C ∈ C. Let C ′ denote the set of all C ′ ∈ C that can be linked to

C through a finite sequence of connected components with the same properties as in

the statement of the lemma. Clearly the lemma is established if C \ C ′ is empty, thus,

for the sake of contradiction, suppose C \ C ′ is non-empty.
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Define

S := int Θ ∩

cl
⋃

C̃∈C\C′

C̃

 ∩
cl

⋃
C̃∈C′

C̃

 .
Geometrically speaking, S is the frontier separating the components in C ′ from those

in C \C ′. Note that S ⊂
[
int Θ \Θ

]
. Moreover, S is non-empty, for otherwise, the two

(relatively) closed sets int Θ∩
[
cl
⋃
C̃∈C\C′ C̃

]
and int Θ∩

[
cl
⋃
C̃∈C′ C̃

]
would partition

int Θ, which contradicts that int Θ is connected.

For any agent i ∈ N and distinct alternatives (a, b), let ICab
i := {θ̃ ∈ Θ | vabi (θ̃) =

0} denote the set of states where i ∈ N is indifferent between (a, b). As an inter-

mediate step, we will show that there exists a state θ ∈ S such that if an open ball

B centered at θ is sufficiently small, then for any agent i ∈ N and pair of distinct

alternatives (a, b), [B ∩ S] ⊂ [B ∩ ICab
i ] if B ∩ ICab

i is non-empty.

The desired state θ can be obtained constructively as follows. Fix an arbitrary

state θ′ ∈ S. Since valuation functions are continuous, if an open ball B′ centered at

θ′ is sufficiently small, then θ′ ∈ ICab
i for any i ∈ N and alternatives (a, b) such that

B′∩ICab
i is non-empty. Now we look for a state θ′′ ∈ B′∩S such that for some i ∈ N

and alternatives (a, b), θ′ ∈ ICab
i whereas θ′′ /∈ ICab

i . If such θ′′ does not exist, then

θ′ is the desired state θ. If such θ′′ exists, then we proceed analogously with θ′′ in

place of θ′. The procedure terminates after finitely many iterations because there are

only finitely many agents and pairs of distinct alternatives, thus eventually yielding

the desired state θ.

Observe that there is a sufficiently small open ball B centered at θ such that each

B∩ICab
i , if non-empty, not only satisfies [B∩S] ⊂ [B∩ICab

i ] (established above) but

also is diffeomorphic to a hyperplane (by (RESP) and the inverse function theorem).

Hence, B \ICab
i consists of two open connected components, U = {θ̃ ∈ B| vabi (θ̃) < 0}

and U ′ = {θ̃ ∈ B| vabi (θ̃) > 0}, with common boundary B ∩ ICab
i .14

Now we show that [B∩S] = [B∩ICab
i ] if B∩ICab

i is non-empty. Since θ ∈ S, both

14Specifically, using (RESP), suppose without loss of generality that ∂vabi (θ)/∂θis 6= 0, where
θis is the s-th entry of θi. Then the Jacobian of h(θ) = (θ−is, v

ab
i (θ)) is invertible, hence h is the

desired local diffeomorphism: h−1 maps the hyperplane defined by the equation θis = 0 to ICab
i and

maps the halfspaces separated by that hyperplane to U and U ′, respectively. Finally, recall that
connectivity is preserved under the continuous map h−1.
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int Θ∩
[
cl
⋃
C̃∈C\C′ C̃

]
and int Θ∩

[
cl
⋃
C̃∈C′ C̃

]
must intersect B\S, which implies that

B \ S is disconnected because the two sets are relatively closed and disjoint in B \ S.

If there exists θ′ ∈ B ∩ ICab
i such that θ′ /∈ B ∩ S for some i ∈ N and alternatives

(a, b), then S would be diffeomorphic to a hyperplane missing some points, hence

B \ S would have to be connected, a contradiction.

It follows that B ∩ Θ intersects exactly two connected components in C because

all non-empty B ∩ ICab
i coincide by the previous paragraph. One of these connected

components is some C ∈ C \ C ′ and the other is some C ′ ∈ C ′ because θ ∈ S by

construction. Moreover, θ ∈ [clC]∩ [clC ′]. Thus, C ∈ C \C ′ and C ′ ∈ C ′ are adjacent

at θ, contradicting the initial assumption that no component in C ′ is adjacent to a

component in C \ C ′.

We will now state and prove a stronger impossibility theorem that immediately

implies Theorem 1 as a corollary.

Theorem 2. Suppose the premises of Theorem 1 hold. Then, all locally EPIC social

choice functions are trivial.

Proof. Fix any φ that is locally EPIC for radius ε > 0. Let Θk ⊂ int Θ denote the set

of interior states where exactly k agents have indifferences in their preferences. Thus

int Θ =
⋃n
k=0 Θk. It suffices to show that φ is constant on Θk for every k = 0, ..., n

and, moreover, that φ(Θ0) = ... = φ(Θn). We proceed by induction on k.

For k = 0, note that Θk = Θ. Suppose, for the sake of contradiction, that φ is

not constant on Θ. By Lemma 3, there exist two connected components C and C ′ of

Θ adjacent at some indifference state θ such that φ(C) 6= φ(C ′). For any indifference

pair (a, b) of θ, one of the following two cases must hold by assumption: (1) There is

i ∈ Iab(θ) and j /∈ Iab(θ) such that ∇θjv
ab
i (θ) 6= 0. (2) There are i, j ∈ Iab(θ) where

∇vabi (θ) and ∇vabj (θ) are not co-directional. Hence we have φ(C) = φ(C ′) by the

contrapositive of Lemma 2, a contradiction. Thus φ must be constant on Θ = Θ0.

Now suppose φ is constant on Θ` for every ` < k and, moreover, φ(Θ0) = ... =

φ(Θk−1). Pick any θ ∈ Θk. By iteratively using (RESP), we can find states θ′, θ′′ ∈
Bε(θ) arbitrarily close to θ such that (1) θ, θ′ and θ′′ differ from each other only in

some agent i’s type, (2) agent i is indifferent between one or more pairs of distinct

alternatives in θ, and, in addition, for any such pair she has strict and opposite
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preferences in θ′ and θ′′, (3) for any agent whose preference regarding any given pair

of distinct alternatives is strict in θ, her preference regarding this pair remains the

same in θ′ and θ′′. Thus θ′ ∈ Θ` and θ′′ ∈ Θ`′ for `, `′ < k. Consequently, the inductive

hypothesis implies that φ(θ′) = φ(θ′′) = φ(Θ0). Suppose for the sake of contradiction

that φ(θ) = a but φ(Θ0) = b 6= a. On the one hand, if i has a strict preference

regarding (a, b) in θ, then she has the same strict preference in θ and θ′, and hence

by (LEPIC), we must have a = φ(θ) = φ(θ′) = b for there to be no incentive for i

to misreport, a contradiction. On the other hand, if i is indifferent between (a, b) in

θ, then, by construction, i strictly prefers a over b in one of θ′ and θ′′, and in that

state, she has an incentive to misreport her type as θi, also a contradiction. Thus

φ(θ) = φ(Θ0). Since θ was arbitrarily chosen from Θk, we conclude that φ must be

constant on Θk and, moreover, φ(Θk) = φ(Θ0).

Remark 1. The sufficient condition for Theorems 1 and 2 can be weakened. Indeed,

Lemma 3 guarantees the existence of a discrete set of indifference states Θ∗ such that

for any C,C ′ ∈ C there is a finite sequence of connected components C0, ..., CK ∈ C
where C0 = C, CK = C ′, and Ck and Ck+1 are adjacent at some θ ∈ Θ∗ for every

k = 0, ..., K−1. The proof of Theorem 2 goes through as long as local interdependence

and heterogeneity are present in such a set of indifference states. Importantly, if

C is finite, which is the case in any straightforward instance of the model, then

Θ∗ can be chosen as a finite set. Thus, the set of indifference states where local

interdependence and heterogeneity need actually be present is much smaller than the

set of all indifference states.
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