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Abstract

A social choice function (SCF) is robustly implementable in rationalizable strate-

gies (RoRat-implementable) if every rationalizable strategy profile on every type space

results in outcomes consistent with it. First, we establish the equivalence between

RoRat-implementation and “weak rationalizable implementation”, the latter being a

“type-free” concept. Second, using the equivalence result, we identify weak robust

monotonicity as a necessary and almost sufficient condition for RoRat-implementation.

This exhibits a contrast with robust implementation in interim equilibria (RoEq-

implementation), i.e., every equilibrium on every type space must achieve outcomes

consistent with the SCF. Bergemann and Morris (2011) show that strict robust mono-

tonicity is a necessary and almost sufficient condition for RoEq-implementation. We

argue that strict robust monotonicity is strictly stronger than weak robust monotonic-

ity, which further implies that, within general mechanisms, RoRat-implementation is

more permissive than RoEq-implementation. The gap between RoRat-implementation

and RoEq-implementation stems from the strictly stronger nonemptiness requirement

inherent in the latter concept.
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1 Introduction

We consider robust (full) implementation of a social choice function (SCF) in (interim cor-

related) rationalizable strategies (henceforth, RoRat-implementation). That is, we want the

designer to construct a mechanism such that, regardless of the type space, all rationaliz-

able outcomes are consistent with the SCF. We thus take a global approach to robustness,

following the seminal work of Bergemann and Morris (henceforth, BM, 2005, 2009, 2011).

However, we depart from BM as they assume interim equilibrium whereas we assume ra-

tionalizability as the solution concept. Specifically, we benchmark our work against BM

(2011), which analyzes robust implementation of an SCF in interim equilibria (henceforth,

RoEq-implementation).

Rationalizability characterizes outcomes that are consistent with common certainty of

rationality (Dekel et al., 2007). On any given type space, rationalizability is a weaker so-

lution concept than interim equilibrium. Interim equilibrium relies on the assumption of

rational expectations, whereby all types of all players have correct beliefs about each other’s

strategies. Rationalizability, in contrast, is a set-valued concept that does not assume ratio-

nal expectations, allowing different types of a player to hold distinct beliefs about other’s

strategies in order to rationalize their own behavior.

Fixing the solution concept (interim equilibrium or rationalizability), robust implementa-

tion imposes two requirements: (i) Nonemptiness : The solution concept must be nonempty

on every type space and (ii) Uniqueness : Every outcome generated by the solution con-

cept on every type space must be consistent with the SCF. As rationalizability is weaker

than interim equilibrium on every type space, the nonemptiness requirement in RoRat-

implementation is weaker than that in RoEq-implementation. At first glance, we might then

think that RoRat-implementation imposes a stronger uniqueness requirement than RoEq-

implementation. That turns out not to be the case. Indeed, the uniqueness requirement in

RoRat-implementation is the same as that in RoEq-implementation. This is because every

rationalizable action on a given type space can be obtained in interim equilibrium on another

type space (this result is known in the literature on epistemic foundations; see, for instance,

Remark 2 in Dekel et al., 2007). Thus, a priori, RoRat-implementation is weaker than

RoEq-implementation. But is it strictly weaker? If yes, then what is the precise difference

between these robust implementation notions? We answer these questions in this paper.

We first show that RoRat-implementation is equivalent to weak rationalizable implemen-

tation (henceforth, wRat-Implementation), which is a “type-free” implementation concept

defined in the appendix of BM (2010). This result parallels the almost equivalence between

RoEq-implementation and rationalizable implementation (henceforth, Rat-Implementation).
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Figure 1: Summary of relationships between different implementation and monotonicity concepts.
BM stands for Bergemann and Morris (2011); Rem. stands for Remark; Def. stands for Definition;
Lm. stands for Lemma; Sec. stands for Section; and Th. stands for Theorem.

Rat-implementation is another “type-free” implementation concept – introduced in BM

(2011) – that, as the name suggests, implies wRat-implementation. BM (2011) show that

RoEq-implementation implies Rat-implementation, and the converse is true whenever the

implementing mechanism has nonempty interim equilibria in all type spaces.

The equivalence between RoRat-implementation and wRat-implementation proves to be

extremely useful on two counts:

(i) We use the equivalence to identify weak robust monotonicity (weak RM) as a necessary

and almost sufficient condition for RoRat-implementing an SCF.

(ii) Following (i), we are able to provide a precise relationship between RoRat-implementation

and RoEq-implementation. Thus, unlike many papers in the implementation literature that

usually derive only necessary and sufficient conditions for different implementation notions,

an important contribution of this paper is that we precisely establish the relationship between

two different implementation notions, as described and summarized in Figure 1.

BM (2011) show that strict robust monotonicity (strict RM) is necessary and almost
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sufficient for RoEq-implementation – as well as Rat-implementation. We show that strict

RM implies weak RM and the converse is true for “responsive” SCFs but not more generally.

In Example 6.1, we present an SCF that satisfies weak RM (and the other mild sufficient

condition for RoRat-implementation) but not strict RM. Thus, there exist SCFs that are

RoRat-implementable but not RoEq-implementable.

In light of the fact that the uniqueness requirements in the two implementation notions

are the same, the gap between RoRat-implementation and RoEq-implementation is due to

the strictly stronger nonemptiness requirement imposed in the latter notion. That is, it is

possible that the SCF is RoRat-implementable but there exists a type space on which the

implementing mechanism has no interim equilibria. The assumption of rational expecta-

tions plays a critical role in generating this possibility, as intuitively explained in Section

1.1. Although one might find it pathological that the induced game has no equilibria, the

lack of equilibria in some type space does not preclude the existence of interim equilibria

in other type spaces. Indeed, in Section 6.2 we show that the canonical mechanism that

RoRat-implements the desired SCF has nonempty interim equilibria on type spaces that are

typically found in the applied literature. Thus, pursuing RoRat-implementation seems to

be a reasonable way of obtaining a more permissive result by relaxing the nonemptiness of

equilibria in all type spaces.

If we restrict the designer to use finite mechanisms, then interim equilibria will exist

on all type spaces. Hence, RoEq-implementation and RoRat-implementation are equivalent

under this restriction. In other words, robustness consideration makes the difference between

rationalizable strategies and equilibria moot within the class of finite mechanisms but not

more generally. The designer can and must use countably infinite mechanisms if her aim

is to RoRat-implement an SCF which cannot be RoEq-implemented. The implementation

literature relies on countably infinite mechanisms to obtain tight necessary and sufficient

conditions. In that spirit, we too construct a countably infinite mechanism to prove that

weak RM is almost sufficient for RoRat-implementation. However, such constructions have

been criticized for being impractical (see, for e.g., Jackson, 1992).

In the context of complete information environments, Bergemann et al. (2011) show

that the necessary condition for implementation in rationalizable strategies is stronger than

Maskin monotonicity, which is necessary and almost sufficient for Nash implementation

(Maskin, 1999). In their Section 5, they also give an example of a Nash implementable SCF

that is not implementable in rationalizable strategies. Recently, Xiong (2018) has provided

a complete characterization of SCFs that are implementable in rationalizable strategies.

The implementing mechanism in Xiong (2018) also Nash implements the SCF. Thus, in

complete information environments, the designer can implement a strictly larger set of SCFs
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in equilibrium than in rationalizable strategies.1 In an interesting contrast, we show that,

when it comes to robust implementation, the designer can RoRat-implement a strictly larger

set of SCFs than those she can RoEq-implement.

1.1 Why RoRat-implementation might succeed where RoEq-

implementation fails?

Consider an environment with three alternatives {a, b, c}. Any lottery ℓ on this set of alter-

natives can be represented by a tuple (ℓ[a], ℓ[b]) such that ℓ[a], ℓ[b] ≥ 0 and ℓ[a] + ℓ[b] ≤ 1.

Graphically, this defines a triangle, as shown in Figure 2.

Suppose there is some player i with three payoff types, say, θi, θ
′

i, and θ
′′

i . Furthermore,

we assume that the SCF f is “non-responsive” to θ
′

i and θ
′′

i , i.e., for all types of the other

players, the SCF prescribes the same outcome whether i’s type is θ
′

i or θ
′′

i . Then, in particular,

f(θ
′

i, θ
′

−i) = f(θ
′′

i , θ
′

−i) for some θ
′

−i, as shown in Figure 2. Also, suppose that the SCF f is

“responsive” to θi and θ
′

i such that f(θi, θ
′

−i) 6= f(θ
′

i, θ
′

−i), as in Figure 2.

Throughout this discussion, we fix some type space T such that it includes four types of

player i: t̂i, ti, t
′

i, and t
′′

i . Type t̂i has the payoff type θi and believes that the opponents’

type profile is some t̂−i with the corresponding payoff-type profile as some θ−i. Types ti, t
′

i,

and t
′′

i are such that their corresponding payoff types are θi, θ
′

i, and θ
′′

i , respectively, and all

the three types believe that the opponents’ type profile is some t
′

−i with the corresponding

payoff-type profile as some θ
′

−i.

Suppose there were a mechanism that RoEq-implemented f . Let g be the outcome func-

tion of the mechanism, mapping message profiles to lotteries. Pick a (pure) interim equilib-

rium σ of the mechanism on the type space T . Then, by definition of RoEq-implementation,

g(σ(t̂)) = f(θ) whereas g(σ(t
′

)) = f(θ
′

) = f(θ
′′

i , θ
′

−i) = g(σi(t
′′

i ), σ−i(t
′

−i)). If instead of re-

porting their equilibrium messages σ(t̂), the types t̂ of the players were to jointly misreport

their messages as σ(t
′

), then that will implement the outcome f(θ
′

), which is not desired un-

der the type profile t̂. Thus, the mechanism must incentivize some player to blow the whistle

when the players jointly misreport in this manner. We show that it is impossible to incen-

tivize player i of type t̂i to be the whistle blower. In order to incentivize t̂i, the mechanism

must offer her a deviation that generates an outcome to the right of the indifference curve

passing through f(θ
′

) in the payoff state θ – this indifference curve is given by the dashed-line

labelled as ui = ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

in Figure 2. But the region to the right of the dashed-

line includes the set of all lotteries that are either better than f(θ
′

) = g(σ(t
′

)) for type t
′

i –

1This is true only for SCFs. For multi-valued social choice correspondences, implementation in rational-
izable strategies is strictly weaker than Nash implementation, as shown in Kunimoto and Serrano (2019).
Also see Jain (2021).
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these are lotteries to the right of the indifference curve labelled as ui = ui
(

f(θ
′

i, θ
′

−i), (θ
′

i, θ
′

−i)
)

in Figure 2 – or better than f(θ
′′

i , θ
′

−i) = g(σi(t
′′

i ), σ−i(t
′

−i)) for type t
′′

i – these are lotteries to

the right of the indifference curve labelled as ui = ui
(

f(θ
′′

i , θ
′

−i), (θ
′′

i , θ
′

−i)
)

in Figure 2. Thus,

any deviation by t̂i that undermines the joint misreport will also be improving for either

type t
′

i or t
′′

i of player i when they believe that the opponents play σ−i(t
′

−i), contradicting

the fact that σ is an interim equilibrium.

ui = ui
(

f(θ
′

i, θ
′

−i), (θ
′

i, θ
′

−i)
)

ui = ui
(

f(θ
′′

i , θ
′

−i), (θ
′′

i , θ
′

−i)
)

ui = ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

ui = ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

f(θi, θ
′

−i)

f(θ
′

i, θ
′

−i) = f(θ
′′

i , θ
′

−i)

b

b

b
ℓ
′

10

1

increasing utility

probability of a

p
ro
b
ab

il
it
y
of

b

Figure 2: The case of non-responsive SCFs.

By playing their equilibrium messages against σ−i(t
′

−i), types ti, t
′

i, and t
′′

i obtain f(θi, θ
′

−i),

f(θ
′

i, θ
′

−i), and f(θ
′′

i , θ
′

−i), respectively. To sustain the equilibrium, any unilateral deviation

against σ−i(t
′

−i) can only generate lotteries that lie in the intersection of the lower contour

sets of these types at their respective equilibrium outcomes, which is given by the light-gray

shaded region in Figure 2. But this region does not intersect the region of lotteries that

incentivize t̂i to blow the whistle on the joint misreport.

That unilateral deviations by a player from an interim equilibrium must generate out-

comes that lie in the intersection of the lower contour sets of all types of that player at their

respective equilibrium outcomes is due to rational expectations: In equilibrium, all types
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of the player have the same belief about the strategies of her opponents. Rationalizability,

in contrast, is a set-valued concept that does not assume rational expectations. Different

types of a player can hold different beliefs about the strategies of the opponents in order to

rationalize their own behavior. For instance, it is possible that three message profiles, say,

m−i, m
′

−i, and m
′′

−i are rationalizable at type profile t
′

−i, and type ti has a rationalizable

message mi that is a best response to the belief that the opponents with type profile t
′

−i play

m−i; type t
′

i has a rationalizable message m
′

i that is a best response to the belief that the

opponents with type profile t
′

−i play m
′

−i; and finally, type t
′′

i has a rationalizable message

m
′′

i that is a best response to the belief that the opponents with type profile t
′

−i play m
′′

−i.

If the mechanism RoRat-implements the SCF f , then g(mi, m−i) = f(θi, θ
′

−i), g(m
′

i, m
′

−i) =

f(θ
′

i, θ
′

−i), and g(m
′′

i , m
′′

−i) = f(θ
′′

i , θ
′

−i). Now it becomes possible to undermine joint mis-

reports of the kind discussed earlier without compromising the incentives of the types ti,

t
′

i, and t
′′

i of player i to play their respective rationalizable messages. To see this, suppose

types t̂ of the players were to jointly misreport their messages as (m
′

i, m
′

−i). Then, that will

implement the outcome f(θ
′

), which is not desired under the type profile t̂. The mechanism

can incentivize type t̂i to blow the whistle on this joint misreport by offering a deviation that

generates the lottery ℓ
′

when the opponents play m
′

−i. Since the lottery ℓ
′

is worse than f(θ
′

)

for type t
′

i, the message m
′

i remains rationalizable for her against m
′

−i. At the same time,

offering this deviation against m
′

−i does not change the incentives of types ti and t
′′

i to play

their respective rationalizable messages, mi and m
′′

i . It thus follows that by relaxing rational

expectations, RoRat-implementation might succeed where RoEq-implementation fails.

We should emphasize that the argument for the failure of RoEq-implementation made

above hinges critically on the assumption that the SCF is non-responsive. The same argu-

ment cannot be extended to the case when the SCF is responsive to θ
′

i and θ
′′

i such that

f(θ
′

i, θ
′

−i) 6= f(θ
′′

i , θ
′

−i). See Figure 3, which is the same as Figure 2 except for the change

in the lottery f(θ
′′

i , θ
′

−i). In that case, if there were a mechanism that RoEq-implemented

the SCF f and σ were an equilibrium of the mechanism on the type space T , then type

t
′′

i must strictly prefer f(θ
′′

i , θ
′

−i) to both f(θi, θ
′

−i) and f(θ
′

i, θ
′

−i). This is because type t
′′

i

can generate the latter two outcomes by unilaterally deviating to either σi(ti) or σi(t
′

i) when

the opponents are playing σ−i(t
′

−i). As a result, the intersection of the lower contour sets

of the three types ti, t
′

i, and t
′′

i at their respective equilibrium outcomes will overlap with

the region of lotteries that incentivize t̂i to blow the whistle on the joint misreport σ(t
′

) by

types t̂ (this overlap is given by the dark-gray shaded region in Figure 3). More generally,

while the necessary condition for RoEq-implementation can be strictly stronger than the one

for RoRat-implementation when it comes to non-responsive SCFs (Example 6.1), the two

necessary conditions coincide for responsive SCFs (Lemma 4.6).
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ui = ui
(

f(θ
′

i, θ
′

−i), (θ
′
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−i)
)
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′′

i , θ
′
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)
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(
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(
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′
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−i)

b

b

b
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Figure 3: The case of responsive SCFs.

There are several economically relevant environments where the SCF is non-responsive.

For example, in the context of voting, if there are two distinct payoff types of a player (viz.,

“extreme left” or “extreme right”) such that the player is in the minority regardless of the

payoff types of the opponents, then the Condorcet winner will not be responsive to those

two payoff types of the player. As another example, suppose that the sum of the players’

payoff types is either strictly greater or strictly less than a threshold in all payoff states and

a public good is provided if and only if the sum of the players’ payoff types is greater than

the threshold. Then the decision to provide the public good will not be responsive to two

sufficiently close payoff types of a player. As a final example, suppose the SCF is Rawlsian,

i.e., it chooses the alternative that maximizes the utility of the worst-off individual in each

payoff state. If a player has a payoff type such that she is never the worst-off individual

regardless of the payoff types of the opponents, then the SCF will not be responsive to an

even “higher” payoff type of that player (i.e., a payoff type that leads to a higher utility

for each alternative). Indeed, even the utilitarian SCF that chooses the alternative that

maximizes the sum of individuals’ utilities can be non-responsive (see Example 6.1). Thus,
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there is a rich set of economically relevant environments in which it might be feasible to

RoRat-implement an SCF that is not RoEq-implementable.

The rest of the paper is organized as follows. We present the preliminary definitions

in Section 2. In Section 3, we show that RoRat-implementation is equivalent to wRat-

implementation. In Sections 4 and 5, respectively, we show that weak RM is necessary

and almost sufficient for RoRat-implementation. We compare RoRat-implementation and

RoEq-Implementation in Section 6 before concluding in Section 7. The Appendix contains

the proofs omitted from the main body of the paper.

2 Preliminaries

There is a finite set of players I = {1, . . . , n}. A player’s payoff type is θi ∈ Θi, where we

assume that Θi is finite. A payoff state is θ ∈ Θ = ×i∈NΘi. Denote Θ−i ≡ Θ1×· · ·×Θi−1×

Θi+1×· · ·×Θn.
2 There is a countable set of alternatives A with at least two elements. We let

∆(A) to be the set of lotteries over A.3 We denote an arbitrary lottery by ℓ, and let a be the

lottery that puts probability 1 on alternative a. For any lottery ℓ, let ℓ[a] be the probability

assigned by ℓ to a ∈ A. Let Z be any countable set of indices. For any countable set of

lotteries {ℓz}z∈Z and corresponding weights {αz}z∈Z such that αz ≥ 0, ∀z, and
∑

z∈Z αz = 1,

we let
∑

z∈Z αzℓz be the lottery that is obtained as a reduced form of the compound lottery

in which for all z ∈ Z, lottery ℓz is selected with probability αz.

We endow A with the discrete topology. Thus, A is separable and completely metrizable

by the discrete metric, and hence it is a Polish space. As a result, ∆(A) is also Polish under

the weak∗ topology (Aliprantis and Border, 2006, Theorem 15.15). Therefore, ∆(A) contains

a countable dense subset, which we denote by ∆∗(A).

Preferences of player i over the set of lotteries are represented by the von Neumann-

Morgenstern expected utility function ui : ∆(A)×Θ → ℜ. Thus, for any payoff state θ and

lottery ℓ, ui(ℓ, θ) =
∑

a∈A ℓ[a]ui(a, θ). We assume that utilities are bounded to ensure that

expected utility is well defined over the space of lotteries with countable support, i.e., for all

i ∈ I and θ ∈ Θ, there exists ζ > 0 such that |ui(ℓ, θ)| ≤ ζ for all ℓ ∈ ∆(A).4

2Similar notation will be used for products of other sets.
3For any set X , we will use ∆(X) to denote the set of probability measures over X .
4See Blackwell and Girshick (1954) for an axiomatization of expected utility over all discrete probability

measures on a set, which results in bounded utilities.
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2.1 Type Space

A type space is a collection T = (Ti, θ̂i, π̂i)i∈I such that for each i ∈ I, Ti is countable,

θ̂i : Ti → Θi and π̂i : Ti → ∆(T−i). A player’s type ti ∈ Ti defines her payoff type θ̂i(ti) ∈ Θi

and her belief type π̂i(ti) ∈ ∆(T−i). For any t−i ∈ T−i, we let π̂i(ti)[t−i] denote the probability

that player i of type ti assigns to other players having types t−i. We assume that θ̂i : Ti → Θi

is surjective for all i ∈ I, i.e., no payoff type is redundant.

For each i ∈ I, let Z1
i = ∆(Θ−i) be the set of all possible beliefs that player i can have

about the payoff types of the other agents.

Given the type space T , for each player i and type ti ∈ Ti, we let z1i (ti) ∈ Z1
i be the

first-order belief of ti, i.e., z
1
i (ti)[θ−i] =

∑

t−i∈T−i:θ̂−i(t−i)=θ−i
π̂i(ti)[t−i] for all θ−i ∈ Θ−i.

2.2 Social Choice Function and Mechanism

The planner’s objective is specified by a social choice function (henceforth, SCF) as a function

f : Θ → ∆(A).

We say that the SCF f is responsive to θi and θ
′

i, denoted by θ
′

i 6∼
f
i θi, if f(θi, θ−i) 6=

f(θ
′

i, θ−i) for some θ−i ∈ Θ−i. Otherwise, f is non-responsive to θi and θ
′

i, denoted by

θ
′

i ∼
f
i θi.

The SCF f is responsive if for all i ∈ I and θi, θ
′

i ∈ Θi: θi 6= θ
′

i ⇒ θi 6∼
f
i θ

′

i. Otherwise, f

is non-responsive.

A mechanism Γ = ((Mi)i∈I , g), where Mi is a countable nonempty set of messages for

player i, M = ×i∈IMi, and g : M → ∆(A) is the outcome function. The mechanism

Γ = ((Mi)i∈I , g) is finite if Mi is finite for all i ∈ I.

2.3 Rationalizable Strategies

Fix a type space T and mechanism Γ = ((Mi)i∈I , g). A message correspondence profile

S = (S1, . . . , Sn), where each Si : Ti → 2Mi.

Let S be the collection of all such message correspondence profiles. The collection S is a

complete lattice with the natural ordering of set inclusion: S ≤ S
′

if Si(ti) ⊆ S
′

i(ti) for all

i ∈ I and ti ∈ Ti. The largest element is S̄ = (S̄1, . . . , S̄n), where S̄i(ti) = Mi for each i ∈ I

and ti ∈ Ti. The smallest element is S = (S1, . . . , Sn), where Si(ti) = ∅ for each i ∈ I and

ti ∈ Ti.
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We define the best response operator b : S → S as follows:

bi(S)[ti] ≡



























mi ∈Mi :

∃λi ∈ ∆(T−i ×M−i) such that

(i) mi ∈ arg max
m

′

i∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui(g(m
′

i, m−i), θ̂(ti, t−i))

(ii) margT−i
λi = π̂i(ti)

(iii) λi(t−i, m−i) > 0 ⇒ m−i ∈ S−i(t−i)



























,

where S−i(t−i) = ×j 6=iSj(tj) for each t−i ∈ T−i.

Observe that b is increasing by definition: i.e., S ≤ S
′

⇒ b(S) ≤ b(S
′

). Since b is

increasing and S is a complete lattice, by Tarski’s fixed point theorem, there is a largest

fixed point of b, which we label B∞. Thus, (i) b(B∞) = B∞ and (ii) b(S) ≥ S ⇒ S ≤ B∞.

B∞ is the (interim correlated) rationalizable message correspondence profile (Dekel et

al., 2007). For each type of each player, it characterizes the messages that are consistent

with common certainty of rationality.

2.4 S∞ Correspondence

As we will see, insisting on implementation that is robust to the underlying type space will

force the solution concept to depend only on the payoff types of the individuals. Hence, we

need to define strategies that are “rationalizable” for payoff types.

Fix a mechanism Γ = ((Mi)i∈I , g). A message correspondence profile with payoff-type

domain S = (S1, . . . ,Sn), where each Si : Θi → 2Mi.

Let SΘ be the collection of such message correspondence profiles with payoff-type domain.

The collection SΘ is a complete lattice with the natural ordering of set inclusion: S ≤ S
′

if Si(θi) ⊆ S
′

i(θi) for all i ∈ I and θi ∈ Θi. The largest element is S̄ = (S̄1, . . . , S̄n), where

S̄i(θi) = Mi for each i ∈ I and θi ∈ Θi. The smallest element is S = (S1, . . . ,Sn), where

Si(θi) = ∅ for each i ∈ I and θi ∈ Θi.

We define the best response operator for payoff types bΘ : SΘ → SΘ as follows:

bΘi (S)[θi] ≡



















mi ∈Mi :

∃ψi ∈ (Θ−i ×M−i) such that

(i) mi ∈ argmax
m

′

i

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′

i, m−i), (θi, θ−i))

(ii) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S−i(θ−i)



















,

where S−i(θ−i) = ×j 6=iSj(θj) for each θ−i ∈ Θ−i.

As the operator bΘ is increasing and SΘ is a complete lattice, by Tarski’s fixed point

theorem, there is a largest fixed point of bΘ, which we denote by S∞. Thus, (i) bΘ(S∞) = S∞
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and (ii) bΘ(S) ≥ S ⇒ S ≤ S∞.

2.5 Notions of Implementation

In this section, we present four notions of implementation. The first one is robust im-

plementation in rationalizable strategies (RoRat-implementation), which is the focus of

this paper. BM (2011) define the next two: robust implementation in interim equilibria

(RoEq-implementation) and rationalizable implementation (Rat-implementation). Finally,

BM (2010) define weak rationalizable implementation (wRat-implementation).

2.5.1 RoRat-Implementation

To define RoRat-implementation, we start by defining what we mean by implementation in

rationalizable strategies on a specific type space.

Definition 2.1. A mechanism Γ = ((Mi)i∈I , g) implements the SCF f in rationalizable

strategies on the type space T if, for all t ∈ T , we have

(nonemptiness) B∞(t) 6= ∅ and (uniqueness) g(m) = f(θ̂(t)), ∀m ∈ B∞(t).

We now define RoRat-implementation as implementation in rationalizable strategies over

“all type spaces”.

Definition 2.2. A mechanism Γ robustly implements the SCF f in rationalizable strategies

(or, RoRat-implements the SCF f) if, for all type spaces T , the mechanism implements

f in rationalizable strategies on T . The SCF f is robustly implementable in rationalizable

strategies (or, RoRat-implementable) if there exists a mechanism that RoRat-implements f .

2.5.2 RoEq-Implementation

To define RoEq-implementation, consider a type space T and a mechanism Γ = ((Mi)i∈I , g).

The resulting incomplete information game is denoted by (T ,Γ). A strategy for individual i

in this game is a mapping σi : Ti → ∆(Mi). A strategy profile σ = (σ1, . . . , σn) is an interim

equilibrium of the game (T ,Γ) if, for all i ∈ I, ti ∈ Ti, and mi ∈ Mi with σi(ti)[mi] > 0, we

have

∑

t−i∈T−i

π̂i(ti)[t−i]
∑

m−i∈M−i

σ−i(t−i)[m−i]ui
(

g(mi, m−i), θ̂(ti, t−i)
)

≥
∑

t−i∈T−i

π̂i(ti)[t−i]
∑

m−i∈M−i

σ−i(t−i)[m−i]ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

, ∀m
′

i ∈Mi.

12



We then have the following notion of interim implementation:

Definition 2.3. A mechanism Γ = ((Mi)i∈I , g) interim implements the SCF f on the type

space T if (nonemptiness) the game (T ,Γ) has an interim equilibrium and (uniqueness) for

every interim equilibrium σ of the game (T ,Γ), if σ(t)[m] > 0, then g(m) = f(θ̂(t)).

RoEq-implementation is defined as interim implementation over “all type spaces”.

Definition 2.4. A mechanism Γ robustly implements the SCF f in interim equilibria (or

RoEq-implements the SCF f) if, for all type spaces T , the mechanism Γ interim implements

f on T . The SCF f is robustly implementable in interim equilibria (or RoEq-implementable)

if there exists a mechanism that RoEq-implements f .

2.5.3 Rat-Implementation

BM (2011) define Rat-implementation as a “type-free” implementation concept by imposing

the uniqueness and nonemptiness requirements directly on the S∞ correspondence.

Definition 2.5. Amechanism Γ = ((Mi)i∈I , g) rationalizably implements (or Rat-implements)

the SCF f if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptiness) For each i ∈ I and z1i ∈ Z1
i , there exists a belief ψi ∈ ∆(Θ−i ×M−i)

such that:

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅ for all θi ∈ Θi.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i .

The SCF f is Rat-implementable if there exists a mechanism that Rat-implements f .

Part (1) of the definition, i.e., the uniqueness requirement, states that every message

profile in S∞ must lead to a socially desirable outcome. Part (2), i.e., the nonemptiness

requirement, imposes a strong existence condition: For every belief that agent i may have

over the payoff types of the other agents, there must exist a belief over their messages in S∞
−i

such that agent i has a best response whatever be his payoff type.

BM (2011, Theorem 3) prove that if a mechanism RoEq-implements an SCF, then the

same mechanism also Rat-implements the SCF. The converse is true whenever the mechanism

that Rat-implements the SCF has nonempty interim equilibria in all type spaces. That will
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be the case if the message correspondence S∞ satisfies the ex post best response property.

The property, as defined in BM (2011), requires that for all i ∈ I and θi ∈ Θi, there exist a

single message m∗
i ∈ S∞

i (θi) such that

m∗
i ∈ arg max

mi∈Mi

ui
(

g(mi, m−i), (θi, θ−i)
)

,

for all θ−i ∈ Θ−i and m−i ∈ S∞
−i(θ−i). With the ex post best response property, the message

profile m∗ is an ex-post equilibrium, which in turn guarantees the nonemptiness of interim

equilibria in all type spaces.

2.5.4 wRat-Implementation

BM (2010) define weak rationalizable implementation (wRat-implementation) by weaken-

ing the nonemptiness requirement while maintaining the uniqueness requirement in Rat-

implementation. Specifically, they weaken the nonemptiness requirement (Part (2) in Defi-

nition 2.5) by allowing the belief ψi to depend on the payoff type of individual i.

Definition 2.6. A mechanism Γ = ((Mi)i∈I , g) weakly rationalizably implements (or wRat-

implements) the SCF f if

1. (uniqueness) m ∈ S∞(θ) ⇒ g(m) = f(θ); and

2. (nonemptiness) For each i ∈ I, θi ∈ Θi and z1i ∈ Z1
i , there exists a belief ψi ∈

∆(Θ−i ×M−i) such that:

(a) arg max
m

′

i
∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)

6= ∅.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).

(c) margΘ−i
ψi = z1i .

The SCF f is wRat-implementable if there exists a mechanism that wRat-implements f .

3 Equivalence between RoRat-Implementation and wRat-

Implementation

We now establish that RoRat-implementation is equivalent to wRat-implementation because

the former imposes the same conditions on S∞ as the latter.

Theorem 3.1. The SCF f is RoRat-implementable by the mechanism Γ if and only if f is

wRat-implementable by the same mechanism Γ.
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Proof. We first prove the following lemma:

Lemma 3.2. Consider any mechanism Γ. The message profile m ∈ S∞(θ) if and only if

there exists a type space T such that m ∈
⋃

t∈T :θ̂(t)=θ B
∞(t).

Proof. (⇒) BM (2011, Proposition 1) show that if m ∈ S∞(θ), then there exist a type

space T , a pure-strategy interim equilibrium σ, and a type profile t such that σ(t) = m and

θ̂(t) = θ. Therefore, m ∈ B∞(t).

(⇐) Consider any type space T . Define the message correspondence profile with payoff-

type domain Ŝ = (Ŝ1, . . . , Ŝn) such that for all i ∈ I,

Ŝi(θ
′

i) =
⋃

ti∈Ti:θ̂i(ti)=θ
′

i

B∞
i (ti), ∀θ

′

i ∈ Θi.

If m
′

i ∈ Ŝi(θ
′

i), then there exists t
′

i ∈ Ti such that θ̂i(t
′

i) = θ
′

i and m
′

i ∈ B∞
i (t

′

i). Thus, there

exists a belief λi ∈ ∆(T−i ×M−i) such that

m
′

i ∈ arg max
m

′′

i ∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui(g(m
′′

i , m−i), θ̂(t
′

i, t−i)),

margT−i
λi = π̂i(t

′

i) and λi(t−i, m−i) > 0 ⇒ m−i ∈ B∞
−i(t−i).

Define ψi ∈ ∆(Θ−i ×M−i) as follows:

ψi(θ−i, m−i) =
∑

t−i∈T−i:θ̂−i(t−i)=θ−i

λi(t−i, m−i), ∀θ−i, m−i.

Then ψi(θ−i, m−i) > 0 implies thatm−i ∈
⋃

t−i∈T−i:θ̂−i(t−i)=θ−i
B∞

−i(t−i) = Ŝ−i(θ−i). Moreover,

by construction,

m
′

i ∈ arg max
m

′′

i ∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′′

i , m−i), (θ
′

i, θ−i)).

Thus, m
′

i ∈ bΘi (Ŝ)[θ
′

i]. Hence, b
Θ(Ŝ) ≥ Ŝ. Therefore, Ŝ ≤ S∞.

Now suppose there exist m ∈ M and θ ∈ Θ such that m ∈
⋃

t∈T :θ̂(t)=θ B
∞(t). Then

m ∈ Ŝ(θ), and hence m ∈ S∞(θ). This completes the proof of the lemma.

We prove the necessity part of Theorem 3.1 first.

Suppose the SCF f is RoRat-implementable by the mechanism Γ. Then the following is

true for all type spaces T : For all t ∈ T , we have

B∞(t) 6= ∅ and g(m) = f(θ̂(t)), ∀m ∈ B∞(t).
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Pick any θ ∈ Θ. If m ∈ S∞(θ), then it follows from Lemma 3.2 that there exists a type

space T
′

such that m ∈
⋃

t∈T ′ :θ̂(t)=θ B
∞(t). Hence, g(m) = f(θ).

Next, pick any i, θi and z
1
i . For each j 6= i, pick any z1j ∈ Z1

j . Define the type space T

such that (i) Tj = {t
θ̃j
j : θ̃j ∈ Θj} for all j ∈ I, and (ii) θ̂j(t

θ̃j
j ) = θ̃j and π̂j(t

θ̃j
j )[t

θ̃−j

−j ] = z1j (θ̃−j)

for all t
θ̃−j

−j ∈ T−j and t
θ̃j
j ∈ Tj .

By our hypothesis of RoRat-implementation, B∞
i (tθii ) 6= ∅. Therefore, there exists λi ∈

∆(T−i ×M−i) such that

1. argmaxm′

i

∑

t
θ
−i

−i ,m−i
λi(t

θ−i

−i , m−i)ui
(

g(m
′

i, m−i), θ̂(t
θi
i , t

θ−i

−i )
)

6= ∅.

2. margT−i
λi = π̂i(t

θi
i )

3. λi(t
θ−i

−i , m−i) > 0 ⇒ m−i ∈ B∞
−i(t

θ−i

−i ).

Define ψi ∈ ∆(Θ−i ×M−i) as follows: for any θ−i ∈ Θ−i and m−i ∈M−i,

ψi(θ−i, m−i) = λi(t
θ−i

−i , m−i).

Then ψi(θ−i, m−i) > 0 implies that m−i ∈ B∞
−i(t

θ−i

−i ). It follows from Lemma 3.2 that

m−i ∈ S∞
−i(θ−i). Lastly, by construction, margΘ−i

ψi = z1i and

arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui(g(m
′

i, m−i), (θi, θ−i)) 6= ∅.

We prove the sufficiency part of Theorem 3.1 next.

Suppose that the SCF f is wRat-implementable by the mechanism Γ. Consider any

type space T . If m ∈ B∞(t), then it follows from Lemma 3.2 that m ∈ S∞(θ̂(t)). Hence,

g(m) = f(θ̂(t)).

We now show that B∞(t) 6= ∅ for all t ∈ T . Define the message correspondence profile

Ŝ = (Ŝ1, . . . , Ŝn) such that, for all i ∈ I and ti ∈ Ti,

Ŝi(ti) = S∞
i (θ̂i(ti)).

Pick any type ti ∈ Ti. By our hypothesis of wRat-implementability, there exists a belief

ψi ∈ ∆(Θ−i ×M−i) such that

(a) arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

6= ∅.

(b) ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i).
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(c) margΘ−i
ψi = z1i (ti).

By the definition of S∞
i (θ̂i(ti)), we have

∅ 6= arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

⊆ S∞
i (θ̂i(ti)).

Since Ŝi(ti) = S∞
i (θ̂i(ti)), we also have Ŝi(ti) 6= ∅.

We now show that Ŝi(ti) ≤ bi(Ŝ)[ti]. Consider any message m̃i ∈ Ŝi(ti). By our hypothesis

of wRat-implementability, we have that for any θ ∈ Θ, m
′

∈ S∞(θ) ⇒ g(m
′

) = f(θ). Since

m̃i ∈ S∞
i (θ̂i(ti)) and ψi(θ−i, m−i) > 0 implies m−i ∈ S∞

−i(θ−i), by wRat-implementability, we

have

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m̃i, m−i), (θ̂i(ti), θ−i)
)

=
∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

f(θ̂i(ti), θ−i), (θ̂i(ti), θ−i)
)

.

Thus, either every message in Ŝi(ti) is a best response to ψi or none of the messages in Ŝi(ti)

is a best response to ψi. But, as already argued,

Ŝi(ti) = S∞
i (θ̂i(ti)) ⊇ arg max

m
′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

6= ∅.

Thus, every message in Ŝi(ti) is a best response to ψi.

Now pick any mi ∈ Ŝi(ti). As argued above,

mi ∈ arg max
m

′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

.

Define the belief λi ∈ ∆(T−i ×M−i) such that for all (t−i, m−i) ∈ T−i ×M−i,

λi(t−i, m−i) =

{

π̂i(ti)[t−i]
(

ψi(θ̂−i(t−i),m−i)

z1i (ti)[θ̂−i(t−i)]

)

, if π̂i(ti)[t−i] > 0

0, otherwise.

Since
∑

m−i
ψi(θ̂−i(t−i), m−i) = z1i (ti)[θ̂−i(t−i)], we have margT−i

λi = π̂i(ti). Moreover,

λi(t−i, m−i) > 0 ⇒ ψi(θ̂−i(t−i), m−i) > 0 ⇒ m−i ∈ S∞
−i(θ̂−i(t−i)) = Ŝ−i(t−i).

Finally, for all m
′

i ∈Mi,

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)
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=
∑

θ−i,m−i





∑

t−i∈T−i:θ̂−i(t−i)=θ−i

π̂i(ti)[t−i]
ψi(θ−i, m−i)

z1i (ti)(θ−i)
ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)





=
∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m
′

i, m−i), (θ̂i(ti), θ−i)
)

,

where the last equality follows because
∑

t−i∈T−i:θ̂−i(t−i)=θ−i
π̂i(ti)[t−i] = z1i (ti)(θ−i). Hence,

we must have

mi ∈ arg max
m

′

i∈Mi

∑

t−i,m−i

λi(t−i, m−i)ui
(

g(m
′

i, m−i), θ̂(ti, t−i)
)

.

We thus conclude that mi ∈ bi(Ŝ)[ti].

As b(Ŝ) ≥ Ŝ, we have Ŝ ≤ B∞. Pick any t ∈ T . Then B∞(t) 6= ∅ because, as already

shown, Ŝ(t) 6= ∅. This completes the proof of the theorem.

4 Necessary Condition

We now apply the equivalence result presented in the previous section to the establish the

necessary condition for RoRat-implementation.

A deception is a profile of correspondences β = (β1, . . . , βn) such that βi : Θi → 2Θi \ ∅

and θi ∈ βi(θi) for all θi ∈ Θi and i ∈ I. A deception β is unacceptable if there exist θ ∈ Θ

and θ
′

∈ β(θ) for which f(θ) 6= f(θ
′

); otherwise, β is acceptable.

For each i ∈ I and θi ∈ Θi, define

Yi[θi] ≡











y : Θ−i → ∆(A) :

∀θ−i ∈ Θ−i,

either y(θ−i) = f(θi, θ−i)

or ui
(

f(θi, θ−i), (θi, θ−i)
)

> ui
(

y(θ−i), (θi, θ−i)
)











.

Thus, Yi[θi] is the collection of all mappings y : Θ−i → ∆(A) such that for every θ−i ∈ Θ−i,

the lottery y(θ−i) is either equal to f(θi, θ−i) or strictly worse than f(θi, θ−i) for individual

i in state (θi, θ−i).

Definition 4.1. We say that an unacceptable deception β is weakly refutable if there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all θ̃i ∈ Θi and ψi ∈

∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.
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Definition 4.2. The SCF f satisfies weak robust monotonicity (weak RM) if every unac-

ceptable deception β is weakly refutable.

Here is the main result of this section (the proof is in the Appendix):

Theorem 4.3. If the SCF f is RoRat-implementable, then f satisfies weak RM.

BM (2011) identify strict robust monotonicity as a necessary condition for Rat-implementation,

and hence, for RoEq-implementation (because the latter implies the former). We present an

equivalent definition below.

Definition 4.4. We say that an unacceptable deception β is strictly refutable if there exist

i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼f
i θi such that for all ψi ∈ ∆(Θ−i × Θ−i)

satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists y ∈
⋂

θ̃i∈Θi
Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Definition 4.5. The SCF f satisfies strict robust monotonicity (strict RM) if every unac-

ceptable deception β is strictly refutable.

Strict RM implies weak RM since the former imposes a stronger refutability requirement

on every unacceptable deception, i.e., if an unacceptable deception β is strictly refutable,

then it is weakly refutable. This is because strict refutability requires us to find a y in
⋂

θ̃i∈Θi
Yi[θ̃i] whereas for weak refutability, we are allowed to find a y in Yi[θ̃i] that depends on

θ̃i. See Section 1.1, where we explain how this difference in the two refutability requirements

stems from the difference in the underlying solution concepts, interim equilibrium for RoEq-

implementation whereas rationalizability for RoRat-implementation.

BM (2010, Lemmas 4, 5, and 6 and Proposition 4) show that strict RM is necessary

for wRat-implementation of responsive SCFs. As wRat-implementation is equivalent to

RoRat-implementation (Theorem 3.1), we conclude that, for responsive SCFs, strict RM is

a necessary condition for RoRat-implementation. This conclusion is consistent with Theorem

4.3 because, for responsive SCFs, weak RM is equivalent to strict RM, as noted in the next

lemma (the proof is in the Appendix).

Lemma 4.6. Suppose the SCF f is responsive. Then f satisfies strict RM if and only if f

satisfies weak RM.

However, there are non-responsive SCFs that satisfy weak RM but not strict RM, as

shown in Example 6.1.
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5 Sufficiency for RoRat-Implementation

In this section, we show that weak RM is sufficient for RoRat-implementation under a mild

additional assumption: conditional no total indifference (as discussed below, our definition

is weaker than the one appearing in BM, 2011).

For each i ∈ I and θi ∈ Θi, define

Y w
i [θi] ≡

{

y : Θ−i → ∆(A) : ∀θ−i, ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)}

.

Thus, Y w
i [θi] is the collection of all mappings y : Θ−i → ∆(A) such that for every θ−i ∈ Θ−i,

the lottery y(θ−i) is weakly worse than f(θi, θ−i) for individual i in state (θi, θ−i). Notice

that Yi[θi] (recall the definition from Section 4) is a subset of Y w
i [θi].

Definition 5.1. The SCF f satisfies conditional no total indifference (conditional NTI) if,

for all i ∈ I, θi ∈ Θi, and ψi ∈ ∆(Θ−i ×Θ−i), there exist y, y
′

∈ Y w
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

.

Remark: BM (2011) also define a “conditional no total indifference” condition which is

stronger than our definition. They require the existence of the said y and y
′

in the set
⋂

θ̃i∈Θi
Y w
i [θ̃i] whereas we only require the existence of y and y

′

in the set Y w
i [θi].

In the sufficiency result, we focus on a countable subset of Y w
i [θi], as defined next. Recall

that ∆∗(A) is a countable dense subset of ∆(A). For each i and θi, define

Y ∗
i [θi] ≡











y : Θ−i → ∆(A) :

∀θ−i,

(i) y(θ−i) ∈ ∆∗(A)
⋃

θ
′

i∈Θi
{f(θ

′

i, θ−i)} and

(ii) ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)











Note that Y ∗
i [θi] ⊆ Y w

i [θi]. Since Θ−i is finite and ∆∗(A) is countable, Y ∗
i [θi] is also countable.

Thus, we denote Y ∗
i [θi] by {y0i [θi], y

1
i [θi], . . . , y

k
i [θi], . . .}. For each i ∈ I and θi ∈ Θi, we then

define yθii : Θ−i → ∆A such that

yθii (θ−i) = (1− δ)
∞
∑

k=0

δkyki [θi](θ−i), ∀θ−i,

where δ ∈ (0, 1).
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Similarly, since A is countable, we denote it by {a0, a1, . . . , ak, . . .}. Then, we define

ᾱ = (1− η)

∞
∑

k=0

ηkak,

where η ∈ (0, 1).

The following lemma notes two important consequences of conditional NTI (the proof is

in the Appendix).

Lemma 5.2. If the SCF f satisfies conditional NTI, then the following statements are true:

(a) For all i ∈ I, θi ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i), there exists y ∈ Y ∗
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yθii (θ
′

−i), (θi, θ−i)
)

.

(b) For all i ∈ I, θi ∈ Θi and z
1
i ∈ ∆(Θ−i), there exists a ∈ A such that

∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

>
∑

θ−i

z1i (θ−i)ui
(

ᾱ, (θi, θ−i)
)

.

We need one more result before presenting our main sufficiency result for this section.

Definition 5.3. The SCF f satisfies ex post incentive compatibility (EPIC) if, for all i ∈ I,

θi, θ
′

i ∈ Θi, and θ−i ∈ Θ−i,

ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

The SCF f satisfies semi-strict ex post incentive compatible (semi-strict EPIC) if the above

inequality becomes strict whenever θi 6∼
f
i θ

′

i.

We now show that weak RM implies semi-strict EPIC (the proof is in the Appendix):

Lemma 5.4. If the SCF f satisfies weak RM, then it satisfies semi-strict EPIC.5

5BM (2010, Lemma 6) show that if f is wRat-implementable, then it satisfies semi-strict EPIC. It fol-
lows from their result and our Theorem 3.1 that semi-strict EPIC is a necessary condition for RoRat-
implementation. The above lemma does not immediately follow from BM’s result because weak RM is a
necessary condition for wRat-implementation. Moreover, due to this lemma, we do not have to add semi-
strict EPIC as an additional condition in our sufficiency result. BM (2011, Lemma 1) show that “robust
monotonicity” implies semi-strict EPIC. Robust monotonicity is a slightly weaker version of strict RM – the
only difference is that we need to replace “y ∈

⋂

θ̃i
Yi[θ̃i]” with “y ∈

⋂

θ̃i
Y w
i
[θ̃i]” in the definition of strict

refutability. Strictly speaking, weak RM and robust monotonicity are not comparable.
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For the sufficiency result, we propose the following mechanism Γ = ((Mi)i∈I , g): For

each individual i, pick any one payoff type from Θi. We denote this payoff type as θ∗i .

Each individual i sends a message mi = (m1
i , m

2
i , m

3
i , m

4
i ), where m

1
i = (m1

i [j])j∈I such that

m1
i [j] ∈ Θj for all j ∈ I, m2

i ∈ N, m3
i = (m3

i [θi])θi∈Θi
such that m3

i [θi] ∈ Y ∗
i [θi] for all θi ∈ Θi,

and m4
i ∈ A. Note that each Mi is countable. The outcome function g : M → ∆(A) is

defined as follows: For each m ∈M ,

Rule 1: m2
i = 1 for all i ∈ I ⇒ g(m) = f(m1

1[1], m
1
2[2], . . . , m

1
n[n]).

Rule 2: If there exists i ∈ I such that m2
i > 1 but m2

j = 1 for all j ∈ I\{i}, then one of the

following sub-rules apply:

Rule 2-1: If there exists θi ∈ Θi such that m1
j [i] = θi for all j ∈ I\{i}, then

g(m) =

{

m3
i [θi]

(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

yθii
(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 2-2: If m1
j
′ [i] 6= m1

k[i] for some j
′

, k ∈ I\{i}, then

g(m) =

{

m3
i [θ

∗
i ]
(

(m1
j [j])j 6=i

)

with probability m2
i /(m

2
i + 1),

y
θ∗i
i

(

(m1
j [j])j 6=i

)

with probability 1/(m2
i + 1).

Rule 3: In all other cases:

g(m) =



































m4
1 with probability m2

1/(1 +m2
1)n,

m4
2 with probability m2

2/(1 +m2
2)n,

...
...

m4
n with probability m2

n/(1 +m2
n)n,

ᾱ with remaining probability.

Here is our sufficiency result for RoRat-implementation (the proof is in the Appendix):

Theorem 5.5. If the SCF f satisfies weak RM and conditional NTI, then it is RoRat-

implementable.

Remark 5.6. Although the mechanism constructed to prove the above sufficiency result

does share aspects with standard canonical constructions, it is worth pointing out one of

its distinctive features (compare, for instance, to the mechanism in BM, 2011): Each player

reports a payoff state, i.e., not just her own but also everyone else’s payoff type. To see the
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importance of this, consider two types ti and t
′

i of agent i with distinct payoff types, say θi and

θ
′

i, respectively. Moreover, suppose that both ti and t
′

i agree on the payoff types of everyone

else, say θ−i. Then, from the perspective of ti, the true payoff state is (θi, θ−i) whereas from

the perspective of t
′

i, the true payoff state is (θ
′

i, θ−i). Since their truths are different, these

two types cannot both be correct if they believe that everyone else is reporting the payoff

state truthfully. While this is problematic for truthful behavior to form an equilibrium, it

does not cause any issues for truthful behavior to be rationalizable because rationalizability

does not require the two types to hold common beliefs about the other agents’ behavior.

This is precisely the kind of flexibility that is needed in order to RoRat-implement an SCF

that cannot be RoEq-implemented, as illustrated in Section 1.1.

6 RoRat-Implementation versus RoEq-Implementation

Recall the discussion in the Introduction where we pointed out that RoRat-implementation

is weaker than RoEq-implementation and asked the question whether the former could be

strictly weaker than the latter. In Section 6.1, we answer that question in the affirmative by

providing an example of an SCF that is RoRat-implementable but not RoEq-implementable.

As discussed earlier, the uniqueness requirement in RoRat-implementation is the same

as that in RoEq-implementation. Thus, the explanation for the gap between the two imple-

mentation notions is that the nonemptiness requirement in RoEq-implementation is strictly

stronger than that in RoRat-implementation. Any mechanism, in particular the canonical

mechanism in the proof of Theorem 5.5, that RoRat-implements an SCF which is not RoEq-

implementable must fail the nonemptiness requirement for RoEq-implementation. That is,

there must exist some type space in which the set of interim equilibria of the mechanism is

empty. However, this does not preclude the possibility that the mechanism has nonempty

interim equilibria on several other type spaces. Indeed, in Section 6.2, we establish that

our canonical mechanism that RoRat-implements the desired SCF has nonempty interim

equilibria on type spaces that are typically found in the applied literature.

There are two notable cases when RoRat-implementation is equivalent to RoEq-implementation:

First, when we restrict the designer to finite mechanisms and second, when the environment

is one of private values. We discuss these cases in Section 6.3 and Section 6.4, respectively.

6.1 An Example

We now present an example with an SCF that is RoRat-implementable but not RoEq-

implementable. We do so by exploiting the gap between strict RM and weak RM for non-
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responsive SCFs. (Strict RM and weak RM are equivalent for responsive SCFs, as shown in

Lemma 4.6.) To elaborate, BM (2011) show that strict RM is a necessary condition for Rat-

implementation of any SCF. The non-responsive SCF in the example below fails to satisfy

strict RM. Thus, the SCF is not Rat-implementable, and hence not RoEq-implementable.

The SCF, however, satisfies weak RM and conditional NTI. Hence, the SCF is RoRat-

implementable.

Example 6.1. There are two players i ∈ {1, 2}. Player 1 has three payoff types: Θ1 =

{θ1, θ
′

1, θ
′′

1} and player 2 has two payoff types: Θ2 = {θ2, θ
′

2}. There are six pure alternatives:

A = {a, b, c, d, z, z
′

}. The following tables list the payoffs of the two players:

a θ2 θ
′

2

θ1 4, 4 4, 0

θ
′

1 0, 0 4, 1

θ
′′

1 1, 1 4, 0

b θ2 θ
′

2

θ1 0, 0 3, 3

θ
′

1 1, 1 2, 0

θ
′′

1 0, 0 2, 1

c θ2 θ
′

2

θ1 0, 0 3, 1

θ
′

1 3, 3 3, 0

θ
′′

1 3, 3 3, 0

d θ2 θ
′

2

θ1 3, 4 2, 0

θ
′

1 0, 0 3, 3

θ
′′

1 0, 0 3, 3

z θ2 θ
′

2

θ1 4, 1 2, 0

θ
′

1 2, 2 5, 0

θ
′′

1 2, 2 2, 0

z
′

θ2 θ
′

2

θ1 4, 0 4, 1

θ
′

1 2, 0 2, 2

θ
′′

1 2, 0 5, 0

The SCF f selects the alternative which maximizes the aggregate payoff in each payoff

state.

f θ2 θ
′

2

θ1 a b

θ
′

1 c d

θ
′′

1 c d

We first show that f fails strict RM.

Claim 6.2. The SCF f violates strict RM.

Proof. Consider the unacceptable deception β such that

β1(θ1) = {θ1, θ
′

1}, β1(θ
′

1) = {θ
′

1}, β1(θ
′′

1 ) = {θ
′′

1},

and

β2(θ2) = {θ2, θ
′

2}, β2(θ
′

2) = {θ
′

2}.

Given this deception, there are exactly two tuples (i, θi, θ
′

i) such that θ
′

i ∈ βi(θi) and θ
′

i 6∼
f
i θi:

(1, θ1, θ
′

1) and (2, θ2, θ
′

2).
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First, consider (2, θ2, θ
′

2). Fix the degenerate belief ψ2 ∈ ∆(Θ1×Θ1) such that ψ2(θ1, θ
′

1) =

1. Then, there does not exist any y ∈
⋂

θ̃2∈Θ2
Y2[θ̃2] such that

u2
(

y(θ
′

1), (θ1, θ2)
)

> u2
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

,

because f(θ
′

1, θ
′

2) = d is one of the best alternatives for player 2 in the payoff state (θ1, θ2).

Second, consider (1, θ1, θ
′

1). Fix the degenerate belief ψ1 such that ψ1(θ2, θ
′

2) = 1. If there

exists y ∈
⋂

θ̃1∈Θ1
Y1[θ̃1], then y(θ

′

2) must satisfy the following equations

u1
(

f(θ
′

1, θ
′

2), (θ
′

1, θ
′

2)
)

≥ u1
(

y(θ
′

2), (θ
′

1, θ
′

2)
)

u1
(

f(θ
′′

1 , θ
′

2), (θ
′′

1 , θ
′

2)
)

≥ u1
(

y(θ
′

2), (θ
′′

1 , θ
′

2)
)

.

These two inequalities imply that

2y(θ
′

2)[z] + y(θ
′

2)[a] ≤ y(θ
′

2)[z
′

] + y(θ
′

2)[b] and 2y(θ
′

2)[z
′

] + y(θ
′

2)[a] ≤ y(θ
′

2)[z] + y(θ
′

2)[b],

where y(θ
′

2)[x] is the probability of alternative x in the lottery y(θ
′

2). Summing these two

inequalities, we obtain y(θ
′

2)[z] + y(θ
′

2)[z
′

] + 2y(θ
′

2)[a] ≤ 2y(θ
′

2)[b]. In order to satisfy strict

RM, we must satisfy the following inequality:

u1
(

y(θ
′

2), (θ1, θ2)
)

> u1
(

f(θ
′

1, θ
′

2), (θ1, θ2)
)

.

The above inequality is translated into y(θ
′

2)[z] + y(θ
′

2)[z
′

] + y(θ
′

2)[a] > 3y(θ
′

2)[b] + 3y(θ
′

2)[c].

We then claim that this inequality is impossible to satisfy. Plugging y(θ
′

2)[z] + y(θ
′

2)[z
′

] +

2y(θ
′

2)[a] ≤ 2y(θ
′

2)[b] into y(θ
′

2)[z] + y(θ
′

2)[z
′

] + y(θ
′

2)[a] > 3y(θ
′

2)[b] + 3y(θ
′

2)[c], we obtain

−y(θ
′

2)[a] > y(θ
′

2)[b] + 3y(θ
′

2)[c].

However, this inequality is impossible because y(θ
′

2)[a], y(θ
′

2)[b], and y(θ
′

2)[c] all are nonneg-

ative. We therefore conclude that the SCF f does not satisfy strict RM.

Next we argue that f satisfies weak RM.

Claim 6.3. The SCF f satisfies weak RM.

Proof. First, we consider any unacceptable deception β such that either θ
′

1 ∈ β1(θ1) or

θ
′′

1 ∈ β1(θ1). Pick any belief ψ1 ∈ ∆(Θ2 ×Θ2). Then

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)
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= 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2),

where the first equality follows from the fact that f is non-responsive to θ
′

1 and θ
′′

1 .

In what follows, we consider each possible case of θ̃1 ∈ {θ1, θ
′

1, θ
′′

1}.

Case 1: θ̃1 = θ1.

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) =
2
3
z+ 1

3
z
′

. It is straightforward

to confirm that y ∈ Y1[θ1]. Moreover,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ
′

2, θ2) + 4ψ1(θ2, θ
′

2) +
8

3
ψ1(θ

′

2, θ
′

2)

> 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

.

Case 2: θ̃1 = θ
′

1.

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) = z
′

. It is straightforward to

confirm that y ∈ Y1[θ
′

1]. Moreover,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ
′

2, θ2) + 4ψ1(θ2, θ
′

2) + 4ψ1(θ
′

2, θ
′

2)

> 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

.

Case 3: θ̃1 = θ
′′

1 .

Define y : Θ2 → ∆(A) to be such that y(θ2) = a and y(θ
′

2) =
1
5
c+ 4

5
z. It is straightforward

to confirm that y ∈ Y1[θ
′′

1 ]. Moreover,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ
′

2, θ2) +
16

5
ψ1(θ2, θ

′

2) +
11

5
ψ1(θ

′

2, θ
′

2)

> 3ψ1(θ
′

2, θ2) + 3ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ
′

2)
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=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′

1, θ̃
′

2), (θ1, θ̃2)
)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ
′′

1 , θ̃
′

2), (θ1, θ̃2)
)

.

It follows that any unacceptable deception β satisfying θ
′

1 ∈ β1(θ1) is weakly refutable

using the tuple (1, θ1, θ
′

1) whereas any unacceptable deception β satisfying θ
′′

1 ∈ β1(θ1) is

weakly refutable using the tuple (1, θ1, θ
′′

1 ).

Second, we consider any unacceptable deception β such that θ
′

2 ∈ β2(θ2) and β1(θ1) =

{θ1}. Pick any belief ψ2 ∈ ∆(Θ1 × Θ1) such that ψ2(θ̃1, θ̃
′

1) > 0 ⇒ θ̃
′

1 ∈ β1(θ̃1). Then we

have ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0. Therefore,

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ
′

2), (θ̃1, θ2)
)

= ψ2(θ
′

1, θ1).

Define y : Θ1 → ∆(A) to be such that y(θ1) = y(θ
′

1) = y(θ
′′

1 ) = z. It is straightforward

to confirm that y ∈ Y2[θ2] ∩ Y2[θ
′

2]. Moreover, since ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0, we have

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

y(θ̃
′

1), (θ̃1, θ2)
)

= ψ2(θ1, θ1) + 2
(

ψ2(θ
′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 )
)

+ 2
(

ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 )
)

> ψ2(θ
′

1, θ1) =
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ
′

2), (θ̃1, θ2)
)

.

It follows that any unacceptable deception β such that θ
′

2 ∈ β2(θ2) and β1(θ1) = {θ1} is

weakly refutable using the tuple (2, θ2, θ
′

2).

Third, we consider any unacceptable deception β such that θ2 ∈ β2(θ
′

2) and β1(θ1) = {θ1}.

Pick any belief ψ2 ∈ ∆(Θ1 ×Θ1) such that ψ2(θ̃1, θ̃
′

1) > 0 ⇒ θ̃
′

1 ∈ β1(θ̃1). Then we have that

ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0. Therefore,

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ2), (θ̃1, θ
′

2)
)

= ψ2(θ
′

1, θ1).

Define y : Θ1 → ∆(A) to be such that y(θ1) = y(θ
′

1) = y(θ
′′

1 ) =
1
4
b + 3

4
z
′

. It is straight-

forward to confirm that y ∈ Y2[θ2] ∩ Y2[θ
′

2]. Moreover, since ψ2(θ1, θ
′

1) = ψ2(θ1, θ
′′

1 ) = 0, we
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have

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

y(θ̃
′

1), (θ̃1, θ
′

2)
)

=
3

2
ψ2(θ1, θ1) +

3

2

(

ψ2(θ
′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 )
)

+
1

4

(

ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 )
)

> ψ2(θ
′

1, θ1) =
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2
(

f(θ̃
′

1, θ2), (θ̃1, θ
′

2)
)

.

It follows that any unacceptable deception β such that θ2 ∈ β2(θ
′

2) and β1(θ1) = {θ1} is

weakly refutable using the tuple (2, θ
′

2, θ2).

Fourth, we consider any unacceptable deception such that β1(θ1) = {θ1}, β2(θ2) = {θ2},

and β2(θ
′

2) = {θ
′

2}. Such a deception involves either θ1 ∈ β1(θ
′

1) or θ1 ∈ β1(θ
′′

1 ). Then the fact

that f satisfies semi-strict EPIC implies that β is weakly refutable. We show this formally

for the case when θ1 ∈ β1(θ
′

1) as the argument for the case when θ1 ∈ β1(θ
′′

1 ) is similar. So

suppose θ1 ∈ β1(θ
′

1). Pick any belief ψ1 ∈ ∆(Θ2×Θ2) such that ψ1(θ̃2, θ̃
′

2) > 0 ⇒ θ̃
′

2 ∈ β2(θ̃2).

Then we have that ψ1(θ2, θ
′

2) = ψ1(θ
′

2, θ2) = 0. Therefore,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ1, θ̃
′

2), (θ
′

1, θ̃2)
)

= 2ψ1(θ
′

2, θ
′

2)

Define y : Θ2 → ∆(A) to be such that y(θ2) = f(θ
′

1, θ2) = c and y(θ
′

2) = f(θ
′

1, θ
′

2) = d. It

is straightforward to confirm that y ∈ Y1[θ1] ∩ Y1[θ
′

1] ∩ Y1[θ
′′

1 ]. Moreover, since ψ1(θ2, θ
′

2) =

ψ1(θ
′

2, θ2) = 0,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

= 3ψ1(θ2, θ2) + 3ψ1(θ
′

2, θ
′

2) >
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

f(θ1, θ̃
′

2), (θ
′

1, θ̃2)
)

.

It follows that the deception β is weakly refutable using the tuple (1, θ
′

1, θ1).

We thus conclude that every unacceptable deception is weakly refutable, and hence f

satisfies weak RM.

We now check that the SCF f satisfies conditional NTI.

Claim 6.4. The SCF f satisfies conditional NTI.

Proof. First, we consider player 1 of payoff type θ1. Let y : Θ2 → ∆(A) be such that

y(θ2) = a and y(θ
′

2) = z. Also, let y
′

: Θ2 → ∆(A) be such that y
′

(θ2) = b and y
′

(θ
′

2) = d. It
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is straightforward to confirm that y, y
′

∈ Y w
1 [θ1]. Now,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

= 4ψ1(θ2, θ2) + 4ψ1(θ2, θ
′

2) + 4ψ1(θ
′

2, θ2) + 2ψ1(θ
′

2, θ
′

2).

whereas

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ1, θ̃2)
)

= 3ψ1(θ2, θ
′

2) + 3ψ1(θ
′

2, θ2) + 2ψ1(θ
′

2, θ
′

2).

We therefore have that

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

=
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ1, θ̃2)
)

⇔ ψ1(θ
′

2, θ
′

2) = 1.

Thus, for all ψ1 ∈ ∆(Θ2 × Θ2) such that ψ1(θ
′

2, θ
′

2) < 1, we have found y, y
′

∈ Y w
1 [θ1]

that satisfy the requirement for conditional NTI. If ψ1 is such that ψ1(θ
′

2, θ
′

2) = 1, then

we define y : Θ2 → ∆(A) such that y(θ2) = y(θ
′

2) = b and y
′

: Θ2 → ∆(A) such that

y
′

(θ2) = y
′

(θ
′

2) = d. It is straightforward to confirm that y, y
′

∈ Y w
1 [θ1]. Since ψ1(θ

′

2, θ
′

2) = 1,

u1(y(θ
′

2), (θ1, θ
′

2)) = u1(b, (θ1, θ
′

2)) = 3 and u1(y
′

(θ
′

2), (θ1, θ
′

2)) = u1(d, (θ1, θ
′

2)) = 2, we obtain

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ1, θ̃2)
)

.

Thus, if ψ1 is such that ψ1(θ
′

2, θ
′

2) = 1, then too we satisfy the requirement for conditional

NTI.

Second, we consider player 1 of payoff type θ
′

1. Then we define y : Θ2 → ∆(A) such that

y(θ2) = y(θ
′

2) = c and y
′

: Θ2 → ∆(A) such that y
′

(θ2) = y
′

(θ
′

2) = b. It is straightforward to

confirm that y, y
′

∈ Y w
1 [θ

′

1]. Fix ψ1 ∈ ∆(Θ2 ×Θ2). Now,

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

= 3ψ1(θ2, θ2) + 3ψ1(θ2, θ
′

2) + 3ψ1(θ
′

2, θ2) + 3ψ1(θ
′

2, θ
′

2)

whereas

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′

1, θ̃2)
)

= ψ1(θ2, θ2) + ψ1(θ2, θ
′

2) + 2ψ1(θ
′

2, θ2) + 2ψ1(θ
′

2, θ
′

2).
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This implies that for any ψ1 ∈ ∆(Θ2 ×Θ2),

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′

1, θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′

1, θ̃2)
)

.

Thus, we satisfy the requirement for conditional NTI.

Third, we consider player 1 of payoff type θ
′′

1 . Once again, we define y : Θ2 → ∆(A)

such that y(θ2) = y(θ
′

2) = c and y
′

: Θ2 → ∆(A) such that y
′

(θ2) = y
′

(θ
′

2) = b. It is

straightforward to confirm that y, y
′

∈ Y w
1 [θ

′′

1 ]. Fix ψ1 ∈ ∆(Θ2 ×Θ2). Now

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′′

1 , θ̃2)
)

= 3ψ1(θ2, θ2) + 3ψ1(θ2, θ
′

2) + 3ψ1(θ
′

2, θ2) + 3ψ1(θ
′

2, θ
′

2)

whereas

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′′

1 , θ̃2)
)

= 2ψ1(θ
′

2, θ2) + 2ψ1(θ
′

2, θ
′

2).

This implies that for any ψ1 ∈ ∆(Θ2 ×Θ2),

∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y(θ̃
′

2), (θ
′′

1 , θ̃2)
)

>
∑

θ̃2,θ̃
′

2

ψ1(θ̃2, θ̃
′

2)u1
(

y
′

(θ̃
′

2), (θ
′′

1 , θ̃2)
)

.

Thus, we satisfy the requirement for conditional NTI.

Fourth, we consider player 2 of payoff type θ2. Then we define y : Θ1 → ∆(A) such that

y(θ1) = y(θ
′

1) = y(θ
′′

1 ) =
1
2
a+ 1

2
c and y

′

: Θ1 → ∆(A) such that y
′

(θ1) = y
′

(θ
′

1) = y
′

(θ
′′

1 ) = b.

It is straightforward to confirm that y, y
′

∈ Y w
2 [θ2]. Fix ψ2 ∈ ∆(Θ2 ×Θ2). Now

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ2))

= 2(ψ1(θ1, θ1) + ψ1(θ1, θ
′

1) + ψ1(θ1, θ
′′

1 )) +
3

2
(ψ2(θ

′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 ))

+2(ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 ))

whereas

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ2)) = ψ2(θ
′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 ).
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This implies that for any ψ2 ∈ ∆(Θ1 ×Θ1),

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ2)) >
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ2)).

Thus, we satisfy the requirement for conditional NTI.

Finally, we consider player 2 of payoff type θ
′

2. Then we define y : Θ1 → ∆(A) such that

y(θ1) = y(θ
′

1) = y(θ
′′

1 ) =
1
2
b+ 1

2
d and y

′

: Θ1 → ∆(A) such that y
′

(θ1) = y
′

(θ
′

1) = y
′

(θ
′′

1 ) = c.

It is straightforward to confirm that y, y
′

∈ Y w
2 [θ

′

2]. Fix ψ2 ∈ ∆(Θ1 ×Θ1). Then

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ
′

2))

=
3

2
(ψ1(θ1, θ1) + ψ1(θ1, θ

′

1) + ψ1(θ1, θ
′′

1 )) +
3

2
(ψ2(θ

′

1, θ1) + ψ2(θ
′

1, θ
′

1) + ψ2(θ
′

1, θ
′′

1 ))

+2(ψ2(θ
′′

1 , θ1) + ψ2(θ
′′

1 , θ
′

1) + ψ2(θ
′′

1 , θ
′′

1 ))

whereas

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ
′

2)) = ψ2(θ1, θ1) + ψ2(θ1, θ
′

1) + ψ2(θ1, θ
′′

1 ).

This implies that for any ψ2 ∈ ∆(Θ1 ×Θ1),

∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y(θ̃
′

1), (θ̃1, θ
′

2)) >
∑

θ̃1,θ̃
′

1

ψ2(θ̃1, θ̃
′

1)u2(y
′

(θ̃
′

1), (θ̃1, θ
′

2)).

Thus, we satisfy the requirement for conditional NTI.

We therefore conclude that f satisfies conditional NTI.

6.2 A Class of Type Spaces in which Our Canonical Mechanism

has Interim Equilibria

Consider the following class of information structures: Each individual i is endowed with a

signal function si : Θ → ∆(Θ) such that si(θ)[θ] > 0 for any θ ∈ Θ and, for any θ, θ
′

∈ Θ,

si(θ)[θ
′

] > 0 ⇒ θ
′

i = θi. The profile of signal functions (s1, . . . , sn) is assumed to be common

knowledge. An important example of this class of information structures is the one in which

si(θ)[θ] = 1 for all θ ∈ Θ and i ∈ I, so that individuals have complete information about the

realized state.

A type space T = (Ti, θ̂i, π̂i)i∈I that corresponds to the above class of information struc-
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tures is such that (i) Ti = {tθi : θ ∈ Θ} for all i ∈ I and (ii) θ̂i(t
θ
i ) = θi, where θ = (θi, θ−i),

and for all θ, θ
′

∈ Θ and tθ
′

−i ∈ T−i,

π̂i(t
θ
i )[t

θ
′

−i] = si(θ)[θ
′

],

where tθ
′

−i ≡ (tθ
′

j )j∈I\{i}. Thus, π̂i(t
θ
i ) is the belief of type tθi such that if t−i ∈ T−i includes

types tθ̃j and tθ̃
′

j
′ of two distinct individuals j, j

′

∈ I\{i} such that θ̃ 6= θ̃
′

, then we have

π̂i(t
θ
i )[t−i] = 0.

Suppose the SCF f satisfies weak RM and conditional NTI, so that it is RoRat-implementable

by the canonical mechanism Γ constructed in the proof of Theorem 5.5. Pick any type space

T , as defined above. We now show that the canonical mechanism Γ has a (pure) interim

equilibrium in T .

For each individual i ∈ I, we pick any (m3
i , m

4
i ), where m

3
i = (m3

i [θi])θi∈Θi
such that

m3
i [θi] ∈ Y ∗

i [θi] for all θi ∈ Θi and m4
i ∈ A. Now let σ be the strategy-profile such that

σi(t
θ
i ) = (θ, 1, m3

i , m
4
i ) for all t

θ
i ∈ Ti and i ∈ I. We argue that σ is an interim equilibrium of

the game (T ,Γ).

Pick individual i of type tθi . If everyone plays the game (Γ, T ) according to the strategy

profile σ, then the outcome is given by Rule 1 and type tθi of individual i expects a payoff of
∑

tθ
′

−i

π̂i(t
θ
i )[t

θ
′

−i]ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

.

On the one hand, if type tθi deviates to m̂i such that m̂1
i [i] = θ̃i and m̂

2
i = 1, then Rule 1 is

still triggered so that she expects the payoff of
∑

tθ
′

−i

π̂i(t
θ
i )[t

θ
′

−i]ui
(

f(θ̃i, θ
′

−i), (θi, θ
′

−i)
)

, which

is not improving due to semi-strict EPIC. On the other hand, if type tθi deviates to m̂i such

that m̂2
i > 1, then Rule 2 is triggered so that she expects the payoff of

∑

tθ
′

−i

π̂i(t
θ
i )[t

θ
′

−i]

{(

m̂2
i

1 + m̂2
i

)

ui
(

m̂3
i [θ

′

i](θ
′

−i), (θi, θ
′

−i)
)

+

(

1−
m̂2
i

1 + m̂2
i

)

ui
(

y
θ
′

i

i (θ
′

−i), (θi, θ
′

−i)
)

}

=
∑

t
(θi,θ

′

−i
)

−i

π̂i(t
θ
i )[t

(θi,θ
′

−i)

−i ]

{(

m̂2
i

1 + m̂2
i

)

ui
(

m̂3
i [θi](θ

′

−i), (θi, θ
′

−i)
)

+

(

1−
m̂2
i

1 + m̂2
i

)

ui
(

yθii (θ
′

−i), (θi, θ
′

−i)
)

}

,

where the equality follows from the fact that π̂i(t
θ
i )[t

θ
′

−i] = si(θ)[θ
′

] > 0 ⇒ θ
′

i = θi. As σ−i

dictates that any other agent j 6= i announces m1
j [j] truthfully and m̂3

i [θi] is chosen from

Y ∗
i [θi], type t

θ
i cannot improve her payoff by any such deviation. Hence, the message σi(t

θ
i )

is a best response of type tθi against σ−i, which completes the argument that σ is an interim

equilibrium of the game (T ,Γ)
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6.3 Finite Mechanisms

If we restrict attention to finite mechanisms, then the set of interim equilibria in every

countable type space is nonempty.6 Hence, RoEq-implementation becomes equivalent to

RoRat-implementation when the designer is restricted to use finite mechanisms.

BM (2011) show that an additional “robust measurability” condition is necessary for

RoEq-implementation using finite mechanisms. It thus follows that robust measurability

is also necessary for RoRat-implementation using finite mechanisms. Robust measurability

is generally not related to weak RM.7 It is, therefore, an additional restriction on RoRat-

implementation using finite mechanisms. However, for the class of “single crossing aggre-

gator” environments, robust measurability is equivalent to strict RM (see Section 5 in BM

(2011) for details). In such environments, any responsive SCF satisfying strict RM can

be RoEq-implemented using a direct mechanism in which players report their payoff types

(BM, 2009). Recall that strict RM is equivalent to weak RM for responsive SCFs (Lemma

4.6). Thus, it follows that, for responsive SCFs, weak RM by itself characterizes RoRat-

implementation using finite mechanisms in single crossing aggregator environments.

In a complete information environment with lotteries and transfers, Chen, Kunimoto,

Sun, and Xiong (2020) show that Maskin monotonicity*, a strengthening of Maskin mono-

tonicity, is a necessary and sufficient condition for implementation in rationalizable strategies

by a finite mechanism. They also show that Maskin monotonicity* is strictly stronger than

Maskin monotonicity, which is a necessary and sufficient condition for Nash implementation

by a finite mechanism in the same class of environments with transfers and lotteries (See

Chen, Kunimoto, Sun, and Xiong (2019)). Therefore, if we restrict our attention to finite

mechanisms in a complete information setup, implementation in rationalizable strategies is

more restrictive than Nash implementation. This exhibits a contrast with the equivalence

between RoRat-implementation and RoEq-implementation using finite mechanisms.

6.4 Private Values

The environment is one of private values if the utility of each player is independent of the

other players’ payoff types. Thus, player i’s utility is a function of the lottery and her own

payoff type, i.e., ui : ∆(A)×Θi → ℜ.

Semi-strict EPIC is always a necessary condition for RoRat-implementation because weak

RM implies semi-strict EPIC (Lemma 5.4). We now argue that it is also sufficient for RoRat-

implementation in private values environments.8

6For a proof of this statement, see Footnote 14 in Bergemann et al. (2017).
7We can show this using Examples 1 and 2 in Section 8.3 in BM (2007).
8As a corollary, we obtain that weak RM is equivalent to semi-strict EPIC in private values environments.
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Under private values, the SCF f satisfies semi-strict EPIC if and only if for all i ∈ I,

θi, θ
′

i ∈ Θi, and θ−i ∈ Θ−i,

ui
(

f(θi, θ−i), θi
)

≥ ui
(

f(θ
′

i, θ−i), θi
)

with a strict inequality whenever θi 6∼
f
i θ

′

i. Therefore, if the designer uses the corresponding

direct mechanism in which the players report their payoff types, then for any type ti of any

player i in any type space T , reporting any θi ∼
f
i θ̂i(ti) is strictly better than reporting any

θ
′

i 6∼
f
i θ̂i(ti), regardless of the strategies of the other players. Simply put, reporting one’s

true or equivalent payoff type strictly dominates reporting any other payoff type. Hence,

B∞
i (ti) = {θi : θi ∼

f
i θ̂i(ti)}. Thus, the direct mechanism RoRat-implements the SCF f .

Since truthful reporting one’s payoff type forms an interim equilibrium on all types spaces,

the direct mechanism also RoEq-implements the SCF f . Thus, semi-strict EPIC is also

necessary (because it is necessary for RoRat-implementation, which is weaker than RoEq-

implementation) and sufficient for RoEq-implementation in private values environments.

We thus conclude that, in private values environments, RoRat-implementation is equiv-

alent to RoEq-implementation, and characterized by semi-strict EPIC.

7 Conclusion

We showed that RoRat-implementation is equivalent to wRat-implementation. We uti-

lized this equivalence to prove that weak RM is necessary and almost sufficient for RoRat-

implementation. We exploited the gap between weak RM and strict RM for non-responsive

SCFs to establish that RoRat-implementation is strictly weaker than RoEq-implementation.

We argued that the gap between RoEq-implementation and RoRat-implementation is ex-

plained by the more stringent nonemptiness requirement under the former notion, which has

a bite only when the designer is allowed to use countably infinite mechanisms. An open

question is whether there is any gap between the two robust implementation notions for

the case of responsive SCFs even though the respective necessary conditions (strict RM and

weak RM) are equivalent in this case.

8 Appendix

In the Appendix, we provide the proofs omitted from the main body of the paper.

Proof of Theorem 4.3.

It is also easy to prove this statement directly.
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Suppose the mechanism Γ = ((Mi)i∈I , g) RoRat-implements f . It follows from Theorem 3.1

that Γ wRat-implements f . We now argue that f must satisfy weak RM.

Pick any i ∈ I and θ ∈ Θ. Consider the belief z1i ∈ ∆(Θ−i) that puts probability one on

θ−i. By wRat-implementability, there exists a belief ψθi ∈ ∆(Θ−i ×M−i) such that

(a) arg max
m̃i∈Mi

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

6= ∅.

(b) ψθi (θ̃−i, m̃−i) > 0 ⇒ m̃−i ∈ S∞
−i(θ̃−i).

(c) margΘ−i
ψθi = z1i .

If θ̃−i 6= θ−i, then ψ
θ
i (θ̃−i, m̃−i) = 0 because margΘ−i

ψθi = z1i and z1i assigns probability

one on θ−i. Therefore, for all m̃i ∈Mi,

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

=
∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)ui

(

g(m̃i, m̃−i), θ
)

= ui





∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i), θ



 . (1)

Define the set of lotteries

Li(θ) =







∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i) : m̃i ∈Mi







.

Pick any mi ∈ argmaxm̃i∈Mi

∑

θ̃−i,m̃−i
ψθi (θ̃−i, m̃−i)ui

(

g(m̃i, m̃−i), (θi, θ̃−i)
)

. Then mi ∈

S∞
i (θi) because ψ

θ
i (θ̃−i, m̃−i) > 0 implies m̃−i ∈ S∞

−i(θ̃−i). Therefore, by wRat-implementability,

∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(mi, m̃−i) = f(θ).

Moreover, for all m̃i ∈Mi, we have

ui





∑

m̃−i∈S∞

−i(θ−i)

margM−i
ψθi (m̃−i)g(mi, m̃−i), θ



 =
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(mi, m̃−i), (θi, θ̃−i)
)

≥
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)
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= ui





∑

m̃−i∈S∞

−i
(θ−i)

margM−i
ψθi (m̃−i)g(m̃i, m̃−i), θ



 ,

where the first and last equality follows from (1). Hence, ui
(

f(θ), θ
)

≥ ui
(

ℓ, θ
)

for all

ℓ ∈ Li(θ).

We next claim that for any ℓ ∈ Li(θ), ℓ 6= f(θ) implies ui
(

f(θ), θ
)

> ui
(

ℓ, θ
)

. Suppose not.

Then there is some ℓ ∈ Li(θ) such that ℓ 6= f(θ) but ui
(

ℓ, θ
)

≥ ui
(

f(θ), θ
)

. By construction

of Li(θ), there exists a message m̃i such that
∑

m̃−i∈S∞

−i(θ−i)
margM−i

ψθi (m̃−i)g(m̃i, m̃−i) = ℓ.

Then, as per the above arguments, ui(ℓ, θ) ≥ ui(f(θ), θ) is equivalent to

∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(m̃i, m̃−i), (θi, θ̃−i)
)

≥
∑

θ̃−i,m̃−i

ψθi (θ̃−i, m̃−i)ui
(

g(mi, m̃−i), (θi, θ̃−i)
)

,

for some mi ∈ argmaxm̃′

i∈Mi

∑

θ̃−i,m̃−i
ψθi (θ̃−i, m̃−i)ui

(

g(m̃
′

i, m̃−i), (θi, θ̃−i)
)

. Therefore, m̃i is

also a best response to the belief ψθi when i’s payoff type is θi. Hence, m̃i ∈ S∞
i (θi). But

g(m̃i, m̃−i) 6= f(θ) for at least one m̃−i ∈ S∞
−i(θ−i), which contradicts wRat-implementation

of f .

We are now ready to prove the theorem. Consider any deception β. Define the message

correspondence profile with payoff-type domain S = (S1, . . . ,Sn) such that

Si(θi) =
⋃

θ
′

i∈βi(θi)

S∞
i (θ

′

i).

Suppose β is not weakly refutable. Then, by definition of weak refutablility, for all i ∈ I,

θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼
f
i θi, there exist θ̃i and ψi ∈ ∆(Θ−i × Θ−i), which

satisfies ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), such that for all y ∈ Yi[θ̃i], we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

. (2)

We first show that for any i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i ∼
f
i θi, there exist

θ̃i ∈ Θi and ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such that (2)

holds for all y ∈ Yi[θ̃i].

Pick any i, θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i ∼
f
i θi. We set θ̃i = θi and the belief ψi ∈

∆(Θ−i × Θ−i) such that ψi(θ̂−i, θ̂−i) = 1 for some θ̂−i ∈ Θ−i. As θ̂−i ∈ β−i(θ̂−i), the belief

ψi satisfies ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i). Since θi ∼
f
i θ

′

i, we have f(θ
′

i, θ̂−i) = f(θi, θ̂−i).
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Moreover, Yi[θ̃i] = Yi[θi] because θ̃i = θi. Therefore, for all y ∈ Yi[θ̃i], we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

= ui
(

f(θi, θ̂−i), (θi, θ̂−i)
)

≥ ui
(

y(θ̂−i), (θi, θ̂−i)
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

.

Thus, if we combine the above result with the hypothesis that β is not weakly refutable,

then we can hypothesize that for all i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi), there exist θ̃i ∈ Θi and

ψi ∈ ∆(Θ−i × Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such that (2) holds for all

y ∈ Yi[θ̃i].

We next show that bΘ(S) ≥ S. Pick any i ∈ I, θi ∈ Θi, and m
′

i ∈ Si(θi). We now

construct a belief ψΓ
i ∈ ∆(Θ−i ×M−i) satisfying ψΓ

i (θ−i, m−i) > 0 implies m−i ∈ S−i(θ−i)

such that m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i .

By definition of S, we have m
′

i ∈ S∞
i (θ

′

i) for some θ
′

i ∈ βi(θi). Then, by our hypothesis,

there exist θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i) such

that (2) holds for all y ∈ Yi[θ̃i]. Define the belief ψΓ
i ∈ ∆(Θ−i ×M−i) as follows: for any

(θ−i, m−i),

ψΓ
i (θ−i, m−i) =

∑

θ
′

−i

ψi(θ−i, θ
′

−i)×margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i).

By construction, ψΓ
i (θ−i, m−i) > 0 implies that there exists θ

′

−i ∈ Θ−i such that ψi(θ−i, θ
′

−i) >

0 and margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0. But ψi(θ−i, θ
′

−i) > 0 implies θ
′

−i ∈ β−i(θ−i). Moreover,

margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0 implies m−i ∈ S∞
−i(θ

′

−i) – recall the definition of ψ
(θ̃i,θ

′

−i)

i from

the beginning of this proof. Since θ
′

−i ∈ β−i(θ−i) and m−i ∈ S∞
−i(θ

′

−i), it follows from the

definition of S that m−i ∈ S−i(θ−i).

For any mi ∈Mi, define y
mi : Θ−i → ∆(A) as follows: for all θ−i ∈ Θ−i,

ymi(θ−i) =
∑

m−i

margM−i
ψ

(θ̃i,θ−i)
i (m−i)g(mi, m−i).

By construction, ymi(θ−i) ∈ Li(θ̃i, θ−i). Therefore, if f(θ̃i, θ−i) 6= ymi(θ−i), then, as argued

earlier in the proof, we must have

ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

ymi(θ−i), (θ̃i, θ−i)
)

.
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So ymi ∈ Yi[θ̃i]. By our hypothesis, (2) holds for all y ∈ Yi[θ̃i]. Hence, for any mi ∈Mi,

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ymi(θ
′

−i), (θi, θ−i)
)

. (3)

We are ready to show that m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i .

∑

θ−i,m−i

ψΓ
i (θ−i, m−i)ui

(

g(m
′

i, m−i), (θi, θ−i)
)

=
∑

θ−i,m−i







∑

θ
′

−i

ψi(θ−i, θ
′

−i)×margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i)ui
(

g(m
′

i, m−i), (θi, θ−i)
)







(by definition of ψΓ
i )

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

(

by weak rationalizable implementability of f because m
′

i ∈ S∞
i (θ

′

i)

and margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i) > 0 implies m−i ∈ S∞
−i(θ

′

−i)

)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

ymi(θ
′

−i), (θi, θ−i)
)

(∵ inequality (3) holds for any mi ∈Mi)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)





∑

m−i

margM−i
ψ

(θ̃i,θ
′

−i)

i (m−i)ui
(

g(mi, m−i), (θi, θ−i)
)





(by definition of ymi)

=
∑

θ−i,m−i

ψΓ
i (θ−i, m−i)ui

(

g(mi, m−i), (θi, θ−i)
)

(by definition of ψΓ
i ).

Since m
′

i is a best response for agent i of payoff type θi against ψ
Γ
i and ψΓ

i (θ−i, m−i) > 0

implies m−i ∈ S−i(θ−i), it follows by definition that m
′

i ∈ bΘi (S)[θi].

As bΘ(S) ≥ S, we have S ≤ S∞. For any θ ∈ Θ and θ
′

∈ β(θ), we obtain S∞(θ
′

) 6= ∅ since

the mechanism Γ wRat-implements f . So pick any m
′

∈ S∞(θ
′

) ⊆ S(θ) ⊆ S∞(θ). Then

g(m
′

) = f(θ
′

) and g(m
′

) = f(θ) because, once again, the mechanism Γ wRat-implements f .

Thus, f(θ
′

) = f(θ). So β is acceptable. This completes the proof.

Proof of Lemma 4.6.

Suppose the SCF f is responsive. If f satisfies strict RM, then it clearly satisfies weak RM.

Now, suppose f satisfies weak RM. Fix an unacceptable deception β. Then β is weakly
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refutable. Thus, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼
f
i θi such that for

all θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists

y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Pick any belief ψ̂i ∈ ∆(Θ−i × Θ−i) satisfying ψ̂i(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i). Then,

for θ
′

i, there exists y
′

∈ Yi[θ
′

i] such that

∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Pick any ǫ ∈ (0, 1) and define yǫ : Θ−i → ∆(A) such that, for any θ−i ∈ Θ−i,

yǫ(θ−i) = ǫy
′

(θ−i) + (1− ǫ)f(θ
′

i, θ−i).

As f is responsive, if θ̃i 6= θ
′

i, then θ̃i 6∼
f
i θ

′

i. Moreover, since f satisfies weak RM, it

satisfies semi-strict EPIC (Lemma 5.4). Hence, if θ̃i 6= θ
′

i, then ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

>

ui
(

f(θ
′

i, θ−i), (θ̃i, θ−i)
)

for all θ−i. Since Θ is finite, we can find a sufficiently small ǫ such

that ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

yǫ(θ−i), (θ̃i, θ−i)
)

for all θ−i and θ̃i 6= θ
′

i. Thus, yǫ ∈ Yi[θ̃i]

for all θ̃i 6= θ
′

i. Moreover, yǫ ∈ Yi[θ
′

i] since both y
′

and f(θ
′

i, ·) are in Yi[θ
′

i]. We thus conclude

that yǫ ∈
⋂

θ̃i∈Θi
Yi[θ̃i].

Since ǫ is positive, by construction of yǫ, we have

∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

yǫ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ̂i(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

Therefore, β is strictly refutable. Hence, f satisfies strict RM.

Proof of Lemma 5.2.

We prove (a) first. Suppose the SCF f satisfies conditional NTI. Pick any i ∈ I, θi ∈ Θi

and ψi ∈ ∆(Θ−i ×Θ−i).

Firstly, it follows from the definition of conditional NTI that for all θ
′

−i ∈ Θ−i, there

exists ℓθ
′

−i ∈ ∆(A) such that

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

ℓθ
′

−i , (θi, θ
′

−i)
)

. (4)

To see this, consider the degenerate belief ψ̃i such that ψ̃i(θ
′

−i, θ
′

−i) = 1. Then there must
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exist ỹ, ỹ
′

∈ Y w
i [θi] such that

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

≥ ui
(

ỹ(θ
′

−i), (θi, θ
′

−i)
)

=
∑

θ−i,θ
′′

−i

ψ̃i(θ−i, θ
′′

−i)ui
(

ỹ(θ
′′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′′

−i

ψ̃i(θ−i, θ
′′

−i)ui
(

ỹ
′

(θ
′′

−i), (θi, θ−i)
)

= ui
(

ỹ
′

(θ
′

−i), (θi, θ
′

−i)
)

,

where the first weak inequality follows from the fact that ỹ ∈ Y w
i [θi] and the strict inequality

follows from conditional NTI. Then ℓθ
′

−i = ỹ
′

(θ
′

−i) satisfies (4).

Secondly, since f satisfies conditional NTI, there exist y, y
′

∈ Y w
i [θi] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′

(θ
′

−i), (θi, θ−i)
)

.

Pick any ǫ ∈ (0, 1) and define yǫ : Θ−i → ∆(A) such that yǫ(θ
′

−i) = (1− ǫ)y(θ
′

−i) + ǫℓθ
′

−i for

all θ
′

−i. We similarly define y
′ǫ. By construction, yǫ and y

′ǫ are such that for all θ
′

−i ∈ Θ−i,

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

yǫ(θ
′

−i), (θi, θ
′

−i)
)

and ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

y
′ǫ(θ

′

−i), (θi, θ
′

−i)
)

.

For ǫ sufficiently close to 1, we have

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yǫ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′ǫ(θ

′

−i), (θi, θ−i)
)

.

We fix any such sufficiently large ǫ.

Thirdly, since ∆∗(A) is a dense subset of ∆(A), for each θ
′

−i, there exists a sequence of

lotteries {ℓz(θ
′

−i)}
∞
z=1 ∈ ∆∗(A) converging to yǫ(θ

′

−i). For each z ≥ 1, define yz : Θ−i →

∆∗(A) such that yz(θ
′

−i) = ℓz(θ
′

−i) for all θ
′

−i. Similarly, we can define y
′z : Θ−i → ∆∗(A)

such that y
′z(θ

′

−i) converges to y
′ǫ(θ

′

−i) for all θ
′

−i. As Θ−i is finite, there exists a sufficiently

large z such that

ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

yz(θ
′

−i), (θi, θ
′

−i)
)

and ui
(

f(θi, θ
′

−i), (θi, θ
′

−i)
)

> ui
(

y
′z(θ

′

−i), (θi, θ
′

−i)
)

,
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for all θ
′

−i, and

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yz(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′z(θ

′

−i), (θi, θ−i)
)

. (5)

The first set of inequalities imply that yz, y
′z ∈ Y ∗

i [θi].

Lastly, since yθii assigns a positive weight to all y ∈ Y ∗
i [θi], if

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yθii (θ
′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

, ∀y ∈ Y ∗
i [θi],

then it must be that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

yz(θ
′

−i), (θi, θ−i)
)

=
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y
′z(θ

′

−i), (θi, θ−i)
)

,

which contradicts (5).

We prove (b) next. Suppose the SCF f satisfies conditional NTI. Pick any i ∈ I, θi ∈ Θi

and z1i ∈ ∆(Θ−i). As ᾱ assigns a positive weight to all a ∈ A, if

∑

θ−i

z1i (θ−i)ui
(

ᾱ, (θi, θ−i)
)

≥
∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

, ∀a ∈ A,

then it must be that

∑

θ−i

z1i (θ−i)ui
(

a, (θi, θ−i)
)

=
∑

θ−i

z1i (θ−i)ui
(

a
′

, (θi, θ−i)
)

,

for all a, a
′

∈ A. Now consider the belief ψ̃i ∈ ∆(Θ−i×Θ−i) such that ψ̃i(θ−i, θ−i) = z1i (θ−i)

for all θ−i ∈ Θ−i. Then, by conditional NTI, there must exist ỹ, ỹ
′

∈ Y w
i [θi] such that

∑

θ−i,θ
′

−i

ψ̃i(θ−i, θ
′

−i)ui
(

ỹ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ̃i(θ−i, θ
′

−i)ui
(

ỹ
′

(θ
′

−i), (θi, θ−i)
)

.

But the left-hand side of the above inequality equals
∑

θ−i
z1i (θ−i)ui

(

ỹ(θ−i), (θi, θ−i)
)

while

the right-hand side equals
∑

θ−i
z1i (θ−i)ui

(

ỹ
′

(θ−i), (θi, θ−i)
)

, which contradicts the fact that

type θi is indifferent over all alternatives when she holds the belief z1i .

Proof of Lemma 5.4.

Suppose the SCF f satisfies weak RM. Pick any i ∈ I, θi, θ
′

i ∈ Θi. If θi ∼
f
i θ

′

i, then trivially
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ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

for all θ−i ∈ Θ−i. So suppose θi 6∼f
i θ

′

i.

Consider the deception β such that βj(θj) = {θj} for all θj and j 6= i but

βi(θ̃i) =

{

{θi, θ
′

i}, if θ̃i = θi

{θ̃i}, otherwise.

Since θi 6∼
f
i θ

′

i, the deception β is unacceptable. Hence, it must be weakly refutable. That

is, there exist j ∈ I, θ̂j ∈ Θj, and θ̂
′

j ∈ βj(θ̂j) satisfying θ̂
′

j 6∼
f
j θ̂j such that for any θ̃j ∈ Θj

and ψj ∈ ∆(Θ−j ×Θ−j) satisfying ψj(θ−j, θ
′

−j) > 0 ⇒ θ
′

−j ∈ β−j(θ−j), there exists y ∈ Yj[θ̃j ]

such that

∑

θ−j ,θ
′

−j

ψj(θ−j, θ
′

−j)uj
(

y(θ
′

−j), (θ̂j , θ−j)
)

>
∑

θ−j ,θ
′

−j

ψj(θ−j , θ
′

−j)uj
(

f(θ̂
′

j , θ
′

−j), (θ̂j, θ−j)
)

.

Since θ̂
′

j 6∼
f
j θ̂j and θ̂

′

j ∈ βj(θ̂j), it must be that j = i, θ̂j = θi and θ̂
′

j = θ
′

i.

Now pick any θ−i ∈ Θ−i. Consider θ̃i = θi and the degenerate belief ψi such that

ψi(θ−i, θ−i) = 1. Note that θ−i ∈ β−i(θ−i). Hence, we must have some y ∈ Yi[θ̃i] =

Yi[θi] such that ui
(

y(θ−i), (θi, θ−i)
)

> ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

. But y ∈ Yi[θi] implies that

ui
(

f(θi, θ−i), (θi, θ−i)
)

≥ ui
(

y(θ−i), (θi, θ−i)
)

. We thus conclude that ui
(

f(θi, θ−i), (θi, θ−i)
)

>

ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

.

Proof of Theorem 5.5.

We use the mechanism Γ constructed above and prove that Γ wRat-implements f , which

implies that Γ RoRat-implements f because of Theorem 3.1. The proof of the theorem

consists of Steps 1 through 4.

Step 1: mi ∈ S∞
i (θi) ⇒ m2

i = 1.

Proof. Suppose by way of contradiction that mi ∈ S∞
i (θi) but m

2
i > 1. Then, mi is a best

response of individual i of payoff type θi against some conjecture ψi ∈ ∆(Θ−i ×M−i).

For each θ
′

i 6= θ∗i and θ
′

−i ∈ Θ−i, we define

M2
−i(θ

′

i, θ
′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = θ
′

i, ∀j 6= i, and (m1
j [j])j 6=i = θ

′

−i

}

.

For θ∗i and each θ
′

−i ∈ Θ−i, we define

M2
−i(θ

∗
i , θ

′

−i) =











m−i :

(m1
j [j])j 6=i = θ

′

−i and

either m2
j = 1 and m1

j [i] = θ∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.
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Also define

M3
−i =

{

m−i : there exist one or more j 6= i such that m2
j > 1

}

.

Note that
(

(M2
−i(θ̃i, θ

′

−i))θ̃i∈Θi,θ
′

−i∈Θ−i
,M3

−i

)

defines a partition of M−i. As m2
i > 1, if

m−i ∈ M2
−i(θ̃i, θ

′

−i), then Rule 2 is used under the profile (mi, m−i) whereas if m−i ∈ M3
−i,

then Rule 3 is used under the profile (mi, m−i).

For each θ̃i ∈ Θi, define

Ψ2,θ̃i
i =

∑

θ−i,θ
′′

−i

∑

m−i∈M2
−i(θ̃i,θ

′′

−i)

ψi(θ−i, m−i).

Thus, Ψ2,θ̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i).

Also, define

Ψ3
i =

∑

θ−i,m−i∈M3
−i

ψi(θ−i, m−i).

Thus, Ψ3
i is the probability of the event that all other individuals report a message profile

in M3
−i.

If θ̃i is such that Ψ2,θ̃i
i > 0, then define ψ2,θ̃i

i ∈ ∆(Θ−i×Θ−i) such that for all θ−i, θ
′

−i ∈ Θ−i,

ψ2,θ̃i
i (θ−i, θ

′

−i) =
∑

m−i∈M2
−i(θ̃i,θ

′

−i)

ψi(θ−i, m−i)

Ψ2,θ̃i
i

.

Thus, ψ2,θ̃i
i (θ−i, θ

′

−i) is the conditional probability of the event that the payoff-type profile of

all other individuals is θ−i and they report a message profile in M2
−i(θ̃i, θ

′

−i) given the event

that all other individuals report a message profile in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i).

If the payoff-type profile of all other individuals is θ−i and they report a message profile

in M2
−i(θ̃i, θ

′

−i), then when individual i of payoff type θi plays mi, she expects the outcome

to be given by the lottery

(

m2
i

1 +m2
i

)

m3
i [θ̃i]

(

θ
′

−i

)

+

(

1−
m2
i

1 +m2
i

)

yθ̃ii
(

θ
′

−i

)

.

As a result, conditional on the event that all other individuals report a message profile in
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⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she plays mi is

(

m2
i

1 +m2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

+

(

1−
m2
i

1 +m2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

. (6)

If Ψ3
i > 0, then define ψ3

i ∈ ∆(Θ−i) such that, for any θ−i ∈ Θ−i,

ψ3
i (θ−i) =

∑

m−i∈M3
−i

ψi(θ−i, m−i)

Ψ3
i

.

Thus, ψ3
i (θ−i) is the conditional probability of the event that the payoff-type profile of all

other individuals is θ−i and they report a message profile in M3
−i given the event that all

other individuals report a message profile in M3
−i.

If the payoff-type profile of all other individuals is θ−i and they report a message profile

m−i ∈ M3
−i, then when individual i of payoff type θi plays mi, she expects the outcome to

be given by the lottery

1

n

(

m2
i

1 +m2
i

)

m4
i +

1

n

(

1−
m2
i

1 +m2
i

)

ᾱ +
∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

m4
j +

1

n

(

1−
m2
j

1 +m2
j

)

ᾱ

)

.

As a result, conditional on the event that all other individuals report a message profile in

M3
−i, the expected payoff of individual i of payoff type θi when she plays mi is

1

n

(

m2
i

1 +m2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

m4
i , (θi, θ−i)

)

+
1

n

(

1−
m2
i

1 +m2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

+
∑

θ−i,m−i∈M3
−i

ψi(θ−i, m−i)

Ψ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (θi, θ−i)

)

+
1

n

(

1−
m2
j

1 +m2
j

)

ui
(

ᾱ, (θi, θ−i)
)

)

.

(7)

Now let individual i of payoff type θi deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m̂

4
i ) such that

• m̂2
i = m2

i + 1.

• m̂3
i is defined as follows: for each θ̃i:
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⊲ If Ψ2,θ̃i
i > 0, then let m̂3

i [θ̃i] ∈ Y ∗
i [θ̃i] be such that

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

≥
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

and
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui(y
θ̃i
i (θ

′

−i), (θi, θ−i)
)

.

Note that such m̂3
i [θ̃i] exists because of Lemma 5.2.

⊲ If Ψ2,θ̃i
i = 0, then let m̂3

i [θ̃i] = m3
i [θ̃i].

• m̂4
i is defined as follows:

⊲ If Ψ3
i > 0, then let m̂4

i ∈ A be such that

∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

≥
∑

θ−i

ψ3
i (θ−i)ui

(

m4
i , (θi, θ−i)

)

and
∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

>
∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)

.

Note that such m̂4
i exists because of Lemma 5.2.

⊲ If Ψ3
i = 0, then let m̂4

i = m4
i .

If Ψ2,θ̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M2

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

m̂3
i [θ̃i](θ

′

−i), (θi, θ−i)
)

+

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ2,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

,

which is, by construction, greater than her expected payoff in (6) when she plays mi.

If Ψ3
i > 0, then conditional on the event that all other individuals report a message profile

in M3
−i, the expected payoff of individual i of payoff type θi when she plays m̂i is

1

n

(

m̂2
i

1 + m̂2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

m̂4
i , (θi, θ−i)

)

+
1

n

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i

ψ3
i (θ−i)ui

(

ᾱ, (θi, θ−i)
)
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+
∑

θ−i,m−i∈M3
−i

ψi(θ−i, m−i)

Ψ3
i

∑

j 6=i

(

1

n

(

m2
j

1 +m2
j

)

ui
(

m4
j , (θi, θ−i)

)

+
1

n

(

1−
m2
j

1 +m2
j

)

ui
(

ᾱ, (θi, θ−i)
)

)

,

which is, by construction, greater than her expected payoff in (7) when she plays mi.

As
∑

θ̃i
Ψ2,θ̃i
i + Ψ3

i = 1 (because m2
i > 1), it follows that m̂i is a better response for

individual i of payoff type θi against ψi, a contradiction. This completes the proof of Step

1.

Step 2: For each i ∈ I and θi ∈ Θi, let

βi(θi) = {θi} ∪ {θ
′

i ∈ Θi : ∃ mi ∈ S∞
i (θi) such that m1

i [i] = θ
′

i}.

Then, the deception β = (βi)i∈I is acceptable.

Proof. Suppose not, that is, β is unacceptable. Then, by weak RM, β must be weakly

refutable. That is, there exist i ∈ I, θi ∈ Θi, and θ
′

i ∈ βi(θi) satisfying θ
′

i 6∼
f
i θi such that for

all θ̃i ∈ Θi and ψi ∈ ∆(Θ−i ×Θ−i) satisfying ψi(θ−i, θ
′

−i) > 0 ⇒ θ
′

−i ∈ β−i(θ−i), there exists

y ∈ Yi[θ̃i] such that

∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

y(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψi(θ−i, θ
′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

As θ
′

i 6∼
f
i θi and θ

′

i ∈ βi(θi), we can find a message mi ∈ S∞
i (θi) such that m1

i [i] = θ
′

i.

Then, mi is a best response to some belief ψΓ
i ∈ ∆(Θ−i ×M−i) such that ψΓ

i (θ−i, m−i) >

0 ⇒ m−i ∈ S∞
−i(θ−i). From Step 1, it follows that ψΓ

i (θ−i, m−i) > 0 implies m2
j = 1 for all

j 6= i. We next define a partition of all those message profiles in M−i such that m2
j = 1 for

all j 6= i.

For each θ̂i 6= θ∗i and θ
′

−i ∈ Θ−i, we define

M1
−i(θ̂i, θ

′

−i) =
{

m−i : m
2
j = 1 and m1

j [i] = θ̂i, ∀j 6= i, and (m1
j [j])j 6=i = θ

′

−i

}

.

For θ∗i and each θ
′

−i ∈ Θ−i, we define

M1
−i(θ

∗
i , θ

′

−i) =











m−i :

(m1
j [j])j 6=i = θ

′

−i and

either m2
j = 1 and m1

j [i] = θ∗i , ∀j 6= i,

or m2
j = 1, ∀j 6= i, but m1

j
′ [i] 6= m1

k[i] for some j
′

, k 6= i











.
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For each θ̃i ∈ Θi, we define

Ψ1,θ̃i
i =

∑

θ−i,θ
′′

−i

∑

m−i∈M1
−i(θ̃i,θ

′′

−i)

ψΓ
i (θ−i, m−i).

Thus, Ψ1,θ̃i
i is the probability of the event that all other individuals report a message profile

in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i).

If θ̃i is such that Ψ1,θ̃i
i > 0, then define ψ1,θ̃i

i ∈ ∆(Θ−i×Θ−i) such that for all θ−i, θ
′

−i ∈ Θ−i,

ψ1,θ̃i
i (θ−i, θ

′

−i) =
∑

m−i∈M1
−i(θ̃i,θ

′

−i)

ψΓ
i (θ−i, m−i)

Ψ1,θ̃i
i

.

Thus, ψ1,θ̃i
i (θ−i, θ

′

−i) is the conditional probability of the event that the payoff-type profile of

all other individuals is θ−i and they report a message profile in M1
−i(θ̃i, θ

′

−i) given the event

that all other individuals report a message profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i).

If the payoff-type profile of all other individuals is θ−i and they report a message profile

inM1
−i(θ̃i, θ

′

−i), then when individual i of payoff type θi plays mi, she expects the outcome to

be f(θ
′

i, θ
′

−i). As a result, conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays mi is

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

. (8)

Now, ψ1,θ̃i
i (θ−i, θ

′

−i) > 0 implies that ψΓ
i (θ−i, m−i) > 0 for some m−i ∈ M1

−i(θ̃i, θ
′

−i). But

ψΓ
i (θ−i, m−i) > 0 also implies that m−i ∈ S∞

−i(θ−i). Hence, due to the construction of β, we

have θ
′

−i ∈ β−i(θ−i). So, it follows from weak refutability of β that there exists y[θ̃i] ∈ Yi[θ̃i]

such that

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

y[θ̃i](θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

.

It is without loss of generality to assume that y[θ̃i] ∈ Y ∗
i [θ̃i]. If not, then consider

any sequence ℓz : Θ−i → ∆∗(A) ∪ {f(θ̃i, θ−i)} such that (a) if y[θ̃i](θ−i) = f(θ̃i, θ−i), then

ℓz(θ−i) = f(θ̃i, θ−i) for all z ∈ N and (b) if y[θ̃i](θ−i) 6= f(θ̃i, θ−i), then ℓ
z(θ−i) converges to

y[θ̃i](θ−i) for all θ−i ∈ Θ−i as z → ∞. As Θ−i is finite and ui(·, θ) is continuous over ∆(A),
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we can find a sufficiently large ẑ such that

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

ℓẑ(θ
′

−i), (θi, θ−i)
)

>
∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

f(θ
′

i, θ
′

−i), (θi, θ−i)
)

,

and, because y[θ̃i] ∈ Yi[θ̃i], if ℓ
ẑ(θ−i) 6= f(θ̃i, θ−i), then

ui
(

f(θ̃i, θ−i), (θ̃i, θ−i)
)

> ui
(

ℓẑ(θ−i), (θ̃i, θ−i)
)

.

The latter condition implies that ℓẑ ∈ Y ∗
i [θ̃i].

Now, let individual i of payoff type θi deviate to m̂i = (m1
i , m̂

2
i , m̂

3
i , m

4
i ) such that

• m̂2
i > 1, where the specific value is chosen later.

• m̂3
i is defined as follows: for each θ̃i ∈ Θi:

⊲ If Ψ1,θ̃i
i > 0, then let m̂3

i [θ̃i] = y[θ̃i].

⊲ If Ψ1,θ̃i
i = 0, then let m̂3

i [θ̃i] = m3
i [θ̃i].

If Ψ1,θ̃i
i > 0, then conditional on the event that all other individuals report a message

profile in
⋃

θ
′′

−i
M1

−i(θ̃i, θ
′′

−i), the expected payoff of individual i of payoff type θi when she

plays m̂i is

(

m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

y[θ̃i](θ
′

−i), (θi, θ−i)
)

+

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i,θ
′

−i

ψ1,θ̃i
i (θ−i, θ

′

−i)ui
(

yθ̃ii (θ
′

−i), (θi, θ−i)
)

.

If m̂2
i is large enough, then the above expression is greater than her expected payoff in (8)

when she plays mi. Since Θi is finite, we can find a sufficiently large m̂2
i such that the

above statement is true for all θ̃i ∈ Θi such that Ψ1,θ̃i
i > 0. As

∑

θ̃i
Ψ1,θ̃i
i = 1 (because

ψΓ
i (θ−i, m−i) > 0 ⇒ m−i ∈ S∞

−i(θ−i) ⇒ m2
j = 1, ∀j 6= i), it follows that m̂i is a better

response for individual i of payoff type θi against ψ
Γ
i , a contradiction. This completes the

proof of Step 2.

It follows from Steps 1 and 2 that m ∈ S∞(θ) ⇒ g(m) = f(θ).

Step 3: Define the message correspondence profile with payoff-type domain S = (S1, . . . ,Sn)
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such that for all i ∈ I and θi ∈ Θi,

Si(θi) = {(m1
i , 1, m

3
i , m

4
i ) : m

1
i [i] = θi}.

Then, we have bΘ(S) ≥ S, which implies that S ≤ S∞.

Proof. Pick any i ∈ I, θi ∈ Θi, and mi ∈ Si(θi). Fix some θ−i ∈ Θ−i and pick any

m̃−i ∈ S−i(θ−i) such that m̃1
j [i] = θi and m̃1

j [j] = θj , for all j 6= i. Let the belief ψi ∈

∆(Θ−i ×M−i) be such that ψi(θ−i, m̃−i) = 1. When individual i of payoff type θi holds the

belief ψi and plays mi, then she expects the payoff of ui
(

f(θi, θ−i), (θi, θ−i)
)

. On the one

hand, if she deviates to m̂i such that m̂1
i [i] = θ

′

i and m̂
2
i = 1, then she expects the payoff of

ui
(

f(θ
′

i, θ−i), (θi, θ−i)
)

, which is not improving due to semi-strict EPIC. On the other hand,

if she deviates to m̂i such that m̂2
i > 1, then she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

ui
(

m̂3
i [θi](θ−i), (θi, θ−i)

)

+

(

1−
m̂2
i

1 + m̂2
i

)

ui
(

yθii (θ−i), (θi, θ−i)
)

.

As m̂3
i [θi] ∈ Y ∗

i [θi], she cannot improve by any such deviation. Hence, mi ∈ bΘi (S)[θi]. This

completes the proof of Step 3.

Step 4: Condition (2) in Theorem 3.1 is satisfied by the constructed mechanism

Proof. Pick i ∈ I, θi ∈ Θi and z
1
i ∈ Z1

i . For each θ−i ∈ Θ−i, pick some m̃−i ∈M−i such that

m̃1
j [i] = θi, m̃

1
j [j] = θj , and m̃

2
j = 1 for all j 6= i. From Step 3, it follows that m̃−i ∈ S∞

−i(θ−i).

Define the belief ψi ∈ ∆(Θ−i ×M−i) such that ψi(θ−i, m̃−i) = z1i (θ−i) for all θ−i ∈ Θ−i.

By construction, ψi(θ−i, m−i) > 0 ⇒ m−i ∈ S∞
−i(θ−i) and margΘ−i

ψi = z1i . When

individual i of payoff type θi holds the belief ψi and plays mi = (m1
i , 1, m

3
i , m

4
i ) such that

m1
i [i] = θi, then she expects the payoff of

∑

θ−i
z1i (θ−i)ui

(

f(θi, θ−i), (θi, θ−i)
)

. On the one

hand, if she deviates to m̂i such that m̂1
i [i] = θ

′

i and m̂
2
i = 1, then she expects the payoff of

∑

θ−i
z1i (θ−i)ui

(

f(θ
′

i, θ−i), (θi, θ−i)
)

, which is not improving due to semi-strict EPIC. On the

other hand, if she deviates to m̂i such that m̂2
i > 1, then she expects the payoff of

(

m̂2
i

1 + m̂2
i

)

∑

θ−i

z1i (θ−i)ui
(

m̂3
i [θi](θ−i), (θi, θ−i)

)

+

(

1−
m̂2
i

1 + m̂2
i

)

∑

θ−i

z1i (θ−i)ui
(

yθii (θ−i), (θi, θ−i)
)

.

As m̂3
i [θi] ∈ Y ∗

i [θi], she cannot improve by any such deviation. Hence,

arg max
m′

i∈Mi

∑

θ−i,m−i

ψi(θ−i, m−i)ui
(

g(m′
i, m−i), (θi, θ−i)

)

6= ∅,

which completes the proof of Step 4.
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Steps 1 through 4 complete the proof of Theorem 5.5.
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