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Abstract. An agent makes a stochastic choice from a set of lotteries. She infers the
outcomes of each available lottery using a subjective causal model represented by a
directed acyclic graph, and consequently may misinterpret correlation as causation.
Her choices affect her inferences, which in turn affect her choices, so the two together
must form a personal equilibrium. We show how an analyst can identify the agent’s
subjective causal model from her random choice rule. Her choices reveal the chains
of causal reasoning that she undergoes, and these chains pin down her subjective
causal model. In addition, we provide necessary and sufficient conditions that allow
an analyst to test whether the agent’s behavior is compatible with the model.

1. Introduction

An agent’s behavior depends on her beliefs about which statistical relationships
reflect causality and which reflect spurious correlation. For instance, she may observe
a positive correlation between duration of hospitalization and chance of death. This
relationship may be causal if time in the hospital increases one’s chance of catching
an unrelated infection, or spurious if both are caused by the severity of illness. She
would be more reluctant to seek treatment if she believed the former than the latter.
In this paper, we develop a theory in which an analyst can use the agent’s behavior,
in the form of a random choice rule, to identify her subjective causal model and test
whether misperceived causality explains her choices.
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We motivate our results with a pair of examples. Consider a doctor (the agent)
prescribing medical treatments for Alzheimer’s disease. These treatment can affect
the patients’ levels of two correlates, amyloid plaques and neurofibrillary tangles, in
addition to Alzheimer’s. These levels are known only after the patient undergoes a
treatment. The doctor infers the effect of each treatment on Alzheimer’s using data
from the outcomes of her patients, and performs the one that she thinks will lead
to the lowest chance of disease. A drug company (the analyst) may want to know
whether a misspecified causal model can explain the doctor’s reluctance to prescribe
its treatment, and if so, what that model is. For instance, demonstrating that the drug
decreases the chance of plaque buildup would only convince the doctor to prescribe
it if she thinks that high levels of plaque cause Alzheimer’s. It would be ineffective
if the doctor believes that the correlation is spurious, as would be the case when
neurofibrillary tangles cause both plaque buildup and Alzheimer’s. Our results show
how the analyst can answer such questions based on the frequency with which each
treatment is performed in different circumstances (behavior).

For a second example, consider a firm (the agent) that hires workers from distinct
pools that differ in their education, ability, and productivity. The specific attributes
of a given worker are revealed to the firm only after it hires him or her. The firm uses
a causal model to predict the expected productivity of workers from a given pool,
and hires from each pool in proportion to predicted productivity. Since the return to
education for workers depends on the firm’s behavior, the Department of Education
(the analyst) may want to know the firm’s model. For instance, if it believes that
education is purely human capital formation, i.e. that education is the only direct
cause of productivity, then pushing for reforms that relax admission standards would
not lower the return to education. If instead the firm believes that education is purely
a signal of ability, then relaxed standards would lower its return. The analyst cannot
directly observe the firm’s causal model, and so must infer it from the frequency with
which the firm hires from each pool. Our result allows the analyst to test whether the
firm’s hiring decisions (behavior) are consistent with a belief that education causes
productivity.

This paper provides a theoretical methodology for identifying the subjective
causal model of a decision maker (DM) from her behavior. Following Pearl (1995) and
Spiegler (2016), we model her perception of causality using a directed acyclic graph
(DAG). Each node in the graph is a variable, such as the agent’s action or outcome,
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and each edge represents a belief that one of the variables directly causes another.
DAGs allow for a flexible and non-parametric representation of causal relationships.
For example, they provide a language to distinguish between a doctor who believes
that plaque causes Alzheimer’s, represented by an edge between the two, and one
who believes that both are caused by tangles, captured by edges from tangles to both
plaque and Alzheimer’s.

We consider a DM who chooses from a set of actions, each determining a prob-
ability distribution over a vector of variables. The random choice rule representing
the DM’s behavior has a subjective causality representation if she acts as if she uses
a fixed DAG to predict the consequences of her actions from data generated by her
past choices, and then chooses each action with a frequency proportional to its ex-
pected utility. The choices form a personal equilibrium: how frequently she chooses
each action affects her dataset, which affects her inferences about the strength of the
causal relationships in her DAG, which affects her likelihood choosing each action.1

We show how to identify the DM’s DAG and preferences from her behavior. Then,
we turn to the question of how to test whether a random choice rule has a subjective
causality representation and provide necessary and sufficient conditions for one to
exist.

The DM may mistake correlation for causation when her causal model is mis-
specified. In particular, she neglects the effect of her choices on the dataset from
which she learns about her actions. Her choices may create a correlation between two
variables that she misinterprets as a causal effect, the magnitude of which affects how
likely she is to choose each action. As an example, consider a firm who thinks that the
pools of workers from which it hires are selected based only on education and that
education alone causes productivity, but in reality, productivity is caused only by
ability. If high-ability workers in a given pool are more likely to have high education
than are low-ability ones, then the perceived return to education increases with the
fraction of workers hired from that pool. This incentivizes the firm to increase the
frequency with which it selects that pool, reinforcing the effect. The firm’s neglect
of how its behavior affects the data on which it performs inferences poses technical
challenges. For instance, its behavior may violate regularity, a necessary condition

1While such a feedback effect occurs in many studies of agents with misspecified models, such as
Esponda and Pouzo (2016), it has typically been absent in decision theoretic work on misspecifica-
tion.



4 ELLIS AND THYSEN

for a random utility model (RUM). However, we show in Section 3 that it allows the
model to accommodate a number of documented cognitive biases, including selection
neglect, illusion of control, status-quo, and congruence biases.

Our first main result identifies the causal model that explains the DM’s behav-
ior. Within the broad class of DAGs considered, we show that the DM’s perceived
causal chains identify all the relevant variables and the causal relationships between
them. We then reveal these chains from her behavior. Our method relies on the
observation that when every chain passes through a set of variables, independence
between those variables and the others implies indifference between all actions. For
example, the doctor may believe that treatments affect the chance of plaque buildup,
and that plaque buildup causes Alzheimer’s. She is equally likely to choose every
treatment when plaque buildup is independent of treatment, presence of tangles, and
Alzheimer’s. After revealing these sets, we show they can be ordered to determine
the perceived causal chains.

In contrast to the large literature that empirically determines causality (e.g.
Card (1999)), the result identifies an agent’s perception of causal relationships. These
perceptions may affect the agent’s reaction to a policy intervention, and thereby that
policy’s effectiveness, even if they are not empirically valid. For instance, a firm
that appears to offer minority workers a lower wage may do so because it dislikes
employing minorities even though they are equally or more productive (taste-based
discrimination). Alternatively, it may offer minorities a lower wage because being a
minority is correlated with another attribute, such as education, that the firm thinks
affects productivity (statistical discrimination, perhaps based on a wrong model and
resulting in incorrect beliefs). Policies that attempt to remedy the former, such as
affirmative action or awarding scholarships to minority students, may do nothing for
the latter.2

Similarly, agents’ models of the macroeconomy determine how a policy change
affects their expectations about macroeconomic variables. For instance, Andre et al.
(2021) show that laypeople tend to think an increase in the federal funds rate primarily
affects producer costs, leading to an increase in expected inflation. However, they
also show that experts tend to think that such an increase primarily affects demand,
leading to a decrease in expected inflation. As inflation expectations have first-order

2See Lang and Kahn-Lang Spitzer (2020) for an overview of different types of race discrimination.
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importance in macroeconomics, which of the two causal models prevails determines
the effect of a change in the federal funds rate.

Our second main result establishes how to test whether a misspecified causal
model can explain the DM’s behavior. To do so, we provide necessary and sufficient
conditions for a random choice rule to have a subjective causality representation.
The axioms link the DM’s perception of causality, as inferred from our first result,
to her behavior. Holding her predictions about the outcome of actions constant, her
behavior conforms closely to Logit with an expected utility Luce index (henceforth,
Logit-EU). Put another way, her choices from a pair of menus are inconsistent with
Logit-EU only when her inferences about causal effects differ across the menus. For
example, the axioms require that the DM chooses two actions with the same relative
frequency whenever she makes the same prediction about their distribution of out-
comes. However, her predictions vary across menus when the inferred causal effects
change. As a consequence, she may violate a number of standard axioms, including
regularity.

An agent with a subjective causality representation predicts a different distri-
bution of outcomes from taking an action than the analyst does. The result places
testable restrictions on her behavior in spite of the information gap. Thus, it estab-
lishes that misspecified causality provides enough discipline on how her beliefs are
distorted to be testable; without any restrictions on belief distortion, testing would
be impossible. More broadly, this paper adapts decision theoretic methodology to
identify and test an agent’s subjective model of the world, as opposed to the usual
exercise of identifying and testing her preferences with a correct, or at least an agreed
upon, model of the world. We see this as a step toward providing testable implica-
tions for the growing literature studying agents with misspecified models, especially
Spiegler (2016), Eliaz and Spiegler (2018), Eliaz et al. (2019), Eliaz et al. (2020),
Spiegler (2020), and Schumacher and Thysen (2020), which all use versions of the
subjective causality representation.3

We conclude by exploring how our analysis would change with different assump-
tions. In our analysis so far, the DM makes inferences based on her own past behavior,
an important feature of the recent literature on misspecified models. However, this
3Other models where misspecification leads to distorted beliefs include Esponda and Pouzo (2016),
Bohren and Hauser (2018), Frick et al. (2019), He (2018), Heidhues et al. (2018), Samuelson and
Mailath (2019), Montiel Olea et al. (2021), and Levy et al. (2021).
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interpretation relies on observing the long-run steady-state distribution of choice.
In an experimental setting, it may be more convenient to instead provide subjects
with an exogenously given dataset. We augment the random choice rule with such
a dataset and show that our identification results naturally extend to such a setting.
While random choice is widely used in experimental and empirical settings, much of
the literature that adopts the DAG approach to causality focuses on deterministic
choices. We adapt our identification results to this setting as well.

Related literature. Spiegler (2016) introduced the subjective causal representation,
albeit without stochasticity and without axiomatic foundations. He shows that this
can capture a number of errors in reasoning, including reversed causality and omitted
variables. Taken together, our results allow us to test the underlying assumptions
of existing work on the effects of causal misperception. This growing literature has
been applied to monetary policy (Spiegler, 2020), political competition (Eliaz and
Spiegler, 2018), communication (Eliaz et al., 2019), inference (Eliaz et al., 2020), and
contracting (Schumacher and Thysen, 2020). The majority of these papers take the
agents’ DAGs as given, whereas our goal is to identify the DAG from behavior and
test whether subjective causality explains choice. Consequently, our results increase
the applicability of these papers.

Pearl (1995) argued for using and analyzing DAGs to understand causality. A
large literature (e.g., Cowell et al., 1999, Pearl, 2009) develops and applies this ap-
proach for probabilistic and causal inference. The typical exercise uses a DAG either
to estimate the causal effect of a particular intervention or to infer which DAG, if any,
is consistent with a given dataset.4 Schenone (2020) introduces the DAG approach
to causality into a decision theory framework. In his model, an agent expresses pref-
erences over act-causal-intervention pairs. For instance, the DM decides which of
two workers to hire; both are identical except one of them has been forced to obtain
exactly 11 years of education. He provides necessary and sufficient conditions for the
agent’s beliefs to result from applying the “do-operator” to intervened variables for
a fixed DAG and prior. The DAG is identified from the behavior. His approach is
complementary to the one taken by this paper. It is mainly concerned with a norma-
tive definition of causality as a manifestation of rationality. By contrast, this paper
uses DAGs to capture flaws in the reasoning of a boundedly-rational DM.
4Recently, Imbens (2020) contrasts this with the potential outcomes approach and discusses why
these methods have attracted more attention outside of economics than within it.
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More generally, our paper is related to the decision theory literature studying
DMs who misperceive the world. Lipman (1999) studies a DM who may not under-
stand all the logical implications of information provided to her. Ellis and Piccione
(2017) develop a model where agents misperceive the correlation between actions. Ko-
chov (2018) models an agent who does not accurately foresee the future consequences
of her actions. Ke et al. (2020) study DMs who perceive lotteries through a neural
network. Ellis and Masatlioglu (2021) consider an agent who categorizes alternatives
based on the context, and the category to which it belongs affects her evaluation (or
perception) of it. In all, the DM’s perception of an alternative is unaffected by her
behavior.

Finally, our paper also falls into the theoretical literature studying random choice.
We fall between two strands. The first seeks to use choice data to identify features
of otherwise rational behavior, such as Gul and Pesendorfer (2006) identifying the
distribution of utility indexes, Lu (2016) identifying an agent’s private information,
and Apesteguia and Ballester (2018) studying comparative risk and time preferences.
The second interprets randomness as a result of boundedly rational behavior in ab-
stract environments, such as the Manzini and Mariotti (2014), Brady and Rehbeck
(2016), and Cattaneo et al. (2020) models of limited attention. This paper uses ran-
dom choice to identify features of explicitly boundedly-rational behavior. The only
other paper of which we are aware that uses stochastic choice to capture equilibrium
behavior is Chambers et al. (2021).

2. Model

2.1. Setting. Each action a determines a distribution over a payoff-relevant conse-
quence and n covariates. The ith covariate takes a value in Xi and the consequence
belongs to the set Xn+1. For a non-empty-set S, let ∆(S) be the set of finite support
probability distributions over S. Each action is a member of the set X0 = ∆(∏n+1

i=1 Xi),
and it is convenient to denote X−0 = ∏n+1

i=1 Xi and X = X0 × X−0. We require that
Xn+1 is a compact subset of R with |Xn+1| ≥ 2, and take Xi = R for simplicity.5

5We can let each Xi, i ≤ n, be any set with |Xi| ≥ min{|Xn+1|, |N|} and Xn+1 be a compact subset
of a topological space. This would increase the notational complexity but not substantively change
the arguments or results.
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The DM’s (stochastic) choice of action determines the distribution of a random
vector X = (X0, X1, . . . , Xn+1). If the DM chooses a ∈ X0, then a(x1, . . . , xn+1) is
the probability that Xi = xi for every i ∈ {1, . . . , n + 1} ≡ N . We identify the
distribution over actions with the 0th random variable. The last index n+ 1 denotes
the consequence. The set {1, . . . , n} indexes the covariates. By convention, capital
letters refer to variables and lowercase letters to realizations. We denote by margJ p
the marginal distribution of p on the variables indexed by J . With slight abuse of
notation, we sometimes identify the action a ∈ X0 with the element of ∆X that has
a marginal on X−0 equal to a and attaches probability 1 to X0 = a.

The DM decides between options in S, a finite subset of X0 where the support of
the joint distribution of covariates is the product of their marginal supports for any
available action. Every choice problem belongs to the set

S =

S ⊂ X0 :
n∏
j=1

supp(margj a) = supp(marg{1,··· ,n} b) for all a, b ∈ S and |S| ∈ (1,∞)

 .
This ensures that Bayes’ rule is well-defined and can be relaxed in specific examples.

A random choice rule ρ : X0×S → [0, 1] where ∑a∈S ρ(a, S) = 1 and ρ(a, S) = 0
for every a /∈ S describes the DM’s choices. The probability she chooses a from S

is ρ(a, S). Identify ρS with the probability distribution over X induced by the DM’s
choice probabilities, that is

ρS ∈ ∆X where ρS(a, y) = ρ(a, S)a(y) for all a ∈ X0 and y ∈ X−0.

Note ρ(·, S) is a distribution over actions whereas ρS is a distribution over X .

For p ∈ ∆(B), the qualifier “for p-a.e. z ∈ B” means “for almost every z ∈ B
according to p,” or equivalently “for every z in the support of p” since p has finite
support. For a set J ⊂ N and x ∈ X−0, xJ denotes the event that Xj = xj for all
j ∈ J . When it will not cause confusion, we sometimes write xj instead of x{j} and
x∅ for an arbitrary constant. For k ∈ R, kj denotes the event that Xj = k. We define
the mixture between lotteries a and b, αa+ (1− α)b, in the usual way.

2.2. Subjective Causality Representation. A directed acyclic graph (DAG) over
a set M is an acyclic binary relation R ⊂ M ×M , where iRj denotes (i, j) ∈ R. A
DAG R over {0, 1, . . . , n + 1} describes the DM’s perception of causality. Here, iRj
indicates that the DM thinks that Xi directly causes Xj and corresponds to a directed
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edge in a graph with nodes {0, . . . , n+ 1}. We often write R(i) for the indexes of the
variables that cause Xi according to R, termed the parents of i. For a DAG R and
p ∈ ∆X , pR is the probability distribution so that

pR(x) =
n+1∏
j=0

p
(
xj|xR(j)

)
for every x ∈ X . See Spiegler (2016) for further interpretation.

A DAG R is uninformed if there is no i ∈ N with iR0. That is, none of
the other variables cause the DM to choose her action. A DAG R is nontrivial if
0Ri1Ri2R . . . Rim for some i1, i2, . . . im ∈ N with im = n + 1. That is, there is a
channel through which the choice of action can influence the distribution over con-
sequences. Say that (i, j, k) is an R-v-collider if iRk, jRk, j 6Ri, and i 6Rj. The
DAG R is perfect if there are no R-v-colliders. We focus on perfect DAGs because
otherwise the perceived marginal distribution of some variable may diverge from its
true distribution (Spiegler, 2017).

Definition 1. The random choice rule ρ has a subjective causality representation
(SCR) if there exists an uninformed, nontrivial DAG R and a continuous, strictly
increasing u so that

ρ(a, S) =
exp

(∫
Xn+1

u(c)dρSR(cn+1|a)
)

∑
a′∈S exp

(∫
Xn+1

u(c)dρSR(cn+1|a′)
)

for every a ∈ S and S ∈ S; then, we say ρ has an SCR (R, u) and that R represents
ρ. An SCR is perfect if its DAG is perfect.

The representation corresponds to the following “as if” procedure. The DM
maximizes expected utility but with a potentially incorrect prediction of the conse-
quence distribution resulting from her actions. She believes that taking an action
only directly affects the variables caused by it, which in turn affects the variables
caused by them, and so on and so forth. Each of these causal effects are calculated
from the “dataset” ρS that contains every realization of the random vector X with
a frequency determined by her choices. She begins by predicting the distribution of
a variable caused only by her action. Then, she forms an overall prediction by re-
cursively extending her (interim) predicted distribution to subsequent variables using
her estimates of the causal effects. Ultimately, she expects to receive consequence c
with probability ρSR(cn+1|a) if she takes action a.
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For comparison, a ρ has a Logit-EU representation if there is a continuous, in-
creasing u so that for every a ∈ S and S ∈ S,

ρ(a, S) =
exp

(∫
Xn+1

u(c)da(cn+1)
)

∑
a′∈S exp

(∫
Xn+1

u(c)da′(cn+1)
) =

exp
(∫
Xn+1

u(c)dρS(cn+1|a)
)

∑
a′∈S exp

(∫
Xn+1

u(c)dρS(cn+1|a′)
) .

The SCR replaces the Bayesian update ρS(·|a) with the one generated by her causal
model ρSR(·|a).

An SCR is a personal equilibrium (Köszegi and Rabin, 2006): the DM maximizes
expected utility given her beliefs that depend on her choices. It is easy to show that
an equilibrium exists for any S ∈ S using Brouwer’s fixed point theorem. For menus
with more than one, we place no restrictions on which is selected.

Remark 1. We adopt the exponential function for concreteness and applicability. Our
results adapt to any other strictly increasing and positive function. See Footnote 12.

2.3. Running Example. Throughout, we illustrate our framework with the follow-
ing running example. The random choice rule represents frequencies with which a
doctor performs medical treatments for Alzheimer’s disease on observationally iden-
tical patients.6 An analyst, e.g. a drug company, observes the doctor’s choices, and
wants to know whether the decisions can be explained by an SCR, and if so, what
the doctor’s causal model is. Each treatment leads to a realization of three vari-
ables: two correlates, amyloid plaque buildup (“plaque” for short, indexed by P = 1)
and the presence of neurofibrillary tangles (“tangles” for short, indexed by T = 2),
and long-term health status, i.e., whether the patient gets Alzheimer’s (indexed by
H = 3). Each of the variables is binary and takes values in {0, 1}. The vector (0, 1, 1)
represents a patient who does not have plaque buildup, has tangles, and is in good
health (i.e., does not have Alzheimer’s). The probability that a patient undergoing
treatment a has those characteristics is a(0, 1, 1). The doctor only cares about the
long-term health of her patients. When choosing the treatment, the outcome of the
correlates as well as health is unknown. However, she observes the dataset of joint
realizations of treatments, correlates, and health.

6While we focus on the individual interpretation of random choice for expositional purposes, our
results apply equally well to a group interpretation provided that the group has a sufficiently similar
causal model. Here, the DM is a “representative” patient choosing their own treatment on the basis
of their inferences from other patients’ results. This would apply to vaccination, for instance.
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Figure 1. Possible DAGs in the Running Example

Figure 1 gives some possible DAGs. Each DAG represents a different theory of
causation.7 A doctor represented by RP believes that the treatment directly influ-
ences the plaque buildup, and that plaque, and plaque alone, causes Alzheimer’s. By
contrast, one represented by RT believes that the treatment only directly influences
tangles, and that tangles cause both plaque and Alzheimer’s. A doctor represented
by RRat always correctly predicts the outcome distribution of each action because
it is a complete graph and therefore does not embed any conditional independence
assumptions. However, a DM represented by any of the other DAGs in Figure 1 po-
tentially makes incorrect predictions. For instance, if she is represented by RP , then
she must believe that Alzheimer’s is unaffected by the treatment conditional on level
of plaque, regardless of whether this holds empirically.

2.4. Interpretations of the model. Our main interpretation of an SCR is that
it describes a DM who predicts the outcome of her action using a causal model. It
may also describe a DM with limited data access (Spiegler, 2017). In this interpre-
tation, she only considers or observes the distributions of several overlapping subsets
of variables. She then extrapolates to form a distribution over all variables using the
principle of insufficient reason. Formally, she uses the distribution that maximizes

7DAGs are common tools in applied health research; see Tennant et al. (2020) for a survey.
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entropy subject to matching the marginal distributions over the subsets she consid-
ers. Identifying her DAG corresponds to identifying the considered subsets. In the
running example, a doctor represented by RP only observes, or only has access to,
two datasets: one that keeps track of the efficacy of the treatments on plaque and
another one that tracks the impact of plaque on Alzheimer’s. Recently (and contro-
versially), the FDA approved the Alzheimer’s medication aducanumab on the basis
of its reduction in plaque buildup despite limited evidence of its effects on the disease
itself.8

Alternatively, it may describe a DM learning the distribution of the random
vector X from the dataset ρS with the aid of a DAG R. The model factorizes the
distribution ρS into a perceived distribution ρSR. She then perceives the lottery a

as the lottery ρSR(·|a). Because R embeds conditional independence assumptions,
it may reduce the number of moments needed to reconstruct the distribution. In
the running example, the DM can store all the relevant information according to
RP using only 6 parameters; for S = {a, b}, the numbers p(a), p(1P | a), p(1T ),
p(1H | 1P ) and p(1H | 0P ) fully determine pR. In contrast, it would require 24 −
1 = 15 parameters to record the probability of each possible realization without this
assumption. Such an interpretation is agnostic as to why the DM infers the overall
distribution rather than just the relationship between action and consequence. She
may (incorrectly) anticipate the arrival of additional information or the possibility
of taking other actions. She may think it is easier or quicker to learn the stronger
correlations between the covariates that make up a causal chain than to learn the
weaker correlation between her action and the outcome.

For a final interpretation, we note that when ρ has an SCR, ρSR minimizes
Kullback–Liebler divergence from ρS among all the probability distributions on X
that are consistent with R. Then, ρ represents a single agent Berk–Nash equilibrium
(Esponda and Pouzo, 2016) with extreme-value errors. As in that model, we can in-
terpret the behavior as the steady state of a learning process with a set of parameters
(probability distributions) that do not include the “true” one.

8See www.theatlantic.com/health/archive/2021/07/americas-drug-approval-system-
unsustainable/619422/ for a description of the controversy and fda.report/media/143503/PCNS-
20201106-CombinedFDABiogenBackgrounder_0.pdf for the evidence submitted and the FDA’s
evaluation thereof.

http://www.theatlantic.com/health/archive/2021/07/americas-drug-approval-system-unsustainable/619422/
http://www.theatlantic.com/health/archive/2021/07/americas-drug-approval-system-unsustainable/619422/
http://fda.report/media/143503/PCNS-20201106-CombinedFDABiogenBackgrounder0.pdf
http://fda.report/media/143503/PCNS-20201106-CombinedFDABiogenBackgrounder0.pdf


SUBJECTIVE CAUSALITY IN CHOICE 13

3. Behavioral Implications of Misspecification

The DM’s behavior may endogenously create correlations that she misinterprets
as causation. Fundamentally, the DM neglects the effect of her choices on her data.9

This leads to two key technical challenges. First, an SCR random choice rule may
violate regularity, a property necessary for representation by a random utility model
(RUM). Second, the agent’s behavior may be self-confirming: because she chooses
a frequently, she thinks it is better than b, but would reverse her thinking if she
chose b more frequently. However, these features allow the model to accommodate
a number of biases documented in the psychology literature, including violations
of independence of irrelevant alternatives, illusion of control, status-quo bias, and
congruence bias. In this section, we illustrate these challenges and relate them to the
behavior permitted.

3.1. Regularity violation. A choice rule with an SCR may violate regularity, the
requirement that ρ(a, S) ≥ ρ(a, S ′) whenever a ∈ S ⊆ S ′. Consequently, the class
of choice rules with an SCR and those with a RUM do not coincide. This poses
a challenge for identifying the model as usual techniques do not directly apply. By
contrast, many behaviors interpreted as irrational can be represented by a RUM, such
as the model of limited attention due to Manzini and Mariotti (2014).

To illustrate why regularity may be violated, consider a doctor in the running
example whose behavior has a SCR (RP , u). There are three treatment options, ι, π, ν,
that are equally likely to lead to good health. Plaque and health are independent
after undergoing treatment ι, positively correlated under treatment π, and negatively
correlated under treatment ν. When the doctor decides between only ι and π, plaque
buildup is necessarily positively correlated with good health. As she mistakes the
correlation for causation, this makes treatments that are more likely to lead to plaque
buildup more attractive. However, when she chooses between all three treatments,
the patients to whom she prescribes ν may cancel out or even reverse the perceived
positive effect of plaque on health. When this effect is strong enough, it can lead to
an increase in the probability of choosing the treatment with a lower probability of
plaque buildup.

9Esponda and Vespa (2018) experimentally document selection neglect, and Denrell (2018) provides
a recent survey of evidence for it in managers.
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Formally, suppose that ι(1P , 1H) = ι(1P , 0H) = 1
2 , π(0P , 0H) = π(1P , 1H) = 1

2 ,
ν(1P , 0H) = ν(0P , 1H) = 1

2 , u(L) = 0, and u(H) = 6.10 Consider menus S = {ι, π}
and S ′ = {ι, ν, π}.11 If ρ(ι, S) = z, then

ρS(1H |0P ) = 0 < ρS(1H |1P ) =
z 1

2 + (1− z)1
2

z(1) + (1− z)1
2

= 1
1 + z

,

and since ι(1P ) > π(1P ) > 0, we have 1 > z > 1
2 . Then, 1

2 < ρS(1H |1P ) < 2
3 , so

ρSR(1H |π) < 1
3 , while ρ

S
R(1H |ι) > 1

2 . Hence

ρ(π, S)
ρ(ι, S) <

exp[1
36 + 2

30]
exp[1

26 + 1
20] = exp[−1] < 1

2

and ρ(π, S) < 1
3 . Because health is independent of the treatment conditional on

plaque according to RP , the doctor is indifferent between two treatments with the
same probability of plaque buildup. Therefore, ρ(ν, S ′) = ρ(π, S ′) = γ. Then,

ρS
′(1H |1P ) =

(1− 2γ)1
2 + γ 1

2 + γ(0)
(1− 2γ) + 2γ 1

2
= 1

2 =
(1− 2γ)(0) + γ(0) + γ 1

2
(1− 2γ)(0) + 2γ 1

2
= ρS

′(1H |0P ),

so ρ(ι, S ′) = ρ(ν, S ′) = ρ(π, S ′) = 1
3 > ρ(π, S), violating regularity.

While the violations of regularity allow the model to accommodate phenomena
like the decoy effect, the failure stems from faulty reasoning. The above doctor overes-
timates her ability to control events, or exhibits illusion of control (Langer, 1975). Her
choices do not affect long-term health, yet she would be willing to pay a premium to
choose one treatment over another. Moreover, she also exhibits “patternicity” (Sher-
mer, 1998) in that she perceives a pattern, namely that using ι leads to better long
term-health outcomes, where none exist.

3.2. Self-confirming choices. As illustrated above, the outcome that the DM ex-
pects to get from an action may depend on how frequently she chooses it. She may
perceive one action to be better than another only if she chooses it sufficiently fre-
quently; this can lead to multiple personal equilibria. For instance, consider a doctor
who thinks that plaque alone causes health. Action b represents prescribing a drug
that prevents the disease but often leads to plaque buildup. Action a represents not

10The distribution of tangles does not affect behavior, so we leave it unspecified.
11We note that S, S′ /∈ S, so this example, and that in the next subsection, are technically outside
our domain. At the cost of complicating the algebra and obscuring the logic, they can be made
consistent with our assumptions by replacing each action c with c′ = (1 − ε)c + εd where ε > 0 is
small enough and d(y) = 1

8 for each y ∈ {0, 1}3.
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intervening, and such patients often get the disease but rarely have plaque buildup
and then only when the patient gets the disease. When the doctor usually does not
prescribe the drug, low plaque buildup is mistakenly believed to increase the chance
of good health. Consequently, prescribing the drug, which raises their plaque, seems
like a bad idea. Symmetrically, when she usually prescribes the drug, not intervening
to decrease plaque buildup seems counterproductive.

Formally, the DM has an SCR (RP , u) and chooses between two treatments, S =
{a, b}, such that b(1, 1, 1) = 1, a(0, 0, 1) = 1

2q, a(0, 0, 0) = 1
2(1− q), and a(1, 1, 0) = 1

2
where q ∈ (0, 1). One can compute that

ρS (1H |1P ) = 2− 2ρ(a, S)
2− ρ(a, S) and ρS (1H |0P ) = q.

That is, whether the doctor thinks that plaque has a positive or negative effect on
Alzheimer’s depends on the fraction who take action a. Setting u(1) = λ and u(0) = 0
for λ > 0, we must have

λ
1
2

(
q − 2− 2ρ(a, S)

2− ρ(a, S)

)
= ln ρ(a, S)− ln(1− ρ(a, S)).

There are multiple solutions for large enough λ. For instance when λ = 30 and q = 3
4 ,

the solutions are ρ(a, S) ≈ .34, ρ(a, S) ≈ 0.02, and ρ(a, S) ≈ 0.99.

With data that contains a small enough fraction of patients who received the
drug, the doctor often does not intervene because her misspecified model concludes
that plaque buildups lead to good health. While this is true in that dataset, taking
the drug is unambiguously superior, as she would realize if a larger fraction took it.
Interpreting the choices as the steady state of a learning process, such a DM exhibits
status quo bias (Samuelson and Zeckhauser, 1988), a tendency toward “maintaining
one’s current or previous decision,” and congruence bias (Wason, 1960) by failing to
test the alternative hypothesis that the drug is better than not intervening.

4. Revealing the Subjective Causal Model

In this section, we reveal the DM’s subjective causal model from her choice
behavior. In a DAG R, information flows along the chains of causal relations from
actions to consequences. We show that we can reveal these causal chains from the
DM’s behavior, and that they pin down the subjective causal model.
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Formally, a causal chain is an active path from 0 to n + 1 in R (an R-AP for
short): a finite sequence of variables (i0, i1, i2, . . . , im) with i0 = 0, im = n + 1, and
ijRij+1 for every j < m. This represents a chain of causal reasoning: according to
R, variable 0 causes i1, which in turn causes i2, and so on, ending with a cause of
the outcome variable. A minimal R-AP, or R-MAP, is an R-AP that cannot be
made shorter. That is, (i0, . . . , im) is an R-MAP if it is a R-AP and ij 6Rij′ whenever
j′ 6= j + 1. The main result of this section shows that the R-MAPs suffice to identify
the DAG.

Theorem 1. Let ρ have a perfect SCR (R, u) and R′ be a perfect, uninformed, non-
trivial DAG. Then, ρ has an SCR (R′, u′) if and only if the set of R′-MAPs coincides
with the set of R-MAPs and there exists β so that u(c) = u′(c)+β for every c ∈ Xn+1.

The result shows that two DMs behave identically if and only if they agree on
the channels through which their actions affect their payoffs and they have the same
tastes. In particular, the R-MAPs capture the parts of the causal model relevant
for predicting the expected consequence of each action. This has two immediate
corollaries. First, only relationships between variables that appear in at least one R-
MAP affect the DM’s behavior. In particular, any variables caused by the consequence
are inconsequential for the her behavior and can therefore be ignored. Second, the
chains of causality involving such variables determine all other causal relationships.
While there may be causal links not in an R-MAP, their existence and direction can
be determined from the causal chains or are immaterial to the DM’s choices.

To see the consequences of the first implication, note that the presence of tangles
does not belong to any RP -MAPs. A doctor represented by RP can also be represented
by a DAG R′ that contains the links in RP and adds links to and from tangles that
do not create a cycle, an R′-MAP, or a v-collider. For the second, a DM represented
by Rboth can also be represented by a DAG that reverses the link between plaque
and tangles, but no other DAG. Any representation must have the same Rboth-MAPs
((0, P,H) and (0, T,H)) and must have some link between plaque and tangles to rule
out a v-collider.

The next two subsections illustrate how the analyst can reveal the R-MAPs from
choice behavior, establishing the necessity of the condition in Theorem 1. We begin
by identifying the sets of variables through which every causal chain must pass. Then,
we provide an ordering on these sets that reveals the R-MAPs.
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4.1. Revealing relevant variables. This subsection identifies the sets of covariates
that intersect every minimal causal chain from the DM’s choices. These sets reveal
the relevant variables for her causal model, in that any relationship involving one of
the others can be dropped from her model without affecting her behavior.

Given disjoint I, J ⊆ N , we say that XI is independent of XJ within S ∈ S,
written XI ⊥S XJ , if margI a = margI b for any a, b ∈ S and a(xI , xJ) = a(xI)a(xJ)
for disjoint every x ∈ X−0 and every a ∈ S. If XI is independent of XJ within S,
then regardless of how the DM chooses from S, the random vector XI is independent
of XJ in the resulting joint distribution ρS.

Definition 2. The set I ⊆ N separates if ρ(a, {a, b}) = 1
2 whenever XI ⊥{a,b} XN\I .

A set I of covariates separates if the DM is indifferent between her available
actions whenever XI is independent of all other variables within {a, b}. That is, she
believes that there is no relationship between the outcome and action whenever there
is no relationship between the variables indexed by I and the others. An experimenter
can create this independence by intervening to set their values without changing the
others in a randomized controlled trial. Then, I separates if the subject does not
think she can affect the outcome after the experimenter intervenes to set the value of
XI . Alternatively, we explore allowing for an exogenous dataset in Section 6 where
independence can be induced using unavailable actions.

Lemma 1. If ρ has an SCR (R, u), then I ⊆ N separates if and only if every R-MAP
intersects I.

To illustrate, consider a doctor who is equally likely to prescribe every treatment
whenever plaque buildup is independent of the other variables, i.e. {P} separates.
In particular, she is indifferent between such treatments even when one provides a
lower chance of tangles and better health. Then, she must believe that the correlation
between treatments, tangles, and health is spurious. Hence, her choices reveal that
she believes that every causal chain includes plaque.

In general, the set I separates when every causal chain in the DM’s model passes
through I. Intuitively, making a variable independent shuts down any causal chain
containing it. If I intersects every chain, then the independence of XI within S

shuts down all the channels through which the DM thinks her choice can affect the
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outcome, causing her to be indifferent. Observe that {n + 1} separates, as does any
set containing n+ 1. In any menu where the consequence is independent of all other
variables, all causal channels to it are shut down, so the DM is equally likely to choose
both actions. Whenever I does not intersect some causal chain, one can construct a
menu within which XI is independent and yet the DM is not indifferent between all
available options. The construction of the menu is independent of R and u, so given
that ρ has an SCR, it suffices to observe choice from a single menu to assess whether
I separates.

The set of all minimal separators,

A = {I ⊂ N : I is a minimal set that separates},

has a tight connection to the DM’s subjective causal model. Consider an R-MAP
(i0, ..., im). For any A,B ∈ A, (i0, ..., im) must intersect both A and B. If A∩B = ∅,
it contains exactly one member of each of A and B. If A ∩ B 6= ∅, then either it
contains k ∈ A∩B and no other member of A∪B, or exactly one member from each
of A \B and B \A. Moreover, the contrapositive of Lemma 1 says that if N \ I does
not separate, then some R-MAP involves only variables in I. That is, if I intersects
every A ∈ A, then I contains every covariate in some R-MAP.

Determining A immediately rules out many DAGs. In the running example, the
minimal separators suffice to distinguish between populations with any of the DAGs
in Figure 1 except RPT and RTP . If ρ has an SCR (R, u), then A equals {{P}, {H}}
when R = RP , {{T}, {H}} when R = RT , {{P, T}, {H}} when R = RBoth, and
{{H}} when R = RRat. By contrast, A = {{P}, {T}, {H}} reveals that R has
exactly one R-MAP that contains both plaque and tangles. That is, the analyst can
infer that either R = RPT or R = RTP but not which.

4.2. Revealing causal chains. To distinguish between causal chains containing
more than one covariate, we define an ordering on A from ρ that reveals the per-
ceived direction of causality.

Lemma 2. If ρ has a perfect SCR (R, u), then A can be ordered A = {A∗1, . . . , A∗|A|}
so that (i0, . . . , im) is a R-MAP if and only if for every j ∈ {0, . . . ,m − 1}, there
exists k so that ij ∈ A∗k \ A∗k+1 and ij+1 ∈ A∗k+1 \ A∗k when A∗0 = {0}.
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If all perceived causes of the variables indexed by B ∈ A are contained in A,
then the DM believes any relationship between her action and the consequence is
spurious whenever the variables indexed by A are independent of those indexed by
B. Intuitively, independence shuts down all the causal chains through which she
thinks her action can affect the consequence. We order A using this observation and
that the consequence must come last.

To illustrate, consider a doctor represented by RPT . On the one hand, if tangles
are independent of health, then since she believes that tangles are the only cause of
Alzheimer’s, the doctor thinks that each treatment is equally effective. She is equally
likely to prescribe either, regardless of the true relationship between her action and
health. On the other hand, the doctor may think one drug is superior when plaque is
independent of Alzheimer’s. For instance, when tangles occur if and only if health is
bad and there is no plaque buildup, then tangles are negatively correlated with both
the other variables. Then, the doctor thinks the drug that leads to a lower chance
of plaque buildup is best, even if plaque is independent of health. Hence, her choices
reveal that the presence of tangles causes Alzheimer’s and that plaque causes tangles,
so A∗3 = {H}, A∗2 = {T}, and A∗1 = {P}.

We construct the general ordering recursively, starting with the last.

Definition 3. Let A∗|A| = {n + 1}. Recursively define A∗i ∈ A \
{
A∗i+1, . . . , A

∗
|A|

}
so

that A∗i ∩ A∗i+1 ⊇ A ∩ A∗i+1 for all A ∈ A \
{
A∗i+1, . . . , A

∗
|A|

}
and ρ(a, {a, b}) = 1

2 for
any {a, b} ∈ S so that

XA∗i∩A
∗
i+1
⊥{a,b} XN\[A∗i∩A

∗
i+1] & XA∗i+1\A

∗
i
⊥{a,b} XA∗i \A

∗
i+1
.

Consider first a DM whose subjective causal model consists of a single minimal
causal chain, (j0 = 0, j1, . . . , jm = n + 1). Then, A = {{j1}, {j2}, . . . , {jm}}, so
A ∩ B = ∅ and A \ B = A for any distinct A,B ∈ A. The independence condition
suffices to determine the ordering. Since ji is the only cause of ji+1, independence
of Xji from Xji+1 within {a, b} shuts down the causal chain. This leads the DM to
dismiss any actual relationship between her action and the consequence as spurious.
However, the DM may perceive a correlation betweenXjk andXji+1 for any k < i even
when they are actually independent, as illustrated above. Consequently, independence
between Xjk and Xji+1 suffices for indifference if and only if k = i. Therefore, we
must have A∗i = {ji} when A∗k = {jk} for every k ≥ i+ 1.
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Consider now a DM whose model consists of more than one chain. Then, for
A,B ∈ A, Amay not be a singleton and A∩B may not be empty. The analyst can find
A∗i by applying the same logic as that in the single-chain case with three modifications.
First, A∗i must have the largest intersection with A∗i+1. If A ∈ A \

{
A∗i+1, . . . , A

∗
m

}
has A ∩ A∗i+1 6⊆ A∗i ∩ A∗i+1, then there is a cycle: for any j ∈

(
A∗i+1 ∩ A

)
\ A∗i

and k ∈ A∗i \ A∗i+1, there must be an R-MAP (. . . , j, . . . , k, j . . . ). Therefore, any
A,B ∈ A \

{
A∗i+1, . . . , A

∗
m

}
that have the largest intersection with A∗i+1 must satisfy

A∗i+1 ∩A = A∗i+1 ∩B = A∗∗. Second, the actions available must shut down the chains
that intersect A∗∗. To shut them down, we consider menus in which the variables
indexed by A∗∗ are independent of all others. Third, if A precedes A∗i+1 then every
j ∈ A \A∗∗ must come before every k ∈ A∗i+1 \A∗∗ in some R-MAP since each A ∈ A
contains one variable from each causal chain. Therefore, the DM must be indifferent
between a and b only if XA∗∗ ⊥{a,b} XN\A∗∗ and every variable indexed by A∗i \A∗∗ is
independent of every variable indexed by A∗i+1 \ A∗∗ within {a, b}.

Proposition 1. If ρ has a perfect SCR, then A and its ordering as per Definition 3
can be determined by observing ρ in a finite number of binary menus.

For I ⊂ N , we construct a binary menu {a, b} so that the DM is indifferent
between a and b if and only if I separates. In this menu, XI ⊥{a,b} XN\I and a (b)
almost always leads to high (low) realizations, so all the variables indexed by N \I are
almost perfectly correlated. The DM realizes the relationship between her action and
outcome if and only if I does not separate. The ordering of the minimal separators
is revealed recursively as above. To reveal whether A ∈ A \ {A∗i+1, · · · , A∗|A|} equals
A∗i , we construct a menu {a, b} so that the DM strictly prefers a to b if and only if
A 6= A∗i . Combining the two observations establishes the result.

4.3. Revealed causes. A perfect SCR may be represented by more than one DAG,
provided that both have the same minimal causal chains (Theorem 1). We turn to
the question of which links must belong to any representation of the DM’s subjective
causal model.

Definition 4. For j, k ∈ {0, 1, . . . , n+1}, j is revealed to cause k for ρ, written jR̂ρk,
if jRk for every SCR (R, u) that represents ρ.

That is, j is revealed to cause k if j causes k in every representation of ρ. This
definition is analogous to how Masatlioglu et al. (2012) define revealed preference with
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limited attention. When i directly precedes j in an R-MAP, then iR̂ρj. However,
there may be other revealed causes. Proposition 2 characterizes all of them.

Proposition 2. If ρ has a perfect SCR, then jR̂ρk if and only if there exists i so that
j ∈ A∗i and k ∈ A∗i+1 \ A∗i when A∗0 = {0}.

The result extends Lemma 2. The ordering of separators reveals not only the
R-MAPs but also every causal relationship that belongs to every representation of ρ.
Moreover, R̂ρ includes but is not limited to the links in R-MAPs. The causal links
revealed by the ordering are the only ones whose direction is uniquely determined by
choice behavior. Other links, such as that between P and T when ρ is represented
by RBoth, need to be included in the DAG, but their direction is not pinned down.
Determining the direction of causality between such variables requires additional data,
such as choices following interventions as studied by Schenone (2020).

Remark 2. The DAG R̂ρ may not be perfect. One can construct a perfect revealed
DAG Rρ by setting jRρk if and only if either jR̂ρk or there exists i so that j, k ∈
A∗i+1 \ A∗i and j < k with A∗0 = {0}. When ρ has a perfect SCR, Rρ represents ρ.
Moreover,

ρSR

(
x∪|A|i=1A

∗
i
|a
)

= a
(
xA∗1

) |A|−1∏
i=1

ρS
(
xA∗i+1\A

∗
i
|xA∗i

)
for any perfect DAG R that represents ρ, any a ∈ S, and a-a.e. x ∈ X−0.

5. Behavioral Foundations for Subjective Causality

This section characterizes the random choice rules that have a subjective causality
representation. Throughout, the properties are illustrated in the context of the run-
ning example. For these purposes, we consider a doctor for which A = {{P}, {H}},
and so, using results in Section 4, can be represented by RP . That is, the DM believes
that the treatments can influence plaque build-up, and plaque is the sole determinant
of health.

The first axiom is standard, requiring simply that the DM chooses every available
action with positive probability.

Axiom 1 (Full-support). For any S ∈ S and a ∈ S, ρ(a, S) > 0.
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The next axiom limits the perceived difference between any two options.

Axiom 2 (Bounded Misperception). The Luce ratio is bounded: supS,a,b∈S
ρ(a,S)
ρ(b,S) <

∞.

The relative frequency with which the DM takes two actions, their Luce ratio,
indicates the strength of her preference. Since the set of consequences is compact,
there is a best and worst outcome. These provide a natural limit to how much she
prefers one action to another, which bounds the Luce ratio. The axiom thus bounds
the size of the mistakes that the DM can make. In the running example, the doctor’s
Luce ratio for any two treatments is bounded above by that of the one she believes
will always lead to a good health outcome and that of the one she believes will always
leads to a bad health.

The third axiom ensures that the minimal separators can be ordered as in Section
4.

Axiom 3 (Consistent Revealed Causes). The set {n+1} ∈ A, and for i = 1, . . . , |A|,
A∗i exists.

This axiom implies that the DM does not think that the realization of a variable
can simultaneously influence and be influenced by the realization of another variable.
The DM may still believe that the current inflation level influence the current un-
employment level, and that both influence future inflation levels. However, current
and future inflation levels are regarded as two distinct variables. Thus, it is possible
to give a consistent account of which variables influence each other variable. As per
Proposition 1, it can be falsified by observing the DM’s choices from a finite number
of menus.

The fourth axiom requires that if the DM predicts two actions lead to the same
outcome distribution, then she chooses each with the same probability.

Axiom 4 (Indifferent If Identical Immediate Implications, I5). For a, b ∈ S ∈ S, if
margA∗1 a = margA∗1 b, then ρ(a, S) = ρ(b, S).

The covariates directly caused by the DM’s action are a sufficient statistic for her
prediction of the outcome distribution. That is, if two actions have the same distribu-
tion over these covariates, then she believes that both lead to identical probabilities
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of every consequence. She is therefore indifferent between any two actions with iden-
tical immediate implications according to her subjective causal model. In the running
example, it implies that the doctor is equally likely to choose any treatments with
the same probability of plaque buildup, regardless of any other differences between
them. Note that this axiom only considers the marginal distributions on XA∗1

of a
and b, remaining agnostic about their distribution on other variables and the available
actions.

The following axiom relates similarities in the DM’s inferences to her choices.

Axiom 5 (Luce’s Choice Axiom Given Inferences, LCI).
For any S, S1, S2, · · · ∈ S with a, b ∈ Sm ∩ S for each m, if

ρSm
(
yA∗i+1\A

∗
i
|yA∗i

)
→ ρS

(
yA∗i+1\A

∗
i
|yA∗i

)
for ρS-a.e. y ∈ X−0 and every i = 1, . . . , |A|, then ρ(a,Sm)

ρ(b,Sm) →
ρ(a,S)
ρ(b,S) .

The Logit model is characterized by Luce’s Choice Axiom (Luce, 1959), which
requires that ρ(a,S′)

ρ(b,S′) = ρ(a,S)
ρ(b,S) whenever a, b ∈ S∩S

′. LCI requires that the choice axiom
holds when the DM’s inferences about variables conditional on their revealed causes
are close. That is, it implies that if S, S ′ ∈ S, a, b ∈ S ∩ S ′, and ρS(yA∗i+1\A

∗
i
|yA∗i ) =

ρS
′(yA∗i+1\A

∗
i
|yA∗i ) for each i, then

ρ(a,S′)
ρ(b,S′) = ρ(a,S)

ρ(b,S) . Moreover, the choice axiom is “close”
to holding whenever these conditional probabilities are “close.” In the running ex-
ample, suppose that given the doctor’s choices when facing {a, b} and {a, b, c}, the
statistical relationship between plaque and health is (almost) the same. Then, the
predicted long-term health prospect from treatment a or b is (almost) the same across
menus. Thus, the relative frequency with which she chooses each of these treatments
should be (almost) the same.

The next definition identifies a set of menus for which the DM’s predictions about
the consequence of each action is correct.

Definition 5. A menu S ∈ S is (revealed to be) correctly perceived if

b
(
y⋃|A|

i=1 A
∗
i

)
= b

(
yA∗1

) |A|−1∏
i=1

a
(
yA∗i+1\A

∗
i
|yA∗i

)
,

for every a, b ∈ S and a-a.e. y ∈ X−0.
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Recall from Remark 2 that only the set of variables indexed by ⋃|A|+1
i=1 A∗i is

relevant for the DM’s choices and that she thinks that the variables indexed by A∗i
cause those indexed by A∗i+1 \ A∗i . In particular, she thinks that any variable in
A∗i+1 \ A∗i is independent of any in ⋃i−1

k=1A
∗
k conditional on A∗i . A correctly perceived

menu satisfies this conditional independence, and her prediction of the distribution
of all relevant variables, including the consequence, is correct.

The remaining axioms ensure that ρ has a Logit-EU representation for menus
where the DM’s predictions are correct.

Axiom 6 (Correctly Perceived Independence). For any α ∈ (0, 1), if {αp + (1 −
α)r, r}, {βp+ (1− β)r, r} ∈ S are correctly perceived, then

β ln ρ(αp+ (1− α)r), {αp+ (1− α)r, r})
ρ(r, {αp+ (1− α)r, r}) = α ln ρ(βp+ (1− β)r, {βp+ (1− β)r, r})

ρ(r, {βp+ (1− β)r, r}) .

Axiom 7 (Correctly Perceived Dominance). If {p, q} ∈ S is correctly perceived and
margn+1 p strictly first-order stochastically dominates margn+1 q, then ρ(p, {p, q}) >
1
2 .

Axiom 8 (Correctly Perceived Continuity). If S, {p1, q1}, {p2, q2}, · · · ∈ S are cor-
rectly perceived, p, q ∈ S, margn+1 pm → margn+1 p, and margn+1 qm → margn+1 q,
then

ρ(qm, {pm, qm})
ρ(pm, {pm, qm})

→ ρ(q, S)
ρ(p, S) .

Combined, the axioms imply that the DM’s behavior is suitably well-behaved
when she correctly predicts the outcomes of each action. Axiom 6 guarantees that the
independence axiom holds, and that the relative probability of choosing αp+(1−α)r
to r is log linear in α because of the Logit functional form.12 Axioms 7 and 8 guarantee
monotonicity and continuity over the distribution of consequences.

The main result of this section characterizes the rules with a perfect SCR.

Theorem 2. A random choice rule ρ has a perfect subjective causality representation
if and only if ρ satisfies Full-support, Bounded Misperception, I5, Consistent Revealed
Causes, LCI, and Correctly Perceived Independence, Dominance, and Continuity.

12This is the only axiom that needs be adapted to replace exp with a different strictly increasing,
positive function. For instance, dropping “ln” from Axiom 6 replaces it with the identity function.
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The result highlights the connection between SCR and the Logit-EU model.
Notice that if Axioms 1 and 5-8 hold when the part of their hypotheses involving
the minimal separators are dropped, the choice rule has a Logit-EU representation.
Bounded Misperception gives a maximum deviation in the relative choice frequencies.
The axioms thus indicate the circumstances under which the choice rule does not
diverge from Logit. I5 says that two alternatives are chosen with same probability
whenever they coincide on the distribution of variables that the action is revealed to
cause, whereas Logit-EU requires coincidence on the consequence distribution. LCI
restricts violations of Luce’s Choice Axiom to when inferences about causal effects
change. Correctly Perceived Independence, Dominance, and Continuity show that
choice is well-behaved whenever the DM’s predictions about actions match reality.

We outline the proof for sufficiency here, and defer a formal proof to the appendix.
We first show that the choice rule has a Logit-EU representation when restricted to
correctly perceived menus. By Axiom 3, the DAG Rρ from Remark 2 is well-defined
and a natural candidate to represent ρ. For every menu S, we construct a correctly
perceived version of it, S ′1. That is, for every a ∈ S, there is an a′ ∈ S ′1 so that
a′(·) = ρSRρ(·|a) and S ′1 is correctly perceived. Our goal is to show that for any
a, b ∈ S, a and b are chosen with the same relative frequency in S as a′ and b′

are in S ′1. To do so, we add distinct alternatives to S ′1 to form a nested sequence
of menus (S ′m)∞m=1 while maintaining that each S ′m is correctly perceived. Bounded
Misperception implies that the probability of choosing anything in S from S ′m ∪ S
goes to zero as the number of alternatives in S ′m goes to infinity. In particular, the
inferences that the DM makes from S ′m∪S approach those she makes from S ′1, which
are in turn equal to those she makes from S. LCI implies that the relative frequency
with which a′ and b′ are chosen from S ′m ∪ S converges to that for a′ and b′ in S ′1.
Moreover, a and a′ (as well as b and b′) are chosen from S ′m ∪ S with the same
probability by I5. Applying LCI another time, we see that a and b are chosen with
the same relative frequency in S as a′ and b′ are in S ′1, completing the proof.

We conclude by further clarifying the relationship between SCR and Logit-EU.

Corollary 1. A random choice rule ρ has a Logit-EU representation if and only if
A = {{n + 1}} and ρ satisfies Full-support and Correctly Perceived Independence,
Dominance, and Continuity.



26 ELLIS AND THYSEN

If ρ has an SCR (R, u) and A = {{n + 1}}, then 0R(n + 1). Moreover, every
menu is correctly perceived. Consequently, the DM acts as if Logit-EU on all menus.

6. Discussion and Extensions

This section concludes the paper by looking at some implications of the model and
considering how our modeling decisions affect our results. We compare the behavior
of two DMs with nested causal models Then, we examine how to extend our analysis
to eliminate stochasticity and the endogeneity of the dataset.

6.1. Comparative Coarseness. A coarser causal model leaves out some variables
or relationships relative to another. Authors often explain “irrational” behavior in
situations with adverse selection via coarseness. For instance, Eyster and Rabin
(2005), Jehiel and Koessler (2008), and Esponda (2008) argue that the winner’s curse
reflects bidders who do not fully take into account the relationship between others’
actions and signals.13 In this subsection, we compare DMs in terms of the coarseness
of their model. In particular, how can an analyst separate two DMs who differ in
that one’s model contains more variables than the other’s?

Definition 6. Say that ρ2 has a coarser model than ρ1 if ρ1(·, S) = ρ2(·, S) whenever
Xi ⊥S XN\{i} for all i ∈ N that are not in any minimal ρ2-separator.

Consider DM1 represented by ρ1 and DM2 represented by ρ2. As revealed by
Theorem 1, DM2 considers the variables that do not belong to a ρ2-MAP irrelevant for
determining the consequence of their action. The condition says that whenever those
variables are actually irrelevant when choosing from S, i.e., they are independent of
the other variables, then the two DMs behave in the same way. This ensures that if
DM2 thinks a variable is relevant, so does DM1.

Proposition 3. Let ρi have a perfect SCR (Ri, ui) for i = 1, 2. If ρ2 has a coarser
model than ρ1, then ρ2 has a perfect SCR (R1 ∩N ′ ×N ′, u2) for some N ′ ⊂ {0, 1, . . . , n+
1} and u2 = u1 + β. The converse holds up to the selection of a personal equilibrium.

13Section 5 of Spiegler (2016) discusses how and to what extent these models fit into the DAG
framework.
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The result shows that the comparison reveals when the models of two DMs are
nested. Specifically, they agree on the causal relationship between any two variables
that both consider relevant and on the desirability of outcomes. However, they may
disagree on which variables are relevant, with DM1 considering more of them relevant
than DM2.

6.2. Welfare. There is no general relationship between the DM’s DAG and an an-
alyst’s evaluation of her choices. For instance, Section 4.3 of Spiegler (2016) shows
that a DM may achieve higher objective payoff with a coarser model. Similar ex-
amples apply to this setting as well. With a perfect DAG, the DM and the analyst
agree on the overall distribution of consequences. This implies that a refinement such
as preferred personal equilibrium can be defined from either the agent’s or analyst’s
perspective without changing conclusions.

6.3. Exogenous dataset. We can extend our results to a setting where the dataset
used by the DM is exogenously given and does not depend on her behavior. This
setting provides rich variation in the DM’s inferences. It is particularly applicable to
an experimental implementation of our result. Most of the insights from our analysis
with an endogenous dataset are readily applicable. Indeed, it guarantees uniqueness
of the personal equilibrium and ensures that the DM conforms to Logit holding the
dataset fixed.

Formally, we consider behavior in an environment (S, q) where the DM’s choice
set S ∈ S and the DM’s dataset q ∈ ∆X has q(a) > 0 for each a ∈ S and

n∏
j=0

supp(margj q) = supp(marg{0,··· ,n} q).

Let E be the set of such pairs. The DM’s behavior is given by the augmented random
choice rule ρ∗ : X0 × E → [0, 1] with ∑a∈S ρ

∗(a;S, q) = 1 and ρ∗(a;S, q) > 0 only if
a ∈ S. The frequency that they choose a in the environment (S, q) is ρ∗(a;S, q).

Definition 7. The augmented random choice rule ρ∗ has an Exogenous SCR (ESCR)
if there exists an uninformed, nontrivial DAG R and a continuous, nonconstant u so
that

ρ∗(a;S, q) =
exp

(∫
Xn+1

u(c)dqR(cn+1|a)
)

∑
a′∈S exp

(∫
Xn+1

u(c)dqR(cn+1|a′)
)

for every a ∈ S and S ∈ S.
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It is easy to adapt our identification results to this setting. Theorem 1 holds
as stated. To establish that the behavior on R-MAPs is uniquely pinned down, we
apply the conditions to the dataset directly rather than to the options in the menu.
For instance, Lemma 1 says that a subset of covariates contains a R-AP if and only
if its complement separates. The result continues to hold after we modify Definition
2 to say that K ⊂ N separates if ρ∗(a; {a, b}, q) = 1

2 whenever XK is independent
of the other variables according to q: q(x) = q(xK)q(xN\K) for q-a.e. x ∈ X . That
is, independence is required for the dataset, not the menu. If the dataset is easily
manipulable, as in an experiment, then the condition may be substantially easier to
test.

6.4. Inference from multiple choice sets. We have implicitly assumed that the
modeler sees the steady-state distribution of choices from a fixed menu (or alterna-
tively an exogenous dataset). Real-world agents face different choice sets on different
occasions and learn from their decisions in all of them. Our framework generalizes
to accommodate this, provided that the distribution of choice sets is fixed across
time. Consider a distribution µ ∈ ∆S with µ(S) indicating the frequency with which
the agent faces menu S. Then, we take as a primitive ρ̂ : X0 × ∆(S) × S → [0, 1]
so that ρ(·;µ, ·) is a random choice rule for fixed µ. The DM chooses a with prob-
ability ρ(a, µ, S) when they face menu S. The above analysis is the special case
ρ(·, S) = ρ̂(·; (1, S), S). To take into account how learning spills over across menus,
we replace the dataset ρS with ρ̂µ where

ρ̂µ(a, y) =
∑

µ−a.e. S
µ(S)ρ̂(a;µ, S)a(y)

for each (a, y) ∈ X . With such a substitution, our results generalize naturally. As an
additional feature, the analyst can reveal the agent’s causal model from its behavior
when facing a single, suitably chosen distribution over menus.

6.5. Deterministic choice. The SCR is derived from Spiegler (2016), where choice
is deterministic. We have adopted a stochastic choice framework throughout the
paper. The stochastic setting is closer to that typically used in empirical and exper-
imental work. It also deals with some technical issues. For instance, it pins down
beliefs about the consequence distribution of every alternative. Moreover, it applies
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when only one of potentially many personal equilibria is observed. Our insights ap-
ply to a deterministic choice model, once suitably adapted. We discuss how to apply
them in this subsection.

Formally, we suppose that the DM’s behavior is described by a choice correspon-
dence c : S ⇒ ∆(X0) where p(S) = 1 for all p ∈ c(S) and c(S) 6= ∅ for each S ∈ S.14

For any p ∈ ∆(X0), write pX ∈ ∆(X ) for the resulting dataset, i.e. pX is the lottery
so that pX(a, y) = p(a)a(y) for every (a, y) ∈ X .

Definition 8 (Spiegler (2016)). For ε > 0, the lottery p ∈ ∆(S) is a (R, u, ε)-personal
equilibrium for S ∈ S if p(a) > 0 for all a ∈ S and

p(a) ≥ ε =⇒ a ∈ arg max
a′∈S

∫
Xn+1

u(c)dpXR (cn+1|a′).

The lottery p ∈ ∆(S) is a (R, u)-personal equilibrium for S ∈ S if there exists a
sequence (pt)∞t=1 so that pt is a (R, u, 1/t)-personal equilibrium for S and pt → p.

The choice correspondence c has a Deterministic SCR (DSCR) if there exists
a uninformed, nontrivial DAG R and a nonconstant, continuous u : Xn+1 → R so
that for every S ∈ S, p ∈ c(S) if and only if p is a (R, u)-personal equilibrium for
S. A DSCR (R, u) is perfect if R is perfect. Observe that limiting cases of SCR are
personal equilibria. Formally, let ρλ be a random choice rule having a perfect SCR
(R, λu) for λ > 0. If ρλn(a, S) → p(a) for every a ∈ S and λn → ∞, then p is an
(R, u)-personal equilibrium for S.

A version of Theorem 1 holds in this setting. For instance, Lemmas 1 and 2
require only minor alterations. Specifically, one must replace “ρ({a, b})(a) = 1

2” with
“c({a, b}) = ∆{a, b}” in Definitions 2 and 3.

6.6. Directions for future research. Our results apply only to perfect subjective
DAGs and to settings where the agent has no access to information. Relaxing those
two features is a natural direction for future research. An imperfect DAG allows for v-
colliders, which provide a natural way to model an agent who theorizes the exogeneity
of a variable. One direction of Theorem 1 fails for imperfect DAGs. Although any
other DAG representing ρ must agree on the minimal active paths from the action to

14As shown in Spiegler (2016), there may not exist a personal equilibrium that does not mix.
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the consequence, this is not sufficient for it to represent ρ. They must also agree, for
instance, on the v-colliders with a path to the consequence.

Informed agents provide additional challenges. In addition to how define the
primitives, on must also change the model itself. Given that R is uninformed, pR(·|a)
equals the update after applying the “do-operator” of Pearl (1995). If the DM thinks
signals cause actions but that she can also change her action, this no longer holds.
Since the “do-operator” severs links pointing to the intervened variable, it can effec-
tively create v-colliders. This suggests spillovers between the study of informed DMs
and those with an imperfect causal model.

We also restrict attention to situations where the DM takes a single action and
cares about the realization of a single variable. While without loss in a rational
model, modeling multiple outcomes as many individual variables or as a single vector
affects behavior in this model. For instance, when each outcome is modeled as a
separate variable, we can consider a DM who thinks the outcomes are independent
of each other given the action. By contrast, if outcomes are modeled as a single,
vector-valued variable, then the DM considers them independent conditional on their
parents only if they actually are.

DAGs provide a tractable, non-parametric, and flexible approach to modeling
misspecified causality. Many other forms of misspecification have interesting economic
applications (see Footnote 3). While unrestricted misspecified beliefs are untestable,
our results show that exploiting the regularities implied by a particular model of
misspecification may render it testable. The techniques and setup introduced herein
may prove useful for identifying and testing some of these models.

Appendix A. Proofs omitted from the main text

A.1. Preliminaries for Proof of Theorem 1. For a DAGQ, letN∗(Q) be the min-
imal set of nodes such that margn+1 pQ(· | a) = margn+1 pQ∩N∗(Q)2(· | a). Through-
out, we say that a DAG R is well-behaved if it is perfect, uninformed, nontrivial, and
R ⊆ N∗(R)2. A DAG Q′ is equivalent to Q if and only if pQ = pQ′ for all p ∈ ∆(X ).
Let the skeleton of Q be Q̃ = {(j, k) : jQk or kQj}.

Proposition 4 (Theorem 1 of Verma and Pearl (1991)). Two DAGs are equivalent
if and only if they have the same skeleton and the same set of v-colliders.
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Definition 9. If jGk for every uninformed DAG G equivalent to Q, then the link
jGk is called a fundamental link in Q and denoted by jQ̂k.

Proposition 5 (Proposition 6 of Schumacher and Thysen (2020)). Given a perfect
DAG Q, N∗(Q) = {j ∈ N ∪ {0} | j is part of a Q̂-AP}.

We will sometimes refer to the variables indexed by N∗(Q) as the relevant vari-
ables for Q. The fundamental links are characterized in the next proposition. Before
that we need another definition.

Definition 10. The distance between any two nodes j, k, denoted by d(j, k), is given
by the number of links in the shortest path between j and k.

Proposition 6 (Proposition 7 of Schumacher and Thysen (2020)). Let Q be a perfect,
uninformed, nontrivial DAG. If jQk, then jQ̂k if and only if at least one of the
following conditions is satisfied:

(a) d(0, j) = d(0, k)− 1,
(b) there exists a node l ∈ N such that lQ̂j and l 6Qk.

Definition 11. Let C be a collection of subsets of a finite set and T a tree with C as
its node set. Say that T is a junction tree if for any C1, C2 ∈ C, C1 ∩C2 is contained
in every node on the unique path in T between C1 and C2.

The set C ⊆ {0, . . . , n+ 1} is a clique for R if jR̃k for all j, k ∈ C. By Theorem
4.6 of Cowell et al. (1999), the maximal cliques of a well-behaved DAG R can be
linked to form a junction tree. Call this the maximal clique junction tree (MCJT) for
R.

A.2. Proof of Theorem 1. We present the proof as a sequence of lemmas. Lemma
1 shows that a minimal separator intersects every R-MAP. Lemma 3 shows that
every relevant variable is in some R-MAP (and vice versa) and thus belongs to some
A ∈ A. Consequently, there is no loss in taking R to relate only variables that appear
in ⋃A∈AA. Lemmas 4-7 relate the fundamental links in R to A, and Lemma 8 asserts
that the ordering on A according to Definition 3 is well-defined and unique. Lemmas
9 and 10 characterize R using this ordering. The remainder of the proof ties the
Lemmas together to establish the result.
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Proof of Lemma 1. Because R is acyclic, we can relabel so that R(i) ⊂ {0, 1, . . . , i}
for all i, where n + 1 remains last since we can clearly drop any links from n + 1
without changing behavior.

We first show that if J intersects every R-MAP, then pR(xJ |c) = pR(xJ) for
p-a.e. c whenever XJ is p-independent of XN\J . Given our relabeling, we can take
J = {j1, j2, . . . , jK} with ji < ji+1. For any disjoint E,E ′ ⊂ {1, . . . , j1− 1} and p-a.e.
x ∈ X−0, we have

pR(xj1 , xE|c, x′E) =
∑
y

pR(xE, xE′ , yR(j1)\[E∪E′]|c)
pR(xE′|c)

p(xj1|yR(j1)\[E∪E′], xR(j1)∩[E∪E′])

=
∑
y

pR(xE, xE′ , yR(j1)\[E∪E′]|c)
pR(xE′|c)

p(xj1) = pR(xE|c, xE′)pR(xj1)

when 0 /∈ R(j1) by independence of XJ from XN\J . The same argument holds when
0 ∈ R(j1) after replacing p(xj1|yR(j1)\[E∪E′], xR(j1)∩[E∪E′]) with p(xj1 |yR(j1)\[E∪E′∪{0}], xR(j1)∩[E∪E′], c).

If (IH) pR(x{j1,...,jm}, xE|c, x′E) = pR(xE|c, xE′)pR(xj1,...,jm) any disjoint E,E ′ ⊂
{1, . . . , j1 − 1}, then for disjoint A,A′ ⊂ {1, . . . , j1 − 1} and A∗ = A ∪ A′ ∪ J

pR(x{j1,...,jm+1}, xA|c, xA′)

=
∑
y

pR(xA, xA′ , x{j1,...,jm}, yR(jm+1)\A∗|c)
pR(xA′|c)

p(xjm+1|yR(jm+1)\A∗ , xR(jm+1)∩A∗)

=
∑
y

pR(xA, yR(jm+1)\A∗|c, xA′)pR(x{j1,...,jm})p(xjm+1|yR(jm+1)\A∗ , xR(jm+1)∩A∗)

=
∑
y

pR(xA, yR(jm+1)\A∗|c, xA′)pR(x{j1,...,jm})p(xjm+1|xR(jm+1)∩J)

=pR(xA|c, xA′)pR(x{j1,...,jm+1})

when 0 /∈ R(jm+1). The second equality uses IH for E = A ∪ [R(jm+1) \ A∗]
and A′ = E ′, and the third uses independence of XJ from XN\J . The same ar-
guments hold when 0 ∈ R(jm+1) after replacing p(xjm+1|yR(jm+1)\A∗ , xR(jm+1)∩A∗)
with p(xjm+1|yR(jm+1)\[A∗∪{0}], xR(jm+1)∩A∗ , c). The claim follows inductively, using
E = E ′ = ∅ and that pR(xn+1|c) = ∑

y pR(xn+1|yJ)pR(yJ |c) when every R-AP in-
tersects J .

We show the converse by contrapositive. Let J ⊂ N . Suppose that (i0 =
0, i1, . . . , im = n+ 1) is a R-MAP that does not intersect J , and let I = {i1, . . . , im}.
If m = 1, then 0 R (n+ 1) and for any {a, b} ∈ S, c(xn+1) = [αa+ (1−α)b]R(xn+1|c)
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for every x ∈ Xn+1, α ∈ (0, 1), and c ∈ {a, b} clearly implying that J does not
separate. Otherwise, consider {a, b} ∈ S so that Xj ⊥{a,b} XN\{j} for every j /∈ I;
suppmargi′ 1

2a+ 1
2b = {ȳ, y} ⊂ Xn+1 with ȳ > y for all i′ ∈ I; for every j ∈ {1, . . . , |I|},

each c ∈ {a, b}, and a-a.e. x, x′ ∈ X−0,

c
(
xij+1|xij , x′{i1,...,ij−1)}

)
= a

(
xij+1|xij

)
and a(ȳij+1|ȳij) > a(ȳij+1|yij); and a(ȳi1) > b(ȳi1). For any α ∈ (0, 1), let q ∈ ∆(X )
equal αa + (1 − α)b. Note that q = qR, so qR(xn+1|c) = c(xn+1) for c = a, b. This
establishes that ρ(a, {a, b}) 6= 1

2 so does not J separate, completing the proof. �

Lemma 3. Let R be a perfect, uninformed, nontrivial DAG. Then, there is an R-
MAP containing i ∈ {0, 1, . . . , n+ 1} if and only if i ∈ N∗(R).

Proof. First we show that if kR̂l and k 6= 0, then there exists j ∈ N s.t. jR̂k and j 6Rl.
To see why, consider two nodes indexed by k and l so that kR̂l and k 6= 0. Assume
for contradiction that if jR̂k, then jRl. As this rules out condition Proposition 6.b,
it must be that d(0, k) = d(0, l) − 1. Since d(0, k) > 0, there exists a node j so that
jRk and d(0, j) = d(0, k)− 1. By Proposition 6.a jR̂k, and by assumption jRl. But
then d(0, l) ≤ d(0, j) + 1 = d(0, k), a contradiction.

Now we show that for any R-AP (i0, . . . , im), if ij 6Rik for some k > j, then
ij 6Ril for all l > k. If ijRik+1 for k > j, then ijRik, since we must have ijR̃ik so
that (ij, ik, ik+1) is not a R-v-collider, and moreover ijRik because ikRij would imply
that R has a cycle. Inductively applying the contrapositive establishes the claim.
Note that if i ∈ {0, n + 1}, then i is part of every R-MAP by construction. So let
i ∈ N∗(R) \ {0, n+ 1}. By Proposition 5, there is a R̂-AP containing i. By dropping
nodes from this R̂-AP if necessary, we can reduce the part of the path following i to
(i0 = i, i1, . . . , iM = n+ 1) where ikRik′ if and only if k′ = k + 1. We reconstruct the
path preceding i as follows. Let j2 = i and j1 = i1. Set k = 2. (*) When jk 6= 0, pick a
node jk+1 so that jk+1R̂jk and jk+1 ˆ6Rjk−1. By the above claims, jk+1 exists, jk+1 6Rjl for
l ≤ k, and jk+1 6Ril for l = 1, 2, . . . ,M . If jk+1 = 0, then terminate. Otherwise, return
to (*) with k incremented by 1. This terminates after some finite number, say K, of
iterations with jK = 0. Then, (jK = 0, jK−1, . . . , j2 = i, j1 = i1, i2, . . . , iM = n + 1)
is an R-MAP by construction. Therefore, every i ∈ N∗(R) is in some R-MAP. By
Proposition 6, any R-MAP is a R̂-AP, so the converse holds. �
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Lemma 4. If R is a well-behaved DAG, then j ∈ N∗(R) \ {0, n + 1} is contained
in at least two maximal cliques, and 0 and n+ 1 each belong to exactly one maximal
clique.

Proof. Let {C1, · · · , Cm} be the set of maximal cliques of R. Assume for contradiction
that there exists j ∈ N∗(R) \ {0, n + 1} so that j is only contained in a single
maximal clique, Ci. Consider an R-MAP containing j, (i0, i1, · · · , im), with j = ij′ .
By Assumption, ij′−1, ij′+1 ∈ Ci. Since R is acyclic, ij′−1Rij′+1, contradicting that
(i0, i1, · · · , im) is a R-MAP.

By definition, all nodes are part of at least one clique. To see that n+ 1 is only
part of one clique, let iR̃n + 1 and jR̃n + 1. Since n + 1 6Rj′ for any j′ ∈ N∗(R),
iRn+ 1 and jRn+ 1. By perfection, jR̃i.

Finally, we show that 0 is part of exactly one clique. Let 0R̃i and 0R̃j. As R
is uninformed, this implies that 0Ri and 0Rj. By Lemma 3, there exist R-MAPs
(i0, i1 = i, . . . , im) and (i′0, i′1 = j, . . . , i′m′). Let

w = min{w′′ ≥ 0 : i′zRiw′′+1 for some z > 0}.

Since i′m′−1Ri
′
m′ = im, w exists. If w = 0, then i′zRi for some z > 0. Since R is

well-behaved, 0Ri′z, so z = 1 since (i′0, . . . , i′m′) is a R-MAP. Since i′1 = j, jRi. If
w > 0, let w′ be such that i′w′Riw+1. By perfection, iwR̃i′w′ , and iwRi′w′ since i′w′Riw
contradicts the definition of w. When w′ > 1, perfection again requires iwR̃i′w′−1,
and definition of w requires iwRi′w′−1. Inductively, iwRi′w′′ for w′′ = w′, w′ − 1, . . . , 1,
and in particular, iwRj. Since R is well-behaved and 0Rj, 0Riw. As (i0, . . . , im) is a
R-MAP, this implies that w = 1, and so iRj. Conclude there is exactly one maximal
clique containing 0. �

If Ci is adjacent to exactly one other clique Cj, then k ∈ Ci \ Cj is in no other
clique, so by Lemma 4, k = 0 or k = n+ 1 (k exists since Ci is maximal). Therefore,
a MCJT for R consists of a single path between C1 3 0 and Cm 3 n+ 1. We denote
it by (C1, . . . , Cm) where Ci is adjacent to Ci+1 for each i.

Lemma 5. Let (C1, . . . , Cm) be a MCJT for a well-behaved DAG R. If A0 = {0},
Am = {n+ 1}, and Ai = Ci ∩ Ci+1 for i = 1, . . . ,m− 1, then Ci = Ai−1 ∪ Ai.
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Proof. First note that this clearly holds for i = 1,m. Thus, pick an i ∈ {2, · · · ,m−1}
and j ∈ Ci. By Lemma 4, there exists i′ 6= i so that j ∈ Ci′ . If i′ > i, j ∈ Ci+1 and
hence j ∈ Ai+1. If i′ < i, j ∈ Ci−1 and hence j ∈ Ai−1. �

Lemma 6. If (C1, . . . , Cm) is a MCJT for a well-behaved DAG R, then kR̂j if and
only if there exists i so that k ∈ Ci ∩ Ci−1 and j ∈ Ci \ Ci−1 where we take C0 = {0}
and Cm+1 = {n+ 1}.

Proof. First we show necessity. Let (*) be the assertion that “if k ∈ Ci ∩ Ci−1 and
j ∈ Ci \Ci−1, then kR̂j .” We prove this inductively. For i = 1, k ∈ C0 ∩C1 iff k = 0.
For all j ∈ C1 \C0, 0R̃j , and since R is uninformed, 0R̂j. Hence (*) holds for i = 1.

Assume (IH) that (*) holds for all i′ ∈ {1, · · · , i − 1} where i ≥ 2. Take any
k ∈ Ci∩Ci−1 and j ∈ Ci\Ci−1. Since i ≥ 2, k 6= 0, and there exists i′ ≤ i−1 for which
k ∈ Ci′ \Ci′−1 and also l ∈ Ci′ \Ci′+1 since Ci′ 6⊆ Ci′+1. By Lemma 5, l ∈ Ci′ ∩Ci′−1,
and by IH, lR̂k. Since j 6∈ Ci′′ for any i′′ < i and l /∈ Ci′′ for any i′′ > i′, l ˜6Rj, so by
perfection, j 6Rk. Then, kRj since k, j ∈ Ci, and kR̂j by Proposition 6.b.

To complete the proof, we show that “if j ∈ Ci\Ci−1 and kR̂j, then k ∈ Ci−1∩Ci.”
For i ≥ 1, let j ∈ Ci \ Ci−1 and kR̂j. Take any j′ ∈ Ci \ Ci+1, noting j′ ∈ Ci−1 ∩ Ci
by Lemma 5. By necessity, j′R̂j. If j′ = k, then we are done. If not, then kR̃j′ by
perfection, so k ∈ Ci′ for some i′ ≤ i. Similarly, kR̃j so k ∈ Ci′′ for some i′′ ≥ i.
Because (C1, . . . , Cm) is a MCJT, k ∈ Ci. To see k ∈ Ci−1 ∩ Ci, suppose not, so
k /∈ Ci−1. Let i∗ ∈ Ci ∩Ci−1 be closest to 0. Then, d(0, j), d(0, k) ≤ d(0, i∗) + 1 since
i∗R̂j and i∗R̂k by necessity. Any path from 0 to j or k has some node in Ci−1 ∩ Ci,
so d(0, j) = d(0, k) = d(0, i∗) + 1. Hence by Proposition 6, there is l so that lR̂k and
l 6Rj. By the arguments above, replacing j with k, l ∈ Ci, so jRl. But then jRlRkRj,
a contradiction. Hence k ∈ Ci−1 ∩ Ci. �

Lemma 7. Let ρ have a perfect SCR (R ⊆ N∗(R)2, u). Then, I ∈ A \ {{n + 1}} if
and only if I = Ci ∩ Ci+1 for some i where (C1, . . . , Cm) is a MCJT for R.

Proof. Let ρ have a perfect SCR (R ⊆ N∗(R)2, u), (C1, . . . , Cm) be a MCJT for R,
Ai = Ci ∩ Ci+1 for each i, and Bi = ∪ij=1Cj for each i.

Pick any i ≥ 0. We first show that every R-AP intersects Ai+1. Take any R-AP.
It contains an R-MAP (i0, . . . , iM). Let ik be first index so that ik /∈ Bi. In particular,
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ik ∈ Cj \ Cj−1 for some j ≥ i + 1. Then, ik−1 ∈ Bj−1 by Lemma 6, so j − 1 = i and
ik ∈ Ai+1. By Lemma 1, Ai+1 separates.

Let I ∈ A\{{n+1}}. By Lemma 1, I intersects every R-AP. By Theorem 4.4 of
Cowell et al. (1999), I is a clique, so I ⊂ Ci for some i. We show that either I = Ai or
I = Ai−1. Since both Ai and Ai−1 separate and I is minimal, it suffices to show that
either Ai−1 ⊆ I or Ai ⊆ I. If Ai ∩ Ai−1 6⊆ I, then there exists j ∈ Ai ∩ Ai−1 \ I. Let
i′ < i− 1 be such that j ∈ Ci′ \ Ci′−1. Then, there exist j′ ∈ Ci′ \ Ci′+1 ⊆ Ci′ ∩ Ci′−1

and l ∈ Ci+1 \Ci. By Lemma 6, j′R̂j and jR̂l, and Lemma 3 implies the existence of
a R-AP that does not intersect I. Therefore, Ai ∩ Ai−1 ⊆ I. If Ai−1 6⊆ I, then there
is j ∈ Ai−1 \ I. For any k ∈ Ai \ Ai−1, jR̂k, so Lemma 3 requires that k ∈ I; since
k was arbitrary, Ai ⊆ I. If Ai 6⊆ I, then there is k ∈ Ai \ I ⊂ Ai \ Ai−1. For any
j ∈ Ai−1, jR̂k, so Lemma 3 requires that j ∈ I; since j was arbitrary, Ai−1 ⊆ I.

It remains to be shown that Ai 6⊆ Aj for any j 6= i. Suppose not, so Ai ⊆ Aj for
j 6= i. Consider j > i; similar arguments apply when j < i. By Lemma 5, x ∈ Ai∩Aj
implies that x ∈ Ci+1 ∩ Cj+1. Since (C1, . . . , Cm) is a MCJT, x ∈ Ci+2. But then
every x ∈ Ai is also in Ai+1, and by Lemma 5 , Ci+1 = Ai ∪ Ai+1 = Ai+1 ⊆ Ci+2,
contradicting that Ci+1 is maximal. �

Lemma 8. If ρ has a perfect SCR, then A∗i exists and is unique for each i = 1, . . . , |A|.

Proof. Let ρ have a perfect SCR (R, u) and (C1, . . . , Cm) be a MCJT for R. Denote
Ai = Ci ∩Ci+1 and Bi = ∪ij=1Cj for i = 1, · · · ,m− 1 as well as Am = {n+ 1}. Note
A = {Ai : i = 1, . . . ,m} by Lemma 7.

Clearly, A∗m = Am. Suppose that (A∗i+1, . . . , A
∗
m) = (Ai+1, . . . , Am) for 1 ≤ i < m.

Theorem 1 of Spiegler (2017), combined with Lemma 5, gives that

(1) pR(xN∗(R)) = p(xA1∪{0})
m∏
j=2

p(xAj\Aj−1 |xAj−1).
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Since (C1, . . . , Cm) is a MCJT, A∗i+1∩Ai ⊇ Aj∩A∗i+1 for any j < i. For any S = {a, b}
so that XA∗i+1∩Ai ⊥S XN\[A∗i+1∩Ai] and XA∗i+1\Ai ⊥S XAi\A∗i+1

,

ρSR(xn+1|c) =
∑

y∈XAi∪Ai+1

ρSR(yAi |c)ρS(yAi+1\Ai |yAi∩Ai+1 , yAi\Ai+1)ρSR(xn+1|yAi+1)

=
∑

y∈XAi∪Ai+1

ρSR(yAi∩Ai+1)ρSR(yAi\Ai+1|c)ρS(yAi+1\Ai |yAi\Ai+1)ρSR(xn+1|yAi+1)

=
∑

y∈XAi+1

ρSR(yAi∩Ai+1)ρS(yAi+1\Ai)ρSR(xn+1|yAi+1)

where the first equality is just Eq (1), the second comes fromXA∗i+1∩Ai ⊥S XN\[A∗i+1∩Ai],
and the third from XA∗i+1\Ai ⊥S XAi\A∗i+1

. In particular, Ai satisfies the condition to
be A∗i .

We show that no Aî satisfies the condition for î < i. If Ai+1 ∩ Aî 6= Ai+1 ∩ Ai
for all î < i, then the only candidate for A∗i is Ai. If Ai+1 ∩ Aî = Ai+1 ∩ Ai for some
î < i, then observe that

Aî \ [Ai ∪ A∗i+1] = Aî \ Ci+1 ⊃ Aî \ Cî+2 6= ∅

by Lemma 5 and that (C1, . . . , Cm) is a MCJT. Pick j ∈ Aî\ [A∗i+1∪Ai], k ∈ A∗i+1\Aî,
and I ′ ⊂ ⋃il=1Al \ A∗i+1 so that |I ′ ∩ Al| = 1 for every l < i+ 1 and j ∈ I ′. Set

J− = I ′ ∩ {Ai′ : i′ < i+ 1 & Ai′ ∩ A∗i+1 = Ai ∩ A∗i+1} \ {j},

noting |J−| ≥ 1. For 1 < l′ ≤ |A|− i, pick il′ ∈ A∗i+l′ \A∗i+l′−1. By Lemma 6, il′Ril′+1

and that for every i′ ∈ I ′, there exist unique i−, i+ ∈ I ′ ∪ {0, k} so that i−Ri′R+.
Let I = I ′ ∪ {k, i2, . . . , i|A|−i}, k∗ = |I ′|+ 1, and π be a bijection from {0, . . . , |I|} to
I ∪ {0} with π(0) = 0, π(j′) ∈ I ′ \ J− for 1 ≤ j′ < j∗, π(j∗) = j, π(j′) ∈ J− when
j′ ∈ (j∗, k∗), π(k∗) = k, and π(j′) = ij′−k∗ for j′ > k∗. Consider {aπ, bπ} ∈ S so that:

(i) suppmargi′ 1
2a

π + 1
2b
π = {ȳ, y} ⊂ Xn+1 with ȳ > y for all i′ ∈ I ∪ {n+ 1};

(ii) for all i′ /∈ [j∗, k∗), each c ∈ {a, b}, and aπ-a.e. x, x′ ∈ X−0,

cπ
(
xπ(i+1)|xπ(i), x

′
{1,...,π(i−1)}

)
= aπ

(
xπ(i+1)|xπ(i)

)
;

(iii) for all i′ /∈ [j∗, k∗), aπ(ȳπ(i′+1)|ȳπ(i′)) > aπ(ȳπ(i′+1)|yπ(i′));
(iv) X{k} ⊥S X{π(1),...,π(j∗)} and XN\I ⊥{aπ ,bπ} XI ; and
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(v) aπ(ȳπ(1)) > bπ(ȳπ(1)), for all i′ ∈ (j∗, k∗)

aπ
(
ȳπ(i′)|xπ(k∗), xπ(j∗)

)
=


3
4 if (x{π(k∗),π(j∗)}) = (ȳ, ȳ)
1
4 otherwise

and

c
(
xπ(i′)|xπ(k∗), x{π(1),...,π(i′−1)}

)
= aπ

(
xπ(k∗−1)|xπ(k∗), xπ(j∗)

)
for each c ∈ {aπ, bπ} and aπ-a.e. x ∈ X−0.

By (iv), XA∗i+1∩Aî ⊥{aπ ,bπ} XN\[A∗i+1∩Aî] and XAî\A
∗
i+1
⊥{aπ ,bπ} XA∗i+1\Aî .

For any α ∈ (0, 1), let p = αaπ + (1− α)bπ and π′ be the index for I that agrees
with R, noting that π′(j′) = π(j′) for all j′ ≥ k∗, that each j′ ∈ I ′ ∪ {k} has exactly
one parent in I ′ ∪ {0} by Lemma 6, and that π′(j′) ∈ [j∗, k∗) for all j′ ∈ {j} ∪ J−.
We show that pR(ȳn+1|aπ) > pR(ȳn+1|bπ) whenever j /∈ Ai. Observe that

pR(xn+1|cπ) =
∑

y∈{ȳ,y}I
cπ(yπ′(1))

|I|−2∏
j′=1

p(yπ′(j′+1)|yπ′(j′))p(xn+1|yπ′(|I|−1)).

By (ii) and (iii),

(2) p(ȳπ′(j′+1)|ȳπ′(j′)) > p(ȳπ′(j′+1)|yπ′(j′))

for all j′ /∈ [j∗, k∗). Note that π′(k∗) = k and that π′(k∗ − 1) ∈ J− when j /∈ Ai. For
any j′ ∈ J−, by (v) we have

p(ȳπ′(k∗)|ȳj′) =
p(ȳj)p(ȳk)3

4
p(ȳj)p(ȳk)1

2 + 1
4
>

p(ȳj)p(ȳk)1
4

3
4 − p(ȳj)p(ȳk)

1
2

= p(ȳπ′(k∗)|yj′),

so Eq. (2) also holds for j′ = k∗ − 1. Similarly, one can verify using (v) and similar
arguments to the above that Eq. (2) holds for all j′ ∈ [j∗, k∗ − 2]. Now, aπ(ȳπ′(1)) >
bπ(ȳπ′(1)) by (iii) and aπ(ȳπ(1)) > bπ(ȳπ(1)). Successively applying Eq. (2), we have
pR(ȳn+1|aπ) > pR(ȳn+1|bπ). Applying to p = ρ{a

π ,bπ}, we see that ρ{a
π ,bπ}

R (ȳn+1|aπ) >
ρ
{aπ ,bπ}
R (ȳn+1|bπ). Therefore, ρ(aπ, {aπ, bπ}) > 1

2 . �

Combining Lemmas 5, 6, and 8, we have the following.

Lemma 9. If ρ have a perfect SCR (R, u), then jR̂k if and only if there exists i so
that j ∈ A∗i and k ∈ A∗i+1 \ A∗i where A∗0 = {0}.
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Lemma 10. For a well-behaved DAG R with j, k ∈ N∗(R), if jRk and j ˆ6Rk, then
there exists l such that jR̂l and kR̂l.

Proof. Pick any j, k ∈ N∗(R) so that jRk and j ˆ6Rk. Let (C1, . . . , Cm) be a MCJT for
R ∩N∗(R)2, noting that j, k ∈ Ci for some i. If j /∈ Ci+1, then k /∈ Ci+1 since j ˆ6Rk,
so by Lemma 4, we can pick i so that j, k ∈ Ci ∩ Ci+1. There exists l ∈ Ci+1 \ Ci, so
jR̂l and kR̂l by Lemma 6. �

Proof of Lemma 2. Lemma 9, combined with the observation that the ordering for
the minimal separators according to Definition 3 is unique by Lemma 8, immediately
implies the result. �

Necessity: Immediately follows from Lemma 2.

Sufficiency: Suppose that ρ has a perfect SCR (R, u). Let R′ be a well-behaved
DAG so that (i1, . . . , im) is a R′-MAP if and only if it is also a R-MAP. WLOG,
R′ ⊂ N∗(R′)2 = N∗(R)2 by Lemma 3. By Lemmas 8 and 9, iR̂j if and only if iR̂′j.
By Lemma 10, (i, j) ∈ R′ \ R̂′ if and only if iR̂′k and jR̂′k for some k. Since R̂′ = R̂

and R is perfect, either iRj or jRi. Hence, R∗ = R ∩N∗(R)2 and R′ have the same
skeleton and v-colliders. By Proposition 4, ρSR∗ = ρSR′ , so ρ has an SCR (R′, u) if and
only if it has an SCR (R∗, u). By definition of N∗(R) and hypothesis, ρ has an SCR
(R∗, u).

Uniqueness of u follows from the uniqueness results for Logit and EU since ρ has
a Logit-EU representation on correctly perceived menus. �

Proof of Proposition 1. Clearly, if n+ 1 ∈ J , then J separates. For any J 63 n+ 1, we
construct a menu SJ = {aJ , bJ} so that J separates if and only if ρ(aJ , SJ) = 1

2 . Pick
ȳ, y ∈ Xn+1 with ȳ > y, and let x, x̄ ∈ X−0 be such that xi = y and x̄i = ȳ for all i.
Let aJ(x̄J , x̄N\J) = 1 − ε = bJ(x̄J , xN\J), cJ(x̄J , xN\J) = εκ for any x ∈ X−0 \ {x, x̄}
with xn+1 = y, and bJ(x̄J , x̄N\J) = εκ = aJ(x̄J , xN\J) where κ = (2n+1−|J |−1 − 2)−1

and (1− ε)n+1 > 1
2 . If J separates, then clearly ρ(aJ , SJ) = 1

2 .

Suppose J does not separate. Consider p = 1
2aJ + 1

2bJ . By Equation (1),

pR(ȳn+1|a) ≥ a(x̄A1\J)
|A|∏
j=2

p(x̄Aj\[Aj−1∪J ]|x̄Aj−1\J).
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Since J does not separate, J 6⊃ Aj, Aj−1 for each j, and we have

p(x̄Aj\[Aj−1∪J ]|x̄Aj−1\J) =
1
2(1− ε)

1
2(1− ε) + 1

2εκ
> 1− ε

Since there are no more than n+ 1 minimal separators, pR(ȳn+1|a) ≥ (1− ε)n+1 > 1
2 .

Symmetrically, pR(y
n+1|b) ≥ (1− ε)n+1 > 1

2 , so margn+1 pR(·|a) first order dominates
margn+1 pR(·|b). If ρ(aJ , SJ) = 1

2 , then ρS = p, so conclude that ρ(aJ , SJ) 6= 1
2 .

Consequently, we can determine A from the finite set {ρ(·, SJ) : J ⊂ N, |J | ≥ 1}.

To find A∗i , we can use the proof of Lemma 8. Clearly, {n + 1} = A∗m when
m = |A|, so assume we have found A∗i+1, . . . , A

∗
m. Let A∗i be the members of A \

{A∗i+1, . . . , A
∗
m} with the largest intersections with A∗i+1. If A,B ∈ A∗i , then A ∩

A∗i+1 = B ∩ A∗i+1. If |A∗i | = 1, then A∗i its unique member. Otherwise, notice that
Ai \ [A∗i+1 ∪ Ai−1] 6= ∅, so there exists j∗ ∈ Ai \ A∗i+1 for which j∗ /∈ Ai′ for all i′ < i

using properties of a junction tree and Lemma 5. Then, A∗i is A∗ ∈ A∗i if and only if
there exists j∗ ∈ A∗ \A∗i+1 so that j∗ /∈ A for all A ∈ A∗i \A∗ and ρ(aπ, {aπ, bπ}) = 1

2
where {aπ, bπ} is constructed as in the proof of Lemma 8 using j = j∗. When A∗ 6= Ai,
j∗ /∈ Ai so Lemma 8 gives that ρ(aπ, {aπ, bπ}) > 1

2 . When A∗ = Ai, the first part of
Lemma 8 gives that ρ(aπ, {aπ, bπ}) = 1

2 . Hence, we can determine A∗i from ρ evaluated
at one such menu for each A ∈ A∗i . �

Proof of Proposition 2. Suppose that ρ has a perfect SCR. Let jR̂ρk and R represent
ρ. Then, Lemma 9 gives that jRk. Since R was arbitrary, j is revealed to cause k.
Now, let j be revealed to cause k and R represent ρ. If jR̂k, then jR̂ρk by Lemma
9. If jˆ6Rk, then per definition, there is a perfect, uninformed, nontrivial DAG R′

equivalent to R for which kR′j. Then, ρ is also represented by R′, a contradiction.
Hence, j is revealed to cause k if and only if jR̂ρk. �

A.3. Proof of Theorem 2.

Lemma 11. If ρ satisfies Axioms 1, 3, 5, 6, 7, and 8, then there exists a continuous,
strictly-increasing u : Xn+1 → R so that

ρ(a, S) =
exp

(∫
Xn+1

u(c)da(cn+1)
)

∑
b∈S exp

(∫
Xn+1

u(c)db(cn+1)
)

for every correctly perceived S ∈ S, and u is unique up to adding a constant.
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Proof of Lemma 11. Say that ρ has a Luce representation u on a subset of menus
Σ ⊂ S if for every S ∈ Σ, ρ(a, S) = u(a)/∑b∈S u(b) for every a ∈ S.

For any finite Y ⊂ Xn+1, let P (Y, ε) = {p ∈ ∆Xn+1 : p(Y ) = 1, p(y) ≥ ε∀y ∈
Y } for ε ∈ (0, 1

M
) with M = |Y |. For any p1, . . . , pm ∈ P (Y, ε), there is an Rρ-

Markov menu S = {a1, . . . , am} so that margn+1 ai = pi. To see why, let (i0 =
0, i1, . . . , ik = n+ 1) be a Rρ-MAP, and label Y = {y1, . . . , yM}. Take A(Y, η) ⊂ ∆X
to be the lotteries so that (i) Xi1 takes values in {1, . . . ,M}; (ii) for j = 1, . . . , k− 2,
Xij+1 = Xij with probability (1 − η) and equals every other value in {1, . . . ,M}
with equal probability; (iii) Xn+1 = yi with probability 1 whenever Xik−1 = i; and
(iv) Xj = 0 with probability 1 for every j /∈ {i0, . . . , ik}. For each i = 1, . . . ,M ,
consider a ∈ A(Y, η) so that a(i1) = 1 − γ, a(j1) = γ/(M − 1) for j 6= i. Then,
a(Xn+1 = yi) ≥ (1− γ)(1− η)k, which approaches 1 as η, γ → 0. Moreover a(Xn+1 =
yj) = a(Xn+1 = yj′) for all j, j′ 6= i, and a(Xn+1 = yj)→ 0 as η, γ → 0. Observe that
A(Y, η) is convex, so given ε > 0, there exists η > 0 so that for any pi ∈ P (Y, ε) there
is an ai ∈ A(Y, η) so that margn+1 ai = pi.

Let P (Y ) = ∪ε>0P (Y, ε). Since any S ′ ∈ S∩A(Y, η) is correctly perceived, Axiom
5 and standard results imply there is a Luce representation when restricted to subsets
ofA(Y, η) for each η > 0; let uη be its index. By Axiom 8, uη(a)/uη(b) = uη′(a′)/uη′(b′)
whenever margn+1 a = margn+1 a

′, margn+1 b = margn+1 b
′, a, b ∈ A(Y, η), and a′, b′ ∈

A(Y, η′). Pick η∗ and a ∈ A(Y, η∗). Normalize uη′ for each η′ < η∗ so that uη′(a) =
uη∗(a). Since there is one degree of freedom, uη′(b) = uη′′(b) for any b ∈ A(Y, η′) ∩
A(Y, η′′), so ûY can be defined unambiguously via ûY (p) = uη′(p) for any η′ such
that p ∈ A(Y, η′). By Axiom 8, ûY is continuous and ûY (a) = ûY (b) whenever
margn+1 a = margn+1 b, so we can decompose ûY = u̇Y ◦margn+1.

For each Y , let pY =
(

1
|Y | , y

)
y∈Y

. Extend u̇Y to q ∈ ∆(Y ) via the formula

uY (q) = exp[2 ln u̇Y (1
2q + 1

2pY )− ln u̇Y (pY )].

Axiom 6 gives that uY (q) = u̇Y (q) when q ∈ P (Y ). We show uY ◦margn+1 is a Luce
representation of ρ on

SY = {S ∈ S : margn+1 a ∈ ∆(Y ) ∀a ∈ S and S is correctly perceived}.

Take any S ∈ SY . Pick any p∗, q∗ ∈ S. Let r = margn+1 r
∗ = r for r = p, q

and {pm, qm} ∈ S ∩ A(Y, 1
m|Y |+1) have margn+1 rm = 1

m
pY + m−1

m
r for r = p, q and
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m = 1, 2, . . . . By Axiom 6, for m > 2 we have

ρ(pm, {pm, qm})
ρ(qm, {pm, qm})

=
exp[2m−2

m
ln uY (1

2p+ 1
2pY ) + 2−m

m
ln uY (pY )]

exp[2m−2
m

ln uY (1
2q + 1

2pY ) + 2−m
m

ln uY (pY )] = uY (margn+1 pm)
uY (margn+1 qm) .

By Axiom 8, ρ(pm,{pm,qm})
ρ(qm,{pm,qm}) →

ρ(p∗,S)
ρ(q∗,S) = uY (p)

uY (q) . Since S, p∗ and q∗ were arbitrary, this
establishes the claim.

Pick any finite Y ∗ ⊂ Xn+1. Define u(q) = uY ∗(q) for any q with support in Y ∗.
For any Y ⊃ Y ∗ and q ∈ P (Y ), define u(q) = λuY (q) where λ = u(pY ∗)/uY (pY ∗).
We claim that ρ has a Luce representation U on the correctly perceived menus. Pick
any correctly perceived S and any p, q ∈ S. Let Y ⊃ Y ∗ be so that suppr ⊂ Y for
r = p, q. By the above, ρ(p,S)

ρ(q,S) = uY (margn+1 p)
uY (margn+1 q)

= u(margn+1 p)
u(margn+1 q)

, and by usual uniqueness
results u is well-defined. Conclude U = u ◦margn+1 represents ρ on the Rρ-Markov
menus.

Now, let V = ln u. Observe that V is affine (by Axiom 6), strictly-increasing in
FOSD (by Axiom 7), continuous (by Axiom 8), and ranks every lottery in ∆(Xn+1).
Conclude there exists a continuous strictly-increasing v : Xn+1 → R so that V (p) =∫
v(c)dp(c) for any p ∈ ∆Xn+1, completing the proof. �

Necessity: Suppose that ρ has a perfect SCR. Theorem 1 implies that ρ has an SCR
(Rρ, u) and that Axiom 3 holds. Since for any DAG R∫

u(c)dpR(cn+1|a′) ∈
[

min
x∈Xn+1

u(x), max
x∈Xn+1

u(x)
]
,

Axiom 2 holds. Axiom 5 follows from continuity of the expected utility functional
and that the hypothesis implies ρSmRρ (·|a)→ ρSRρ(·|a) for every a ∈ S. For a correctly
perceived S,

ln ρ(a, S)
ρ(b, S) =

∫
Xn+1

u(c)da(cn+1)−
∫
Xn+1

u(c)db(cn+1),

so when a = αa′ + (1− α)b and {a, b} = S is correctly perceived,

ln ρ(a, S)
ρ(b, S) = α

∫
Xn+1

u(c)d[a′ − b](cn+1),

so Axiom 6 holds. Axioms 1, 4, 7, and 8 are easily seen to be necessary.

Sufficiency: Suppose that ρ satisfies the axioms. Axiom 3 implies A∗1, . . . , A∗|A| exist,
and so Rρ is a perfect, uninformed, nontrivial DAG. Given Lemma 11, we approximate
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choice in every menu by a sequence of correctly menus. We show that

(3) ρ(a, S)
ρ(b, S) =

exp[
∫
Xn+1

u(c)dρSRρ(cn+1|a)]
exp[

∫
Xn+1

u(c)dρSRρ(cn+1|b)]

for any a, b ∈ S and any S ∈ S. Then, ρ has an SCR (Rρ, u) since ∑a∈S ρ(a, S) = 1.

Pick any S ∈ S and any a, b ∈ S. Let a′(y) = ρSRρ(y|a) and b′(y) = ρSRρ(y|b) for
every y ∈ X−0. Since {a′, b′} is correctly perceived, ρ(a′, {a′, b′})/ρ(b′, {a′, b′}) has the
desired form by Lemma 11. If a′ = b′, then margA∗1 a = margA∗1 b, so ρ(a, S) = ρ(b, S)
by Axiom 4, and Equation (3) holds.

Otherwise, let S1 = {a′, b′} and recursively define Sm = Sm−1 ∪ { 1
m
a′ + m−1

m
b′}.

Each Sm is correctly perceived by construction, and each has m+ 1 distinct alterna-
tives. By Axiom 2, there exists K > 0 so that for any a′′, b′′ ∈ S ′′ ∈ S, ρ(a′′,S′′)

ρ(b′′,S′′) ≤ K.
In particular, for Sm \ S = {s1, . . . , sM(m)} (noting M(m) ≥ m + 1 − |S|), a′′ ∈ S,
and i ≤M(m), we have ρ(si, Sm ∪ S) ≥ K−1ρ(a′′, Sm ∪ S). Then,

1 ≥
∑

i≤M(m)
ρ(si, Sm ∪ S) + ρ(a′′, Sm ∪ S) ≥ [M(m)K−1 + 1]ρ(a′′, Sm ∪ S)

so ρ(a′′, Sm ∪ S) ≤ K
m+1−|S|+K → 0 as m→∞.

For pm = ρSm∪S, arbitrary i ≤ |A|, and E = A∗i+1 \ A∗i , we have pm(xE|xA∗i )
equals

1
pm(xA∗i )

∑
a′′∈S

pm(a′′)pm(xA∗i |a
′′)a′′(xE|xA∗i ) + pm(Sm)pm(xA∗i |x0 ∈ Sm)a′(xE|xA∗i )


for p-a.e. x ∈ X−0 since â(xE|xA∗i ) = a′(xE|xA∗i ) for all â ∈ Sm. This converges to
ρS1(xE|xA∗i ) = a′(xE|xA∗i ) because pm(a′′) → 0 for all a′′ ∈ S. Since i was arbitrary,
ρSm∪S(xA∗i+1\A

∗
i
|xA∗i )→ ρS1(xA∗i+1\A

∗
i
|xA∗i ) for every i.

Axiom 4 gives that ρ(a, Sm∪S) = ρ(a′, Sm∪S) and ρ(b, Sm∪S) = ρ(b′, Sm∪S).
Axiom 5 implies that

ρ(a′, Sm ∪ S)
ρ(b′, Sm ∪ S) = ρ(a, Sm ∪ S)

ρ(b, Sm ∪ S) →
ρ(a′, S1)
ρ(b′, S1)

and that
ρ(a, Sm ∪ S)
ρ(b, Sm ∪ S) = ρ(a′, Sm ∪ S)

ρ(b′, Sm ∪ S) →
ρ(a, S)
ρ(b, S) .
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Therefore, ρ(a′,S1)
ρ(b′,S1) = ρ(a,S)

ρ(b,S) and Equation (3) holds for a, b. Since a, b, and S were
arbitrary, ρ has a perfect SCR (Rρ, u). �

A.4. Proof of Proposition 3. Suppose that ρi has a perfect SCR (Ri, ui) for i =
1, 2 and that ρ2 has a coarser model than ρ1. Let (i0, . . . , im) be a R2-MAP, I =
{i0, . . . , im}, and SI = {S ∈ S : Xi ⊥S XN\i for all i ∈ N \ I}. Restricted to
menus in SI , ρi has an SCR (R′i, ui) where R′i = Ri ∩ I × I, and by construction
ρ1(·, S) = ρ2(·, S) for all S ∈ SI . Applying Theorem 1 gives that (i0, . . . , im) is a
R1-MAP. Similar arguments show that any R1-MAP with covariates contained in
N∗(R2) is also a R2-MAP. Letting R∗2 = R1∩ [N∗(R2)×N∗(R2)], the set of R∗2-MAPs
coincides with the set of R2-MAPs, so applying Theorem 1 establishes the result.

Conversely, let ρi have a perfect SCR (Ri, ui) for i = 1, 2 u2 = u1 + β and R2 =
R1 ∩ [N ′ ×N ′] for some N ′ ⊂ {0, . . . , n + 1}. Pick any S ∈ S so that Xi ⊥S XN\{i}

for all i /∈ N∗(R2) and any p ∈ co(S) ⊂ ∆X with full support. Since N ′ ⊃ N∗(R2),
we also have Xi ⊥S XN\{i} for all i /∈ N ′, so for every i and p-a.e. x ∈ X ,

p
(
xi|xR1(i)

)
= p

(
xi|xR1(i)∩N ′ , xR1(i)\N ′

)
= p

(
xi|xR1(i)∩N ′

)
= p

(
xi|xR2(i)

)
.

Hence, pR1 = pR2 , and the set of R1-personal equilibriums for S equals the set of
R2-personal equilibriums for S. �
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