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Abstract

We introduce a model of strategic experimentation on social networks where forward-looking

agents learn from their own and neighbors' successes. In equilibrium, a private discovery phase

is followed by a social di�usion phase; the anticipation of future social information crowds out

agents' own experimentation. We �rst study tree-like networks, characterize learning dynamics

via ODEs, and draw tight comparisons between directed, undirected and clustered networks.

We then turn to general large random networks, with density ranging from sparse trees to

dense cliques. We show that information aggregates if network density is low, which motivates

private discovery. In contrast, welfare attains a second-best benchmark if network density is

intermediate, which allows for a quicker di�usion of discoveries.

1 Introduction

The discovery and di�usion of innovations are important drivers of long-term economic growth. This

is illustrated by the seminal papers of Griliches (1957) and Coleman, Katz, and Menzel (1957) that

document the spread of new technologies by farmers and doctors. From the perspective of societal

welfare, discovery and di�usion are complements: Mokyr (1992) argues that both are required for

sustained economic progress. From an individual strategic perspective, they are substitutes: Gross-

man and Stiglitz (1980) famously point out that if society aggregates information e�ciently, then

individual agents have no incentive to privately invest into producing information in the �rst place.

Economic theory has made large strides in understanding information acquisition and aggregation

in centralized settings such as �nancial markets, auctions, and collective experimentation. However,

there is far less understanding about these incentives in decentralized settings, where information

slowly di�uses through society. This project seeks to reconcile these perspectives in a parsimonious

equilibrium model of experimentation on networks.
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We also thank seminar audiences at UCLA. Keywords: networks, experimentation, social learning. JEL codes: D83,
D85.
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‡UCLA, http://www.econ.ucla.edu/mtv/
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The classic paper on this topic, Bala and Goyal (1998), restricts attention to myopic, non-

Bayesian agents, stating that if agents were more sophisticated �their incentives for strategic behavior

(such as free riding on the information generated by other agents) would also interact with the

imperfect monitoring of the rest of society in very complex ways�. We propose a tractable model of

experimentation on networks with forward-looking, Bayesian agents. While each agent faces a rich

strategy space, her social learning curve is described by a simple function of time, and her problem

reduces to choosing a single number: the total amount of individual experimentation, as captured

by a cuto� time. This insight allows for a clean characterization of initial experimentation and the

subsequent contagion in terms of ordinary di�erential equations, opening the gate to a myriad of

questions about experimentation on networks.

In this project, we investigate how canonical network structures a�ect agents' speed of learning,

their welfare, and whether society ultimately learns the underlying state of nature. In the clique,

free-riding incentives are so strong that social information crowds out private experimentation one-

for-one. In core-periphery networks, we show that information aggregation requires a su�ciently

small core. In large random regular networks, we provide a tight comparison between directed,

undirected and clustered networks. A consistent theme is that agents' distance in the network

induces the information frictions that mitigate free-riding and sustain private experimentation.

In the model, a group of agents (Iris, John, Kata. . .) that are connected by an exogenous network

(e.g. clique, core periphery, tree) can experiment with a new technology whose quality/state is high

or low. Experimentation generates successes at random times i� the state is high. Agents learn from

their own and neighbors' successes. This simple model captures a number of applications: Consider

landowners learning about the presence of oil from nearby frackers, consumers learning about the

e�ectiveness of a new diet from friends, or researchers learning about a new tool from colleagues.

In Section 2.1 we characterize Iris's best-response to arbitrary strategies of other agents. Ob-

serving a success perfectly reveals high quality and essentially ends the game for her. Before this

time, Iris's experimentation decision is based on the expected e�ort of her neighbors conditional on

her not having observed a success, generating her social learning curve. We show that Iris's po-

tentially very complicated dynamic experimentation problem is solved by a simple cuto� strategy:

in the absence of success, Iris experiments until some cuto� time τ and then stops. An increase

in social information crowds out Iris's private experimentation, lowering τ : More past social infor-

mation makes Iris pessimistic, while more future social information raises her opportunity cost of

experimentation.

In Section 3 we introduce three canonical classes of networks, for which we can completely

characterize learning dynamics. First, as a benchmark, we study cliques, where all agents can

observe one another. The unique equilibrium features complete crowding out: the agents collectively

experiment as much as a single agent would by herself. Adding agents speeds up experimentation

and spreads its cost, but does not raise the amount of information produced.

Next are core-periphery networks, where core agents are connected to everyone, while peripheral

agents are only connected to core agents. Core agents have more social information than peripherals,
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and so experiment less but have higher equilibrium value. Indeed, with enough peripherals, the core

agents do not experiment at all, and only work after a success, acting as information brokers.

Third, we consider regular trees including directed trees (e.g. Twitter), undirected trees (e.g.

LinkedIn), and trees of triangles that capture clustering (e.g. Facebook). Trees are interesting be-

cause they approximate large random networks, and they are tractable because neighbors' behavior

is independent. We characterize social learning in the contagion phase by simple ordinary di�eren-

tial equations. For example, in a directed line, social information arrives at a constant rate, whereas

in a directed tree with degree d ≥ 2, the arrival rate rises over time. Using these equations, we

show that the value of an agent in a directed tree with degree d is sandwiched between the value in

undirected trees with degree d and d+ 1. Thus, agents prefer directed to undirected links, but even

more strongly prefer one more neighbor. Similarly, we show that the value of an agent in a triangle

tree with degree d is sandwiched between the value in undirected trees with degree d− 1 and d.

In Section 6 we study how information aggregation depends on the network structure. We �rst

ask which networks exhibit eventual information aggregation (EIA), meaning that social learning

eventually reveals the true state. This fails in the clique, but it obtains in tree networks. Intriguingly,

core-periphery networks exhibit EIA i� the periphery grows large while the core stays below a critical

threshold. Intuitively, frictions are necessary in order to incentivize agents to generate their own

information, which then di�uses through society.

Next we ask which networks exhibit immediate information aggregation (IIA), meaning social

learning immediately reveals the true state. Clearly, IIA requires an exploding number of neighbors.

Additionally, since IIA fully undermines agents' incentives to learn the state themselves, it requires

the prior belief to support experimentation even for myopic agents. In trees and core-periphery

networks, these conditions are also su�cient.

These results are new, and we are still investigating which other classes of networks admit

tractable and insightful characterizations. Over the course of the next two years, we plan to develop

our results into a more comprehensive theory of networked experimentation. We also plan to

complement our equilibrium analysis with the mechanism design perspective of a utilitarian planner

and investigate the implications for network formation. Section 7 discusses these two directions.

1.1 Literature

At the core of the paper is a �perfect good news� model of strategic experimentation with unob-

served actions, observed outcomes, and private payo�s. Keller, Rady, and Cripps (2005) study a

model with observed actions and private payo�s, while Bonatti and Hörner (2011) consider unob-

served actions and public payo�s. Our assumption of unobserved actions and private payo�s is a

natural way to model a network of oil frackers whose externalities are purely informational. The

above papers characterize a unique symmetric equilibrium, where agents gradually phase out their

experimentation as the public belief approaches the exit threshold. In our model, cuto� strategies

are optimal and easy to characterize. This allows us to go beyond the clique and solve for equilibria

in rich classes of networks.
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Experimentation on networks was pioneered by Bala and Goyal (1998) who study myopic, non-

Bayesian agents and provide conditions under which (i) agents reach a consensus and (ii) the agents

learn the true state. Subsequent work has generalized these two limit results. Rosenberg, Solan, and

Vieille (2009) considers a very general model with forward-looking Bayesian agents that encompasses

strategic experimentation on networks, and shows that all agents eventually play the same action.

Camargo (2014) considers a continuum of forward-looking Bayesian agents with �random sampling�,

and shows that information aggregates if each action is myopically optimal for a positive measure

of agents' heterogeneous priors. By focusing on good news learning, we can characterize learning

dynamics at each point in time, rather than restricting attention to long-run behavior. This is

important since empirical researchers must identify economic models from �nite data, and because

governments and �rms care about when innovations take o�, not just if they take o�.1

The complexity of Bayesian updating has led some authors to consider reduced-form models of

information acquisition and aggregation. For example, Galeotti and Goyal (2010) consider a local

public goods game where each agent chooses a contribution level, and bene�ts from her neighbors'

contributions. Since our agents' optimally choose a deterministic stopping time, we recover the

tractability of the reduced-form models of experimentation in a model of Bayesian learning.

In seeking to characterize learning dynamics on networks, the paper is related to Board and

Meyer-ter-Vehn (2021). In that paper, myopic agents sequentially choose to acquire information at

a single point in time. Here, forward-looking agents simultaneously choose to acquire information

at every point in time. Since agent are forward-looking, they anticipate the arrival of future social

information which crowds out their private experimentation. And since they can choose repeatedly,

the model gives rise to the clean distinction between an experimentation phase and a contagion phase

that speaks to the discovery and di�usion of innovations. We also plan to investigate additional

questions about network formation and the planner's problem that did not arise in Board and

Meyer-ter-Vehn (2021).

The project also complements a recent and growing empirical literature that studies how people

learn about innovations from their neighbors. Conley and Udry (2010), Banerjee et al. (2013),

BenYishay and Mobarak (2019) and Beaman et al. (2021) study the spread of new production

techniques and �nancial innovations in developing countries. Fetter et al. (2018) and Hodgson (2018)

study the di�usion of fracking and oil exploration decisions. And Moretti (2011) and Finkelstein,

Gentzkow, and Williams (2021) explore the adoption of new products. Such empirical analysis

lacks a simple framework with forward-looking Bayesian agents that can be estimated and used for

counterfactuals. This project proposes such a framework.

1A parallel literature considers dynamic learning games where private information is initially endowed to agents,
instead of being learned over time. Gale and Kariv (2003) show that consensus must emerge when agents are Bayesian
and myopic. Mossel, Sly, and Tamuz (2015) extend this result to forward-looking agents, and also show that agents
eventually learn the true state if the network is not too connected (e.g. the network is undirected with bounded
degree). Another classic literature considers agents who move in sequence, learning from (a subset of) prior agents.
Acemoglu et al. (2011) show that society learns the true state if signals are unbounded and agents (indirectly) observe
an unbounded number of agents. Mossel et al. (2020) unify many of the results in these literatures by looking at
steady-state asymptotic behavior.
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2 Model

Network. There are I agents i ∈ I, connected by an exogenous, directed random network G, with
realizations G ⊆ I × I that represents who observes whom. If i observes j, we write i → j or

(i, j) ∈ G, and call j a neighbor of i. The set of i's neighbors is Ni(G).

Game. The agents seek to learn about the e�ectiveness of a new technology as captured by the

state θ ∈ {L,H} = {0, 1}. Time is continuous, t ∈ [0,∞). At time t = 0, agents share a common

prior Pr(θ = H) = p0 ∈ (0, 1). At each time t, agent i chooses e�ort Ai,t ∈ [0, 1] at �ow cost c. This

e�ort results in successes that arrive at rate Ai,tI{θ=H}. Agent i's histories hi,t consist or her own
and her neighbors' successes before t.

Payo�s. Agents receive payo� x > c from their own successes. Payo�s are discounted at rate r > 0,

so the expected discounted value equals

Vi = max
{Ai,t}t≥0

E
[∫ ∞

0
e−rtAi,t

(
xI{θ=H} − c

)
dt

]
(1)

where the expectation is taken over quality θ and information hi,t. Our solution concept is Nash

equilibrium.

• Remark. We impose more structure on our networks in Section 3. Much of our paper

focuses on deterministic networks; we then identify the degenerate random network G with

its realization G. When studying non-degenerate random networks G, we assume that agents

observe nothing about the realization G, not even the identity or number of their neighbos

Ni(G).

Notational issues

• Drop the 0 in p0?

• Degree d looks odd when multipliying with t so dt

2.1 Best-Responses

In this section, we characterize the best response of a generic agent, Iris, given arbitrary strategies

of other agents. After Iris observes a single success, maximal e�ort Ai,t = 1 is a dominant strategy,

with continuation value y := (x − c)/r. We can thus restrict attention to times before that. So

motivated, write Ti for Iris's �rst success time, Si for her neighbors' �rst success, {a∅i,t}t≥0 for her

experimentation, i.e. her e�ort before min{Ti, Si}, and

bi,t := E

 ∑
j∈Ni(G)

Aj,t|t < Ti, Si

 (2)

5



for Iris's social learning curve, where the expectation is taken over the random network G Since her

experimentation is unobservable to others and own success e�ectively ends the game for her, Iris

takes {bi,t} as given. We thus study the best response {a∅i,t} to {bi,t}, and drop the i subscript for

the rest of the section.2,3

When Iris has not observed a success by time-t, she uses Bayes' rule to update her belief to

pt = P∅
(∫ t

0
(a∅s + bs)ds

)
where P∅(x) :=

p0e
−x

p0e−x + (1− p0)

Truncating her objective function (1) at the �rst observed success, we get

V = max
{a∅t }t≥0

∫ ∞
0

[(
a∅t (x+ y) + bsy

)
pt − a∅t c

]
e−

∫ t
0 (r+(a∅s +bs)ps)dsdt. (3)

Intuitively, Iris receives x + y when she succeeds, y when a neighbor succeeds, and incurs e�ort

cost of c when she works. These payo�s are discounted at the interest rate plus the success rate,

(a∅s + bs)ps. Equation (1) implies that Iris experiments, a∅t = 1, when pt exceeds the myopic

threshold belief p̄ := c/x. Conversely, equation (3) implies that she does not experiment, a∅t = 0,

when pt falls below the single-agent threshold belief p := c/(x + y). Her optimal experimentation

for intermediate beliefs pt ∈ [p, p̄] then depends on her social learning.

We �rst claim that Iris uses a cuto� strategy. That is, she experiments maximally until some

cuto� time τ and then stops, a∅t = I{t≤τ}.4 To see why, suppose she shirks at time t but works

at time t + δ, and consider the e�ect of front-loading e�ort ε from t + δ to t. This has two

consequences. First, if the e�ort pays o�, i now gets to enjoy the success earlier, raising her value

by rδ(pt(x+y)− c)ε > 0. Second, if one of her neighbors succeed over [t, t+ δ], she ends up working

at both t and t + δ, raising her value by ptbtδε(x − c) > 0. Thus, Iris always prefers to front-load

experimentation, giving rise to a cuto� time τ with cuto� belief pτ ∈ [p, p̄].

Next, we characterize the optimal cuto� τ . De�ne Iris's (terminal) experimentation incentives

ψt := pt

(
x+

r

r + βt
y

)
− c, (4)

where discounted average social learning βt is de�ned implicitly by

r

r + βt
= r

∫ ∞
t

e−
∫ s
t (r+bu)duds. (5)

To understand equations (4) and (5), suppose that successes from Iris's neighbors arrive at constant

rate b. If she raises the cuto� from t to t+δ, she gains the expected payo� from a success pt(x+y)δ,

2The analysis in this Section 2.1 immediately generalizes beyond our deterministic, known networks G to more
general, random and/or time-varying networks.

3Our model is equivalent to a model where each agent can only succeed once for a payo� of x + y; while agents
do not get to observe their neighbors' repeated successes in this model variant, this does not matter since the �rst
success reveals θ = H perfectly .

4Of course, �stopping� is provisional in the sense that Iris starts to work again when she observes one of her
neighbors succeed at some t > τ .
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but forgoes the expected bene�t of future social learning pt(
b
r+by)δ, and incurs marginal e�ort cost

cδ. The experimentation incentives are the sum of these three e�ects. When the social learning

curve {bs}s≥t is time-varying, we substitute its discounted average βt for the constant b.

We summarize these results as follows:

Theorem 1. Given social information {bt}, the agent's optimal experimentation is given by the

cuto� strategy a∅t = I{t≤τ} where the cuto� time τ solves ψτ = 0.

Theorem 1 reduces the potentially very complicated dynamic experimentation problem of a

forward-looking, Bayesian agent to choosing one number τ , which is characterized rather explicitly

by (4).5 This opens the gate to a myriad of questions concerning experimentation on networks.

Before taking a stance on the network G, we can already provide useful comparative statics on

Iris's value and optimal cuto� as a function of her social learning. Experimentation incentives (4)

depend on past information Bτ :=
∫ τ
0 bsds via pτ = P∅(τ + Bτ ) as well as future information via

βτ , both of which crowd out her own private experimentation. Thus,

Lemma 1. Higher social learning {
∫ t
0 bs}t≥0 increases value V and decreases the stopping time τ .

• The optimal cuto� τ is thus maximized in the absence of social learning, bs ≡ 0, i.e. the

single-agent problem, where its level τ̄ satis�es P ∅(τ̄) = p.6

Lemma 1 suggests that Iris's value V and experimentation τ are negatively associated as we vary

{
∫ t
0 bs}t≥0. More precisely, truncating (3) at τ we can write value V � somewhat unusually � as

a function or her endogenous cuto� and her initial social information, V(τ,Bτ ),7 and show:

Lemma 2. V(τ,Bτ ) is decreasing in τ and Bτ . Thus, an agent who chooses not to work, τ = 0,

has higher value than an agent who chooses to work, τ ′ > 0.

2.2 Information Aggregation and Welfare

• The guiding questions of our paper are information aggregation and the value of social learning

• Taking the perspective of the worst-o� agent, we measure information in network G and

equilibrium {τi}i∈I by infi
∫∞
0 bi,tdt and welfare by infi Vi. Let V FB be the supremum of

infi Vi, taken over all networks G and strategy pro�les, and V SB be the supremum when

restricting attention to equilibria {τi}.
5In contrast to Theorem 1, the seminal papers on strategic experimentation in the clique network, Keller, Rady,

and Cripps (2005) and Bonatti and Hörner (2011), both �nd that agents phase out e�ort gradually in equilibrium,
working too late as well as too little. The reason for this di�erence is that free-riding incentives are greater in their
models. Keller, Rady, and Cripps (2005) considers public actions and Markovian strategies, so when Iris experiments
more without succeeding, other agents get more pessimistic and experiment less. Bonatti and Hörner (2011) assume
there can only be one success with public payo�s, ending the game; front-loading is then a waste of e�ort if others
are about to succeed.

6FWIW: τ̄ = log
p0(1−p)
(1−p0)p

.
7For τ = 0, the expression V(τ, B) = V(0, 0) presumes that Iris is indi�erent about experimentation at τ = 0.
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• In �nite networks with I agents, social learning is bounded above,
∫∞
0 bi,tdt ≤

∑
j 6=i τj ≤

(I − 1)τ̄ < ∞, which also bounds welfare away from V FB by Lemma 1. We thus consider

either sequences of �nite networks, or alternatively in�nite networks outright.

• We say that the sequence of I-agent networks G(I) with associated equilibrium cuto�s, learning

curves {b(I)i,t }, and equilibrium values {V (I)
i } aggregates information if

lim
I→∞

inf
i

∫ ∞
0

b
(I)
i,t dt =∞

and that it achieves �rst-best if limI→∞ infi V
(I)
i equals V FB, and second-best if it equals

V SB.

• More simply, an in�nite network G aggregates information if infi
∫∞
0 bi,tdt =∞ and achieves

second-best if infi Vi = V ∗.

• In strongly connected networks, every agent eventually learns about the success of every other

agent, and so
∫∞
0 bi,tdt =

∑
j 6=i τj , simplifying the test for information aggregation.

Lemma 3. First-best is given by V FB = p0y, and second-best by V SB = min{p0y, p0(x+ y)− c}.

Proof for �rst-best:

• p0y is the value of an agent who learns the state θ immediately, and thus clearly an upper

bound for equilibrium value Vi

• This upper bound is attained by I-cliques where individual experimentation vanishes, yet

collective experimentation diverges τI → 0, IτI → ∞, say τI =
√
I. But in equilibrium τI =

τ̄ /I, so collective experimentation is constant at τ̄ , and welfare converges to V(0, τ̄) < V FB.

Proof for second-best

• The additional upper bound V SB ≤ p0(x + y) − c, which is less than p0y for p0 < p̄ derives

from the fact that some agent j has to experiment, τj > 0, for others to socially learn; by

Lemma 2, j's equilibrium value is bounded above by V(τj , Bj) < V(0, 0) = p0(x+ y)− c.

• Theorems 3 and 4 give instances of networks that attain this upper bound.

3 Regular Networks

• In the last Section we studied how Iris's best response τi depends on her social learning

{bi,t}t≥0. To close the model in equilibrium we must study how individual cuto�s {τj} aggre-
gate into social learning curves {bi,t}t≥0. To do so, we impose more structure on the networks

G.
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• As a warm up, Section 3.1 considers the clique. This illustrates how social learning crowds out

private experimentation, equilibrium values are bounded away from second-best, and serves as

a comparison to classic experimentation papers (e.g. Keller, Rady, and Cripps (2005), Bonatti

and Hörner (2011)).

• In Section 3.2 we consider (in�nite) regular tree networks and compare directed networks,

undirected networks, and clustered networks. Information aggregates in all of these networks,

and we study individual experimentation and welfare across these networks.

• In Section we introduce regular random networks, that encompass the clique and (in the limit)

trees, as in Sadler (2020) and Board and Meyer-ter-Vehn (2021). We �nd that both informa-

tion aggregation and welfare hinge on agents' degree as function of the size of the network,

d(I). Generally speaking, second-best welfare requires denser networks than information ag-

gregation, but when the network gets too dense, i.e. d(I)/I does not vanish, crowding out is

su�ciently strong to also prevent second-best welfare. Information aggregatoin is additionally

aided by experimentation being myopically optimal at the prior belief, p0 > p̄.

3.1 Clique

Recall the single-agent experimentation level, de�ned by P∅(τ̄) = p.

Lemma 4. There is a unique equilibrium with cuto�s τj = τ̄ /I for all j.

Crowding out is one-for-one: the I agents collectively experiment as much as a single agent would

by herself. Intuitively, the agent who experiments the longest quits when the public belief reaches

the single-agent threshold p; since all agents are indi�erent at p and agents prefer to front-load

experimentation, they all experiment until that point, splitting the total experimentation evenly.8

• In the limit, I → ∞, individual experimentation vanishes and all learning is social. Equilib-

rium values converge to V C = V(0, τ̄) =
p0−p
1−p y < V SB.9 Di�usion chokes o� discovery too

fast.

3.2 Trees

We next turn to (in�nite) regular trees, where each agent has the same degree, d, as illustrated in

Figure 2. In a directed tree ~T (d), there is at most one directed path between any two agents; this

resembles users following one another on Twitter. In a undirected tree T̄ (d), there is at most one

undirected path between any two agents; this resembles the connections between acquaintances on

LinkedIn. And in a triangle tree T̂ (d), agents are connected in triangles; this resembles clusters of

8When thinking of information acquisition as a public goods problems, one might instead have expected the allo-
cation of contributions across agents to be indeterminate (e.g. Galeotti and Goyal (2010)). In our setting, impatience
resolves this indeterminacy.

9Careful: The arguments in V(0, τ̄) mean no own experimentation τ = 0 and social information equal to the
single-agent problem, B = τ̄ .
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Figure 1: Equilibrium values. Second-best coincides with �rst-best for p0 ≥ p̄, but is lower for p0 < p̄. Exploding

cliques do not converge to second best for p0 ∈ (p, 1), but do exceed the value function of a solo agent.

friends on Facebook. Trees are appealing to study since they approximate large random networks,

and because the independence across neighbors (or triangles, in T̂ (d)) makes them highly tractable.

With this in mind we ask: How does social learning depend on the structure of the tree?

Example 1 (Directed Line). Suppose agents are connected via an in�nite directed line,

. . .→ i→ j → k → . . .

In a symmetric equilibrium all agents experiment for time τ . Suppose Kata succeeds in this experi-

mentation phase, while Iris and John do not. After time τ , we enter the contagion phase where Kata

and John continue to work, since they have both seen Kata's success, while Iris shirks. Eventually

John also succeeds, and then all three work forever after.

To solve for the equilibrium cuto� τ , we calculate i's social information during the contagion

phase, {bi,t}t≥τ . Conditioning on θ = H,

bi,t = E [Aj,t|t < Ti, Si] = E [Aj,t|t < Tj ] = Pr (Tk < t|t < Tj) = 1− e−τ . (6)

The second equality uses that John is Iris's only neighbor, so Si = Tj , and that his e�ort Aj,t is

independent of Iris's (lack of) success, t < Ti. The third equality relies on the observation that in
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Figure 2: Regular Trees with degree d = 4.

the contagion phase, t ≥ τ , John works i� Kata has succeeded. The last equality uses Bayes' rule,

Pr (t < Tk|t < Tj) =
Pr (t < Tj |t < Tk) Pr (t < Tk)

Pr (t < Tj)
= Pr (t < Tj |t < Tk) = e−τ .

Thus, social information arrives at constant rate βi,t ≡ bi,t ≡ 1 − e−τ . Using equation (4), the

equilibrium stopping time τ solves

ψτ = P∅(2τ)

(
x+

r

r + (1− e−τ )
y

)
− c = 0. (7)

Experimentation τ rises in the payo� x, and falls in the interest rate r and the e�ort cost c. 4

Example 2 (Undirected Line). Now, consider the in�nite undirected line

. . .↔ i↔ j ↔ k ↔ . . .

As in Example 1, conditioning on θ = H,

bi,t = 2E [Aj,t|t < Ti, Si] = 2 Pr (Tk < t|t < Tj) = 2(1− e−τ ). (8)

Using (4), the equilibrium stopping time τ is implicitly given by

ψτ = P∅(3τ)

(
x+

r

r + 2(1− e−τ )
y

)
− c = 0. (9)

Comparing (7) and (9), agents experiment less in the undirected line, which has more sources of

social information and hence greater crowding out. 4

We now study trees more generally. By Lemma 1 the game has strategic substitutes, so:

Lemma 5. Any regular tree, ~T (d), T̄ (d) or T̂ (d), admits a unique symmetric equilibrium with cuto�

τ > 0.
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• Clearly then, information aggregates in any regular tree,
∑

i τi = Iτ =∞.

We wish to compare stopping times and values across trees. First, we derive the arrival rate of

social information in the contagion phase t ≥ τ as in (6) and (8).

• In a directed tree, ~T (d), Iris's expectation of her neighbor John's e�ort at = E[Aj,t|t < Ti, Si]

follows the ODE

ȧ = (d− 1)a(1− a) (10)

with initial condition aτ = (1− e−dτ ) given by the probability that one of John's d neighbors

succeeded in the experimentation phase. Subsequently, i's expectation rises because of j's

expected in�ow of information, but falls because of j's observed lack of success. The net e�ect

is captured by the factor (d− 1) in (10): The more neighbors John has, the faster he observes

a success, and the faster rises Iris's social information.

• In an undirected tree, T̄ (d), Iris's expectation of John's e�ort follows

ȧ = (d− 2)a(1− a) (11)

with initial condition aτ = (1 − e−(d−1)τ ). Intuitively, i knows the backward link j → i does

not produce information for j, because she conditions on not having seen a success herself.

This lowers both the initial condition and the rate of increase by one degree.

• In a triangle tree, T̂ (d), Iris's expectation of John's e�ort follows

ȧ = (d− 3)a(1− a) (12)

with initial condition aτ = (1 − e−(d−2)τ ). Intuitively, i knows the triangle links j → i, k do

not provide information for j, because she conditions on not having seen a success by i or k

herself. This lowers both the initial condition and the rate of increase by an additional degree.

To see how this di�erence in social learning feeds back into the equilibrium cuto� τ , we rewrite

experimentation incentives (4) as a function of the degree d and neighbors' expected e�ort in the

contagion phase, {at}t≥τ

P∅((d+ 1)τ)

(
x+ ry

∫ ∞
s=τ

exp

(
−
∫ s

t=τ
(r + dat)dt

)
ds

)
− c = 0.

Substituting the solutions of the ODEs (10), (11) and (12) for {at}t≥τ allows us to compare stopping

times across networks. Lemma 2 then delivers the comparative statics across values.

Theorem 2. Equilibrium cuto� times for regular trees are ranked as follows:

τ̂ (d+2) < τ̄ (d+1) < ~τ (d) < τ̄ (d) < τ̂ (d).

Equilibrium values are ranked in the opposite way:

V̂ (d+2) > V̄ (d+1) > ~V (d) > V̄ (d) > V̂ (d).

12



This result provides a tight relationship between the value of di�erent network structures and

the value of extra neighbors. Intuitively, for �xed τ , the directed network ~T (d) has the same number

of neighbors as the undirected network T̄ (d), but more social information per neighbor since the

neighbor's backward link is wasted. This extra social information provides value and crowds out

experimentation. Conversely, the undirected network T̄ (d+1) has the same social information per

neighbor as the directed network ~T (d) but more neighbors. Again, this extra social information

provides value and crowds out the agent's e�ort.

13



3.3 Regular Random Networks

• Focus on sequences of �nite, undirected networks

• Constructing R(I, d)

� I agents each draw d = d(I) ≥ 1 link stubs

� Randomly connect these, avoiding self-links and multi-links; drop unconnectable stubs

� Assume for simplicity that agents don't observe anything about network realization10

• Open issues

� Show that these networks look as expected: As I →∞, any agent i almost surely has d

links, is part of a giant component, ...11

� Notation: Better dI? It's usually lighter than d(I), but becomes awkward when adding

other subscripts, like time and agents, bI,j,t

• Special cases

� If d(I) = I − 1, we recover the clique

� If d(I) ≡ d, we approach the tree T̄ (d) as I →∞.

• d(I)/I is a measure of density of the network; cliques are maximally dense, trees are very

sparse

• By symmetry, any such network R(I, d(I)) admits a unique symmetric equilibrium with cuto�

τ (I) and value V (I)

• Information aggregation then obtains if B := lim Iτ (I) =∞; second-best welfare convergence

requires V := limVI = V SB.12

Conjecture 1. Assume symmetric cuto�s τI (not necessarily equilibrium), asympotic information

B, and degrees lim(dI/ log I) = 1/σ ∈ [0,∞]. If B < ∞, the random time SI at which a given

10Introducing private signals ξi, say, telling agents when one of their stubs was truncated, would complicate
the analysis beyound the single-dimensional cuto� τ for all agents. And omitting such private information seems
practically innocuous in our regular networks, where most (asymptotically proportion one?) agents have degree d.
It would also raise the question whether we require EIA or IIA for every realization of ξi or in expectation. The

latter would raise the problem that one could cheat to get �rst best for all agents i by randomly designating an
exploding number (but vanishing proportion) of guinea pig agents who observe no one, but are observed by everyone.

11Alternatively, one might consider Erdos-Renyi networks

∗ Advantages: Look more realistic, and there's a larger theory on their asymptotic properties

∗ Disadvantages: Assuming that agents don't know their neighbors would be hokey.

∗ Interesting thought: It seems that information aggregation is impossible.

· If d(I)/ log I → 0, the network is not connected, and the agents outside the giant component don't learn.

· And otherwise the density of the network chokes o� experimentation.

12We assume throughout that all limits exist, possibly equal to ∞, which is wlog subject to taking a subsequence.
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agent observes the �rst success converges to a two-point distribution: S=∞ with probability e−B and

S = σ with probability 1− e−B. If B =∞, the support of S is bounded above by σ.

Argument

• Let B < ∞. With probability e−B, nobody succeeds during the experimentation phase and

thus nobody ever observes a success

• With the residual probability, there are �nitely many seeds. The number of agents who

have observed a success �rst grows exponentially at rate dI to size Jτ+t ≈ Jτe
dI t, until the

contagion process starts running out of new nodes. At that time all remaining agents are

infected asymptotically immediately because dI → ∞. The exponential growth rate means

that that time converges to σ = lim(log I/dI).

• If B =∞, there are in�nitely many seeds with probability one, and the contagion process may

reach the entire population before σ. For instance, if individual experimentation is bounded

below, τI ≡ τ > 0, the number of seeds explodes, τI → ∞; if additionally degrees explode

dI →∞, all agents observe a success immediately, S ≡ 0, irrespective of σ.13

• FWIW, withB =∞ and τI → 0, S converges to a point distribution at σ̂ := − lim(log τI/dI) <

σ.14

Lemma 6. Individual experimentation vanishes, τ (I) → 0, i� degrees explode, d(I) →∞.

Proof

• �If� follows by τ (I) ≤ τ̄ /(d(I) + 1)→ 0

• �Only if� follows because social learning with bounded d(I) is bounded above by social learning

in the undirected d-tree; and the boundary condition of (11) aτ = 1−exp(−(d−1)τ (I)) vanishes

as τ (I) → 0.

Implications

• Bounded degrees are su�cient for information aggregation, Iτ (I) →∞.

• Exploding degrees are necessary for welfare maximization

� With optimistic prior p0 > p̄, welfare maximization requires immediate information ag-

gregation and hence an exploding degree d(I)

� With pessimistic prior p0 ≤ p̄ the welfare bound equals V ∗ = V(0, 0) and V(τ,B) is

boundedly lower for boundedly positive τ .

Our upcoming main result shows that information aggregates when the networks are su�ciently

sparse, while welfare converges to second-best when their density is intermediate.

13This is not an equilibirum since social learning during in the experimentation phase explodes, dIτI →∞.
14Indeed, I = Jσ̂ = J0e

dI σ̂ = IτIe
dI σ̂, and σ − σ̂ = lim((log IτI)/dI) > 0.
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• For p0 < p̄, de�ne σ∗ ∈ (0,∞) such that socially learning the state with certainty at time σ∗

(so a post-experimentation continuation value of e−rσ
∗
y) renders an agent indi�erent at t = 0

p0

(
x+ (1− e−rσ∗)y

)
= c. (13)

Theorem 3. The regular networks {R(I, d(I))} converge to second-best i� d(I) →∞ and d(I)/I → 0.

Information aggregation additionally depends on the prior: If p0 ≥ p̄ it occurs i� d(I)/I → 0; if

p0 < p̄, it occurs if more strongly lim(d(I)/ log I) ≤ 1/σ∗.

Welfare:

• By Lemma 6, d(I) → ∞ is necessary for second-best convergence, so we assume this lower

bound throughout.

• The proof (but not the result) for the upper bound d(I)/I → 0 depends on whether the prior

p0 is above or below the myopic threshold

• Optimism: p0 > p̄

� Total learning in the experimentation phase is bounded, (d(I) + 1)τ ∈ [τ , τ̄ ], where

P ∅(τ) = p̄.15

� If lim d(I)/I = ε > 0, then total asymptotic information is bounded above by Iτ =

d(I)τ (I)/ε < τ̄/ε. So information does not aggregate, and welfare does not converge to

second-best p0y.

� Conversely, if lim d(I)/I = 0, then total asymptotic information Iτ > Iτ/(d(I) + 1)

diverges, and one can show more strongly that agents learn an exploding amount of

information before any t > 0.16,17,18

15FWIW τ = log p0(1−p̄)
(1−p0)p̄

16See Section 7.2.2 in 210831_Repository.
17Conjecture 1 is not so useful here. With B = ∞, it implies immediate learning only if additionally

lim(d(I)/ log I) = 1/σ =∞.
18One could try to argue more strongly that (for any prior): Asymptotically, the ratio of social learning before the

cuto� to total social learning equals the ratio of degree to total nodes: For every t > 0,

lim
I→∞

τ (I)d(I)∫ t
0
b
(I)
s ds

= lim
I→∞

d(I)

I

∗ This is not to say that agents necessarily learn non-neighbors' information right after τ . (By Conjecture 1,
immediate learning more strongly requires σ̂ = − lim((log τI)/dI) = 0). In an in�nite tree they don't. But that
ratio still goes to 0.

∗ Then, for p0 ≤ p̄:
· If the LHS is zero, dτ must vanish; for otherwise, agents would learn θ immediately after τ , eroding
experimentation incentives, ψτ < 0.

· If this limit is �nite, dτ must not vanish; for otherwise, social learning after τ also vanishes, but then ψτ
approaches p0(x+ y)− c > 0.

∗ This is more elegant in that it avoids the repetition of the argument across the cases p0 > p̄ and p0 ≤ p̄.
∗ But it's somewhat heavy algebraically, and also not so obvious how to prove it rigorously
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• Pessimism: p0 ≤ p̄

� Since V ∗ = V(0, 0), Lemma 2 implies that welfare V(τ, dτ) approximates second best i�

social learning during the experimentation phase d(I)τ (I) vanishes.

� We argue by contradiction: Assume d(I)/I → ε > 0 and second-best convergence. Then,

pre-cuto� learning vanishes, d(I)τ (I) → 0, so total learning vanishes Iτ (I) < d(I)τ (I)/ε→
0, and agent value converges to its minimum V(τ̄ , 0), contradicting the second-best as-

sumption.

� For d(I)/I → 0 assume counterfactually that lim d(I)τ (I) > 0. The same argument as

in the case p0 > p̄ implies that agents learn an exploding amount of information before

any t > 0. For p0 < p̄, this chokes o� information generation immediately, so τI = 0 for

large I, contradicting our assumption lim d(I)τ (I) > 0. For p0 = p̄, asymptotic immediate

learning pushes the cuto� belief to the prior pτI → p̄ = p0, and so pτ (I) = P ∅((d(I)+1)τ (I))

implies the contradiction d(I)τ (I) → 0.

Information aggregation

• Unlike second-best welfare, information aggregation does not require a lower bound on the

degree d ≥ 1, and obtains for all bounded d(I) by Lemma 6. So we henceforth assume dI →∞.

• For p0 ≥ p̄, the upper bound d(I)/I → 0 for information aggregation follows by the same

arguments as for second-best welfare

� Second-best welfare V (I) → p0y implies that all agents perfectly learn the state at any

time t > 0, so a fortiori in the long-run. The upper bound d(I)/I → 0 is thus also

su�cient for information aggregation.

� In the proof of second-best welfare, we argued that this bound is also necessary.

• Turning to p0 < p̄,

� Warmup: The upper bound d(I)/I → 0 is still necessary for information aggregation (by

the same argument) but no longer su�cient. If the network is so dense that the contagion

process covers the entire network immediately, d(I)/ log I → 1/σ = ∞, information

cannot aggregate. If it did, B = ∞, social learning would fully crowd out learning

incentives, so ψ0 = p0x− c < 0, nipping information generation in the bud.

� Necessary: More generally, if lim(log I/dI) = σ < σ∗ and, by ways of contradiction

B =∞, Conjecture 1 implies that experimentation incentives at t = 0 turn negative

limψI,0 = p0
(
x+ (1− E[e−rS ])y

)
− c < p0

(
x+ (1− e−rσ∗)y

)
− c = 0

contradicting B =∞.
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� Su�cient: Conversely, for lim(log I/dI) = σ ≥ σ∗ assume by ways of contradiction,

B < ∞. Given dI → ∞ and p0 ≤ p̄, �nite asymptotic information, B < ∞, implies

that social learning during the experimentation phase vanishes, dIτI → 0, and hence

pτI = P ∅((dI + 1)τI) → p0. Conjecture 1 then implies that experimentation incentives

at the equilibrium cuto� are strictly positive:

limψI,τI = p0
(
x+ y(1− (1− e−B)e−rσ)

)
− c > p0

(
x+ (1− e−rσ∗)y

)
− c = 0.

This contradiction implies that asymptotic information must be in�nite, B =∞.19

3.3.1 Beyond the benchmark result, Theorem 3:

We now argue more strongly that aggregate information falls with network density, while welfare is

hump-shaped. We start with B.

• Theorem 3 and its proof establish that B =∞ if lim(dI/ log I) ≤ 1/σ∗.

• For 1/σ∗ < lim(dI/ log I) and dI/I → 0, B <∞ solves

p0
(
x+ y(1− (1− e−B)e−rσ)

)
= c; (14)

this falls in lim(dI/ log I)→ 1/σ as 1/σ rises to∞, and is then constant, solving p0
(
x+ e−By

)
=

c for all {dI} with lim(dI/ log I)→∞ and dI/I → 0.

• We next argue that when dI/I → α ∈ (0, 1], B <∞ solves

P ∅(αB)
(
x+ e−(1−α)By

)
= c. (15)

� By Conjecture 1, asymptotically each agent learns all information B immediately.

� Within this vanishing time interval of learning, information from the αI direct neighbors

is learnt before τI and enters as argument of P ∅ in (15), while the residual (1 − α)I is

learnt immediately after and enters as an opportunity cost in (15).

� Since (15) is more sensitive to pre-cuto� learning that to post-cuto� learning,20 a rise in

α decreases the LHS of (15), which must be compensated by a fall in total information

B.

� For α = 1, we recover the in�nite clique, with total crowding out B = τ̄ .

Turning to welfare V :

• Theorem 3 shows it is maximized for intermediate degrees, that satisfy both dI → ∞ and

dI/I → 0.

19FWIW, as long as lim(d(I)/ log I) = 1/σ > 0, individual cuto�s must satisfy lim(log τI/dI) = −σ∗
20Lemma 4 in 210831_repository
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Figure 3: Core-Periphery Network with K = 2 core agents, and J = 6 peripherals.

• For �nite d, Theorem 2 strongly suggests that V increases in d.21

• For dI/I → α > 0, the fact that B = B(α) decreases implies that V = V (α) decreases, too.

4 Core-Periphery

• In Section 4 we study core-periphery networks, that are popular in the �nancial markets

literature (e.g. Babus and Kondor (2018)) and arise endogenously in Galeotti and Goyal

(2010).

The core-periphery network CP(J,K) consists of K core agents who are connected to everyone, and

J peripheral agents who are only connected to core agents. See Figure 3 for an illustration. Writing

τk and τj for the stopping time of core and peripheral agents in a symmetric equilibrium, we get

Lemma 7. In the core-periphery network CP(J,K), core agents work less, τk < τj, and have higher

values, Vk > Vj.

Core agents work less than peripherals because of their greater social information. After τk,

the core agents shirk, waiting for one of the peripheral agents to succeed. After such a success,

the core agents start working, while the peripheral agents experiment until time τj . Finally, once

a core agent succeeds, everyone learns the state is high and works. The core agents thus serve as

information brokers.

• We now consider sequences of core-periphery networks with I agents, KI ≥ 1 of whom are in

the core, CP(I −KI ,KI).

• Mirroring Theorem 3, the next result shows that information aggregates for small core sizes,

while welfare (of the worst-o� peripheral agents) converges to second-best for intermediate

core sizes.

21A formal proof would require to show that the equilibrium welfare is continuous as R(I, d)→ T̄ (d).
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• For p0 < p̄, let K∗ ∈ (0,∞) solve p0

(
x+ r

r+K∗ y
)

= c.

Theorem 4. If p0 ≥ p̄, information aggregates in core-periphery networks {CP(I − KI ,KI)} i�

KI/I → 0; convergence to second-best additionally requires KI → ∞. If p0 < p̄, information

aggregates if more strongly limKI ≤ K∗; convergence to second-best occurs i� limKI ≥ K∗ and

KI/I → 0.

Proof

• Information aggregation for p0 < p̄ is Theorem 2 in 210832_Repository

• Welfare is Theorem 3(b); for p0 ≥ p̄ this implies the information aggregation results

4.0.1 Beyond the benchmark result, Theorem 4:

We now argue more strongly that aggregate information falls with network density, while welfare is

hump-shaped. We start with welfare for limKI = K < K∗.

• Core agents learn immediately and so bj,t ≡ K

• Thus, welfare increases in K

Next, consider information B = lim Jτj <∞ for pessimistic prior p0 < p̄ and intermediate core size,

K∗ < limKI and KI/I → 0

• limKI = K <∞: Core agents' experimentation starts (asymptotically) at a0 = 1− e−B and

then decays at rate ȧ = −Ka(1 − a), so p0(x + re−
∫∞
0 r+Katdt) = c. Since K is the learning

speed, B falls in K.

• limKI =∞: Peripherals learn all information right after τ , so p0(x+e−By) = c, as for regular

random networks.22

Finally, consider welfare and information aggregation in networks with large cores, KI/I → α ∈
(0, 1]

• Indi�erence condition for core agent

P ∅(Iτk)
(
x+ e−J(τj−τk)y

)
= c.

• Indi�erence condition for peripheral agent

P ∅
(
K(τk +

∫ τj

τk

atdt) + τj

)(
x+ e−(J−1)τj+K

∫ τj
τk
atdty

)
= c

where aτk = 1− eJτk and ȧ = (J − 1−K)a(1− a)

22FWIW: For �nite limKI = K, core agents' time-0 experimentation incentives are strictly lower than peripherals',
so τk = 0 and equilibrium is unique. But for limKI =∞, this is not obvious.
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• Thus K
∫ τj
τk
atdt+ τj = Jτk

• Thus τk does not vanish

• B = Kτk + Jτj is less than the solution B of p0(x+ e−By) = c and one guesses it falls in α,

reaching V C for α = 1, but it's not clear how to prove this.

5 Leftover: Regular Networks

5.0.1 Obsolete

• not all agents can learn the state immediately, since this would nip experimentation in the

bud. Indeed, the upper bound d(I)/I → 0, no longer su�ces for information aggregation: If

I = d2, say, asymptotically all social learning happens occurs right after τ , so the limit of

total information solves p0(x+ e− lim IτIy) = c and is hence �nite.

• Conversely, we know that information aggregates if dI is bounded, by Lemma 6.23

• With exploding degrees d(I) →∞, the proof of the welfare results allows us to restrict attention

to d(I)/I → 0, and d(I)τ (I) → 0.24

• The limit of neighbors' �rst success times S = limSI , must satisfy the equilibrium condition

p0 (x+ (1− E[exp(−rS)]) y) = c (16)

THEOREM: Value V = limV (I) is

• (a) increasing in lim d(I) and below second-best when lim d(I) <∞

• (b) constant, equal to second-best V ∗ when lim d(I) =∞ and lim d(I)/I = 0

• (c) decreasing in lim d(I)/I and below second-best when lim d(I)/I ∈ (0, 1], reaching V C when

lim d(I)/I = 1.

• If p0 < p̄, total information B = lim Iτ (I) is

• (a) in�nte if lim d(I)/ log I < 1/t∗∗ where t∗∗ solves

p0

(
x+ (1− e−rt∗∗)y

)
= c

• (b) decreasing in lim d(I)/ log I = 1/t∗ ≥ 1/t∗∗ de�ned by p0
(
x+ (1− (1− e−B)e−rt

∗
)y
)

= c

23We also know that information aggregates in in�nite d-trees and their limit as as d→∞, which corresponds to
the double-limit limd→∞ limI→∞R(I, d).

24If d(I)/I → ε > 0, total information is bounded by Iτ (I) ≤ τ̄ /ε <∞.
If d(I)τ (I) → ε > 0, then d(I)/I → 0 implies that the state is revealed immediately after τ , undermining the

incentives to experiment, since pτ < p0 < p̄.
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• (c) constant, de�ned by to p0
(
x+ e−By

)
= c if lim d(I)/ log I =∞ and lim d(I)/I = 0.

• (d) decreasing in lim d(I)/I = α ∈ (0, 1], de�ned by P ∅(αB)
(
x+ e−(1−α)By

)
= c, reaching τ̄

when lim d(I)/I = 1.

• If p0 ≥ p̄, we have B =∞ also in cases (b) and (c), that is whenever lim d(I)/I = 0.

Previously

• This reduces the problem to a pure �contagion on networks� problem that may have an o�-

the-shelf solution in the literature: At what time SI does a contagion process with seeding

probability τI , so s ∼ f(s|τII) seeds, and neighbor-infection rate 1 reach a given agent?

• The growth rate of the expected number of �infected� agents Jt (i.e. agents i with Ti ≤ t) is

bounded above by d − 1 and the expected number of seeds at time τ equals Iτ , so Jτ+t ≤∑
s e

(d−1)tsf(s|τII).

• Thus, the chance of observing a neighbor succeed before time t is bounded above via

Pr(S ≤ τ + t) ≤ dJτ+t/I ≤
∑
s

de−tedt−log Isf(s|τII) (17)

• To see that Iτ must explode if d/ log I → 0, assume to the contrary that Iτ is bounded. Then

the RHS vanishes for any t > 0 as I → ∞. Thus E[exp(−rS)] vanishes, contradicting (16),

recalling p0 > p = c/(x+ y).

• Conversely, if d/ log I →∞ is bounded

5.0.2 Obsolete (and probably false)

• We conjecture that information aggregation requires more strongly that d(I)d(I)/I → 0, and

that information aggregation must obtain if d(I)f(d(I))/I is bounded away from 0 for some f

with f(d)/d→∞.

• The key argument is that the time it takes for a success to transmit through a tree with span

d and depth r(d) has expectation r(d)/d, and converges in probability to lim r(d)/d.

• If d(I)d(I)/I → 0, most nodes are

• If for some M <∞ and all large I we have I ≤Md(I)d(I),

� a non-vanishing fraction of nodes is contained in a tree of span d(I) and depth d(I) around

any given agent i.

� The expected time for a success to percolate through this tree to i is bounded above and

below:
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∗ The transmission time at each step is exponential with parameter and expectation

1/d(I)

∗ And there are d(I) such steps

∗ Indeed, as d(I) →∞, the total expected time should converge to 1

� Since information aggregation requires an exploding number of successes before τ , this

�nite transmission time undermines information generation

• Conversely if I ≥ εd(I)f(d(I))

� an exploding proportion of nodes are further than f(d(I)) away from i

� the expected transmission time from these nodes f(d(I))/d(I) diverges

5.1 Next Steps

To bring the tree networks in this section closer to networks observed in practice and allow for

empirical and policy analysis, one might want to introduce heterogeneity pertaining to agents'

degree d, costs c, or bene�ts x. Preliminary attempts in this direction indicate that the equilibrium

analysis readily accommodates such heterogeneity, but comparative statics are complicated by the

higher dimensionality of the policy space τ = τ(d, c, x). We also plan to study equilibria in time-

varying networks. Speci�cally, we conjecture that re-sampling links should improve social learning

by avoiding the redundancy of observing the same neighbor repeatedly.

6 OLD: Information Aggregation

We now study how the network structure a�ects society's ability to aggregate information. We

propose two notions of information aggregation. Consider a sequence of exploding sets of agents,

I(n) ⊆ I(n+1), I :=
⋃
n≥1 I(n) and |I| = ∞, with associated networks and equilibrium stopping

times, (I(n), G(n), {τ (n)i }). The sequence exhibits eventual information aggregation (EIA) if every

agent eventually receives perfect social information,

∀i : lim
n→∞

∫ ∞
0

b
(n)
i,s ds =∞.

This notion is familiar from discrete-time games with repeated actions (e.g. Bala and Goyal (1998),

Golub and Jackson (2010)).

The sequence exhibits immediate information aggregation (IIA) if every agent immediately re-

ceives perfect social information,

∀i, t > 0 : lim
n→∞

∫ t

0
b
(n)
i,s ds =∞.

This notion is familiar from static trading games (e.g. Grossman and Stiglitz (1980)) and continuous-

time games of social learning (e.g. Board and Meyer-ter-Vehn (2021)).
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6.1 Eventual Information Aggregation

Our networks in Section 3 o�er a sharp contrast:

• The n-agent cliques fail EIA as n→∞. Crowding out is one-for-one, so the total amount of

social information is
∫∞
0 b

(n)
i,s ds = (n− 1)τ̄ /n is bounded above (and converges to) τ̄ .

• Any in�nite regular tree exhibits EIA.25 For example in the directed line, bi,t equals 1 for

t ≤ τ and 1− e−τ for t ≥ τ , so
∫∞
0 b

(n)
i,s ds =∞.

In the core-periphery network, we can delineate the boundaries of EIA as a function of the core size:

Theorem 5. Core-periphery networks CP(J (n),K(n)) satisfy EIA i� the periphery explodes while

the core is bounded, i.e. J (n) →∞ and there exists K with

p0

(
x+

r

r +K
y

)
≥ c (18)

such that K(n) ≤ K for almost all n.

Intuitively, core agents jointly generate less information than a solo agent, K(n)τk ≤ τ̄ , so

information aggregation relies on peripherals. Since their social information is bounded above by

β ≤ K, condition (18) guarantees that initial experimentation incentives (4)

ψ
(n)
j,0 = p0

(
x+

r

r + β
(n)
j,0

y

)
− c

are positive. Aggregate experimentation by peripherals then diverges, J (n)τ
(n)
j →∞, implying EIA.

Underlying these arguments for our three classes of networks is the idea that sparse networks

induce the information frictions which mitigate crowding out and sustain information aggregation.

For low K, it takes a long time for information to pass from one peripheral agent to another (as in

the in�nite line), so each one generates some original information, even if J =∞. But for high K,

they crowd out each other's work, as in the clique, and information aggregation fails.

6.2 Immediate Information Aggregation

Immediate information aggregation requires that each agent has an exploding amount of information

immediately at hand. Such information crowds out all experimentation incentives, and chokes o�

information generation for priors below the myopic threshold p0 < p̄ = c/x. Thus,

Lemma 8. Exploding degrees, |Ni| → ∞ for all i, and an optimistic prior, p0 ≥ p̄, are jointly

necessary for IIA.

In trees and core-periphery networks, these conditions are also su�cient:

25Instead of jumping to the limit by directly studying the in�nite tree, we could instead alternatively consider an
in�nite sequence of �nite tree networks, starting with the root agent, adding her d neighbors, then adding their d2

neighbors, and so on. The equilibria of these �nite trees converge to the symmetric equilibrium of the in�nite tree.
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Theorem 6. Suppose p0 ≥ p̄. Then IIA holds in

(a) Regular trees with exploding degree, limd→∞ ~T (d), T̄ (d) or T̂ (d).

(b) Core-periphery network with a large core and larger degree, limK→∞ limJ→∞ CP(J,K).

6.3 Next Steps

Moving forward, we hope to obtain tight conditions for eventual and immediate information aggre-

gation (in the spirit of Theorems 5 and 6) in more comprehensive classes of networks. Small steps in

this direction suggest that the failure of EIA in the clique extends to ��nite sets of interconnected,

exploding cliques� including �replica networks�; the success of EIA should extend from the in�nite

line to networks with �in�nite diameter and bounded degree�.26 More ambitiously, we might extend

our analysis to random networks. For example, consider the regular con�guration model with degree

d and I(d) total agents; these networks encompass the tree (I =∞, d �nite) and the clique (I = d).

We conjecture that IIA obtains as d → ∞ i� agents' direct neighbors comprise of a small part of

society d/I(d)→ 0.

7 Extensions

In this section, we sketch two avenues for future work. First, we ask which networks arise endoge-

nously when agents can buy links. To this end, we conjecture that cliques arise when links are

cheap, whereas stars can arise when they cost a bit more. Our preliminary analysis suggests that

an increase in link costs can make agents better o�.

Second, we introduce a utilitarian planner who chooses the experimentation cuto�s on behalf of

the agents. Since the planner internalizes the bene�ts of private experimentation on other agents,

she generally wants to raise cuto�s. We conjecture that the clique network maximizes this divergence

between private an social incentives, while in core-periphery networks the planner may want to raise

cuto�s for core agents but lower them for peripherals.

7.1 Network Formation

Consider the baseline model and suppose that, before the game, agents simultaneously choose to link

to one another. Galeotti and Goyal (2010) studies such network formation, modeling the subsequent

information discovery and dispersion in reduced form as a local public goods game. They show that

equilibrium networks exhibit the �Law of the Few� in that: (i) a small subset of agents acquire

information, and (ii) a majority of individuals get their information from this group of informed

agents. We wish to revisit this question using a dynamic, Bayesian model of experimentation.

Preliminary analysis suggests that part (ii) of the Law of the Few obtains, while part (i) does not.

26There are other interesting examples of networks. For example, unlike Bala and Goyal (1998), we obtain EIA
in their �royal family� example, and can construct networks with in�nitely many �locally independent� agents where
EIA fails.
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There are two large hurdles in solving such a model. First, in the network formation stage,

agent face a combinatorial portfolio choice problem when choosing with whom to link. Second,

in the experimentation stage, we need to characterize equilibria on every network. We skirt these

problems by guessing a natural equilibrium network where we can ignore correlation across agents

and rank them by their individual informativeness; we then verify there is no deviation.27

We conjecture that the following networks emerge as equilibria

• When κ is �high�, agents form a star, with the central agent acting as �information broker�

and doing no work.

• When κ is �middling�, agents form a core-periphery with K > 1 core agents doing no work.28

• When κ is �low�, agents form a clique, with everyone doing a little work.

As in Galeotti and Goyal (2010), agents link to the most informed core agents. But in contrast,

core agents do not generate original information; rather they aggregate information generated by

peripherals.

This result implies that linking costs κ may be socially bene�cial by preventing over-clustering.

Indeed, assuming (18) fails forK = 1, social learning in the star network crowds out experimentation

by each peripheral agent, τj → 0 as J →∞, and so equilibrium values converge to V(0, 0), cf Lemma

2. But in the clique network, which must arise for κ = 0, equilibrium values converge to V(0, τ̄),

which is less than V(0, 0) by Lemma 2. Intuitively, agents link excessively because they ignore the

equilibrium impact of their links on others' experimentation.

The above arguments showcase the tractability of our baseline model, but are only a starting

point for an analysis of network formation, that would seek to characterize all equilibrium networks

and propose a way to select from this set. One might also try to relax some of the more pragmatic

modeling assumptions, e.g. that links are undirected yet costs are unilateral. We are still at the

early stages of thinking about this, so it is a little unpredictable where this will go.

7.2 Planner's problem

Consider a utilitarian planner who takes the network G as given and chooses e�ort Ai,t on behalf

of the agents. As in traditional experimentation papers (e.g. Keller, Rady, and Cripps (2005)), the

planner internalizes the informational spillovers of private experimentation and wants to correct for

agents' free-riding. How does this discrepancy between private and social perspective depend on

the network? To get a sense of the planner's problem consider a simple example:

27Formally, we follow Galeotti and Goyal (2010) by assuming that agents do not observe the realized network, so
do not react to deviations in linking strategies by others; we also adopt their assumptions that links are undirected
but that the link cost κ only has to be paid by the originating agent.

28More precisely, the network we have in mind has a large group of J �peripheral� agents that all link to K �core�
agents, but unlike in Section 4, the core agents do not link to each other. One might alternatively call this structure
an (asymmetric) bipartite graph.

26



Example 1 (Directed Line). Suppose the planner chooses a symmetric cuto� τ > 0 (which one

would need to show is optimal). At τ , the marginal social bene�t of i's experimentation equals

ψFBτ = pτ

(
x+ y + e−τZ − b

r + b
Z

)
− c

where b = 1 − e−τ is the arrival of social information, and Z = r+1
r+(1−e−τ )y is the bene�t to

{i−1, i−2, . . .} when i succeeds and i−1 has not succeeded yet. In comparison, the private bene�t

is given by (7). 4

We conjecture that private and social incentives are less aligned in more connected networks.

Intuitively, in a highly connected network the planner bene�ts from the fast communication of

information, raising her choice of experimentation. However, in equilibrium, social information

crowds out private information, leading to less information in the long run (e.g. see the clique

in Section 3.1). One challenge with this conjecture is to formalize the notion of the discrepancy

between private and social outcomes.

Another question is how experimentation is distributed in the planner's problem as compared

to the equilibrium. For example, consider the two-person network i → j. The planner would raise

τj above τ̄ because of its positive externality on i, but then lower τi to its new equilibrium value.

Indeed, it is not obvious whether aggregate experimentation τi + τj must rise, especially if there

are multiple copies of i. Turning to richer networks, one wonders about the planner's solution for

the star network. We conjecture that core agents do most of the work in the planner's problem,

whereas peripheral agents do most of the work in equilibrium.

Studying the planner's problem raises broader questions about how the government should

reward innovators. Should the government �push� innovation by lowering the cost of innovation, c.

Or should it �pull� innovation by raising the reward for success x? Following Galeotti, Golub, and

Goyal (2020), one could analyze the e�ect of small changes in payo�s on incentives and equilibrium.

This analysis could inform current policy debates about how to reward innovators with intellectual

property and monopoly rents, that have greatly contributed to the current levels of inequality.
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