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Abstract

Intermediaries such as Amazon and Google recommend products and services to

consumers for which they receive compensation from the recommended sellers. Con-

sumers will find these recommendations useful only if they are informative about the

quality of the match between the sellers’ offerings and the consumer’s needs. The in-

termediary would like the consumer to purchase the product from the recommended

seller, but is constrained because consumers need not follow the recommendation. I

frame the intermediary’s problem as a mechanism design problem in which the mecha-

nism designer cannot directly choose the outcome, but must encourage the consumer to

choose the desired outcome. I show that in the optimal mechanism, the recommended

seller has the largest non-negative virtual willingness to pay adjusted for the cost of

persuasion. The optimal mechanism can be implemented via a handicap auction.

I use this model to provide insights for current policy debates. First, to examine

the impact of the intermediary’s use of seller data, I identify types of seller data that

lead to benefit or harm to the consumer and sellers. Second, I find that the optimal

direct mechanism protects consumer privacy, but consumer data is leaked to sellers

under other implementations. Lastly, I show that the welfare-maximizing mechanism

increases the consumer surplus, but reduces the joint profit of the intermediary and

sellers relative to the revenue-maximizing mechanism. An alternative interpretation of

the model as a search engine is discussed.
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1 Introduction

As consumers increasingly use websites and digital services for shopping, online platforms

play a larger role in choosing products and services. Many platforms make personalized

recommendations based on past data about consumers, providing them with greater insights

into which products and services best fit their needs. For example, more than 75% of

Netflix selections arise from personalized recommendations derived from past viewership and

stated preference. Likewise, more than 35% of Amazon’s sales result from the platform’s

recommendations to consumers.1

While some platforms like Netflix focus solely on providing the best matches for users,

others monetize the recommendations by collecting payments from sellers in exchange for

recommending their products and services. For instance, Amazon recommends sponsored

products by displaying the products at the top of search lists. Google and Facebook recom-

mend products by displaying targeted advertisements. A unique feature of these platforms

is that sellers pay for their products to be recommended, yet the platform fully designs how

to recommend and the payment structure. I call this pair, of a recommendations rule and a

payment rule, a recommender system.

In this paper, I consider a monopolistic intermediary designing a recommender system to

maximize the revenue collected from sellers. There are three types of players: a representative

consumer, N representative sellers and an intermediary. The consumer may choose from one

of the N products or an outside option. While the consumer does not know the match values

of the products, the intermediary does and monetizes this knowledge by collecting payments

from sellers in exchange for recommending their products. Sellers are willing to pay for

recommendations to increase their sales. The (ex-post) willingness to pay is drawn from two

sources: the seller’s private information, such as profit margin, and the match values, which

only the intermediary knows.

I frame the intermediary’s problem as a revenue-maximizing mechanism design problem of

allocating one unit of sales to one of multiple sellers, but with a constraint. Unlike a standard

optimal auction (Myerson (1981)), the intermediary cannot directly choose an outcome of

the mechanism, the sales, but must rely on the consumer to choose an outcome. The only

way to influence the consumer’s choice is by recommending products that are a good match

so that the consumer will find it optimal to choose the recommended option. That is, the

intermediary is constrained to persuade the consumer to choose the desired outcome.

The intermediary’s objective of raising revenue from sellers and constraint of persuading

1McKinsey & Company, “How retailers can keep up with consumers,”
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
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the consumer interact in a non-trivial way. To raise revenue from sellers, the intermediary

has to persuade the consumer to purchase the product from the recommended seller and the

outside option if no seller is recommended. Otherwise, the consumer ignores the recommen-

dations, and sellers would not pay for a recommendation. Persuading the consumer to take

the recommended option requires recommending a product with a high match value even if

its seller does not necessarily have the highest expected willingness to pay.

The presence of the consumer’s outside option is important. Without it, the constraint of

persuading the consumer is trivially satisfied. In the symmetric environment where products

are ex-ante identical, the consumer is indifferent among all options and follows recommen-

dations as long as they contain some information about match values. If the intermediary

runs an optimal auction (with no reserves) with sellers and recommends the product of

the seller with the highest virtual willingness to pay, then such recommendations are in-

formative because sellers’ virtual willingness to pay partially depends on match values. In

other words, the revenue-maximizing mechanism designed ignoring the persuasion constraint

trivially satisfies the constraint.

With the outside option, the constraint of persuading the consumer bites. Suppose the

intermediary first runs an optimal auction with sellers and recommends the product of the

seller with the highest non-negative virtual willingness to pay (Myerson (1981)). If the

consumer is nearly ex-ante indifferent between the outside option and products, the consumer

follows the recommendations. However, when the consumer strongly prefers his outside

option over products or vice versa, the recommendations are not informative enough about

match values, so the recommendations are ignored. To make recommendations informative,

the intermediary adjusts the virtual willingness to pay by match values, and recommends

according to the adjusted virtual willingness to pay (Theorem 1.a and Theorem 1.b). The

adjusted virtual willingness to pay is larger when the product is a good match. The precise

size of the adjustment is shadow price of the persuasion constraint that I call the cost of

persuasion.

In solving the intermediary’s mechanism design problem, I reformulate the problem as

a Bayesian persuasion problem in which the intermediary persuades the consumer to take

the recommended option by strategically releasing information about match values as well

as sellers’ willingness to pay. In this Bayesian persuasion problem, the intermediary has

state-dependent preferences over recommendations, the state space is multidimensional and

possibly infinite, and the consumer has multiple options to choose from. These features com-

bined make the three popular approaches - concavification (Kamenica and Gentzkow (2011)),

convex function characterization (Gentzkow and Kamenica (2016)) and duality (Dworczak

and Kolotilin (2019)) - hard to apply tractably. Instead, I use a guess and verify approach
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by focusing on a class of recommendations rules that I call value-switching monotone. As it

tractably characterizes the binding obedience constraints and the structure of the optimal

recommendations rule, I expect this approach to be useful in similar Bayesian persuasion

problems.

In the second part of this paper, I use the model to examine policy questions on the

regulation of platforms. The first question is whether the intermediary should be allowed

to collect and use data that reflects sellers’ private information, which I call additional

information. For example, Amazon sometimes demands receipts from third-party sellers to

prove their products’ authenticity. The receipts may contain sensitive information such as

from where and at what prices the products are purchased, which would enable Amazon to

directly purchase and sell the identical products without leaving any margin to third-party

sellers.2 Google is accused of using past bidding data to estimate bids advertisers are likely

to submit.3 Regulators have initiated a series of antitrust investigations on intermediaries’

use of additional information about sellers on the basis of the potential harm to consumers

and sellers.4

I find that the intermediary’s use of additional information does not necessarily harm con-

sumers and sellers. Additional information changes the revenue gains the intermediary makes

by recommending products of sellers with higher willingness to pay, and hence, the optimal

recommender system (Theorem 2.a and Theorem 2.b). In particular, additional informa-

tion that decreases (increases) the revenue gains benefits (harms) consumers by making the

intermediary more (less) likely to recommend products based on match values (Theorem 3

and Theorem 6). The same property provides sufficient conditions under which additional

information harms sellers (Theorem 4, Corollary 1, Theorem 7 and Corollary 2).

The second question is whether consumer data is protected or leaked to sellers through the

recommender system.5 I show that the intermediary cannot earn higher revenue by sharing

2U.S. House Judiciary Committee’s Subcommittee on Antitrust, Commercial, and Administrative Law,
“Investigation of Competition in Digital Markets,”

https://judiciary.house.gov/uploadedfiles/competition in digital markets.pdf?utm campaign=4493-519
3The Wall Street Journal, “Google’s Secret ‘Project Bernanke’ Revealed in Texas Antitrust

Case,” https://www.wsj.com/articles/googles-secret-project-bernanke-revealed-in-texas-antitrust-case-
11618097760

4The European Commission has launched an antitrust investigation against Amazon
(https://ec.europa.eu/commission/presscorner/detail/en/ip 20 2077). Ten states led by Texas have sued
Google for anti-competitive policies in online advertisement markets, including Project Bernanke.
(https://www.wsj.com/articles/states-sue-google-over-digital-ad-practices-11608146817?mod=article inline).

5Some intermediaries such as Facebook allow sellers to define target audience using attributes including
date of birth, gender and location before they bid. Korolova (2010) demonstrates that sellers can select
attributes so that they are satisfied only by a single user, effectively revealing the target consumer’s demo-
graphic information that was supposed to be private. See Korolova (2010) and Venkatadri, Andreou, Liu,
Mislove, Gummadi, Loiseau, and Goga (2018) for more details. This has sparked concerns about consumer
data leakage through targeted advertisements, and served as one of the motivations for data protection
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consumer data with sellers. In the optimal direct mechanism, the intermediary can always

extract the benefit sellers would have from receiving consumer data by providing the sellers

with better matches and charging more (Theorem 8). Consumer data is protected in that

sellers do not learn about consumers’ match values until the auction ends. However, data

leakage is a feature of some indirect mechanims that implement the optimal recommender

system (Theorem 9 and Theorem 10).

Lastly, I show that the welfare-maximizing mechanism increases consumer surplus but

reduces the joint profit of the intermediary and sellers relative to the revenue-maximizing

mechanism when the consumer’s outside option is so undesirable that he always prefers

products over the outside option (Theorem 11). Under the welfare maximization regime, the

welfare gains by recommending products of sellers with higher willingness to pay is lower,

and that by recommending better-matched products is higher, relative to the revenue gains

under the revenue maximization regime. This change in gains leads the social planner to

recommend products based on match values more often, increasing consumer surplus and

decreasing the joint profit.

The remainder of this paper proceeds as follows. The next subsection discusses related

literature. Section 2 provides an example to demonstrate the key properties of the revenue-

maximizing recommender system. Section 3 describes the model. Section 4 characterizes

the revenue-maximizing recommender system. Section 5 characterizes how additional infor-

mation changes the optimal recommender system and the payoffs of the consumer, sellers

and intermediary. Section 6 explores whether consumer data is protected or leaked to sellers

through the recommender system. Section 7 discusses several extensions and relaxation of as-

sumptions, including an alternative interpretation of the model as a search engine. Section 8

concludes. All proofs are collected in the Appendix.

1.1 Related Literature

Sales of Information

This paper contributes to the emerging literature on the sale of information by a monopolistic

information seller. Starting with Admati and Pfleiderer (1986, 1990), several papers focus on

how to sell information to an information buyer who directly receives the information to make

better decisions. Recent works study a monopolistic information seller selling experiments

to a decision maker who has private information about the states of the world (Bergemann,

Bonatti, and Smolin (2018)), statistics to a decision maker who has private information

about what kinds of information it needs (Segura-Rodriguez (2021)) and consumer segments

regulations such as the European Union’s General Data Protection Regulation (https://gdpr.eu/).
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to a producer who uses it to better price-discriminate (Yang (2021)).

In contrast, in this paper, the information buyers are product sellers, and the information

seller is an intermediary. Product sellers pay the intermediary in order to influence the in-

formation provided to the consumer, instead of directly receiving information. The closest

to my paper is Yang (2019), which studies an intermediary who designs a recommendations

rule, a transfer rule, and a pricing rule over a single product and seller. Instead, I study an

intermediary who designs a recommendations rule and a transfer rule over multiple products

with exogenously given prices. The consumer benefits from recommendations because the

intermediary can better distinguish between ex-ante identical products. This source of con-

sumer surplus plays a crucial role in analyzing the impact of additional information on the

consumer surplus. Inderst and Ottaviani (2012), Mitchell (2021), and Aridor and Gonçalves

(2021) also analyze problems of information buyers paying to influence information others

receive, but the information buyers are non-strategic or do not have private information.

Regulation of Platforms

This paper is closely related to a series of papers on the use of data by platforms and

their regulation. de Cornière and Taylor (2019), Hagiu, Teh, and Wright (2020) and Aridor

and Gonçalves (2021) study how an intermediary uses consumer data to promote its own

product when it competes with a third-party seller on prices and qualities. Madsen and

Vellodi (2021) studies how the intermediary uses seller data to launch its own private-label

product. Fang and Kim (2021) examines how the intermediary shares consumer data with a

third-party seller when the intermediary’s private-label product competes with the seller’s.

Hagiu and Wright (2015), Hagiu and Wright (2019) and Kang and Muir (2021) focus on how

different market structures, instead of platforms’ use of data, affect outcomes. While the

prior literature studies how platforms and sellers interact through the downstream market

competition, I focus on how platforms use data to give informative recommendations and

how their regulations change the recommendations and players’ welfare.

Mechanism Design

This paper combines mechanism design with Bayesian persuasion. The intermediary solves a

revenue-maximizing mechanism design problem, but with a constraint that it has to persuade

the consumer to take the recommended options. If the intermediary could force the consumer

to take the recommended options, then the intermediary’s problem reduces to a standard

revenue-maximizing auction design problem (Myerson (1981)).

There are several papers that study mechanism design problems in which the mechanism

designer cannot fully control the outcome. In Myerson (1982), agents choose outcomes

after communicating with the mechanism designer, and it is without loss of generality to
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restrict the mechanism designer’s attention to honest and obedient mechanisms. Myerson

(1983) studies an incentive compatible communications mechanism in a Bayesian game where

the outcome relies on agents’ private information. Dworczak (2020) studies a problem of

allocating an object to one of several agents that is followed by a black-box aftermarket

that the mechanism designer cannot control. By contrast, in this paper, the intermediary

(i) has private information, (ii) elicits information from one party (sellers) and recommends

outcomes to the other party (the consumer), and (iii) directly interacts with the consumer

who solely chooses the outcome and does not care about sellers’ private information per se.

Bayesian Persuasion

This paper contributes to the Bayesian persuasion literature (Rayo and Segal (2010), Ka-

menica and Gentzkow (2011), Bergemann and Morris (2019)). In this literature, the per-

suader’s preference is often given exogenously and is simplified to be independent of the

states (Gentzkow and Kamenica (2016)), depend only on the posterior mean (Dworczak and

Martini (2019)) or semi uppercontinuous in beliefs (Dworczak and Kolotilin (2019), Dizdar

and Kováč (2020)). The state space or action space are often simplified to be finite (Ka-

menica and Gentzkow (2011)) or even binary (Rayo and Segal (2010), Alonso and Câmara

(2016), Kolotilin (2018), Aridor and Gonçalves (2021)). Without these assumptions, the

three popular tools in Bayesian persuasion are not always tractable: concavification (Ka-

menica and Gentzkow (2011)), convex function characterization (Gentzkow and Kamenica

(2016)) and duality (Kolotilin (2018), Galperti and Perego (2018), Dworczak and Kolotilin

(2019), Dworczak and Martini (2019), Dizdar and Kováč (2020)). In this paper, I demon-

strate that even without the above assumptions, a Bayesian persuasion problem can still be

tractably analyzed by focusing on value-switching monotone recommendations rules.

Online Targeted Advertisements

Intermediaries often sell online targeted advertisements by auctioning positions of prod-

ucts in search results. Edelman, Ostrovsky, and Schwarz (2007) and Varian (2007) study the

generalized second-price position auction and find that it has a unique perfect Bayesian equi-

librium that is outcome equivalent to that under Vickery-Clark-Groves mechanism (Vickrey

(1961), Clarke (1971), Groves (1973)). Positions of products in their models, however, do

not convey any information about match values for the consumer. Athey and Ellison (2011)

studies a position auction under which sellers that are a better match for the consumer make

higher bids, so that the higher positions convey higher match values, and emphasizes the

informational role of search engines. Complementary to these papers, I focus on the inter-

mediary’s role as an information provider and allow the intermediary to use a fully flexible

set of mechanisms instead of the specific protocols of position auctions.
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2 Example

Consider a situation where a potential consumer searches bug spray on Amazon in a world

where there are only two bug spray products on Amazon, chemical and natural. Amazon

has one spot for a sponsored product that appears at the top of the search list.

The consumer wants to purchase a bug spray only if the product is good match for him,

but without recommendations, thinks that both are unlikely to be a good match. Amazon,

on the other hand, has better information about whether each product would be a good

match for the consumer.6 Formally, each product may be a good match with a probability

0 < q < 1
2 or a bad match with a probability 1 − q. If the consumer chooses a product, he

gets v > 0 if it is a good match and −v < 0 if a bad match. If the consumer chooses neither

product, then the consumer gets 0. In the absence of additional information, the consumer

does not purchase any of the products. Amazon, on the other hand, privately observes the

match value vi ∈ {v,−v} for each product i ∈ {c, n} where c stands for chemical and n for

natural.

Each seller i ∈ {c, n} makes a marginal profit θi whenever the consumer purchases seller

i’s product. The marginal profit θi is each seller’s private information and is drawn from a

uniform distribution over [0,1] independently of the other seller’s marginal profit as well as

the consumer’s match values. Sellers are risk-neutral - they try to maximize their expected

profits.

How should Amazon choose a sponsored product to maximize the revenue it can raise

from sellers? A sensible guess is to run a second-price auction with sellers and recommend

the winner’s product with a reserve 1
2 . If sellers bid their marginal profits, the resulting

recommendations rule is depicted in Figure 1a. The problem, however, is that the consumer

does not purchase the recommended product because there is no information about match

values in the sponsored products. For example, when the consumer sees natural as the

sponsored product, the only information that the consumer learns is that the seller of natural

has paid more money to the intermediary. Hence, the consumer ignores the sponsored

products, and sellers do not participate in the auction for sponsored products.

One way to make recommendations informative about match values is to give discounts

to sellers based on how well their products match consumer’s needs. Consider a variant of

the second-price auction where the highest bidder wins the auction but is required to pay

the second highest bid discounted by λv, where λ > 0. For example, if the seller natural bids

bn and chemical bids bc with bn > max (bc,
1
2
), then the seller natural wins, but is required to

6For example, Amazon can infer how much the consumer will be satisfied with each product by looking
up other consumers who have similar purchase histories as this particular consumer and seeing how much
they are satisfied with each product.
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(a) Second-price auction.

1

1

0
0

1
2 − λvc

1
2 − λvn

Recommend n

Recommend c

Neither

θn

θc

(b) Second-price auction with discounts.

Figure 1: Two auction rules for the sponsored product recommendations when vn > vc.

pay

max(bc,
1

2
) − λvn.

The parameter λ governs how informative the sponsored products are about match values.

The larger λ is, the greater the discount is for products that are a better match, and the

more likely the sponsored product is a good match for the consumer. This encourages sellers

of better products to bid higher and thus win more often. Furthermore, the discount is

negative if the product is a bad match. The intermediary charges additional money when

sellers of poorly matched products win the auction in order to discourage them from winning.

Figure 1b depicts the resulting recommendations rule when sellers bid according to bi = θi+λvi

and when natural is a good match but chemical is a bad match for the consumer.

When sellers bid below the reserve, the intermediary needs to induce the consumer not

to purchase any of the products. This is achieved when λ is large enough by not displaying

any sponsored products. Because discounts imply that products are recommended less often

when they are a worse match, when the consumer sees no sponsored products on his search

list, the consumer understands that this is partially because the sellers did not bid high

enough, but also because the products are not a good match. In the specific case in which

the consumer does not buy products without recommendations, q < 1
2 , any λ ≥ 0 successfully

persuades the consumer not to purchase. When the consumer would have purchased products

even without recommendations, q ≥ 1
2 , a sufficiently high λ would persuade.

When λ = 0, displaying a sponsored product does not update the consumer’s belief on

match values, and the auction reduces to a standard second-price auction. When λ is positive
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λ∗ 10 λ

revenue

Figure 2: Amazon’s revenue under the second price auction with discounts as a function
of λ. When λ < λ∗, the consumer ignores recommendations and the sellers do not pay for
recommendations. Under the optimal auction, the intermediary provides information just
enough to induce the consumer to purchase recommneded products.

but very small, displaying a sponsored product updates the consumer’s belief about the

product’s match value positively, but not enough to convince him to purchase the product.

There is a lowest number λ∗ > 0 at which the informativeness of the sponsored product is

just enough so that the consumer is indifferent between taking the sponsored product and

not purchasing any of products.7 For any λ ≥ λ∗, the consumer purchases the sponsored

product, sellers are willing to pay for sponsorship and Amazon raises positive revenue from

sellers. The informativeness that maximizes Amazon’s revenue is precisely λ∗ that leaves

the consumer indifferent between purchasing and not purchasing the sponsored product.

Figure 2 depicts Amazon’s revenue as a function of λ.

Note that even the lowest type seller θ = 0 can win the auction if his product is a good

match, and the seller receives a positive profit. Thus, Amazon can further raise its revenue

by collecting a participation fee P ∗ amounting to the expected profit of the lowest type θ = 0

from each seller, and still induce all sellers to participate to the auction. As it will be shown

in Theorem 10, the second-price auction with discounts λ∗v and participation fees P ∗ as

above is a revenue-maximizing mechanism in this particular setup.

7As it will be shown in Section 4, at such λ∗, the consumer prefers the displayed sponsored product over
the other non-sponsored product.
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3 Model

3.1 Setup

There is a consumer (he), N sellers (she) and an intermediary (it). Each seller sells one

product. Each product i ∈ {1,⋯,N} = N has a match value vi ∈ R that is independently

drawn from a common distribution F , which has a bounded support V with −∞ < inf V =

¯
v ≤ v̄ = supV < ∞. Only the intermediary knows the match values v = (v1,⋯, vN) ∈ V = VN

of the products; the consumer and sellers do not.

The consumer may choose from one of N products or his outside option. If the seller i’s

product is purchased, the consumer receives utility vi. If the consumer does not purchase

any of the products and chooses the outside option, the consumer receives utility v0, a value

commonly known to all players. The consumer’s expected payoff of choosing i ∈ N ∪{0} with

probability ri when match values are v is

∑
i∈N∪{0}

viri.

Each seller i ∈ N has an ex-post profit

(θi +w(vi))ri − ti

where θi +w(vi) is the seller i’s (ex-post) willingness to pay, ri is the probability of the con-

sumer purchasing the product i, and ti is a transfer that the seller i pays to the intermediary.

The willingness to pay consists of two parts. The first part θi is private willingness to

pay. This is derived from the seller- or product-specific information that seller i privately

knows, such as its marginal cost,8 and is independently drawn from a common distribution

G that has a support [
¯
θ, θ̄] = Θ, where −∞ <

¯
θ < θ̄ < ∞. The distribution G admits a

density function g and satisfies Myerson’s regularity condition, that is, θi −
1−G(θi)
g(θi) is strictly

increasing.

The second part w(vi) is the value-dependent willingness to pay, which is a part of the

seller’s profit that is increasing in the match value vi. This reflects the observation that

sellers prefer consumers who are a better match for their products. For example, consumers

who are a better match would be more likely to repurchase the product, which increases the

sellers’ willingness to pay for a recommendation.9 The value-dependent willingness to pay is

8For example, if each product’s price pi is public knowledge and marginal cost ci is each seller’s private
knowledge, then private willingness to pay is θi = pi − ci.

9Consumers who are a better match would be less likely to return products, which leads to higher profits
and hence willingness to pay. Similarly, better matched consumers are more likely to purchase products after
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a reduced-form way to capture such interactions between the consumer and sellers.

3.2 Recommender Systems

The intermediary knows v, but does not know θ = (θ1,⋯, θN) ∈ Θ = ΘN . Before learning v,

the intermediary designs and commits to a recommendations rule r and a transfer t. I call

this pair a recommender system. Formally, a recommender system is

(r, t) ∶ V ×Θ→ [0,1]N+1 ×RN

such that ∑i∈N∪{0} ri(v,θ) = 1 for all (v,θ) ∈ V × Θ. The recommender system specifies

with what probability to recommend option i, ri(v,θ) and how much each seller i pays the

intermediary, ti(v,θ), when the intermediary observes v and sellers report as θ.

Given a recommender system (r, t), when recommended with i ∈ N ∪ {0}, the consumer

updates his beliefs on the expected value of each option and chooses the option with the

highest expected value. The constraint for the consumer to optimally take the recommended

option i over another option j is called an obedience constraint from i to j, which formally

is written as

OBij ∶ ∫
V×Θ

viri(v,θ)F (dv)G(dθ) ≥ ∫
V×Θ

vjri(v,θ)F (dv)G(dθ). (1)

where F (v) = ∏i∈N F (vi) and G(θ) = ∏i∈N G(θi). Note that OBij is trivially satisfied if

the intermediary does not recommend i almost surely. The recommender system (r, t) is

obedient if all OBij are satisfied for all i, j ∈ N ∪ {0}. Since the transfer t is irrelevant

for obedience, I interchangeably use the obedience of a recommender system and of the

corresponding recommendations rule r. For each seller i ∈ N with θi reporting truthfully as

θi, her expected profit is

Πi(θi) = ∫
V×Θ−i

((θi +w(vi))ri(v,θ) − ti(v,θ))F (dv)G−i(dθ−i),

where Θ−i = ΘN andG−i(θ−i) = ∏jN∖{i}G(θj). The expected probability of seller i’s product

being recommended is

Qi(θi) = ∫
V×Θ−i

ri(v,θ)F (dv)G−i(θ−i).

clicking the advertisements.
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The recommender system is incentive compatible if, for all i ∈ N and θi, θ′i ∈ Θ,

ICi ∶ Πi(θi) ≥ ∫
V×Θ−i

[(θi +w(vi))ri(v, θ
′
i,θ−i) − ti(v, θ

′
i,θ−i)]F (dv)G−i(dθ−i), (2)

and individually rational if, for all i ∈ N and θi ∈ Θ

IRi ∶ Πi(θi) ≥ 0. (3)

Applying the revelation principle arguments from mechanism design (Myerson (1981))

and information design (Bergemann and Morris (2019)),10 the intermediary can restrict

attention to obedient, incentive compatible and individually rational recommender systems

without loss of generality. Using such recommender systems, the intermediary maximizes

the expected revenue

∫
V×Θ
∑
i∈N

ti(v,θ)F (dv)G(dθ).

A defining feature of my model is that the intermediary is solving a revenue-maximizing

mechanism design problem, but with a constraint. Instead of the intermediary choosing the

outcome, i.e. which option to choose, the consumer chooses the best outcome for himself

given the information provided by the intermediary. The intermediary designs recommenda-

tions to be informative enough so that the consumer chooses the outcome that intermediary

wants him to choose. If the intermediary were able to choose the outcome by itself, then its

problem is a standard optimal auction design problem (Myerson (1981)).

Timing of the Game

1. Intermediary offers and commits to a recommender system (r, t) ∶ V ×Θ→ [0,1]N+1 ×

RN where ∑i∈{0}∪N ri(v,θ) = 1 for all (v,θ) ∈ V ×Θ.

2. Intermediary observes the consumer’s match values v. Sellers report their private

information θ.

3. Intermediary recommends an action and collects transfers according to (r(v,θ), t(v,θ)).

10The intermediary, in principle, may attempt to provide information in more flexible ways than recom-
mendations. That is, the intermediary can design and commit to a pair of an information structure (σ,S)
where

σ ∶ V ×Θ→∆S.

and a transfer t ∶ V ×Θ→ RN , instead of a recommender system. By the revelation principle, an outcome of
such an indirect mechanism can always be represented as an outcome of an obedient, incentive compatible and
individually rational recommender system, so the intermediary can restrict attention to such recommender
systems without loss of generality. See Bergemann and Morris (2019) for details.
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4. Consumer gets a recommendation and takes an action.

4 Optimal Recommender System

In this section, I characterize the optimal recommender system using a class of recommen-

dations that I call value-switching monotone.

4.1 Intermediary as a Bayesian Persuader

Notice that the transfer t is irrelevant for the consumer’s obedience constraints, so that the

standard characterization of incentive compatible and individually rational recommender

system (Myerson (1981)) applies for any obedient recommendations rule r.

Lemma 1. An obedient (r, t) recommender system is incentive compatible and individually

rational if and only if, for all i ∈ N and θi ∈ Θ,

Qi(θi) is increasing in θi, (4)

Πi(θ) = Πi(¯
θ) + ∫

θi

¯
θ

Qi(θ̃i)dθ̃i, (5)

Πi(¯
θ) ≥ 0. (6)

The standard arguments of substituting the expected revenue with the virtual willingness

to pay θi −
1−G(θi)
g(θi) + w(vi), dropping the incentive compatibility and individual rationality

constraints, and setting the lowest type’s expected profit to zero apply as well.

Lemma 2. Suppose that a recommendations rule r ∶ V ×Θ→ [0,1]N maximizes

∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) ri(v,θ)F (dv)G(dθ) (7)

subject to obedience constraints (1) and monotonicity constraints (4). Suppose also that

ti(v,θ) = (θi +w(vi))ri(v,θ) − ∫
θi

¯
θ

ri(v, θ̃i,θ−i)dθ̃i. (8)

Then, (r, t) is an optimal recommender system.

Ignoring the monotonicity constraints, Lemma 2 recasts the intermediary’s revenue max-

imization problem as a Bayesian persuasion problem that only uses a recommendations rule

r. In this Bayesian persuasion problem, the intermediary persuades the consumer to take the
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recommended option by strategically releasing information about (v,θ). The problem has

the following features: The intermediary’s state-dependent preference over recommendations

is given by its virtual willingness to pay; the consumer can choose from N + 1 options; the

state space problem is multi-dimensional and possibly infinite.

Each feature of the problem brings a difficulty in applying those three popular approaches

in Bayesian persuasion literature: concavification (Aumann and Maschler (1995), Kamenica

and Gentzkow (2011)), convex function characterization (Gentzkow and Kamenica (2016))

and duality (Kolotilin (2018), Galperti and Perego (2018), Dworczak and Kolotilin (2019),

Dworczak and Martini (2019)).11 Whenever departing away from the three approaches,

the immediate challenge lies in identifying which of the obedience constraints bind and not

bind at the optimal recommendations rule. With N + 1 options, there are N(N+1)
2 obedience

constraints to check, a seemingly daunting task. I overcome this challenge by applying the

guess and verify method using value-switching monotone recommendations rules.

4.2 Value-Switching Monotone Recommendations Rule

Definition 1. A recommendations rule r is value-switching monotone if

1. r0(v,θ) decreases in (vi, θi) for all i ∈ N .

2. ri(v,θ) increases in (vi, θi) for all i ∈ N .

3. ri(v,θ) decreases whenever vj is switched with a larger vi for all i, j ∈ N , i.e. for all

i, j ∈ N , (v−ij,θ) ∈ V−ij ×Θ and v > v′,

ri(vi = v, vj = v
′,v−ij,θ) ≥ ri(vi = v

′, vj = v,v−ij,θ).

A natural-sounding alternative to the third condition above is the standard notion of

monotonicity, under which ri(v,θ) decrease in vj for all j ∈ N ∖ {i}. The standard notion

of monotonicity is stronger than value-switching monotonicity. It will later be shown that

optimal recommendations rules are value-switching monotone, but not monotone. Value-

switching monotonicity requires ri(v,θ) to be increasing in θi to ensure the monotonicity

constraints (4) satisfied, but does not require any particular behavior in respect to θ−i.

11Concavification has limited applicability when state space is large (Gentzkow and Kamenica (2016)).
Convex function characterization necessarily assumes the sender’s payoff to depend only on the expected
value of the states (Gentzkow and Kamenica (2016)). Duality approach often assumes state space to be
either an interval or discrete (Kolotilin (2018), Galperti and Perego (2018)).
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The following lemma states that the intermediary can ignore the obedience constraints

between products as long as the intermediary uses a value-switching monotone recommen-

dations rule.

Lemma 3. Any value-switching monotone recommendations rule r satisfies obedience con-

straints between products, i.e. OBij for all i, j ∈ N .

Lemma 3 reduces the number of possibly binding constraints to check from N(N+1)
2 to

2N . The remaining obedience constraints are one of the two types of obedience constraints:

obedience constraints from outside option to products,

OB0i ∶ ∫
V×Θ

(v0 − vi)r0(v,θ)F (dv)G(dθ) ≥ 0, (9)

and those from products to outside option.

OBi0 ∶ ∫
V×Θ

(vi − v0)ri(v,θ)F (dv)G(dθ) ≥ 0. (10)

The lemma below states that whether the remaining obedience constraints are satisfied

for a given value-switching recommendations rule depends on two thresholds.

Lemma 4. For any value-switching monotone recommendations rule r, for each i ∈ N , there

are −∞ ≤
¯
vi ≤ Evi(vi) ≤ v̄i ≤ ∞ such that

1. OBi0 is satisfied if and only if v0 ≤ v̄i,

2. OB0i is satisfied if and only if v0 ≥
¯
vi,

where

v̄i =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Evi(vi) +Covv,θ(vi, ri(v,θ))/Ev,θ(ri(v,θ)) if Ev,θ(ri(v,θ)) > 0

∞ if Ev,θ(ri(v,θ)) = 0

and

¯
vi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Evi(vi) +Covv,θ(vi, r0(v,θ))/Ev,θ(r0(v,θ)) if Ev,θ(r0(v,θ)) > 0

−∞ if Ev,θ(r0(v,θ)) = 0
.

The first part of Lemma 4 states that OBi0 is satisfied if and only if the outside option

value is below the threshold v̄i. A lower outside option value provides less incentive for the

consumer to take the outside option over the recommended product i, and hence, it is easier

to satisfy OBi0. If the intermediary recommends i with positive probability, then OBi0 is
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OBi0:

OB0i:

:OB satisfied :OB violated

Figure 3: A graphical illustration of regions on which OBi0 and OB0i are satisfied and
violated.

equivalent to

v0 ≤ Ev,θ(vi ∣ ri(v,θ)) = Evi(vi) +
Covv,θ(vi, ri(v,θ))

Ev,θ(ri(v,θ))
,

which implies the threshold v̄i = Evi(vi) +
Covv,θ(vi,ri(v,θ))

E
v,θ

(ri(v,θ))
. If the intermediary does not rec-

ommend i almost surely, the intermediary does not worry about keeping the consumer in-

centivized to purchase the recommended product i over the outside option regardless of the

outside option value. In other words, OBi0 is trivially satisfied for all v0, which implies the

threshold v̄i = ∞. The second part about the other threshold
¯
vi for OB0i may be explained

in a similar manner.

Lemma 4 also states that a product’s ex-ante expected value Evi(vi) has to be in-between

the two thresholds, that is,
¯
vi ≤ Evi(vi) ≤ v̄i. To see why this has to be the case, consider

v0 = Evi(vi). The consumer is ex-ante indifferent between all products and the outside

option, so that he follows any recommendations as long as recommendations contain some

(or no) information about match values, i.e. Covv,θ(vi, ri(v,θ)) ≥ 0 and Covv,θ(vi, r0(v,θ)) ≤

0. The value-switching monotonicity requires ri(v,θ) to be increasing and r0(v,θ) to be

decreasing in vi, which ensures that recommendations are informative about the match

values. Therefore, when v0 = Evi(vi), any value-switching monotone recommendations rule

satisfies all obedience constraints. All obedience constraints continue to hold as long as v0 is

close enough to Evi(vi), i.e. v0 ∈ [
¯
vi, v̄i]. See Figure 3 for a graphical illustration of Lemma 4.

In particular, if the intermediary runs an optimal auction with sellers ignoring the obe-

dience constraints, the resulting recommendations rule is value-switching monotone and

satisfies all obedience constraints as long as v0 is close enough to Evi(vi). Let ρ∗ ∶ V ×Θ →

[0,1]N+1 × RN denote the resulting recommendations rule that I call by the unconstrained

optimal recommendations rule and is given by

ρ∗i (v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣M∣ if i ∈ M and θi −

1−G(θi)
g(θi) +w(vi) ≥ 0

0 otherwise
, (11)
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where M = {i ∈ M ∣ arg maxj∈N{θj −
1−G(θj)
g(θj) + w(vj)}}. That is, ρ∗ is characterized by

recommending the product of the seller with the highest non-negative virtual willingness

to pay, and the outside option if all sellers’ virtual willingness to pay is negative (Myerson

(1981)). Note that ρ∗ is symmetric,12 so that the thresholds v̄i and
¯
vi are identical across

all products i ∈ N . Let v̄∗ and
¯
v∗ be the respective common thresholds.

4.3 Optimal Recommender System

The intermediary’s problem is linear in r, so that the method of Lagrangean is both neces-

sary and sufficient for an optimal solution. The following theorem characterizes an optimal

recommender system when v0 ∈ (
¯
v, v̄).

Theorem 1.a. Let v0 ∈ (
¯
v, v̄). Let r∗ ∶ V ×Θ → [0,1]N+1 ×RN be a recommendations rule

such that for each i ∈ N ,

r∗i (v,θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∣M∣ if i ∈ arg maxj∈N

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θj −
1 −G(θj)

g(θj)
+w(vj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
virtual willingness to pay

− `∗j (v)
´¹¹¸¹¹¶
cost of

persuasion

,0

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 otherwise

(12)

where M= arg maxj∈N {θj −
1−G(θj)
g(θj) +w(vj) − `∗j (v)}, and

`∗i (v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v0 ∈ [
¯
v∗, v̄∗]

λ∗1(v0) ⋅ (v0 − vi) if v0 > v̄∗

λ∗2(v0) ⋅ ∑k∈N (v0 − vk) if v0 <
¯
v∗

(13)

where λ∗1(v0) and λ∗2(v0) are Lagrangian multipliers for OBi0 and OB0i that may vary de-

pending on v0, respectively. Let t be as in (8). Then, r∗ is value-switching monotone, and

(r∗, t) is an optimal recommender system.

The optimal recommendations rule r∗ is characterized by recommending a product with

the highest non-negative virtual willingness to pay adjusted for the cost of persuasion, θi −
1−G(θi)
g(θi) + w(vi) − `∗i (v), and the outside option if the adjusted virtual willingness to pay is

12A recommendations rule r is symmetric if for any i ∈ N , any bijective function ι ∶ N → N and any
(v,θ) ∈ V ×Θ

ri(v,θ) = rι(i)(v
ι,θι)

where (vι,θι) is such that vιι(i) = vi and θιι(i) = θi for all i ∈ N .
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negative for all sellers. The cost of persuasion is the shadow price of each of the binding

constraints.

To gain intuition for Theorem 1.a, consider first the intermediary running an optimal auc-

tion with sellers and recommending the winner’s product ignoring the obedience constraints,

i.e. ρ∗ that recommends only based on the virtual willingness to pay. If the consumer al-

ways follows the recommendations, ρ∗ is the revenue-maximizing recommendations rule. By

Lemma 4, the consumer optimally follows recommendations from ρ∗ if v0 ∈ [
¯
v∗, v̄∗]. Since

none of the obedience constraints bind, the cost of persuasion `∗i is zero.

When v0 > v̄∗ or v0 <
¯
v∗, the unconstrained optimal recommendations rule ρ∗ fails in per-

suading the consumer to take recommended options. To provide incentive for the consumer

to take the recommended options, the intermediary needs to recommend products more

often when match values are high and less often otherwise, so that the recommendations

would be more informative about match values. To the extent that the intermediary cannot

recommend based on virtual willingness to pay, there is a loss of revenue associated with

keeping the recommendations informative. The optimal way to improve the informativness

is to adjust the virtual willingness to pay with the cost of persuasion, the shadow price of

the obedience constraints.

For outside option values that are always above or below the value of the products, the

optimal recommender system is characterized in the following theorem.

Theorem 1.b. 1. Let v0 > v̄. Let r∗ ∶ V ×Θ→ [0,1]N+1 ×RN be a recommendations rule

such that

r∗0(v,θ) = 1

for all (v,θ) ∈ V×Θ. Let t be as in (8). Then, r∗ is (r∗, t) is an optimal recommender

system.

2. Let v0 <
¯
v. Let r∗ ∶ V ×Θ → [0,1]N+1 × RN be a recommendations rule such that for

each i ∈ N ,

r∗i (v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣M∗∣ if i ∈ arg maxj∈N {θj −

1−G(θj)
g(θj) +w(vj)}

0 otherwise
(14)

where M∗ = arg maxj∈N {θj −
1−G(θj)
g(θj) +w(vj)} and

`∗i (v,θ) = 0 for all i ∈ N and (v,θ) ∈ V ×Θ (15)

Let t be as in (8). Then, r∗ is value-switching monotone, and (r∗, t) is an optimal
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recommender system.

When v0 > v̄, the consumer always prefers the outside option over the products. For such

a consumer, the only obedient recommendations rule is to always recommend the outside

option. When v0 <
¯
v, the consumer always prefers products over the outside option, but

does not know which product he prefers the most. The intermediary is restricted to rec-

ommend products only, but not the outside option. Consequently, the intermediary always

recommends the product with the highest virtual willingness to pay, even though it may be

negative.

When v0 = v̄, the intermediary is restricted to recommending outside option except for

when vi = v̄ for some i ∈ N . Conditioning on such v, the intermediary recommends a product

with the highest non-negative virtual willingness to pay among the products that have the

valuation of v̄. When v0 =
¯
v, the intermediary is restricted to recommending products except

for when vi =
¯
v for all i ∈ N . Conditioning on such v, the intermediary recommends a product

with the highest non-negative virtual willingness to pay.

5 Additional Information

This section analyzes how the intermediary’s use of additional information about sellers’

private willingness to pay affects the consumer surplus, the intermediary’s revenue and the

sellers’ profits. I reformulate the additional information as a change in the intermediary’s

preference over recommendations to provide sufficient conditions under which the additional

information benefits the consumer and sellers.

5.1 Optimal Recommender System with Additional Information

I begin with extending the baseline model of Section 3 to incorporate the additional infor-

mation. The intermediary observes additional signals z = (z1,⋯, zN) about sellers’ private

information θ = (θ1,⋯, θN). Each zi ∈ Z ⊂ R is independently drawn from a common dis-

tribution H(⋅ ∣ θi) conditioning on each θi, and is common knowledge between a seller i

and the intermediary, but not known to others.13 Let H = {H(⋅ ∣ θi)}θi∈Θ be the additional

information, a collection of distribution functions conditioning on each θi ∈ Θ.

Define G(θ ∣ z) =
∫Θ(z)∩[

¯
θ,θ]G(dθ̃)H(dz∣θ̃)

∫Θ(z)G(dθ̃)H(dz∣θ̃) as the distribution of θ conditioning on z. Let Z(θ)

and Θ(z) be the support of H(⋅ ∣ θ) and G(. ∣ z), respectively. I assume that for all z ∈ Z,

13More generally, it may be assumed that each i observes a signal ζi about additional signals about others
z−i without affecting any of the results. The signal ζi may be uninformative about z−i as in here, may be
completely revealing or may be related with z−i in any arbitrary way.
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G(. ∣ z) has a closed interval support Θ(z) = [
¯
θ(z), θ̄(z)] ⊂ Θ and admits a density function

g(. ∣ z) whenever
¯
θ(z) < θ̄(z). If

¯
θ(z) = θ̄(z), i.e. when z reveals that θ =

¯
θ(z) = θ̄(z), define

1−G(θ∣z)
g(θ∣z) = 0 for all θ ∈ Θ(z) by convention.

I present two examples of additional information below.

Example 1 (Perfectly revealing additional information). Additional information H is per-

fectly revealing if Z = [
¯
θ, θ̄] and

H(z ∣ θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if z ≥ θ

0 if z < θ

with Z(θ) = {θ} and Θ(z) = {z}.

Example 2 (Lower censorship additional information). Additional information H is lower

censorship if it reveals θ if θ ≥ θ∗, but does not reveal otherwise. Formally, Z = {z0} ∪ [θ∗, θ̄]

where z0 < θ∗, and

H(z ∣ θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if θ ≥ θ∗ and z ≥ θ, or θ < θ∗ and z ≥ z0

0 otherwise

with Z(θ) = {θ} when θ ≥ θ∗ and Z(θ) = {z0} when θ < θ∗, and Θ(z) = {z} when z ≥ θ∗ and

Θ(z) = [
¯
θ, θ∗] and z = z0

The state space is V ×Θ ×Z. The intermediary’s recommender system is

(r, t) ∶ V ×Θ ×Z → [0,1]N+1 ×RN

such that ∑i∈N∪{0} ri(v,θ,z) = 1 for all (v,θ,z) ∈ V × Θ × Z. The obedience, incentive

compatibility and individual rationality are defined in the standard manner. Define

Qi(θi, zi) = ∫
V×Θ−i×Z−i

ri(v,θ,z)F (dv)G−i(dθ−i ∣ z−i)H(dz−i)

to be the probability of recommending the seller i’s product when her private willingness to

pay is θi and additional signal is zi. Applying the standard arguments gives the following

lemma.

Lemma 5. Suppose that a recommendations rule r ∶ V ×Θ ×Z → [0,1]N maximizes

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi ∣ zi)

g(θi ∣ zi)
+w(vi)) ri(v,θ,z)G(dθ ∣ z)H(dz) (16)
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subject to obedience constraints

OBij ∶ ∫
V×Θ×Z

viri(v,θ,z)F (dv)G(dθ ∣ z)H(dz) ≥ ∫
V×Θ

vjri(v,θ,z)F (dv)G(dθ ∣ z)H(dz)

(17)

and monotonicity constraints, i.e. for all i ∈ N , θi ∈ Θ and zi ∈ Z, Qi(θi, zi) increases in θi.

Suppose also that

ti(v,θ,z) = (θi +w(vi))ri(v,θ,z) − ∫
θi

¯
θ

ri(v, θ̃i,θ−i,z)dθ̃i. (18)

Then, (r, t) is an optimal recommender system.

Similar arguments of using value-switching recommendations rules from Section 4 may be

applied to characterize the optimal recommender system.

Theorem 2.a. Let v0 ∈ (
¯
v, v̄). Let rA ∶ V ×Θ ×Z → [0,1]N+1 ×RN be a recommendations

rule such that for each i ∈ N ,

rAi (v,θ,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∣MA∣ if i ∈ arg maxj∈N

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θj −
1 −G(θj ∣ zj)

g(θj ∣ zj)
+w(vj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
virtual willingness to pay

− `Aj (v)
´¹¹¹¸¹¹¹¶
cost of

persuasion

,0

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 otherwise

(19)

where MA = arg maxj∈N {θj −
1−G(θj ∣zj)
g(θj ∣zj) +w(vj) − `Aj (v)}, and

`Ai (v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v0 ∈ [
¯
vA, v̄A]

λA1 (v0) ⋅ (v0 − vi) if v0 > v̄A

λA2 (v0) ⋅ ∑k∈N (v0 − vk) if v0 <
¯
vA

(20)

where λA1 (v0) and λA2 (v0) are Lagrangian multipliers for OBi0 and OB0i that may vary de-

pending on v0, respectively, and v̄A and
¯
vA are the thresholds from the unconstrained optimal

recommendations rule. Let t be as in (18). Then, rA is value-switching monotone, and

(rA, t) is an optimal recommender system.

For outside option values that are always above or below the value of the products, the

optimal recommender system is characterized in the following theorem.
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Theorem 2.b. 1. Let v0 > v̄. Let rA ∶ V ×Θ ×Z → [0,1]N+1 ×RN be a recommendations

rule such that

rA0 (v,θ,z) = 1

for all (v,θ,z) ∈ V×Θ×Z. Let t be as in (8). Then, (rA, t) is an optimal recommender

system.

2. Let v0 <
¯
v. Let rA ∶ V ×Θ ×Z → [0,1]N+1 ×RN be a recommendations rule such that

for each i ∈ N ,

rAi (v,θ,z) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣MA∣ if i ∈ arg maxj∈N {θj −

1−G(θj ∣zj)
g(θj ∣zj) +w(vj)}

0 otherwise
(21)

where MA = arg maxj∈N {θj −
1−G(θj ∣zj)
g(θj ∣zj) +w(vj)} and

`Ai (v,θ,z) = 0 for all i ∈ N and (v,θ,z) ∈ V ×Θ ×Z (22)

Let t be as in (18). Then, rA is value-switching monotone and ri(v,θ,z) = 1 for some

i ∈ N ∪ {0} almost surely, and (rA, t) is an optimal recommender system.

It remains to analyze how an optimal recommendations rule with additional information

rA is different from that without additional information r∗, and how does the difference

impact on consumer surplus, intermediary’s revenue and sellers’ profits. I begin the analysis

with recasting the additional information as a change in the intermediary’s preference.

5.2 Additional Information as Change in Intermediary’s Prefer-

ence

A key observation is that additional information changes the intermediary’s state-dependent

preference over recommendations, but nothing else. The intermediary’s persuasion problem

without additional information, i.e. maximizing (7) subject to (1), can be reformulated as

maximizing

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz) (23)

subject to obedience constraints (17). Although a recommendations rule is allowed to vary

depending on additional signals z, the optimal solution ignores z because the integrands of
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both the objective function (23) and the constraints (17) do not depend on z, resulting in

the same solution as maximizing (7) subject to (1).

Comparing the intermediary’s persuasion problem without and with additional informa-

tion, the only difference is the inverse hazard rates in the intermediary’s preference. Without

additional information, the intermediary’s preference is given by the virtual willingness to

pay,

θi −
1 −G(θi)

g(θi)
+w(vi).

With additional information, the inverse hazard rate is conditioned on each additional signal,

θi −
1 −G(θi ∣ zi)

g(θi ∣ zi)
+w(vi).

That is, additional information changes the intermediary’s preference through inverse hazard

rates, but nothing else.

The following definition is useful in capturing the change in the intermediary’s preference

caused by additional information.

Definition 2. Let H be additional information. A θ-revenue difference for θ > θ′ without

additional information is

∆(θ, θ′) = (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
)

A θ-revenue difference with additional signals z ∈ Z(θ) and z′ ∈ Z(θ′) is

∆z,z′(θ, θ′) = (θ −
1 −G(θ∣ z)

g(θ∣ z)
) − (θ′ −

1 −G(θ′∣ z′)

g(θ′∣ z′)
) .

The θ-revenue difference without additional information measures an increase in virtual

willingness to pay by recommending a product with higher θ over that with lower θ′ holding

others fixed. In other words, this measures how much the revenue increases as θ increases.

By Myerson’s regularity,

∆(θ, θ′) > 0.

The θ-revenue difference with additional information measures the same except that the

additional signals z and z′, each corresponding to θ and θ′, may be different from each other.

Example 3. To understand why θ-revenue difference is useful, consider an environment

with 2 products {i, j} where V = [
¯
v, v̄] and Θ = [

¯
θ, θ̄]. Suppose that w(v) strictly increases

in v. Each product i is characterized by a pair (v, θ). The area inside the dashed square
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θi

vi

Figure 4: Iso-revenue curve.

in Figure 4 is the space of all possible pairs for the product i. Let (vj, θj) be the pair for

the product j. An iso-revenue curve at (vj, θj) is a set of points (vi, θi) that gives the same

revenue, the virtual willingness to pay, as (vj, θj), and is drawn as a blue curve in Figure 4.

Since the virtual willingness to pay increases in v and θ, the increasing direction of the

iso-revenue curve is northeast. If the product i’s pair (vi, θi) is above the indifference curve,

then the intermediary gets more revenue by recommending i over j; if below, then otherwise.

Assume, for simplicity, that the intermediary always recommends products based on the

revenue and the consumer always follows the recommendations.

The higher the slope of the iso-revenue curve is, the more likely to recommend a product

with higher θ, the lower consumer surplus is. One extreme case is in Figure 5a where the

slope is so high that the iso-revenue is a vertical line. Under this iso-revenue curve, the

intermediary recommends whichever product has the highest θ. If the consumer follows the

recommendation, the consumer payoff is low because the recommendations do not reflect

match values at all. Another extreme case is in Figure 5b where the slope is so low that the

iso-revenue is a horizontal line. The intermediary recommends whichever has the highest

v. If the consumer follows the recommendation, the consumer payoff is high because the

recommendations are made only based match values.

Whether additional information benefits the consumer depends on whether additional

information decreases the slope of the iso-revenue curve. It can be shown that the additional

information decreases the slope for every point (v,θ) if it decreases θ-revenue difference, i.e.
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Figure 5: Extreme cases.

for all θ, θ′ ∈ Θ, z ∈ Z(θ) and z′ ∈ Z(θ′),

∆z,z′(θ, θ′) ≥ ∆(θ, θ′),

and hence, benefits the consumer. The opposite holds as well: Additional information

increases the slope if it increases θ-revenue difference, and hence, harms the consumer.

The above example illustrates the main intuitions behind how additional information

changes the intermediary’s preference and the consumer surplus through θ-revenue differ-

ence. However, there are two caveats. First, the graphical analysis only applies to how

recommendations change between products, not between a product and the outside option.

Second, the consumer in this example is assumed to always follow the recommendations.

These caveats motivate a class of additional information and environment under which the

intuition well-applies.

5.3 Consumer Surplus under Small Inverse Hazard Rates Envi-

ronment

Definition 3. Additional information H is well-behaving if it

1. satisfies generalized Myerson’s regularity if for all θ > θ′, z ∈ Z(θ) and z′ ∈ Z(θ′),

∆z,z′(θ, θ′) > 0.
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2. increases (decreases) θ-revenue differences if for all θ > θ′, z ∈ Z(θ) and z′ ∈ Z(θ′),

∆z,z′(θ, θ′) ≥ (≤)∆(θ, θ′).

The first condition requires the virtual willingness to pay to be strictly increasing in θ

no matter the additional signals. The second condition requires θ-revenue to be uniformly

increasing or decreasing for all pairs of θ and z. Together, it increases or decreases the

downward sloping iso-revenue curve as in Example 3.

Example 1, cont. Let H be a perfectly revealing additional information. The perfectly

revealing additional information is well-behaving, and decreases (increases) θ-revenue differ-

ence if and only if 1−G(θ)
g(θ) decreases (increases) in θ.

Example 2, cont. Let H be a lower censorship additional information with θ∗. Let G be

a distribution that has a decreasing inverse hazard rate 1−G(θ)
g(θ) on [θ, θ̄] and has a density

function such that for some neighborhood B(
¯
θ) of

¯
θ, infθ∈B(

¯
θ) g(θ) > 0 and supθ∈B(

¯
θ) g

′
(θ) <

∞. This nests a rich class of distributions including uniform distribution, linear virtual

valuation distribution, (truncated) normal distribution, (truncated) exponential distribution

and unimodal distribution with appropriate restrictions.

For sufficiently small θ∗, the lower censorship additional information is well-behaving, and

always decreases θ-revenue difference.

Definition 4. An environment is said to have small inverse hazard rates if

inf
v∈V,θ∈Θ

θ −
1 −G(θ)

g(θ)
+w(v) > 0

and

inf
v∈V,θ∈Θ,z∈Z

θ −
1 −G(θ ∣ z)

g(θ ∣ z)
+w(v) > 0.

A small inverse hazard rates environment is likely to arise when sellers’ marginal profit

through recommender systems are high relative to their costs. For example, when online

targeted advertisements often have better returns than other media (Hu, Shin, and Tang

(2016)) or generate more revenue per ad and higher conversion rates than non-targeted ads

(Howard (2010)), the environment is likely to have small inverse hazard rates.

In a small inverse hazard rates environment, the intermediary always prefer recommending

products over the outside option. That is, the intermediary does not recommend the outside

option unless doing so is necessary for the persuasion. Recommending the outside option is
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required only when the outside option value is very high, under which OBi0 binds and the

consumer surplus is zero with and without additional information. When the outside option

value is lower, the intermediary always recommends products over the outside option, and

the graphical analysis from Example 3 applies.

The consumer surplus under a recommendations rule r at v0 is

CS(v0;r) = ∫
V×Θ×Z

⎡
⎢
⎢
⎢
⎢
⎣

∑
i∈{0}∪N

(vi − u
∗)ri(v,θ,z)

⎤
⎥
⎥
⎥
⎥
⎦

F (dv)G(dθ ∣ z)H(dz)

where u∗ = max(v0,Evi(vi)) is the consumer’s optimal payoff without the recommendations.

Theorem 3. Consider a small inverse hazard rates environment. Let H be any well-behaving

additional information. Additional information increases (decreases) consumer surplus for

all v0 if it decreases (increase) θ-revenue difference.

Example 1, cont. By Theorem 3, the perfectly revealing additional information increases

(decreases) consumer surplus for all v0 if 1−G(θ)
g(θ) decreases (increases) in θ.

Recall that many ‘natural’ distributions (uniform, normal, exponential, log-concave, etc.)

have decreasing 1−G(θ)
g(θ) . Therefore, for natural distributions, the perfectly revealing additional

information increases the consumer surplus for all consumers. This is a surprising result,

as one of the grounds for restricting platforms from collecting seller data is the potential

for consumer harm.14 Instead, restricting the intermediary from collecting the most precise

seller data harms all consumers by adding an information friction between the intermediary

and sellers.

Example 2, cont. By Theorem 3, lower censorship additional information always increases

consumer surplus for all v0.

5.4 Sellers’ Profits in Small Inverse Hazard Rates Environment

Additional information about sellers does not necessarily harm sellers’ profits. Additional

information reduces information rents, which in turn reduces sellers’ profits conditioning on

recommending products. However, the reduced information rent also allows the intermediary

to recommend products when information rents restrained it from doing so, increasing the

chance of recommending products, and hence, sellers’ profits.

14European Commission, “Antitrust: Commission sends Statement of Objections to Amazon for the use of
non-public independent seller data and opens second investigation into its e-commerce business practices,”

https://ec.europa.eu/commission/presscorner/detail/en/ip 20 2077
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Example 4. Consider an environment where there is only one seller whose private willingness

to pay θ is drawn from a uniform distribution over [0,1]. Match value v is drawn from a

uniform distribution over {
¯
v, v̄}. The consumer’s outside option value is v0 = 1

2(¯
v + v̄), so

that the consumer follows the intermediary’s recommendations as long is it is value-switching

monotone. There is no value-dependent willingness to pay w(vi) = 0, so that the seller’s

virtual willingness to pay is

θ −
1 −G(θ)

g(θ)
+w(v) = 2θ − 1.

Without additional information, the intermediary recommends the product if and only if

θ ≤ 1
2 and the consumer follows the recommendations.

Consider partitional additional information that informs whether θ is above or below 1
2 ,

i.e. Z = {zL, zH} ⊂ R1 with zL < zH such that

H(zi ∣ θi) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 θ < 1
2 and z ≥ zL and θ ≥ 1

2 and z ≥ zH

0 otherwise
.

Conditioning on z = zH , the seller’s virtual willingness to pay 2θi − 1 is the same as before,

so the intermediary recommends in the same manner and the seller gets the same profit.

Conditioning on z = zL, the intermediary learns that the seller has θ ≤ 1
2 , which reduces the

inverse hazard rates to 1
2 − θ and increases the virtual willingness to pay to

θ − (
1

2
− θ) = 2θ −

1

2
.

With the increased virtual willingness to pay, the intermediary recommends the product for

θ that it used to recommend the outside option, 1
4 ≤ θ ≤

1
2 , increasing the seller’s profit. Since

every type of seller earns the same or more profit than before, the additional information

increases the seller’s ex-ante profit.15

The θ-revenue difference continues to play an important role determining whether ad-

ditional information harms sellers. A seller i’s ex-ante expected profit without additional

information is

Π∗
i = ∫

V×Θ×Z

1 −G(θi)

g(θi)
r∗i (v,θ,z)F (dv)G(dθ ∣ z)H(dz). (24)

15Note that the additional information is Pareto-improving in this example.
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and with additional information is

ΠA
i = ∫

V×Θ×Z

1 −G(θi ∣ zi)

g(θi ∣ zi)
rAi (v,θ,z)F (dv)G(dθ ∣ z)H(dz). (25)

Notice that two objects change from (24) to (25): The recommendations rule from r∗ to

rA and inverse hazard rates from 1−G(θi)
g(θi) to 1−G(θi∣zi)

g(θi∣zi) . It is helpful to separate the change in

total profit by each of the changes. To this end, define a fictitious expected profit function

obtained by fixing the inverse hazard rates at 1−G(θi)
g(θi) but changing the recommendations rule

changes from r∗ to rA

ΠF
i = ∫

V×Θ×Z

1 −G(θi)

g(θi)
rAi (v,θ,z)F (dv)G(dθ ∣ z)H(dz). (26)

The total change in the seller’s profit ΠA
i −Π∗

i can be decomposed into two terms,

ΠA
i −Π∗

i

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
total change

= (ΠA
i −ΠF

i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inverse hazard rates effect

+ (ΠF
i −Π∗

i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
recommendations

rule effect

where recommendations rule effect ΠF
i −Π∗

i captures the change in profit caused by a change

in recommendations rule from r∗ to rA, and inverse hazard rates effect ΠA
i − ΠF

i captures

the change in profit caused by a change in inverse hazard rates with and without additional

information. I say the recommendations rule effect increases (decreases) all sellers’ profits if

ΠF
i −Π∗

i ≥ (≤) 0. The following theorem characterizes how each effect changes the profit.

Theorem 4. Consider a small inverse hazard rates environment. Let H be any well-behaving

additional information and v0 ≤ Evi(vi).

1. Recommendations rule effect increases (decreases) all sellers’ profits if one of the fol-

lowing conditions is satisfied:

(a) Additional information increases (decreases) θ-revenue difference and inverse haz-

ard rates 1−G(θ)
g(θ) increases (decreases) in θ.

(b) Additional information decreases (increases) θ-revenue difference and inverse haz-

ard rates 1−G(θ)
g(θ) decreases (increases) in θ.

2. Inverse hazard rates effect decreases all sellers’ profits if for all z ∈ Z and θ ∈ Θ(z),

1 −G(θ ∣ z)

g(θ ∣ z)
≤

1 −G(θ)

g(θ)
.
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A similar intuition from Example 3 applies. An increased θ-revenue difference increases

the slope of the iso-revenue curve, so that the intermediary is more likely to recommend

products with higher private willingness to pay θ instead of those with higher match values

v. This change increases sellers’ profits if 1−G(θ)
g(θ) is increasing in θ, but decreases if 1−G(θ)

g(θ) is

decreasing in θ. Consequently, one sufficient condition for additional information to increase

sellers’ profits is for it to increase θ-revenue difference and 1−G(θ)
g(θ) to be increasing in θ. By a

similar argument, if additional information decreases θ-revenue difference, then it increases

sellers’ profits if 1−G(θ)
g(θ) is decreasing in θ.

Let us say additional information reduces inverse hazard rates if for all z ∈ Z and θ ∈ Θ(z),

1 −G(θ ∣ z)

g(θ ∣ z)
≤

1 −G(θ)

g(θ)
.

This is a sufficient condition for sellers’ profits to be decreased through the inverse hazard

rates effect. Both perfectly revealing and lower censorship additional information reduces

inverse hazard rates, but not all well-behaving additional information does so.

Sufficient conditions under which additional information decreases sellers’ profits are pro-

vided below.

Corollary 1. Consider a small inverse hazard rates environment. Let H be any well-behaving

additional information. Let v0 ≤ Evi(vi). Additional information decreases sellers’ profits if

it reduces inverse hazard rates and one of the following conditions is satisfied:

1. Additional information increases θ-revenue and 1−G(θ)
g(θ) decreases in θ.

2. Additional information decreases θ-revenue and 1−G(θ)
g(θ) increases in θ.

Example 1, cont. Perfectly revealing additional information always decreases sellers’ profits

to 0.

Example 2, cont. By Corollary 1, lower censorship additional information decreases sellers’

profits if 1−G(θ)
g(θ) increases in θ.

5.5 General Environment

This section examines the impact of additional information without small inverse hazard

rates assumption.

Additional information always increases the intermediary’s revenue, because the interme-

diary can always choose to ignore additional information.

30



Theorem 5. Let H be any additional information and v0 ∈ R1. Additional information

always increases the intermediary’s revenue.

For consumers with outside option values lower than
¯
v, the intermediary is restricted to

recommend products, so the same analysis from the small inverse hazard rates environment

applies for the consumer surplus. For consumers with outside options values higher than v̄,

the intermediary is restricted to recommend the outside option, so additional information is

irrelevant.

Theorem 6. Let H be any well-behaving additional information.

1. Let v0 < v. Additional information increases (decreases) consumer surplus for all v0 if

it decreases (increase) θ-revenue difference.

2. Let v0 > v̄. Additional information does not change the consumer surplus.

Example 1, cont. By Theorem 3, perfectly revealing additional information increases (de-

creases) consumer surplus for all v0 if 1−G(θ)
g(θ) decreases (increases) in θ.

Example 2, cont. Since lower censorship additional information always decreases θ-revenue

difference, by Theorem 6, the additional information increases consumer surplus for v0 ≤
¯
v,

but does not change consumer surplus for v0 ≥ v̄.

For consumers with outside option values lower than
¯
v, the intermediary is restricted to

recommend products, so the same analysis from the small inverse hazard rates environment

applies for the sellers’ profits.

Theorem 7. Let H be any well-behaving additional information and v0 <
¯
v.

1. Recommendations rule effect increases (decreases) all sellers’ profits if one of the fol-

lowing conditions is satisfied:

(a) Additional information increases (decreases) θ-revenue difference and inverse haz-

ard rates 1−G(θ)
g(θi) increases (decreases) in θi.

(b) Additional information decreases (increases) θ-revenue difference and inverse haz-

ard rates 1−G(θ)
g(θi) decreases (increases) in θi.

2. Inverse hazard rates effect decreases all sellers’ profits if for all zi ∈ Z and θi ∈ Θ(zi),

1 −G(θi ∣ zi)

g(θi ∣ zi)
≤

1 −G(θi)

g(θi)
.
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Corollary 2. Let H be any well-behaving additional information. Let v0 <
¯
v. Additional

information decreases sellers’ profits if it reduces inverse hazard rates and one of the following

conditions is satisfied:

1. Additional information increases θ-revenue and 1−G(θ)
g(θ) decreases in θ.

2. Additional information decreases θ-revenue and 1−G(θ)
g(θ) increases in θ.

6 Consumer Data Protection

This section explores whether consumer data is protected or leaked to sellers through the

recommender system. I find that the intermediary does not earn a higher revenue by sharing

the consumer data with sellers under the optimal direct mechanism. However, there are

indirect mechanisms that implement the optimal recommender system and leak consumer

data to sellers.

For concreteness, I consider the environment from Section 3 with v0 ∈ (
¯
v, v̄), but all results

extend to any other environments from this paper.

6.1 Sharing Consumer Data

The analysis so far has assumed that that the intermediary cannot directly communicate

any information about the consumer’s match values to sellers. Consumer data is protected

in that sellers do not learn about the consumer’s match value v until the game ends. The

intermediary could potentially earn a higher revenue by sharing some consumer data with

sellers.

A data sharing policy is a pair (Y ,Y) where Y = Y1 × ⋯ × YN and Y ∶ V → ∆Y that

privately sends yi ∈ Yi to each seller i before reporting θi. The distribution Y can potentially

be asymmetric across sellers. The intermediary’s problem is to choose a pair of a data sharing

policy (Y ,Y) and a recommender system (r, t) ∶ V ×Θ ×Y → [0,1]N+1 ×RN .

Fix a data sharing policy (Y ,Y). For each seller i with (θi, yi), her expected profit is

ΠY
i (θi, yi) = ∫

V×Θ−i×Y−i
((θi+w(vi))ri(v,θ,y)−ti(v,θ,y))F (dv ∣ y)Y−i(dy−i ∣ yi)G−i(dθ−i),

where F (dv ∣ y) = Y (dy∣v)F (dv)
∫V Y (dy∣v)F (dv) , and the probability of getting recommended is

QY
i (θi, yi) = ∫

V×Θ−i×Y−i
ri(v,θ,y)F (dv ∣ y)Y−i(dy−i ∣ yi)G−i(dθ−i).
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Data sharing signals y do not affect on sellers’ incentive to report θ truthfully. For each

given y, the incentive compatibility and individual rationality may be characterized in the

standard way.

Lemma 6. Let (Y ,Y) be a data sharing policy. An obedient (r, t) recommender system is

incentive compatible and individually rational if and only if for all i ∈ N , θi ∈ Θ and yi ∈ Yi,

QY
i (θi, yi) is increasing in θi,

ΠY
i (θi, yi) = ΠY

i (¯
θ) + ∫

θi

¯
θ

QY
i (θ̃i, yi)dθ̃i,

ΠY
i (¯
θ, yi) ≥ 0.

Applying the standard arguments, for a given data sharing policy (Y ,Y), the intermedi-

ary’s problem is to maximize

∫
V×Θ×Y

∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) ri(v,θ,y)F (dv ∣ y)Y (dy)G(dθ) (27)

subject to obedience constraints, for all i, j ∈ N ∪ {0},

∫
V×Θ×Y

(vi − vj)ri(v,θ,y)F (dv ∣ y)Y (dy)G(dθ) ≥ 0. (28)

Note that the integrands of both the objective function (27) and the constraints (28) do not

depend on y, so that the optimal recommendations rule ignores y. Therefore, the optimal

recommender system remains the same regardless of the data sharing policy.

Even in the absence of data sharing, the intermediary already extracts all of sellers’ poten-

tial benefit from having a better estimate about value-dependent willingness to pay w(vi) by

recommending better based on v but charging more accordingly. Another potential incentive

for strategic data sharing is to affect sellers’ incentive to report their private information.

This channel is muted by the additive separability between θi and w(vi), and would have

been important if sellers’ profits were not additively separable, θiw(vi), for example. How

the non-separability would affect on the optimal data sharing policy is yet an open question.

Let (r∗, t∗) be the optimal recommender system without data sharing. The intermediary

does not share consumer data with sellers if Y = ∅. When data is not shared, the consumer

data is protected.

Theorem 8. When data sharing is allowed, the intermediary’s optimal recommender system

is the same regardless of the data sharing policy (Y ,Y). In particular, the recommender

system (r∗, t∗) without data sharing is optimal.
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6.2 Implementation

Under a mild condition, a variant of handicap auction (Eső and Szentes (2007)) implements

the optimal recommender system. In a special environment with linear private virtual will-

ingness to pay, a second-price auction with discounts and participation fees implement the

optimal recommender system. This includes the example in Section 2 as a special case. For

concreteness, I consider the environment from Section 3 with v0 ∈ (
¯
v, v̄). Both versions of

the implementation extend to any other environments that I consider in this paper.

6.2.1 Handicap Auction

Let v0 ∈ (
¯
v, v̄).16 The handicap auction consists of two rounds. In the first round, each seller

i with θi chooses a price premium pi ∈ R1 at a fee Ci(pi) from the menu of price premia

(p,Ci(p))p∈R1 proposed by the intermediary. The price premium chosen by each seller is

known only to the seller and the intermediary, but not to other sellers and the consumer.

After the first round and before the second, the intermediary discloses v to sellers and

announces the cost of persuasion `i ∶ V → R1 for each i ∈ N . In the second round, a second-

price auction with zero reservation price, price premia and costs of persuasion follows. The

seller with the highest bid wins the auction, but is required to pay the second highest pay

plus the price premium and the cost of persuasion. That is, if others bid (bj)j∈N∖{i}, the

price premium is pi and the cost of persuasion is `i(v) for each i, then if the seller i bids

bi > maxj∈N∖{i}(bj,0), then she wins the auction and is required to pay

max
j∈N∖{i}

(bj,0) + pi + `i(v).

If she bids bi < maxj∈N∖{i}(bj,0), then she loses and pays nothing.

Arguments below closely follow Eső and Szentes (2007). For the completeness, I present

the full arguments here. I begin with characterizing an equilibrium in the second round

auction: it is weakly dominant strategy for each seller i to bid his willingness to pay minus

the price premium.

Lemma 7. Suppose each seller i is informed with v and is charged with a price premium pi.

In the second round of the handicap auction, it is a weakly dominant strategy for seller i to

bid bi = θi +w(vi) − pi − `i(v).

16When v0 > v̄, the optimal recommender system from Theorem 1.b is implemented by a handicap auction
with positive infinite reservation prices and `∗i (v) = 0 for all i and v ∈ V . When v0 <

¯
v, the optimal

recommender system from the same theorem is implemented by a handicap auction with negative infinite
reservation prices and `∗i (v) = 0 for all i and v ∈ V as in (15).
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From here on, sellers are assumed to play according to their weakly dominant strategy in

the second round. The handicap auction is represented by a triple of of functions pi ∶ Θ→ R1,

ci ∶ Θ → R1 and `i ∶ V → R1 for each i ∈ N where pi(θi) is the price premium that θi chooses

at the fee of ci(θi) = Ci(pi(θi)).

Given a handicap auction (pi, ci, `i)i∈N , by Lemma 7, if the seller θi reports non-truthfully

as θ̂i in the first round, the seller bids θi +w(vi) − pi(θ̂i) − `i(v) in the second round. Denote

each seller’s equilibrium bid assuming that she bids truthfully in each stage by

b∗i (v, θi) = θi +w(vi) − pi(θi) − `i(v).

Let b∗∗−i (v,θ−i) = maxj∈N∖{i}(b
∗
j (v, θj),0) be the equilibrium highest bid and reservation price

excluding i’s bid in the second round at each given state (v,θ) ∈ V ×Θ.

The handicap auction (pi, ci, `i)i∈N is incentive compatible if every seller i optimally re-

ports its true type in the first round. Seller θi’s expected profit after reporting θ̂i assuming

others report truthfully is

πHi (θi, θ̂i) = Ev,θ−i [(θi +w(vi) − pi(θi) − `i(v) − b
∗∗
−i (v,θ−i))1{θi+w(vi)−pi(θi)−`i(v)≥b∗∗−i (v,θ−i)}]−c(θ̂i),

and the seller wins the auction with probability

QH
i (θi, θ̂i) = Ev,θ−i [1{θi+w(vi)−pi(θi)−`i(v)≥b∗∗−i (v,θ−i)}] .

The incentive compatibility constraint of handicap auctions is characterized in the following

lemma.

Lemma 8. A handicap auction (pi, ci, `i)i∈N is incentive compatible if and only if for all

i ∈ N and θi ∈ Θ,

πHi (θi, θi) = π
H
i (

¯
θ,

¯
θ) + ∫

θi

¯
θ

QH
i (θ̃i, θ̃i)dθ̃i (29)

and for all θ′i, θ
′′
i ∈ Θ such that θ′i < θi < θ

′′
i ,

QH
i (θi, θ

′
i) ≤ Q

H
i (θi, θi) ≤ Q

H
i (θi, θ

′′
i ). (30)

Inequality (30) states that if each seller reports his type to be higher (lower) in the

first round, then he is more (less) likely to win the auction in the second round. Since

misreporting in the first round only changes the price premium, (30) is satisfied if the price

premium pi(v, θi) decreases in θi.

Theorem 9. Let v0 ∈ (
¯
v, v̄). Suppose that 1−G(θi)

gi(θi)
decreases in θi. The intermediary can
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implement the optimal recommendations rule (12) and attain the same revenue via a handicap

auction (p∗i , c
∗
i , `

∗
i )i∈N where

p∗i (v, θi) =
1 −G(θi)

g(θi)
, (31)

c∗i (θi) =Ev,θ−i [(θi +w(vi) − p
∗
i (θi) − `

∗
i (v) − b

∗∗
−i (v,θ−i))1{θi+w(vi)−p∗i (θi)−`∗i (v)≥b∗∗−i (v,θ−i)}] − ∫

θi

¯
θ

QH
i (θ̃i, θ̃i)dθ̃i,

(32)

and the cost of persuasion (`∗i )i∈N is as in (13).

Note that the premium p∗i (v, θi) decreases in θi, so that (30) is satisfied. The first term in

the fee schedule c∗i is the seller i’s expected profit from the second round. The second term

is the information rent. By paying the fee, the seller’s expected profit conditioning on θi is

exactly the information rent, so that (29) is satisfied with πHi (
¯
θ,

¯
θ) = 0. By Lemma 8, the

handicap auction (p∗i , c
∗
i , `

∗
i )i∈N is incentive compatible. The handicap auction is individually

rational and attains attains the same revenue as the optimal recommender system because

πHi (
¯
θ,

¯
θ) = 0 and the second round auction implements the optimal recommendations rule

(12).

6.2.2 Second-Price Auction with Discounts and Participation Fees

Consider an environment where the virtual private willingness to pay is linear

αθi − β for some α > 1, β > 0

with support [
¯
θ, β

α−1
] where 0 ≤

¯
θ < β

α−1 , i.e. w(v) = 0. The class of distributions with linear

virtual private willingness to pay includes includes uniform, exponential distribution, Pareto

distribution and log-logistic distribution.

A second-price auction with discounts and participation fees is represented by a pair of

a discount function di ∶ V → R1 and a participation fee Pi ∈ R1 for each i ∈ N . Each

seller first decides whether to participate by paying the fee Pi. Once having participated,

each seller is informed of the discount di(v) as well as v. The seller with the highest bid

wins, but is required to pay the second-highest bid minus a discount. With appropriately

chosen discounts, participation fees and reserve prices, the auction implements the optimal

recommender system.

Theorem 10. Let v0 ∈ (
¯
v, v̄). Suppose that θi −

1−G(θi)
gi(θi)

= αθi − β with α,β > 0 and w(vi) = 0

for all vi ∈ V. The intermediary can implement the optimal recommendations rule (12) and

36



attain the same revenue via a second price auction with discounts and participation fees

(d∗i , P
∗
i )i∈N where

d∗i (v) = −
1

α
`∗i (v) −

α − 1

α
w(vi),

and

P ∗
i = Ev,θ−i

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝¯
θ +

1

α
w(vi) −

1

α
`∗i (v) − max

j∈N∖{i}
(θj +

1

α
w(vj) −

1

α
`∗j (v),

β

α
)
⎞

⎠

⋅ 1{
¯
θ+ 1

α
w(vi)− 1

α
`∗i (v)>maxj∈N∖{i}(θj+ 1

α
w(vj)− 1

α
`∗j (v),

β
α
)}

⎤
⎥
⎥
⎥
⎥
⎦

with reservation price β
α .

Conditioning on participation, each seller’s weakly dominant strategy is to bid

θi +w(vi) + d
∗
i (v) = θi +

1

α
w(vi) −

1

α
`∗i (v).

If all sellers of every type participate, this auction implements the optimal recommendations

rule (12).

It remains to make sure that the lowest type’s expected profit is 0. Note that the lowest

private willingness to pay type
¯
θ may have a positive probability of winning the auction

when he sells a product that is high match. When he wins the auction, he always gets a

non-negative profit. The participation fee P ∗
i is exactly the expected profit of the lowest

type without the fee, making the expected profit of
¯
θ to be is 0. Consequently, all sellers of

all types participate, and the intermediary attains the same revenue as under the optimal

recommender system.

6.3 Discussion on Consumer Data Protection

Under the direct mechanism, consumer data is protected in that sellers do not learn about

the consumer’s match values v until the game ends. Furthermore, the intermediary does

not earn higher revenue by sharing information about match values with sellers. However,

both the handicap auction and the second-price auction with discounts and participation

fees involve disclosing v to sellers. The consumer data is leaked in that sellers learn about

v before the game ends.
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7 Discussion and Additional Results

7.1 Constrained Welfare Maximization

Define α-welfare, a weighted sum of the consumer welfare and the joint profit of the inter-

mediary and sellers,

α∫
V×Θ

∑
i∈N∪{0}

viri(v,θ)F (dv)G(dθ) + (1 − α)∫
V×Θ
∑
i∈N

(θi +w(vi))ri(v,θ)F (dv)G(dθ),

where α ∈ (0,1). A recommender system (rα, tα) is a constrained α-welfare maximizing

recommender system if it maximizes the α-welfare subject to obedience constraints (1),

incentive compatibility (2) and individual rationality (3). In this section, I characterize

α-welfare maximizing recommender system and its implication on the consumer surplus.

Throughout this section, I assume that 1−G(θ)
g(θ) decreases in θ and v0 <

¯
v.

Note that transfer t is irrelevant for the constrained α-welfare maximization problem as

long as it makes a given recommendations rule incentive compatible and individually rational.

In particular, in characterizing the constrained α-welfare maximizing recommendations rule

and α-welfare, it is without loss of generality to assume t to be (8) and drop incentive

compatibility and individual rationality constraints. Subtracting a constant αv0 from the

α-welfare gives the following lemma.

Lemma 9. Suppose that a recommendations rule r ∶ V ×Θ→ [0,1]N maximizes

∫
V×Θ
∑
i∈N

(θi +w(vi) +
α

1 − α
(vi − v0)) ri(v,θ)F (dv)G(dθ) (33)

subject to obedience constraints (1) and monotonicity constraints (4). Suppose also that

ti(v,θ) = (θi +w(vi))ri(v,θ) − ∫
θi

¯
θ

ri(v, θ̃i,θ−i)dθ̃i. (34)

Then, (r, t) is a constrained α-welfare recommender system.

Comparing the α-welfare maximization problem in Lemma 9 to the intermediary’s revenue

maximization problem in Lemma 5, the only difference is the integrand in each objective

function is changed from

θi −
1 −G(θi)

g(θi)
+w(vi) (35)
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to

θi +w(vi) +
α

1 − α
(vi − v0). (36)

The identical graphical analysis from Example 3 applies. Unlike in Section 5, however,

the transition from (35) to (36) changes not only the term related to θi, but also the term

related to vi as well. The difference terms are defined for both θ as well as v.

Definition 5. A θ-revenue difference for θ > θ′ is

∆(θ, θ′) = (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
)

and v-revenue difference for v > v′ is

D(v, v′) = w(v) −w(v′)

Similarly, a θ-welfare difference for θ > θ′ is

∆α(θ, θ′) = θ − θ′

and v-welfare difference for v > v′ is

Dα(v, v′) = (w(v) +
α

1 − α
v) − (w(v′) +

α

1 − α
v′) .

Note that ∆α(θ, θ′) ≤ ∆(θ, θ′) for all θ > θ′ and Dα(v, v′) ≥D(v, v′) for all v > v′. Relative

to the revenue-maximization regime, the additional gain from recommending a product with

a higher θ decreases and that with a higher v increases under the α-maximization regime.

In other words, the iso-welfare curve has a lower slope than the iso-revenue curve as in

Figure 6. Consequently, α-welfare-maximizing recommendations rule recommends products

with higher match values more often, which increases the consumer surplus and decreases

the joint profit.

Theorem 11. Suppose that 1−G(θi)
g(θi) decreases in θi and v0 <

¯
v. Relative to the revenue max-

imizing recommender system (r∗, t∗), under the α-welfare maximizing recommender system

(rα, tα),

1. Consumer surplus is higher.

2. Joint profit of the intermediary and sellers is lower.

39



θ̄

v̄

¯
θ

¯
v

(θj , vj)

α-Welfare(i)
> α-Welfare(j)

α-Welfare(i)
> α-Welfare(j)

θi

vi

(a) Iso-welfare Curve

θ̄

v̄

¯
θ

¯
v

(θj , vj)

Revenue(i)
> Revenue(j)

Revenue(i)
< Revenue(j)

θi

vi

(b) Iso-revenue Curve

Figure 6: Iso-welfare and iso-revenue curves.

7.2 Search Engine Interpretation

One can interpret a recommender system with some modifications as a search engine. Sup-

pose there are Np + No search items. For each of the first Np search items, there is an

advertiser (seller) i ∈ Np = {1, . . . ,Np} who is willing to pay for a paid search for his item

(recommendation). For the later No items, owners of the item i ∈ No = {Np + 1, . . . ,Np +No}

are not willing to pay. Items of the first type are called paid search while the second are

organic search items. As in the baseline case, each seller has private willingness to pay θi

and value-dependent willingness to pay wp(vi) that are additively separable. If an advertiser

i pays ti for his item to be searched with probability ri, the advertiser’s profit is

(θi +wp(vi))ri − ti

where wp(.) is any strictly increasing function. The private willingness to pay θi is indepen-

dently drawn from a common distribution G that is absolutely continuous and has support

[
¯
θ, θ̄] with −∞ <

¯
θ < θ̄ < ∞.

The user (the consumer) does not know the valuation of each search item, but only

knows that vi is independently drawn from a common distribution Fp if i ∈ Np, and from

Fo if i ∈ No. For simplicity, assume that Fp(v) = F̃ (v − µp) and Fo(v) = F̃ (v − µo) where

µp, µo ∈ R1 are mean shifters of Fp and Fo, respectively. Let vp = (v1, . . . , vNp) ∈ Vo = V
Np ,

vo = (vNp+1, . . . , vNp+No) ∈ Vo = VNo , v = (vp,vo) ∈ V = Vp × Vo, F = Fp × Fo and θ =

(θ1,⋯, θNp) ∈ Θ = ΘNp .
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The intermediary knows about the value of the options better than the user himself. The

intermediary privately observes v and designs how to provide information to the user while

raising revenue from advertisers, which I call a search engine (a recommender system). Since

a search engine always returns some output, I assume that there is no outside option. By the

revelation principle, it is without loss to assume that the intermediary’s search engine is a

direct mechanism (r, t) ∶ Vp ×Vo ×Θ→ [0,1]Np+No ×RNp with ∑i∈Np∪No ri(vp,vo,θ) = 1. The

intermediary collects revenue from advertisers, but also has reputation concerns that incen-

tivizes the intermediary to search for the right item for the user. Formally, the intermediary’s

objective function is a weighted sum of revenue and value of the recommendations

∫
Vp×Vo×Θ

⎛

⎝
∑
i∈Np

ti(vp,vo,θ) + β ∑
i∈Np∪No

wo(vi)ri(vp,vo,θ)
⎞

⎠
Fp(dvp)Fo(dvo)G(dθ)

where β ∈ (0,1) is a relative weight between the revenue and value of the recommenda-

tions, and wo(.) is any strictly increasing function. After applying the usual arguments, the

intermediary’s problem is reduced to a Bayesian persuasion problem of maximizing

∫
Vp×Vo×Θ

∑
i∈Np∪No

ψEi (vp,vo,θ)Fp(dvp)Fo(dvo)G(dθ)

where

ψEi (vp,vo,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

θi −
1−G(θi)
g(θi) +wp(vi) +wo(vi) if i ∈ Np

wo(vi) if i ∈ No

subject to obedience constraints, i.e. OBij for any i, j ∈ Np ∪No

∫
Vp×Vo×Θ

(vi − vj) ri(vp,vo,θ)Fp(dvp)Fo(dvo)G(dθ) ≥ 0

and monotonicity constraints, that is, for all θi > θ
′

i

∫
Vp×Vo×Θ−i

ri(vp,vo, θi,θ−i)Fp(dvp)Fo(dvo)G(d(θi,θ−i))

≥ ∫
Vp×Vo×Θ−i

ri(vp,vo, θ
′
i,θ−i)Fp(dvp)Fo(dvo)G(d(θ′i,θ−i)).

(37)

Define a value-switching monotone recommendations rule as in the following.

Definition 6. A recommendations rule r is value-switching monotone if

1. ri(vp,vo,θ) increases in (vi, θi) for all i ∈ Np ∪No.

2. ri(vp,vo,θ) decreases in vj whenever i ∈ Np and j ∈ No, or, i ∈ No and j ∈ Np.
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3. ri(v,θ) decreases whenever vj is switched with a larger vi for all i, j ∈ Np or i, j ∈ No,

i.e. (v−ij,θ) ∈ V−ij ×Θ and v > v′,

ri(vi = v, vj = v
′,v−ij,θ) ≥ ri(vi = v

′, vj = v,v−ij,θ).

We can apply the same logic as before. Any value-switching monotone recommendations

rule always satisfy OBij for i, j ∈ Np and i, j ∈ No; satisfy all of the obedience constraints

if µp and µo are similar to each other; violates OBop if µp is significantly larger than µo;

violates OBpo if µp is significantly smaller than µo, where p ∈ Np and o ∈ No. An optimal

search engine is characterized by two numbers
¯
µE ≤ 0 ≤ µ̄E

rEi (v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣ME ∣ if i ∈ arg maxj∈N {ψEj (v,θ) − `

E
j (v),0}

0 otherwise

where ME = arg maxj∈N {ψEj (v,θ) +wj − `
E
j (v)}, for i ∈ Np

`Ei (v) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if µp − µo ≥
¯
µE

λE2 (v0) ⋅ ∑o∈No(vo − vi) if µp − µo <
¯
µE

and for i ∈ No

`Ei (v) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

λE1 (v0) ⋅ ∑p∈Np(vp − vi) if µp − µo > µ̄E

0 if µp − µo ≤ µ̄E

where λE1 (v0) and λE2 (v0) are Lagrangian multipliers for OBpo and OBop that may vary

depending on v0, respectively. An optimal transfer rule is given by t such that

ti(v,θ) = (θi +wp(vi))ri(v,θ) − ∫
θi

¯
θ

ri(v, θ̃i,θ−i)dθ̃i

for each i.

7.3 Relaxing v0 as Common Knowledge

The value of the outside option v0 has been assumed to be a constant that is commonly

known to all players. One way to relax this assumption is to assume that v0 is common

knowledge between the intermediary and consumer, but not to the sellers. Sellers instead

believe that v0 is drawn from a distribution F0. All results continue to hold identically under
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this assumption. Below I explore two different ways to relax the symmetric knowledge of

v0 between the intermediary and the consumer: One under which v0 is the intermediary’s

private information; the other under which v0 is the consumer’s private information.

7.3.1 Value of Outside Option as Private Knowledge of Intermediary

Suppose that only the intermediary observes v0 that is drawn from a distribution F0. For

simplicity,17 assume that F0(v0) = F (v0 − µ0) where µ0 ∈ R1 is a mean shifter of F0. If

µ0 = 0, then the distribution for the outside option F0 is identical to those of other products

F ; if µ0 > 0, then F0 first-order stochastically dominates F ; if µ0 < 0, then F0 is first-order

stochastically dominated by F . All of the results in Section 4 and Section 5 continues to

hold after replacing v0 with µ0.

7.3.2 Value of Outside Option as Private Knowledge of Consumer

Suppose that only the consumer observes v0 that is drawn from a distribution F0 that has

a full support on the real line. Suppose that the intermediary offers the same recommender

system to the consumer of all types, and the consumer of each type decides whether to fol-

low the recommendation. This is equivalent to the intermediary designing the set VNR0 ⊂ R1

of the consumer types who will obey recommendations on top of designing a recommender

system itself. For any given recommender system, a consumer with high v0 disobeys when

recommended with a product; a consumer with low v0 disobeys when recommended with

the outside option. Consequently, the intermediary’s problem reduces to designing a recom-

mender system and picking up two thresholds
¯
vNR ≤ v̄NR such that the consumer obeys if

and only if v0 ∈ [
¯
vNR, v̄NR].

The intermediary faces another layer of trade-offs, setting target population VNR0 = [
¯
vNR, v̄NR],

on top of the trade-off between raising revenue and keeping the consumer incentivized to

obey for each consumer v0 ∈ VNR0 . Which population to target depends on whether the

intermediary chooses to recommend the outside option with positive probability or not.

If the intermediary does not recommend the outside option almost surely, then any con-

sumer with bad enough outside option is obedient to the recommender system. In particular,

an optimal recommender system (rNR, tNR) is characterized by v̄NR ≥ Evi(vi) such that the

consumer is obedient to rNR if and only if v0 ∈ V
NR
0 = (−∞, v̄NR], and

rNRi (v,θ) =
1

∣MNR∣
if i ∈ arg max

j∈N
{θj −

1 −G(θj)

g(θj)
+wj} (38)

17All results here can be generalized to any family distributions F0(v0;µ0) where µ0 ∈ R1 is an index such
that F0(v0;µ0) first-order stochastically dominates F0(v0;µ′0) whenever µ0 > µ

′
0.
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whereMNR = arg maxj∈N {θj −
1−G(θj)
g(θj) +wj}. Note that there is no cost of persuasion because

none of the obedience constraints bind. An optimal transfer rule is given by t such that

tNRi (v,θ,w) = (θi +w(vi))ri(v,θ,w) − ∫

θi

¯
θ

ri(v, θ̃i,θ−i,w)dθ̃i. (39)

If the intermediary recommends the outside option with positive probability, then the

optimal recommender system (rNR, tNR) is characterized by
¯
v ≤

¯
vNR = Ev,θ(vi ∣ rNR0 (v,θ) =

1) ≤ Evi(vi) ≤ v̄NR = Ev,θ(vi ∣ rNR0 (v,θ) = 1) ≤ v̄NR ≤ v̄such that the consumer is obedient to

rNR if and only if v0 ∈ V
NR
0 = [

¯
vNR, v̄NR]. Furthermore, OB0i binds at

¯
vNR and OBi0 binds

at v̄NR, so that

rNRi (v,θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∣MNR∣ if i ∈ arg maxj∈N

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi −
1 −G(θi)

g(θi)
+w(vi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
virtual willingness to pay

− `NRj (v)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

cost of
persuasion

,0

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 otherwise

(40)

where MNR = arg maxj∈N {θj −
1−G(θj)
g(θj) +wj − `NRj (v)}, and

`NRi (v) = λ1(v̄
NR)(v̄NR − vi) − λ2(

¯
vNR) ∑

k∈N
(v̄NR − vk)

where λNR1 (v0) and λNR2 (v0) are Lagrangian multipliers for OBi0 and OB0i that may vary

depending on v0, respectively, and
¯
vNR and v̄NR are the thresholds constructed from the

uncontrained optimal recommendations rule. An optimal transfer rule is given as in (39).

Theorem 12. Suppose that the consumer privately observes v0 that is drawn from a dis-

tribution F0. An optimal recommender system (rNR, tNR) takes one of the following two

structures:

1. The intermediary always recommends one of products. An optimal recommender system

(rNR, tNR) is as in (38) and (39). The consumer is obedient if and only if v0 ≤ Ev,θ(vi ∣
rNRi (v,θ) = 1).

2. The intermediary sometimes recommends the outside option. An optimal recommender

system (rNR, tNR) is as in (40) and (39). The consumer is obedient if and only if

Ev,θ(vi ∣ rNR0 (v,θ) = 1) ≤ v0 ≤ Ev,θ(vi ∣ rNRi (v,θ) = 1).
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7.4 Relaxing Intermediary’s Private Knowledge of w(v)

The value-dependent willingness to pay w(v) has been assumed to be a deterministic function

of vi. Combined with the assumption that only the intermediary knows v, this entails that

the intermediary privately knows sellers’ value-dependent willingness to pay w(v) that sellers

themselves do not know.

This assumption may be relaxed in two different ways. The first is to assume that each

seller learns the value of w(vi) even though he does not know vi. With the strict mono-

tonicity of w(vi), learning the value of w(vi) is equivalent to learning vi and hence having

vi as common knowledge between the intermediary and seller i. This does not change the

optimal recommendations rule: the intermediary discloses vi to and extract the entire value-

dependent willingness to pay w(vi) from each seller i in the baseline model under which the

seller does not know vi. Therefore, the optimal recommendations rule letting seller to learn

w(vi) does not change the optimal recommender system.

Another way to relax the assumption is to assume that each seller privately observes a

value-dependent willingness to pay in the following way similar to Eső and Szentes (2007):

Suppose that the intermediary can disclose18 vi to a seller i. Upon disclosure, the seller i pri-

vately observes wi independently drawn from a common distribution W (. ∣ vi) conditioning

on vi, where W (. ∣ v) first-order dominates W (. ∣ v′) whenever v > v′. Without disclosure,

the seller does not learn any information about vi and wi.

Following Eső and Szentes (2007), it can be shown that the intermediary completely

discloses its private information v under an optimal recommender system and obtains the

same expected revenue as if the intermediary could observe w using the modified handicap

auction obtained by replacing w(vi) with wi from Theorem 9. A sketch of the proof is

presented here.

Let v0 ∈ (
¯
v, v̄) and G be such that 1−G(θ)

g(θ) decreases.. Suppose that the intermediary has

disclosed vi to each seller i. A recommender system is now extended to (r, t) ∶ V ×Θ×W →

[0,1]N+1×RN with ∑i∈N{0} ri(v,θ,w) = 1 for all (v,θ,w) ∈ V ×Θ×W whereW is a support

18An alternate setup under which the intermediary can provide any arbitrary information to sellers, instead
of being restricted to disclosing or not, leads to the same conclusion. The revenue from (42) and (43) still is
an upper bound of the intermediary’s revenue which can be attained by first fully disclosing v to sellers and
then running the modified handicap auction from Theorem 9
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of W (. ∣ .) and W = WN . An optimal recommendations rule is given by

rWi (v,θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
∣MW ∣ if i ∈ arg maxj∈N

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θj −
1 −G(θj)

g(θj)
+wj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
virtual willingness to pay

− `Wj (v)
´¹¹¹¹¹¸¹¹¹¹¹¹¶
cost of

persuasion

,0

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

0 otherwise

(41)

where MW = arg maxj∈N {θj −
1−G(θj)
g(θj) +wj − `Wj (v)}, and

`Wi (v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v0 ∈ [
¯
vW , v̄W ]

λW1 (v0) ⋅ (v0 − vi) if v0 > v̄W

λW2 (v0) ⋅ ∑k∈N (v0 − vk) if v0 <
¯
vW

(42)

where λW1 (v0) and λW2 (v0) are Lagrangian multipliers for OBi0 and OB0i that may vary

depending on v0, respectively, and
¯
vW and v̄W are the thresholds constructed from the

uncontrained optimal recommendations rule. An optimal transfer rule is given by t such

that

ti(v,θ,w) = (θi +w(vi))ri(v,θ,w) − ∫

θi

¯
θ

ri(v, θ̃i,θ−i,w)dθ̃i (43)

for each i.

The revenue from (42) and (43) clearly is an upper bound of the intermediary’s revenue.

This revenue can be attained by first fully disclosing v to sellers and then running a modified

handicap auction as the following.

Theorem 13. Let v0 ∈ (
¯
v, v̄). Suppose that 1−G(θi)

gi(θi)
weakly decreases in θi. The intermediary

can implement the optimal recommendations rule with the same revenue via a handicap

auction (c, p, `i)i∈N where

p(θi) =
1 −G(θi)

g(θi)
, (44)

c(θi) is defined by

c(θi) =Eθ−i,v [(θi +w(vi) − p(θi) − `i(v) − b
∗∗
−i (v,θ−i))1{θi+w(vi)−p(θi)−`i(v)≥b∗∗−i (v,θ−i)}]

− ∫

θi

¯
θ

Eθ−i,v [1{θ̃+w(vi)−p(θ̃)−`i(v)≥b∗∗−i (v,θ−i)}
]dθ̃ (45)

and the cost of persuasion (`Wi )i∈N from (42).
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8 Conclusion

In this paper, I study a monopolistic intermediary designing a recommender system. I

frame the intermediary’s problem as a revenue-maximizing mechanism design problem of

allocating one unit of sales to one of multiple sellers, but with a constraint of having to

rely on the consumer to choose the outcome. I reformulate the intermediary’s revenue-

maximizing mechanism design problem as a Bayesian persuasion problem. Using value-

switching monotone recommendations rules, I find that the intermediary recommends the

product of the seller with the highest virtual willingness to pay adjusted by the cost of

persuasion.

I use this model to explore policy-relevant questions. First, I characterize the types of

seller data that benefit or harm consumers and sellers. Second, I find that the optimal direct

mechanism protects consumer privacy, but consumer data is leaked to sellers under other

implementations. Lastly, I show that the welfare-maximizing recommender system increases

consumer surplus, but reduces the joint profit of the intermediary and sellers.

There are several directions for future works. To start, endogenizing prices leads to a

number of economic and technical questions. Should the prices be set by the intermedi-

ary or by sellers, and at what timing? How does the recommender system affects price

competition among sellers? How should the pricing and recommendations rule jointly be

determined? Furthermore, allowing consumers to have ex-ante asymmetric, privately known

preferences over products would also be an interesting direction. In this extension, the con-

sumer has multi-dimensional private information about his preference. The key challenge

lies in tractably characterizing the recommendations rules that make consumers report their

type truthfully. Finally, considering competition among intermediaries is another important

direction for both theory and practice. Although analyzing competition among mechanism

designers and persuaders is generally difficult, characterizing the optimal recommender sys-

tem in this environment would provide valuable insights into the strategic interactions of

intermediaries with growing capabilities and influence.
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A Proofs for Section 3 and Section 4

A.1 Proof for Lemma 2

When seller i ∈ N with θi reports truthfully as θi, her expected profit is

Π(θi) = ∫
V×Θ−i

[(θi +w(vi))ri(v,θ) − ti(v,θ)]F (dv)G−i(θ−i),

and the expected probability of her product i being recommended is

Qi(θi) = ∫
V×Θ−i

ri(v,θ)F (dv)G−i(θ−i).

The following lemma characterize incentive compatible and individually rational recom-

mender systems.

Lemma 10. A recommender system (r, t) ∶ V ×Θ→ [0,1]N+1 ×RN is incentive compatible,

individually rational and obedient if and only if for each i ∈ N , for all θi ∈ [
¯
θ, θ̄],

Qi(θi) is increasing in θi, (46)

Πi(θi) = Πi(¯
θ) + ∫

θi

¯
θ

Qi(θ̃i)dθ̃i, (47)

Πi(¯
θ) ≥ 0 (48)

and for all i, j ∈ N ∪ {0},

∫
V×Θ

viri(v,θ)F (dv)G(dθ)

≥ ∫
V×Θ

virj(v,θ)F (dv)G(dθ).
(49)

Proof. Necessity: Let θi > θ̂i. Let

πi(θ̂i; θi) = ∫
V×Θ−i

[(θi +w(vi))ri(v, θ̂i,θ−i) − ti(v, θ̂i,θ−i)]F (dv)G−i(θ−i)

be the expected profit of seller i with θi when she reports as θ̂i. Note that

πi(θ̂i; θi) = Πi(θ̂i) + (θi − θ̂i)Qi(θ̂i)
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Similarly,

πi(θi; θ̂i) = Πi(θi) + (θ̂i − θi)Qi(θi).

Incentive compatibility implies Πi(θi) ≥ πi(θ̂i; θi) and Πi(θ̂i) ≥ πi(θi; θ̂i), which in turn implies

(θi − θ̂i)Qi(θ̂i) ≤ Πi(θi) −Πi(θ̂i) ≤ (θi − θ̂i)Qi(θi).

By the above inequality, Qi is weakly increasing and hence is integrable, which then implies

(47).

Individual rationality is equivalent to Πi(θi) ≥ 0 for all i ≠ 0 and θi ∈ [
¯
θ, θ̄], from which

Πi(¯
θ) ≥ 0 for all i follows.

Sufficiency: Let θi ≠ θ̂i. From (47) and the monotonicity of Qi,

Πi(θi) = Πi(θ̂) + ∫
θi

θ̂i
Qi(θ̃i)dθ̃i

≥ Πi(θ̂) + ∫
θi

θ̂i
Qi(θ̂i)dθ̃i

= Πi(θ̂) + (θi − θ̂i)Qi(θ̂i)

= πi(θ̂i; θi) (50)

Since θi ≠ θ̂i are arbitrary, (50) implies incentive compatibility.

Since Qi(θi) ≥ 0 for all θi ∈ [
¯
θ, θ̄], (47) implies that Πi(θi) increases in θi, and hence,

individual rationality is satisfied if Πi(¯
θ) ≥ 0.

By Lemma 13, for any θi ∈ [
¯
θ, θ̄],

Πi(θi) = Πi(¯
θ) + ∫

θi

¯
θ

Qi(θ̃i)dθ̃i.

The expected transfer of the seller i with θi is

Ti(θi) = ∫
V×Θ−i

(θi +w(vi))ri(v,θ)F (dv)G−i(dθ−i) − ∫
θi

¯
θ

Qi(θ̃i)dθ̃i −Πi(¯
θ). (51)

By the usual argument of the change of variables,

∫
Θ
Ti(θi)G(dθi)

= ∫
V×Θ

(θi +w(vi) −
1 −G(θi)

g(θi)
) ri(v,θ)F (dv)G(dθ) −Πi(¯

θ),
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so that the intermediary’s expected revenue is

∑
i∈N
∫

Θ
Ti(θi)G(dθi)

= ∫
V×Θ
∑
i∈N

(θi +w(vi) −
1 −G(θi)

g(θi)
) ri(v,θ)F (dv)G(dθ) − ∑

i∈N
Πi(¯

θ). (52)

The intermediary’s problem is to maximize (52) using a recommender system (r, t) sub-

ject to monotonicity constraints (46), payoff equivalence constraints (47), non-negativity

constraints (48) and obedience constraints (49). Note that for any given recommendations

rule r satisfying (46) and (49), any transfer t such that πi(¯
θ) = 0 for all i ∈ N and whose

interim transfer satisfies (51) maximizes (7) while satisfying (47) and (48). Transfer (8) is

one of such.

It remains to find an optimal recommendations rule r. Since Πi(¯
θ) = 0 for all i ∈ N

independent of r, it immediately follows that a recommendations rule r that maximizes

(7) subject to (46) and (49), together with the corresponding transfer (8), maximizes the

intermediary’s expected revenue subject to (46), (47), (48) and (49).

A.2 Proof for Lemma 3

The obedience constraint from a product i ∈ N to another product j ∈ N is

∫
V×Θ

(vi − vj)ri(vi, vj,v−ij,θ)F (dv)G(dθ) ≥ 0

which can be written as

∫
v>v′
∫
V−ijΘ

[(v − v′)ri(vi = v, vj = v
′,v−ij,θ)Fij(d(v, v

′))

+ (v′ − v)ri(vi = v
′, vj = v,v−ij,θ)Fij(d(v

′, v))]F−ij(dv−ij)G(dθ) ≥ 0 (53)

By symmetry, Fij(d(v, v
′)) = Fij(d(v

′, v)), so that (54) can be written as

∫
v>v′
∫
V−ijΘ

(v − v′)(ri(vi = v, vj = v
′,v−ij,θ) − ri(vi = v

′, vj = v,v−ij,θ))Fij(d(v, v
′))F−ij(dv−ij)G(dθ) ≥ 0

(54)

where the inequality follows from v > v′ and the value-switching monotonicity of r, that is,

ri(vi = v, vj = v
′,v−ij,θ) − ri(vi = v

′, vj = v,v−ij,θ) ≥ 0.
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A.3 Proof for Lemma 4

1. Let i ∈ N . OBi0 is

∫
V×Θ

(vi − v0)ri(v,θ)F (dv)G(dθ) ≥ 0. (55)

Define Ri(vi) = ∫V−i×Θ ri(vi,v−i,θ)F−i(dv−i)G(dθ) which is increasing in vi, where

Evi(Ri(vi)) = Ev,θ(ri(v,θ)). Then, (55) is equivalent to

Covvi(vi − v0,Ri(vi)) + (Evi(vi) − v0)Evi(Ri(vi)) ≥ 0. (56)

The first term Covvi(vi − v0,Ri(vi)) = Covv,θ(vi, ri(v,θ)) is non-negative since both

vi − v0 and Ri(vi) are increasing in vi. If Ev,θ(ri(v,θ)) = 0, then (56) always holds, so

that v̄i = ∞. If Ev,θ(ri(v,θ)) > 0, then (56) holds if and only if v0 ≤ v̄i, where

v̄i = Evi(vi) +Covvi(vi, ri(v,θ))/Ev,θ(ri(v,θ)) ≥ Evi(vi).

In either way, there is v̄i ≥ Evi(vi) such that OBi0 holds if and only if v0 ≤ v̄i.

2. Let i ∈ N . OB0i is

∫
V×Θ

(v0 − vi)r0(v,θ)F (dv)G(dθ) ≥ 0. (57)

Define R0(vi) = ∫V−i×Θ r0(vi,v−i,θ)F−i(dv−i)G(dθ) which is decreasing in vi, where

Evi(R0(vi)) = Ev,θ(r0(v,θ)). Then, (57) is equivalent to

−Covvi(vi − v0,R0(vi)) − (Evi(vi) − v0)Evi(R0(vi)) ≥ 0. (58)

The first term Covvi(vi − v0,R0(vi)) = Covv,θ(vi, r0(v,θ)) is non-positive since vi − v0

is increasing in vi but R0(vi) is decreasing in vi. If Ev,θ(r0(v,θ)) = 0, then (58) always

holds, so that
¯
vi = 0. If Ev,θ(r0(v,θ)) > 0, then (58) holds if and only if v0 ≥

¯
vi where

¯
vi = Evi(vi) +Covv,θ(vi, ri(v,θ))/Ev,θ(ri(v,θ)) ≤ Evi(vi).

In either way, there is
¯
vi ≤ Evi(vi) such that OBi0 holds if and only if v0 ≥ v̄i.

A.4 Proof for Theorem 1.a

I first show that a symmetric recommender system attains the optimal revenue. Recall that

recommendations rule r is symmetric if for any i ∈ N , any bijective function ι ∶ N → N and

any (v,θ) ∈ V ×Θ

ri(v,θ) = rι(i)(v
ι,θι)
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where (vι,θι) is such that vι
ι(i) = vi and θι

ι(i) = θi for all i ∈ N .

Lemma 11. For each obedient recommendations rule r, there is a symmetric recommenda-

tions rule r0 that is obedient and attains the same revenue as r.

Proof. Let us first construct a symmetric recommendations rule r0 from any given obedient

recommendations rule r. Let r be a recommendations rule. Let

IN = {ι† ∣ ι ∶ N → N is a bijective function}

be a set of all permutation functions on N . For each ι† ∈ IN , let rι
†

be a recommendations

rule obtained by permutating r according to ι†, i.e. for each i ∈ N ,

r
ι†

i (v,θ) = rι†(i)(v
ι† ,θι

†
).

Then, r† satisfies obedience constraints as well. Define another recommendatiosn rule r0

such that for each i ∈ N and (v,θ) ∈ V ×Θ

r0
i (v,θ) =

1

N !
∑
ι†∈IN

rι
†
(v,θ) =

1

N !
∑
ι†∈IN

rι†(i)(v
ι† ,θι

†
). (59)

To prove that r0 is symmetric, it is sufficient to show that for any bijection ι ∈ IN and

(v,θ) ∈ V ×Θ

r0
i (v,θ) = r

0
ι(i)(v

ι,θι). (60)

To show this, note that

r0
ι(i)(v

ι,θι) =
1

N !
∑
ι†∈IN

rι†○ι(i)(v
ι†○ι,θι

†○ι) (61)

where ι† ○ ι is a composition of two permuntation functions. Note that there is a bijective

mapping between IN and {ι† ○ ι ∣ ι† ∈ IN}. To show this, since both IN and {ι† ○ ι ∣ ι† ∈ IN}

are finite sets, it is sufficient to show that IN = {ι† ○ ι ∣ ι† ∈ IN}. To show the equality,

first note that ι† ○ ι is a composition of two bijective mappings and hence is a bijection,

i.e. {ι† ○ ι ∣ ι† ∈ IN} ⊂ IN . To show the other inclusion, let ι̃ ∈ IN . Since both ι̃ and

ι are bijection over the same finite space, I can define ι† = ι̃ ⋅ ι−1 which is a composition

of two bijections and hence a well-defined bijection over N . By construction, for each

j ∈ N , ι† ○ ι(j) = ι†(ι(j)) = ι̃(j), and hence ι̃ = ι† ○ ι for some ι† ∈ IN . In other words,

ι̃ ∈ {ι† ○ ι ∣ ι† ∈ IN} and hence {ι† ○ ι ∣ ι† ∈ IN} ⊃ IN , which gives the desired equality. That

there is a bijective mapping between {ι† ○ ι ∣ ι† ∈ IN} and IN implies that the right-hand
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side of (61) is

1

N !
∑
ι†∈IN

rι†○ι(i)(v
ι†○ι,θι

†○ι) =
1

N !
∑
ι†∈IN

rι†(i)(v
ι† ,θι

†
) = r0

i (v,θ),

and therefore, (60) holds.

It remains to show that r0 is obedient and attains the equal revenue. These results follow

from the linearity of the revenue and obedience constraints. For each i, j ∈ N , the obedience

constraint from i to j for r0 is

∫
V×Θ

(vi − vj)r
0
i (v,θ)F (dv)G(dθ) = ∫

V×Θ
(vi − vj)

1

N !
∑
ι†∈IN

rι†(i)(v
ι† ,θι

†
)F (dv)G(dθ)

=
1

N !
∑
ι†∈IN

∫
V×Θ

(v
ι†

ι†(i) − v
ι†

ι†(j))rι†(i)(v
ι† ,θι

†
)F (dvι

†
)G(dθι

†
)

≥ 0 (62)

where the third equality follows from the definition that v
ι†

ι†(i) = vi and θ
ι†

ι†(i) = θi, and the

last inequality follows from the fact that rι
†

is obtained by permutating r which is obedient,

and hence, so is rι
†
.

For i ∈ N , the obedience constraint from i to 0 is

∫
V×Θ

(vi − v0)r
0
i (v,θ)F (dv)G(dθ) = ∫

V×Θ
(vi − v0)

1

N !
∑
ι†∈IN

rι†(i)(v
ι† ,θι

†
)F (dv)G(dθ)

=
1

N !
∑
ι†∈IN

∫
V×Θ

(v
ι†

ι†(i) − v0)rι†(i)(v
ι† ,θι

†
)F (dvι

†
)G(dθι

†
)

≥ 0 (63)

where the last inequality follows from OBi0 for each rι
†
, so that OBi0 is satisfied for r0. The
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obedience constraint from 0 to i is

∫
V×Θ

(v0 − vi)r
0
0(v,θ)F (dv)G(dθ) = ∫

V×Θ
(v0 − vi)(1 − ∑

j∈N
r0
j (v,θ))F (dv)G(dθ)

= ∫
V×Θ

(v0 − vi)
⎛

⎝
1 − ∑

j∈N

1

N !
∑
ι†∈IN

rι†(j)(v
ι† ,θι

†
)
⎞

⎠
F (dv)G(dθ)

=
1

N !
∑
ι†∈IN

∫
V×Θ

(v0 − v
ι†

ι†(i))(1 − ∑
j∈N

rι†(j)(v
ι† ,θι

†
))F (dv)G(dθ)

=
1

N !
∑
ι†∈IN

∫
V×Θ

(v0 − v
ι†

ι†(i))r0(v
ι† ,θι

†
)F (dvι

†
)G(dθι

†
)

≥ 0 (64)

where the last inequality follows from OB0i for each rι
†
, so that OB0i is satisfied for r0. By

(62), (63) and (64), r0 is obedient.

It remains to verify that r and r0 attain the same revenue. Note that every rι
†

has the

same revenue as r because rι is obtained by permutating r according to ι†. Consequently,

their average must be the same as the revenue obtained by r as shown below.

∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) r

0
i (v,θ)F (dv)G(dθ)

= ∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi))

1

N !
∑
ι†∈IN

rι†(i)(v
ι† ,θι

†
)F (dv)G(dθ)

=
1

N !
∑
ι†∈IN

∫
V×Θ
∑
i∈N

⎛
⎜
⎝
θ
ι†

ι†(i) −
1 −G(θ

ι†

ι†(i))

g(θ
ι†

ι†(i))
+w(v

ι†

ι†(i))
⎞
⎟
⎠
rι†(i)(v

ι† ,θι
†
)F (dvι

†
)G(dθι

†
)

=
1

N !
∑
ι†∈IN

∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) r

0
i (v,θ)F (dv)G(dθ)

= ∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) r

0
i (v,θ)F (dv)G(dθ).

By Lemma 11, there always exists a symmetric recommendations rule that maximizes the

revenue. From here on, I focus on symmetric recommendations rules. The following lemma

states that the following symmetric recommendations rule is value-switching monotone and

recommends one of the options with certainty almost surely.

Lemma 12. For each i ∈ N , let ξi ∶ V × Θ → R1 be any function that is strictly increasing

in (vi, θi), and ξ0 ∶ V ×Θ → R be any function that is symmetric and increases in v, which
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could possibly be 0. Define

ψi(v,θ) = ξi(vi, θi) + ξ0(v).

Ignoring ties, let

ri(v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if i = arg maxj∈N (ψj(v,θ),0)

0 otherwise
,

for i ∈ N , and r0(v,θ) = 1−∑i∈N ri(v,θ). Then, r is value-switching monotone almost surely

and rj(v,θ) = 1 for some j ∈ N ∪ {0} almost surely.

Proof. Since ξi strictly increases and ξ0 increases in (vi, θi), almost surely, for each (v,θ) ∈

V × Θ, there is i ∈ N ψi(v,θ) > maxj∈N∖{i}(ψj(v,θ),0) or 0 > maxj∈N ψj(v,θ), so that

rj(v,θ) = 1 for some j ∈ {0} ∪N almost surely.

Let W = {(v,θ) ∈ V × Θ ∣ ri(v,θ) = 1 for some i ∈ N ∪ {0}}. Since (v,θ) ∈ W almost

surely, to show almost sure value-switching monotonicity, it is sufficient to show establish

that for any i ∈ N , (v′i,v−i, θ
′
i,θ−i), (vi,v−i, θi,θ−i) ∈W such that (vi, θi) ≥ (v′i, θ

′
i),

1. r0(v
′
i,v−i, θ

′
i,θ−i) = 0 implies r0(vi,v−i, θi,θ−i) = 0,

2. ri(v
′
i,v−i, θ

′
i,θ−i) = 1 implies ri(vi,v−i, θi,θ−i) = 1,

and for any (vi = v, vj = v′,v−ij,θ), (vi = v′, vj = v,v−ij,θ) ∈W where v > v′,

3. ri(vi = v, vj = v
′,v−ij,θ) = 0 implies ri(vi = v

′, vj = v,v−ij,θ) = 0 for any v > v′.

To show the first item, let (v′i,v−i, θ
′
i,θ−i), (vi,v−i, θi,θ−i) ∈ W be such that (v′i, θ

′
i) ≤

(vi, θi) and r0(v
′
i,v−i, θ

′
i,θ−i) = 0. By definition, maxj∈N ψj(v

′
i,v−i, θ

′
i,θ−i) > 0. Increasing

from (v
′

i, θ
′

i) to (vi, θi) increases ψj(v,θ) for all j ∈ N , so that maxj∈N ψj(vi,v−i, θi,θ−i) ≥

maxj∈N ψj(v
′
i,v−i, θ

′
i,θ−i) > 0, and hence, r0(vi,v−i, θi,θ−i) = 0.

To show the second item, let (v′i,v−i, θ
′
i,θ−i), (vi,v−i, θi,θ−i) ∈W be such that (v′i, θ

′
i) ≤

(vi, θi) and ri(v
′
i,v−i, θ

′
i,θ) = 1. By definition, ψi(v

′
i,v−i, θ

′
i,θ) > maxj∈N∖{i}(ψj(v

′
i,v−i, θ

′
i,θ−i),0).

Increasing from (v′i, θ
′
i) to (vi, θi) strictly increases ξi and increases ξ0, but not ξj. There-

fore, ψi = ξi + ξ0 increases more than ψj = ξj + ξ0 for all j ∈ N ∖ {i}. Consequently,

ψi(vi,v−i, θi,θ) > maxj∈N∖{i}(ψj(vi,v−i, θi,θ−i),0), and hence, ri(vi,v−i, θi,θ−i) = 1.

To show the last item, let (vi = v, vj = v′,v−ij,θ), (vi = v′, vj = v,v−ij,θ) ∈W where v > v′

and ri(vi = v, vj = v
′,v−ij,θ) = 0. By definition, ψi(vi = v, vj = v

′,v−ij,θ) < maxk∈N∖{i}(ψk(vi =

v, vj = v′,v−ij,θ),0). Changing from (vi = v, vj = v′,v−ij,θ) to (vi = v′, vj = v,v−ij,θ) only

strictly decreases ξi(vi, θi) and strictly increases ξj(vj, θj) while leaving others (note that

ξ0(v) remains the same by the symmetry of ξ0). Therefore, only ψi strictly decreases and
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ψj strictly increases, while ψk remains the same for all k ∈ N ∖ {i, j}. Consequently, ψi(vi =

v′, vj = v,v−ij,θ) < ψi(vi = v, vj = v′,v−ij,θ) < maxk∈N∖{i}(ψk(vi = v, vj = v′,v−ij,θ),0) ≤

maxk∈N∖{i}(ψk(vi = v
′, vj = v,v−ij,θ),0), and hence, ri(vi = v

′, vj = v,v−ij,θ) = 0.

By Lemma 11, there is a symmetric optimal recommender system. The rest of the proof

focuses on constructing a symmetric optimal recommender system.

Let v0 ∈ [
¯
v∗, v̄∗]. The unconstrained optimal recommendations rule obtained ignoring the

obedience constraints ρ∗ as in (11) is obedient and hence optimal. In other words, r∗ = ρ∗

and `∗i (v,θ) = 0 for all i ∈ N and (v,θ) ∈ V ×Θ.

Let v0 > v̄∗. Then, ρ∗ violates OBi0. Also, since v0 > v̄∗ ≥
¯
v∗, any value-switching

monotone recommendations rule such that rj(v,θ) = 1 for some j ∈ N ∪ {0} almost surely

satisfies OB0i. At an optimal symmetric value-switching monotone recommendations rule

such that rj(v,θ) = 1 for some j ∈ N ∪ {0} almost surely, OBi0 are binding; otherwise, none

of the constraints bind which would imply that ρ∗ is the optimal recommendations rule

which is known to violate OBi0. Taking the Lagrangian, the optimal recommendations rule

is characterized by

r∗i (v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣M∣ if i ∈ arg maxj∈N {θj −

1−G(θj)
g(θj) +w(vj) − λ(v0 − vj),0}

0 otherwise
(65)

where M = arg maxj∈N {θj −
1−G(θj)
g(θj) +w(vj) − `∗j (v)}, λ is a Lagrangian multiplier of OBi0

that makes OBi0 binding.

Let v0 <
¯
v∗. Then, ρ∗ violates OB0i. Also, since v0 <

¯
v∗ ≤

¯
v∗, any value-switching

monotone recommendations rule such that rj(v,θ) = 1 for some j ∈ N ∪ {0} almost surely

satisfies OB0i. At an optimal symmetric value-switching monotone recommendations rule

such that rj(v,θ) = 1 for some j ∈ N ∪ {0} almost surely, OB0i are binding; otherwise, none

of the constraints bind which would imply that ρ∗ is the optimal recommendations rule

which is known to violate OB0i. Taking the Lagrangian, the optimal recommendations rule

is characterized by

r∗i (v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣M∣ if i ∈ arg maxj∈N {θj −

1−G(θj)
g(θj) +w(vj) − λ∑k∈N (v0 − vk),0}

0 otherwise
(66)

where M = arg maxj∈N {θj −
1−G(θj)
g(θj) +w(vj) − `∗j (v)}, λ is a Lagrangian multiplier of OBi0

that makes OBi0 binding.
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B Proofs for Section 5

B.1 Preliminary Works to Section 5

B.1.1 Obedient, Incentive Compatible and Individual Rational Recommender

System

This section characterizes incentive compatible, individually rational and obedient recom-

mender system, and recast the intermediary’s problem to a Bayesian persuasion problem.

For a seller i ∈ N with (θi, zi) reporting truthfully as θi, let

Π(θi, zi) = ∫
V×Θ−i×Z−i

[(θi +w(vi))ri(v,θ,z) − ti(v,θ,z)]F (dv)H−i(dz−i ∣ θ−i)G−i(θ−i)

be the expected profit, and

Q(θi, zi) = ∫
V×Θ−i×Z−i

ri(v,θ,z)F (dv)H−i(dz−i ∣ θ−i)G−i(θ−i)

be the expected probability of recommending i’s product.

Lemma 13. A recommender system (r, t) ∶ V×Θ×Z → [0,1]N+1×RN is incentive compatible,

individually rational and obedient if and only if for each i ∈ N , for all θi ∈ [
¯
θ, θ̄] and zi ∈ Z,

Qi(θi, zi) is increasing in θi, (67)

Πi(θi, zi) = Πi(¯
θ, zi) + ∫

θi

¯
θ

Qi(θ̃i, zi)dθ̃i, (68)

Πi(¯
θ) ≥ 0 (69)

and for all i, j ∈ N ∪ {0},

∫
V×Θ−i×Z

ri(v, θi,θ−i,z)F (dv)G−i(dθ−i ∣ z)H(dz)

≥ ∫
V×Θ−i×Z

ri(v, θ
′
i,θ−i,z)F (dv)G−i(dθ−i ∣ z)H(dz).

(70)

Proof. Necessity: Let θi > θ̂i and zi ∈ Z. Let

πi(θ̂i; θi, zi) = ∫
V×Θ−i×Z−i

[(θi +w(vi))ri(v, θ̂i,θ−i,z) − ti(v, θ̂i,θ−i,z)]F (dv)H−i(dz−i ∣ θ−i)G−i(θ−i)
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be the expected profit of the seller with (θi, zi) when he reports as θ̂i. Note that

πi(θ̂i; θi, zi) = Πi(θ̂i, zi) + (θi − θ̂i)Qi(θ̂i, zi)

Similarly,

πi(θi; θ̂i, zi) = Πi(θi, zi) + (θ̂i − θi)Qi(θi, zi).

Incentive compatibility Πi(θi, zi) ≥ πi(θ̂i; θi, zi) and Πi(θ̂i, zi) ≥ πi(θi; θ̂i, zi), which in turn

implies

(θi − θ̂i)Qi(θ̂i) ≤ Πi(θi) −Πi(θ̂i) ≤ (θi − θ̂i)Qi(θi, zi).

By the above inequality, Qi is weakly increasing and hence is integrable, which then implies

(68).

Individual rationality is equivalent to Πi(θi) ≥ 0 for all i ≠ 0 and θi ∈ [
¯
θ, θ̄], from which

Πi(¯
θ) ≥ 0 for all i follows.

Sufficiency: Let θi ≠ θ̂i. From (68) and the monotonicity of Qi,

Πi(θi, zi) = Πi(θ̂, zi) + ∫
θi

θ̂i
Qi(θ̃i, zi)dθ̃i

≥ Πi(θ̂, zi) + ∫
θi

θ̂i
Qi(θ̂i, zi)dθ̃i

= Πi(θ̂, zi) + (θi − θ̂i)Qi(θ̂i, zi)

= πi(θ̂i; θi, zi) (71)

Since θi ≠ θ̂i are arbitrary, (71) implies incentive compatibility.

Since Qi(θi) ≥ 0 for all θi ∈ [
¯
θ, θ̄], (68) implies that Πi(θi) increases in θi, and hence,

individual rationality is satisfied if Πi(¯
θ) ≥ 0.

Lemma 14. Suppose that a recommendations rule r ∶ V ×Θ ×Z → [0,1]N maximizes

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi ∣ zi)

g(θi ∣ zi)
+w(vi)) ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz) (72)

subject to OB and monotonicity. Suppose also that

ti(v,θ,z) = (θi +w(vi))ri(v,θ,z) − ∫
θi

¯
θ

ri(v, θ̃i,θ−i,z)dθ̃i. (73)

Then, (r, t) is an optimal recommender system.
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Proof. By Lemma 13, for any θi ∈ [
¯
θ, θ̄] and zi ∈ Z,

Πi(θi, zi) = Πi(¯
θ, zi) + ∫

θi

¯
θ

Qi(θ̃i, zi)dθ̃i.

The expected transfer of the seller i with (θi, zi) is

Ti(θi, zi) = ∫
V×Θ−i×Z−i

(θi +w(vi))ri(v,θ,z)F (dv)G−i(dθ−i ∣ z−i)H(dz−i) − ∫
θi

¯
θ

Qi(θ̃i, zi)dθ̃i −Πi(¯
θ, zi).

(74)

By the usual argument of the change of variables, for each zi ∈ Z, we have

∫
Θ×Z

Ti(θi, zi)G(dθi ∣ zi)H(dzi)

= ∫
V×Θ×Z

(θi +w(vi) −
1 −G(θi)

g(θi)
) ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz) − ∫

Z
Πi(¯

θ, zi)H(dzi),

so that the intermediary’s expected revenue is

∑
i∈N
∫

Θ×Z
Ti(θi, zi)G(dθi ∣ zi)H(dzi)

= ∫
V×Θ×Z

∑
i∈N

(θi +w(vi) −
1 −G(θi)

g(θi)
) ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz) − ∫

Z
∑
i∈N

Πi(¯
θ, zi)H(dz).

(75)

The intermediary’s problem is to maximize (75) using a recommender system (r, t) sub-

ject to monotonicity constraints (67), payoff equivalence constraints (68), non-negativity

constraints (69) and obedience constraints (70). Note that for any given recommendations

rule r satisfying (67) and (70), any transfer t such that πi(¯
θ, zi) = 0 for all i ∈ N and

zi ∈ Z and whose interim transfer satisfies (74) maximizes (75) while satisfying (68) and

(69). Transfer (73) is one of such.

It remains to find an optimal recommendations rule r. Since Πi(¯
θ, zi) = 0 for all i ∈ N

and zi ∈ Z independent of r, it immediately follows that a recommendations rule r that

maximizes (72) subject to (67) and (70), together with the corresponding transfer (73),

maximizes the intermediary’s expected revenue subject to (67), (68), (69) and (70).
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B.1.2 Four Equivalent Representations of Intermediary’s Problems without Ad-

ditional Information

This section presents four equivalent ways to express the intermediary’s problem without

additional information, each interpreted as: 1. the intermediary’s problem without additional

information; 2. the intermediary’s problem with additional information but with invariance

constraints; 3. additional information as a change in preference; 4. additional information

as relaxation of invariance constraints.

Lemma 15. The followings are solution equivalent (after adjusting for invariance constraints

related notations):

1. A recommendations rule without additional infromation r ∶ V ×Θ→ [0,1]N+1×RN that

maximizes

∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) ri(v,θ)F (dv)G(dθ) (76)

subject to monotonicity constraints without additional information, for all i ∈ N and

θi > θ′i

∫
V×Θ−i

ri(v, θi,θ−i)F (dv)G−i(dθ−i)

≥ ∫
V×Θ−i

ri(v, θ
′
i,θ−i)F (dv)G−i(dθ−i)

(77)

and obedience constraints without additional information, for all i, j ∈ N ∪ {0},

∫
V×Θ

viri(v,θ)F (dv)G(dθ)

≥ ∫
V×Θ

vjri(v,θ)F (dv)G(dθ).
(78)

2. A recommendations rule r ∶ V ×Θ ×Z → [0,1]N+1 ×RN that maximizes

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz) (79)

subject to monotonicity constraints (67), obedience constraints (70) and invariance

constraints

ri(v,θ,z) = ri(v,θ,z
′) for all z,z′ ∈ Z. (80)

3. A recommendations rule r ∶ V ×Θ×Z → [0,1]N+1 ×RN that maximizes (79) subject to

monotonicity constraints (67) and obedience constraints (70).
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4. A recommendations rule r ∶ V ×Θ ×Z → [0,1]N+1 × RN that maximizes (72) subject

to monotonicity constraint (67), obedience constraints (70) and invariance constraints

(80).

The first is the intermediary’s problem without additional information after substituting

the expected transfer with virtual willingness to pay using the standard arguments. The

second is a reformulation of the first under the setup with additional information. The

third is stating that invariance constraints (80) are redundant in the second, because the

integrands both in the objective function and the constraints do not depend on z.

Note that the set of constraints are identical under the third and the intermediary’s

problem with additional information. The only difference between the two problems is the

objective functions. In other words, additional information changes the intermediary’s objec-

tive function from (79) to (72) subject to the same constraints, i.e. ‘additional information

as a change in the intermediary’s preference,’ the idea used for the consumer surplus analysis.

This means that the baseline problem without additional information can be understood

as maximizing the same objective function but with added invariance constraints in relative

to . That is, additional information is a deletion of invariance constraints withe the same

objective function, i.e. ‘additional information as a deletion of invariance constraints,’ the

idea used for the intermediary’s revenue analysis.

Proof. 1 ⇐⇒ 2: Once restricting attention to the recommendations rule satisfying the

invariance constraints, the first problem and the second problem are identical, and hence,

their solutions must be solution-equivalent.

2 ⇐⇒ 3: The solution to the third problem is

rP3
i (v,θ,z) = 1 if i = arg max

j∈N
(θi −

1 −G(θi)

g(θi)
+w(vi) + `i(v),0)

where `i(v) is a cost of persuasion. Note that rP3 does not vary depending on z, and hence,

satisfies the invariance constraints. This is because neither the objective function (79) nor

the obedience constraints (70) have integrands that depend on z whereas the monotonicity

constraints (67) are automatically satisfied. Therefore, the solution to the third problem rP3

solves the second problem rP2.

2 ⇐⇒ 4: Note that

∫
Z

1 −G(θi ∣ zi)

g(θi ∣ zi)
G(dθi ∣ zi)H(dzi) = 1 − ∫

Z
G(θi ∣ zi)H(dzi) = 1 −G(θi) =

1 −G(θi)

g(θi)
G(dθi).

(81)
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By (81), restricting attention to the recommendations rule satisfying the invariance con-

straints (80), the objective function in the fourth problem (72) becomes

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi ∣ zi)

g(θi ∣ zi)
+w(vi)) ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz)

= ∫
V×Θ
∑
i∈N

(θi −
1 −G(θi)

g(θi)
+w(vi)) ri(v,θ,z)F (dv)G(dθ)

so that the fourth problem P4 becomes the same as the second problem P2.

B.2 Proof for Example 1

LetH be perfectly revealing additional information. For all z ∈ Z, Θ = {z}, so that 1−G(θ∣z)
g(θ∣z) = 0

for all θ ∈ Θ(z). Consequently, for any θ > θ′,

∆z,z′(θ, θ′) = θ − θ′ > 0,

and therefore, satisfies the generalized Myerson’s regularity. Note for any θ > θ′,

∆(θ, θ′) = (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) ≥ (≤)∆z,z′(θ, θ′) = θ − θ′

if and only if
1 −G(θ′)

g(θ′)
≥ (≤)

1 −G(θ)

g(θ)
,

that is, 1−G(θ)
g(θ) decreases (increases) in θ. Therefore, the additional information increases

θ-revenue difference if 1−G(θ)
g(θ) decreases (increases) in θ.

B.3 Proof for Example 2

Let H be lower censorship additional information. Let G be a twice continuously differ-

entiable distribution that has a decreasing 1−G(θ)
g(θ) on Θ, and g(θ) > 0 and 0 ≤ g

′
(θ) < ∞

on a neighborhood of
¯
θ. Note that these imply that ∣g

′
(θ)∣ < M and g(θ) > m for some

0 <m <M < ∞ on a neighborhood of
¯
θ.

For z ∈ [θ∗, θ̄], the signal fully reveals the state, Θ(z) = {θ}, and hence, 1−G(θ∣z)
g(θ∣z) = 0. For

z = z0, the signal informs that θ ∈ Θ(z) = [θ, θ∗), and the inverse hazard rate is

1 −G(θ ∣ z0)

g(θ ∣ z0)
=
∫
θ̄

θ g(θ̃)1θ̃∈[θ,θ∗)dθ̃

g(θ)1θ∈[θ,θ∗)
=
G(θ∗) −G(θ)

g(θ)
.
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Let us first show the lower censorship additional information satisfies the generalized

Myerson’s regularity. Let z, z′ ∈ Z, θ ∈ Θ(z) and θ′ ∈ Θ(z′) such that θ > θ′. If θ > θ′ ≥ θ∗,

then 1−G(θ∣z)
g(θ∣z) = 0 = 1−G(θ′∣z′)

g(θ′∣z′) , so that

∆z,z′(θ, θ′) = θ − θ′ > 0. (82)

If θ∗ ≥ θ′ > θ, then their additional signal is z0, so that

∆z,z′(θ, θ′) = (θ −
G(θ∗) −G(θ)

g(θ)
) − (θ′ −

G(θ∗) −G(θ′)

g(θ′)
)

= (θ − θ′)(1 −
−g2(θ′′) − (G(θ∗) −G(θ′′))g

′
(θ′′)

g2(θ′′)
)

= (θ − θ′)(2 + (G(θ∗) −G(θ′′))
g
′
(θ′′)

g2(θ′′)
) (83)

where the second equality follows from the Mean Value Theorem and θ′′ is some value between

θ and θ′. Since ∣g
′
(θ)∣ < M and g(θ) > m for some 0 < m < M < ∞ on a neighborhood of

¯
θ

by assumption, the ratio ∣
g
′(θ)
g2(θ) ∣ < M

′ on a neighborhood of
¯
θ for some M ′ < ∞. Since θ′′ ∈

(θ′, θ)[
¯
θ, θ∗], as θ∗ →

¯
θ, G(θ∗)−G(θ′′) → 0. Therefore, as θ∗ →

¯
θ, (G(θ∗)−G(θ′′)) g

′(θ′′)
g2(θ′′) → 0,

and hence, (83) is positive for any θ∗ ≥ θ > θ′ for sufficiently small θ∗.

Lastly, if θ ≥ θ∗ ≥ θ′, then

∆z,z′(θ, θ′) = θ − (θ′ −
1 −G(θ′)

g(θ′)
) = (θ − θ′) +

1 −G(θ′)

g(θ′)
> 0. (84)

By (85), (83) and (84), the lower censorship additional information satisfies the generalized

Myerson’s regularity.

Let us now prove that the lower censorship additional information decreases θ-revenue

difference. If θ > θ′ ≥ θ∗, then

∆z,z′(θ, θ′) = θ − θ′

= (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) + (

1 −G(θ)

g(θ)
−

1 −G(θ′)

g(θ′)
) (85)

≤ (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
)

= ∆(θ, θ′) (86)

where the last inequality follows from the assumption that 1−G(θ)
g(θ) decreases in θ.
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If θ∗ ≥ θ > θ′, then

∆z,z′(θ, θ′) = (θ −
G(θ∗) −G(θ)

g(θ)
) − (θ′ −

G(θ∗) −G(θ′)

g(θ′)
)

= (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) + (1 −G(θ∗))(

1

g(θ)
−

1

g(θ′)
)

≤ (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
)

≤ (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) (87)

where the last inequality follows from the assumption that g(θ) increases in θ on a neigh-

borhood of
¯
θ, so that 1

g(θ) −
1

g(θ′) ≤ 0 if θ∗ is sufficiently small.

If θ ≥ θ∗ ≥ θ′, then

∆z,z′(θ, θ′) = θ − (θ′ −
G(θ∗) −G(θ′)

g(θ′)
)

= (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) + (

1 −G(θ)

g(θ)
−

1 −G(θ∗)

g(θ′)
)

≤ (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) + (

1 −G(θ)

g(θ)
−

1 −G(θ∗)

g(θ∗)
)

≤ (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
)

≤ (θ −
1 −G(θ)

g(θ)
) − (θ′ −

1 −G(θ′)

g(θ′)
) (88)

where the first inequality follows from the assumption that g(θ) is increasing on a neigh-

borhood of
¯
θ so that −

1−G(θ)
g(θ′) ≤ −

1−G(θ∗)
g(θ∗) if θ∗ is small enough, and the second inequality

follows from the assumption that 1−G(θ)
g(θ) is decreasing in θ so that 1−G(θ)

g(θ) ≤
1−G(θ∗)
g(θ∗) . There-

fore, by (86), (87) and (88), the lower censorship additional information decreases θ-revenue

difference.

B.4 Proof for Theorem 3

The following lemma provides a sufficient condition under which the consumer surplus under

one recommendations rule r̃ is higher or lower than that under the other r†. The lemma

states that if r† almost surely recommends an option that is at least (at most) as good as

options recommended by r̃, then the consumer surplus under r† is higher (lower) than that

under r̃.
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Define the consumer surplus under r at v0 as

CS(v0;r) = ∫
V×Θ×Z

[v0r0(v,θ,z) +∑
i≠0
viri(v,θ,z)]F (dv)G(dθ ∣ z)H(dz) − u∗(v0)

where

u∗(v0) = max(v0,E(vi))

is the consumer’s optimal payoff without recommendations.

Lemma 16. If

r̃i(v,θ,z) > 0 implies r†j(v,θ,z) > 0 only if vj ≥ (≤) vi for i, j ∈ N ∪ {0},

almost surely, then CS(v0; r̃) ≤ (≥) CS(v0;r†).

Proof. Suppose

r̃i(v,θ,z) > 0 implies r†
j(v,θ,z) > 0 only if vj ≥ vi for i, j ∈ N ∪ {0},

almost surely. Let (v,θ,z) ∈ V ×Θ ×Z. Then,

∑
i∈N∪{0}

vir̃i(v,θ,z) ≤ max
i∶r̃i(v,θ,z)>0

vi ≤ min
j∶r†j(v,θ,z)>0

vj ≤ ∑
j∈N∪{0}

vjr
†
j(v,θ,z)

so that

CS(v0; r̃) = ∫
V×Θ×Z

∑
i∈N∪{0}

vir̃i(v,θ,z)F (dv)G(dθ ∣ z)H(dz) − u∗(v0)

≤ ∫
V×Θ×Z

∑
i∈N∪{0}

vir
†
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) − u∗(v0)

= CS(v0;r†).

The other inequality may be shown similarly.

Let ρ∗ and ρA be optimal unconstrained recommendations rules without and with addi-

tional information. That is, ρ∗ maximizes (79) subject to monotonicity constraints (67) and

ρA maximizes (72) subject to monotonicity constraints (67).

Lemma 17. Let v0 at which both ρ∗ and ρA are obedient. If additional information is
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revenue informative, regular and increases (decreases) rate of substitution, then

∫
V×Θ×Z

∑
i∈N

viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) ≥ (≤) ∫

V×Θ×Z
∑
i∈N

viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz).

(89)

Proof. Let v0 at which both ρ∗ and ρA are obedient. Since the environment has small inverse

hazard rates, it follows that ρ∗0 = 0 and ρA0 = 0 almost surely. When one of the products is

recommended, the rules are almost surely given by

ρ∗i (v,θ,z) = 1 if
⎛
⎜
⎝

1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj

⎞
⎟
⎠
(θi − θj) > w(vj) −w(vi) ∀j ∈ N ∖ {i}

ρAi (v,θ,z) = 1 if
⎛
⎜
⎝

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj

⎞
⎟
⎠
(θi − θj) > w(vj) −w(vi) ∀j ∈ N ∖ {i}

To use Lemma 16, it is sufficient to show:

if additional information increases (decreases) rates of substitution, ρ∗i (v,θ,z) > 0 for

i ∈ N implies ρAj (v,θ,z) > 0 only if j ∈ N and vj ≤ (≥) vi almost surely.

To show this, let (v,θ,z) ∈ V × Θ(z) × Z be at which ρ∗i (v,θ,z) > 0 for i ∈ N . Almost

surely, i is strictly preferred to k ∈ N ∖{i}. Since the additional information is regular, rates

of substitution are positive, so that

θi − θk > (w(vk) −w(vi))/
⎛
⎜
⎝

1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj

⎞
⎟
⎠
.

Suppose that additional information increases rates of substitution. Then,

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj
≥ 1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj
.

If vk > vi,

θi − θk > (w(vk) −w(vi))/
⎛
⎜
⎝

1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj

⎞
⎟
⎠
≥ (w(vk) −w(vi))/

⎛
⎜
⎝

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj

⎞
⎟
⎠

so that i is strictly preferred to k under ρA as well. Therefore, for any k ∈ N∖{i}, ρAk (v,θ,z) =

0 if vk > vi. In other words, ρAj (v,θ,z) > 0 only if vj ≤ vi. By Lemma 16, it follows that
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CS(v0;ρ∗) ≥ CS(v0;ρA). Since the consumer’s optimal payoff without recommendations is

identical under both problems without and with additional information, this is equivalent to

∫
V×Θ×Z

∑
i∈N

viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) ≥ ∫

V×Θ×Z
∑
i∈N

viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz).

To show the other case, suppose that additional information decreases rates of substitu-

tion. Then,

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj
≤ 1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj
.

If vk < vi,

θi − θk > (w(vk) −w(vi))/
⎛
⎜
⎝

1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj

⎞
⎟
⎠
≥ (w(vk) −w(vi))/

⎛
⎜
⎝

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj

⎞
⎟
⎠

so that i is strictly preferred to k under ρA as well. Therefore, for any k ∈ N∖{i}, ρAk (v,θ,z) =

0 if vk < vi. In other words, ρAj (v,θ,z) > 0 only if vj ≥ vi. By Lemma 16, it follows that

CS(v0;ρ∗) ≥ CS(v0;ρA). Since the consumer’s optimal payoff without recommendations

is identical under both fictitious problem and problem with additional information, this is

equivalent to

∫
V×Θ×Z

∑
i∈N

viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) ≥ ∫

V×Θ×Z
∑
i∈N

viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz).

Let v̄∗ = E(vi ∣ ρOi (v,θ,z) = 1). Note that v̄∗ ≥ Evi(vi). For v0 ≤ v̄∗, ρO satisfies obedience

constraints and hence ρ∗ is optimal, that is, r∗ = ρ∗ and CSO(v0) > 0. For v0 > v̄∗, ρ∗

no longer satisfies obedience constraints. The obedience constraints from products to the

outside option bind under r∗ under which CS(v0;r∗) = 0. In particular, at v0 = v̄∗, r∗ = ρ∗

and CS∗(v0) = 0, implying that

∫
V×Θ×Z

∑
i∈N

viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) = v̄∗.

The consumer surplus without additional information is

CS∗(v0) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∫V×Θ×Z ∑i∈N viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) −Evi(vi) if v0 < Evi(vi)

∫V×Θ×Z ∑i∈N viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) − v0 if v0 ∈ [Evi(vi), v̄

∗
0 ]

0 if v0 > v̄∗0
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Similar analysis can be applied for rA. Let v̄A = E(vi ∣ ρAi (v,θ,z) = 1). Note that

v̄A ≥ Evi(vi). For v̄A, ρA satisfies obedience constraints and hence ρA is optimal, that

is, rA = ρA and CSO(v0) > 0. For v0 > v̄A, ρA no longer satisfies obedience constraints.

The obedience constraints from products to the outside option bind under rA under which

CS(v0;rA) = 0. In particular, at v0 = v̄A, rA = ρA and CSA(v0) = 0, implying that

∫
V×Θ×Z

∑
i∈N

viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) = v̄A.

The consumer surplus under the problem with (revenue-informative) additional information

problem is

CSA(v0) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∫V×Θ×Z ∑i∈N viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) −Evi(vi) if v0 < vp

∫V×Θ×Z ∑i∈N viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) − v0 if v0 ∈ [vp, v̄A]

0 if v0 > v̄A

For v0 > max(v̄∗, v̄A), CS∗(v0) = CSA(v0) = 0. For v0 ≤ min(v̄∗, v̄A), since the best value

without recommendations u∗(v0) is identical without and with additional information,

CS∗(v0) ≥ (≤) CSA(v0)

if and only if

∫
V×Θ×Z

∑
i∈N

viρ
∗
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) ≥ (≤) ∫

V×Θ×Z
∑
i∈N

viρ
A
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz).

(90)

For v0 ∈ (min(v̄∗, v̄A),max(v̄∗, v̄A)], if v̄∗ ≤ v̄A, then CS∗(v0) = 0 ≤ CSA(v0); if v̄∗ ≥ v̄A, then

CS∗(v0) ≥ 0 = CSA(v0). Therefore, CS∗(v0) ≥ (≤) CSA(v0) if and only if v̄O0 ≥ (≤) v̄A0 which

is equivalent to (90). Therefore, for any v0 ∈ R1
+, CSO(v0) ≥ (≤) CSA(v0) if and only if (90).

By Lemma 17, if additional information increases (decreases) rate of substitution, then (90)

holds, and hence, CSO(v0) ≥ (≤) CSA(v0).

B.5 Proof for Theorem 4

Define a seller i’s profit under recommendations rule r at v0 by

Πi(v0;r) = ∫
V×Θ×Z

1 −G(θi)

g(θi)
ri(v,θ,z)F (dv)G(dθ ∣ z)H(dz).
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and sum of all sellers’ expected profits by

Π(v0;r) = ∑
i∈N

Πi(v0;r).

Lemma 18. Let r̃ and r† be recommendations rule that never recommends the outside option

almost surely.

1. Suppose 1−G(θ)
g(θ) increases in θ. If

r̃i(v,θ,z) > 0 implies r†j(v,θ,z) > 0 only if θj ≥ (≤) θi for i, j ∈ N ∪ {0},

almost surely, then Π(v0; r̃) ≤ (≥) Π(v0;r†).

2. Suppose 1−G(θ)
g(θ) decreases in θ. If

r̃i(v,θ,z) > 0 implies r†j(v,θ,z) > 0 only if θj ≤ (≥) θi for i, j ∈ N ∪ {0},

almost surely, then Π(v0; r̃) ≥ (≤) Π(v0;r†).

Proof. Suppose 1−G(θ)
g(θ) increases in θ. Suppose

r̃i(v,θ,z) > 0 implies r†
j(v,θ,z) > 0 only if θj ≥ θi for i, j ∈ N ∪ {0},

almost surely. Let (v,θ,z) ∈ V ×Θ ×Z. Then,

∑
i∈N∪{0}

1 −G(θi)

g(θi)
r̃i(v,θ,z) ≤ max

i∶r̃i(v,θ,z)>0

1 −G(θi)

g(θi)

≤ min
j∶r†j(v,θ,z)>0

1 −G(θj)

g(θj)

≤ ∑
j∈N∪{0}

1 −G(θj)

g(θj)
r†
j(v,θ,z)

so that

Π(v0; r̃) = ∫
V×Θ×Z

∑
i∈N∪{0}

1 −G(θi)

g(θi)
r̃i(v,θ,z)F (dv)G(dθ ∣ z)H(dz) − u∗(v0)

≤ ∫
V×Θ×Z

∑
i∈N∪{0}

1 −G(θi)

g(θi)
r†
i (v,θ,z)F (dv)G(dθ ∣ z)H(dz) − u∗(v0)

= Π(v0;r†).
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The other inequalities may be shown similarly.

Let ρ∗ and ρA be optimal unconstrained recommendations rules without and with addi-

tional information. That is, ρ∗ maximizes (79) subject to monotonicity constraints (67) and

ρA maximizes (72) subject to monotonicity constraints (67). Note that under small infor-

mation rent environment, both ρ∗ and ρA does not recommend the outside option almost

surely.

Lemma 19. Let v0 at which both ρ∗ and ρA are obedient. Suppose the additional information

is regular. Then,

Π(v0;ρ∗) ≤ (≥) Π(v0;ρA). (91)

if one of the following conditions is satisfied:

1. Additional information increases (decreases) rates of substitution and state-dependent

information rent 1−G(θ)
g(θ) increases (decreases) in θ.

2. Additional information decreases (increases) rates of substitution and state-dependent

information rent 1−G(θ)
g(θ) decreases (increases) in θ.

Proof. Let v0 at which both ρ∗ and ρA are obedient. Since the environment has small inverse

hazard rates, it follows that ρ∗0 = 0 and ρA0 = 0 almost surely. When one of the products is

recommended, the rules are almost surely given by

ρ∗i (v,θ,z) = 1 if
⎛
⎜
⎝

1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj

⎞
⎟
⎠
(θi − θj) > w(vj) −w(vi) ∀j ∈ N ∖ {i}

ρAi (v,θ,z) = 1 if
⎛
⎜
⎝

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj

⎞
⎟
⎠
(θi − θj) > w(vj) −w(vi) ∀j ∈ N ∖ {i}

Suppose 1−G(θ)
g(θ) increases in θ. To use Lemma 18, it is sufficient to show:

if additional information increases (decreases) rates of substitution, ρ∗i (v,θ,z) > 0 for

i ∈ N implies ρAj (v,θ,z) > 0 only if j ∈ N and θj ≥ (≤) θi almost surely.

To show this, let (v,θ,z) ∈ V × Θ(z) × Z be at which ρ∗i (v,θ,z) > 0 for i ∈ N . Almost

surely, i is strictly preferred to k ∈ N ∖{i}. Since the additional information is regular, rates

of substitution are positive, so that

⎛
⎜
⎝

1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj

⎞
⎟
⎠
(θi − θk) > w(vk) −w(vi)
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Suppose that additional information decreases rates of substitution. Then,

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj
≥ 1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj
.

If θk < θi,

⎛
⎜
⎝

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj

⎞
⎟
⎠
(θi − θk) ≥

⎛
⎜
⎝

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj

⎞
⎟
⎠
(θi − θk) > w(vk) −w(vi)

so that i is strictly preferred to k under ρA as well. Therefore, for any k ∈ N∖{i}, ρAk (v,θ,z) =

0 if vk > vi. In other words, ρAj (v,θ,z) > 0 only if θj ≥ θi. By Lemma 18, it follows that

Π(v0;ρ∗) ≤ Π(v0;ρA).

To show the other case given an increasing 1−G(θ)
g(θ) , suppose that additional information

decreases rates of substitution. Then,

1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θj ∣zj)
g(θj ∣zj)

θi − θj
≤ 1 −

1−G(θi)
g(θi) −

1−G(θj)
g(θj)

θi − θj
.

If θk > θi,

⎛

⎝
1 −

1−G(θi∣zi)
g(θi∣zi) −

1−G(θk ∣zk)
g(θk ∣zk)

θi − θk

⎞

⎠
(θi − θk) ≥

⎛

⎝
1 −

1−G(θi)
g(θi) −

1−G(θk)
g(θk)

θi − θk

⎞

⎠
(θi − θk) > w(vk) −w(vi)

so that i is strictly preferred to k under ρA as well. Therefore, for any k ∈ N∖{i}, ρAk (v,θ,z) =

0 if θk > θi. In other words, ρAj (v,θ,z) > 0 only if θk ≤ θi. By Lemma 16, it follows that

Π(v0;ρ∗) ≥ Π(v0;ρA)

The other inequalities related to decreasing 1−G(θ)
g(θ) may be shown similarly.

Let v0 ≤ Evi(vi). Under a small information rent environment, both ρ∗ and ρA are

obedient, so that Lemma 19 applies straightforwardly to induce the desired results.
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B.6 Proof for Theorem 5

Note that for each z ∈ Z and θ ∈ Θ(z),

∫
Z
(θ −

1 −G(θ ∣ z)

g(θ ∣ z)
)G(dθ ∣ z)H(dz) = θg(θ) − ∫

Z
(1 −G(θ ∣ z))H(dz)

= θg(θ) − (1 − ∫
Z

Pr(θ̃ ≤ θ, z)dz)

= θg(θ) − (1 −G(θ))

= (θ −
1 −G(θ)

g(θ)
)G(dθ)

and

∫
Z
vG(dθ ∣ z)H(dz) = vG(dθ)

This means that the intermediary’s problem without additional information, which is to

maximize

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi)

g(θ)
+w(vi)) r

†
i (v,θ)F (v)G(dθ)

subject to obedience constraints

∫
V×Θ×Z

vir
†
i (v,θ)F (v)G(dθ) ≥ ∫

V×Θ×Z
vjr

†
i (v,θ)F (v)G(dθ) for all i, j ∈ N ∪ {0}

is identical to maximizing the intermediary’s problem with additional information

∫
V×Θ×Z

∑
i∈N

(θi −
1 −G(θi ∣ zi)

g(θi ∣ zi)
+w(vi)) ri(v,θ,z)F (v)G(dθ ∣ z)H(dz)

subject to obedience constraints

∫
V×Θ×Z

viri(v,θ,z)F (v)G(dθ ∣ z)H(dz) ≥ ∫
V×Θ×Z

vjri(v,θ,z)F (v)G(dθ ∣ z)H(dz) for all i, j ∈ N ∪ {0}

and invariance constraints

r(v,θ,z) = r†(v,θ) for some r† for all z ∈ Z.

The intermediary’s problem with additional information is the same but without the

invariance constraints. Since both have the same objective function but there is another set

of constraints in the problem without the additional information, by revealed preference, the
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intermediary’s revenue is higher.

B.7 Proof for Theorem 6

Suppose v0 <
¯
v. Since the consumer always prefers products over the outside option always,

any obedient recommendations rule must always recommend one of the products. An optimal

recommendations rule with this constraint but without additional information is given by

for each i ∈ N

ρ∗i (v,θ,z) =
1

∣M∗∣
if i ∈ M∗ (92)

where M∗ = arg maxj∈N{θj −
1−G(θj)
g(θj) +w(vj)}, and that with additional information is given

by

ρAi (v,θ,z) =
1

∣MA∣
if i ∈ MA (93)

whereMA = arg maxj∈N{θj −
1−G(θj ∣zj)
g(θj ∣zj) +w(vj)}. Both recommendations rules are completely

determined by rates of substitutions, so that whether additional information increases the

consumer surplus or not is completely determined by whether additional information de-

creases or increases the rates of substitution. Applying similar arguments as in Theorem 3

gives the desired result.

Suppose v0 > v̄. Since the consumer always prefers the outside option over products, any

obedient recommendations rule must always recommend the outside option, without and

with additional information, under which the consumer surplus is always 0. Therefore, the

additional information does not change the consumer surplus.

C Proofs for Section 6

C.1 Proof for Lemma 7

Let (v,θ) ∈ V ×Θ. Suppose each seller j ∈ N ∖ {i} bids bj and the seller i is charged with a

price premium pi and a cost of persuastion `i(v). If the seller i bids bi and wins, then her

ex-post payoff is

θi +w(vi) − ( max
j∈N∖{i}

(bj,0) + pi + `i(v)).

Now I show that bi = θi +w(vi) − pi − `i(v) is a weakly dominant strategy.
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If θi+w(vi)−pi−`i(v) > maxj∈N∖{i}(bj,0), then the seller i’s ex-post payoff after winning is

positive, so that she prefers winning over losing and drawing. Bidding bi = θi+w(vi)−pi−`i(v)

results in winning.

If θi + w(vi) − pi(θi,v) − `i(v) < maxj∈N∖{i}(bj,0), then the seller i’s ex-post payoff after

winning is negative, so that she prefers losing over winning and drawing. Bidding bi =

θi +w(vi) − pi − `i(v) results in losing.

If θi+w(vi)−pi−`i(v) = maxj∈N∖{i}(bj,0), then the seller i’s ex-post payoff after winning is

zero, so that she is indifferent among winning, losing and drawing. Bidding bi = θi+w(vi)−pi

results in any of those.

Therefore, it is weakly dominant to bid bi = θi +w(vi) − pi − `i(v).

C.2 Proof for Lemma 8

For reference, let

ΠH
i (θi) = ΠH

i (
¯
θ) + ∫

θi

¯
θ

QH
i (θ̃i, θ̃i)dθ̃i for all i ≠ 0 and θi ∈ Θ (94)

and

Qi(θi, θ
′
i) ≤ Qi(θi, θi) ≤ Qi(θi, θ

′′
i ) for all θ′i, θ

′′
i ∈ [

¯
θ, θ̄] such that θ′i < θi < θ

′′
i . (95)

Necessity (→):

Note that an incentive compatibility is equivalent to

for all i and θ̂i < θi, π
H
i (θi, θi) ≥ π

H
i (θi, θ̂i) and πHi (θ̂i, θ̂i) ≥ π

H
i (θ̂i, θi).

Without loss of generality, we assume θ̂i < θi. Define for x, y ∈ [
¯
θ, θ̄],

∆(x, y) = Eθ−i,v [(x +w(vi) − pi(y) − `i(v) − b
∗∗
−i (v,θ−i))1{b∗∗−i (v,θ−i)−w(vi)−pi(y)+`i(v)∈(min(x,y),max(x,y))}]]

We can rewrite πHi (θi, θ̂i) as

πHi (θi, θ̂i) = Eθ−i,v [(θ̂i +w(vi) − pi(θ̂i) − `i(v) − b
∗∗
−i (v,θ−i))1{θ̂i+w(vi)−pi(θ̂i)−`i(v)≥b∗∗−i (v,θ−i)}

] − c(θ̂i)

+Eθ−i,v [(θi − θ̂i)1{θ̂i+w(vi)−pi(θ̂i)−`i(v)≥b∗∗−i }
]

+Eθ−i,v [(θi +w(vi) − pi(θ̂i) − `i(v) − b
∗∗
−i (v,θ−i))1{θi+w(vi)−pi(θ̂i)−`i(v)≥b∗∗−i (v,θ−i)≥θ̂i+w(vi)−pi(θ̂i)−`i(v)}

]

= ΠH
i (θ̂i) +Q

H
i (θ̂i, θ̂i)(θi − θ̂i) +∆i(θi, θ̂i).
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Similarly,

πHi (θ̂i, θi) = ΠH
i (θ̂i) −Q

H
i (θ̂i, θ̂i)(θi − θ̂i) −∆i(θi, θ̂i).

Incentive compatibility is equivalent to, for all i and θ̂i < θi,

QH
i (θ̂i, θ̂i) +

∆i(θi, θ̂i)

θi − θ̂i
≤

ΠH
i (θi) −ΠH

i (θ̂i)

θi − θ̂i
≤ QH

i (θi, θi) +
∆i(θ̂i, θi)

θi − θ̂i

Note that ∆i(x, y) ≥ 0 if and only if x ≥ y, so that ∆i(θ̂i, θi) ≤ 0 ≤ ∆i(θi, θ̂i). Therefore,

incentive compatibility implies QH
i (θ̂i, θ̂i) ≤

ΠHi (θi)−ΠHi (θ̂i)
θi−θ̂i

≤ QH
i (θi, θi). Since QH

i (θi, θi)

increases in θi, it is integrable, which implies (94).

It remains to prove that (95) holds. Suppose θ̂i < θi. If p(θ̂i) ≥ p(θi), then QH
i (θ̂i, θ̂i) ≤

QH
i (θi, θ̂i) ≤ QH

i (θi, θi). Suppose p(θ̂i) < p(θi). Let

εi(x, y) = Ev,θ−i[1{b∗∗−i (v,θ−i)∈(min(x−pi(x)−`i(v),p(y)+`i(v)),max(x−p(x)−`i(v),p(y)+`i(v)))}

⋅ (x +w(vi) − pi(y) − `i(v) − b
∗∗
−i −i(v,θ−i))].

Rewrite

πHi (θi, θ̂i) =Ev,θ−i(1{θi+w(vi)−pi(θi)−`i(v) ≥ b
∗∗
−i −i(v,θ−i)})(θi +w(vi) − pi(θi) − `i(v) − b

∗∗
−i −i(v,θ−i))] − c(θi)

−Ev,θ−i(1{θi+w(vi)−pi(θi)−`i(v) ≥ b
∗∗
−i −i(v,θ−i)})(p(θi) − p(θ̂i))] + c(θi) − c(θ̂i)

+Ev,θ−i[1{θi+w(vi)−pi(θi)−`i(v)≥b∗∗−i −i(v,θ−i)>θi+w(vi)−pi(θi)−`i(v)}

⋅ (θi +w(vi) − pi(θ̂i) − `i(v) − b
∗∗
−i −i(v,θ−i))]

=ΠH
i (θi) +Q

H
i (θi, θi)(pi(θi) − pi(θ̂i)) + c(θi) − c(θ̂i) + εi(θi, θ̂i).

Similarly,

πHi (θi, θ̂i) =ΠH
i (θ̂i) +Q

H
i (θ̂i, θ̂i)(pi(θi) − pi(θ̂i)) + c(θ̂i) − c(θi) − εi(θ̂i, θi).

By incentive compatibility, πHi (θi, θ̂i) − πHi (θi, θi) ≤ 0 ≤ πHi (θ̂i, θ̂i) − πHi (θ̂i, θi), which is

equivalent to

πHi (θi, θi)(pi(θi) − pi(θ̂i)) + εi(θi, θ̂i) ≤ c(θ̂i) − c(θi) ≤ π
H
i (θ̂i, θ̂i)(pi(θi) − pi(θ̂i)) + εi(θ̂i, θi).

(96)

Since θ̂i < θi and p(θ̂i) < p(θi), it follows that εi(θ̂i, θi) ≤ 0 ≤ εi(θi, θ̂i). Then, εi(θi, θ̂i) =
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εi(θ̂i, θi) = 0; otherwise, (96) implies QH
i (θi, θi) < QH

i (θ̂i, θ̂i), contradicting (C.2). Since

εi(θi, θ̂i) = 0,

Ev,θ−i(1{θi+w(vi)−pi(θ̂i)−`i(v)≥b∗∗−i −i(v,θ−i)>θi+w(vi)−pi(θi)−`i(v)}
) = 0,

which is equivalent to ΠH
i (θi, θ̂i) = ΠH

i (θi, θi). Therefore, θ̂i < θi implies ΠH
i (θi, θ̂i) ≤

ΠH
i (θi, θi) whether p(θi) ≤ p(θ̂i) or not, so that the first inequality of (95) holds. The

other inequality may be shown similarly, which establishes (95).

Sufficiency (←): Suppose that the seller i with θi has reported itself as θ̂i when pur-

chasing the premium. In the second stage, after learning v, the payoff of reporting as θ′i
is

Ui(θi, θ
′
i; θ̂i,v) = Eθ−i [(θi +w(vi) − pi(θ̂i) − `i(v) − b

∗∗
−i (v,θ−i))1{θ′i+w(vi)−pi(θ̂i)−`i(v)≥b∗∗−i (v,θ−i)}

]

Since the second price auction in the second stage is incentive compatible, for any θi ∈ (
¯
θ, θ̄)

∂UH
i

∂θi
(θi; θ̂i,v) = Q

H
i (θi ∣ θ̂i,v)

where UH
i (θi; θ̂i,v) = Ui(θi, θi; θ̂i,v) and QH

i (θi; θ̂i,v) = Eθ−i [1{θ′i+w(vi)−pi(θ̂i)−`i(v)≥b∗∗−i (v,θ−i)}
].

For any θi, θ′i ∈ (
¯
θ, θ̄),

UH
i (θi; θ̂i,v) = U

H
i (θ′i; θ̂i,v) + ∫

θi

θ
′
i

QH
i (θ̃; θ̂i,v)dθ̃.

The seller’s interim payoff function in the first stage may be expressed as

πHi (θi, θ̂i) = Ev [U
H
i (θi; θ̂i,v)] − c(θ̂i)

= Ev [U
H
i (θ̂i; θ̂i,v)] +Ev [∫

θi

θ̂i
QH
i (θ̃i; θ̂i,v)dθ̃i] − c(θ̂i)

= ΠH
i (θ̂i) + ∫

θi

θ̂i
QH
i (θ̃, θ̂i)dθ̃.

Similarly,

πHi (θ̂i, θi) = ΠH
i (θi) + ∫

θ̂i

θi
QH
i (θ̃, θi)dθ̃.
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Note that the incentive compatibility is equivalent to

for all i and θ̂i < θi, π
H
i (θi, θi) ≥ π

H
i (θi, θ̂i) and πHi (θ̂i, θ̂i) ≥ π

H
i (θ̂i, θi).

Note that

πHi (θi, θi) ≥ π
H
i (θi, θ̂i)

iff ΠH
i (θi) ≥ ΠH

i (θ̂i) + ∫
θi

θ̂i
QH
i (θ̃i, θ̂i)dθ̃i

iff ∫
θi

θ̂i
QH
i (θ̃i, θ̃i)dθ̃i ≥ ∫

θi

θ̂i
QH
i (θ̃i, θ̂i)dθ̃i (By (94))

where the last inequality holds because QH
i (θ̃i, θ̃i) ≥ QH

i (θ̃i, θ̂i) for all θ̃i ≥ θ̂i by (95). Simi-

larly,

πHi (θ̂i, θ̂i) ≥ π
H
i (θ̂i, θi)

iff ΠH
i (θ̂i) ≥ ΠH

i (θi) + ∫
θ̂i

θi
QH
i (θ̃i, θi)dθ̃i

iff ∫
θ̂i

θi
QH
i (θ̃i, θ̃i)dθ̃i ≥ ∫

θ̂i

θi
QH
i (θ̃i, θi)dθ̃i (By (94))

iff ∫
θi

θ̂i
QH
i (θ̃i, θ̃i)dθ̃i ≤ ∫

θi

θ̂i
QH
i (θ̃i, θi)dθ̃i

where the last inequality holds because QH
i (θ̃i, θ̃i) ≤ QH

i (θ̃i, θi) for all θ̃i ≤ θi by (95).

C.3 Proof for Theorem 9

Given the handicap auction (p∗i , c
∗
i , `

∗
i )i∈N , if every seller of every type reports its willingness

to pay truthfully under the handicap auction, then the intermediary recommends product i

if and only if

ri(v,θ) = 1 iff θi +w(vi) −
1 −Gi(θi)

gi(θi)
− `∗i (v) > max

j≠i,0
(θj +w(vj) −

1 −Gi(θi)

gi(θi)
− `∗j (v),0)

which is the same recommendations rule as in the revenue maximizing recommender system.

It remains to verify that the handicap auction (31) and (32) is incentive compatible and

individually rational. Since pi weakly decreases in θi, the monotonicity condition (95) holds.

The interim payoff of the seller i with θi receives is

ΠH
i (θi) = Eθ−i,v [(θi +w(vi) − pi(θi) − `i(v) − b

∗∗
−i (v,θ−i))1{θi+w(vi)−pi(θi)−`i(v)≥b∗∗−i (v,θ−i)}]−c(θi)
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which implies that ΠH
i (

¯
θ) = 0. The handicap auction gives the same revenue as the revenue

maximizing recommender system because the recommendation rules are identical and the

lowest type’s payoff is the same by Π∗
i (¯
θ) = 0 = ΠH

i (
¯
θ), and therefore, Π∗

i (θi) = ΠH
i (θi), which

in turn implies that the expected payment from each recommender system must be identical

between the two. The individual rationality trivially follows from the observation that the

lowest payoff each seller gets Πi(¯
θ) is 0.

C.4 Proof for Theorem 10

In a virtual private willingness to pay environment,

αθi − β for some α > 1, β > 0,

the optimal recommendations rule is given by for each i ∈ N ,

r∗i (v,θ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
∣M∣ if i ∈ arg maxj∈N {θj +

1
αw(vj) −

1
α`

∗
j (v),

β
α
}

0 otherwise
(97)

where M= arg maxj∈N {θj +
1
αw(vj) −

1
α`

∗
j (v)}, and

`∗i (v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v0 ∈ [
¯
v∗, v̄∗]

λ∗1(v0) ⋅ (v0 − vi) if v0 > v̄∗

λ∗2(v0) ⋅ ∑k∈N (v0 − vk) if v0 <
¯
v∗

(98)

Consider the second-price auction with discounts

d∗i (v) = −
1

α
`∗i (v) −

α − 1

α
w(vi),

and

P ∗
i = Ev,θ−i

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝¯
θ +

1

α
w(vi) −

1

α
`∗i (v) − max

j∈N∖{i}
(θj +

1

α
w(vj) −

1

α
`∗j (v),

β

α
)
⎞

⎠

⋅ 1{
¯
θ+ 1

α
w(vi)− 1

α
`∗i (v)>maxj∈N∖{i}(θj+ 1

α
w(vj)− 1

α
`∗j (v),

β
α
)}

⎤
⎥
⎥
⎥
⎥
⎦

with reservation price β
α .
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After paying the participation fee P ∗
i , if seller i bids bi while others bid b−i, her payoff is

θi +w(vi) − ( max
j∈N∖{i}

(bj,
β

α
) − d∗i ) (99)

if bi > maxj∈N∖{i} (bj,
β
α
), and 0 if bi < maxj∈N∖{i} (bj,

β
α
). She prefers winning (losing) over

losing (winning) and being drawn if and only if (99) is positive (negative), which is equivalent

to

θi +w(vi) + d
∗
i > (<) max

j∈N∖{i}
(bj,

β

α
) .

Therefore, it is a weakly dominant strategy to bid

bi = θi +w(vi) + d
∗
i = θi +

1

α
w(vi) −

1

α
`∗i (v). (100)

Combined with the reservation price α
β , the recommendations rule under the weakly dominant

strategy equilibrium under which all sellers bid according to (100) is (97). Given the weakly

dominant strategy equilibrium, seller i’s expected payoff is

Ev,θ−i
⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
θi +

1

α
w(vi) −

1

α
`∗i (v) − max

j∈N∖{i}
(θj +

1

α
w(vj) −

1

α
`∗j (v),

β

α
)
⎞

⎠

⋅ 1{θi+ 1
α
w(vi)− 1

α
`∗i (v)>maxj∈N∖{i}(θj+ 1

α
w(vj)− 1

α
`∗j (v),

β
α
)}

⎤
⎥
⎥
⎥
⎥
⎦

− P ∗
i ,

which becomes 0 if θi =
¯
θ. Therefore, the second-price auction with discounts and participa-

tion fees implement the optimal recommendations rule and attains the same revenue.

79



References

Admati, A. R. and P. Pfleiderer (1986): “A Monopolistic Market for Information,”

Journal of Economic Theory, 39, 400–438.

——— (1990): “Direct and Indirect Sale of Information,” Econometrica, 58, 901–928.

Alonso, R. and O. Câmara (2016): “Persuading Voters,” American Economic Review,

106, 3590–3605.
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