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Abstract: We study whether a planner can robustly implement a state-contingent social choice
function when (i) agents must incur a cost to learn the state and (ii) the planner faces uncertainty
regarding agents’ preferences over outcomes, information costs, and beliefs and higher-order beliefs
about one another’s payoffs. We propose mechanisms that can approximately implement any de-
sired social choice function when the perturbations concerning agents’ payoffs have small ex ante
probability. The mechanism is also robust to trembles in agents’ strategies and when agents receive
noisy information about the state.
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1 Introduction

Implementation theory studies whether and how a state-contingent social choice function, such as

convicting guilty defendants and acquitting innocent ones, can be achieved when (i) the information

necessary to implement the objective is unknown to the planner and (ii) the social choice function

is in conflict with the interests of the agents who do have access to the relevant information.

We study this question under two additional constraints: (iii) agents need to incur a cost to

learn the relevant information and (iv) the planner knows agents’ payoffs with probability close to

one, but faces uncertainty regarding agents’ payoffs with the remaining probability and regarding

agents’ beliefs and higher-order beliefs about one another’s payoffs.

The motivation for our research question is twofold. First, in many situations of interest, agents

do not possess the relevant information at the outset and must acquire it at some cost. For example,

investigators need to exert effort in order to learn whether a defendant is guilty or innocent.

Second, the literature on robust implementation, pioneered by Bergemann and Morris (2005),

has underscored the importance of implementing social choice functions when agents’ preferences

are not common knowledge. This literature has shown that only a restrictive subset of social choice
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functions can be implemented when robustness is required to hold globally: a social choice function

can be implemented for arbitrary payoffs and beliefs of the agents only if it is ex post incentive

compatible (Bergemann and Morris 2005). Even when the notion of implementation is local but in

an interim sense, i.e., for all profiles of agent-types close to a given profile, implementable social

choice functions must satisfy Maskin monotonicity (Oury and Tercieux 2012), a demanding property

that is violated in a number of applications.

We consider a novel notion of robust implementation that builds on the concept of equilibrium

robustness introduced by Kajii and Morris (1997). A Nash equilibrium of a complete information

game is robust if it can be approximated by some equilibria in all nearby incomplete information

games, which are all games where players’ payoffs match those of the complete information game

with probability close to one. Building on this approach, our concept of robust implementation is

local and ex ante, rather than interim, in the sense that the perturbations considered have a small

probability ex ante relative to the complete information game. As a result, the concept has the

potential to avoid some of the most stringent implications of global and interim concepts.

Our concept of robust implementation departs from Kajii and Morris (1997) by imposing a

key restriction on the set perturbations considered by the planner. Since we study a mechanism

design problem rather than a game, we focus on perturbations in which agents’ payoffs do not

depend per se on the messages that they send to the mechanism, i.e., it is common knowledge

that messages are cheap talk. Instead, perturbations pertain to agents’ preferences concerning the

outcomes implemented as a result of their messages as well as their costs of learning the state.

We show that under our notion of robust implementation, every social choice function is robustly

implementable under a generic assumption on the objective state distribution.1 Our analysis focuses

on the case of two agents.2 A planner wishes to implement a social choice function that maps a

finite set of states to a finite set of outcomes.3 The planner commits to a mechanism mapping

agents’ messages to outcomes and transfers. Agents observe the mechanism as well as their own

payoff functions under the perturbation. They independently decide whether to observe the state

at some cost and then send messages to the planner.4

1Our generic assumption requires that one state is more likely than any other state. This generic assumption can
be dropped when there is a known upper bound on agents’ costs of learning.

2Our main result is a possibility result: we construct a mechanism that implements the desired social choice
function when two agents have the ability to learn the state. This mechanism can straightforwardly be extended
to any arbitrary number agents, for instance, by applying it to two specific agents and ignoring the reports of all
remaining agents.

3In Appendix A, we generalize our main result to a continuum of states when both the social choice function and
agents’ payoff functions in the unperturbed environment are continuous in the state.

4In the spirit of our robustness exercise, we allow small amount of uncertainty regarding the accuracy of agents’
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We construct a class of mechanisms called Augmented Status Quo Rules with Ascending Trans-

fers that robustly implements the desired social choice function. These mechanisms treat states

asymmetrically by (i) introducing the desired outcome in the ex ante most likely state as a status

quo outcome, which is implemented whenever agents’ reports are in conflict or when they match

on the ex ante most likely state, and (ii) rewarding agents differently when they report the same

state, depending on the messages they send.

In addition, these mechanisms include strictly more messages than states: one message for the

ex ante most likely state and two messages for every other state. The two messages which represent

the same state induce the same outcome regardless of the other agent’s report but lead to different

transfers. In Section 2, we use an example to explain intuitively why this larger message space

makes the mechanism robust to uncertainty with respect to agents’ biases over outcomes, agents’

information costs, agents’ trembles, and to noise in agents’ private signals about the state.

Finally, we provide several results concerning stronger notions of robust implementation. First,

Proposition 1 shows that it is impossible to approximately implement any non-constant social choice

function when agents’ payoff functions can be different from those in the original environment with

probability bounded away from zero. This result motivates our notion of robust implementation

which focuses on perturbations where agents’ payoff functions coincide with those in the unper-

turbed environment with probability close to one.

Second, our notion of robustness concerns partial implementation: we only require that the

desired social choice function be implemented by some (not necessarily all) equilibria of the game

induced by our mechanism. In fact, when agents’ unperturbed preferences put no weight on how

outcomes relate to the state of the world (e.g., when agents have transparent motives as in Lipnowski

and Ravid 2020), or when agents’ costs of learning in the unperturbed environment are above

some cutoff, Proposition 2 shows that no mechanism can fully implement, even approximately

implement, any non-constant social choice function. In these situations, there always exists an

equilibrium in which no agent learns the state.5 We also show a feasibility result: when at least one

agent’s preference and the social choice function satisfy a strict version of the cyclical monotonicity

condition introduced by Rochet (1987) and his cost of learning is small enough, the planner can

robustly and fully implement that social choice function by ignoring the report of the other agent.

signal, and allow agents to tremble with small probability when sending messages. See Section 4.3 for details.
5This result echoes Strulovici (2021), who shows in a sequential model of learning that when agents’ preferences

are state independent, implementation is impossible even in a partial sense when signals about the state of the world
are subject to an information attrition condition.
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Section 2 illustrates our research question and main results using an example with two states.

We explain why Maskin mechanisms that (i) treat states symmetrically by rewarding agents by a

fixed amount when their reports match, and (ii) giving both agents zero transfers and uniformly ran-

domizing across outcomes when agents’ reports mismatch, cannot robustly implement the desired

social choice function. We then explain why mechanisms in which (i) agents have more messages

than states, (ii) treat states asymmetrically, and (iii) provide asymmetric monetary rewards across

different states, help address robustness issues. The general model is introduced in Section 3 . Our

main results are stated and derived in Section 4. Section 5 presents impossibility results pertaining

to stronger notions of implementation, and one possibility result for full implementation when at

least one of the agents have state-contingent preferences.

2 Example

Consider a social planner facing a defendant who may be guilty or innocent, i.e., θ ∈ {guilty, innocent}.

The defendant’s prior probability of guilt is denoted by q ∈ (0, 1).

The planner’s objective is to convict guilty defendants and acquit innocent ones. She commits

to a mechanism M ≡ {M1,M2, g, t1, t2} in order to solicit information from two agents (e.g.,

investigators), where Mi is a finite set of messages for agent i ∈ {1, 2}, g : M1 ×M2 → [0, 1] is a

mapping from messages to the probability of conviction, and ti : M1 ×M2 → R is the transfer to

agent i. In practice, one can interpret the transfers not only as money, but also more broadly, as

career benefits, promotions, paid vacations, and so on.

Each agent can, at some cost, conduct an investigation and learn whether the defendant is guilty

or innocent. Agents’ decisions to investigate and the observations resulting from these investigations

are private, i.e., they are unbeknownst to the planner and the other agent.

We assume for now that agents’ payoffs are common knowledge and symmetric. Agent i’s payoff

is ti − cχi where χi ∈ {0, 1} denotes i’s decision of whether to conduct investigation and c is i’s

cost of conducting his investigation.

The planner’s objective of convicting guilty defendants and acquitting innocent ones can be

achieved via the following Maskin mechanism, in which each agent is asked to report whether the

defendant is guilty or innocent. The outcome and the transfers are given by:
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transfers innocent guilty

innocent R,R 0, 0

guilty 0, 0 R,R

outcome innocent guilty

innocent acquit convict with prob 1/2

guilty convict with prob 1/2 convict

As long as the reward R > 0 is large enough relative to the cost c, there exists an equilibrium where

both agents conduct investigations and report their findings truthfully.

Robust Implementation with Biased Agents: The Maskin mechanism fails to implement

the desired outcome when agents are subject to biases over outcomes and the planner does not

know the direction and magnitude of agents’ biases when designing the mechanism, nor does she

know agents’ beliefs and higher-order beliefs about each other’s bias.

We show by example that the Maskin mechanism can fail even if agents are biased with

arbitrarily small probability. Suppose nature draws a random variable ω from a countable set

Ω ≡ {ω0, ω1, ω2, ...} such that ω = ωt occurs with probability η(1− η)t for every t ∈ N where η > 0

is close to 0. The realization of ω is independent of whether the defendant is guilty or innocent.

Agent 2’s payoff is t2−χ2c at every ω ∈ Ω. Agent 1’s payoff is t1−χ1c at every ω ∈ Ω\{ω0}, but re-

ceives a large benefit B > 0 from acquitting the defendant if ω = ω0 (e.g., agent 1 is the defendant’s

friend when ω = ω0). Agent 1 knows which element of the partition {ω0}, {ω1, ω2}, {ω3, ω4}, ... the

realized ω belongs to before deciding whether to conduct his investigation as well as what to report.

Agent 2 knows which element of the partition {ω0, ω1}, {ω2, ω3}, ... the realized ω belongs to before

deciding whether to conduct his investigation as well as what to report. Each agent updates his

belief about the other agent’s knowledge about ω according to Bayes rule.6

Under this perturbation, agents’ payoff functions coincide with those in the unperturbed envi-

ronment with probability 1 − η. However, the Maskin mechanism fails to implement the desired

objective even when η is arbitrarily close to 0, in the sense that for every R ∈ R+, there exists

B > R such that no matter how small η is, the perturbed environment has a unique equilibrium

where agents always report innocent and the defendant is acquitted regardless of his guilt.

This is because when ω = ω0, agent 1 wants to maximize the probability of acquittal, so when B

is large relative to R, he has a strict incentive to report innocent regardless of θ. When ω ∈ {ω0, ω1},

agent 2 is unbiased, but he believes that agent 1 is biased with probability greater than 1/2, so he

believes that agent 1 will report innocent with probability greater than 1/2 regardless of θ. Since

6For example, the type of agent 2 who knows that ω ∈ {ω0, ω1} attaches probability 1
2−η to agent 1 being type

{ω0}, the type of agent 1 who knows that ω ∈ {ω1, ω2} attaches probability 1
2−η to agent 2 being type {ω0, ω1}.
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agent 2 maximizes his expected transfer minus his cost of investigation, he has a strict incentive

to report innocent regardless of θ. By induction, this contagion argument shows that all types of

both agents will report innocent in the unique equilibrium of the perturbed environment.

In general, agents may be biased in either direction (they may also benefit from convicting

the defendant) and with arbitrary magnitude. The planner faces uncertainty about the direction

and magnitude of these biases as well as about agents’ beliefs and higher-order beliefs about each

other’s biases. The planner aims to design a mechanism that approximately implements the desired

objective when agents are unbiased with probability close to 1 but can have arbitrary biases with

small but positive probability and may have arbitrary beliefs and higher-order beliefs as long as

those beliefs can be derived from a common prior.

Status Quo Rule with Ascending Transfers: We now propose a mechanism that can imple-

ment the desired outcome even when the planner does not know the direction and magnitude of

agents’ biases, maintaining for now the assumption that agents’ cost of learning the state is fixed

and commonly known. We call this mechanism Status Quo Rule with Ascending Transfers.

This mechanism features two messages for each agent: innocent and guilty. The outcome and

transfers are specified as follows:

outcome innocent guilty

innocent acquit acquit

guilty acquit convict

transfers innocent guilty

innocent R1, R1 0, 0

guilty 0, 0 R2, R2

where R2 > R1 > 0 and R2 −R1 is bounded below by a linear function of c.

The above mechanism features a status quo outcome, acquit, which is implemented as long as

one agent reports innocent. The defendant is convicted if and only if both agents report guilty.

Agents receive strictly positive transfers only when their reports coincide and they receive a larger

transfer when both of them report guilty compared to both of them report innocent.

To explain intuitively why this mechanism implements the desired objective, we restrict at-

tention to the following class of perturbations and defer the general proof to Section 4. Na-

ture draws a random variable ω from a countable set {ω0, ω1, ω2, ...} according to distribution

Π ∈ ∆{ω0, ω1, ω2, ...}. Agent 1’s information partition is {ω0}, {ω1, ω2}, {ω3, ω4}, ... Agent 2’s in-

formation partition is {ω0, ω1}, {ω2, ω3}, ... Agent 2’s payoff is t2− cχ2 at every ω. Agent 1’s payoff

is t1 − cχ1 at every ω except for ω0.
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Each perturbation in the above class is characterized by Π and agent 1’s payoff function at ω0,

under which we construct an equilibrium that approximately implements the desired outcome.

1. Suppose first that when ω = ω0, agent 1 receives a large benefit from acquitting the defen-

dant. This biased type can guarantee his desired outcome by reporting innocent no matter

what. However, given that R1 < R2, Π(ω1) needs to be strictly less than Π(ω0) for type

{ω0, ω1} of agent 2 to have an incentive to report innocent no matter what, and Π(ω2) needs

to be strictly less than Π(ω1) for type {ω1, ω2} of agent 1 to have an incentive to report in-

nocent no matter what, and so on. The upper bounds on these probabilities form a decaying

geometric sequence, which means that the contagion caused by such a biased type is bounded

from above by a linear function of Π(ω0), which vanishes to 0 as Π(ω0)→ 0.

2. Suppose now that when ω = ω0, agent 1 receives a large benefit from convicting the de-

fendant. If Π(ωt) = η(1 − η)t for every t ∈ N and this biased type reports guilty no matter

what, then all types of both agents will have a strict incentive to report guilty no matter what

provided that R2 > R1.

However, under the outcome function of our mechanism, the defendant is convicted only if

both agents report guilty, so the biased type cannot convict the defendant when he is innocent

provided that the other agent reports truthfully.

In fact, this biased type has a strict incentive to be truthful when he believes that the other

agent is truthful, since reporting innocent when the defendant is innocent leads to a strictly

positive transfer and reporting guilty when the defendant is innocent leads to zero transfer.

Hence, all types reporting truthfully is an equilibrium no matter how large the bias is.

Uncertainty about Biases and Costs: In general, uncertainty about agents’ preferences may

also involve uncertainty about agents’ costs of learning the state, correlation between these costs

and agents’ biases, and agents’ beliefs and higher-order beliefs about each other’s costs and biases.

We show that when the prior probability of guilt q is not 1
2 ,7 there is a mechanism that approx-

imately implements the desired social choice function when agents are unbiased and have cost c

with probability close to 1 but can have arbitrary biases and costs with complementary probability.

To fix ideas, we describe our mechanism and explain why it works when the defendant’s proba-

bility of guilty is strictly less than 1
2 . We focus for expositional simplicity on the class of information

7In general, our result requires that there exists a state whose prior probability of occurrence exceeds that of every
other state. This property is generic among the set of all prior distributions.
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structures considered before: agent 1’s information partition is {ω0}, {ω1, ω2}, {ω3, ω4}, ... and agent

2’s information partition is {ω0, ω1}, {ω2, ω3}, ... Agent 2’s payoff function is t2−cχ2 at every ω and

that agent 1’s payoff function is t1−cχ1 at every ω except at ω0, where it is given by u1(θ, y)+t1−c̃χ1

for some arbitrary function u1(θ, y) and cost c̃ ∈ R+.

We start by explaining why the status quo rule with ascending transfers cannot implement the

desired outcome if agent 1’s payoff at ω0 includes a large benefit from convicting the defendant and

a large cost of learning θ. Intuitively, when such a high-cost biased type believes that the other

agent reports truthfully, he prefers to report guilty conditional on the defendant being guilty, since

he receives a large benefit from convicting the defendant. If this type also wants to report innocent

when the defendant is innocent, then he needs to conduct an investigation, but his cost of doing

so outweighs his benefit from the transfers. This explains why the high-cost biased type prefers to

report guilty no matter what even when he believes that the other agent reports truthfully. This

causes contagion when Π(ωt) = η(1− η)t for every t ∈ N no matter how small η is.

Augmented Status Quo Rule with Ascending Transfers: We propose another mechanism

called the Augmented Status Quo Rule with Ascending Transfers, in which each agent has a third

message which we denote −guilty. The outcome and transfers are given by:

outcome −guilty innocent guilty

−guilty convict acquit convict

innocent acquit acquit acquit

guilty convict acquit convict

transfers −guilty innocent guilty

−guilty R0, R0 R0, R0 0, 0

innocent R0, R0 R1, R1 0, 0

guilty 0, 0 0, 0 R2, R2

where R0

R2 ≈ 1, R2 > R1 > R0 > 0, and R2 −R1 and R1 −R0 are strictly positive and are bounded

below by some function of c.

According to our new mechanism, message −guilty implements the same outcome as message

guilty regardless of the other agent’s message. Moreover, each agent can unilaterally implement

the status quo outcome acquit by reporting innocent. Finally, coordinating on the message −guilty

leads to a lower transfer compared to coordinating on any of the other two messages.

To understand why the message −guilty makes our mechanism robust to biased types that have

high learning costs, suppose that every non-biased type never reports guilty when the defendant

is innocent (but could report −guilty or innocent with arbitrary probabilities). Then, type ω0 of

agent 1 receives an expected transfer of at least (1 − q)R0 if he reports −guilty and an expected
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transfer of at most qR2 if he reports guilty. Given our assumption that the defendant is innocent

with probability above 1
2 and that R0

R2 ≈ 1, reporting −guilty leads to a higher expected transfer.

Moreover, the assumption that 0 < R0 < R1 < R2 implies that coordinating on message −guilty

leads to a lower expected transfer compared to coordinating on message innocent and coordinating

on message guilty. As a result, every type of agent who is unbiased and whose cost is no more

than c strictly prefers to conduct his investigation and report his finding truthfully as long as his

belief satisfies the following two conditions: (1) no type of the other agent reports guilty when

the defendant is innocent (but they could report −guilty or innocent), and (2) the other agent is

truthful with probability at least 1
2 . We use this observation and the critical path lemma in Kajii

and Morris (1997) to show that for every perturbation where agents are unbiased and have cost c

with probability close to 1, there exists an equilibrium where both agents report truthfully with

probability close to 1 and the desired outcome is implemented with probability close to 1.

3 General Model

Primitives: A planner wants to implement a social choice function f : Θ→ ∆(Y ) where Θ is a

finite set of states and Y is a finite set of outcomes.8 The typical elements in these sets are θ ∈ Θ

and y ∈ Y . Let q ∈ ∆(Θ) be the objective distribution of θ, with q(θ) the probability of state θ.

We assume that q(θ) > 0 for every θ ∈ Θ.

The planner does not know θ and elicits information about θ from two agents. She commits

to a mechanism M≡ {M1,M2, t1, t2, g}, where Mi is a finite set of messages for agent i ∈ {1, 2},9

ti : M1×M2 → R is the transfer to agent i, and g : M1×M2 → ∆(Y ) is the implemented outcome.

After observing M, agents simultaneously and independently decide whether to observe θ at

some costs. Let χi ∈ {0, 1} be agent i’s decision to obtain information, where χi = 1 represents

agent i obtaining information about θ and vice versa. Let ci ≥ 0 be his cost. We assume that

information acquisition is covert in the sense that neither agent −i nor the planner can observe χi.

Then the agents simultaneously send messages (m1,m2) ∈M1×M2 to the planner, after which

the planner makes transfers and implements an outcome according to M. Agent i’s payoff is:

ti − χici + ui(θ, y). (3.1)

8We generalize our main result to a continuum of states in Appendix A, under the assumption that the social
choice function f and agents’ payoff functions in the unperturbed environment (u1, u2) are continuous in θ.

9See Jackson (1992) for a justification for focusing attention on finite mechanisms.
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A leading example is the case where agents have transparent motives (Lipnowski and Ravid 2020),

i.e., ui(θ, y) does not depend on θ for i ∈ {1, 2}.

One assumption to highlight is that the agents’ transfers cannot depend on the realized state.

This stands in contrast to existing works on contracting with costly information acquisition, such

as Zermeno (2011), Carroll (2019), and Clark and Reggiani (2021) where transfers can also depend

on the realized state. Our model fits situations where either the principal cannot verify the state

ex post, or additional information about the state takes a long time to arrive so that rewarding

agents based on such late information is impractical.

Robustness Concerns: We examine whether the planner can robustly implement f when agents’

preferences over outcomes, costs of obtaining information, and their beliefs and higher-order beliefs

about each other’s payoffs can be different from what the planner believed to be. Similar to Oury

and Tercieux (2012), we focus on partial robust implementation: the planner only requires f to be

implemented in one equilibrium, not necessarily all equilibria.

Following Kajii and Morris (1997), a perturbation

G ≡ {Ω,Π, Q1, Q2, ũ1, ũ2, c̃1, c̃2} (3.2)

consists of a countable set of circumstances Ω, a distribution Π ∈ ∆(Ω) over the set of circumstances

which we assume is independent of θ, a partition Qi of Ω such that agent i ∈ {1, 2} knows which

element of the partition Qi the realized ω belongs to, and mappings ũi : Ω × Θ × Y → R and

c̃i : Ω→ R+ for i ∈ {1, 2}. Agent i’s payoff under perturbation G is

ti − c̃i(ω)χi + ũi(ω, θ, y). (3.3)

For every c ≥ max{c1, c2}, G is a c-bounded perturbation if c̃i(ω) ≤ c for every i and ω ∈ Ω.

For every ω ∈ Ω, let Qi(ω) be the partition element of Qi that contains ω, which we call agent

i’s type. Type Qi(ω) is a normal type if ũi(ω
′, θ, y) = ui(θ, y) and c̃i(ω

′) = ci for every ω′ ∈ Qi(ω),

i.e., type Qi(ω) of agent i knows that his payoff in the perturbed environment coincides with his

payoff in the unperturbed environment. For every η ∈ [0, 1], we say that G is an η-perturbation if

Π
(

both agents are normal types
)
≥ 1− η. (3.4)
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The class of perturbations considered in our leading example are η-perturbations since both agents

are normal types when ω ∈ Ω\{ω0}, and event Ω\{ω0} occurs with probability 1 − η. Intuitively,

a perturbation is small if agents’ payoffs coincide with those in the unperturbed environment with

probability close to one, but their payoffs can be very different from those in the unperturbed

environment with low but positive probability. Although a normal type’s payoff coincides with

that in the unperturbed environment, he may believe that the other agent is not normal, and may

believe that the other agent thinks that he is not normal, and so on.

For every c ≥ max{c1, c2}, a perturbation is c-bounded if c̃1(ω), c̃2(ω) ≤ c for all ω ∈ Ω. A

c-bounded η perturbation is defined naturally.

A perturbation G and a mechanism M ≡ {M1,M2, g, t1, t2} induce an incomplete information

game between the two agents, which we denote by (M,G). A typical strategy profile is denoted

by σ. Let gσ(θ) ∈ ∆(Y ) be the implemented outcome conditional on the state being θ when the

planner commits to outcome function g and agents behave according to strategy profile σ.

We introduce two notions of local robust implementation, that is, the planner designs a mecha-

nism that approximately implements f for all small enough perturbations.

1. We say that M robustly implements f if for every ε > 0, there exists η > 0 such that for

every η-perturbation G, there exists an equilibrium σ(G) of the incomplete information game

induced by (M,G), such that

max
θ∈Θ
||gσ(G)(θ)− f(θ)||TV < ε, (3.5)

where || · ||TV is the total variation distance between two distributions.

2. We say thatM robustly implements f for all c-bounded perturbations if for every ε > 0, there

exists η > 0 such that for every c-bounded η-perturbation G, there exists an equilibrium σ(G)

of the incomplete information game induced by (M,G) such that inequality (3.5) holds.

By definition, our two notions of robust implementation differ only in terms of whether we allow

for unbounded costs of learning in perturbed environments. If M robustly implements f , then it

robustly implements f for all c-bounded perturbations for every c ≥ max{c1, c2}.

We also consider two notions of global robust implementation, namely, the planner designs

a mechanism M that approximately implements f under all perturbations, including those where

agents’ payoffs are different from their payoffs in the unperturbed environment with high probability.
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1. MechanismM globally implements f if for every ε > 0 and every perturbation G, there exists

an equilibrium σ(G) of incomplete information game (M,G) such that inequality (3.5) holds.

2. Mechanism M globally implements f for all c-bounded perturbations if for every ε > 0 and

every c-bounded perturbation G, there exists an equilibrium σ(G) of incomplete information

game (M,G) such that inequality (3.5) holds.

By definition, ifM globally implements f (for all c-bounded perturbations), then it robustly imple-

ments f (for all c-bounded perturbations). In Section 5.1, we show that for any c ≥ max{c1, c2} and

any social choice function f that depends non-trivially on the state, there is no finite mechanism

that can globally implement f for all c-bounded perturbations.

Remark: Our formulation restricts attention to perturbations where agents have quasi-linear

payoff functions and their payoffs do not directly depend on their messages (which are their actions

in our model).10 Both assumptions are common in the mechanism design literature, including

Rochet (1987), Bergemann and Morris (2005, 2009), and Chung and Ely (2007).

Our assumptions stand in contrast to models on robust prediction in games such as Kajii

and Morris (1997) and Ui (2001) where players’ actions can directly affect their payoffs. Since

we consider a mechanism design setting, agents’ message spaces are endogenously chosen by the

planner, so these messages have no meaning per se and can be viewed as cheap talk. In many

applications, it is also reasonable to assume that all types of the agent prefer more transfers, while

agents’ preferences over other aspects of the allocation (e.g., whether to convict or acquit the

defendant) are more subtle and may not be known to the mechanism designer.

A similar perspective is shared by Oury and Tercieux (2012), Chen, Mueller-Frank and Pai

(2020), and Chen, Kunimoto and Sun (2020),11 who use an interim approach to study robust

partial implementation where agents’ messages are assumed to be cheap talk. These papers examine

whether there exists a mechanism that partially implements a desired social choice function for all

nearby interim types. By contrast, we take an ex ante approach and examine whether the planner

10Although our baseline model restricts attention to quasi-linear payoff functions, our main result generalizes
to situations where agents’ utilities from transfers are v1(t1) and v2(t2) in the unperturbed environment, and
are ṽ1(ω, t1) and ṽ2(ω, t2) in the perturbed environment, as long as there exists a positive constant δ such that

v′1(t1), v′2(t2), ∂ṽ1(ω,t1)
∂t1

, ∂ṽ2(ω,t2)
∂t2

≥ δ for all ω, t1, t2. That is, it is common knowledge that agents’ marginal utilities
from transfers is bounded from below.

11Oury and Tercieux (2012) write on page 1607 that “These works (papers on robust prediction in games) share the
common assumption that, in perturbed models, some types may have preferences over action profiles that are radically
different from those of types in the initial model... Note that the meaning of such an assumption in the mechanism
design context where the social planner fixes the game form is problematic”.
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can robustly implement a desired social choice function with probability close to one when she

knows that agents’ beliefs are derived from a common prior and that the agents’ payoff functions

coincide with those in her model with probability close to one.

4 Main Results

Theorem 1 shows that every f is robustly implementable when agents’ costs of learning are bounded

from above. Theorem 2 shows that even when agents’ costs of learning can be arbitrarily large,

every f is robustly implementable under a generic assumption on the state distribution. Theorem

3 extends our robust implementation results when agents’ signals about the state are noisy.

4.1 Robust Implementation under Bounded Cost

We show that every f is robustly implementable when agents’ costs of obtaining information is

uniformly bounded from above.

Theorem 1. For every c ≥ max{c1, c2} and f : Θ→ ∆(Y ), there exists a finite mechanism M

that robustly implements f for all c-bounded perturbations.

For illustration purposes, we show this result (as well as Theorems 2 and 3) in the leading

example where ui(θ, y) = 0 for i ∈ {1, 2} and c1 = c2 = c, i.e., each normal type’s payoff equals

his transfer minus his cost of learning the state and the normal types of both agents face the same

cost c. Extending our proof to general (u1, u2) and heterogenous costs is straightforward.

Status Quo Rule: Let n ≡ |Θ| and Θ ≡ {θ1, ..., θn}. Each agent has n messages M1 = M2 ≡

M ≡ {1, 2, ..., n}. The outcome function is

g(m1,m2) =

 f(θm1) if m1 = m2

f(θ1) otherwise.
(4.1)

The transfer function for agent i ∈ {1, 2} is

ti(mi,m−i) =

 Rj if m1 = m2 = j

0 otherwise,
(4.2)

where Rn, ..., R1 > 0 and Rj ≥ R1 + 2c
q(θj)

for every j ≥ 2.
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In the unperturbed game induced by our mechanism, an agent’s pure strategy is an n-dimensional

vector (m1, ...,mn) where mj ∈M is the message he sends when the state is θj . In order to capture

agents’ decisions to obtain information, each agent pays a penalty c when he chooses a non-constant

vector. Let Σ ≡ {1, 2, ..., n}n be the set of pure strategies. An agent is truthful if he uses strategy

(1, 2, ..., n), that is, he reports the index of the realized state. Our proof proceeds in three steps.

Step 1: Restricted Game without Perturbation We start from examining a game without

any perturbation where agents are only allowed to use strategies in ∆(Σ∗), where Σ∗ ⊂ Σ is a

subset of pure strategies defined as:

Σ∗ ≡
{

(m1, ...,mn) ∈ Σ such that mj ∈ {1, j} for every j ≥ 1
}
. (4.3)

In this auxiliary game, each agent is only allowed to send the status quo message 1 or truthfully re-

port the state. For example, when n = 2, Σ∗ = {(1, 1), (1, 2)} while Σ = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Lemma 1. There exists γ < 1
2 such that both agents being truthful is a γ-dominant equilibrium

in the restricted game without any perturbation.

Proof. Conditional on θ = θj ,

• if agent 1 sends message j, his expected transfer equals Pr(m2 = j|θj)Rj ;

• if agent 1 sends message 1, his expected transfer equals Pr(m2 = 1|θj)R1.

If agent 2’s strategy belongs to ∆(Σ∗) and agent 2 is truthful with probability at least 1
2 , we have

Pr(m2 = j|θj) ≥ 1
2 , so Pr(m2 = j|θj)Rj ≥ Pr(m2 = 1|θj)R1 given the condition that Rj > R1.

Since Rj > R1 + 2c
q(θj)

, agent 1 strictly prefers to send message j to any m1 ≤ 1 in state θj as long as

his cost of observing θ is no more than c. Since agent 1’s incentives are strict when he believes that

agent 2 is truthful with probability at least 1
2 , there exists γ < 1

2 such that agent 1 strictly prefers

to use strategy (1, 2, ..., n) to other strategies in Σ∗ when agent 2’s strategy belongs to ∆(Σ∗) and

is truthful with probability at least γ.

Step 2: Restricted Game with Perturbation For any perturbation G, consider a restricted

perturbed game where type Qi(ω) of agent i’s payoff is ũi(ω, θ, y) + ti − cχi and all types of both

agents are only allowed to use strategies in ∆(Σ∗). Since both agents being truthful is a γ-dominant

equilibrium in the unperturbed restricted game for some γ < 1
2 , the critical path lemma in Kajii

and Morris (1997) implies the following result.
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Lemma 2. For every ε > 0, there exists η > 0, such that for every η-perturbation G, there

exists an equilibrium σ(G) when the environment is perturbed by G and all types of both agents are

only allowed to use strategies in ∆(Σ∗) such that the probability with which both agents are truthful

in this equilibrium is at least 1− ε.

Since g(j, j) = f(θj) for every j ∈ {1, 2, ..., n}, f is implemented with probability more than

1 − ε if both agents behave according to σ(G). What remains to be verified is that σ(G) remains

an equilibrium when agents can use any strategy in ∆(Σ).

Step 3: Unrestricted Game with Perturbation We show that for every G, σ(G) remains an

equilibrium under perturbation G when agents can use any strategy in ∆(Σ). Suppose by way of

contradiction that there exists a type Q1(ω) of agent 1 who strictly prefers strategy (m1, ...,mn) /∈

Σ∗ to any strategy in Σ∗ when agent 2 behaves according to σ(G). Define a new strategy (m1
∗, ...,m

n
∗ )

such that

mj
∗ ≡

 mj if mj ∈ {1, j}

1 if mj /∈ {1, j}
for every j ∈ {1, 2, ..., n}.

By construction, (m1
∗, ...,m

n
∗ ) ∈ Σ∗. We compare type Q1(ω)’s expected payoff from (m1, ...,mn)

and from (m1
∗, ...,m

n
∗ ). First, (m1, ...,mn) and (m1

∗, ...,m
n
∗ ) lead to the same joint distribution of

(θ, y) given that agent 2’s strategy belongs to ∆(Σ∗), since conditional on θ = θj , agent 2 either

sends either 1 or j, so the implemented outcome is f(θ1) when agent 1’s message is neither 1 nor j.

Second, (m1
∗, ...,m

n
∗ ) leads to weakly greater transfers conditional on each state since the transfer is

0 when agent 1 sends message mj /∈ {1, j} in state θj given that agent 2’s message belongs to {1, j}.

Third, (m1
∗, ...,m

n
∗ ) leads to strictly greater transfers compared to (m1, ...,mn) when (m1

∗, ...,m
n
∗ )

requires strictly greater learning cost. To see this, note that (m1
∗, ...,m

n
∗ ) requires a greater cost

only if m1 = ... = mn and, since (m1, ...,mn) /∈ Σ∗, it must be that m1 = ... = mn ≥ 2. As

a result, (m1
∗, ...,m

n
∗ ) leads to strictly greater transfer conditional on state θ1, and the expected

increase in transfer is at least R1q(θ1), which is strictly greater than the maximal cost of learning

c. This suggests that every type of agent 1 prefers (m1
∗, ...,m

n
∗ ) to (m1, ...,mn), which leads to a

contradiction. Hence, σ(G) remains an equilibrium when agents can use any strategy in ∆(Σ).

4.2 Robust Implementation under Generic State Distribution

We show that as long as the objective state distribution q satisfies a generic condition, every f is

robustly implementable even when agents’ costs can be unbounded in perturbed environments.
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Definition 1. The objective state distribution q ∈ ∆(Θ) is generic if there exists θ∗ ∈ Θ such

that q(θ∗) > q(θ′) for every θ′ 6= θ∗.

For example, when there are two states, our generic condition rules out q that assigns probability

1
2 to each state but allows for any other full support distribution.

Theorem 2. Suppose q is generic. For every social choice function f : Θ→ ∆(Y ), there exists

a finite mechanism M that robustly implements f .

Augmented Status Quo Rule with Ascending Transfers: When q is generic and has full

support, we can write Θ ≡ {θ1, ..., θn} where q(θ1) > q(θ2) ≥ q(θ3) ≥ ... ≥ q(θn) > 0.

Each agent has 2n − 1 messages: M1 = M2 = {−n, ...,−2} ∪ {1} ∪ {2, ..., n}. The outcome

function is

g(m1,m2) =

 f(θ|m1|) if |m1| = |m2|

f(θ1) otherwise.
(4.4)

The transfer function for agent i ∈ {1, 2} is

ti(mi,m−i) =


Rj if m1 = m2 = j ≥ 1

R0 if m1,m2 ≤ 1 but (m1,m2) 6= (1, 1)

0 otherwise,

(4.5)

where Rn > Rn−1 > ... > R2 > R1 > R0 > 0 satisfy

R1 > R0 +
2c

q(θ1)
and Rj ≥ R1 +

2c

q(θj)
for every j ≥ 2 (4.6)

and
R0

Rn
>
q(θ2)

q(θ1)
. (4.7)

When q is generic, there exist Rn, ..., R1, R0 that satisfy both (4.6) and (4.7). The case with two

states has been shown in the example. When there are three states, our mechanism is given by:
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g −3 −2 1 2 3

−3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

−2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

1 f(θ1) f(θ1) f(θ1) f(θ1) f(θ1)

2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

t1, t2 −3 −2 1 2 3

−3 R0, R0 R0, R0 R0, R0 0, 0 0, 0

−2 R0, R0 R0, R0 R0, R0 0, 0 0, 0

1 R0, R0 R0, R0 R1, R1 0, 0 0, 0

2 0, 0 0, 0 0, 0 R2, R2 0, 0

3 0, 0 0, 0 0, 0 0, 0 R3, R3

An agent’s pure strategy in the unperturbed environment is (m1, ...,mn) where mj ∈ M rep-

resents the message he sends when the state is θj . Let Σ ≡ {−n, ...,−2, 1, 2, ..., n}n be the set of

pure strategies. An agent is truthful if he uses strategy (1, 2, ..., n), that is, he reports the index of

the realized state. Our proof proceeds in three steps, which is similar to that of Theorem 1.

Step 1: Restricted Game without Perturbation We start from examining a game without

any perturbation where agents are only allowed to use strategies in ∆(Σ∗), where

Σ∗ ≡
{

(m1, ...,mn) ∈ Σ such that mj ∈ {−n, ...,−2, 1} ∪ {j} for every j ≥ 1
}
. (4.8)

In words, each agent is only allowed to send negative messages, the status quo message 1, or a

message that coincides with the index of the realized state. For example, when n = 2, Σ∗ =

{(−2,−2), (−2, 1), (−2, 2), (1,−2), (1, 1), (1, 2)} while Σ = Σ∗
⋃
{(2,−2), (2, 1), (2, 2)}.

We show that there exists γ < 1
2 such that both agents being truthful is a γ-dominant equilib-

rium in the restricted game without any perturbation. Suppose agent 1 believes that agent 2 plays

(1, 2, ..., n) with probability at least 1
2 and that agent 2’s strategy belongs to ∆(Σ∗).

• Conditional on θ = θj for every j ∈ {2, 3, ..., n}. If agent 1 sends message j, his expected

transfer equals Pr(m2 = j|θj)Rj , which is at least Rj

2 given that agent 2 is truthful with

probability at least 1
2 . If agent 1 sends any m1 ≤ 1, his expected transfer is no more than
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Pr(m2 6= j|θj)R1, which is at most R1

2 . Since Rj > R1 + 2c
q(θj)

, agent 1 strictly prefers message

j to any m1 ≤ 1 in state θj even taking into account the cost c of observing θ.

• Conditional on θ = θ1. If agent 1 sends message 1, his expected transfer is Pr(m2 = 1|θ1)R1 +

Pr(m2 ≤ −2|θ1)R0, which is at least R1+R0

2 given that Pr(m2 = 1|θ1) ≥ 1
2 . If agent 1 sends

any negative message, he receives transfer R0. Since R1 > R0 + 2c
q(θ1)

, agent 1 strictly prefers

1 to any negative message in state θ1 even taking into account the cost of observing θ.

Since agent 1’s incentives are strict when he believes that agent 2 is truthful with probability at

least 1
2 , there exists γ < 1

2 such that agent 1 strictly prefers (1, 2, ..., n) to other strategies in Σ∗

when agent 2’s strategy belongs to ∆(Σ∗) and is truthful with probability at least γ.

Step 2: Restricted Game with Perturbation For any perturbation G, consider a restricted

perturbed game where type Qi(ω) of agent i’s payoff is ũi(ω, θ, y) + ti − c̃i(ω)χi and all types of

both agents are only allowed to use strategies in ∆(Σ∗).

Since both agents being truthful is a γ-dominant equilibrium in the unperturbed restricted game

for some γ less than 1
2 , the critical path lemma in Kajii and Morris (1997) implies that for every

ε > 0, there exists η > 0, such that for every η-perturbation G, there exists an equilibrium σ(G)

in the perturbed game where all types of both agents are only allowed to use strategies in ∆(Σ∗)

such that the probability with which both agents are truthful under σ(G) is at least 1− ε.

Step 3: Unrestricted Game with Perturbation We show that when q is generic and

{Rn, ..., R1, R0} satisfy (4.6) and (4.7), for every perturbation G, every equilibrium σ(G) in the

restricted perturbed game remains an equilibrium in the unrestricted perturbed game when both

agents can use any strategy in ∆(Σ). For this purpose, we only need to show that for every pure

strategy that does not belong to Σ∗, there exists a pure strategy that belongs to Σ∗ such that

every type of agent 1 weakly prefers the latter to the former when he believes that agent 2 plays

according to σ(G). We consider two cases separately.

For every (m1, ...,mn) /∈ Σ∗ that is non-constant, let (m1
∗, ...,m

n
∗ ) be such that

mj
∗ ≡

 mj if mj ∈ {−n, ...,−2} ∪ {1, j}

−mj if mj /∈ {−n, ...,−2} ∪ {1, j}
for every j ∈ {1, 2, ..., n}. (4.9)

By construction, (m1
∗, ...,m

n
∗ ) ∈ Σ∗, and moreover, it does not increase the cost of obtaining in-

formation compared to (m1, ...,mn). Our construction of g(m1,m2) ensures that (m1
∗, ...,m

n
∗ ) and
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(m1, ...,mn) induce the same distribution of (θ, y) regardless of agent 2’s message. Regardless of

agent 1’s type, as long as he believes that agent 2 behaves according to σ(G), which implies that

agent 2’s strategy belongs to ∆(Σ∗), agent 1 receives weakly greater transfer from (m1
∗, ...,m

n
∗ )

compared to (m1, ...,mn) since sending mj /∈ {−n, ...,−2} ∪ {1, j} leads to a transfer of 0 in state

θj when agent 2’s message belongs to {−n, ...,−2} ∪ {1, j}.

For every (m1, ...,mn) /∈ Σ∗ that is constant, there exists k ∈ {2, 3, ..., n} such that (m1, ...,mn) =

(k, ..., k). Compare any given type of agent 1’s payoff from using strategy (k, ..., k) and from using

strategy (−k, ...,−k). Our construction of g(m1,m2) implies that (k, ..., k) and (−k, ...,−k) lead to

the same distribution over (θ, y) and neither strategy requires the agent to learn θ. The expected

transfer agent 1 receives is Pr(m2 = k)Rk if he uses strategy (k, ..., k) and is Pr(m2 ≤ 1)R0 if he uses

strategy (−k, ...,−k). When every type of agent 2’s strategy belongs to ∆(Σ∗), Pr(m2 ≤ 1) ≥ q(θ1)

and Pr(m2 = k) ≤ q(θk). We have Pr(m2 = k)Rk < Pr(m2 ≤ 1)R0 given (4.7).

4.3 Robustness to Trembles and Noisy Information

We extend our robust implementation result to situations where agents may tremble with small

probability when sending messages and agents’ signals about the state can be noisy (so that the

two agents’ private signals may not be perfectly correlated). Our new mechanism has the same

outcome function as the augmented status quo rule but with a different transfer function.

Trembles: For any mechanism M, suppose for every i ∈ {1, 2}, when agent i intends to send

message mi ∈ Mi, the principal receives mi with probability 1 − τ and receives a message that is

drawn according to FMi
i ∈ ∆(Mi) with probability τ .

Throughout this section, we distinguish between an agent’s intended message and his realized

message. We write Fi instead of FMi
i in order to simplify notation.

Noisy Information: Suppose q ∈ ∆(Θ) is generic. Let Θ ≡ {θ1, ..., θn} such that q(θ1) >

q(θ2) ≥ ... ≥ q(θn) > 0. For every i ∈ {1, 2}, let Si ≡ {s1
i , ..., s

|Si|
i } be agent i’s signal space, with

|Si| ≥ n. Note that |Si| can be any finite number, i.e., there is no known upper bound on the

number of signal realizations. Let π ∈ ∆(Θ × S1 × S2) be the joint distribution of the state and

agents’ private signals. We say that π is of size τ > 0 if

(a) The marginal distribution of π on Θ is q ∈ ∆(Θ).
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(b) For every i ∈ {1, 2}, there exists a mapping hi : Si → {1, 2, ..., n} such that

π
(
h−i(s−i) = hi(si)

∣∣∣si) ≥ 1− τ for every si ∈ Si, (4.10)

and
n∑
j=1

∑
si∈{hi(si)=j}

π(θj , si) ≥ 1− τ. (4.11)

Our first requirement says that the marginal distribution on θ equals q. Our second requirement

is reminiscent of Chung and Ely (2003) and Sugaya and Takahashi (2013), in which every signal

realization is linked to a particular state, given by the mapping hi. One can think about hi as

endowing each signal realization with a meaning (each meaning corresponds to a state). The

mappings from signal realizations to their meanings satisfy (i) every agent believes that the other

agent receives a signal with the same meaning with probability close to 1, and (ii) the meaning of

each agent’s signal realization coincides with the state with ex ante probability close to 1.

The planner does not know the perturbation G as well as {τ, F1, F2, π}. She would like to

design a mechanism that can approximately implement the desired social choice function for all

small enough perturbations, small enough trembles, and small enough noise in agents’ signals about

the state. Agents know the mechanism M, the perturbation G, their respective information about

ω under G, as well as {τ, F1, F2, π} before deciding whether to learn θ and which messages they

intend to send. Then the planner observes the realized messages not the intended messages, and

implements an outcome and makes transfers according to the mechanism she committed to.

Theorem 3. Suppose q is generic. For every f : Θ→ ∆(Y ), there existsM such that for every

ε > 0, there exist η > 0 and τ > 0 such that for every τ < τ , F1, F2, every π that is of size τ , and

every η-perturbation G, there exists an equilibrium σ(G) such that maxθ∈Θ ||gσ(G)(θ)−f(θ)||TV < ε.

Similar to our proof of Theorem 2, we consider a mechanism where each agent has 2n − 1

messages M ≡ {−n, ...,−2} ∪ {1} ∪ {2, 3, ..., n}. Agent i’s pure strategy is an |Si|-dimensional

vector (m1, ...,m|Si|) where mk ∈M represents agent i’s intended message when his private signal

is si = ski . That being said, conditional on si = ski , agent i’s realized message is mk with probability

1− τ and is randomly drawn according to Fi ∈ ∆(Mi) with probability τ . Let

Σ∗i ≡
{

(m1, ...,m|Si|) ∈ Σ such that for every k, mk ∈ {−n, ...,−2, 1} ∪ {j} when hi(m
k) = j

}
.
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Intuitively, Σ∗ is the subset of agent i’s pure strategies such that conditional on every realization

of his private signal, he either sends a negative message, or the status quo message 1, or the true

meaning of his private signal. Agent i intends to be truthful if he sends the true meaning of his

private signal for every si ∈ Si.

When there are two states, our augmented status quo rule can robustly implement f when

agents’ tremble and their signals about the state are noisy. When there are three or more states,

our augmented status quo rule cannot robustly implement f as can be illustrated by the following

example. Suppose there are three states {θ1, θ2, θ3} and three private signals {s1
i , s

2
i , s

3
i } for each

agent i ∈ {1, 2}, where hi(s
j
i ) = j for every i ∈ {1, 2} and j ∈ {1, 2, 3}. For simplicity, let us

also assume that each agent’s private signal perfectly reveals the state. Suppose agent 1 observes

s1 = s3
1 and he believes that every type of agent 2’s strategy belongs to ∆(Σ∗2), let us compare agent

1’s expected transfer when he intends to send message −2 and when he intends to send message

2. When agent 1’s realized message is 2, his expected transfer under our augmented status quo

rule is Pr(m2 = 2|θ = θ3)R2. When agent 1’s realized message is −2, his expected transfer under

our augmented status quo rule is Pr(m2 ≤ 1|θ = θ3)R0. If the trembling probability τ is 0, then

Pr(m2 ≤ 1|θ = θ3)R0 ≥ Pr(m2 = 2|θ = θ3)R2 when agent 2’s strategy belongs to ∆(Σ∗). If τ > 0

and agent 2 intends to send message 3 with probability 1 in state θ3, then Pr(m2 = 2|θ = θ3)R2 =

τF2(2)R2 can be strictly greater than Pr(m2 ≤ 1|θ = θ3)R0 = τF2(m2 ≤ 1)R0.

We present a new mechanism called the Modified Status Quo Rule which solves this problem.

Each agent has 2n− 1 messages M ≡ {−n, ...,−2} ∪ {1} ∪ {2, ..., n}. The outcome function is

g(m1,m2) =

 f(θ|m1|) if |m1| = |m2|

f(θ1) otherwise

The transfer functions are

t1(m1,m2) =



Rj if m1 = m2 = j ≥ 1

R0 if m1 ≤ 1 but (m1,m2) 6= (1, 1)

R0 − x if m1 ≥ 2 and m2 ≤ 1

0 otherwise
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t2(m1,m2) =



Rj if m1 = m2 = j ≥ 1

R0 if m2 ≤ 1 but (m1,m2) 6= (1, 1)

R0 − x if m2 ≥ 2 and m1 ≤ 1

0 otherwise

where Rn, ..., R0 > x > c
q(θn) satisfy

R1 −R0 >
4c

q(θ1)
, Rj −R1 − x > 2c

q(θj)
for every j ∈ {2, 3, ..., n}, (4.12)

and
x

Rj −R0
>
q(θj)

q(θ1)
for every j ∈ {2, 3, ..., n}. (4.13)

When there are three states, the modified status quo rule is given by:

g −3 −2 1 2 3

−3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

−2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

1 f(θ1) f(θ1) f(θ1) f(θ1) f(θ1)

2 f(θ1) f(θ2) f(θ1) f(θ2) f(θ1)

3 f(θ3) f(θ1) f(θ1) f(θ1) f(θ3)

t1, t2 −3 −2 1 2 3

−3 R0, R0 R0, R0 R0, R0 R0, R0−x R0, R0−x

−2 R0, R0 R0, R0 R0, R0 R0, R0−x R0, R0−x

1 R0, R0 R0, R0 R1, R1 R0, R0−x R0, R0−x

2 R0−x,R0 R0−x,R0 R0−x,R0 R2, R2 0, 0

3 R0−x,R0 R0−x,R0 R0−x,R0 0, 0 R3, R3

Intuitively, the outcomes under the augmented status quo rule and the modified status quo rule

are the same. The only difference is in the transfer function: By sending the status quo message

or any negative message, an agent is guaranteed to receive transfer R0. When an agent sends a

message at least 2, he faces a penalty x if the other agent sends the status quo message or a negative

message, and receives zero transfer when the other agent sends a different message of at least 2.

The proof follows similar steps as before. First, there exists γ < 1
2 such that both agents

intending to be truthful is a γ-dominant equilibrium in the restricted unperturbed game where
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agents are only allowed to use strategies in ∆(Σ1) and ∆(Σ2). To see this, suppose agent 2 intends

to be truthful with probability at least 1
2 .

• For every j ≥ 2, conditional on every s1 ∈ S1 with h(s1) = j, if agent 1’s realized message is

j, then he receives an expected transfer of

Pr(m2 = j|s1)Rj + Pr(m2 ≤ 1|s1)R0,

and if agent 1’s realized message is no more than 1, then he receives an expected transfer of

Pr(m2 = 1|s1)R1 + Pr(m2 6= 1|s1)R0.

Since π(h2(s2) = h1(s1)|s1) ≥ 1− τ when π is of size τ , we have Pr(m2 = j|s1) ≥ 1−τ
2 (1− τ)

and Pr(m2 = 1|s1) ≤ 1 − 1−τ
2 (1 − τ). When Rj − R1 − x > 2c

q(θj)
, τ is small enough, and

τ ≤ τ , we have

Pr(m2 = j|s1)Rj + Pr(m2 ≤ 1|s1)R0 > Pr(m2 = 1|s1)R1 + Pr(m2 6= 1|s1)R0.

Hence, agent 1 strictly prefers to send message j when he receives signal s1 such that h(s1) = j.

• When R1−R0 > 4c
q(θ1)

, conditional on agent 2’s strategy belongs to ∆(Σ∗2) and agent 2 intends

to be truthful with probability at least 1
2 , agent 1 intending to send message 1 when h(s1) = 1

leads to a strictly greater transfer compared to him intending to send any negative message.

The second step uses the critical path lemma. We can show that for every ε > 0, there exists

η > 0 such that for every η-perturbation G, there exists an equilibrium σ(G) in the perturbed

restricted game where both agents intend to be truthful with probability more than 1− ε
2 . Under

the outcome function g of our mechanism, if both agents behave according to σ(G) and τ is small

compared to ε, then the implemented outcome is ε-close to f(θ) conditional on every θ.

For the third step, for every strategy of agent 1’s (m1, ...,m|S1|) /∈ Σ∗1 that is non-constant, let

(m1
∗, ...,m

|S1|
∗ ) ∈ Σ∗ be defined as:

mk
∗ ≡

 mk if mk ∈ {−n, ...,−2} ∪ {1, j} and h1(sk1) = j

−mk if mk /∈ {−n, ...,−2} ∪ {1, j} and h1(sk1) = j
for every k ∈ {1, 2, ..., |S1|}.

Intuitively, for every signal realization sk1, mk
∗ = mk if mk is no more than 1 or mk coincides with the
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meaning of sk1; otherwise, mk
∗ = −mk. By construction, (m1, ...,m|S1|) and (m1

∗, ...,m
|S1|
∗ ) induce

the same joint distribution of (θ, y).

We compare agent 1’s expected transfer from (m1, ...,m|S1|) and from (m1
∗, ...,m

|S1|
∗ ). When

agent 1’s private signal s1 is such that h(s1) = j, agent 1’s expected transfer when his realized

message m /∈ {−n, ...,−2} ∪ {1, j} is:

Pr(m2 = m|s1)Rm + Pr(m2 ≤ 1|s1)(R0 − x). (4.14)

His expected transfer when his realized message is −m is R0. Since Pr(m2 = m|s1) ≤ 2τ when

agent 2’s strategy belongs to ∆(Σ∗), the value of (4.14) is strictly less than R0 when τ is small.

This implies that every type of agent 1 prefers (m1
∗, ...,m

|S1|
∗ ) to (m1, ...,m|S1|).

For every (m1, ...,m|S1|) /∈ Σ∗1 that is constant, there exists k ∈ {2, 3, ..., n} such that (m1, ...,m|S1|) =

(k, ..., k). Compare agent 1’s expected transfer (unconditioned on θ, s1, and s2) when his realized

message is k and when his realized message is −k. When his realized message is k, he receives an

expected transfer of Pr(m2 = k)Rk + Pr(m2 ≤ 1)(R0 − x). When his realized message is −k, he

receives an expected transfer of R0. When agent 2’s strategy belongs to ∆(Σ∗2),

Pr(m2 = k) ≤ π(h2(s2) = k) +
(

1− π(h2(s2) = k)
)
τ and Pr(m2 ≤ 1) ≥ π(h2(s2) = 1)(1− τ).

Hence, Pr(m2 = k)Rk + Pr(m2 ≤ 1)(R0 − x) < R0 when τ is small enough. Hence, conditional on

agent 2 behaves according to σ(G), every type of agent 1 prefers strategy (−k, ...,−k) to (k, k, ...k)

for every k ≥ 2.

5 Stronger Notions of Robust Implementation

First, we show that the planner cannot implement any state-contingent social choice function when

we allow for perturbations where agents’ payoffs do not coincide with those in the unperturbed

environment with high probability. Second, we show that the planner cannot fully or virtually

implement any state-contingent social choice function when agents’ payoff functions do not depend

on the state, or when agents’ costs of learning are above some cutoff. We also provide a sufficient

condition on agents’ payoff functions under which full implementation is plausible when the costs

of learning are sufficiently small. Throughout this section, we focus on non-constant f :

Definition 2. Social choice function f is non-constant if there exist θ, θ′ such that f(θ) 6= f(θ′).
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5.1 Impossibility of Global Robust Implementation

We show that for every c ≥ max{c1, c2}, no finite mechanism can approximately implement any

non-constant social choice function for all c-bounded perturbations.

Proposition 1. For every c ≥ max{c1, c2} and every f : Θ→ ∆(Y ) that is non-constant, there

exists no finite mechanism that can globally implement f for all c-bounded perturbations.

Proposition 1 implies that no finite mechanism can approximately implement any state-contingent

f for all perturbations. It also implies the following corollary:

Corollary 1. For every f : Θ→ ∆(Y ) that is non-constant, there exists k(f) > 0 such that for

every finite mechanism M and every η > 0, there exists a c-bounded η-perturbation G, such that

for every equilibrium σ(G) of the game (M,G), we have maxθ∈Θ ||gσ(G)(θ)− f(θ)||TV ≥ ηk(f).

The above corollary implies that when we allow for perturbations where agents’ payoff functions

do not coincide with those in the unperturbed environment with probability bounded away from

zero, there exists such a perturbation under which every equilibrium of the game implements

a social choice function that is bounded away from the desired one f . The distance between

every implemented outcome and f is bounded from below by a linear function of η, with the

coefficient depending only on the social choice function f . For example, if f(θ) is a pure outcome

for every θ ∈ Θ, then k(f) equals 1. This result together with our previous results implies that

the perturbed environment being close to the unperturbed environment is somewhat necessary for

robust implementation.

Proof of Proposition 1: For any finite mechanism M≡ {M1,M2, g, t1, t2}, let

X(M) ≡ max
(i,m1,m2)∈{1,2}×M1×M2

∣∣∣ti(m1,m2)
∣∣∣.

By definition, X(M) exists and is finite. Since f is non-constant, there exists θ∗ ∈ Θ such that

f(θ∗) /∈ co
(
{f(θ)}θ∈Θ\{f(θ∗)}

)
︸ ︷︷ ︸

≡Y

.

According to the separating hyperplane theorem, there exists v : Y → R such that v(f(θ∗)) <

miny∈Y v(y). Hence, there exists C > 0 such that
(

miny∈Y v(y)− v(f(θ∗))
)
C > 4X(M).
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First, consider a perturbation G+ where ũ1(ω, θ, y) = Cv(y) for all ω ∈ Ω. If M implements

f(θ∗) in state θ∗, then there exists m∗2 ∈ ∆(M2) such that

max
m1∈∆(M1)

{Cv(g(m1,m
∗
2)) + t1(m1,m

∗
2)} ≤ Cv(f(θ∗)) +X(M)︸ ︷︷ ︸

agent 1’s highest payoff when the outcome belongs to Y

. (5.1)

Next, consider another perturbation G− where ũ2(ω, θ, y) = −Cv(y) for all ω ∈ Ω. According

to (5.1), agent 2’s payoff is at least

min
m1∈∆(M1)

{−Cv(g(m1,m
∗
2)) + t2(m1,m

∗
2)} (5.2)

if he plays according to m∗2. Since C > 0 is chosen such that
(

miny∈Y v(y)−v(f(θ∗))
)
C > 4X(M)

and X(M) ≥ |ti(m1,m2)| for every i and (m1,m2), inequalities (5.1) and (5.2) imply that

min
m1∈∆(M1)

{−Cv(g(m1,m
∗
2)) + t2(m1,m

∗
2)} ≥ −Cv(f(θ∗))− 3X(M) > max

y∈Y
{−Cv(y)}+X(M).

(5.3)

For an outcome in Y to be implemented in any state under perturbation G−, it must be the

case that agent 2’s payoff is no more than maxy∈Y{−Cv(y)}+X(M). Inequality (5.3) implies that

no outcome in Y can be implemented in any state, which implies that every mechanism M that

can implement f under perturbation G+ cannot implement f under perturbation G−.

5.2 Full Implementation

Our main results in Section 4 focus on robust partial implementation: The planner’s objective is

to design a mechanism so that for every small perturbation, there exists one equilibrium whose

induced outcome is close to f . In what follows, we discuss whether the planner can design a

mechanism that can fully or virtually implement f under every small perturbation.

Formally, we say that f is fully implementable if there exists a finite mechanismM≡ {M1,M2, g, t1, t2}

such that gσ(θ) = f(θ) for every θ ∈ Θ and every equilibrium σ under mechanism M. We say

that f is virtually implementable if for every ε > 0, there exists a finite mechanism M such that

||gσ(θ) − f(θ)||TV ≤ ε for every θ ∈ Θ and every equilibrium σ under mechanism M. We say

that f is strongly-robust implementable if for every ε > 0, there exists η > 0 such that for every

η-perturbation G, ||gσ(G)(θ)− f(θ)||TV ≤ ε for every θ ∈ Θ and every equilibrium σ(G) of (M,G).

We introduce two conditions under which full and virtual implementation is impossible.
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Proposition 2. Suppose f is non-constant.

1. If (u1, u2) do not depend on θ and c1, c2 > 0, then f is not virtually implementable.

2. For every (u1, u2), there exists c > 0 such that f is not virtually implementable when c1, c2 > c.

Proof of Proposition 2: When (u1, u2) do not depend on θ and c1, c2 > 0, there always exists an

equilibrium where neither agent pays the strictly positive cost to learn the state. In this equilibrium,

the implemented outcome does not depend on the state, which implies that no mechanism can

virtually implement any non-constant f .

Next, we show that no mechanism can virtually implement non-constant f when c1 and c2 are

sufficiently large. For every u1 and u2, let

X(u1, u2) ≡ max
i∈{1,2}

∣∣∣max
θ,y

ui(θ, y)−min
θ,y

ui(θ, y)
∣∣∣.

Fix any finite mechanism M, for every m2 ∈ ∆(M2), let

T (m2) ≡ max
m1∈M1

t1(m1,m2).

Suppose agent 1 believes that agent 2’s message is m2, the difference between his expected payoff

when he learns θ and when he does not learn θ is

E
[

max
m1∈M1

{u1(θ, g(m1,m2)) + t1(m1,m2)}
]
− max
m1∈M1

E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
. (5.4)

By definition, if m∗1 ∈ arg maxm1∈M1 E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
, then t1(m∗1,m2) ≥ T (m2)−

X(u1, u2). This implies that the value of (5.4) is no more than 2X(u1, u2), and therefore, agent 1

has no incentive to learn θ when c1 > 2X(u1, u2). In addition, when agent 1 believes that agent 2’s

message is m2, sending a message that belongs to arg maxm1∈M1 E
[
u1(θ, g(m1,m2)) + t1(m1,m2)

]
regardless of the state is one of agent 1’s best replies.

Similarly, suppose c2 > 2X(u1, u2). For every m1 ∈ ∆(M2), when agent 2 believes that agent 1’s

message is m1, sending a message that belongs to arg maxm2∈M2 E
[
u2(θ, g(m1,m2)) + t2(m1,m2)

]
regardless of the state is one of agent 2’s best replies. For everyM, consider an auxiliary two-player

normal form game where agent i ∈ {1, 2} has a finite set of pure strategies Mi and his payoff is

E
[
ui(θ, g(m1,m2)) + ti(m1,m2)

]
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when he uses strategy mi and his opponent uses strategy m−i. Since this is a finite game, a Nash

equilibrium (m1,m2) ∈ ∆(M1)×∆(M2) exists. By construction, agent 1 sending m1 regardless of θ

and agent 2 sending m2 regardless of θ is an equilibrium under mechanismM. In this equilibrium,

the implemented outcome is the same for all θ, which means that it cannot fully implement f when

f is non-constant.

Proposition 2 and its proof imply that when agents’ costs of learning are large relative to the

responsiveness of (u1, u2) with respect to θ, there always exists an equilibrium where neither agent

pays the cost to learn the state regardless of how large (t1, t2) are. Intuitively, each agent’s transfer

depends only on the message profile but not on the realized state. When agent 2’s message does not

depend on the state, the only incentive for agent 1 to learn the state is to induce a more favorable

state-contingent outcome. When his cost of learning outweighs the benefit from learning, he has

no incentive to learn the state, which gives rise to equilibria where no agent learns the state. By

contrast, our main results focus on partial implementation and in the equilibria we construct, both

agents’ messages depend on the state. As a result, every agent’s benefit from learning not only

comes from inducing a better state-contingent outcome, but may also come from his incentive to

receive a higher transfer. As a result, the planner can robustly implement any state-contingent f

even when c1 and c2 are greater than the cutoff we constructed in the proof of Proposition 2 and

when (u1, u2) do not depend on θ.

Nevertheless, f is fully implementable when one of the agent’s payoff function satisfies a strict

version of Rochet (1987)’s cyclical monotonicity condition and that agent’s cost of learning is below

some cutoff. Formally, for every f : Θ → ∆(Y ) and ui : Θ× Y → R, we say that ui and f satisfy

strict cyclical monotonicity if for every permutation τ of Θ,

∑
θ∈Θ

ui(θ, f(θ)) ≥
∑
θ∈Θ

ui

(
θ, f(τ(θ))

)
. (5.5)

and for every permutation τ such that f(τ(θ)) 6= f(θ) for some θ ∈ Θ,

∑
θ∈Θ

ui(θ, f(θ)) >
∑
θ∈Θ

ui

(
θ, f(τ(θ))

)
. (5.6)

Condition (5.5) is the cyclical monotonicity condition in Rochet (1987). Condition (5.6) is novel:

for every f that depends nontrivially on θ, this condition rules out ui that does not depend on θ.

Proposition 3. If there exists i ∈ {1, 2} such that ui and f satisfy strict cyclical monotonicity,
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then there exists c > 0 such that for every c < c, there exists a finite mechanism M that can fully

implement f and can strongly-robust implement f .

Proof of Proposition 3: If f is constant, then the result is straightforward. We focus on f that is

non-constant. Consider a mechanism where Mi = Θ, M−i = {1}, g(mi,m−i) = f(mi), ti(m1,m2)

depends only on m1, and t−i(m1,m2) = 0. Since f and ui satisfy strict cyclical monotonicity, there

exists ti : Θ→ R such that

1. ti(θ) = ti(θ
′) for every θ, θ′ ∈ Θ such that f(θ) = f(θ′),

2. ui(θ, f(θ)) + ti(θ) > ui(θ, f(θ′)) + ti(θ
′) for every θ, θ′ ∈ Θ such that f(θ) 6= f(θ′).

Under such a mechanism, agent i chooses an outcome in {f(θ)}θ∈Θ and receive an additional reward

ti(θ) for implementing f(θ). Agent i has a strict incentive to choose f(θ) in state θ, so he has a

strict incentive to learn the state when c is small enough. Under every η-perturbation G, every

normal type of agent i has a strict incentive to learn the state and to induce outcome f(θ) in state

θ. This completes the proof.

6 Conclusion

We examine the problem faced by a planner when he wants to robustly implement a state-contingent

social choice function when (i) agents need to incur costs to learn the state, (ii) the planner faces

uncertainty about agents’ costs of obtaining information, their biases over outcomes, as well as

their beliefs and higher-order-beliefs about each other’s payoffs. We introduce mechanisms that

robustly implement the desired social choice function when the state distribution satisfies a generic

assumption, or when the planner knows an upper bound on agents’ costs of obtaining information.

We conclude by discussing the related literature.

Our work contributes to the literature on robust implementation, pioneered by Bergemann and

Morris (2005). Our paper is closely related to Oury and Tercieux (2012), who take an interim

perspective and require the outcome induced by every nearby type to be close to that induced by

the original type. They show that Maskin monotonicity is necessary for robust partial implemen-

tation.12 By contrast, we take an ex ante perspective by requiring that the desired outcome to

12The literature on full implementation (Maskin 1999) and virtual implementation (Abreu and Matsushima 1992)
examine whether the planner can implement or approximately implement the desired social choice function in all
equilibria. Unlike our model, they do not consider any perturbations and only require full or virtual implementation
in the unperturbed environment. Hence, our result is neither stronger nor weaker than theirs.
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be implemented with probability close to one in all nearby type spaces. We show that all social

choice functions are robustly implementable and our mechanisms are robust to small trembles and

noisy information about the state. Our results design mechanisms that can robustly elicit costly

information when the principal faces uncertainty about agents’ motives, costs of obtaining informa-

tion, as well as beliefs and higher-order-beliefs while assuming that agents’ information acquisition

technologies are known and their signals about the state are highly correlated. This stands in

contrast to Carroll (2019) who focuses on robust contracting when the principal faces uncertainty

about the agent’s information acquisition technology and Aghion, Fudenberg, Holden, Kunimoto

and Tercieux (2012) that perturbs players’ information about the state.

Our work is related to the literature on robust prediction in games, pioneered by Rubinstein

(1989). Our notion of robustness builds on the notion of robust equilibrium in Kajii and Morris

(1997).13 Their notion of has been broadly applied to study the robustness of equilibria in potential

games (Ui 2001, Morris and Ui 2005) and supermodular games (Oyama and Takahashi 2020). The

key difference is that in our model, agents’ payoffs in the perturbed game do not directly depend

on their actions, which are their messages in our mechanism design setting. The assumption that

agents’ messages are cheap talk is common in the robust mechanism design literature, such as

Bergemann and Morris (2005), Aghion, Fudenberg, Holden, Kunimoto and Tercieux (2012).

Finally, our work is also related to the large literature on contracting for information acquisition

such as Zermeno (2011) and Clark and Reggiani (2021), as well as mechanism design with costly

information acquisition such as Crémer and Khalil (1992), Persico (2000), Bergemann and Välimäki

(2002), Li (2019), and Larionov, Pham and Yamashita (2021). Those papers study characterize the

optimal mechanism under a fixed informational environment. In contrast, we examine whether it is

possible to (approximately) implement a desired social choice function in all nearby environments.

A notable exception is Carroll (2019), who characterizes the optimal contract for information

acquisition when the principal faces uncertainty about the set of information acquisition technolo-

gies available to the agent, but can condition the agent’s transfer on the realized state. By contrast,

the state cannot be verified ex post in our setting, and the principal faces uncertainty not about

agents’ costs of obtaining information, but also about the agents’ biases over outcomes and beliefs

and higher-order-beliefs about each other’s payoffs.

13Our notion of robustness is also related to the notion of robust refinement in Fudenberg, Kreps and Levine (1988),
in which an equilibrium should not be ruled out by a refinement if it is a strict equilibrium in some nearby game.
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A Robust Implementation with a Continuum of States

We generalize our robust implementation results to environments with a continuum of states, as

long as the state space Θ is compact and both the agents’ payoff functions in the unperturbed

environment and the desired social choice function f are continuous with respect to θ.14

Formally, let Θ be a compact set in some normed vector space, with the endowed norm denoted

by || · ||. Let q ∈ ∆(Θ) be the objective distribution of θ which we assume has full support and

has no atom. A social choice function f : Θ → ∆(Y ) is continuous if for every ε > 0, there exists

δ > 0 such that ||f(θ) − f(θ′)||TV ≤ ε for every ||θ − θ′|| ≤ δ.15 Agent i ∈ {1, 2} can observe

the realization of θ at cost ci ∈ R+. Agent i’s payoff function in the unperturbed environment

is ui(θ, y) + ti − ci. We say that ui(θ, y) is continuous with respect to θ if for every y ∈ Y and

ε > 0, there exists δ > 0 such that |ui(θ, y) − ui(θ′, y)| ≤ ε for every ||θ − θ′|| ≤ δ. The notion

of η-perturbation remains the same as in the baseline model, i.e., agents’ payoff functions coincide

with those in the unperturbed environment with probability at least 1− η and can have arbitrary

bias over outcomes and arbitrary learning costs with complementary probability.

One thing to note is that we do not require agent i’s payoff in the perturbed game ũi(ω, θ, y)

to be continuous with respect to θ when agent i is not normal at ω.

Corollary 2. Suppose Θ is compact, q has full support and has no atom, and both f and

(u1, u2) are continuous with respect to θ. For every ε > 0, there exist η > 0 and a finite mechanism

M such that for every η-perturbation G, there exists an equilibrium σ under (M,G) such that

maxθ∈Θ ||gσ(θ)− f(θ)|| ≤ ε.

We explain how to modify the proof of Theorem 2 to show Corollary 2. For simplicity, we focus

on the case where u1(θ, y) = u2(θ, y) = 0. Since the state space Θ is compact and the desired social

choice function f is continuous, for every ε > 0, one can construct a finite partition of Θ using the

finite cover theorem that satisfies the following three conditions:

1. Every partition element occurs with positive probability under q.

2. There exists a partition element that occurs with strictly higher probability compared to

every other partition element.

14Our result also generalizes when the planner wants to robustly implement a social choice correspondence F :
Θ → ∆(Y ) provided that F is upper-hemi-continuous and (u1, u2) are continuous with respect to θ. The proof is
available upon request.

15Under our definition, f is uniformly continuous with respect to θ. This is without loss of generality since Θ is
compact. The same comment applies when we introduce our notion of continuity for agents’ payoff functions.
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3. ||f(θ)− f(θ′)||TV ≤ ε
2 for every pair θ, θ′ that belong to the same partition element.16

Fix any partition that satisfies the above requirements. Denote the partition elements by {Θ1, ...,Θn}.

For every j ∈ {1, 2, ..., n}, let θj be an arbitrary element in Θj . We introduce a new social choice

function f̃ : Θ→ ∆(Y ) such that f̃(θ) = f(θj) for every θ ∈ Θj and j ∈ {1, 2, ..., n}.

Consider the mechanism we constructed in the proof of Theorem 2, in which every agent has

2n+ 1 messages. In our new environment with a continuum of states, each agent is asked to report

which element of the partition the realized θ belongs to. The proof of Theorem 2 implies that there

exists a mechanismM such that for every η-perturbation G, there exists an equilibrium σ∗(G) such

that maxθ∈Θ ||gσ∗(G)(θ) − f̃(θ)||TV < ε/2. Since ||f̃(θ) − f(θ)||TV = ||f(θj) − f(θ)||TV ≤ ε/2, the

triangular inequality implies that maxθ∈Θ ||gσ∗(G)(θ) − f(θ)||TV < ε. Hence, the said mechanism

robustly implements f .
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