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Abstract

This paper studies a canonical model of dynamic price discrimination- when firms can
endogenously discriminate amongst consumers based on the timing of information arrival
and/or the timing of purchase. A seller and buyer trade repeatedly. Buyer’s valuation for
the trade is private information and it evolves over time according to a renewal Markov
process. The seller offers a dynamic pricing contract which options a sequence of forwards.
As a first step, we show that this relatively simple dynamic pricing contract achieves the
optimum in the two period repeated sales model. We then show that this contract is (a)
the optimum when a single object is sold at a fixed time and (b) the optimum under strong
monotonicity in the repeated sales model. The gap between the full optimum and our
mechanism of simple dynamic pricing instruments is explained through buybacks. More-
over, the general optimal contract is shown to be backloaded and a theoretical bound is pro-
vided for the fraction of optimal revenue that can be extracted by the seller from using our
mechanism: it achieves more than 70% of the total profit uniformly across distributions,
and more than 90% for standard ones such as the power distribution. The construction of
the mechanism and bounds is then extended to multiple players to study repeated auctions.
At every step of the analysis a mapping is established between the pricing model (indirect
mechanisms) and the dynamic mechanism design toolkit (direct mechanisms). In this pro-
cess, novel tools are developed to study dynamic models of mechanism design when global
incentive constraints bind.

*Krasikov: Pennsylvania State University, izk113@psu.edu; Lamba: Pennsylvania State University,
rlamba@psu.edu. We are deeply indebted to Vijay Krishna for his guidance and encouragement.
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1 Introduction

Price discrimination refers to the idea of selling two or more different goods at prices that are in
different ratios to the marginal cost (Stigler [1987]). In a influential survey on the state of the
art on price discrimination, Varian [1989] wrote:

"In order to lower the price only to the marginal consumer [to increase profit], or
more generally to some specific class of consumers, the firmmust have a way to sort
consumers. The easiest case is where the firm can explicitly sort consumers with
respect to some exogenous category such as age. Amore complex analysis is necessary
when the firm must price discriminate on the basis of some endogenous category such as
time of purchase. In this case the monopolist faces the problem of structuring his
pricing so that consumers ’self-select’ into appropriate categories."

This paper casts the familiar monopolistic screening model from static mechanism design
into a repeated allocation setting in the pursuit of a canonical model of dynamic price discrim-
ination. A seller with a constant marginal cost of production wants to repeatedly sell a good
or service to a buyer with correlated and sequentially arriving private valuations. What is the
menu of prices the seller must offer to include and exclude buyer types over time in order to
maximize her profit?

Over the years the monopolistic screening model developed as a leading tool in the economists’
arsenal for understanding non-linear pricing and price discrimination more generally (See Mussa
and Rosen [1978], Börgers [2015] Chapter 2, and Armstrong [2016]). From a modeling per-
spective, however, the statement italicized above was largely ignored. Booking an airline ticket
with the option of cancelation or choosing between monthly and yearly payments for a recur-
ring service or sorting the financial market for traders through a menu of options and forwards
are some of potentially many examples where time is an important dimension of screening (a)
sequentially arriving private information, and (b) repeated or on-going demand for a good or
service.1

Courty and Li [2000] delighted economists by providing a first analysis of intertemportal
price discrimination, wherein sequential arrival of information is used by the seller to incen-
tivize users to self-select from a menu of partially revealing contracts.2 This paper builds on the
literature that followed after by analyzing a repeated allocation model (as opposed to simply a
two-period sequential screening model) where a set of novel and realistic instruments are used
to dynamically price discriminate amongst potential buyers. Through an admittedly stylized
set up that has some theoretical precedence, we are looking to capture the basic economic forces
of intertemporal price discrimination and map them into the much loved Myersonian model of
mechanism design.

1In the era of big data dynamic considerations are in fact becoming more important. For example, online
merchants can now rely on a huge treasure trove of past consumer data which creates enormous opportunities for
price discrimination.

2To be sure, Baron and Besanko [1984] had elegantly modeled dynamic screening, but its formulation as an
endogenous model of price discrimination was discussed extensively in Courty and Li [2000].
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We start with the following simple two-period model. A seller can sell two goods to a buyer,
one today and another tomorrow. The buyer knows his valuation for the good today and will
be informed of the valuation for the second period good tomorrow. The valuation in the first
period is drawn form a uniform distribution on the unit interval, and then with probability ρ it
stays the same for the second period good and with probability 1− ρ it is drawn again uniformly
on the unit interval; this is a simple version of the renewal Markov process. The model has two
informational channels- the buyer is initially informed of his valuation and the seller is not,
and moreover, the buyer will (privately) learn his future valuation later for which he currently
posses a signal with ‘precision’ ρ. What is a reasonable (take it or leave it) contract the seller
should offer at the beginning of the first period to maximize the ex ante expected value of her
profit?

We build towards our "candidate mechanism" in three steps. First, we document the op-
timal spot price mechanism wherein the seller simply offers a sequence of prices {α1, α2} that
statically maximize the seller’s profit in each period. This is a useful benchmark but one that
clearly leaves too much surplus on the table for the buyer since the seller does not exploit the
sequential structure of the problem. So, next we allow the seller to charge an upfront payment
to give the buyer the right to buy the second period good in the future. The contract space
is given by {α1, (α2,M )}, where α1 is a spot price for the first period good, and (α2,M ) is a
classical European call option for the second period good; the latter asks the buyer to pay an
option premium of M which grants him the flexibility to buy (or not) the second period good
for a strike price α2.

This second contract invokes a simple version of intertemporal price discrimination. The
option premium M can be chosen small enough so that all buyer types in the first period agree
to pay up, and then the optimal choice of strike price for the option contract, αo

2, turns out to
be lower than the optimal spot price, αs

2. Thus, the seller reduces the option strike price below
the spot price to include more buyer types’ in the second period, but increases her aggregate
profit by (a) selling more often, and (b) charging the flat option premium M that is paid by all
buyer types.3

The seller can of course do even better. The European option increases seller’s profit by
extracting expected surplus of the buyer that spot pricing leaves on the table. However, the
actual screening decision, which buyer types buy the second period good, is still decided upon
the realization of v2; if v2 > α2 the good is bought. In the third contract, the seller enriches the
option contract space to include a forward price:

{
α1, (M , α2, y)

}
. The second period good is

now sold by the means on an American option on forwards. The buyer can exercise the option
in the first period to purchase the second period good at a price y. Alternatively, the buyer
can exercise the option in the second period and purchase the second period good for its strike
price. The key difference between the two is that the payment y is binding, it is paid no matter
the realization of v2, whereas the buyer can decide upon learning v2 whether to buy the good
at α2.4

3In the uniform example with ρ = 1/2, we get αo2 =
1/3 and αs2 =

1/2.
4Note that in each of these three contracts the optimal first period price remains the same. For the uniform

example with ρ = 1/2, it is α1 = 1/2.
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Well call this third set of dynamic pricing instruments optioning forwards. It splits the buyer
types into those that would like to commit earlier and those that want to wait to exercise the
strike price. Call the optimal strike for the second good in this third contract to be α f w

2 . Then,
it is shown that all buyer types with with v1 > α

f w
2 buy at the optimally chosen forward price

y, and types v1 < α
f w
2 wait for the second period realization to buy the good if v2 > α

f w
2 . The

seller optimizes through the addition of the forward price y by setting α f w
2 > αo

2.
5 The seller

trades off serving lesser types through the strike price in period two by making more types in
period one commit to buying the good at the forward price.

Perhaps, the most surprising part that adds conceptual heft to the above pricing analysis
is that the optimally chosen options with forwards contract is actually the optimal contract.
Proving this, or any such results in dynamic mechanism design, has been a blind spot for the
literature so far because of its reliance on the so-called first-order approach. Even in the two-
period model discussed above global incentive constraints would bind for any interior value of
persistence: 0 < ρ < 1. It is hitherto not clear how to use the standard mechanism design tools
to establish the optimum. We do so by proving two critical results: backloading and independent
screening.

Optimal contracts are backloaded, that is, for any sequence of values v1 and v2 if trade
happens with any positive probability in period 1, then it happens for sure in period 2. This is
an intuitive, but fairly strong result. For any fixed value of information rent that the seller has
to pay to the agent, she prefers to delay its transfer as much as possible because the shadow price
of providing incentives becomes lower as the informational advantage of the buyer decreases.

Backloading allows us to establish that the optimal contract solves the screening problem
for the two goods separately. Consider two problems: first where the seller only wants to sell
the good in the first period, and second where she wants to sell the good only in the second
period; in the latter case the first period value is not payoff relevant but acts as a signal for the
second period value. Independent screening demands that solving these two problems separately
would yield exactly the same amount of trade as the original problem where both goods are to
be allocated across time. Once we have this final result, we can solve for the optimal thresholds
of trade which turn out to be α f w

1 and α f w
2 , the ones calculated for the optimal option contract

with forwards. So, the optimal trading rule is to trade in period 1 if and only if v1 > α
f w
1 and

trade in period 2 if and only if max{v1, v2} > α f w
2 . A clear, one-to-one, mapping is established

between the optimal set of dynamic pricing instruments and the optimal dynamic contract.
The optimal contract in the two-period model satisfies three key properties: backloading,

bang-bang, and independent screening. Of these the optimal contract for more general time
horizons and the Markov renewal model satisfies only the first criterion- it is always back-
loaded. Randomization and linking sales across time improve the seller’s profit. However,
characterizing the optimal dynamic pattern of randomization and linking of sales of across time
is prohibitively complex, and arguably limitedly useful at the margin in increasing the seller’s
profit. Thus, going forward we take an axiomatic approach to designing a reasonable dynamic
mechanism that is simple to describe in that it targets certain simple properties, and still captures

5In fact for the uniform example with ρ = 1/2, the optimal value is α f w
2 = 7/18.

4



a lion share of the optimal value.6 We take the dynamic pricing route and construct and com-
pletely characterize a candidate mechanism that satisfies the aforementioned three properties-
backloading, bang-bang and independent screening, and then show that the loss from using this
candidate mechanism is actually quite small. Note that independent screening does not imply
that the contract is history independent, it just simplifies the exact nature of history dependence
in the contract space. For example, the first-order approach, the standard so far in the literature,
would also generate a contract that satisfies backloading, bang-bang, and independent screening;
however, it would not be incentive compatible in our setting.

Fix a time t and consider the associated sequential screening problem: there is only one
allocation that is made in period t , so Vt is the only payoff relevant type and all Vs for s < t
act as signals for the payoff relevant type. The types evolve according to a general Markov
renewal model. The optimal option contract with forwards is now calculated for this sequential
screening problem:

{
αt ,Mt , (y st )s≤t

}
whereMt is the option premium that would set so as to

incentivize all buyer types in the first period to buy in to the option, αt is the strike price which
the buyer would face if he wants to wait till end to make her decision to buy the good, and y st is
a set of prices that buyer can commit to paying at the end of period t if he makes the decision
to buy the good in period s ≤ t . Using tools discussed above for the two period, we show that
this the optimal contract with forwards is actually the optimal deterministic mechanism for the
sequential screening problem. The optimal allocation is given by what we call themax-threshold
mechanism: the t -th period good is allocated if and only if max

s≤t
Vs ≥ αt . Thus, the optimal

deterministic mechanism picks the highest realization from the history of types and evaluates it
against a threshold determined by distributional parameters.

Our candidate mechanism for the repeated sales problem is then defined by pasting the opti-
mal options with forwards contract for the sequential screening problems:

{
(αt ),M,

(
(y st )s≤t

)
t

}
,

where the sequence of thresholds (αt ) adopt the same values that they did in their respective
sequential screening problems, and M =

∫ ∞
0 e−r tMtdt refers to the option premium that is

paid by all buyer types at the inception of the contract. The buyer can then either wait till time
t to buy good t at spot price αt or make the decision to buy good t at time s for a price y st .
In the latter case we have two payoff equivalent choices: the buyer can either pay for the good
when he makes a decision to buy it or wait till the good becomes available, linearity assures
that adjusted for discounting these two mechanisms generate the same payments, and thus im-
plement the same trading rule. What really matters, in the spirit of Varian’s quote, is the timing
of the decision of purchase. The set of sequence of valuations is discriminatorily split into bins
instrumenting the time s at which the buyer decides to buy good t > s , and the different buyer
types are incentivized to select into their respective bins by the appropriately chosen forward
prices.

6By axiomatic design, we mean that we restrict the class of mechanisms within which we search for the optimum
to satisfy certain axioms. This is done typically because the optimum is extremely hard to compute or the instru-
ments required to potentially implement it are impractical. This approach is quite common in combinatorial auction
design, see for example Milgrom and Segal [2018], and more recently in dynamic contracts, see Chassang [2013]. We
also used this approach in one of our recent papers on dynamic contracts, Krasikov, Lamba, and Schacherer [2018].
A justification of this approach should, of course, include a theoretical and quantitative sense of the distance between
the optimum achieved within the restricted class and the actual full optimum.
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The comparative statics of the candidate (or max-threshold) mechanism are straightforward.
The sequence of thresholds or strike prices αt are positive and strictly decreasing over time
towards to zero. Thus, the contract becomes efficient along any history of realizations in the
long run. Moreover, as types become highly persistent, αt converges to threshold for the spot
contract, αs , and as types converge to being independent across time, αt converges to zero for
all t implying immediate efficiency of the dynamic contract and extraction of the entire surplus
by the seller.

Since the candidate mechanism is backloaded, the dynamics play out in the form of a se-
quence of interdependent optimal stopping problems. At the beginning of time, depending on
the realization of the initial valuation V0, the buyer decides to buy a set of goods from a future
date t0 onwards such that V0 > αt0 . From then on, goods [t0,∞) are considered sold at prices
{y0t }t>t0 , and the stock of goods S0 = t0 is still available in the market. The second purchase
(or decision to trade) happens at the first instance t1 for which Vt1 > V0 = sup

s<t1
Vs . Fixing this

value t1, there exists a number St1 > 0 such that Vt1 = αt1+St1 , and thus all goods in the interval
[t1 + St1, S0) are sold at prices {y t1t }t1+St16t6S0 . This inductive line of reasoning stops in finite
time, say tτ , leading to sales at times 0, t1, t2,...,tτ at prices {y t jt }t j+St j 6t6St j−1 which draws down
the total available stock (St )t6tτ till we get max

s≤tτ
Vs > αtτ culminating in exhaustion of total

stock left for sale: Stτ = 0. Note that the value of stock process St at time t and stopping time
tτ are both random variables and we explore the comparative statics of their expected value as a
function of persistence of the types process.

As mentioned before, the optimal option with forwards contract, our candidate mechanism,
does not achieve the global optimum, that is the optimum in a complete unrestricted class of
dynamic mechanisms. The main reasoning for this is that it treats history dependence in a very
simple fashion. However, by construction, the max-threshold mechanism for repeated sales
is backloaded, deterministic, and it independently screens the sale of each good, and again by
construction, it is the optimal contract in the class of mechanisms that satisfy these properties.
Moreover, we show that the candidate mechanism is the global optimum in the class of strongly
monotone dynamic mechanisms, where allocative distortions are ranked along the history of
buyer valuations through the usual partial order on vectors.

As a corollary of these results, we can generate a simple mapping between the world of
dynamic pricing and dynamic mechanism design: restricting attention to pricing rules that
satisfy the bang-bang property and independent screening is equivalent to searching for the
optimum in the class of strongly monotone allocation rules. From a practical perspective,
because of its simplicity, strong monotonicity might be a desirable restriction to impose of
the class of mechanisms, at least as a benchmark; and on the theoretical side, most of known
applications of dynamic mechanism design either satisfy or check for strong monotonicity ex
post.

We explore the qualitative nature of the gap between the candidate mechanism and the
global optimum through a series of examples. The key lesson here is the optimal contract
allows for "buybacks" of goods already sold but not yet consumed to partition the buyer types
into even finer bins and thereby increases the seller’s profit. Consider the case where in the first
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period the buyer has exercised the option for the fourth good, but not the third one. To price the
third good appropriately, the seller might want to obtain extra information regarding buyer’s
second period valuation: she wants to lower the threshold for the third good whenever v2 is
sufficiently small, which the max-threshold mechanism does not allow. Our backloading result
intuitively means that a purchase of the second good can not provide the seller with such a signal.
An improvement here would be to allow the buyer to return the fourth good for some small
refund. Only the low buyer types will use this opportunity, therefore marginal cost of this extra
information are negligible. On the other hand, the seller will now adjust his selling threshold
for the third good selling more often above the marginal type α3. A formal description of this
rather intuitive construction will, however, throw light on the grave complexity involved in
completely characterizing the full optimum in general model.

Despite aforementioned gap, the options with forward contract achieves a large fraction
of the optimum. As a justification for the use of our specific axiomatic design, we provide a
theoretical bound for the seller’s profit in our mechanism. The bound is constructed as follows.
First we calculate the seller’s profit from using our candidate mechanism- say R f w . This forms
a lower bound for the optimal profit R∗. Since, the optimal profit is hard to determine in a
closed-form, we define a solvable relaxed problem for which it is easy to compute the seller’s
profit.7 The optimal profit is then bound from above by this value, say R. Our theoretical
bound for the fraction of optimal profit that can be expressed as: 1 > R

f w

R∗
> R

f w

R
. We go a step

further and find a bound L which is uniform across all distributions for the Markov renewal
processes: R

f w

R
> L. The uniform bound is tight in the limit as the types process converge to

i.i.d. or perfect persistence, and it never does worse than 70% of the optimum. It is however,
not tight in general. We show that for standard class of distributions such as uniform, power
and beta, the bound R

f w

R
achieves around 90% of the optimum, providing credence to our claim

that restricting attention to deterministic and independent screening does not lead to much loss,
and on the plus adds considerable simplicity.

Finally, we extend the single buyer repeated sales problem to the setting with multiple buy-
ers to study repeated auctions.8 Specifically, we consider the case when each good is sold by the
means of a second price auction with a participation fee or required reserve price. Analogous to
the single buyer case, we construct a candidate mechanism in three steps. In each pricing rule,
the final act of selling each good is a second price auction. The constructive steps deal with how
to determine the participation fees so as to dynamically price discriminate the set of potential
buyers, how to include or exclude buyers over time so as to maximize expected profit.

First, we derive the optimal spot entry fee. Ignoring dynamics, we document which buyer
types to exclude from the auction in order to maximize revenue. The tradeoff here is clear-
excluding lower buyer types truncates the distribution of the ones who would participate in
the auction which is costly, but it also increases expected payments condition on participation.

7This relaxed problem is akin to the approach of solving the seller’s problem under orthogonalized type space
for the buyer; pioneered by Esö and Szentes [2007]. In our setting it only provides an upper bound which cannot
be attained since the contract it produces is not incentive compatible.

8We look at the natural dynamic generalization of the classic Myerson optimal auctions [Myerson [1981] to our
setting in the sense that buyers’ types are assumed to be independent and private (IPV), but each buyer’s type is
correlated across time.
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Second, we consider the setting of a sequential auction where one good is sold at a pre-specified
date t , so that the buyers’ types before that date act as signals for their valuations. the seller offers
a European call option to acquire the right to participate in the auction at date t . The option
premium is chosen low enough so as to incentivize each buyer type to take the option contract.
At date t , the pre-determined strike price selects the set of buyers that want to participate in
the auction. the key improvement here is that the strike price in the second pricing rule will be
lower than the first one so as to encourage greater participation, but profit is increased through
the upfront extracting of surplus.

In third, truly dynamic, pricing rule, we introduce forward contracts to determine the par-
ticipation fee. More buyer’s types are excluded as the number of buyers increases. Finally,
we construct a theoretical upper bound on seller’s profit, and argue that even the spot auction
can approximate it for large auctions. This should with no surprise- it is well known that in
the static setting a second price auction achieves full surplus extraction for a large number of
buyers.

To summarize, the rest of the paper is organized as follows. In Section 2, we present a
relatively simple two period problem, and build a dynamic pricing mechanism which options
forwards. Then, using techniques from dynamic mechanism design, we show that these pricing
instruments are sufficient in that they achieve the optimum. In Section 3, we present the general
model in continuous time. Next, in Section 4 we establish that a combination of option contract
and forward pricing achieves the deterministic optimum for the sequential screening problem,
where one object is allocated at a fixed time, but information arrives gradually. In Section 5, we
use the optimal contract for the sequential screening model to construct a candidate mechanism
for the repeated sales problem , and provide comparative statics. This last contract is not the
optimum in general, but is simple and achieves a large fraction of the total revenue for the
seller. The optimum is quite complicated and arguably very hard to compute. In Section
6 we explain the gap between the candidate mechanism and the full optimum through two
examples, and then in Section 7 we provide a theoretical bound for the loss from using our
candidate mechanism and then envelope it into a uniform bound for all possible distributions. In
Section 8, we generalize our candidate mechanism to multiple players, and explore two intuitive
dynamic auction mechanisms. Again, we theoretically bound the loss from using them vis-a-vis
the optimum. Finally, we conclude with a discussion of the literature and questions for future
work in Section 10.

2 Fixing ideas: a simple two-period example

Suppose a seller wants to sell one unit of (non-durable) good at dates k = 1, 2. The buyer
observes his valuations {vk} privately and sequentially. In the first period, it is drawn from a
uniform distribution on [0, 1]. In the second period, the value stays the same as before with
probability 1/2 and it is independently sampled from a uniform distribution on [0, 1] with prob-
ability 1/2.9 The seller offers a menu of prices (or allocation and payment rule in case of a direct

9For this example we assume that neither party discounts future payoffs.
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mechanism) with the objective of maximizing her ex ante profit. In what follows, we first con-
sider a simple set of sequential pricing instruments. Then, using a dynamic mechanism design
approach we show that a combination of them achieves the optimum.

2.1 Dynamic pricing

As described in the introduction, there are multiple selling procedures which the seller can use.
We represent four candidates in Figure 1; each graph partitions the two dimensional space of
values (v1, v2) into four possible regions: sell nothing, sell only in period 1, sell only in period 2,
and sell in both periods. Perhaps the simplest mechanism is to offer each good for a spot price,
αk . Given this offer, the buyer buys a good at date k if and only if vk ≥ αk . This yields an
expected profit of α1(1 − α1) for period 1. Since v2 is uniformly distributed from an ex ante
perspective, the expected payoff in period 2 is also given by

Rs (α2) = α2(1 − α2)

where Rs stands for the optimal profit from spot pricing. Clearly, α1 = α2 = 1/2 is the optimal
solution, and the seller gets a profit of 1/4 from selling each good. This statically optimal spot
price mechanism is depicted in Figure 1a.

In what follows, we build improvements on the spot contract, eventually describing the
optimum. In the sense of classical price discrimination, at each step we will make a trade off
between what price to charge and how many (or what measure of) buyers to serve. Moreover,
dynamics offer the ability to decide when to exclude or include a future type of the buyer,
culminating in an added intertemporal instrument of price discrimination.

Going back to the spot pricing strategy, it is easy to see that each buyer type buyer receives
a positive expected surplus from the second good:

E
{(
v2 − 1/2

)+
|v1

}
= 1/2 ×

(
v1 − 1/2

)+
+ 1/2 × E

{(
v2 − 1/2

)+}︸           ︷︷           ︸
=1/8

> 0 ∀v1

Therefore, the seller can increase her revenue from the second good by extracting some surplus
upfront. One way is to charge the ex ante expected surplus of the lowest type, viz. M (α2) =
E
{(
v2 − α2

)+
|v1 = 0

}
=

(1−α2)2
4 , as a flat upfront fee for the European option to buy the second

good later for the spot price, α2. We will refer to such payment as the option premium.
Buyer’s expected payoff from taking this offer is

E
{(
v2 − α2

)+
|v1

}
− M (α2) = 1/2 ×

(
v1 − α2

)+ > 0

So, each type of the buyer is willing to accept the option, and pay the premium of M (α2).
Seller’s expected profit for the second good is

Ro (α2) = Rs (α2) + M (α2) = 1/2 × α2(1 − α2) + 1/2 ×
1 − α2

2
2
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(a) Spot pricing:{α1 = 1/2, α2 = 1/2}

0
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sell
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(b) European option:{α1 = 1/2, (M = 1/9, α2 = 1/3)}

0

1/3

1/3 1/2 v1
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sell
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sell
t = 2

(c) American option on forwards:{
α1 = 1/2, (M = 1/9, α2 = 1/3, y = 11/36)

}
0

7/18

7/18 1/2 v1

v2

sell
both

sell
t = 2

(d) Optimum:{
α1 = 1/2, (M = 121/1296, α2 = 7/18, y = 455/1296)

}

Figure 1: Selling mechanisms for the two period model, where αk is the spot price for period k,
M is the option premium, and y is the forward price at k = 1.
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where Ro stands for the seller’s profit when the option premium is added to the contract space
in addition to the spot price. Now, Ro (α2) is maximized at α2 = 1/3 with M (α2) = 1/9, resulting
in a profit of 1/3 > 1/4.

In the second period, the buyer is identified by two dimensions: (v1, v2), though only the
second dimension is ex post payoff relevant. In the option contract described above, the seller
chooses to include more buyer types along the second dimension (from v2 > 1/2 to v2 > 1/3) by
reducing price α2, but simultaneously increasing her profit by extracting surplus upfront. Since
all types agree to pay the option premium, screening of whom to serve is relegated to the second
period in the form of spot payment α2 = 1/3. An added dimension of discrimination would be
to screen the buyer in the first period. This would increase the participation of the buyer along
the v1-dimension. More specifically, can the seller make it attractive to buy the second period
good in the first period itself, while ensuring an increase in her profit?

We allow the seller to offer the second good at a forward price, say y, as part of an American
option. If the option is exercised at k = 1, then the buyer will have to purchase the good for y
at k = 2. Notice that the expected value of the forward purchase for the first period buyer type
v1 is given by

E
{
v2 |v1

}
− y −m = 1/2 × v1 + 1/2 × 1/2 − y −m

What forward price should the seller choose? We start by picking a forward price that makes it
optimal for all buyer types v1 > 1/3 to buy at k = 1, culminating in y = 11/36:

y = E
{
v2 |v1 = 1/3

}
− E

{(
v2 − 1/3

)+
|v1 = 1/3

}
= 1/2 × 1/3 + 1/2 × [1/2 − 2/9] = 11/36

It is easy to see that when the forward price y = 11/36 is added to the option contract (M = 1/9, α2 = 1/3),
all buyer types v1 > 1/3 will be indifferent between choosing the forward contract and waiting
for the strike price- both generate the same expected payoff. However, the seller strictly prefers
the buyer to take the forward price, because her profit conditional on v1 ≥ 1/3 is higher:

y = 11/36 > α2P
{
v2 > α2 |v1 > 1/3

}
= 1/3 × [1/2 + 1/2 × 2/3] = 5/18

So, at the initial date, the buyer can choose either to commit to buy the second period good for
11/36 or get the spot price 1/3 in the second period. We shall assume that the buyer will choose the
seller optimal option whenever he is indifferent, that is he will choose the forward price.10

At k = 1, as part of the contract, the first period good is traded if v1 > 1/2. In addition, the
buyer pays the option premium, M = 1/9: all types v1 > 1/3 buy for the forward price; all types
v1 < 1/3 exercise the option at k = 2 if the second period valuation turns out to be v2 > 1/3.
The outcome of this contract is graphically represented in Figure 1c. Since the seller earns more
profit from the types v1 > 1/3, this third contract generates a strictly higher profit than the
second one.

10Our criterion of resolving ties is the "right" one in the following sense. Since the seller makes a strictly higher
profit from the buyer accepting the forward price, she can transfer a very small amount of money to break buyer’s
indifference in favor of taking the forward price. This keeps the seller’s profit approximately the same and makes all
buyer types v1 > 1/3 strictly prefer the forward price.
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Now, the third contract showed that adding forward pricing to the option strictly improves
seller’s profit. But what is the optimal combination?

It is not a coincidence that we choose a menu where the strike price in the second period,
α2 = 1/3, is exactly equal to the forward price threshold of the first period types: v1 > 1/3. In fact,
it can be shown that when the option contract and forward price are simultaneously offered,
it is optimal to set y (α2) = E

{
v2 |v1 = α2

}
− E

{(
v2 − α2

)+
|v1 = α2

}
. Thus, the choice of α2

implicitly defines both the option premium and forward price. Therefore, for (M , y) such that
M = M (α2) and y = y (α2), the profit of the seller from the second good is given by:

R f w (α2) = M (α2) + 1/2 × α2Rs (α2) + (1 − α2)y (α2)

= 1/2 × α2(1 − α2) + 1/2 ×
1 − α2

2
2
+ 1/2 × (1 − α2)

α2
2
2

where R f w refers to the seller’s profit under the combination of option contract and forward
pricing. Thus, the first-order condition for α2 is as it follows: 2α2 − 1 + 3α2

2 = 0.
Only one of the roots lies in the interval [0, 1], which is given by α2 = 7/18. It is easy to see

that the second order condition is satisfied. Plugging in α2 into the expressions for M and y, we
get the optimal combination of option premium and forward price: M = 121/1296 and y = 455/1296.

The allocation rule implemented by the optimal dynamic pricing mechanism is depicted in
Figure 1d. It provides the seller with an expected profit of 0.25 from the selling the first good
and 0.387 from selling the second good. Comparing the optimal values of Rs and R f w , it can
be concluded that dynamic pricing instruments increase the seller’s profit by about about 55 %.
In the next section we show that this final contract is in fact optimal.

We would like to emphasize two features of the allocation rule achieved by the optimal
dynamic pricing mechanism. First is that the allocation rules can be summarized as follows:
trade in first period iff v1 > 1/2, and trade in the second period iff max{v1, v2} > 7/18. The
thresholds for trade are decreasing over time ( 1/2 > 7/18) and the threshold for trade in the second
period seeks the maximum value between the first two periods. Thus, the allocation rule is
backloaded; that is, trade in the first period implies trade for sure in the second period, and
moreover history dependence enters the contract is a fairly simple way.

Second, the measure of types for no trade shrinks for the contracts depicted in Figures 1a,
1b and 1d, thus each added pricing instrument is finding the optimal way to incentivize more
buyer types to buy the second period good, while finding a way to extract the surplus generated
from added sales. However, thresholds for trade in period 2, viz. α2, given by 1/2 > 7/18 > 1/3,
are non-monotonic. By adding forward pricing, the seller finds it optimal to serve lesser types
through the strike price in period two and trade it off by making more types in period one
commit to buying the good at the forward price.

2.2 Optimality: a mechanism design approach

Here we show that the allocation rule depicted in Figure 1d is in fact the optimum. To that end,
we tread the dynamic mechanism design path, and bring to its shore the novelty of handling
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global incentive constraints. The description of the model here is brief, and formal gaps are
filled in Section 3 when we discuss the general model.

For k = 1, 2 the price of transaction and probability of trade are denoted respectively by
pk ∈ R and qk ∈ [0, 1]. The flow utility of the seller is given by pk and that of the buyer is given
by vkqk − pk .11 The ex ante aggregate payoffs are simply the sum of the flow utility over the
two periods. We also assume that the seller can commit to a dynamic contract, while the buyer
needs to be provided with a minimal expected utility each period, which is normalized to zero.

For the direct mechanism, given by
{
q,p

}
=

{
q1(v1), q2(v1, v2), p1(v1), p2(v1, v2)

}
, the flow

utility of the buyer from truthtelling is given by

u1(v1) = v1q1(v1) − p1(v1) and u2(v1, v2) = v2q2(v1, v2) − p2(v1, v2)

and expected utility in the first period is given by

U1(v1) = u1(v1) + E
{
u2(v1, v2) | v1

}

The seller’s objective to offer a contract that maximizes her ex ante expected profit subject to
individual rationality and incentive compatibility for the buyer. Individual rationality simply
demands that U1(v1) ≥ 0 and u2(v1, v2) ≥ 0 for all v1, v2. In what follows, we describe the
restrictions imposed by incentive compatibility on the set of attainable allocation rules. For
brevity, we shall write v2 = (v1, v2).

For any v1, incentive compatibility in the second period requires that for all v2 and v :12

u2(v2) = v2q2(v2) − p2(v2) ≥ v2q2(v1, v ) − p2(v1, v )

By standard arguments in (static) mechanism design, this is equivalent to:

(i) envelope condition: u2(v1, .) is a.e. differentiable with ∂
∂v2 u2(v2) = q2(v2), and

(ii) monotonicity: q2(v2) is non-decreasing in v2.

Analogously, in the first period, incentive compatibility requires that for all v1 and v :

U1(v1) = v1q1(v1) − p1(v1) + E
{
u (v2) |v1

}
≥ v1q1(v ) − p1(v ) + E

{
u2(v, v2) |v1

}

which can re-written as

U1(v1) −U1(v ) ≥ (v1 − v )q1(v )︸            ︷︷            ︸
static information rent

+ 1/2 × [u2(v, v1) − u2(v, v )]︸                             ︷︷                             ︸
dynamic information rent

(1)

Note that here we have invoked the one-shot deviation principle by looking at a specific de-
viation where the buyer reverts back to truthtelling in the second period. Again, by standard
arguments in (dynamic) mechanism design this is equivalent to:

11For a marginal cost of production c , the flow utility of the seller is given by pk − cqk . We put c = 0 here for
simplicity, the extension to c > 0 is straightforward.

12This condition characterizes incentive compatibility off-path as well, because buyer’s payoffs are time-separable.
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(iii) dynamic envelope condition: U1 is a.e. differentiable with ∂
∂v1U1(v1) = q1(v1) + 1/2 ×

q1(v1, v1) = Z1(v1) (say), and

(iv) integral monotonicity:
∫ v
v1
[q1(v1) + 1/2 × q2(v1, x )]dx ≤

∫ v
v1
Z1(u)du

The integral monotonicity constraint has been derived as it follows. Starting from Equation
(1), use the envelope formula to substitute for u2(v, v1) − u2(v, v ), and the dynamic envelope
formula to substitute for U1(v1) −U1(v ), where all the substitutions are carried out in the in-
tegral form of the envelope formulas. Simple re-arranging of terms then gives us the integral
monotonicity constraint. In Figure 2 we graphically exposit the integral monotonicity condi-
tion: the "average allocation" along the diagonal is greater than the "average allocation" along
the vertical line.13 An equivalence result follows.

Lemma 1. A mechanism
{
q,p

}
is incentive compatible if and only if (i)-(iv) above hold.

0 1

1

v1

v2

v1 v

v1

v

∫ v
v 1
Z 1

(x
)d
x

∫ v v 1
[q

1(
v 1

)+
1 2
×
q 2

(v
1,
x)
]d
x

Figure 2: Integral monotonicity for the two period model

Now, using the dynamic envelope condition, seller’s expected profit can be expressed only
in terms of allocations:

E
{
p1(v1) + p2(v2)

}
= E

{
v1q1(v1) + v2q (v2) −U (v1)

}
=

∫ 1

0

[
(2v − 1)q1(v ) + 1/2 × (2v − 1)q2(v, v ) + 1/2 × vE

{
q2(v1, v )

}]
dv

=

∫ 1

0

[
(2v − 1)Z1(v ) + 1/2 × vE

{
q2(v1, v )

}]
dx

The term v− 1−F (v )
f (v ) = 2v−1 is the (regular) virtual value in the first period; in the second period

the virtual value continues to be same with probability 1/2, and it is simply the efficient value v
with probability 1/2. The virtual value measures the information rent versus efficiency trade-off:

13Integral monotonicity can be seen as the dynamic version of the cyclical monotonicity constraint in multidimen-
sional screening (see Rochet [1987]). Pavan, Segal, and Toikka [2014] show that the dynamic envelope formula and
the integral monotonicity condition are necessary and sufficient for incentive compatibility in Markovian models of
dynamic mechanism design.
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allocations are made on the basis of efficient value minus a sufficient statistic of information
rent. Note that if the buyer’s type changes in the second period, then the buyer has no more
information than the seller about its realization at the time of signing the contract.

Inspired from Myerson [1981], we prefixed the virtual values with regular to signify the
standard approach wherein information rents are pinned down solely by the local incentive
constraints summarized by the envelope condition, and the above expression is maximized
pointwise to derive: q1(v1) = 1

{
v1 ≥ 1/2

}
and q2(v2) = 1

{
v1 = v2 ≥ 1/2 ∧ v1 , v2

}
, where

1 is the indicator function. Therefore, in the second period, distortions persist only if the first
period type is less than 1/2 and types remain constant; dynamic price discrimination is executed
only along the lower "diagonal" types. Unfortunately, this contract does not satisfy the dropped
constraints- it violates both monotonicity constraint in period two and the integral monotonic-
ity constraint in period one. So far the dynamic mechanism design literature does not give us
any guidance on how to tackle such problems.

To move beyond the local approach, as a first step, observe that Z1(·) must be monotonic:
for v2 > v1

(v2 − v1)Z1(v1) 6
∫ v2

v1
[q1(v1) + 1/2 × q2(v1, x )]dx 6

∫ v2

v1
Z1(x )dx 6 (v2 − v1)Z1(v2).

where the first and third inequalities follow from monotonicity of q (v1, .) and the second in-
equality is simply the integral monotonicity constraint. Thus, we have the following simple
result.

Lemma 2. For {q} satisfying (ii) and (iv), Z1(v1) = q (v1) + 1/2 × q (v1, v1) is a non-decreasing
function.

Next, we prove that the seller finds it optimal to backload allocations as much as possible.
We say that an allocation is backloaded if q1(v1) > 0 implies q2(v1, v2) = 1 for all v2. In fact we
prove a stronger result here: for any incentive compatible allocation {q}, there exists another
incentive compatible allocation {q̂} that weakly increases the seller’s profit and strictly so if {q}
is not backloaded. This construction ensures that keeping the aggregate allocation along the
diagonal constant, we can push the weight maximally towards the second period in an incentive
compatible way that improves the seller’s profit. Backloading s formalized in the next lemma,
the proof of which exploits the monotonicity of Z1.

Lemma 3. The optimal allocation is backloaded.

Backloading permits us to split the problem of repeated sales into two independent screening
problems. Suppose that the seller solved two distinct problems: (a) the static screening problem
of selling one good in the first period, and (b) the sequential screening problem where types
are realized in both periods, but an allocation is only made in the second period. In the second
problem, the type in period 1 simply acts as a signal for the payoff relevant type in the second
period. By independent screening, we mean that the optimal allocations in the two distinct
problems: say q1(v1) in the first problem, and q2(v2) in the second problem, are exactly the
same for the joint problem of determining the optimal mechanism repeated sales.
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Lemma 4. A backloaded allocation {q} satisfies (ii) and (iv) defined above if only if q1, q2(v1, .) are
non-decreasing and ∫ v

v1
q2(v1, x )dx 6

∫ v

v1
q2(x, x )dx

Lemma 4 establishes that a backloaded allocation rule is incentive compatible for the original
problem if the allocation rule for the first period is incentive compatible in the static model and
if the allocation in the second period is incentive compatible in the corresponding sequential
screening model.

Finally, suppose that the seller can only use deterministic contracts that is q1(v1) and
q2(v2) ∈ {0, 1}. From Lemmata 2 and 4, we get that both q1(v1) and q2(v1, v1) are non-
decreasing functions. Since the optimum is backloaded (see Lemma 3), we must have two
thresholds 0 6 α1 6 α2 6 1 such that q1(v1) = 1

{
v1 > α1

}
and q2(v1, v1) = 1

{
v1 > α2

}
.

Clearly, q2(v2) = 0 for max{v1, v2} < α2 by (iv). Since the virtual value in the second period is
positive for v2 , v1, the optimal allocation satisfies q (v2) = 1(max{v1, v2} > α2).

It is easy to show that the optimal first period threshold is α1 is 1/2. To find α2, we compute
seller’s profit from the second period allocation as a function of α2:

R f w (α2) = 1/2 ×

∫ 1

α2

[
(2x − 1) +

3x2

2

]
dx

The optimal threshold is α2 = 7/18.
We can summarize the main findings of this section in the following result.

Proposition 1. Consider the two period repeated sales problem where buyer’s private valuation is
distributed uniformly in the first period, assumes the same value in the second period with probability
1/2 and is drawn again from a uniform distribution with probability 1/2. The optimal allocation is
given by:

q1(v1) = 1
{
v1 > 1/2

}
and q2(v2) = 1

{
max {v1, v2} > 7/18

}
We provide the missing formal details in proving the result in the appendix. In particular,

we show that the seller can not gain by using stochastic allocations. Moreover, we state the
model and results for a general renewal types process with persistence parameter ρ as opposed
to the special case ρ = 1/2 assumed here.

3 The general model and direct mechanism

3.1 Primitives

A seller wants to repeatedly sell a (non-durable) good or service to a buyer. Time is continuous
and infinite, t ∈ R+ and both agents discount future at the same rate, r . The buyer’s valuations
for the good, {Vt}, is private and follow a stationary pseudo-renewal process; that is, Vt = XNt

where

• {Xn} is a sequence of i.i.d. draws from F ,
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• {Nt} is a Poisson process with intensity λ.

We shall assume that F is continuous, supported on [0, 1] and admits a density f .
The buyer gets to observe a current state of his valuation process at discrete points, {∆k :

k ∈ N}. The process observed by the buyer is discrete, and it is defined as vk = V∆(k−1). This
process is Markov with the following law of motion:

P{vk+1 ≤ v ′ |vk = v} = ρ1{v ′ > v} + (1 − ρ)F (v ′)

where ρ = e−λ∆ is a probability that there was no arrival between two consecutive discrete time
points. Note that in discrete time this stochastic process is a direct generalization of of the one
we saw in Section 2- first period type is drawn from a prior F and then every period the type is
the same with probability ρ or is drawn again from F with probability 1 − ρ. Since ρ assumes
values between 0 and 1 (as λ goes from ∞ to 0), it captures the level of persistence in the types’
process. Moreover, in continuous time, as ∆→ 0, {v bt/∆c+1} converges almost surely to {Vt} .

The seller can supply one unit of the good at each instance of time at no cost. The buyer’s
flow payoff is given by VtQtdt − dPt and the seller’s is given by dPt where Qt ∈ [0, 1]. The
seller wants to design a contract that maximizes her expected profit. The direct mechanism and
the associated design problem are described next.

3.2 The Myersonian optimization problem

A contract specifies a history-dependent allocation and a payment for each instance of time,
{Qt , dPt}. Since buyer’s information is arriving discretely, there is no loss of generality in
restricting attention to allocations which are constant on intervals [∆(k − 1),∆k

)
and payments

which are made at discrete time points. Invoking the revelation principle (Myerson [1986],
and see also Sugaya and Wolitzky [2018]), we focus on direct mechanisms of the form

{
q,p

}
={

qk (vk ), pk (vk )
}∞
k=1

, where qk (vk ) = Q∆(k−1)

(
V ∆(k−1)

)
and pk (vk ) = dPs

(
V ∆(k−1)

)
. For a

later use, define discounting between two consecutive time points δ = e−r∆ and ∆̂ = 1−δ
r .

Buyer’s reporting strategy prescribes a history-dependent report for each discrete time point,
{σk} with σk (vk ) ∈ [0, 1]. A contract is incentive compatible if the buyer can not gain by mis-
reporting his information; that is, for any reporting strategy σk ,

E



∞∑
k=1

δk−1
[
vkqk (vk )∆̂ − pk (vk )

] 

> E




∞∑
k=1

δk−1
[
vkqk [σk (vk )]∆̂ − pk [σk (ṽk ]

] 


Define buyer’s expected payoffs from truth-telling by

Uk (vk ) = vkqk (vk )∆̂ − pk (vk ) + δE
{
Uk+1(vk+1)��vk

}
(2)

Using the one-shot deviation principle, incentive compatibility can be expressed as it follows:

Uk (vk ) > Uk (vk−1, v ) + (vk − v )qk (vk−1, v )∆̂︸                      ︷︷                      ︸
static information rent

+ δ ρ
{
Uk (vk−1, v, vk ) −Uk (vk−1, v, v )

}︸                                             ︷︷                                             ︸
dynamic information rent

(3)
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If δ = 0 the equation above is equivalent to the incentive compatibility familiar from static
mechanism design. For the renewal Markov process, the dynamic information rent has two
components, one along which the true type remains constant (with probability ρ ) and another
where the type changes (with probability 1 − ρ ). Since a change in type leads to a history
independent draw of the new type, that term cancels out from the expression above. Thus, if
we have ρ = 0, the types’ process would be i.i.d. and information rent would then be purely
static. Also, a contract is said to be individually rational if

Uk (vk ) ≥ 0 (4)

Seller’s optimization problem (?) can then be written as

(?) max{q,p} E



∞∑
k=1

δk−1pk (vk )



subject to (2), (3), (4)

In what follows, we pursue a Myersonian approach towards characterizing the optimal con-
tract. As in the two period model, it is useful to define the average allocation along the "di-
agonal", that is along the persistent histories, as Zk (vk ) = qk (vk )∆̂ + δ ρZk+1(vk, vk ). The
following lemma characterizes buyer’s incentives.

Lemma 5. A mechanism
{
q,p

}
is incentive compatible if and only if it satisfies the following set of

conditions:

Uk (vk−1, .) is differentiable a.e. with
∂

∂vk
Uk (vk ) = Zk (vk ) (IC-FOC)

∫ v

vk
Zk (vk−1, x )dx >

∫ v

vk

[
qk (vk )∆̂ + δ ρZk+1(vk, x )

]
dx (IM)

Here (IC-FOC) is the first-order condition implied by incentive compatibility, referred com-
monly as the dynamic envelope formula, since it is derived from the envelope theorem applied to
such dynamic models of mechanism design. (IM) is the integral monotonicity constraint which
is derived by substituting the formula for expected utility from (IC-FOC) to the inequality
(3). It is the dynamic counterpart of the cyclical monotonicity condition for multidimensional
screening in Rochet [1987].

Next, we state the appropriate generalization of Lemma 2 that will be invoked repeatedly
in proofs that concern the direct mechanism.

Lemma 6. Take q satisfying (IM), then Zk (vk−1, .) is non-decreasing.

Unlike the static screening problem and akin to the multidimensional screening problem,
types in dynamic screening cannot be ordered. Thus, there is no complete order that can char-
acterize a notion of monotonicity for the allocation rules. Lemma 6 simplifies that problem to
some extent by allowing us to rank "average" allocations along the "diagonal" for any history
of types.
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The next Lemma reduces problem (?) to one that allocates the good to the buyer according
to his (local) virtual utility subject to potentially binding global incentive constraints. We say
that an allocation rule q solves problem (?) if there exists p such that

{
q,p

}
is a solution to (?).

Lemma 7. An allocation rule q∗ solves (?) if and only if
{
q∗

}
is a solution to the following problem

(∗):

(∗) max{q} E



∞∑
k=1

δk−1wk (vk )qk (vk )



where

wk (vk ) =



v1 − 1−F (v1)
f (v1) if v1 = ... = vk

vk otherwise

subject to (IM).

4 Sequential screening: selling one object at a specified time

In this section, we consider a special model where seller makes a sale of one good only at time
t . Only buyer’s type at time t is payoff relevant and all previous types are relevant to the
extent that they informative about the payoff relevant type. The seller designs a contract where
payments can be charged at any given point in time, but allocation decisions are made at t .
This model is a direct generalization (along the time dimension) of the two-period sequential
screening model studied by Courty and Li [2000].

We first describe the optimum under a restricted set of pricing instruments, and then estab-
lish that a simple combination of these instruments achieves the deterministic optimum.

4.1 Static spot pricing

Perhaps, the simplest selling strategy is to offer a fixed spot price. Suppose that the buyer can
purchase the t -th good for a price αdt ; he will buy the good if and only if Vt ≥ α (resolving
ties in favor of trade). Since Vt is distributed according to F , the probability of making a sale is
1 − F (α). It follows that seller’s profit is e−r tRs (α)dt , where

Rs (α) = α[1 − F (α)]

4.2 European option

As we showed in the two period model, the seller can increase her profit by requiring the buyer
to pay an upfront fee at the initial date. Note that type V0 buyer’s expected payoff from the
fixed price in Section 4.1 given by is e−r tE

{
Vt − α)+ |V0

}
dt ,

E
{
Vt − α)+ |V0

}
= e−λt (V0 − α)+ +

(
1 − e−λt

)
E
{(
Vt − α

)+}
The first term corresponds to the event of no arrival of new information, and the second refers
to its complement. Conditional of wanting all buyer types’ to partake in the contract, the seller
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can charge up to e−r tMt (α)dt , where

Mt (α) =
(
1 − e−λt

)
E
{(
Vt − α

)+} (5)

Seller’s revenue is given by e−r tRo
t (α)dt ,

Ro
t (α) = R s (α) +Mt (α) = e−λtα[1 − F (α)] +

(
1 − e−λt

) ∫ 1

α
vdF (v ) (6)

Clearly, Ro
t (α) > R s (α) for all α, and optimizing Equation (6) over α gives us the optimal value

say, αo
t .

4.3 Optioning forwards

Now, we show that the seller can do even better by selling the t -th good at earlier dates, in
addition to charging the upfront fee introduced in Section 4.2. In particular, suppose that as a
function of strike price α, the buyer can commit at time s 6 t to purchase the good for a price
y st (α)dt , where y st is defined as

y st (α) = e−λ(t−s)α +
(
1 − e−λ(t−s)) [

E
{
Vt

}
− E

{(
Vt − α

)+}]
(7)

This is to be interpreted as an American option on forwards
{
y st

}
s≤t with premiumMt .

Once the premiumMt paid, the buyer is facing a stopping a problem with a deadline t and
gain process e−r t [E

{
Vt |Vs

}
− y st ]ds . We make an assumption here that when buyer is indifferent

between waiting and buying today, he will buy today. This selection resolves ties in favor of the
seller optimal outcome.14 A characterization of the smallest optimal stopping rule τt = τt (α)
is as it follows.

Lemma 8. Consider the problem of selling a single good at date t . The pricing mechanism constitut-
ing of an option contract with premiumMt and a schedule of forwards

{
y st

}
s≤t , defined respectively

in equations (5) and (7), induces each buyer type to pay the upfront fee e−r tMtdt and implements
the following optimal stopping rule, τt :

buy the t -th good at time s iff Vs ≥ αt

Proof. Suppose that the upfront fee was paid, then buyer’s problem is to choose the stopping
rule τ ≤ t .

Fix s ≤ t , and define Snell’s envelope

W s
t = e s s sup

τ∈[s,t ]
E
{
E
{
Vt |Vτ

}
− yτt |V s}

Clearly,W t
t =

(
Vt − α

)+. Since waiting until date t is available,
W s

t > E
{
W t

t |V s} = e−λ(t−s) (Vs − α
)+
+

(
1 − e−λ(t−s))E{(Vt − α

)+}
14We explained in Footnote 10 the sense in which this is the "right" way of resolving ties.
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Notice that E
{
W t

t |V s} is a martingale, and it dominates E
{
Vt |Vs

}
− y st as

E
{
Vt |Vτ

}
− yτt = e−λ(t−s) (Vs − α

)
+

(
1 − e−λ(t−s))E{(Vt − α

)+}
Since W s

t is the smallest super-martingale dominating E
{
Vt |Vτ

}
− yτt , we must have W s

t =

E
{
W t

t |V s}. It follows that the smallest optimal stopping time is τt = inf
{
s ∈ [0, t ] : E

{
Vt |Vs

}
−

y st = E
{
W t

t |V s}} where

E
{
Vt |Vs

}
− y st = E

{
W t

t |V s} iff Vs > α

Finally, observe that buyer’s expected payoff net the option premium is always positive:

W 0
t −Mt = e−λt

(
V0 − α

)+ > 0

In other words, all types of the buyer will take the option. �

Next, we define seller’s revenue from offering an option contract with forward prices.

Lemma 9. The seller’s expected revenue from offering the contract
{
α,Mt (α),

{
y st (α)

}
s≤t

}
is given

by e−r tR f w
t (α)dt where

R
f w
t (α) = e−λtα[1 − F (α)] +

(
1 − e−λt

) ∫ 1

α
vdF (v ) +

(
1 − e−λ [1−F (α)]t ) ∫ α

0
vdF (v ) (8)

Proof. See Appendix. �

It easy to that R f w
t (α) > Ro

t (α) for all α, in fact:

R
f w
t (α) = Ro

t (αt ) +
(
1 − e−λ [1−F (α)]t ) ∫ α

0
x f (x )dx

Finally, denote by α f w
t , the threshold that maximizes Equation (8) when the date of sale of the

single object is t .

4.4 Characterizing dynamic pricing

In this section, we discuss the thresholds for sale generated by the dynamic pricing instruments
introduced above. We also take a closer look at dynamics of forward prices and distribution of
sales time.

It is important to note that time t and rate of transition λ enter symmetrically in all the
expressions; thus what really matters for Ro

t and R f w
t is the normalized time λt . A characteri-

zation of these thresholds is as it follows.

Proposition 2. The optimal thresholds satisfy the following properties:

(a) αo
0 = α

f w
0 = αs and lim

λ→0
αo
t = lim

λ→0
α

f w
t = αs ;
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(b) αo
t and α

f w
t are strictly positive;

(c) αo
t and α

f w
t are strictly decreasing in λ and t ;

(d) lim
t→∞

αo
t = lim

t→∞
α

f w
t = 0 and lim

λ→∞
αo
t = lim

λ→∞
α

f w
t = 0;

(e) suppose that v 7→ 1−F (v )
f (v ) is non-decreasing, then αs > α

f w
t > αo

t for all t > 0.

Proof. See Appendix. �

Part (a) states that as t → 0, so that model becomes static, or as λ → 0, that is as types
become perfectly persistent, the optimal strike price from the option contract converges to
the optimal (static) spot price. Further, these thresholds are positive and strictly decreasing in
normalized time. Thus, as the date of sale of the object increases in the sequential screening
problem, the (ex ante) probability of trade goes up. Part (d) shows that in the limit the good is
always sold. When t → ∞ the initial information advantage of the agent go to zero, and when
λ → ∞ the stochastic process becomes i.i.d; in both cases the efficient contract becomes optimal
and the seller can extract all the expected surplus as profit. Note that in each of these cases the
limit of time or transition probability is taken while keeping the other fixed at some positive
finite value.

Finally, Part (e) makes a subtle point about the increase in strike price or threshold of sale
from the simple option contract to the option with forwards: α f w

t > αo
t . In particular, it implies

that the European option contract is more expensive than the American option on forwards;
that is,Mt (αo

t ) >Mt (α
f w
t ).

As for dynamics of forward prices, observe that E
{(
Vt − α

)+}
=

∫ 1
α
[1 − F (v )]dv for any

α. Therefore, we can rewrite forward prices of the optimal American option on forwards as

y st (α f w
t ) = α f w

t −
(
1 − e−λ(t−s)) ∫ α

f w
t

0
F (v )dv︸                                ︷︷                                ︸

forward discount

6 α
f w
t

We term the difference between the spot price and forward price at date s as forward discount.
It immediately follows that the forward discount progressively decreases over time.

Proposition 3. α f w
t − y st (α f w

t ) is strictly decreasing in s.

For the option with forward prices, as described in Lemma 8, the first time the buyer has a
draw of value greater than α f w

t he buys the good. Observe that max
s≤t

Vs is distributed according
to Gt defined by

Gt (v ) = F (v )e−λ [1−F (v )]t

It immediately follows that the probability that the t -th good is sold by time s is 1 − Gs (α
f w
t ),

1 − Gs (α
f w
t ) = 1 − F (α f w

t )︸         ︷︷         ︸
prob. of sale at t = 0

+F (α f w
t )

[
1 − e−λ [1−F (α f w

t )]s
]

︸                    ︷︷                    ︸
prob. of at least one arrival > α f w

t given V0 6 α
f w
t
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Notice that the good can be unsold which happens with the probabilityGt (α
f w
t ). The expected

time of sale (given it happened) can be computed as

E
{
τt ��τt , t} =

∫ t

0
sd



1 − Gs (α
f w
t )

1 − Gt (α
f w
t )


= t −

∫ t

0

1 − Gs (α
f w
t )

1 − Gt (α
f w
t )

ds

A simple set of results, complimentary to Proposition 2 follows.

Proposition 4.

(a) Gt (α
f w
t ) is strictly decreasing in λ with lim

λ→0
Gt (α

f w
t ) = F (αs ) and lim

λ→∞
Gt (α

f w
t ) = 0;

(b) Gt (α
f w
t ) is strictly decreasing in t with lim

t→0
Gt (α

f w
t ) = F (αs ) and lim

t→∞
Gt (α

f w
t ) = 0;

(c) lim
λ→0
E
{
τt ��τt , t} = lim

λ→∞
E
{
τt ��τt , t} = 0;

(d) lim
t→0
E
{
τt ��τt , t} = lim

t→∞
E
{
τt ��τt , t} = 0.

Proof. See Appendix. �

We plot these statistics as functions of t for the uniform distribution and λ = 1.
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Figure 3: red- expected time of sale, blue- probability that the good is unsold; F (x ) = x and
λ = 1.

4.5 Optimality of forward pricing.

In this section, we show that optioning forwards implements the optimal deterministic alloca-
tion for the sequential screening problem. Specifically, Proposition 5 below establishes that the
dynamic pricing contract derived in Section 4.3 achieves the optimal deterministic allocation
rule. The intuition for the result is similar to selling of the second good in the two-period
problem.
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Proposition 5. Suppose that the seller can sell only the k-th good, there exists a f w
k such that the

optimal deterministic allocation is

qk (vk ) =



1 whenever max
n≤k

vn > a f w
k

0 otherwise

Moreover, a f w
bt/∆c+1 → α

f w
t as ∆→ 0.

Proof. We split the proof into two parts. First, we establish that the optimal determenistic
allocation is to allocate the good if and only if max

n6k
vn ≥ a for some threshold a. Second, we

show how to choose the value of a optimally.
Step 1. Take any allocation qk ∈ {0, 1} satisfying (IM). By assumption, the allocation can

happen only at k, therefore Z1(v1) could take only two value: 0 and (δ ρ)k−1∆̂.
Lemma 6 implies that there exists a threshold a such that Z1(v1) = (δ ρ)k−1∆̂ whenever

v1 > a and Z1(v1) = 0 whenever v1 < a. By induction, suppose that for n < k, Zn (vn) = 0 for
max
m6n

vm < a. For vn < v 6 a, (IM) requires

∫ v

vn
Zn (vn−1, x )dx = 0 ≥ (δ ρ)

∫ v

vn
Zn+1(vn, x )dx

Zn+1(vn−1, v, v ) = 0 ≥ Zn+1(vn−1, v, vn)du

which implies that Zn+1(vn+1) = 0 for max
m6n+1

vm < a.

Consider q̂k (vk ) = 1
{
max
n6k

vn > a
}
. It is easy to see that q̂k satisfies (IM) as Ẑn (vn−1,max{vn, v}) =

δ ρẐn+1(vn, v, v ) for n < k. We claim that seller’s profit is higher. On the one hand, buyer’s
rents are the same in both cases, because Z1(v1) = Ẑ1(v1). On the other hand, the surplus is
higher, because q̂k (vk ) > qk (vk ).

Step 2. We have established that the optimal deterministic allocation must take the form:
qk (vk ) = 1

{
max
n6k

vn ≥ a
}
for some a. It remains to choose the threshold optimally. Write

seller’s profit from k-th good as a function of a:

E
{
vk1

{
max
n6k

vn ≥ a
}}
− ρk−1

∫ 1

a
[1 − F (v )]dv

Denote by Gk the distribution of max
n≤k

vn; that is, Gk (v ) = F (v )[ξ (v )]k−1 for ξ (v ) =
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(1 − ρ)F (v ) + ρ. Rewrite the first term of this expression as it follows:

E
{
vk1

{
max
n6k

vn ≥ a
}}
= ρk−1

∫ 1

a
v f (v )dv + (1 − ρ)

k∑
n=2

ρk−n
∫ 1

0
v f (v )P

{
max{ max

m≤n−1
vm, v} > a

}
dv

= ρk−1
∫ 1

a
v f (v )dv + (1 − ρ)

k∑
n=2

ρk−n
∫ 1

a

[∫ v

0
x f (x )dxGn−1(v )

] ′
dv

= ρk−1
∫ 1

a
φk (v )dv

where φk is defined recursively by φ1(v ) = v f (v ) and

φk+1(v ) = φk (v ) +
1 − ρ
ρ

*
,

∫ v

0
x f (x )dxF (v )

[
ξ (v )
ρ

]k−1
+
-

′

= φ1(v ) +
1 − ρ
ρ

*
,

∫ v

0
x f (x )dx *

,
1 −

[
ξ (v )
ρ

]k
+
-

+
-

′

Clearly, seller’s profit is continuous function of a, therefore the maximizer a f w
k is well

defined. Moreover, observe that φ bt/∆c+1 uniformly converges to
(
e F (v )λt

∫ v
0 x f (x )dx

) ′
. It

follows that seller’s profit converges uniformly as well:

ρ bt/∆c
∫ 1

a
[φ bt/∆c+1(v ) + F (v ) − 1]dv → R f w

t (a)

As a result, a f w
bt/∆c+1 → α

f w
t as ∆→ 0. �

5 Dynamic pricing for repeated sales

Now, we look at dynamics of sales for the repeated sales model when the seller is optioning
forwards. Forward pricing mechanism has the same allocation as in the sequential screening
setting, namelyQt (V t ) = 1

{
max
s≤t

Vs ≥ α
f w
t

}
. Moreover, a sale of each good is still characterized

by the stopping time, τt . The novelty is that these stopping times are correlated, because buyer’s
purchases depend on the same sample path of valuations.

We describe timing of sales using the concept of stock, St ; that is, the set of remaining goods
available at time t . Since forward sales are backloaded, we identify the set of remaining goods
with the latest available good. Formally, St = s means that each good in the interval [t, t + s ] is
still available. And, St = 0 means that no goods are available anymore.

The process of stock is Markov and can be described as it follows: St = 0 if and only if
max
t ′≤t

Vt ′ ≥ αt and St = s > 0 if and only if max
t ′≤t

Vt ′ = α
f w
t+s . Therefore, conditional on St− = 0,
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St = 0 with probability one. Conditional on St− = s > 0,




St = s − dt with probability 1 − λ [1 − F (α f w
t+s )]dt + o(dt )

St ∈ [0, s ], P(St ≤ s ′) =
1−F (α f w

t+s′ )

1−F (α f w
t+s )

with probability λ [1 − F (α f w
t+s )]dt + o(dt )

The former corresponds to the case of no sale, when the stock depreciates at rate −1. In the
latter case, there is a sale and the stock decreases at random.

The following figure visualizes the process of stock. At the initial date, it is value drawn to
be S0 and all goods with t > S0 are sold. Then, the stock is changing depreciates detemistically
until date t1 reaching St1− = −t1 + S0. At t1, the stock drops to St1 ; that is, all goods with
t ∈ [t1 + St1, S0

)
are sold. Finally, it depreciates determenistically until date t2 where all availble

goods are sold.

0

1

t

α
f w
t

max
s∈[0,t ]

Ṽs

t1 t2
sold at 0sold at t1sold at t2

all goods are sold, St2 = 0

S0St1 + t1

We look at unconditional properties of the stock process. It is easy to see that the expected
stock at t is given by

E
{
St

}
=

∫ ∞

0
sd

[
1 − Gt (α

f w
t+s )

]

Let τS be the stopping time when the stock drops to zero; that is, τS = inf{t : St = 0}. Clearly,
τS is distributed according to 1 − Gt (α

f w
t ), thus

E{τS} =
∫ ∞

0
t d

[
1 − Gt (α

f w
t )

]

The following proposition summarizes behavior of the stock process.

Proposition 6.

(a) St converges a.s. to 0;

(b) E
{
St

}
is strictly decreasing in λ with lim

λ→0
E
{
St

}
= ∞ and lim

λ→∞
E
{
St

}
= 0;
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(c) E
{
St

}
is strictly decreasing in t with lim

t→0
E
{
St

}
=

∫ ∞

0
sd

[
1 − F (α f w

s )
]
> 0 and lim

t→∞
E
{
St

}
=

0;

(d) E
{
τS

}
is strictly decreasing in λ with lim

λ→0
E
{
τS

}
= ∞ and lim

λ→∞
E
{
τS

}
= 0;

Proof. See Appendix. �

6 Max-threshold versus optimum: understanding the gap

So far we have solved for the optimal (deterministic) mechanism for the sequential screening
problem and then used it to construct a candidate dynamic pricing mechanism for the repeated
sales problem. We will refer to this candidate mechanism as option contract with forwards in
the pricing world and the max-threshold mechanism in the (direct) mechanism design world.
The former name takes after the pricing instruments used in our construction, and the latter
is based on the fact that the corresponding direct mechanism implements the allocation rule:
Qt (V t ) = 1

{
max
s≤t

Vs ≥ α
f w
t

}
; thus, trade happens if the maximum of the sequence of values is

above a strictly decreasing sequence of thresholds.
It can be shown that the max-threshold contract is in fact not optimal, beyond the two-

period model. In this section we explore the gap between our candidate mechanism and the
optimum. First we show that the optimal contract is backloaded, and argue that it is a property
that any candidate mechanism should satisfy in this setting. Second, we establish that the max-
threshold mechanism is in fact optimal under a restricted class of mechanisms that demand a
strong form of monotonicity of allocation rule, a condition typically invoked in the literature
to ex post check the validity of the first-order approach. And, third, we describe two key
properties of the optimal mechanism that our candidate mechanism does not satisfy, and why
not requiring them is a reasonable form of simplicity to seek in a candidate mechanism.

6.1 Optimal contract is backloaded

We say an allocation
{
q
}
is backloaded if:

qk (vk ) > 0⇒ qk+1(vk, v ) = 1 ∀ v (B)

This is a fairly strong backloading requirement. It demands that for any sequence of realizations
of the buyer’s types, the first instance of positive allocation will automatically lead to trade for
sure in all future periods. One can easily envision a more permissive bacloading criterion, but
that will not be required since the optimal allocation actually satisfies the aforesaid notion of
backloading.

Lemma 10. The optimal contract satisfies backloading.

Lemma 10 implies that for any sequence of value realizations, the seller will find it optimal to
randomize at most at one point, all allocations before and after this instant are bang-bang, rasing
the plausible hypothesis that gains from randomization are probably not very large. Moreover,
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in the technique pursed to prove this result, a stronger version is established: starting from
any incentive compatible allocation that is not backloaded, we can construct another incentive
compatible and backloaded allocation that keeps the expected utility of the buyer the same but
strictly increases the profit of the seller.

6.2 Max-threshold is optimal under strong monotonicity

Most of the literature (theoretical and applied) that studies dynamic screening problems with
persistent private information relies on the first-order approach which then checks its validity
ex post by verifying a set of sufficient conditions on allocation rules that are simpler than the
(IM).15 Pavan et al. [2014] (Corollary 1 therein) enlist a set of such sufficient conditions: the
stringiest amongst them being strong monotonicity and the most permissive being what they
term single-crossing. We define them next in the context of our model.

An allocation rule
{
q
}
is said to satisfy strong monotonicity if

vk > v̂k ⇒ qk (vk ) > qk (v̂k ) (SM)

And, an allocation rule
{
q
}
is said to satisfy single-crossing if

[
v ′ − v

] [
Zk (vk−1, v ′) − qk (vk−1, v )∆̂ − δ ρZk+1(vk−1, v, v ′)

]
> 0 (SC)

A clear hierarchy in the criterion for incentive compatibility can be easily checked:

(SM) ⇒ (SC) ⇒ (IM)

In the next proposition, we show that the max-threshold mechanism is actually the optimal
one under (SC). Moreover, there is no gap between (SM) and (SC), since the max-threshold
mechanism trivially satisfies (SM).

Proposition 7. Suppose that the seller sells at k = 1, 2, ...,∞. The optimal allocation that satisfies
either (SC) is as the max-threshold mechanism, defined as:

qk (vk ) =



1 whenever max
n≤k

vn > a f w
k

0 otherwise

We do not think there is an immediately deep economic reason to demand that the opti-
mal allocation satisfy (SM), though it is indeed a simple heuristic in a very complicated design
problem. However, as the next section will illuminate, (SC) actually generates an economically
justifiable and logically intuitive set of restrictions on the optimal mechanism. In particular,
the exact gap between the optimal mechanism and the optimal mechanism under (SC) is pre-
cisely that the latter kills randomization and more importantly simplifies the exact nature of
history dependence in the set of feasible allocation rules, both of which are desirable properties

15In a recent survey, Bergemann and Välimäki [2018] write: "The method of analysis for the dynamic contracting
problem above relies heavily on the payoff equivalence theorem, also known as the first-order approach.
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in the search for simpler dynamic mechanisms that can still manage to achieve a lion share of
the optimum.

6.3 The gap: stochastic and linked sales

The option contract with forwards implements the max-threshold mechanism, which is optimal
under (SC). Is the gap between (SC) and (IM) binding? In this section, we establish that it
indeed is and characterize through examples, the qualitative nature of the gap. Recollect a
feasible contract is one which satisfies incentive compatibility and individual rationality.

Proposition 8.

(a) Suppose that the seller sells only at k = 3, and v 7→ 1−F (v )
f (v ) is non-decreasing. There exists a

feasible stochastic contract which yields a higher profit than the max-threshold mechanism.

(b) Suppose that the seller sells only at k = 3, 4 and f . There exists a feasible deterministic contract
which yields a higher profit than the max-threshold mechanism.

In the proof of this result, presented in the appendix, we start with the max-threshold mech-
anism and construct small (local) improvements that are incentive compatible and ..

For intuition consider the following:
Now, consider the perturbed allocation {q̃3, q̃4}. Modify this implementation as it follows.

1. at k = 1, the buyer has to pay the option premium δ2 [M3(α f w
3 ) + δM4(α f w

4 )]∆̂ to be
eligible for future purchases;

2. at k = 1, the buyer can purchase the fourth good for δ3y14 (α f w
4 )∆̂ or both goods for

δ2 [y13 (α f w
3 ) + δy14 (α f w

4 )]∆̂;

3. at k = 2, the buyer can return the fourth good, provided that he bought only it, and
receive ν back,

ν = δ2ρ2ε1+δ
2 (1−ρ2) [

E
{
v4

}
−E

{(
v4−ε1−ε2

)+}]
+δ

(
1−ρ

) [
E
{
v3

}
−E

{(
v3+λε2−α

f w
3

)+}]

4. alternatively, at k = 2, the buyer can purchase the third good for δy23 (α f w
4 )∆̂;

5. at k = 3, given the return, the bundle is priced at [y33 (α f w
3 − λε2) + δy34 (ε1 + ε2)]∆̂;

6. at k = 3, 4, given the return, the forth good is priced at δ4−kyk4 (ε1 + ε2)∆̂

7. at k = 3, given no return, the third is priced at y33 (α f w
3 )∆̂;

Starting from the options with forwards contract that impelements the max-trhehold mech-
anism the above steps build an improvement that strictly increases the seller’s profit.
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7 A theoretical bound

We observed in the previous section that calculating the optimal contract and hence the exact
theoretical value of optimal profit for the seller can be a prohibitively complex exercise. Instead
the approach we have taken in this paper is to explore a class of reasonable dynamic pricing
instruments which are optimal under a restricted set of mechanisms. As described in the intro-
duction, this can be can be referred to as an axiomatic design approach, where the key properties
we desired from our mechanism were- backloading, bang-bang, and independent screening, of
which only backloading is satisfied by the optimal contract. A natural question to ask then is:
What is the (approximate) loss in using our mechanism and thereby giving up on randomization
and linked sales? Providing theoretical bounds for the loss is the subject matter of this section.

Define R∗ to be the profit of the seller in the repeated sales problem in continuous time, and
recall that R s , Ro and R f w refer to the seller’s optimal aggregate profits under static spot prices,
option contracts, and options with forwards. By construction:

R∗ > R f w > Ro > R s

Moreover, in order to evaluate the performance of the dynamic pricing instruments we bound
the optimal profit from above through a calculable expression. A simple way to do that is to
solve problem (*) described in Lemma 7 without the (IM): essentially the value of the optimal
profit derived under the first-order approach provides an upper bound to R∗, since the objective
of optimization problems is exactly the same but the first-order approach considers a subset of
constraints.

Our approach in Lemma 11 is slightly more general. We calculate the optimal profit under
the assumption that the seller can actually observe if the buyer’s type has changed or not, so the
seller observes the arrival of the Poisson shock, however, she does not observe what the buyer’s
type has changed to. This optimization problem has strictly less constraints than the original
problem but more than the first-order approach- in fact our new problem is equivalent to the
first-order approach under monotone hazard rate.

Lemma 11.

R∗ 6

∫ ∞

0
e−r t

[
e−r tRs (αs ) +

(
1 − e−r t

) ∫ 1

0
vdF (v )

]
dt = R

where αs = argmax
α

Rs (α) for Rs (α) = α[1 − F (α)].

Proof. We prove the claim for fixed ∆ > 0, then the limiting result follows immediately taking
lim sup
∆→0

on both sides of the inequality.

By Lemma 6, Zk (vk−1, .) must be non-decreasing for the allocation satisfying (IM). Consider
seller’s problem without any constraints, but Z1 being non-decreasing; that is,

max{q} E



∞∑
k=1

δk−1wk (vk )qk (vk )



subject to Z1- non-decreasing.
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In the proof of Proposition 7, we showed that seller’s profit can be written as

∫ 1

0



(
v f (v ) + F (v ) − 1

)
Z1(v ) + δ (1 − ρ)v f (v )

∞∑
k=1

δk−1E
{
Zk+1(vk, v )

}
dv

Integrate by parts the first term of seller’s profit,∫ 1

0

(
v f (v ) + F (v ) − 1

)
Z1(v )dv = −

∫ 1

0
Z1(u)d

(∫ 1

u

(
v f (v ) − [1 − F (v )]

)
dv

)
=

=

∫ 1

0
u [1 − F (u)]dZ1(u) 6

Rs (αs )
1 − δ ρ

∆̂

The last inequality holds, because Z1(·) is non-decreasing. The second term is clearly bounded

from above by 1
1−δ

δ (1−ρ)
1−δ ρ

∫ 1

0
vdF (v )∆̂. It follows that seller’s profit is at most

1
1 − δ ρ

(
Rs (αs ) +

δ (1 − ρ)
1 − δ

∫ 1

0
vdF (v )

)
∆̂ =

∞∑
k=1

δk−1
[
ρk−1Rs (a s ) +

(
1 − ρk−1

) ∫ 1

0
vdF (v )

]
∆̂

Take ∆→ 0 to obtain R. �

Finally, we can provide a theoretical bound for the seller’s profit which is uniform across all
distributions F .

Proposition 9. Consider the repeated sales problem in continuous time. Let R∗ be the optimal profit
of the seller, and R s , Ro and R f w respectively be the profits from spot pricing, European option and
the American option one forwards. Then we have the following set of bounds for the optimal profit:

1 >
R f w

R∗
>
R f w

R
>
Ro

R
> L

where L is a function of r
λ and provides a uniform lower bound for Rop

R
, across all distributions F .

Moreover, in the limit for r
λ the bound is tight:

lim
r
λ→0
L = lim

r
λ→∞

L = 1

The exact mathematical expression for L is provided in the appendix. In Figure 4, L is
plotted as a function of r

λ ; it can be seen that its value is never below 70%.
Now, L is a very demanding bound in that it holds for all possible distributions F . One

could ask a simpler, but less general questions: how the simple option contract and options with
forwards contract perform for specific distributions? We can easily answer this question since
R f w

R
and R

op

R
are closed form expressions that provides lower bounds for R

f w

R∗
, viz. the fraction

of optimal profit attained by our dynamic pricing instruments. We present the two theoretical
lower bounds, R

f w

R
and R

op

R
, as functions of r

λ for the power distribution in Figure 5.
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(b) F (v ) = v θ, θ = 5.
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Figure 5: red- ratio of profit from the American option on forwards R∗, blue- ratio of profit
from the European to R∗ as functions of r/λ.
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8 Extension to multiple players: repeated auctions

In this section, we extend the pricing strategies introduced above to the setting of multiple
buyers. As before, a seller wants to repeatedly sell a non-durable good. Time is continuous
and infinite. Now, there are i = 1, ...,N ex ante identical buyers who share the same discount
rate as the seller, r . Buyers’ valuations are independent across players, but correlated across
time. Specifically, we assume that buyer i’s valuations {Vi t} follows a stationary pseudo-renewal
process as defined in Section 3.

In what follows, we first consider extensions of three pricing strategy to sell a single good
at a fixed date t . Then, we look at performance of these pricing strategies as compared to a
theoretical upper bound on seller’s revenue.

8.1 Spot auction.

Suppose that the buyer can purchase the good at a second price auction at date t . As an in-
strument of exclusion, the seller uses an entry fee, say αF N−1(α)dt . We look at a symmetric
equilibrium where every bidder bids one’s valuation and participates if and only if Vi t > α.

Clearly, if bidder i participates, then he wins the auction whenever Vi t > max
j,i

{
Vj t1

{
Vj t >

α
}}

and pays max
j,i

{
Vj t1

{
Vj t > α

}}
. It follows that bidder i’s payoff from participation is given

by e−r tπ (Vi t )dt ,

π (v ) =



vF N−1(α) for v < α

vF N−1(Vi t ) − F N−1(α) −
∫ v

α
sdF N−1(s) for v > α

It is easy to see that bidder i’s optimal strategy is to participate if and only if Vi t ≥ α.
Then, seller’s revenue as a function of α can be computed as e−r tRs (α)dt where

Rs (α) = N
∫ 1

α

[
αF N−1(α) +

∫ v

α
xdF N−1(x )

]

︸                                     ︷︷                                     ︸
bidder i’s expected payment: Vi t = v > α

f (v )dv

=

∫ 1

α

[
v −

1 − F (v )
f (v )

]
dF N (v )

Observe that the optimal threshold, αs , is independent of a number of buyers.

8.2 European option

Suppose, as before, that the buyer can purchase the good at a second price auction at date
t . At t = 0, the seller sells an option which permits the buyer to decide whether or not to
pay αF N−1(α)dt at t to enter the auction. We consider a symmetric equilibrium every buyer
bids one’s valuation, enters the auction if Vi t > α and always pays the option premium, say
e−r tMt (α)dt .
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By the previous argument, entering for Vi t > α is optimal. Bidder i’s expected payoff at
t = 0 is e−r tE

{
[π (Vi t ) − π (α)]+ |Vi0

}
dt where

E
{
[π (Vi t ) − π (α)]+ |Vi0

}
= e−λt [π (Vi0) − π (α)]+ +

(
1 − e−λt

)
E
{
[π (Vi t ) − π (α)]+

}

The seller can charge at most e−r tE
{
[π (Vi t ) − π (α)]+

}
dt to induce the buyer to always partici-

pate; that is,

Mt (α) = E
{
[π (Vi t ) − π (α)]+

}
=

∫ 1

α

∫ v

α
F N−1(x )dxdv =

∫ 1

α

[1 − F (v )]F N−1(v )dv

Conclude that seller’s revenue as a function of α can be computed as e−r tRo (α)dt where

Ro
t (α) =Mt (α) + Rs (α)

= e−λt
∫ 1

α

[
v −

1 − F (v )
f (v )

]
dF N (v ) +

(
1 − e−λt

) ∫ 1

α
vdF (v )(v )

The optimal threshold, αo , is independent of a number of buyers.

8.3 Optioning forwards

The seller sells the good at t by the means of second price auction. To participate the buyer
needs to pay an entry fee. In particular, the buyer can choose to commit at date s ≤ t to pay
the entry fee y st (α)dt defined by

y st (α) = e−λ(t−s)π (α) +
(
1 − e−λ(t−s)) (E{π (Vi t )

}
− E

{
[π (Vi t ) − π (α)]+

})
Moreover, the to be eligible the buyer needs to pay the feeMt (α) at t = 0 at t = 0.

The same argument as in the proofs of Lemma 8 can be used to establish that there exists
a symmetric equilibrium where each buyer participates and pays the entry fee at date s if and
only if Vi s ≥ y st (α). Similarly to Lemma 9, seller’s profit can be written as e−r tR f w

t (α)dt ,

R f w
t (α) = e−λt

∫ 1

α

[
v −

1 − F (v )
f (v )

]
dF N (v ) +

(
1 − e−λt

) ∫ 1

α
vdF N (v )

+
(
1 − e−λ [1−F (α)]t ) ∫ α

0
vdF N (v )

As before, let α f w
t be the optimal threshold.

Next, we show that the optimal threshold is increasing in N when the hazard rate is mono-
tone. The first-order condition for α f w

t can be written as

[
1 − F (α)
f (α)

− eλF (α)tα

]
= λt f (α)eλF (α)t

∫ α

0

v [F N (v )]′

[F N (α)]′
dv

Since the hazard rate is monotone, the left-hand side is clearly a decreasing function. On
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the other hand, the right hand is an increasing function. Observe that the ratio [F N (v )]′

[F N (α)]′ =

f (v )
f (α)

[ F (v )
F (α)

]N−1
is decreasing in N , therefore α f w

t is increasing in N . In particular, as N → 0,

α
f w
t converges to the root of

1 − F (α)
f (α)

− eλF (α)tα = 0

For t , 0, lim
N→∞

α
f w
t < αs , thus αo

t < α
f w
t < αs for all N .

8.4 A theoretical bound

We extend the theoretical bound of Section 7 to the setting with multiple players. As before,
we consider the discrete setting where each buyer gets to observe his valuations at discrete time
points {(k − 1)∆ : k = 1, 2, ...,∞}.

Denote by q eik (vk
i ) expected probability that bidder i gets the k-good when the history is

vk
i . As before, define the average allocations along "persistent" path Zik (vk

i ).
Seller’s profit can be written as

max{q}
N∑
i=1
E




∞∑
k=1

δk−1wk (vk
i )q eik (vk

i )


∆̂

where

wk (vk
i ) =




vi1 − 1−F (vi1)
f (vi1) if vi1 = ... = vik

vik otherwise

Let ψ(v ) be the ironed version of v − 1−F (v )
f (v ) ; that is, ψ(v ) = − 1

f (v )
∂
∂v J (v ) where J (v ) is the

lowest concave majorant of v [1 − F (v )].
We drop all incentive constraints, but the requirement that Zi1. Using ideas from Myerson

[1986], the optimal solution to the relaxation can be shown to allocate based on ironed virtual
valuations:

ŵk (vk
i ) =




ψ(vi1) if vi1 = ... = vik
vik otherwise

Consider a distribution of ŵk (vk
i ); that is, Hk (w ) = ρk−1F [ψ−1(v )] +

(
1 − ρk−1

)
F (w ). Then,

seller’s profit can be written succinctly as

∞∑
k=1

δk−1
∫ ∞

0
wd

[
ρk−1F [ψ−1(v )] +

(
1 − ρk−1

)
F (w )

]N
∆̂

As ∆→ 0, seller’s profit clearly converges to R

R =

∫ ∞

0
e−r t

∫ ∞

0
wd

[
e−λt F [ψ−1(v )] +

(
1 − e−λt

)
F (w )

]N
dt

We illustrate performance of our selling strategies with respect to R as a function of N .
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The figure shows that both strategies achieve a progressively higher fraction of revenue as N
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Figure 6: red- ratio of profit from the American option on forwards to R, blue- ration of profit
from the European option to R; F (x ) = x and r = λ = 1.

increases. This is intuitive, because with a large number of buyers, even a spot second price
auction guarantees to the seller a profit arbitrarily close to the highest possible valuation which
is 1.

9 Alternative implementation: refunds

In this section, we propose an alternative implementation of the max-contract. For simplicity,
we focus on the case when only the t -th good is available for sale– the extension to repeated
sales is straightforward.

Recall that the max-contract allocates the t -th good if and only if max
s6t

Vs > α
f w
t . To imple-

ment this allocation, we consider the following indirect mechanism. We use a family of simple
forwards and callable forwards to implement this allocation. If the agents purchases the simple
forward at date s for e−r (t−s)x stdt , then he is guaranteed to receive the t -th period good. If the
agent purchases the callable forward at date t for e−r (t−s) x̂ stdt , then he is also guaranteed to
receive the t -th period good. The difference that the buyer can void the callable forward at any
time and recover e−r (t−s) x̂ stdt .

One application where these sorts of contracts are extensively used is airline pricing. The
t -th period good is an air ticket available for booking in advance. The simple options {x st}s6t
map to prices of non-refundable ticket. And the callable options {x̂ st}s6t correspond to prices
of fully refundable ticket.
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We define {x st , x̂ st}s6t by
x st = E

{
Vt |Vs = α

f w
t

}
x̂ st = E

{
max

{
Vt , α

f w
t

}
|Vs = α

f w
t

}

Now, we show that the max contract is indeed implemented by the aforementioned mecha-
nism. Clearly, the buyer is indifferent between claiming the refund and purchasing the callable
forward again. Therefore, it is without loss to assume that the buyer starts with purchasing the
callable forward at t = 0. Then, he is facing a stopping problem where he decides on time to
purchase the simple forward. The expected payoff from stopping at τ net the expected payoff
from waiting is given by

e−r (t−s)
[
E
{
Vt |Vs

}
− x st + x̂ st − E

{
max{Vt , α

f w
t }|Vs

}]
dt




= 0 iff Vs > α
f w
t

< 0 otherwise

So, for Vs > α
f w
t , the buyer is indifferent between claiming the refund and buying the sim-

ple forward. It follows that this mechanism implements the max-allocation where the buyer
consumes the t -th good whenever max

s6t
Vs > α

f w
t .

10 Final remarks

At the core this paper is about a dynamic model of pricing where the seller can endogenously
discriminate between different buyer types by instrumenting on the timing of purchase. Price
discrimination has a rich history in economics, starting at least from Pigou [1920].16 Its invoca-
tion as an instrument of accessing consumers within and across various markets in now almost
axiomatic. On the wide prevalence of price discrimination, Varian [1980] famously wrote:
"Economists have belatedly come to recognize that the ‘law of one price’ is no law at all. Most
retail markets are instead characterized by a rather large degree of price dispersion."

While the "cross-section" of price discrimination gained much prominence through the
study of bundling (see for example Adams and Yellen [1976] and McAfee et al. [1989]), the
"time series" of it came to be studied later with a rise in interest in dynamic contracts and dy-
namic mechanism design. Our paper is a contribution to this rapidly growing body of work,
reviewed masterfully in recent surveys by Krähmer and Strausz [2015a] and Bergemann and
Välimäki [2018]. We discuss a small subset of papers here which speak directly to our results.

Courty and Li [2000] studied the sequential screening model of price discrimination which
is akin to the two period model presented in Section 2 with the allocation in the first period

16Interestingly, the classic political economy treatise from approximately the 2nd century BC called Arthshahtra
(literally meaning the study of money), typically attributed to Kautilya, talks in some detail about offering a menu of
loans varied by interest rates and maturity structure so as to discriminate potential consumers on the basis of their
demand, risk, and capacity to repay (see Kautilya [1992]). In a forthcoming book, Rajan [2019] discusses in-depth
the prohibition of the debt contract in the West in medieval times and its rise post Renaissance, providing at the
time the intellectual and moral underpinnings of the use of market instruments, price discrimination as we know it
today being one its modern renditions.
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restricted to be zero. They explain the use of evolving information as an instrument of price
discrimination and discuss its applicability to airline ticket booking. Towards this end, they
use the classical mechanism design approach. Pavan, Segal, and Toikka [2014] unified this ap-
proach by providing a necessary conditions for incentive compatibility in the form of a general
dynamic envelope theorem, and showed that the sufficient part can be written as the integral
monotonicity condition, both of which we employ here in the paper. We build on this line of
work in many ways.

First, in the two period model presented in Section 2 we explicitly solve for the optimal
dynamic pricing mechanism, which is different from the implementation used in Courty and
Li [2000], and then show that this indirect mechanism is actually optimal. This involves two
separate non-trivial optimization problems that are then shown to be equivalent in allocations
and payoffs. The techniques used here also very different because the first-order approach does
not work here, and we directly prove novel results for the two period model- backloading and
independent screening.

Second, our model tackles both sequential screening and repeated sales for general time hori-
zons. While repeated sales have been modelled elegantly in Battaglini [2005], Boleslavsky and
Said [2013], and Bergemann and Strack [2015]; the analysis has mostly been restricted to either
two types or AR(1) process where evolving information can be reconducted to an orthogonal-
ized information structure. In such a scenario Esö and Szentes [2017] argue for the irrelevance
of dynamics, but this irrelevance of dynamics is not extendable to models where the optimal
contract under the orthogonalized information structure is not incentive compatible, which is
the case in our setting. Dynamics are alive and kicking in our setting, which is explained simply
by the fact that in the option with forwards contract, each type decides to buy into the option
contract and is then discriminated endogenously over time as the values evolve. We cannot de-
cide what the optimal distortions would be on observing the first period type- we view this as
an important missing feature of modeling dynamic price discrimination so far.

Third, the results here, to the best of our knowledge, are the first of its kind to throw light
on the general structure of dynamic mechanisms when global incentive contracts bind- they
involve backloading, randomization and specific geometry of linking across time, of which we
relax the last two criterions, to nonetheless produce a globally incentive compatible contract
that is approximately optimal.17 As mentioned in the introduction, this has been a blind spot in
the literature on dynamic pricing and dynamic mechanism design more generally. Moreover, the
extension to repeated auctions provides some promise of tackling economically relevant multi-
agent mechanism design problems with evolving information beyond the efficient allocation
benchmarks pursued so far.18

17Battaglini and Lamba [2018] show that in a general Markovian dynamic mechanism design model global incen-
tive constrains bind generically for frequent interactions and/or high types’ persistence. Ours is a more specialized
set up in that we assume types evolve according to a renewal Markov model and therefore global incentive constraints
always bind for any interior value of the persistence parameter ρ. They also solve a three types-two period model as
a first analysis of the optimal dynamic screening contract when global incentive constraints bind. On that front the
analysis here in much more general with economically meaningful mechanisms that either achieve or approximate
the optimum.

18An exception to this is the recent paper Mirrokni et al. [2018], which looks at revenue maximizing dynamic
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Fourth, so far the economic implications of imposing stronger incentive compatibility re-
quirements on the set of allocation rules, such as strong monotonicity or single-crossing have
not been explored. These conditions can be imposed ex ante on the set of mechanisms to
pursue simplicity, or they have typically been invoked to check incentive compatibility (often
numerically) ex post. We show that imposing either of those conditions amounts to (a) no
randomization at the optimum, and (b) simplification of history dependence in the form of
independent screening of each sale.

Fifth, our use of options as an instrument of implementing dynamic screening mechanisms
builds on Esö and Szentes [2007] and Boleslavsky and Said [2013].19 They use a different version
of the simple option contract or the European call option described in this paper. We give
option pricing a greater role by adding forwards so that each good can be sold at an earlier date
in a very general manner. To be precise, Esö and Szentes [2007] study a two period problem and
use a menu of European call options to implement the optimal allocation. In the first period,
buyer’s types are simply screened by their choice of option from the menu. It turns out in
our setting a simpler menu is sufficient- the American option on forwards which screen buyers’
types only using timing of purchases. Importantly, the implementation of Esö and Szentes
[2007] can not be easily ported to a model with more than two periods, whereas our dynamic
pricing strategy has a clear generalization to any time horizon. Boleslavsky and Said [2013]
study a model where the buyer’s types are i.i.d conditional on the first period information,
akin to the orthogonalized information structure. Thus, the first period and current type are
sufficient statistics for allocative distortions and can be implemented by a menu of European call
options. Our pricing strategy of using forwards is shown to be useful even when this sufficient
statistic is not available. In addition to these improvements, option on forwards also throws
light on the fact that going all the way to the global optimum will involve enrichment of the
contract space to include buybacks of the goods previously sold as a forward.

Sixth, we can divide the economic content of our analysis into short-term and long-term pre-
dictions. For the latter, Battaglini [2005] showed that in the two-types infinite horizon model
efficiency is achieved along every history of types’ realizations. There is a folk sense in which
this result is robust.20 The thresholds for exclusion in our candidate mechanism converge to
zero along every history (for any interior level of discounting and persistence), and we conjec-
ture that the same is true for the optimal mechanism, pointing towards a confirmation of the
folk result. But, we view the short-run properties as being more salient in our understanding
of dynamic price discrimination, since in the short-run the assumption of commitment seems
more plausible. In that realm, our candidate mechanism posits a precise pricing and allocation
rule even when the first-order approach cannot be applied. It is important to note that the
option with forwards contract will implement an incentive compatible allocation rule for any

mechanisms with multiple agents where the seller is only allowed to use allocation and pricing rules at each period
which do not depend on the type distributions in the future periods.

19Another elegant model of intertemporal price discrimination is presented in Deb [2014]. It studies the sequential
screening version of our model where there is only one Poisson shock which changes the buyer’s type. A partial
characterization of the optimum is provided with an intuitive implementation of introductory pricing.

20In fact Garrett, Pavan, and Toikka [2018] argue the same by showing that on "average" optimal distortions in a
monopolistic screening model with Markov types converge to zero in the long-run.
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Markov evolution of types- the renewal model allows us to precisely understand its mapping
into the world of unrestricted class of all direct mechanisms.

Going forward it would worthwhile to explore the qualitative properties of our candidate
mechanism, or a close cousin, for other (or more general) Markov evolution of types. While
seeking full optimality is a welcome ambitious goal, we think emphasizing an axiomatic ap-
proach to design and searching for incentive compatible mechanisms that satisfy certain desir-
able properties and ensure a minimal loss is equally attractive. Moreover, a large part of the
price discrimination exercise here is driven by a relatively permissible notion of feasibility in
the form of a forward looking individual rationality constraint. It allows for the agent to have
the cash to pay for an option premium at the begging. Krähmer and Strausz [2015b] point out
that the two period sequential screening problem essentially reduces to a static one if ex post
individual rationality is imposed. Krasikov and Lamba [2018] and Grillo and Ortner [2018]
have explored different versions of the repeated sales problem with the ex post individual ratio-
nality (or limited liability) constraint. Understanding further the implications of such financial
constraints on price discrimination is also an interesting question for future work.

11 Appendix

The appendix is divided into three sections. We start with a generalized version of the two-
period example covered in Section xx, which includes all the missing steps and proofs from
main text. Second we provide proofs for the results that were stated in the main text. And
third, we state and prove supplementary results that were not formally stated in the main text.

Generalized two period example

Consider the setting with two discrete periods k = 1, 2. Suppose that buyer’s valuations satisfy
v1 ∼ F , and

P(v2 ≤ v |v1) = ρ1
{
v > v1

}
+ (1 − ρ)F (v2)

where F is continuous distribution supported on [0, 1] with density f .

Proof of Lemmata 1 and 2. For k = 2, incentive compatibility requires

u2(v2) = max
v

v2q2(v1, v ) − p2(v1, v )

It follows that u2(v1, .) is the maximum of linear functions, therefore it is convex and a.e.
differentiable with ∂

∂v2 u2(v2) = q2(v2).
Using the envelope condition, rewrite incentive compatibility as

u2(v2) − u2(v1, v ) =
∫ v2

v
q2(v1, x )dx > (v2 − v )q2(v1, v )

Clearly, (ii) holds; that is, monotonicity of q2(v1, .) is sufficient for incentive compatibility.
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Now, consider k = 1. Incentive compatibility demands

U1(v1) = max
v

v1q1(v ) − p1(v ) + E
{
u2(v, v2) |v1}

= max
v

v1q1(v ) − p1(v ) +
[
ρu2(v, v1) + (1 − ρ)E

{
u2(v, v2)}]

We showed that u2(v, ·) is convex, thereforeU1 is the maximum of convex functions. It follows
that U1 is convex, a.e. differentiable with ∂

∂v1U1(v1) = q1(v1) + ρ ∂
∂v2 u2(v1, v1) = q1(v1) +

ρq2(v1, v1) = Z1(v1).
Using the envelope condition, rewrite incentive compatibility as

U1(v1) −U1(v ) =
∫ v1

v
Z1(x )dx >

∫ v1

v
[q1(v ) + ρq2(v, x )]dx

Unfortunately, monotonicity of Z1 alone is no longer sufficient for incentive compatibility.
Condition (iv) though is clearly sufficient. �

Proof of Lemmata 3 and 4. Take any allocation {q} satisfying (ii) and (iv). First, we solve for
seller’s profit using (i) and (iii):

E
{
v1q1(v1)+ρv2q2(v2)−U1(v1)

}
=

∫ 1

0

(
[v f (v )+F (v )−1]Z1(v )+(1−ρ)v f (v )E

{
q2(v1, v )

})
dv

Next, we construct a new allocation which yields a higher profit. Define {q̂} by q̂1(v1) =
[Z1(v1) − ρ)]+ and

q̂2(v2) =



1 whenever Z1(v1) > ρ

min
{
1, q2(v2) + q1(v1)/ρ

}
otherwise

Observe that q̂1(v1) + ρ q̂2(v1, v1) = Z1(v1), but q̂2(v2) > q2(v2). Clearly, {q̂} gives a higher
profit than {q}.

By construction, {q̂} is backloaded. Now, we show Lemma 4 which will imply that {q̂} is
incentive compatible.

Take any backloaded allocation {q̃} satisfying (ii) and (iv). Since Z1 is non-decreasing, there
exists a such that Z1(v1) > ρ if and only if v1 > a. By backloading, q̃1(v1) = [Z1(v1) − ρ ]+,
which is non-decreasing.

For v1 > a, ∫ v

v1
q̃2(v1, x )dx = (v − v1) =

∫ v

v1
q̃2(x, x )dx ∀v > v1∫ v

v1
q̃2(v1, x )dx = (v − v1) 6

∫ v

v1
q̃2(x, x )dx ∀v < v1
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For v1 < a, q̃1(v1) = 0, thus

ρ

∫ v

v1
q̃2(v1, x )dx 6

∫ v

v1
min{Z̃1(x ), ρ}dx = ρ

∫ v

v1
q̃2(x, x )dx ∀v > v1

ρ

∫ v

v1
q̃2(v1, x )dx 6

∫ v

v1
Z̃1(x )dx = ρ

∫ v

v1
q̃2(x, x )dx ∀v < v1

�

Proof of Proposition 1. By Lemma 4, we can look at two independent screening problems.
For k = 1, the argument is standard. Seller’s revenue is given by∫ 1

0
[v f (v ) + F (v ) − 1]q1(v )dv

The objective is linear, therefore it is maximized for q1(v1) = 1
{
v1 > a} for some a. Write

seller’s revenue as a function of a; that is, a [1 − F (a)]. For the uniform prior, the revenue is
maximized at a f w

1 = 1/2.
For k = 2, the argument is a little bit more involved. First, we consider the deterministic

optimum; that is, q2 is restricted to take values in {0, 1}. By Lemmata 2 and 4, q2(v1, v1) must
be a non-decreasing function. Therefore, there exists a such that q2(v1, v1) = 1

{
v1 > a

}
. Notice

that v1, v < a,
∫ v
v1
q2(x, x )dx = 0, therefore q2(v2) = 0 for all v2 such that max{v1, v2} < a. In

the proof of Lemmata 3 and 4, we showed that seller’s profit can be written as∫ 1

0

(
ρ [v f (v ) + F (v ) − 1]q2(v, v ) + (1 − ρ)v f (v )E

{
q2(v1, v )

})
dv

Define q̂2(v2) = 1
{
max{v1, v2} > a

}
. Clearly, q̂2 yields a higher profit as q̂2(v1, v1) =

q2(v1, v1) and q̂2(v2) ≥ q2(v2). Next, we write seller’s profit as a function of a,

ρ

∫ 1

a

[
f (v ) +

1 − ρ
ρ

(∫ v

0
x f (x )dxF (v )

) ′
+ F (v ) − 1

]
dv

For the uniform distribution, the expression for seller’s profit is ρ
∫ 1

a

[
(2v − 1) +

1 − ρ
ρ

3v2

2

]
dv .

Clearly, the integrand is increasing, thus the first-order condition is sufficient. It is easily checked
that there exists unique a f w

2 such that

(2a f w
2 − 1) +

1 − ρ
ρ

3[a f w
2 ]2

2
= 0

Now, we verify that the optimum is deterministic by constructing appropriate dual vari-
ables. As standard, we suppose that v 7→ 1−F (v )

f (v ) is non-decreasing. Then, v 7→ v f (v ) is non-
decreasing on [0, αs ]. To see it formally, take 0 < β < α 6 αs , then α[1− F (α)] > β [1− F (β)],
because v [1 − F (v )] is strictly increasing on [0, αs ). Since the inverse hazard rate is non-
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decreasing,
α

β
>

1 − F (β)
1 − F (α)

≥
f (β)
f (α)

which implies that α f (α) > β f (β).
Consider the relaxation where we require only two sets of constraints: q2(v2) 6 q2(v1, v1)

for v2 6 v1, and ∫ 1

v1
q2(v1, x )dx 6

∫ 1

v1
q2(x, x )dx

Clearly, the former constraint shall bind, so we can solve for q2(v2) with v2 < v1 as q2(v2) =
q2(v1, v1). Let η (v1) = (1 − ρ) f (v1)a f w

2 f (a f w
2 ) be the dual variable attached to the remaining

constraint. The Lagrangian is as it follows:

• coefficient for q2(v2) with v2 > v1 is

(1 − ρ) f (v1)[v2 f (v2) − a f w
2 f (a f w

2 )]

• coefficient for q2(v1, v1) is

ρ [v f (v ) + F (v ) − 1] + (1 − ρ)
∫ v

0
x f (x )dx f (v ) + (1 − ρ)a f w

2 f (a f w
2 )F (v )

We claim that the first coefficient is positive if and only of v2 > a f w
2 , because a f w

2 < a s and
v 7→ v f (v ) is non-decreasing on [0, a s ]. By the same argument, the second coefficient is positive
if and only of v2 > a f w

2 . �

Omitted proofs

Proof of Lemma 6. Consider some vk an take v > vk . Use the identity qk (vk )∆̂ = Zk (vk ) −
δ ρZk+1(vk, vk ) to rewrite (IM) as∫ v

vk

[
Zk (vk−1, x ) − Zk (vk )

]
dx > δ ρ

∫ v

vk

[
Zk+1(vk, x ) − Zk+1(vk, vk )

]
dx

Iterate forward to obtain that

∫ v

vk

[
Zk (vk−1, x ) − Zk (vk )

]
du > (δ ρ)m

∫ v

vk


Zk+m (vk−1, vk, ..., vk︸    ︷︷    ︸

m times

, x ) − Zk+m (vk−1, vk, ..., vk︸    ︷︷    ︸
m+1 times

)


dx

Since allocations are in [0, 1], Zk+m (vk+m ) −Zk+m (ṽk+m ) is uniformly bounded from above by
∆̂

1−δ ρ . Take m → ∞ and conclude that∫ v

vk
Zk (vk−1, x )dx > [v − vk ]Zk (vk )
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By the similar reasoning, ∫ vk

v
Zk (vk−1, x )dx > [v − v ′]Zk (vk−1, v )

Add up these two inequalities to get [v − vk ] [Zk (vk ) − Zk (vk−1, v )] ≤ 0; that is, Zk (vk−1, v ) >
Zk (vk ). �

Proof of Lemma 9. Let Gt be a distribution of max
s6t

Vs ; that is,

Gt (x ) = F (x )e−λ [1−F (x )]t

The good is sold by τ , 0 if and only if max
s6τ

Vτ > α which happens with probability

1 − Gτ (α). It follows that seller’s profit, R f w
t (α), can be written as

R
f w
k (α) =Mt (α) +

∫ t

0
y st (α)d [1 − Gs (α)]

According to Equation 5,

Mt (α) =
(
1 − e−λt

)
E
{(
Vt − α

)+}
=

(
1 − e−λt

) [∫ 1

α
v f (v )dv − α[1 − F (α)]

]

According to Equation 7,

y st (α) = e−λ(t−s)α +
(
1 − e−λ(t−s)) [

E
{
Vt

}
− E

{(
Vt − α

)+}]

= e−λ(t−s)α +
(
1 − e−λ(t−s)) [

α[1 − F (α)] +
∫ α

0
v f (v )dv

]

Integrate e−λ s with respect to 1 − Gs (α) to obtain∫ t

0
eλ sd [1 − Gs (α)] = 1 − F (α) + [1 − F (α]

∫ t

0
deλF (α)s = [1 − F (α)]eλF (α)t

Therefore,∫ t

0

(
1 − e−λ(t−s))d [1 − Gs (α)] = Gt (α) − e−λt

∫ t

0
eλ sd [1 − Gs (α)] = 1 − e−λ [1−F (α)]t

Taking all things together,

R
f w
t (α) = e−λtα[1 − F (α)] +

(
1 − e−λt

) ∫ 1

α
vdF (v ) +

(
1 − e−λ [1−F (α)]t ) ∫ α

0
vdF (v )

�

Proof of Proposition 2.
Part (a). For λt = 0, Ro

t (α) = R f w
t (α) = R s (α) for all α.
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Part (b ). Clearly, αo
t and α

f w
t shall satisfy the following first-order conditions:

αo
t :

1 − F (α)
f (α)

− eλtα =




> 0 if α = 1

= 0 if α ∈ (0, 1)

6 0 if α = 0

α
f w
t :

1 − F (α)
f (α)

− e F (α)λt
[
α + λt

∫ α

0
v f (v )dv

]
=




> 0 if α = 1

= 0 if α ∈ (0, 1)

6 0 if α = 0

In both cases, the first term at α = 0 is 1/ f (0) > 0, whereas the second term at α = 0 is 0.
Therefore, these thresholds are strictly positive.

Part (c ). First, we consider the European option. Observe that Ro
t can be rewritten as

Ro
t (α) = e−λt

∫ 1

α

[eλtv f (v ) + F (v ) − 1]dv

Suppose there exist t > t ′ such that αo
t > α

o
t ′. By definition,

Ro
t (αo

t ) − Ro
t (αo

t ′) > 0 > Ro
t ′ (α

o
t ) − Ro

t ′ (α
o
t ′)

Therefore,

eλt
∫ αot′

αot

v f (v )dv > eλt
′

∫ αot′

αot

v f (v )dv

which is a contradiction.
Next, we consider the option with forward pricing. Observe that R f w

t can be rewritten as

R
f w
t (α) = e−λt

∫ 1

α

[
e F (x )λt

(
x + λt

∫ x

0
v f (v )dv

)
f (x ) + F (x ) − 1

]
dx

Suppose there exist t > t ′ such that α f w
t ≥ α

f w
t ′ . By the similar reasoning,

∫ α
f w
t′

α
f w
t

e F (x )λt
(
x + λt

∫ x

0
v f (v )dv

)
f (x )dx ≥

∫ α
f w
t′

α
f w
t

e F (x )λt ′
(
x + λt ′

∫ x

0
v f (v )dv

)
f (x )dx

which is a contradiction.

Part (d ). The thresholds depend only on the normalized time τ = λt . In both cases, for any
α , 0, there exists τ such that the for all τ > τ ′, the first order conditions holds (see Part (b ))
as the "6" inequality. It follows that the optimal thresholds shall converge to zero as τ → ∞.

Part (e ). Consider the first-order conditions presented in Part (b ). Clearly, these conditions
must hold as equalities, because, in both cases, the first term is 0 at α = 1, whereas the second
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term is strictly positive at α = 1. The first order condition for the αs is

1 − F (α)
f (α)

− α = 0

Observe that α < eλtα and α < e F (α)λt
[
α + λt

∫ α

0
v f (v )dv

]
for all α ∈ (0, 1). By

assumption, v 7→ 1−F (v )
f (v ) is non-decreasing, which implies αs > αo

t and αs > α
f w
t .

Next, we shall show that α f w
t > αo

t by establishing

1 > e−λ [1−F (α)]t
[
1 + λt

∫ α

0

v f (v )dv
α

]

for all α ∈ (0, αs ].
Take 0 < β < α ≤ αs , then α[1 − F (α)] > β [1 − F (β)], because v [1 − F (v )] is strictly

increasing on [0, αs ). Since the inverse hazard rate is non-decreasing,

α

β
>

1 − F (β)
1 − F (α)

≥
f (β)
f (α)

which implies that α f (α) > β f (β). In other words, x f (x ) is strictly increasing on [0, αs ). It
follows that on [0, αs ),

e−λ [1−F (α)]t
[
1 + λt

∫ α

0

v f (v )dv
α

]
< e−λ [1−F (α)]t

(
1 + λ [1 − F (α)]t

)
Observe that the right-hand side is strictly-increasing in α, and it is at most 1 for α = 1. �

Proof of Proposition 4.
Part (a). By proposition 2, α f w

t is strictly decreasing in λ. Since Gt (v ) is strictly decreasing
in λ for all v , Gt (αt ) is strictly decreasing in λ as well.

For λ → 0, we have α f w
t → αs and Gt (v ) → F (v ) for all v , therefore Gt (αt ) → F (αs ).

For λ → ∞, we have α f w
t → 0 and Gt converges to the degenerate distribution with mass

point at v = 1, therefore Gt (α
f w
t ) → 0.

Part (b ). The argument is the same as in Part (a), because both α f w
t and Gt depend only

on normalized time λt .
Parts (c ). By the reasoning of Part (a), 1−Gs (α

f w
t )

1−Gt (α f w
t )

converges to 1 as λ goes to 0. Therefore,

E
{
τt |τt , t

}
→ 0.

Part (d ). By the reasoning of Part (b ), 1−Gs (α
f w
t )

1−Gt (α f w
t )

converges to 1 as t goes to 0. Therefore,

E
{
τt |τt , t

}
→ 0. �

Proof of Proposition 6.
Part (a). St is non-decreasing, therefore it has to converge. Since only 0 is absorbing, St can

not converge to any positive number.
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Part (b ). By proposition 2, α f w
t+s is strictly decreasing in λ for all s . Observe that 1−Gs (v ) is

strictly increasing in λ for all v . It follows that the distribution 1−Gs (α
f w
t+s ) is strictly decreasing

in λ in the sense of first-order stochastic dominance. Thus, 1−Gs (α
f w
t+s ) is strictly decreasing in λ

in the sense of second-order stochastic dominance which implies that E
{
St

}
is strictly decreasing

in λ.
For λ → 0, we have α f w

t+s → αs and Gt (v ) → F (v ) for all v , therefore Gt (αt+s ) converges to
the degenerate distribution with mass points at s = 0 and s = ∞. It follows that E

{
St

}
diverges

to ∞.
For λ → ∞, we have α f w

t+s → 0 and Gt converges to the degenerate distribution with mass
point at v = 1, therefore E

{
St

}
→ 0.

Part (c ). The argument is the same as in Part (b ), because both α f w
t+s and Gt depend only on

normalized time λt .
For t → 0, we have α f w

t+s → α
f w
s and Gt (v ) → F (v ) for all v , therefore Gt (αt+s ) converges

to F (α f w
s ). It follows that lim

t→∞
E
{
St

}
=

∫ ∞
0 sd [1 − F (αs )].

For t → ∞, we have α f w
t+s → 0 and Gt converges to the degenerate distribution with mass

point at v = 1, therefore E
{
St

}
→ 0.

Part (d ). The argument is analogous to Part (b ). �

Proof of Lemma 10. Take {q} satisfying (IM). Define new allocations {q̂} by setting Ẑ1(v1) =
Z1(v1), and recursively:

Ẑk+1(vk+1) =
∆̂

1 − δ ρ
if Ẑk (vk )/∆̂ >

δ ρ

1 − δ ρ

Ẑk+1(vk+1) = min


Zk+1(vk+1) +

k∑
m=1

qm (vm )∆̂

(δ ρ)k−m+1
,
∆̂

1 − δ ρ




otherwise

Moreover, let q̂k (vk ) = Ẑk (vk )/∆̂ − δ ρẐk+1(vk, vk )/∆̂.
Clearly, Ẑk (vk ) > Zk (vk ). We next show that q̂k (vk ) ∈ [0, 1] and that these allocations

satisfy both desired properties.
Case 1. Consider vk such that Ẑk (vk−1)/∆̂ > δ ρ

1−δ ρ . By construction, Ẑk (vk )/∆̂ 6 1
1−δ ρ , thus

q̂k (vk ) = Ẑk (vk )/∆̂ − δ ρ
1−δ ρ ∈ (0, 1]. It follows that Ẑk+1(vk, v )/∆̂ = Ẑk+2(vk, v, v )/∆̂ = 1

1−δ ρ

for all v implying that q̂k+1(vk, v ) = Ẑk+1(vk, v )/∆̂ − δ ρẐk+2(vk, vk, v )/∆̂ = 1 for all v . By
construction Ẑk (vk−1, .) is non-decreasing, thus (IM) is satisfied as for all v ,∫ v

vk

[
q̂k (vk )∆̂ + δ ρẐk+1(vk, x )

]
dx =

∫ v

vk
Ẑk (vk )dx 6

∫ v

vk
Ẑk (vk−1, x )dx

Case 2. Consider vk such that Ẑk (vk )/∆̂ ≤ δ ρ
1−δ ρ ; that is, either k = 1 and Ẑ1(v1) = Z1(v1)

or k , 1 and Ẑk (vk ) = Zk (vk ) +
k−1∑
m=1

qm (vm )∆̂

(δ ρ)k−m
. In either case, Ẑk+1(vk, vk ) = Zk+1(vk, vk ) +
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k∑
m=1

qm (vm )∆̂

(δ ρ)k−m+1
which implies

q̂k (vk ) = Zk (vk )/∆̂ − [qk (vk ) + δ ρZk+1(vk, vk )/∆̂] = 0

Finally, we verify (IM).

Take v < vk . By monotonicity of Zk+1(vk, .), Ẑk+1(vk, x ) = Zk+1(vk, x ) +
k∑

m=1

qm (vm )∆̂

(δ ρ)k−m+1

for all x ∈ [v, vk ], and∫ v

vk

[
q̂k (vk )∆̂ + δ ρẐk+1(vk, x ) − Ẑk (vk−1, x )

]
dx =

=

∫ v

vk

[
qk (vk )∆̂ + δ ρZk+1(vk, x ) − Zk (vk−1, x )

]
dx 6 0

Take vk > v . Clearly, it suffices to consider only v such that Ẑk (vk−1, v )/∆̂ < 1
1−δ ρ . By

construction, Ẑk+1(vk, x ) = Zk+1(vk, x ) +
k∑

m=1

qm (vm )∆̂

(δ ρ)k−m+1
for all x ∈ [vk, v ], and

∫ v

vk

[
q̂k (vk )∆̂ + δ ρẐk+1(vk, x ) − Ẑk (vk−1, x )

]
dx ≤

6

∫ v

vk

[
qk (vk )∆̂ + δ ρZk+1(vk, x ) − Zk (vk−1, x )

]
dx 6 0

�

Proof of Proposition 7. The proof has three steps. First, we show that the optimum must
satisfy a particular property. Then, we use this property to turn the problem into a single-
dimensional one. Finally, we characterize the optimum.

Step 1. Take {q} satisfying (SC) Define {q̂} by

Ẑk (vk ) = min




Z1

(
max
n≤k

vn
)

(δ ρ)k−1
,
∆̂

1 − δ ρ




q̂ (vk ) = max




0,min




1,
Z1

(
max
n≤k

vn
)
/∆̂

(δ ρ)k−1
−

δ ρ

1 − δ ρ







Clearly, Ẑk (vk ) = q̂k (vk )∆̂ + δ ρẐk+1(vk, vk ) and q̂k (vk ) ∈ [0, 1]. We claim that {q̂} satisfies
(SC) and increases seller’s profit.

To verify (SC), we will repeatedly use the fact that Ẑk (vk−1, ·) is non-decreasing which
follows from Lemma 6. There are two cases two consider:

1. Take vk such that Ẑk (vk ) = ∆̂
1−δ ρ . Then, Ẑk+1(vk, v ) = ∆̂

1−δ ρ and q̂k (vk )+δ ρẐk+1(vk, v ) =
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Ẑk (vk ) for all v . Since Z1 is non-decreasing,

[
v − vk

] [
Ẑk (vk−1, v ) − Ẑk (vk )

]
> 0

2. Take vk such that Ẑk (vk ) , ∆̂
1−δ ρ ; that is, q̂k (vk ) = 0 and Ẑk (vk−1, v ) =

Z1

(
max
n≤k

vn
)
/∆̂

(δ ρ)k−1
.

Then, q̂k (vk )+δ ρẐk+1(vk, v ) = Ẑk (vk−1,max{vk, v}) for all v . SinceZ1 is non-decreasing,

[
vk − v

] [
Ẑk (vk−1, v ) − Ẑk (vk )

]
> 0

Next, we establish that {q̂} increases seller’s profit. Rewrite seller’s profit as it follows. Let
k∗ be a discrete time point of the last arrival, and vk∗−1 be the history preceding it, then

E



∞∑
k∗=1

δk
∗−1E




∞∑
k=1

δk−1wk∗−1+k
(
vk∗−1+k )qk−1+k (vk∗−1+k )

∆̂
����v

k∗−1





=

=

∫ 1

0



(
v f (v ) − [1 − F (v )]

)
Z1(v ) + δ (1 − ρ)v f (v )

∞∑
k=1

δk−1E
{
Zk+1(vk, v )

}
dv

Observe that Ẑ1 = Z1. Fix some vk . Suppose it has been established that Ẑk (vk−1, .) ≥

Zk (vk−1, .). Notice that the new contract satisfies Ẑk+1(vk, v ) = min
{
Ẑk (vk−1,max{vk,v})

δ ρ , ∆̂
1−δ ρ

}
.

Since {q} satisfies (SC),

Ẑk+1(vk, v ) ≥ min



Zk (vk−1,max{vk, v})
δ ρ

,
∆̂

1 − δ ρ



≥ Zk+1(vk, v )

Step 2. We show how seller’s problem can be reduced to a single-dimensional one. Recall

thatGk is a distribution of max
n≤k

vn given byGk (v ) = F (v )[ξ (v )]k−1 for ξ (v ) = (1−ρ)F (v )+ρ.

Then, {q̂} satisfies

∫ 1

0
x f (x )E{Ẑk+1(vk, x )}dx =

∫ 1

0

∫ 1

0
u f (u) min




Ẑ1(max{v, u})
(δ ρ)k

,
∆̂

1 − δ ρ



dGk (v )du =

=

∫ 1

0

[∫ u

0
v f (v )dvGk (u)

] ′
min




Ẑ1(u)
(δ ρ)k

,
∆̂

1 − δ ρ



du

Express Ẑ1(·) as an average of allocations along the persistent path:

Z1(u) =
∞∑
k=1

(δ ρ)k−1q̂k (u, ..., u︸ ︷︷ ︸
k times

)∆̂

By construction, q̂k+1( u, ..., u︸ ︷︷ ︸
k+1 times

) = 1 whenever q̂k (u, ..., u︸ ︷︷ ︸
k times

) , 0. Using this insight, seller’s profit
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can be rewritten as

∞∑
k=1

(δ ρ)k−1
∫ 1

0
[φk (v ) + F (v ) − 1]q̂k (u, ..., u︸ ︷︷ ︸

k times

)∆̂dv

where φ1(v ) = v f (v ) and φk+1(v ) is defined as in the proof of Proposition 5,

φk+1(v ) = φk (v ) +
1 − ρ
ρ

*
,

∫ v

0
x f (x )dxF (v )

[
ξ (v )
ρ

]k−1
+
-

′

= φ1(v ) +
1 − ρ
ρ

*
,

∫ v

0
x f (x )dx *

,
1 −

[
ξ (v )
ρ

]k
+
-

+
-

′

Recall that Ẑ1(·) must be non-decreasing, therefore each v 7→ q̂k (v, ..., v︸ ︷︷ ︸
k times

) is non-decreasing

as well. It follows that seller’s problem reduces to a choice of a sequence of thresholds {αk}:

max{ak}
∞∑
k=1

(δ ρ)k−1
∫ 1

ak
[φk (v ) + F (v ) − 1)]∆̂dv s.t. {ak} is non-increasing

By the same argument as in the proof of Proposition 2, monotonicity constraint does not
bind. The optimal sequence of threshold is the same as in the sequential screening model dis-
cussed in Proposition 5. �

Proof of Proposition 8. First we prove Part (a). We start with the deterministic optimum; that
is, q3(v3) = 1

{
max{v1, v2, v3} > a f w

3
}
. We construct an improvement using two consecutive

perturbations.
Fix small ε1, ε2 > 0. Consider the new allocation q̃3 which differs from the original one

only when v1 < a f w
3 :

• For v1 < a f w
3 −ε1, q̃3(v3) = 1

{
max{v2, v3} > a f w

3 −ε1ε2
}
, whereas q3(v3) = 1

{
max{v2, v3} >

a f w
3

}
;

• For v1 ∈ [a f w
3 −ε1, a

f w
3

)
, q̃3(v3) = ε2+ (1−ε2)1

{
max{v2, v3} > a f w

3
}
, whereas q3(v3) =

1
{
max{v2, v3} > a f w

3
}
.

The following figure illustrates the new allocation.
It is easy to see that the new allocation satisfies (IM). Recall that φ1(v ) = v f (v ), φ2(u) =

φ1(v ) +
1 − ρ
ρ

(
F (v )

∫ v

0
x f (x )dx

) ′
and

φ3(v ) = φ2(v ) +
1 − ρ
ρ

*
,

*
,
1 −

[
1 +

1 − ρ
ρ

F (v )
]2

+
-

∫ v

0
x f (x )dx+

-

′
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0 v1

v2

a f w
3

a f w
3 − ε1ε2

(a) v3 : v2 = v3

0 v2

v3

a f w
3

(b) v3 : v1 ∈ [a f w
3 − ε1, a

f w
3

)

0 v2

v3

a f w
3 − ε1ε2

(c) v3: v1 < a f w
3 − ε1

Figure 7: blue- q̃3(v3) = 1, red- q̃3(v3) = ε2 and white- q̃3(v3) = 0

The net change of seller’s profit is given by δ2D̃ (ε1, ε2)∆̂

D̃ (ε1, ε2) = ρ2
∫ a3

a f w
3

[φ3(v ) + F (v ) − 1]dvε2 − ρ(1 − ρ)F (a f w
3 − ε1)

∫ a f w
3

a f w
3 −ε1

φ2(v )dvε2+

+ ρ(1 − ρ)F (a f w
3 − ε1)

∫ a f w
3

a f w
3 −ε1ε2

φ2(v )dv

Observe that D̃ is twice differentiable in the neighborhood of (0, 0), and D̃ (0, 0) = ∂
∂ε1

D̃ (0, 0) =
∂
∂ε2

D̃ (0, 0) = ∂2

∂(ε1)2 D̃ (0, 0) = ∂2

∂(ε2)2 D̃ (0, 0) = 0. Moreover, by the definition of a f w
3 ,

∂2

∂ε1∂ε2
D̃ (0, 0) = ρ2 [φ3(a f w

3 ) + F (a f w
3 ) − 1] = 0

The allocation q̃3 yields the same revenue (up to the second order) as the deterministic optimum
for small ε1, ε2 > 0.

Next, we perturb q̃3. Fix small ε3 > 0. Consider the new allocation q̂3 which differs from
the original one only when v1 ∈ [a f w

3 − ε1, a
f w
3

)
and v2 < ε3: q̂3(v3) = 1

{
v3 > ε2ε3 + (1 −

ε2)a f w
3

}
, whereas q̃3(v3) = ε2 + (1 − ε2)1

{
v3 > a f w

3
}
. The following figure illustrates the

allocation perturbed twice.
It is easy to see that the new allocation satisfies (IM). Then, the net change of seller’s profit
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0 v1

v2

a f w
3

a f w
3 − ε1ε2

ε3

(a) v3 : v2 = v3

0 v2

v3

ε2ε3 + (1 − ε2)a f w
3

ε3 a f w
3

(b) v3 : v1 ∈ [a f w
3 − ε1, a

f w
3

)
Figure 8: blue- q̂3(v3) = 1, red- q̂3(v3) = ε2 and white- q̂3(v3) = 0

(as compared to q̃3) is given by δ2(1 − ρ)[F (a f w
3 ) − F (a f w

3 − ε1)]D̂ (ε2, ε3)∆̂ where

D̂ (ε2, ε3) = (1 − ρ)F (ε3)


∫ 1

ε2ε3+(1−ε2)a f w
3

φ1(v )dv −
∫ a f w

3

0
φ1(v )dvε2


− ρ

∫ ε3

0
φ1(v )dvε2

Again, D̂ is twice differentiable in the neighborhood of (0, 0), and D̂ (0, 0) = ∂
∂ε2

D̂ (0, 0) =
∂
∂ε3

D̂ (0, 0) = ∂2

∂(ε2)2 D̂ (0, 0) = ∂2

∂(ε3)2 D̂ (0, 0) = 0,

∂2

∂ε2ε3
D̂ (0, 0) = (1 − ρ) f (0)a f w

3

∫ a f w
3

0
[a f w

3 f (a f w
3 ) − v f (v )]dv > 0

The last inequality is implied by v 7→ v f (v ) by being strictly increasing on [0, a f p ], see Part
(e) of Proposition 2.

Now, we prove part (b) of Proposition 8. We start with the allocation implemented by
forward pricing; that is, q3(v3) = 1

{
max{v1, v2, v3} > a f w

3
}
and q4(v4) = 1

{
max{v1, v2, v3} >

a f w
3

}
.

Fix small ε1, ε2 > 0. Consider the new allocation {q̃3, q̃4} which differs from the original
one only for v1 ∈ [a f w

4 , a f w
3

)
and v2 ∈ [0, ε1

)
:

• q̃3(v3) = 1 if and only if v3 > a f w
3 − (δ ρ)ε2, whereas q3(v3) = 1 if and only if v3 > a f w

3 ;

• q̃4(v4) = 1 if and only if max{v3, v4} > ε1 + ε2, whereas q4(v4) = 1 for all v3, v4.

The following figure visualizes the new allocation.
It is easy to see that the new allocation satisfies (IM). Recall that φ1(v ) = v f (v ) and φ2(v ) =

φ1(v ) +
1 − ρ
ρ

(
F (v )

∫ v

0
x f (x )dx

) ′
. Then, the net change of seller’s profit can be succinctly

written as [δ (1 − ρ)]2 [F (a f w
3 ) − F (a f w

4 )]D̃ (ε1, ε2)∆̂ where

D (ε1, ε2) = F (ε1)


∫ a f w
3

a f w
3 −(δ ρ)ε2

φ1(v )dv − (δ ρ)
∫ ε1+ε2

0

(
φ1(v ) + φ2(v )

)
dv


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0 v1

v2

a f w
3

a f w
4

ε1

(a) v4 : v2 = v3 = v4

0 v2

v3

ε1 + ε2

α
f w
3 − (δ ρ)ε2

α
f w
3

ε1

(b) v4 : v3 = v4, v1 ∈ [α f w
4 , α

f w
3

)

0 v3

v4

ε1 + ε2

(c) v4: v1 ∈ [a f w
4 , a f w

3
)
, v2 ∈ [0, ε1

)
Figure 9: blue- q̃3(v3) = q̃4(v4) = 1, red- q̃3(v3) = 0, q̃4(v4) = 1 and white- q̃3(v3) = q̃4(v4) = 0

Observe that D̃ is twice differentiable in the neighborhood of (0, 0), and D̃ (0, 0) = ∂
∂ε1

(̃0, 0) =
∂
∂ε2

D̃ (0, 0) = ∂2

∂(ε1)2 D̃ (0, 0) = ∂2

∂(ε2)2 D̃ (0, 0) = 0. Moreover,

∂2

∂ε1ε2
D (0, 0) = f (0)(δ ρ)φ1(a f w

3 ) > 0

�

Proof of Proposition 9. We first define a uniform bound for fixed ∆ > 0. As in Section xxx,
construct seller’s profit δk−1Ro

k (α)∆̂ from the k-th good sold by the means of European option
with strike price α∆̂ and premium δk−1Mk (α)∆̂:

M o
k (α) =

(
1 − ρk−1

) [
E
{(
vk − α

)+}]

Ro
k (α) = M o

k + Rs (α) = ρk−1Rs (αs ) +
(
1 − ρk−1

) ∫ 1

0
vdF (v )

Denote the optimal strike price by αo
k .

Observe that for all k, ρk−1Rs (αs ) +
(
1 − ρk−1

) ∫ 1
0 vdF (v ) ≥ Ro

k (aok ) ≥ Rs (a s ). Our goal
is to find a lower bound for the following ratio:

Ro
k (aok )

ρk−1Rs (αs ) +
(
1 − ρk−1

) ∫ 1
0 vdF (v )

We construct two different bounds and take the pointwise maximum of them. First of all, by
definition, Ro

k (aok ) ≥ Ro
k (0) =

(
1− ρk−1

) ∫ 1
0 vdF (v ), and Rσ (αs ) ≥

(
1− ρk−1

) ∫ 1
0 vdF (v ). The
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equality holds if and only if F is a point mass distribution, therefore for any F ,

Rs
k (aok )

ρk−1R f p (αs ) +
(
1 − ρk−1

) ∫ 1
0 vdF (v )

≥ 1 − ρk−1

The second bound is based on Tamuz [2013] who showed Rs (αs ) ≥ e xp
(∫ 1

0 log vdF (v ) − 1
)
.

We replicate the result for completeness. By definition of αs , for all v ,

log Rs (αs ) = log αs + log [1 − F (αs )] ≥ log v + log [1 − F (v )]

Take an expectation on both sides to get

log αs + log [1 − F (αs )] ≥
∫ 1

0
log vdF (v ) +

∫ 1

0
log [1 − F (v )]dF (v ) =

∫ 1

0
log vdF (v ) − e

Take an exponent on both sides to obtain the result.
By Jensen’s inequality,

e xp
(∫ 1

0
log vdF (v )

)
≥

∫ 1

0
vdF (v )

And, the equality holds if and only if F is a point mass distribution, therefore for any F ,

Ro
k (a spk )

ρk−1Rs (αs ) +
(
1 − ρk−1

) ∫ 1
0 vdF (v )

≥ Lk = max
{

1
ρk−1 +

(
1 − ρk−1

)
e
, 1 − ρk−1

}

Combine Proposition 11 and the previous result to get:

∑∞
k=1 δ

k−1Ro
k (aak )∆̂∑∞

k=1 δ
k−1

[
ρk−1Rs (αs ) +

(
1 − ρk−1

) ∫ 1
0 vdF (v )

]
∆̂

≥
A × R f p (α f p ) + B ×

∫ 1
0 udF (u)

C × R f p (α f p ) + D ×
∫ 1
0 udF (u)

where

A =
∞∑
k=1

δk−1ρk−1Lk∆̂, B =
∞∑
k=1

δk−1
(
1 − ρk−1

)
Lk∆̂, C =

∆̂

1 − δ ρ
, D =

δ (1 − ρ)
1 − δ

∆̂

1 − δ ρ

By the argument from Step 1, for any F ,

A × R f p (α f p ) + B ×
∫ 1
0 udF (u)

C × R f p (α f p ) + D ×
∫ 1
0 udF (u)

≥ min
{
A + B
C + D

,
A + Be
C + De

}

Now, we take ∆→ 0. First of all,

L bk/∆c−1 → Lt = max
{

1
e−λt +

(
1 − e−λt

)
e
, 1 − e−λt

}
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Then, C → C = 1
r+λ =

1/λ
r/λ+1 , D → D =

λ
r

1/λ
r/λ+1 , and

A→ A =
∫ ∞

0
e−r t e−λtLtdt = (1/λ)

∫ ∞

0
e−r/λt e−tLtdt

B → B =
∫ ∞

0
e−r t

(
1 − e−λt

)
Ltdt = (1/λ)

∫ ∞

0
e−r/λt

(
1 − e−t

)
Ltdt

So, L can be defined as

L = min
{
A + B

C +D
,
A + Be
C +De

}

Observe that L depends only on r/λ. �

Supplementary results
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