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I study strategic experimentation, with one player initially being better in-

formed about the state of nature than the other. Players are otherwise symmetric,

and observe past experimentation decisions and outcomes. I construct an equi-

librium in which a mutual encouragement effect arises: as the public information

becomes discouraging, the informed player’s high effort continuously brings in

good news, encouraging the uninformed player to experiment; in return, the

uninformed player’s experimentation pattern yields an increasing reward, en-

couraging the informed player to experiment. Due to this effect, players’ total

effort can increase over time, and the uninformed player may grow increasingly

optimistic, despite the discouraging public information. Moreover, creating infor-

mation asymmetry improves total welfare if the informed player’s initial signal

is sufficiently precise.

Keywords: Strategic experimentation, signaling, learning, asymmetric infor-

mation.

1. INTRODUCTION

Experimentation, including learning from one’s own and others’ experiments, is an

important mechanism through which agents discover and explore new ideas, thereby

promoting technological change, and driving economic growth.1 In many relevant ap-

plications, some agent initially is better informed about the value of experimentation,

either due to agents’ heterogeneous background or companies’ marketing effort. For
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example, in a strategic alliance that is marketing a new product, an incumbent firm

knows more about the potential demand than an entrant; in a village where farmers

experiment with a new fertilizer, an experienced farmer knows more about the fertil-

izer’s profitability than a novice farmer; when physicians learn through each others’

prescriptions the efficacy of a new drug, a specialist physician knows more about the

pros and cons of the drug (due to education or pharmaceutical detailing2).

In such environments, on the one hand, the information gathered from experimen-

tation is a public good, creating a free-riding problem: agents experiment less than if

they acted cooperatively. This free-riding problem has been studied under symmetric

information by Bolton and Harris (1999), Keller et al. (2005), and formed the basis of

a large literature.3 On the other hand, exactly because information is a public good,

with information asymmetry, the better informed “leader” then has an incentive to

use his private information to motivate the less-informed “follower” to acquire more

information, which may counterbalance free-riding.

How does the initial asymmetric information affect agents’ experimentation behav-

ior? Does it mitigate or exacerbate free-riding? For policy makers who aim to improve

technology diffusion or for companies that market new products, would it be desirable

to induce information asymmetry initially (for instance, by hiding information from

some agent, or by targeting a certain agent)?

The central contribution of this paper is to show that initial information asymmetry

can qualitatively change agents’ experimentation behavior — agents can increase

experimentation even after a history of unsuccessful experiments (that is, experiments

that do not lead to any breakthrough), unlike in the symmetric information setting.

The key mechanism is a novel mutual encouragement effect : a better-informed player

— the leader — signals good news through persistent high (experimentation) effort,

encouraging an uninformed player — the follower — to experiment; the follower

follows his lead, and increases her effort over time to encourage the leader to persevere

when the leader becomes too pessimistic. Thanks to this effect, inducing information

asymmetry mitigates free-riding, leads to more learning and can improve total welfare.

This paper builds on the two-player version of the exponential-bandit model (Keller

et al., 2005). At each point in time, each player must divide a unit of resource between

2Detailing refers to the activity of pharmaceutical sales representatives providing physicians with

“details” related to a drug—approved scientific information, benefits, side effects, or adverse events.
3The free-riding effect has also been well documented empirically, for instance, by Foster and

Rosenzweig (1995).
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a safe project with known payoffs and a risky project of unknown quality. Learning

is conclusive: only good risky projects deliver payoffs (breakthroughs), governed by

a Poisson process. Players observe past experimentation decisions and payoffs. I add

one source of information asymmetry: at date 0, one player, called the informed player

(he), privately observes a binary noisy signal. He thus becomes either an optimistic

type whose posterior belief is higher than the uninformed player’s (she), or a pes-

simistic type.

With asymmetric information, a public history carries two components of infor-

mation. The first component is the information generated from the experimentation

technology, represented by the informed player’s beliefs. This component is “passive,”

as it depends only on the public history. The second component is the private infor-

mation that the informed player reveals to the uninformed player, represented by the

uninformed player’s belief about the informed player being the optimistic type, called

his reputation. This component is “strategic,” as it depends also on the informed

player’s strategies.

I construct a Markov perfect equilibrium (MPE) using these two components of

information as state variables. During a gradual revelation phase of this equilibrium,

the pessimistic type mixes between mimicking the optimistic type’s high effort and

revealing himself such that, as long as he keeps mimicking, his reputation gradu-

ally increases. This rising reputation induced by the informed player’s high effort

(the strategic component) counterbalances the pessimism induced by the absence of

a breakthrough (the passive component), and encourages the uninformed player to

increase her effort over time.4

This rising effort dynamics of the uninformed player occurs when the pessimistic

type’s belief is such that neither player would experiment if his signal were public.

Intuitively, during the gradual revelation phase, the pessimistic type has to be in-

different between mimicking the optimistic type so as to be willing to convince the

uninformed player to exert effort, and revealing himself, thereby inducing both players

to stop experimentation. The marginal value of both players’ efforts to the pessimistic

type is dropping over time due to the absence of a breakthrough; for him to be indif-

ferent, the uninformed player has to accelerate her information production to reward

the pessimistic type’s persistence.

The joint behavior pattern during the gradual revelation phase — the informed

4The uninformed player may even become increasingly optimistic about the risky project before

a breakthrough occurs, which is another novel qualitative impact of information asymmetry.
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player maintaining high effort and the uninformed player increasing her effort despite

the absence of a breakthrough — admits the following intuitive interpretation. Leaders

motivate followers through role modeling: a leader articulates an appealing vision,

which may or may not be reachable; however, as the leader sees further and more

accurately than his follower,5 his putting in long hours during setbacks gradually

convinces the follower of his optimism about the vision, and hence motivates the

follower to work harder. That leaders enhance followers’ commitment to their visions

through role modeling is a recurring theme in both modern leadership theories6 and

leadership guidelines in popular management books.7

The constructed MPE exists if the initial signal of the informed player is precise

enough, and the fraction of the pessimistic type is not too low. If the prior belief is

not too low, then the distribution of the equilibrium paths of the constructed MPE is

unique among the MPEs that satisfy (1) that players play the symmetric MPE after

the informed player reveals his type (on path); (2) a criterion in the spirit of D1.

The mutual encouragement effect leads to interesting welfare implications. Suppose

a social planner (she), who cares about total welfare, observes the informed player’s

private signal. Would she hide it from the uninformed player? I find that, if the signal

is precise enough, she would hide it. Intuitively, in such cases, the optimistic type,

being still optimistic before revealing his type, has little to learn, and thus suffers

little from asymmetric information. The pessimistic type and the uninformed player,

on the other hand, benefit significantly from the mutual encouragement effect. As a

result, asymmetric information improves total welfare.

Drawing from this welfare implication, a policymaker aiming at promoting new

technology adoption may find it desirable to target certain individuals first by giving

them relevant information or training. Companies promoting new experience goods

might find it profitable to target some consumers, say early adopters, or experts;

indeed, pharmaceutical companies spend huge amounts of money targeting marketing

activities at “opinion leaders,” for instance, by giving them detailed information about

5See for instance, page 2 of March and Weil (2009).
6Examples are charismatic leadership theory, transformational leadership theory (Bass and Bass,

2009; Yukl, 2010), and authentic leadership theory (Gardner et al., 2005; Avolio and Gardner, 2005).
7For instance, Yukl (2010) gives the following guidelines “for leaders seeking to inspire followers

and enhance their self-confidence and commitments to the mission”: articulate a clear and appealing

vision; explain how the vision can be attained; act confident and optimistic; express confidence

in followers; use dramatic, symbolic actions to emphasize key values; and lead by example (role

modeling). See page 290–293.
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their new drugs, a process called detailing (Nair et al., 2010).

2. LITERATURE REVIEW

Strategic experimentation in a non-competitive team environment was first intro-

duced by Bolton and Harris (1999), in a two-armed Brownian bandit model. They

analyze how an encouragement effect — a player’s future effort encourages another

player to experiment now — interacts with the free-riding effect. Keller et al. (2005)

propose the exponential bandit model to analyze the experimentation problem. No-

tably, they find that no encouragement effect arises in (Markov) equilibria: players do

not acquire more information than a single player does.8 In both papers, players are

symmetrically informed. This paper introduces initial asymmetric information and

shows how it generates a new encouragement effect.

This paper is closely related to the recent literature on private learning. Bonatti

and Hörner (2011) study moral hazard in teams (with hidden effort) in an expo-

nential bandit framework. Building on this model, Guo and Roesler (2016) analyze

a collaboration problem with public and irreversible exit decisions, in which players

may privately learn the quality of their project over time if it is bad. Their paper

is the closest to my paper in that both papers study signaling in experimentation

problems. But in their paper, signaling is through exit decisions rather than through

effort, which leads to different behavior predictions and welfare implication. There,

information asymmetry creates inefficiency.

Private learning is also examined by Heidhues et al. (2015) and Das (2017), with

public effort but private payoffs or signals, with or without competition. In both pa-

pers, equilibrium effort strategies are cutoff strategies. Therefore, the joint behavior

pattern in this paper does not occur in theirs. Halac et al. (2017) study mechanism

design in contests for experimentation, in which both experimentation decisions and

experimentation outcomes are private. They find that a “hidden equal-sharing” con-

test can outperform a “public winner-takes-all contest.” Their mechanism differs from

mine in that, signaling does not play a role in theirs.

More broadly, that asymmetric information may improve welfare also relates to

8This encouragement effect may occur in MPEs that are not limit equilibria of discrete-time

games as the length of a period shrinks to 0.

Note that the encouragement effect defined by Keller et al. (2005) differs from that defined

by Bolton and Harris (1999): the former is an equilibrium property and the latter concerns best

responses. This paper follows the former definition.
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the leadership literature. Hermalin (1998) and Komai et al. (2007) analyze a static

model of moral hazard in team, in which the leader who knows the state of the world

signals to the followers the value of their joint project by working hard, thereby par-

tially overcoming the free-riding problem. Different from them, this paper focuses on

dynamics. Also, their environments have payoff externalities, which lead to different

welfare implications from my paper.

3. THE MODEL

Time is continuous, indexed by t ∈ [0,∞). There are two players. Each player is

endowed with one unit of a divisible resource per unit of time, and must divide it

between a safe project and a risky project. A safe project delivers a known return;

the return of a risky project depends on its quality θ, unknown and common to both

players, with θ = g referring to a good project, and θ = b to a bad one. If a player

allocates a fraction at ∈ [0, 1] of resource to the risky project over a time interval

[t, t+ dt], and hence (1− at) to the safe project, then the player receives (1− at)sdt
from the safe project, and a lump-sum payoff h with probability atλ1{θ=g}dt from the

risky project, where λ > 0. That is, a bad risky project delivers zero payoffs whereas

a good risky project delivers lump-sum payoffs, called breakthroughs, that arrive at a

Poisson rate. Learning is thus conclusive: a single breakthrough perfectly reveals good

quality. At any time t, players observe past experimentation decisions and payoffs.

Both players prefer a good risky project to a safe project, and a safe project to a bad

risky project: λh > s > 0. They discount future payoffs with a common discount rate

r > 0.

Initially, players assign a common prior probability q0 to the risky projects being

good. At time 0, one player, called the informed player (player I, he), receives a

favorable signal s+ with probability ρθ, and an unfavorable signal s− with probability

1−ρθ. The favorable signal s+ is more likely to occur to a good risky project than to a

bad risky project: 0 ≤ ρb < ρg < 1. By Bayes’ rule, after receiving signal s+, I adjusts

his belief upward to some q+
0 , strictly higher than the uninformed player’s (player U ,

she) posterior q0, thereby becoming an optimistic type; otherwise, he adjusts his belief

downward to some q−0 < q0, thereby becoming a pessimistic type. The parameters q0,

ρg, and ρb are common knowledge.9 The information asymmetry is the only divergence

from the canonical exponential-bandit model (Keller et al., 2005).

9Such information asymmetry would arise, for instance, if I is an incumbent and U is a new

entrant who is uncertain of how long I has been experimenting before time 0.
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Remark 3.1 [A joint project interpretation.] Because a breakthrough publicly re-

veals good quality and there is no payoff externality, the game essentially ends once

a breakthrough occurs. It then becomes a dominant strategy for a player to use the

risky project forever, bringing a discounted payoff λh/r. Note also that the player

who receives the first breakthrough enjoys an additional payoff h relative to the other

player. Therefore, the model admits the following joint project interpretation: instead

of working on two risky projects of the same quality, the two players work on one

joint risky project; a breakthrough occurs to the risky project with the same probability

as in our model, bringing a lump-sum payoff λh/r to each player, and an additional

intrinsic satisfaction h to the first player who experiences the breakthrough; the project

is completed once a breakthrough arrives.

3.1. The cooperative solution

If players act cooperatively to maximize their joint surplus, the informed player

would reveal his signal truthfully to the uninformed player.10 Therefore, from time

0 on, both players would share a common posterior belief qt, which decreases over

time as long as players experiment and no breakthrough arrives. Both players adopt

a cutoff strategy: experimenting if qt is higher than a cutoff q∗2 ∈ (0, 1), defined by

(3.1) r(λq∗2h− s) + 2λq∗2(λh− s) = 0,

and stopping otherwise. On the left-hand side, the first term is the flow marginal

benefit of experimentation at the cooperative cutoff q∗2 (relative to the safe return; in

the sequel, all return is relative to the safe return if not mentioned), and the second

term the marginal option value of information to both players. Equation (3.1) says

that at the optimal cutoff, the total marginal benefit of experimentation is 0 (a smooth

pasting condition).

For future use, we also introduce the single-player solution, a similar cutoff strategy

with cutoff q∗1, where q∗1 is determined by equation (3.1) with the number 2 being

replaced by 1. Since the option value of information to two players is twice as much

as that to a single player (at the same belief) whereas the flow benefit is the same,

a two-player team in the cooperative solution acquire more information than does

a single player: q∗2 < q∗1. Intuitively, the more valuable the information, the more

information player(s) should acquire.

10He can do so by playing some action for an infinitesimal amount of time.



8

4. BELIEFS AND THE EQUILIBRIUM CONCEPT

Following the experimentation literature with symmetric information (Bolton and

Harris, 1999; Keller et al., 2005), I focus on Markov perfect equilibrium (MPE). Dif-

ferent from them, there is no single state variable for the solution concept, because

players do not share a common posterior belief. Now a public history carries two

components of information. The first is the information obtained from the experi-

mentation technology, depending only on the public history, independent of players’

equilibrium strategies, hence is called “passive.” This component of information can

be represented by how the informed player updates his beliefs. The other component

is the informed player’s private information revealed through his actions, depending

also on his equilibrium strategies and hence is called “strategic.” This component

of information can be represented by how the uninformed player updates her belief

about the informed player being the optimistic type. Based on this observation, we

define state variables. Strategies, belief systems, and equilibria are defined afterward.

4.1. The state variables

The passive component—the background belief. Consider an outsider who

knows the model except that he mistakenly believes that neither player has observed

the initial signal of the informed player’s. Assume that he starts with the same prior

belief p0 ≡ q0 and observes the same public histories as our players do. Denote his

posterior belief at time t by pt, and call it the background belief.11

Of course, this background belief differs from I’s posterior belief. But if after a

public history, the outsider is told of I’s private signal, he would then adjust his

belief to exactly I’s. That is, after a public history, if the background belief is p, type

s+’s posterior belief must be qqq+(p) determined by Bayes’ rule,

qqq+(p) =
pρg

pρg + (1− p)ρb
,(4.1)

and type s−’s must be qqq−(p) given by

qqq−(p) =
p(1− ρg)

p(1− ρg) + (1− p)(1− ρb)
.(4.2)

Equations (4.1) and (4.2) imply that the background belief p and the signals of

the informed player, s− and s+, are sufficient to track the informed player’s posterior

beliefs. To track U ’s belief, we need the strategic component of information.

The strategic component—I’s reputation: the probability U assigns to I being

11Appendix D gives a formal definition of the background belief.
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type s+, denoted by µ. Together with the background belief, I’s reputation determines

U ’s posterior belief about the risky project by

(4.3) qqqU(p, µ) ≡ µqqq+(p) + (1− µ)qqq−(p),

and hence directly affects U ’s instantaneous payoff. As U ’s incentives are affected by

I’s strategies, which are type dependent, U ’s belief about I’s types is necessary to

compute U ’s continuation payoffs.

In sum, the background belief, p, and I’s reputation, µ, are sufficient to represent

the two components of information and are thus used as state variables.

To reduce the burden of notation, denote the expected arrival rate of breakthroughs

per unit of effort for type s+, type s−, and U at state (p, µ), by λI+(p), λI−(p), and

λU(p, µ), respectively, which are equal to the corresponding posterior beliefs about

the risky project multiplied by the arrival rate of a good risky project λ.

Remark 4.1 Singling out this passive background belief from a public history is not

only technically convenient, but also empirically relevant. We interpret the outsider

that we introduce to define the background belief as an econometrician who mistakenly

believes that players are symmetrically informed. He, therefore, misspecifies the true

asymmetric information model as a symmetric information model. We will discuss

the empirical consequences of such a misspecification later.

4.2. Strategies and systems of beliefs

Players’ strategies are Markov. A pure strategy for U is a mapping from the state

space into the effort space, aU : [0, 1]2 → [0, 1], with aU(p, µ) denoting U ’s effort

level at state (p, µ). Type s+’s and type s−’s pure strategies are similarly defined and

denoted by aI+ and aI− respectively. We are interested in equilibria in which both U

and type s+ play pure strategies, and type s− plays a pure strategy after his type is

revealed (on path). In such equilibria, a mixed strategy for type s− is a mixture over

his pure strategies, and can be defined based on Aumann (1964).12 Abusing notation,

we still use aI− to denote the pessimistic type’s strategy.

12Type s−’s pure strategy can be taken as choosing a time (or, a belief level) at which to stop

mimicking type s+; his mixed strategy can then be taken as a distribution over such stopping times.

Specifically, let aI+ denote a pure strategy for the optimistic type, and aI−(·, 0) a pure strategy for

the pessimistic type after he reveals his type. A mixed strategy for the type s− is implemented as

follows: at the start of the game, type s− draws a number from the uniform distributed on [0, 1]; if

r is realized, then type s− plays aI+ as long as the background belief is strictly higher than p̂(r),
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A belief system is denoted by µ(s+|·), which associates to each public history, a

probability that U assigns to I being type s+.

4.3. Equilibrium

Given a Markov strategy profile (aI−, aI+, aU) and a system of beliefs µ(s+|·), the

expected average payoff to type sl, l ∈ {+,−}, at time 0, is

El
aI−,aI+,aU ,µ(s+|·)

[∫ ∞
0

re−rt
((

1− aIlt
)
s+ aIlt λh1{θ=g}

)
dt

]
,

which is equal to

El
aI−,aI+,aU ,µ(s+|·)

[∫ ∞
0

re−rt
((

1− aIlt
)
s+ aIlt λ

Il(pt)h
)
dt

]
,(4.4)

by the law of iterated expectations, where El
(aI−,aI+,aU ,µ(s+|·) denotes type s−’s expec-

tation under the probability distribution induced by the tuple (aI−, aI+, aU , µ(s+|·)).
Similarly, the expected average payoff of player U at time 0 is

EU
aI−,aI+,aU ,µ(s+|·)

[∫ ∞
0

re−rt
((

1− aUt
)
s+ aUt λ

U(pt, µt)h
)
dt

]
,

where EU
aI−,aI+,aU ,µ(s+|·) is defined similarly.

The tuple (aI−, aI+, aU , µ(s+|·)) is an MPE if given the other player’s strategy and

the belief system, a player finds it optimal to play his or her equilibrium strategy,

and if the belief system satisfies Bayes’ rule whenever possible.

4.4. The evolution of the state variables

Let aIt and aUt denote I’s and U ’s efforts at time t respectively. By Bayes’ rule, given

an action path (aIt , a
U
t )t≥0 (on or off the equilibrium path), before a breakthrough

occurs, the background belief process (pt)t≥0 evolves according to13

dpt = −pt(1− pt)(aIt + aUt )λdt.(4.5)

The evolution of a reputation process (µt)t≥0 depends on the equilibrium prescrip-

tion. Fix a candidate equilibrium (aI+, aI−, aU ;µ(s+|·)). We focus on how µt evolves

along the path such that no breakthrough has occurred and I has been taking type s+’s

and plays aI−(·, 0) otherwise, where p̂ : [0, 1] → [0, 1] is a decreasing function that assigns to each

realization from the uniform distribution a cutoff background belief at which type s− reveals himself.
13To see this, suppose at background belief pt, players take efforts (aIt , a

U
t ) during a dt dura-

tion of time. In the absence of a breakthrough, the background belief at t + dt, pt+dt, satisfies

pt+dt =
pt(1−(aIt+a

U
t )λdt)

pt(1−(aIt+a
U
t )λdt)+(1−pt)

by Bayes’ rule. Therefore, the belief change in this time interval,

dpt ≡ pt+dt − pt, is given by equation (4.5).
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(prescribed) effort.14

If the equilibrium involves pooling from time 0 to some time T , then U ’s belief

about the risky project coincides with the background belief over the time interval

[0, T ]. As a result, I’s reputation µt at background belief pt for t ∈ [0, T ] is equal to

(4.6) µµµo(pt) ≡ ptρg + (1− pt)ρb,

where the mapping µµµo : [0, 1] → [0, 1] is called a pooling path. Since p0 = q0, µµµo (q0)

is I’s reputation at time 0. Note that during pooling, I’s reputation µt decreases as

pt decreases over time. Intuitively, since signal s+ is more likely to occur to a good

risky project, as U becomes more and more pessimistic about the risky project being

good, she becomes more and more pessimistic about s+ having occurred.

Once the equilibrium diverges from pooling, I’s reputation µt would differ from

µµµo(pt). Conditional on I being type s−, a candidate equilibrium (aI+, aI−, aU ;µ(s+|·))
induces a distribution over the set of equilibrium paths, which, for each t, gives a

distribution over the set of time-t histories such that no breakthrough has occurred

before type s− reveals himself (by stopping taking type s+’s equilibrium effort). This

set of time-t histories consists of histories such that either “type s− has revealed

himself before or at t” or “type s− has not revealed himself and no breakthrough

has arrived up to time t.” Let Yt denote the probability that type s− has revealed

himself before or at t conditional on this set. The function Y : [0,∞)→ [0, 1] is then a

cumulative distribution function (CDF) over the time at which type s− reveals himself

conditional on no breakthrough having occurred before type s−’s revelation.15

14Once I’s action differs from type s+’s (prescribed) action on the equilibrium path, I’s reputation

will stay at 0; once a breakthrough occurs, his reputation ceases to matter.
15 Specifically, there are three types of time-t public histories (on path): (1) histories such that a

breakthrough has occurred and I has been taking type s+’s (prescribed) action, (2) the history such

that no breakthrough has occurred and I has been taking type s+’s action, and (3) histories such

that I has stopped taking type s+’s action. Fix the candidate equilibrium. Conditional on a history

being either of the second or of the third type, if I is of type s+ then the second-type history occurs

with probability 1, whereas if I is of type s− then the second-type history occurs with probability

1− Yt and the third type occurs with probability Yt.

We now show how Yt is determined by the candidate equilibrium. According to type s−’s mixed

strategy induced by the randomization device in Footnote 12, if the random number r is such that

pt is below the threshold p̂(r), then type s− must stop mimicking type s+ before or at t, resulting

in a time-t history of the third type; otherwise, if r is such that pt is strictly above p̂(r), then type

s− must have been mimicking type s+ at least until t (because the background beliefs before time

t is higher than pt, which is strictly higher than p̂(r)), resulting in a time-t history is of the second
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By Bayes’ rule, I’s reputation µt satisfies

µt =
µµµo(pt)

µµµo(pt) + [1− µµµo(pt)] (1− Yt)
.(4.7)

Written in its differential form, the reputation process (µt)t≥0 evolves according to

dµt
µt(1− µt)

=
dµµµo(pt)

µµµo(pt) (1− µµµo (pt))
+

dYt
1− Yt

,(4.8)

where dYt
1−Yt denotes the probability that type s− reveals himself during the time in-

terval [t, t + dt), conditional on no breakthrough having occurred and I having been

taking type s+’s effort. We call yt ≡ dYt/dt
1−Yt type s−’s revealing rate at time t.

4.5. The continuation game after revelation (on path)

I focus on the equilibria in which after I’s type is revealed (on path), players

play the unique symmetric MPE under symmetric information as the continuation

equilibrium. Keller et al. (2005) characterize this equilibrium: players exert effort 1

when they are sufficiently optimistic (when their posterior belief is above a threshold

qS); they exert effort 0 when they are sufficiently pessimistic (when their posterior

belief is below the single-player cutoff q∗1); and they exert interior effort when in

between. Denote this MPE by aS : [0, 1] → [0, 1], whose argument is players’ true

posterior belief.

Two features of this equilibrium will change qualitatively under asymmetric infor-

mation. First, there is no encouragement effect: players acquire the same amount of

information as a single player does, as they stop experimenting at the single-player

cutoff belief q∗1. Second, effort decreases over time in the absence of a breakthrough.

Figure 1 translates this equilibrium in the language of the background belief. The

dashed curve corresponds to the continuation equilibrium following type s−’s reve-

lation, where the cutoff pS−1 is defined to be the background belief at which players

are willing to switch from effort 1 to interior efforts: qqq−(pS−1 ) = qS, and p∗−1 the

background belief at which players’ posterior belief is at the single-player cutoff:

qqq−(p∗−1 ) = q∗1. The solid curve corresponds to the continuation equilibrium following

type s+’s revelation, with the two cutoffs similarly defined. To avoid redundancy,

whenever no confusion arises, we call p∗−1 type s−’s single-player cutoff (background

belief), p∗−2 ≡ (qqq−)
−1

(q∗2) his cooperative cutoff, and pS+ type s+’s switching cutoff.

type. Therefore, Yt by definition is equal to the probability that r is below p̂−1(pt), which is equal

to p̂−1(pt) (as r is uniformly distributed).
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4.6. The odds ratio

A crucial factor driving the momentum of the mutual encouragement effect is the

belief difference between I’s two types, measured by qqq+(p)
1−qqq+(p)

/ qqq−(p)
1−qqq−(p)

. By Bayes’ rule

(equations (4.1) and (4.2)), this ratio is also equal to an odds ratio O defined by

O ≡ ρg/(1− ρg)
ρb/(1− ρb)

,(4.9)

the ratio of the odds of signal s+ occurring to a good project to the odds of it

occurring to a bad project. Therefore, the odds ratio O measures both the belief

difference between I’s two types and the informativeness of I’s private signal.

The following assumption greatly eases the exposition of the mutual encouragement

effect. Section 6 discusses what happens if this assumption does not hold.

Assumption 1 The odds ratio O is greater than or equal to OS ≡ qS

1−qS /
q∗2

1−q∗2
.

Under Assumption 1, when type s−’s posterior belief is at the cooperative cutoff

q∗2, type s+’s would be weakly greater than the switching cutoff qS (after the same

public history). It means the belief difference between I’s two types is large, so that

after the players with public information s− find it optimal to stop experimenting

when playing cooperatively, the players with public information s+ still experiment

with the full resource for at least some time (when playing the symmetric MPE). The

parameters in Figure 1 satisfy this assumption, because at the background belief p∗−2
(type s−’s cooperative cutoff), players with public information s+ are still willing to

exert effort 1.

5. MPE WITH GRADUAL REVELATION

This section constructs the MPE of interest (and shows its existence). We first

highlight its main structure and elaborate the equilibrium behavior dynamics and

belief dynamics. Detailed equilibrium construction is postponed to the last subsection

and equilibrium uniqueness to Section 6.

Recall that we focus on equilibria such that, after I’s type is revealed (on path), the

players play the symmetric MPE aS (defined in Section §4.5). In the sequel, by type s−

revealing himself, we mean that he plays this equilibrium strategy, and immediately

after this, U follows suit. Type s+’s strategy before U assigns probability one on him

being type s+ is simple: he exerts effort 1. All equilibrium descriptions are conditioned

on no breakthrough having occurred.

The equilibrium has three phases.
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aS(qqq−(p))

aS(qqq+(p))

p∗+1 pS−p∗−2pS+ p∗−1
p

a

0 1

1

Figure 1: The continuation equilibrium after I’s type is revealed (on path)

1. When type s− is sufficiently optimistic — over background beliefs (pgr, 1), pgr to

be determined — the equilibrium involves pooling, during which, both players

exert effort 1. As a result, I’s reputation gradually decreases over time (along

the pooling path µµµo). The eroding reputation path is illustrated by the dash-

dot line over the interval (pgr, 1] in Figure 2: as time passes by, I’s reputation

decreases along this line from right to left until p reaches pgr.

2. When type s−’s belief is intermediate — over background beliefs (p∗−2 , pgr] — the

equilibrium involves gradual revelation, during which, type s+ still exerts effort

1, whereas type s− mixes between mimicking type s+ and revealing himself, such

that as long as he keeps mimicking, his reputation gradually increases, along

a gradual revelation path µ̂̂µ̂µ : [p∗−2 , pgr] → [0, 1]. This rising reputation path

is illustrated by the solid curve in Figure 2: as time passes by, I’s reputation

increases along this line from right to left.

3. When type s− is sufficiently pessimistic — over background beliefs (0, p∗−2 ] —

the equilibrium involves separation, during which, type s+ plays the symmetric

MPE strategy under symmetric information s+, whereas type s− stops exper-

imenting immediately. Referring to Figure 2, if I stops experimentation, the

state variables jump on the line µ = 0 and then cease to move; otherwise, the

state variables jump on the line µ = 1 and move along it from right to left until

experimentation ends.16

16Of course, the state variables stop moving when the background belief reaches p∗+1 , below which,

even type s+ stops experimenting.



15

µµµo(p)

pgr

aI+ = aS(qqq+(·))
aI− = 0

aU (·, 1) = aS(qqq+(·))
aU (·, 0) = 0


aI+ = 1

aI− = 1

aU = 1

aI+ = 1

aI− : mixes 1 & aS(qqq−(·))


aI+ = 1

aI− : mixes 1 & aS(qqq−(·))

aU ∈ (0, 1)

µ̂̂µ̂µ(p)

p∗−2
p

µ

ρb

ρg

0 1

1

Pooling
Gradual

Revelation
Separation

Figure 2: An MPE with gradual revelation

Call this equilibrium an MPE with gradual revelation. Figure 3 illustrates how phase

transitions occur. If the prior belief q0 (which, recall, is equal to p0) lies in the pooling

region (pgr, 1), say at the closed circle on the solid part of µµµo, then the equilibrium

begins with the pooling phase, during which, the state variables move from right to

left along the pooling path µµµo until the background belief reaches pgr. After this, the

gradual revelation begins, during which, the state variable move along the gradual

revelation path µ̂̂µ̂µ until the background belief reaches p∗−2 . After this follows the sep-

aration phase. The solid arrowed curve illustrates how the state variables evolve over

time, conditional on no breakthrough and I having been playing type s+’s effort.

If the prior belief q0 lies in the gradual revelation region (p∗−2 , pgr], say, at the open

circle on the dashed part of µµµo, then type s− reveals with some probability such that

upon non-revealing, the state variables immediately jump up on the curve µ̂̂µ̂µ. The

gradual revelation phase then begins and the equilibrium dynamics are the same as

in the previous case. The dashed arrowed curve illustrates how the state variables

evolve over time conditional on no breakthrough and I having been playing type s+’s

effort.

We are ready to present the first main result of the paper — the qualitative features
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µµµo(p)

pgr

µ̂̂µ̂µ(p)

pS−p∗−2
p

µ

1− ρb

1− ρg

0 1

1

Pooling
Gradual

Revelation
Separation

p∗+1

t

Figure 3: An MPE with gradual revelation: two paths of the state variables

of the behavior dynamics and belief dynamics.

Proposition 1 During the gradual revelation phase of the MPE with gradual reve-

lation, conditional on no breakthrough having occurred and I having been playing type

s+’s effort,

1. U ’s effort gradually increases over time, when the background belief is between

type s−’s cooperative cutoff p∗−2 and his single-player cutoff p∗−1 ;

2. I’s reputation gradually rises over time;

3. U ’s belief about the risky project is either increasing or U-shaped over time, if

the informativeness of I’s initial signal is intermediate (that is, if the odds ratio

O is not too high but still satisfies Assumption 1).

We have illustrated the rising reputation in Figure 3. In Figure 4, the arrowed curve

displays the uninformed player’s effort path conditional on her facing an optimistic

type: U increases her effort over time when the background belief is between p∗−1
and p∗−2 . We postpone discussing U ’s decreasing effort (over time) during the gradual

revelation phase until Section 5.4.1.

Figure 5 and Figure 6 contrast two distinct paths of U ’s belief about the risky
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pgr pS−pS+ p∗−2 p∗−1
p

aU

0 1

1

Pooling
Gradual

Revelation
Separation

p∗+1

t

Figure 4: The uninformed player’s effort

project’s quality. In Figure 5, U ’s belief decreases over time before the separation

phase occurs; this occurs in an environment with a high odds ratio. In Figure 6,

U ’s belief is U -shaped before the separation phase occurs; this typically occurs in an

environment with an intermediate odds ratio.

Compared with the symmetric MPE under symmetric information, two features of

the current equilibrium stand in sharp contrast.

First, the uninformed player can increase effort, and become more optimistic about

the risky project over time, despite the absence of a breakthrough. She does so because

I’s high effort continually brings in good news, compensating for the absence of a

breakthrough, and encouraging her to experiment.

Second, the pessimistic type experiments beyond the single-player cutoff, until the

cooperative cutoff, with positive probability. He does so because the uninformed player

responds to his hard work by also working hard, thereby producing more information

over time, encouraging him to experiment at beliefs he would not were he alone or

were his signal public.

We, therefore, have identified a mutual encouragement effect : I’s rising reputa-

tion compensates the dropping background belief, encouraging U to experiment; U ’s

increasing effort compensates type s−’s growing pessimism, encouraging him to per-
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p∗−2
p0 1

1

q+

qU

q−

Pooling
Gradual

Revelation
Separation

Figure 5: U ’s growing pessimism before separation (a large odds ratio)

p∗−2
p0 1

1

q+

qU

q−

Pooling
Gradual

RevelationSeparation

t

Figure 6: U ’s growing optimism before separation (an intermediate odds ratio)
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severe. Driven by this effect, the joint behavior pattern — the informed player keeps

exerting high effort and the uninformed player increases effort, despite the absence of

a breakthrough — does not occur in any MPE of the symmetric information game.17

This pattern leads to qualitatively different empirical predictions, which we will dis-

cuss in Section 8.

The above discussion highlights two requirements for the mutual encouragement

effect to arise. First, it is able to counterbalance the deterioration of the background

belief. This is guaranteed by Assumption 1, which ensures that a perfect reputation

brings in sufficiently good news to encourage U to experiment (given the continu-

ation equilibrium). Second, it is needed to counterbalance the deterioration of the

background belief, which is guaranteed by the fraction of type s+ being not too high:

Assumption 2 Conditional on θ = g, signal s+ is not too likely: ρg ≤ s
(r+λ)h+λh−s .

Proposition 2 Under Assumption 1 and 2, an MPE with gradual revelation exists.

If Assumption 2 is not satisfied, then the gradual revelation phase can be empty:

the pooling phase lasts until the background belief reaches p∗−2 .

We now elaborate on the intuitions behind Proposition 1.

5.1. The informed player’s rising reputation

During the gradual revelation phase, I’s rising reputation counterbalances the de-

clining background belief, maintaining U ’s indifference about experimentation, thereby

incentivizing her to take interior effort. To see this, consider the following two main

elements that drive U ’s experimentation incentives.18

1. U ’s instantaneous marginal benefit of experimentation, which depends only on

her belief about the risky project. The higher her belief, the higher her willing-

ness to experiment.

17To be specific, it does not occur in any MPE that is a limit MPE of the discrete-time experi-

mentation games as the length of periods goes to zero. Hörner et al. (2014) (in Lemma 1) show that

in any perfect Bayesian equilibrium of such discrete time game, players do not experiment when

their posterior is below the single-player cutoff. Using this result, we can show that in any limit

MPE, total effort cannot strictly decrease in players’ posterior.
18I’s current effort also affects U ’s experimentation incentive, due to the strategic substitutability

of players’ current effort decisions, as in the symmetric information game. This element is absent

here because I’s current effort is 1 with probability 1.
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2. U ’s continuation marginal benefit of experimentation, which depends on her

expected continuation value. The higher her expected continuation value, the

higher her incentive to speed up experimentation so as to enjoy it earlier.

Suppose instead I’s reputation does not increase. Then as time passes by, U be-

comes more pessimistic and hence her instantaneous marginal benefit decreases. More-

over, with both of her ex post continuation values decreasing, together with I’s drop-

ping reputation, so is her expected continuation value. Consequently, if at some point

in time she is indifferent about experimentation, she would strictly prefer not to

experiment afterward.

Therefore, for U to be indifferent, I’s reputation must rise over time. Indeed, dur-

ing this phase, the incentive-enhancing effect of I’s rising reputation (driven by the

strategic component) exactly balances out the incentive-dampening effect of the de-

teriorating background belief (driven by the passive component), maintaining U ’s

willingness to take the effort in Figure 4 — in particular, to increase her effort when

the background belief is between (type s−’s single-player cutoff) p∗−1 and (type s−’s

cooperative cutoff) p∗−2 .

5.2. The uninformed player’s increasing effort

When the background belief is between the pessimistic type’s single-player cutoff

p∗−1 and his cooperative cutoff p∗−2 , U ’s increasing effort compensates his growing

pessimism, keeping him indifferent between mimicking type s+ (by continuing experi-

menting) and revealing himself (by stopping experimenting). As a result, he is willing

both to experiment beyond his single-player cutoff, and to stop so that mimicking

type s+ indeed continually carries encouraging news.

Specifically, by revealing himself, he induces both players to stop experimenting

as the background belief is below his single-player cutoff; he thereby receives zero

relative to the safe return. By continuing mimicking type s+ for a dt duration of

time, he receives an instantaneous benefit, r
(
λI− (p)h− s

)
dt, which is decreasing

with the absence of a breakthrough, and a continuation benefit, an upward jump

of his continuation value in case a breakthrough arrives, λh − s, with probability(
1 + aU

)
λI− (p) dt.19 For him to be indifferent, the two options must give him the

19In case no breakthrough arrives, type s−’s continuation value stays at the safe return s and

hence he receives no continuation benefit after this event.
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same payoff. That is, U ’s effort must satisfy

aU (p, µ̂̂µ̂µ (p)) =
r(s− λI− (p)h)

λI− (p) (λh− s)
− 1, for p ∈ [p∗−2 ,min{p∗−1 , pgr}].(5.1)

which increases over time, as p deteriorates. Intuitively, since effort becomes less and

less valuable to type s− due to the absence of a breakthrough, U must produce more

information — that is, to increase her effort — to reward type s−’s perseverance.

We thus call this sub-phase of the gradual revelation phase the “rewarding sub-

phase.” Note that in Figure 4, aU = 0 at p = p∗−1 . This is because, p∗−1 being type s−’s

single-player cutoff, U does not need to provide any extra reward for him to experi-

ment. Note also that aU = 1 at p = p∗−2 . This is because, p∗−2 being his cooperative

cutoff, U needs to respond one for one to type s−’s effort, so that type s− indirectly

internalizes the social benefit of his effort.20 The gradual revelation phase ends at p∗−2
because U reaches the budget limit that she can reward I’s hard working. U ’s effort

in the other sub-phase of the gradual revelation phase, that is, when p is in (p∗−1 , pgr),

is left to the final subsection.

5.3. U ’s growing optimism about the risky project

How much encouraging information should I reveal to U to maintain U ’s experi-

mentation incentive? It depends on how informative I’s private signal is:

Lemma 1 There exists Õ ∈ (OS,∞) such that, during the pooling phase and the

gradual revelation phase of the MPE with gradual revelation, the uninformed player’s

belief about the risky project’s quality qU

1. strictly decreases over time, if the odds ratio is sufficiently high—if O ∈ [Õ,∞);

2. is U-shaped—it first decreases over time, and then after reaching some point in

the gradual revelation region, it begins to increase—if odds ratio is intermediate,

that is, if O ∈ [OS, Õ).

U ’s growing optimism in Proposition 1 follows from the second case. We here give an

intuition for why near the end of the gradual revelation phase, U becomes increasingly

pessimistic over time if I’s private signal is sufficiently informative (O ∈ [Õ,∞)), and

increasingly optimistic if it is intermediately informative (O ∈ [OS, Õ)).

20Conditional on signal s− being realized, since players are symmetric, I’s benefit from (the

information produced by) U ’s effort is exactly equal to U ’s benefit from I’s effort. Therefore, by

rewarding I’s effort with (the same amount of) U ’s effort, it is as if adding to I’s incentive U ’s

benefit from I’s effort, thereby making I internalize the social benefit of his effort.
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For ease of illustration, we decompose U ’s marginal benefit of experimentation (see

Section §5.1) into the following three parts: (1) her instantaneous marginal benefit, (2)

her option value of the information generated from the experimentation technology

— the passive component, and (3) her option value of the information revealed by I’s

action — the strategic component. The first two parts, combined together, depend

only on U ’s belief about the risky project’s quality qU and changes in the same

direction as qU changes. The third part depends on the spread of the informed player’s

private information, measured by the spread of the informed player’s beliefs q− and

q+; the bigger the spread, the more useful I’s private information to U , and hence

the higher her experimentation incentive.

A drop in q− widens the spread between q− and q+. This means that if µ were to

change in such a way that the uninformed player’s belief qU increases, then the unin-

formed player’s continuation marginal benefit of experimentation must also increase.

On the contrary, a drop in q+ shrinks the spread between q− and q+. This means that

if µ were to change in such a way that the uninformed player’s belief decreases, then

her continuation marginal benefit of experimentation must also decrease.

When the odds ratio is sufficiently large, during the gradual revelation phase, the

optimistic type’s belief q+ is close to 1 and hence barely decreases over time (by

Bayes’ rule). As a result, the effect of the dropping q− (due to the lack of a break-

through) dominates. From the above analysis, if U ’s belief qU does not decrease over

time, then her total marginal benefit of experimentation would strictly increase, and

consequently she would not be indifferent about experimentation, which could not

occur in an MPE with gradual revelation.

When the odds ratio is intermediate (greater than and close to aS), U is willing to

experiment only if I is sufficiently likely to be type s+, that is, only if I’s reputation

µ is close to 1.21 As a result, the dropping q− ceases to matter as its impact is

weighted by 1− µ, and the effect of the dropping q+ dominates. If U ’s belief qU does

not increase over time, then her total marginal benefit of experimentation would be

strictly decreasing, which could not occur in an MPE with gradual revelation.

We have completed the (sketch of) proof of Proposition 1.

21See the discussion of Lemma 3 in the last subsection for further explanation.
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5.4. Detailed equilibrium construction

This subsection studies the following questions. First, if the MPE with gradual

revelation is an equilibrium, what conditions do U ’s effort aU and the gradual reve-

lation path µ̂̂µ̂µ necessarily satisfy? Second, if aU and µ̂̂µ̂µ indeed satisfy these conditions,

is the MPE with gradual revelation indeed an equilibrium? To reduce the burden of

notations, we omit the arguments (p, µ̂̂µ̂µ(p)) of the continuation value functions W I+,

W I−, and WU , and of the pure effort strategies aI+ and aU , whenever no confusion

arises.

5.4.1. Necessary conditions for the equilibrium construction

1. U ’s effort function aU for p ∈ (p∗−1 , pgr). At any state (p, µ̂̂µ̂µ(p)) during gradual

revelation, type s− faces two options: mimicking type s+ (by exerting effort aI+) and

revealing himself.

If he mimics, he will receive continuation value W I− (p, µ̂̂µ̂µ (p)), which satisfies the

Hamilton–Jacobi–Bellman (HJB) equation:

r
(
W I− − s

)
= aI+

[
r
(
λI− (p)h− s

)
− λp (1− p) dW

I−

dp
+ λI− (p)

(
λh−W I−)]

+aU
[
−λp (1− p) dW

I−

dp
+ λI− (p)

(
λh−W I−)] .(5.2)

This equation says that type s−’s flow continuation value — the left-hand side,

must be equal to the sum of his instantaneous benefit r
[
aI+

(
λI− (p)h− s

)]
and

the value of information. The latter consists of two parts: in case a breakthrough

arrives, occurring at a rate of
(
aI+ + aU

)
λI− (p), his continuation value increases by

(λh−W I−); in case no breakthrough arrives, his continuation value changes at a rate

of dW I−

dp
dpt
dt

= −dW I−

dp

(
aI+ + aU

)
λp (1− p).

If he does not mimic, then players will play the symmetric MPE (with signal

s− public), whereby type s− receives a continuation value denoted by wS (qqq− (p)).

Note that in this symmetric MPE, a player is indifferent between experimenting and

not experimenting when the background belief is in (p∗−1 , pgr] (because pgr < pS−),

meaning that type s− would obtain the same continuation value by exerting effort

aI+ instead of aS given that U plays aS. Therefore, wS (qqq− (p)) satisfies (omitting the

argument qqq− (p)):

r
(
wS − s

)
= aI+

[
r
(
λI− (p)h− s

)
− λp (1− p) dw

S

dp
+ λI− (p)

(
λh− wS

)]
+aS

[
−λp (1− p) dw

S

dp
+ λI− (p)

(
λh− wS

)]
.(5.3)
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Since type s− is indifferent between these two options, we have

W I− (p, µ̂̂µ̂µ (p)) = wS (qqq− (p)). This equality, equations (5.2) and (5.3), and the

fact that information is valuable (that is, the terms in the square brackets on the

second line of equation (5.2) is positive), imply that

aU (p, µ̂̂µ̂µ (p)) = aS
(
qqq− (p)

)
, p ∈ (p∗−1 , pgr].

That is, U exerts the same level of effort whether the informed player continues

exerting high effort aI+ or not. Intuitively, since type s− is willing to take type s+’s

effort aI+ even after losing his reputation, mimicking type s+ is costless and hence

he should not be rewarded for doing so. We thus call (p∗−1 , pgr] the non-responding

region of the gradual revelation phase.

The non-responding region is empty if pgr ≤ p∗−1 . For a given odds ratio, if the

informed player is likely to be type s+, that is, if ρg is high, then U is willing to

experiment even at low background beliefs, implying a short gradual revelation phase

and hence a low pgr, and consequently, an empty non-responding region. It can be

shown that for each odds ratio satisfying Assumption 1, there is a threshold of ρg

below which, the non-responding region exists, and above which, it does not.

U ’s effort is summarized in Lemma 2 and illustrated by Figure 4.

Lemma 2 If the MPE with gradual revelation is an equilibrium, then along the

gradual revelation path µ̂̂µ̂µ,

1. over the rewarding region (p∗−2 ,min{p∗−1 , pgr}], U ’s effort satisfies equation (5.1),

and hence is strictly increasing over time.

2. over the non-responding region (min{p∗−1 , pgr}, pgr] (if nonempty), U ’s effort

equals the symmetric MPE effort under public information s−, and hence is

strictly decreasing over time.

2. The gradual revelation path µ̂̂µ̂µ. By Lemma 2, U ’s effort is interior, meaning

that she is indifferent about experimentation. This condition pins down µ̂̂µ̂µ. To show

this, we need to analyze the value of information to U , in particular, the rate at which

I reveals his private information to U .

Equation (4.8) links to each (differentiable) gradual revelation path µ̂̂µ̂µ a CDF Y

over the times at which type s− stops mimicking type s+’s effort, conditional on no

breakthrough having occurred and type s− having not revealed himself. Specifically,

suppose over time [t, t+dt], I’s effort is aI+ and U ’s is a. Then the fact that the state
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variables move along µ̂̂µ̂µ implies that type s− reveals himself at a rate of
dYt/dt

1− Yt
=

(
µ̂̂µ̂µp (p)

µ̂̂µ̂µ (p) (1− µ̂̂µ̂µ (p))
−

µµµop(p)

µµµo(p) (1− µµµo (p))

)
dpt
dt

=

(
µµµop(p)

µµµo(p) (1− µµµo (p))
− µ̂̂µ̂µp (p)

µ̂̂µ̂µ (p) (1− µ̂̂µ̂µ (p))

)
(aI+ + a)p(1− p)λ,(5.4)

where µ̂̂µ̂µp denotes the derivative of µ̂̂µ̂µ. Note that U ’s effort a affects type s−’s revealing

rate. Intuitively, the higher her effort, the quicker the negative information (i.e., no

breakthrough) accumulates, and hence the higher the rate at which type s− needs to

reveal himself so that non-revealing brings encouraging information fast enough.

The value of information to U consists of three parts:

• in case a breakthrough arrives, which occurs at a rate of (aI+ + a)λU , U ’s

continuation value jumps by (λh−WU);

• in case no breakthrough arrives and I continues exerting effort aI+, U ’s contin-

uation value changes at a rate of dWU

dp
dpt
dt

;

• in case no breakthrough arrives and I stops exerting effort aI+, which

occurs at a rate of (1− µ̂̂µ̂µ(p)) dYt/dt
1−Yt , U ’s continuation value drops by

|WU (p, 0)−WU (p, µ̂̂µ̂µ(p)) |.
Summing up and applying equation (5.4), the value of information to U is thus

(aI+ + a)A(p, µ̂̂µ̂µ(p)), where A(p, µ̂̂µ̂µ(p)) denotes U ’s continuation marginal benefit of

experimentation (omitting the arguments (p, µ̂̂µ̂µ(p)) of A, WU , and λU):

A ≡
(
µµµop(p) (1− µ̂̂µ̂µ (p))

µµµo(p) (1− µµµo (p))
− µ̂̂µ̂µp (p)

µ̂̂µ̂µ (p)

)
p(1− p)λ

(
WU (p, 0)−WU

)
−λp (1− p) dW

U

dp
+ λU

(
λh−WU

)
(5.5)

Using the fact that type s+’s effort is 1 during gradual revelation, U ’s continuation

value function WU satisfies the HJB equation:

r
(
WU − s

)
= max

a∈[0,1]
a
[
r
(
λUh− s

)
+ A

]
+ A.(5.6)

For U to be indifferent, her marginal benefit must be 0:

r
(
λUh− s

)
+ A = 0.(5.7)

Equations (5.6) and (5.7) imply that U ’s continuation value function is given by

WU − s = s− λUh.(5.8)

U ’s indifference condition (5.7) and her continuation value function (5.8) give an

ODE that the gradual revelation path µ̂̂µ̂µ must satisfy:

µ̂̂µ̂µp(p) = g(p, µ̂̂µ̂µ(p)), p ∈ (p∗−2 , pgr),(5.9)

where the formula of g is given in Appendix B.1.3 due to its complexity.

The following lemma characterizes the gradual revelation path µ̂̂µ̂µ.
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Lemma 3 If the MPE with gradual revelation is an equilibrium, then the gradual

revelation path µ̂̂µ̂µ is the unique solution to the first order ODE problem defined by

equation (5.9), with the initial value condition

µ̂̂µ̂µ(p) =
s− λI− (p)h

wS (qqq+ (p))− s+ λI+ (p)h− λI− (p)h
, p = p∗−2 ,(5.10)

and the boundary pgr being the smallest p satisfying

(5.11) µ̂̂µ̂µ (pgr) = µµµo(pgr).

The initial value condition comes from the value matching condition of WU at p∗−2 :

s− λUh = µ̂̂µ̂µ(p)
(
wS
(
qqq+ (p)

)
− s
)
, p = p∗−2 ,(5.12)

where the left-hand side is U ’s continuation value (5.8) at the end of gradual reve-

lation (p = p∗−2 ) and the right-hand side is U ’s expected continuation value at the

beginning of separation: with probability µ̂̂µ̂µ(p∗−2 ), U faces type s+ and hence achieves

a continuation value wS
(
qqq+
(
p∗−2
))
− s, and with the complementary probability, U

faces type s− and experimentation ends.

Finally, the gradual revelation path µ̂̂µ̂µ must lie above the pooling path µµµo and

intersects at the boundary of gradual revelation pgr, explained by condition (5.11).

5.4.2. Sufficient conditions for the equilibrium construction and existence

The previous subsection shows that players’ (on-path) behaviors in an MPE with

gradual revelation are necessarily characterized by Lemma 2 and Lemma 3. This

subsection shows that these are also sufficient for the equilibrium to exist. Proposition

2 follows from Lemma 4.

Lemma 4 Under Assumptions 1 and 2, an MPE with gradual revelation can be sus-

tained as an equilibrium, if during gradual revelation, the uninformed player’s effort

is as in Lemma 2, and the gradual revelation path µ̂̂µ̂µ is the unique solution to the ODE

problem defined by (5.9), (5.10), and (5.11).

To provide an example, the MPE with gradual revelation, with the system of beliefs

and type s+’s strategy specified below, is an equilibrium.

(1) The belief system. Low effort completely depletes reputation: if I takes an effort

strictly lower than type s+’s equilibrium effort, he will be taken as type s−. The belief

updating rule for aI = aI+(p, µ) is pinned down by Bayes’ rule.

(2) Type s+’s strategy. Type s+ plays the symmetric MPE strategy under sym-

metric information as long as his reputation is strictly positive; otherwise he plays



27

the single-player solution. With Assumption 1, the strategy implies he always exerts

effort 1 before the separation phase occurs, hence is consistent with our equilibrium

prescription.

6. MULTIPLICITY OF EQUILIBRIA

6.1. Equilibrium Uniqueness

Not surprisingly, the asymmetric information game has multiple MPEs, due to the

arbitrariness of assigning off-equilibrium beliefs, and to the multiplicity of (asymmet-

ric) MPEs even under symmetric information (caused by the strategic substitutability

of current effort decisions). To select sensible equilibria, I focus on MPEs that survive

a criterion in the spirit of the D1 criterion, and that players play the symmetric MPE

under symmetric information after the uninformed player assigns probability 1 to the

informed player being a certain type. For simplicity, call the former restriction D1,

and the latter restriction SMPE.

Proposition 3 There exists Ō, such that if the odds ratio O is greater than Ō and

the prior belief q0 is not low (above p∗−2 ), then the distribution of the equilibrium path

of any MPE satisfying D1 and SMPE coincides with that of the MPE with gradual

revelation in Section 5.

The proof is in the Online Appendix. The intuition behind this result is that, under

Assumption 1, during a gradual revelation phase, if there are no reputation concerns,

then type s+ strictly prefers to experiment, whereas type s− either strictly prefers

not to experiment (in the rewarding region) or is indifferent (in the non-responding

region). Therefore, the reason that type s+ might choose effort lower than 1 in some

MPE must be that effort 1 leads to a continuation equilibrium in which, U free-rides

in the future. However, if the odds ratio is sufficiently high (i.e. O ≥ Ō) and if the

prior belief q0 is not too low, then before separation, type s+ would still be sufficiently

optimistic, meaning that there is little for him to learn from the information acquired

by the uninformed player. As a result, type s+ has little reputation concerns and

would prefer to experiment before separation occurs.

6.2. MPEs when Assumption 1 does not hold

If Assumption 1 does not hold, then MPEs satisfying D1 and SMPE still exist.

An MPE close to the MPE with gradual revelation has an additional pooling phase
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between the gradual revelation phase and the separation phase.

I focus on MPEs with gradual revelation because it delivers new insights, and

qualitatively different behavior and belief dynamics. Moreover, it is useful to construct

other equilibria. It represents one extreme where U ’s experimentation incentive is

maintained through the encouraging private information gradually revealed by the

informed player. In another extreme, U ’s experimentation incentive can be maintained

by the informed player gradually reducing his effort (because current effort decisions

are strategic substitutes), which can indeed occur in equilibrium if the odds ratio is

small. Between these two extremes, it is possible to construct hybrid MPEs, in which,

U ’s experimentation incentive is maintained by the two forces combined together.

7. WELFARE ANALYSIS

Does inducing information asymmetry, by hiding information from one player, im-

prove welfare? To answer this question, I compare players’ ex ante total welfare at

the common prior belief q0 (which, recall, is equal to the initial background belief p0)

in the MPE with gradual revelation:

(7.1) WU(q0,µµµ
o(q0)) + µµµo(q0)W I+(q0,µµµ

o(q0)) + (1− µµµo(q0))W I−(q0,µµµ
o(q0)),

and that in the symmetric MPE of the symmetric information game in which the

informed player’s private information is made public:

(7.2) 2µµµo(q0)wS(qqq+(q0)) + 2(1− µµµo(q0))wS(qqq−(q0)).

Asymmetric information is said to improve welfare if the former is greater than the

latter, and deteriorate welfare if the former is smaller than the latter.

Thanks to the mutual encouragement effect, asymmetric information creates a ben-

efit: in case I holds signal s−, players experiment more than in the symmetric infor-

mation benchmark. Asymmetric information may also incur a cost: in case I holds

signal s+, then during the gradual revelation phase, U experiments less than under

symmetric information. However, if the informed player’s private signal is informative

enough, the benefit outweighs the cost, as is stated in proposition 4.

Proposition 4 If the odds ratio is high enough, that is, O ∈ [1 + 2λ
r
,∞), then

asymmetric information improves welfare, and strictly so if the common prior belief

q0 is in the gradual revelation region or the pooling region (p∗−2 , 1).
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Interested readers may refer to Proposition 5 at the end of this section for a de-

tailed welfare characterization when the odds ratio is intermediate. In Proposition 4,

asymmetric information can strictly improve welfare only if q0 is not in the separation

region, because it does not affect welfare after separation.

We elaborate on the intuition of Proposition 4. Compared with symmetric informa-

tion, in the asymmetric information game, type s+ exerts the same level of effort, type

s− more effort; U exerts less effort than in the symmetric MPE when s+ is public,

and more when s− is public. At the interim stage (right after I learns his type),

• type s+ suffers from asymmetric information because he does not learn as much

as he learns from U ’s experimentation under symmetric information due to U ’s

lower effort, except when ρb = 0. When ρb = 0 (or, O is infinity), type s+ knows

that the risky project is good and hence does not need to learn from U .

• Type s− (weakly) benefits from asymmetric information because he always has

the option to reveal himself by exerting some low effort, whereby he guarantees

himself the same payoff as in the symmetric information benchmark.

• U benefits from asymmetric information. U always has the option of matching

her effort to I’s. Doing so, in case I holds signal s+, both players would ex-

periment as under symmetric information with s+ public, whereby U achieves

the same ex post continuation value as under symmetric information. In case

I holds signal s−, both players would experiment more than under symmetric

information with s− public, but still less than in the cooperative solution; as

a result, U achieves a strictly greater continuation value than under symmet-

ric information. Therefore, with asymmetric information, by taking this effort-

matching option, U can guarantee herself a higher interim value (in the MPE

with gradual revelation) than in the symmetric benchmark.

Type s+’s loss from asymmetric information is decreasing in the odds ratio. Intu-

itively, the greater the belief difference between I’s types, the more optimistic type

s+ is during gradual revelation, and hence the less he needs to learn from U ’s exper-

imentation, consequently the less he suffers from asymmetric information. Type s−

and U ’s gain from asymmetric information is increasing in the odds ratio. Intuitively,

the greater the belief difference, the less type s− needs to stop experimenting to com-

pensate U during gradual revelation, and hence the higher probability that players

continue experimenting over time, implying a higher welfare gain.

At one extreme when the odds ratio O is infinity (that is, if ρb = 0), type s+ does

not suffer from asymmetric information; asymmetric information thus results in a
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Pareto improvement. At the other extreme when the odds ratio is equal to OS, U is

willing to experiment at the end of the gradual revelation phase only if she believes

I is very likely to be type s+; as a result, type s+’s loss dominates, and asymmetric

information deteriorates welfare (at least for background beliefs close to p∗−2 ). By

continuity and the monotonicity of the ex post gains and losses in the odds ratio,

there exists a threshold such that, asymmetric information improves ex ante total

welfare universally if the odds ratio is above the threshold, and does not if the odds

ratio is below the threshold (and if the fraction of the pessimistic type is not too low

so that the gradual revelation phase is not empty).

We are thus done with the main message. We now discuss the welfare impact of

asymmetric information when the informativeness of I’s private signal is intermediate,

that is, when O ∈ [OS, 1 + 2λ
r
). If the fraction of type s+ is high so that the gradual

revelation phase is empty, then both players experiment at least until the background

belief hits the pessimistic type’s cooperative cutoff p∗−2 . Asymmetric information in

this case leads to a Pareto improvement. Proposition 5 focuses on the parameter region

where the gradual revelation phase is not empty, as is guaranteed by Assumption 2:

Proposition 5 Assume that the odds ratio is intermediate: O ∈ [OS, 1 + 2λ
r
), and

that Assumption 2 is satisfied. Then

1. either asymmetric information deteriorates welfare, and strictly so if the com-

mon prior q0 lies in the gradual revelation region or the pooling region (p∗−2 , 1);

2. or there exists p̃ ∈ (p∗−2 , pS−], such that asymmetric information deteriorates

welfare if the common prior q0 is in (0, p̃), and improves it if q0 is in (p̃, 1).

A sufficient and necessary condition for the second case to occur is ρg being either

sufficiently low or sufficiently high. Intuitively, when ρg is sufficiently low, then there

is a large fraction of type s−, implying the players’ expected gain (occurring only in

case I holds signal s−) is large, relative to their expected loss (occurring only in case I

holds signal s+). When ρg is sufficiently high, then there is a small fraction of type s−,

implying a short gradual revelation phase, and hence a small welfare loss (occurring

during gradual revelation), relative to the the gain (occurring during pooling).

8. EMPIRICAL IMPLICATIONS

1. On testing “learning from others’ experimentation.” Suppose a new seed variety

is introduced in a village, and we want to test whether farmers learn from each other’s

experimentation. Should we test the hypothesis “a farmer’s land allocated to the new
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seed is positively correlated with his/her neighbor’s yield” (for instance, as is done by

Munshi (2004))? The result of this paper—players can increase experimentation over

time despite the absence of a breakthrough—implies that, if asymmetric information

is present, then even if this hypothesis is rejected, we still cannot conclude that farmers

do not learn from each other.

One can amend the test by focusing on positive news, that is, by testing whether

a farmer allocates a larger land to the new seed in reaction to an increase of his/her

neighbors’ yield. This amendment improves the test because, with asymmetric in-

formation, although players may not react to negative news (the absence of break-

throughs) by experimenting less, they do react to positive news by experimenting

more.

2. Divergent learning dynamics. Note that, if the non-responding region of the

gradual revelation phase is not empty (pgr > p∗−1 ) and if the prior q0 is not too low

(q0 > p∗−1 ), then, conditional on the informed player being the pessimistic type and the

risky project being bad, with positive probability the pessimistic type reveals himself

at a late time (after the background belief reaches p∗−1 ), after which, experimentation

ends immediately; and with positive probability the pessimistic type reveals himself

at an early time (before the background belief reaches p∗−1 ) and players play the

symmetric MPE, in which, free-riding is so severe that they never abandon the bad

projects in finite time.22

Therefore, combining the joint-project interpretation (see page 7), the MPE with

gradual revelation predicts that two identical groups of players receiving the same

information can exhibit divergent learning dynamics. In one group, the leader leads by

example for a long time; as a result, learning is fast, and the joint project is completed

or abandoned in finite time. In another group, the leader leads by example for a short

period of time; as a result, players free ride, projects are highly inertial with little

learning, and bad projects are not abandoned in finite time. That failing projects

of strategic alliances are highly inertial are well documented in the management

literature (Doz, 1996, for instance).

3. Further empirical predictions. This paper predicts that experienced players ex-

periment more than inexperienced players do and that their experimentation behavior

is less sensitive to negative news or other players’ experimentation behavior. These

predictions are in line with the empirical findings of Bandiera and Rasul (2006), and

Conley and Udry (2010).

22This property of the symmetric MPE is proved by ?.
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9. CONCLUSION

This paper has studied the impact of initial information asymmetry on agents’ ex-

perimentation behavior, using the canonical exponential-bandit model. It has shown

that a novel mutual encouragement effect can arise, which drives players to increase

experimentation despite the absence of breakthroughs, and to acquire more informa-

tion than under symmetric information.

The paper has shown that, if a social planner has a piece of private information, then

revealing the information to only one player generates higher welfare than revealing

it to both players or to neither. Suppose now the social planner has more alternatives:

she can send to each player as a signal a garbling of the initial information structure.

Is revealing the information to one player and having the other player uninformed

optimal (in terms of ex-ante welfare)? Interestingly, over a certain parameter region, it

is; that is, creating an informed leader and an uninformed follower can be better than

any other alternative. This occurs, for instance, when the favorable signal reveals

good quality of the risky project and the favorable signal is likely to occur. This

paper leaves open the question of how to allocate information over the parameter

region where revealing information to exactly one player is not optimal. It would be

interesting to analyze this problem in future research.
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APPENDIX A: SOME BEST RESPONSES

A.1. U’s best response to I’s pooling strategies

The following lemma analyzes U ’s best response to I’s pooling strategies over some

interval of background beliefs [p, p̄]. Let µµµ(p) denote I’s reputation at background

belief p ∈ [p, p̄], determined by Bayes’ rule (equation (4.7) with Yt being a constant).

Lemma 5 Assume over some interval [p, p̄] both types of I are prescribed to exert

effort 1. Let ãU : [p, p̄]× [0, 1]→ [0, 1] be U ’s best response to this strategy profile, and

W̃U : [p, p̄]× [0, 1]→ R her corresponding continuation value function. Then

1. U finds it optimal to use corner solutions, that is, either to exert effort 1, or not

to experiment. At any point of p at which U switches actions, U ’s continuation

value satisfies W̃U(p,µµµ)− s = s− λU(p,µµµ)h.

2. If W̃U(p,µµµ) − s > s − λU(p,µµµ)h, then ãU(p,µµµ) = 1; if W̃U(p,µµµ) − s < s −
λU(p,µµµ)h, then ãU(p,µµµ) = 0; otherwise, ãU(p,µµµ) ∈ [0, 1].

3. If U ’s value function satisfies the boundary condition WU(p,µµµ) − s = s −
λU(p,µµµ)h, then she finds it optimal to adopt a cutoff strategy: to exert effort

1 if p ≥ p∗, and not to experiment otherwise, for some p∗ ∈ [p, p̄].

4. If on top of the boundary condition in point 3, at p = p is also satisfied

r
(
λU (p,µµµ)h− s

)
+ λp (1− p) dλ

U (p,µµµ)

dp
h+ λU (p,µµµ)

(
λh− s−

(
s− λU (p,µµµ)h

))
≥ 0.

then U finds it optimal to exert effort 1 over [p, p̄].

Proof: Point 1. Given I’s strategy profile, U ’s value function W̃U satisfies the

following HJB equation, for p ∈ (p, p̄),

rW̃U (p,µµµ) = max
a∈[0,1]

a

[
r
(
λU (p,µµµ)h− s

)
− λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)]

+

[
−λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)]
+ rs.

At any state (p,µµµ) where U is willing to switch actions, and hence is indifferent

between experimenting and not experimenting, we have

r
(
s− λU (p,µµµ)h

)
= −λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)
.(A.1)
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Consequently, W̃U satisfies the HJB equation

rW̃U (p,µµµ)− rs = −λp (1− p) dW̃
U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)
.

The above two equations imply that at any p where U switches actions,

W̃U(p,µµµ)− s = s− λU(p,µµµ).(A.2)

Since there is no subinterval of [p, p̄] over which W̃U satisfy both equation (A.1) and

(A.2), there is no subinterval of [p, p̄] over which U exerts interior effort.

Point 2 is obvious from the above analysis.

Point 3. We will show that W̃U(p,µµµ)− s intersects s− λU(p,µµµ) at most once over

(p, p̄). Together with Point 2, this property implies Point 3.

To show this property, it is sufficient to show that if there is some p̃ ∈ [p, p̄)

such that W̃U(p̃,µµµ) − s = s − λU(p̃,µµµ), and dW̃U (p̃+,µµµ(p̃+))
dp

> −dλU (p̃,µµµ(p̃))
dp

, then

W̃U(p,µµµ)− s > s− λU(p,µµµ) for all p ∈ (p̃, p̄). Suppose by contradiction that there

is some p̌ ∈ (p̃, p̄) such that W̃U(p̌,µµµ) − s = s − λU(p̌,µµµ), then we must have
dW̃U (p̌−,µµµ(p̌))

dp
< −dλU (p̌,µµµ(p̌))

dp
. Since s − λU(p,µµµ) strictly decreases in p, we have

W̃U(p̌,µµµ) < W̃U(p̃,µµµ). But these inequalities imply that equation (A.1) cannot be

satisfied at both p̃ and p̌. A contradiction.

Point 4. The sufficient condition given in Point 4, together with equation (A.1) and

WU(p,µµµ) − s = s − λU(p,µµµ), implies that
dW̃U(p+,µµµ(p+))

dp
> −dλU(p,µµµ(p))

dp
. Using the

same argument involved in proving Point 3, we conclude that ãU(p,µµµ) = 1 over [p, p̄].

Q.E.D.

More generally, if a player exerts a constant effort over some interval of background

belief, then the other player finds it optimal to use corner solutions over this interval,

with at most two cutoffs. The proof is similar and hence omitted.

APPENDIX B: EQUILIBRIUM CONSTRUCTION AND ANALYSIS

For brevity, all the derivatives of functions at p = p∗−2 refer to the right derivatives.

B.1. Characterization of the gradual revelation phase

B.1.1. U ’s strategy (proof of the second case of Lemma 2)

We are left to derive U ’s strategy during the non-responding region of the grad-

ual revelation phase (that is, for p ∈ (p∗−1 , pgr), if nonempty), assuming that the

equilibrium with gradual revelation is an equilibrium.
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Proof of the second case of Lemma 2: First, W I−(p, 0) satisfies the same

HJB equation as equation (5.2), with the arguments (p, µ̂̂µ̂µ (p)) of all the functions

replaced by (p, 0). Since for p ∈ (p∗−1 , pgr), a
I− (p, 0) = aS(qqq− (p)) ∈ (0, 1), the terms

in equation (5.2) that are directly affected by type s−’s effort must be 0:[
r
(
λI− (p)h− s

)
− λp (1− p) dW

I− (p, 0)

dp
+ λI− (p)

(
λh−W I− (p, 0)

)]
= 0.

Since λI− (p)h− s < 0 for p ∈ (p∗−1 , pgr), we have[
−λp (1− p) dW

I− (p, 0)

dp
+ λI− (p)

(
λh−W I− (p, 0)

)]
> 0.

During the gradual revelation phase, type s− must be indifferent between revealing

and not revealing, that is, W I− (p, µ̂̂µ̂µ (p)) = W I− (p, 0). This equality, together with

both W I− (p, µ̂̂µ̂µ (p)) and W I− (p, 0) satisfying the HJB equation (5.2), implies that

aU (p, µ̂̂µ̂µ (p)) = aU (p, 0) over (p∗−1 , pgr). Since by construction aU (p, 0) = aS(qqq− (p)),

we have aU (p, µ̂̂µ̂µ (p)) = aS(qqq− (p)). Therefore, before a breakthrough occurs, the unin-

formed player’s effort is decreasing over time during the non-rewarding region. Q.E.D.

B.1.2. U ’s HJB equation and experimentation incentive

A heuristic derivation of U ’s HJB equation, equation (5.6): Suppose the

time-t state is (pt, µ̂̂µ̂µ(pt)), and that U considers exerting effort ã ∈ [0, 1] during the

time interval [t, t + dt) as long as I exerts effort 1, and playing according to the

candidate equilibrium strategy at other states.

The flow continuation value of doing so, r(WU (pt, µ̂̂µ̂µ) − s), should equal the

right-hand side of equation (5.6): the expected instantaneous payoff (per unit

of time), rã
(
λU (pt, µ̂̂µ̂µ)h− s

)
, plus the value of information (per unit of time),

E[W (pt+dt, µ̂̂µ̂µ (pt+dt))−W (pt, µ̂̂µ̂µ (pt))]/dt. The latter can be decomposed into three

parts. The first two parts resemble those in equation (5.2): the rate of change in

U ’s continuation value in case no breakthrough arrives and type s− does not reveal

his type in [t, t + dt), and the change in U ’s continuation value in case a break-

through arrives in [t, t + dt), multiplied by the arrival rate of a breakthrough. The

third part comes from the possibility that I reveals he is type s− in [t, t + dt] in

the absence of a breakthrough, an event that reduces U ’s continuation value by an

amount |WU (p, 0)−WU (p, µ̂̂µ̂µ) |. We now calculate the probability of this event.

Given players’ effort path, the background belief at time t + dt will be

pt − (1 + ã)λp (1− p) dt. According to the equilibrium prescription, type s− will re-

veal at a rate such that the action of non-revealing (continuing exerting effort 1) will
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keep the state variables on the curve µ̂̂µ̂µ. That is, I’s reputation at time t + dt will

be µ̂̂µ̂µ (pt − (1 + ã)λpt (1− pt) dt). Therefore, I’s reputation during the time interval

[t, t+ dt] adjusts by an amount

dµt ≡ µ̂̂µ̂µ (pt − (1 + ã)λpt (1− pt) dt)− µ̂̂µ̂µ (pt) = µ̂̂µ̂µp (pt) dpt.

Using Bayes’ rule (4.8), we have, the rate at which I reveals that he is type s− is

(1− µ̂̂µ̂µ (pt))
dYt/dt

1− Yt
=

(
µµµop(pt) (1− µ̂̂µ̂µ (pt))

µµµo(pt) (1− µµµo (pt))
− µ̂̂µ̂µp (pt)

µ̂̂µ̂µ (pt)

)
(1 + ã)pt(1− pt)λ.

Rearranging terms, we have, at p = pt, U ’s continuation value function satisfies

r(WU (p, µ̂̂µ̂µ)− s) = ã
[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A (p, µ̂̂µ̂µ)

]
+ A(p, µ̂̂µ̂µ).

Using optimality of ã, we obtain the HJB equation (5.6).

During gradual revelation, U ’s equilibrium effort is interior (except at p = p∗−1 ).

Therefore, her IC condition (5.7) must hold. This condition, together with the HJB

equation (5.6), implies that U ’s value function satisfies equation (5.8). Q.E.D.

B.1.3. The gradual revelation path µ̂̂µ̂µ (proof of Lemma 3)

The Formula of g. Define functions B : [0, 1]2 → R and C : [0, 1]2 → R by

B (p, µ) =
(
s− λU (p, µ)h

)
−
(
s− λI− (p)h

)
aI− (p, 0) ,

C (p, µ) = r
(
λU (p, µ)h− s

)
+ λp (1− p)λUp (p, µ)h+ λU (p, µ)

(
λh− s−

(
s− λU (p, µ)h

))
,

where λUp denotes the partial derivative function of λU with respect to its first argu-

ment p.23 The function B is to be interpreted as U ’s continuation value drop caused

by type s−’s revelation, and C as U ’s marginal benefit of experimentation exclud-

ing the part obtained from the private information revealed by I. Then, using U ’s

indifference condition (5.7) and her value function (5.8), we have

µ̂̂µ̂µp = g (p, µ̂̂µ̂µ) ≡ −
(

C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

)
µ̂̂µ̂µ, p ∈ (p∗−2 , pgr),(B.1)

where

φ (p, µ) ≡
(1− µ)µµµop (p)

µµµo (p) (1− µµµo (p))
=
λI+ (p)− λU (p, µ)

λp (1− p)
.(B.2)

We prove Lemma 3 in four steps. Step 1 derives some convenient formulas for

µ̂̂µ̂µp/µ̂̂µ̂µ and for dλU (p, µ̂̂µ̂µ) /dp, which will be used in later steps. Step 2 shows that if µ̂̂µ̂µ

satisfies ODE (5.9), then it is strictly decreasing, ensuring that type s−’s revealing

rate is strictly positive and is hence feasible (see Lemma 6). Step 3 shows that the

23That is, λUp (p, µ) ≡ µdλ
I+(p)
dp + (1− µ)dλ

I−(p)
dp = µλI+p (p) + (1− µ)λI−p (p).
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ODE problem defined by equations (5.9)-(5.11) has a unique solution (see Lemma

7). Step 4 shows that a gradual revelation path is absolutely continuous with p, and

hence satisfies equations (5.9)-(5.11). Reading from Step 4 to 2, Lemma 3 follows.

Proof of Lemma 3: Step 1. Convenient formulas for µ̂̂µ̂µp/µ̂̂µ̂µ and dλU (p, µ̂̂µ̂µ) /dp.

Define a function D : [0, 1]2 → R by (omitting the argument (p, µ) of λU)

D (p, µ) ≡
r
(
λUh− s

)
+ λU

(
λh− s− s+ λUh

)
B (p, µ)

+ λU − λ.(B.3)

Let λUµ denote the partial derivative function of λU with respect to its second argument

µ. Combining equations (B.1) and (B.2), at p such that µ̂̂µ̂µ(p) 6= 0, we have

−µ̂̂
µ̂µp
µ̂̂µ̂µ

=
C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

=
λUp (p, µ̂̂µ̂µ)h

B (p, 0)
+

B (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
D (p, µ̂̂µ̂µ) + λ− λI+ (p)

]
(B.4)

=
dλU (p, µ̂̂µ̂µ)h/dp

B (p, µ̂̂µ̂µ)
+

1

λp (1− p)

[
D (p, µ̂̂µ̂µ) + λ− λI+ (p)

]
.(B.5)

The last equality uses dλU/dp = λUp + λUµ µ̂̂µ̂µp and B (p, 0) = B (p, µ̂̂µ̂µ) + λUµ µ̂̂µ̂µh.

To derive some formulas for dλU (p, µ̂̂µ̂µ)h/dp, we first need an expression for
λUp
λUµ µ̂̂µ̂µ

.

λUp
λUµ µ̂̂µ̂µ

=
λUp

µ̂̂µ̂µ (λI+ (p)− λI− (p))

=
ρg (1− ρg)

p (1− p) (ρg − ρb)

[
p+ (1− p) 1−ρb

1−ρg

p+ (1− p) ρb
ρg

ρb
ρg

+

(
1

µ̂̂µ̂µ
− 1

) p+ (1− p) ρb
ρg

p+ (1− p) 1−ρb
1−ρg

1− ρb
1− ρg

]

=
λ

λp (1− p)

[(
1− λI+ (p)

λ

)
+

1

µ̂̂µ̂µ

ρb (1− ρg)
ρg − ρb

+

(
1

µ̂̂µ̂µ
− 1

)
λI− (p)

λ

]
.(B.6)

Subtracting
λUp
λUµ µ̂̂µ̂µ

+ dλU (p,µ̂̂µ̂µ)h/dp
B(p,µ̂̂µ̂µ)

from both sides of equation (B.5), using equation (B.6),
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and rearranging terms, we have

−dλ
U (p, µ̂̂µ̂µ)

dp

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
D (p, µ̂̂µ̂µ) + λI− (p)− 1

µ̂̂µ̂µ

(
ρb (1− ρg)
ρg − ρb

λ+ λI− (p)

)]
(B.7)

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
D (p, µ̂̂µ̂µ) + λI− (p)−

(
λ− λI− (p)

)
λI− (p)

λU (p, µ̂̂µ̂µ)− λI− (p)

]
(B.8)

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
D (p, µ̂̂µ̂µ) + λ− λI+ (p)−

λU (p, µ̂̂µ̂µ)
(
λ− λU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ)− λI− (p)

]
.(B.9)

Step 2. Monotonicity of µ̂̂µ̂µ (or, feasibility of type s−’s revealing strategy).

We will treat the point pS− with care because B(p, 0) > 0 for p ∈ [p∗−2 , pS−) and

B(pS−, 0) = 0. The latter equality follows from aI−(pS−, 0) = aS ◦qqq−(pS−) = 1, where

qqq−(pS−) is the posterior belief at which players switch from 1 to interior effort in the

symmetric MPE.

Lemma 6 Let α ∈ (p∗−2 , pS−) and µ̂̂µ̂µ|[p∗−2 ,α] be a solution to the ODE problem defined

by (5.9) restricted over [p∗−2 , α] and the initial condition (5.10). If µ̂̂µ̂µ ∈ (0, 1) and

B (p, µ̂̂µ̂µ) > 0 over (p∗−2 , α), then µ̂̂µ̂µp < 0 over (p∗−2 , α).

Proof of Lemma 6: Take p in the gradual revelation region. By equation (B.5), if

dλU (p, µ̂̂µ̂µ) /dp ≤ 0, then by the definition of λU , we have µ̂̂µ̂µp < 0; if dλU (p, µ̂̂µ̂µ) /dp > 0

and D (p, µ̂̂µ̂µ) > 0, we also have µ̂̂µ̂µp < 0. We now show D (p, µ̂̂µ̂µ) > 0 for any p in the

gradual revelation region. Lemma 6 then follows.

We first show, if D (p, µ̂̂µ̂µ) > 0 at p = p∗−2 (the left boundary of the gradual reve-

lation phase), then D (p, µ̂̂µ̂µ) > 0 for any p in the gradual revelation region. Suppose

D (p, µ̂̂µ̂µ) > 0 at p = p∗−2 , and there exists some p such that D (p, µ̂̂µ̂µ) is negative. Then

there exists some p̃ such that D (p̃, µ̂̂µ̂µ) = 0, and that dλU (p̃, µ̂̂µ̂µ) /dp ≤ 0. Equation

(B.7) then implies that at D (p̃, µ̂̂µ̂µ) > 0. A contradiction.

we now show D (p, µ̂̂µ̂µ) > 0 at p = p∗−2 . From here until the end of this proof, if not

mentioned, p is fixed at p∗−2 . Using the initial condition (5.10), at p = p∗−2 , we have

λU (p, µ̂̂µ̂µ) (λh− s)
s− λU (p, µ̂̂µ̂µ)h

=
s
(
λI+ (p)− λI− (p)

)
+ λI− (p)

(
wS (qqq+ (p))− s

)
(s− λI− (p)h) (wS (qqq+ (p))− s)

(λh− s) .
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Applying the definition of D, and the fact that aS ◦ qqq−(p) = 0 at p = p∗−2 , we have

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
s
(
λI+ (p)− λI− (p)

) λh−wS(qqq+(p))
wS(qqq+(p))−s + λI− (p)

(
λI+ (p)− λh

)
s− λI− (p)h

.

Using the definition of p∗−2 (in equation (3.1)) and that of λI−, we have

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
−wS (qqq+ (p))

(
r + 2λI+ (p)

)
+ (2λ+ r)λI+ (p)h

2 (wS (qqq+ (p))− s)
.(B.10)

By Assumption 1, p∗−2 ≥ pS+, we have aS (qqq+ (p)) = 1 at p = p∗−2 . Recall that wS is the

continuation value function corresponding to the symmetric MPE under symmetric

information aS, whose argument is the true posterior.

Since in MPE aS, players exert effort 1 if their common posterior is above qS, wS

satisfies the following HJB equation at background beliefs p such that qqq+(p) > qS,

rwS
(
qqq+
)
− rs = r

(
λqqq+h− s

)
− 2λqqq+

(
1− qqq+

)
wSq
(
qqq+
)

+ 2λqqq+
(
λh− wS

(
qqq+
))
,

where the argument of qqq+ is omitted. Rearranging terms, we have

−wS
(
qqq+
) (
r + 2λqqq+

)
+ (2λ+ r)λqqq+h = 2λqqq+

(
1− qqq+

)
wSq
(
qqq+
)
.(B.11)

With this equation, equation (B.10) becomes

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
λqqq+ (1− qqq+)wSq (qqq+)

(wS (qqq+)− s)
.(B.12)

Therefore,

D (p, µ̂̂µ̂µ) =
λqqq+ (1− qqq+)wSq (qqq+)

(wS (qqq+)− s)
−
(
1− qqq+

)
λ

=
(
1− qqq+

)
λ
qqq+wSq (qqq+)−

(
wS (qqq+)− s

)
(wS (qqq+)− s)

(B.13)

>
(
1− qqq+

)
λ

(qqq+ − q∗1)wSq (qqq+)−
(
wS (qqq+)− s

)
(wS (qqq+)− s)

> 0(B.14)

The second-to-last inequality is due to wSq (qqq+) > 0 at p = p∗−2 ; the last inequality is

due to the convexity of wS over [q∗1, 1], and that wS (q∗1) = s. Q.E.D.

Step 3. Existence and uniqueness of a solution to the ODE problem (5.9)-(5.11).

Lemma 7 If µ̂̂µ̂µ(p∗−2 ) defined by (5.10) is such that µ̂̂µ̂µ(p∗−2 ) < µµµo(p∗−2 ), then the ODE

problem defined by (5.9)-(5.11) has a unique solution µ̂̂µ̂µ. Moreover, the right boundary

pgr is in (p∗−2 , pS−).
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Proof of Lemma 7: Let ε ∈ (0, pS−) be the unique solution to the equation

s− λU
(
pS− − ε,µµµo

(
pS− − ε

))
h = W S− (pS− − ε)− s. Uniqueness follows from the

fact that both sides are continuous in ε, the left-hand side is increasing in ε, the

right-hand side is decreasing in ε, and that the left-hand side is strictly greater than

the right-hand side at ε = pS− and strictly smaller than the latter at ε = 0. As

ε > 0, we have aI− (p, 0) < 1 over [p∗−2 , pS− − ε],24 and hence B (p, 0) is bounded

away from 0 for p ∈ [p∗−2 , pS− − ε]. C(p, µ̂̂µ̂µ), φ(p, µ̂̂µ̂µ), and B(p, µ̂̂µ̂µ) are also bounded for

p ∈ [p∗−2 , pS− − ε] and µ̂̂µ̂µ ∈ [0, 1].

Consider ODE (5.9) but restricted over [p∗−2 , pS− − ε]. That is,

µ̂̂µ̂µp = −
(

C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

)
µ̂̂µ̂µ, p ∈ (p∗−2 , pS− − ε),(B.15)

with the initial condition (5.10). µ̂̂µ̂µp as a function of (p, µ̂̂µ̂µ), defined by equation (B.15),

is bounded, and Lipschitz continuous. Applying standard uniqueness theorems (for

example, Picard–Lindelöf theorem), this initial value problem has a unique solution.

Let µ̂̂µ̂µ denote this solution (abusing notations). Moreover, if µ̂̂µ̂µ reaches 0 at some p̂,

then the function defined by µ̂̂µ̂µ(p) = 0 for all p ∈ [p̂, pS−− ε] solves ODE (B.15) when

it is restricted over [p̂, pS− − ε]. Therefore, by uniqueness, the solution to the ODE

problem defined by (B.15) and (5.10) must be such that, once it reaches 0, it stays

at 0 for larger p’s. We will use Claims 1 to 3 to establish Lemma 7.

Claim 1 Over the interval [p∗−2 , pS− − ε], we have µ̂̂µ̂µ ∈ (0, 1), and B (p, µ̂̂µ̂µ) > 0.

Claim 2 µ̂̂µ̂µ is decreasing over the interval [p∗−2 , pS− − ε].

Claim 3 µ̂̂µ̂µ
(
pS− − ε

)
< µµµo

(
pS− − ε

)
.

Claim 2 and 3, together with µ̂̂µ̂µ
(
p∗−2
)
> µµµo

(
p∗−2
)

and the continuity of µ̂̂µ̂µ and µµµo,

imply that there exists a unique pgr ∈ (p∗−2 , pS− − ε) such that µ̂̂µ̂µ(pgr) = µµµo(pgr), and

that µ̂̂µ̂µ(p) > µµµo(p) for p ∈ [p∗−2 , pgr). Therefore, µ̂̂µ̂µ restricted over [p∗−2 , pgr] is the unique

solution to the ODE problem (5.9)-(5.11), as desired. Q.E.D.

We are left to prove the Claims 1 to 3.

Proof of Claim 1: Suppose by negation that there is some p ∈ [p∗−2 , pS− − ε]

such that B (p, µ̂̂µ̂µ) ≤ 0; denote the smallest p satisfying this inequality as p̃. By the

definition of the function B and that aI−(p, µ̂̂µ̂µ) < 1 for p ∈ [p∗−2 , pS− − ε], we have

24Recall that over [p∗−2 , pS−], aI− (p, 0) ≡ aS ◦ qqq−(p), and is strictly increasing from 0 to 1.
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µ̂̂µ̂µ(p̃) > 0. Since B (p, µ̂̂µ̂µ) > 0 at p = p∗−2 and B is continuous, we have p̃ > p∗−2 ,

B (p, µ̂̂µ̂µ) > 0 for p ∈ [p∗−2 , p̃), and B (p̃, µ̂̂µ̂µ) = 0. The latter two inequalities imply that
dB(p̃,µ̂̂µ̂µ)
dp

≤ 0. Moreover, by definition, B (p, µ̂̂µ̂µ) =
(
s− λU (p, µ)h

)
− (wS(qqq−(p)) − s),

and hence p̃ must be in the region where players exert interior effort in the symmetric

MPE when s− is public. dB(p̃,µ̂̂µ̂µ)
dp
≤ 0 implies that

d(s−λU (p̃,µ)h)
dp

≤ dwS(qqq−(p̃))
dp

.

But then, ODE (B.15), which implies U ’s indifference condition (5.7), cannot be

satisfied at p = p̃. This is because, as λU (p̃, µ) > λI− (p̃), the instantaneous marginal

benefit of experimenting is strictly higher for U than for type s−; the value of a

breakthrough weighted by the arrival rate is higher higher for U as well:

λU (p̃, µ) (λh− s− (s− λU (p̃, µ)h)) > λI− (p̃) (λh− s− (wS(qqq−(p))− s));

the rate of change in continuation values in case of no breakthrough is also higher

for U :
d(s−λU (p̃,µ)h)

dp
dpt
dt
≥ wS(qqq−(p̃))

dp
dpt
dt

, as dpt
dt

< 0. Therefore, if at some p̃ type s− is

indifferent about experimentation, then using B (p̃, µ̂̂µ̂µ) = 0, U ’s indifference condition

(5.7) cannot be satisfied. A contradiction to µ̂̂µ̂µ being a solution to ODE (B.15). Q.E.D.

Proof of Claim 2: Using Claim 1, Lemma 6, and the fact that µ̂̂µ̂µ(p∗−2 ) ∈ (0, 1),

we have that µ̂̂µ̂µ is decreasing until it reaches 0 (if ever), and then because of our

selection of µ̂̂µ̂µ, it stays at 0 until p reaches pS− − ε. Therefore, µ̂̂µ̂µ is decreasing over

[p∗−2 , pS− − ε]. Q.E.D.

Proof of Claim 3: Suppose by contradiction that µ̂̂µ̂µ
(
pS− − ε

)
≥ µµµo

(
pS− − ε

)
.

Then WU(pS−− ε, µ̂̂µ̂µ(pS−− ε)) defined by equation (5.8) is smaller than wS(qqq−(pS−−
ε)) by the choice of ε. Using B(p, µ̂̂µ̂µ) = WU(p, µ̂̂µ̂µ) − wS(qqq−(p)), we have that

B(pS− − ε, µ̂̂µ̂µ(pS− − ε)) ≤ 0, which contradicts Claim 1. Q.E.D.

Step 4. A gradual revelation path µ̂̂µ̂µ is absolutely continuous. First, µ̂̂µ̂µ is continuous

over (p∗−2 , pgr). Suppose by negation that there is some p̃ ∈ (p∗−2 , pgr) at which µ̂̂µ̂µ

is discontinuous, that is, µ̂̂µ̂µ(p̃+) < µ̂̂µ̂µ(p̃−).25 Since over a small right neighborhood

of p̃, player U is indifferent between experimenting and not experimenting, we must

have WU(p+, µ̂̂µ̂µ(p̃+)) = s+ s−λU(p+, µ̂̂µ̂µ(p̃+))h, by equation (5.8). Similarly, we have

WU(p−, µ̂̂µ̂µ(p̃−)) = s + s − λU(p−, µ̂̂µ̂µ(p̃−))h. Since λU strictly increases in its second

argument, these two inequalities imply that WU(p+, µ̂̂µ̂µ(p̃+)) > WU(p−, µ̂̂µ̂µ(p̃−)). But

this contradicts the fact that WU ≥ s, as WU(p+, µ̂̂µ̂µ(p̃+)) is the average between

WU(p−, µ̂̂µ̂µ(p̃−)) and s.

25Note in our candidate equilibrium, µ̂̂µ̂µ is discontinuous if and only if type s− reveals with a

lump-sum probability, hence at any p, µ̂̂µ̂µ can only jump downward.
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Similarly, µ̂̂µ̂µ is continuous at pgr. The difference between this case and the previous

case is that, over a small right neighborhood of pgr, player U strictly prefers to ex-

periment, and type s− strictly prefers not to reveal. Therefore, by Point 2 of Lemma

5, we have WU(p+, µ̂̂µ̂µ(p̃+)) ≥ s+ s− λU(p+, µ̂̂µ̂µ(p̃+))h. Continuity of µ̂̂µ̂µ at pgr follows

the same logic as in the previous case. We show in the online appendix that µ̂̂µ̂µ does

not have singular continuous part.

Since µ̂̂µ̂µ is monotone (see Lemma 6), continuous, and does not have a singular

continuous part, it must be absolutely continuous, and hence satisfies ODE defined

by (5.9), (5.10), and (5.11). Q.E.D.

B.2. Verification (proof of Lemma 4)

We first check type s+’s incentive, and then check type s−’s and U ’s.

In the separation phase (p ≤ p∗−2 ), if the state is (p, 0), then U does not experi-

ment, and hence it is optimal for type s+ to adopt the single-player solution. If the

state is (p, 1), type s+ has no incentive to deviate to lower efforts because doing so

would reduce his reputation to 0 and hence he would obtain the continuation value

in the single-player solution, which is lower than following the equilibrium prescrip-

tion, which gives him the continuation value associated with the symmetric MPE.

Deviating to higher efforts cannot improve his continuation value either.

Before separation (p > p∗−2 ), according to the equilibrium prescription, I’s repu-

tation can only be 0 or µ̂̂µ̂µ, on and off path. If the state is (p, 0), then U will play

the symmetric MPE effort with public information s−. Type s+’s optimal strategy is

to adopt the single-player solution, because if I’s reputation is fixed at 0, then for

p ∈ [pS−, 1], type s− being willing to experiment implies that type s+ is willing to

experiment, and for p ∈ [p∗−2 , pS−), U ’s effort being 0 implies the optimality of type

s+’s single-player solution. If the state is on the gradual revelation path, (p, µ̂̂µ̂µ), type

s+ is willing to exert effort 1. This is because if he deviates, he will still find effort 1

optimal before separation, but since the deviation reduces U ’s effort, it reduces what

he obtains before separation; Moreover, type s+’s continuation value at the beginning

of the separation phase is lower if he deviates today (see the previous paragraph). In

total, type s+ has no profitable deviation.

We now check type s−’s and U ’s incentive to deviate phase by phase.

1. Separation (p ≤ p∗−2 ). The nontrivial case is when p∗+1 < p ≤ p∗−2 , and µ = µµµo(p).

Type s− has no incentive to deviate because, given the updating rule and that

U will choose the same action as he does (i.e. the symmetric MPE effort cor-
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responding to the information conveyed by I’s action), the tradeoff of experi-

menting or not he faces is exactly the same as is faced by a two-player team

with public information s−: in both situations, experimenting yields the same

instantaneous payoff and twice the value of information of a single player. Since

a two-player team finds it optimal to stop if p < p∗−2 , so does type s−.

U has no incentive to deviate given that I has revealed his type and plays the

corresponding symmetric MPE strategy.

2. Gradual revelation (p∗−2 < p < pgr).

(2.1) The state is along µ̂̂µ̂µ. Since we construct U ’s effort function to make type

s− indifferent between revealing him self and mimicking type s+, type s− has

no incentive to deviate. Similarly, we construct the gradual revelation path µ̂̂µ̂µ

to make U indifferent between experimenting and not experimenting, U has no

incentive to deviate either.

(2.2) The state is along µµµo. If type s− deviates to an effort level different from

his equilibrium efforts, he would reveal himself, thereby obtaining a continuation

value at most wS(qqq−(·)), which is his value of following the equilibrium strategy.

Therefore, he has no incentive to deviate.

3. Pooling (p > pgr). Whether type s− deviates or not, he obtains the same con-

tinuation value at pgr: his symmetric MPE payoff. If he does not deviate, then

both players exert effort 1 until p reaches pgr, which maximizes the players’ joint

surplus before p reaches pgr, and hence gives type s− a higher payoff than if he

deviates (which gives him his symmetric MPE payoff).

Applying Point 4 of Lemma 5 for p = pgr and p̄ = 1, U has no incentive

to deviate, if we show that the left-hand side of the inequality in Point 4 is

positive at p = pgr with µµµ replaced by I’s pooling reputation µµµo. This condition

is indeed satisfied, because dλU (p,µµµo)
dp

> 0, and at p = pgr,

r
(
λU (p,µµµo)h− s

)
+ λU (p,µµµo)

(
λh− s−

(
s− λU (p,µµµo)h

))
> 0.

The latter follows from D(p, µ̂̂µ̂µ) > 0 at p = pgr (see the proof of Lemma 6), and

by the definition of pgr, µ̂̂µ̂µ(pgr) = µµµo(pgr).

APPENDIX C: WELFARE ANALYSIS

This section proves Proposition 4 and Proposition 5. We first analyze welfare when

the state variables are in the gradual revelation phase, and then extend the result to

the pooling region. The two propositions follow after these.



44

C.1. Welfare analysis in the gradual revelation phase

Assume that the prior q0 is in the gradual revelation region. In the MPE with

gradual revelation, type s− would reveal himself with a positive probability, such

that mimicking type s+’s effort immediately pushes I’s reputation from µµµo(q0) to

µ̂̂µ̂µ(q0). We now calculate the welfare gain of inducing asymmetric information from

this point on. To this aim, let ∆W (p, µ̂̂µ̂µ) be the difference between the total wel-

fare under asymmetric information and that under symmetric information when the

state variables in the MPE with gradual revelation are (p, µ̂̂µ̂µ): expression (7.1) minus

expression (7.2), with µµµo replaced by µ̂̂µ̂µ, and q0 by p.

(C.1) ∆W (p, µ̂̂µ̂µ) = WU(p, µ̂̂µ̂µ) + µ̂̂µ̂µW I+(p, µ̂̂µ̂µ)− 2µ̂̂µ̂µwS(qqq+(p))− (1− µ̂̂µ̂µ)wS(qqq−(p)).

Whether inducing asymmetric information improves welfare or not at the prior q0

(in the gradual revelation region) is equivalent with whether ∆W (q0, µ̂̂µ̂µ) is positive or

not. Therefore, in the sequel, we look at the sign of ∆W (p, µ̂̂µ̂µ) at p = q0.

Lemma 8 During the gradual revelation phase,

1. If O ≥ 1 + 2λ
r
, then ∆W (p, µ̂̂µ̂µ) > 0 over (p∗−2 , pgr].

2. If OS ≤ O < 1 + 2λ
r
, and

(a) if there exists p̃O ∈ (p∗−2 , pgr) such that ∆W (p̃O, µ̂̂µ̂µ) = 0, then ∆W (p, µ̂̂µ̂µ) < 0

over (p∗−2 , p̃O), and ∆W (p, µ̂̂µ̂µ) > 0 over (p̃O, pgr];

(b) otherwise, ∆W (p, µ̂̂µ̂µ) < 0 over (p∗−2 , pgr). (pgr is not included in the interval

because we might have ∆W (pgr, µ̂̂µ̂µ) = 0.)

We will use the following two Claims. In Claim 5, the derivatives refer to right

derivatives.

Claim 4 During the gradual revelation phase, if there is some p̃ ∈ (p∗−2 , pgr) at

which ∆W (p̃, µ̂̂µ̂µ) = 0, then d∆W (p̃,µ̂̂µ̂µ)
dp

> 0.

Claim 5 At p = p∗−2 , ∆W (p, µ̂̂µ̂µ) = 0, d∆W (p,µ̂̂µ̂µ)
dp

= 0, and

1. d2∆W (p,µ̂̂µ̂µ)
dp2

> 0, if O > 1 + 2λ
r
;

2. d2∆W (p,µ̂̂µ̂µ)
dp2

< 0, if O ∈ [OS, 1 + 2λ
r
);

3. d2∆W (p,µ̂̂µ̂µ)
dp2

= 0 and d3∆W (p,µ̂̂µ̂µ)
dp3

> 0, if O = 1 + 2λ
r
.
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Proof of Lemma 8: The statement in the first case of Lemma 8 is implied by

Claim 4, the first and the third case of Claim 5. The statement in the second case is

implied by Claim 4 and the second case of Claim 5. Q.E.D.

We are left to prove Claims 4 and 5. We will use the following equation, which is

derived in the Online Appendix.

Claim 6 During the gradual revelation phase, ∆W satisfies(
1 + aU (p, µ̂̂µ̂µ)

)
λp (1− p) d∆W (p, µ̂̂µ̂µ)

dp

= −
[
r +

(
1 + aU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ) + (1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)

]
∆W (p, µ̂̂µ̂µ)

−
(
1− aU (p, µ̂̂µ̂µ)

)
r
[
µ̂̂µ̂µ
(
wS
(
qqq+ (p)

)
− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
.(C.2)

Proof of Claim 4: From equation (C.2), at p̃ such that ∆W (p̃, µ̂̂µ̂µ) = 0, the sign

of d∆W (p̃,µ̂̂µ̂µ)
dp

is the same with that of

−
[
µ̂̂µ̂µ
(
wS
(
qqq+ (p)

)
− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
(C.3)

at p = p̃. Using the expression WU (p, µ̂̂µ̂µ)− s = s− λU (p, µ̂̂µ̂µ)h and ∆W (p̃, µ̂̂µ̂µ) = 0 to

replace λU (p, µ̂̂µ̂µ)h− s, we have, the sign of d∆W (p̃,µ̂̂µ̂µ)
dp

is the same with that of

µ̂̂µ̂µ
(
wS
(
qqq+ (p)

)
−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
+ (1− µ̂̂µ̂µ)

(
wS
(
qqq− (p)

)
− s
)

(C.4)

at p = p̃. Note that a necessary condition for ∆W (p̃, µ̂̂µ̂µ) = 0 for some p̃ is that the

odds ratio O is finite, implying that dqqq+(p)
dp

> 0.

Step 1. d
(
wS (qqq+ (p))−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
/dp > 0 and

d(wS(qqq−(p))−s)
dp

> 0

during gradual revelation. Since both wS (qqq+ (·)) and wS (qqq− (·)) increase in p, the two

inequalities hold if we show d
(
−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h

)
/dp > 0. To show this, we

take W I+ (·, µ̂̂µ̂µ) and λI+ as functions of type s+’s posterior belief q+; we can do so

because dqqq+(p)
dp

> 0. Using the HJB equation of W I+, we have, (omitting the arguments

(p, µ̂̂µ̂µ) of W I+ and aU)

r
(
W I+ − λI+ (p)h

)
=

(
1 + aU

) [
−λqqq+ (p)

(
1− qqq+ (p)

) dW I+

dq+
+ λI+ (p)

(
λh− s−

(
W I+ − s

))]
.(C.5)

Suppose by negation dW I+(p,µ̂̂µ̂µ)
dq+

≥ λh. Then the right-hand side of equation (C.5) would

be smaller than(
1 + aU

) [
−λqqq+ (p)

(
1− qqq+ (p)

)
λh+ λI+ (p)

(
λh− s−

(
W I+ − s

))]
.



46

The terms in the square brackets are equal to λI+ (p)h−W I+ (p, µ̂̂µ̂µ), which is strictly

negative at during the gradual revelation phase, contradicted with the fact that the

left-hand side of equation (C.5) is strictly positive (because the odds ratio is finite

and p̃ < 1).

Step 2. d∆W (p̃,µ̂̂µ̂µ)
dp

> 0. Suppose by negation that d∆W (p̃,µ̂̂µ̂µ)
dp

≤ 0, implying that expres-

sion (C.4) is negative. Since µ̂̂µ̂µ > 0, wS (qqq+ (p)) −W I+ (p, µ̂̂µ̂µ) + λI+ (p)h − s is also

negative. This property, together with µ̂̂µ̂µ being decreasing in p (Proposition 1), and

the inequalities in Step 1, we have, expression (C.4) is strictly increasing in p at p̃.

This contradicts d∆W (p̃,µ̂̂µ̂µ)
dp

≤ 0. Q.E.D.

Proof of Claim 5: Obviously, inducing asymmetric information does not affect

welfare at the beginning of the separation phase: ∆W
(
p∗−2 , µ̂̂µ̂µ

)
= 0. Applying this

equality and aU
(
p∗−2 , µ̂̂µ̂µ

)
= 1 to equation (C.2), we have

d∆W(p∗−2 ,µ̂̂µ̂µ)
dp

= 0.

Taking right derivatives on both sides of equation (C.2), and using ∆W = 0,

d∆W/dp = 0, and µ̂̂µ̂µ
(
wS (qqq+ (p))− s

)
= s − λU (p, µ̂̂µ̂µ)h at p = p∗−2 (the initial value

condition of µ̂̂µ̂µ), we have, at p = p∗−2 ,

(
1 + aU (p, µ̂̂µ̂µ)

)
λp (1− p) d

2∆W (p, µ̂̂µ̂µ)

dp2
= −da

U (p, µ̂̂µ̂µ)

dp
rµ̂̂µ̂µ
(
λI+ (p)h− s

)
.(C.6)

Since daU (p,µ̂̂µ̂µ)
dp

< 0 at p = p∗−2 , we have, at p = p∗−2 ,

• d2∆W (p,µ̂̂µ̂µ)
dp2

> 0 if λI+ (p)h− s > 0;

• d2∆W (p,µ̂̂µ̂µ)
dp2

< 0 if λI+ (p)h− s < 0.

This statement implies the statements in the first two cases in Claim 5, because at

p = p∗−2 , O > 1+2λ
r

implies λI+ (p)h−s > 0; and O < 1+2λ
r

implies λI+ (p)h−s < 0.

If O = 1 + 2λ
r
, then λI+ (p)h − s = 0 at p = p∗−2 , and hence d2∆W (p,µ̂̂µ̂µ)

dp2
= 0 from

equation (C.6). Taking right derivative with respect to p on both sides of equation

(C.6), we have
(
1 + aU (p, µ̂̂µ̂µ)

)
λp (1− p) d3∆W (p,µ̂̂µ̂µ)

dp3
= −daU (p,µ̂̂µ̂µ)

dp
rµ̂̂µ̂µλ

I+(p)
dp

h > 0. The third

case follows. Q.E.D.

Proof of Claim 6: Rewrite the HJB equations of WU , W I+, wS (qqq+ (·)), and

wS (qqq− (·)) in the following way. In the sequel, for brevity, we omit the arguments

(p, µ̂̂µ̂µ) of WU , W I+, ∆W , λU , and aU .

r
(
WU − s

)
= aUr

[
λUh− s

]
− (1− µ̂̂µ̂µ) y

(
WU −WU (p, 0)

)
+
(
1 + aU

) [
−λp (1− p) dW

U

dp
+ λU

(
λh− s−

(
WU − s

))]
.(C.7)
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This equation is the same with the HJB equation (5.6), except that we collect the two

terms representing the usual value of information together, corresponding to the event

that no revealing and no breakthrough arrives and to the event that a breakthrough

arrives.

r
(
W I+ − s

)
= r

[
λI+ (p)h− s

]
+
(
1 + aU

) [
−λp (1− p) dW

I+

dp
+ λI+ (p)

(
λh− s−

(
W I+ − s

))]
.(C.8)

r
(
wS
(
qqq+ (p)

)
− s
)

= r
[
λI+ (p)h− s

]
+
(
1 + aU

) [
−λp (1− p) dw

S (qqq+ (p))

dp
+ λI+ (p)

(
λh− s−

(
wS
(
qqq+ (p)

)
− s
))]

+
(
1− aU

) [
−λp (1− p) dw

S (qqq+ (p))

dp
+ λI+ (p)

(
λh− s−

(
wS
(
qqq+ (p)

)
− s
))]

= r
[
λI+ (p)h− s

]
+
(
1 + aU

) [
−λp (1− p) dw

S (qqq+ (p))

dp
+ λI+ (p)

(
λh− s−

(
wS
(
qqq+ (p)

)
− s
))]

+

(
1− aU

)
2

[
wS
(
qqq+ (p)

)
− s−

(
λI+ (p)h− s

)]
.(C.9)

The first equality is due to the fact that p > pS+, and hence both players exert effort

1 in the symmetric MPE when s+ is public. In the second equality, we replace the

value of information by
[
wS (qqq+ (p))− s−

(
λI+ (p)h− s

)]
/2, which is obtained from

the first equality. The term(
1− aU

) [
wS
(
qqq+ (p)

)
− s−

(
λI+ (p)h− s

)]
can be interpreted as the welfare loss to both players in case player I is type s+,

caused by the lack of effort of player U (in the equilibrium of asymmetric information

game, compared with the symmetric MPE in the symmetric information game).

r
(
wS
(
qqq− (p)

)
− s
)

= r
[
λI− (p)h− s

]
+
(
1 + aU

) [
−λp (1− p) dw

S (qqq− (p))

dp
+ λI− (p)

(
λh− s−

(
wS
(
qqq− (p)

)
− s
))]

.(C.10)

Written in this way, this equation says, in the symmetric information game with pub-

lic signal s−, U ’s payoff can be obtained by her exerting effort 1 for p ∈ (p∗−2 , pgr) and

type s− exerting effort aU (p, µ̂̂µ̂µ). This is true because type s− obtains the symmetric
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information payoff wS (qqq− (·)) in the asymmetric information setup and we swap the

effort strategies of the two players. We write wS (qqq− (·)) in this way so that the total

effort is
(
1 + aU (p, µ̂̂µ̂µ)

)
, the same under symmetric information, which makes com-

parison easy. Loosely speaking, in the asymmetric information game, player U enjoys

an additional flow payoff r
(
1− aU (p, µ̂̂µ̂µ)

) (
s− λI− (p)h

)
due to effort saving in case

I has signal s−, compared with the symmetric information case.

We now combine these four HJB equations to derive an HJB equation of ∆W .

By definition of ∆W (equation (C.1)), we have

d∆W

dp
=

(
dWU

dp
+ µ̂̂µ̂µ

dW I+

dp
− 2µ̂̂µ̂µ

dwS (qqq+ (p))

dp
− (1− µ̂̂µ̂µ)

dwS (qqq− (p))

dp

)
+
µ̂̂µ̂µp
µ̂̂µ̂µ
µ̂̂µ̂µ
(
W I+ − 2wS

(
qqq+ (p)

)
+ wS

(
qqq− (p)

))
(C.11)

=

(
dWU

dp
+ µ̂̂µ̂µ

dW I+

dp
− 2µ̂̂µ̂µ

dwS (qqq+ (p))

dp
− (1− µ̂̂µ̂µ)

dwS (qqq− (p))

dp

)
+
µ̂̂µ̂µp
µ̂̂µ̂µ

(
∆W −WU + wS

(
qqq− (p)

))
.(C.12)

Using again the definition of ∆W and the four HJB equations (C.7) to (C.10), we

obtain an HJB equation for ∆W (p, µ̂̂µ̂µ), with a term(
dWU

dp
+ µ̂̂µ̂µ

dW I+

dp
− 2µ̂̂µ̂µ

dwS (qqq+ (p))

dp
− (1− µ̂̂µ̂µ)

dwS (qqq− (p))

dp

)
.

We then apply equalities (C.11) and (C.12) to replace this term, and apply equations

(5.4) and (B.2) to replace µ̂̂µ̂µp
µ̂̂µ̂µ

. Rearranging terms, we obtain the HJB equation

r∆W = −r
(
1− aU

) [
µ̂̂µ̂µ
(
wS
(
qqq+ (p)

)
− s−

(
λI+ (p)h− s

))
+ λUh− s

]
+
(
1 + aU

) [
−λp (1− p) d∆W

dp
− λU∆W

]
− (1− µ̂̂µ̂µ) y∆W,(C.13)

which reduces to equation (C.2) in the claim. Q.E.D.

C.2. Welfare analysis in the pooling phase

During the pooling phase, both players exert effort 1, hence the total effort level

is the same as in the symmetric MPE when s+ is public, and the same as in the

symmetric MPE with s− being public for p ∈ [pS−, 1] but strictly higher for p ∈
(pgr, p

S−). Therefore, the same property in Claim 4 holds over the interval [pgr, p
S−);

The sign of ∆W over the interval (pS−, 1) is the same with that at p = pS−.
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Therefore, the result in Lemma 8 can be extended to both the gradual revelation

phase and the pooling phase, with pgr being replaced by 1 (except that at p = 1,

∆W = 0).
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Online Appendix:
Strategic Experimentation with Asymmetric

Information

Miaomiao Dong

D. BACKGROUND BELIEF

This section defines the background belief formally.

Let ΩN be the set of standard Poisson process paths and Ω ≡ {g, b}×{s+, s−}×ΩN .

Let P ({g, b} × {s+, s−}) be the power set of {0, 1} × {s+, s−}, (FNt ) the filtration

generated by the standard Poisson processN , and (Ft) ≡ P ({g, b} × {s+, s−})⊗(FNt )

and F ≡ F∞. For a given prior p0, an effort path a ≡ (aIt , a
U
t )t≥0 induces a distribution

Pa,p0 over the filtered space (Ω,F , (Ft)t≥0). For each θ ∈ {g, b}, each sl ∈ {s+, s−},
each t, let {θ, sl, N t = 0t} ⊂ Ω denote the event that the risky project’s quality is θ,

the signal sl has occurred to I, and no breakthrough has arrived until time t. Let the

events {θ,N t = 0t},{sl, N t = 0t}, {N t = 0t} ⊂ Ω be similarly defined. Pa,p0 satisfies,

Pa,p0(θ, sl, N
t = 0t) = Pa,p0(sl, N

t = 0t|θ)Pa,p0(θ)
= Pa,p0(sl|θ)Pa,p0(N t = 0t|θ)Pa,p0(θ),

where the second inequality is follows from the fact that given a and conditional on

θ, the random variable sl and the process N are independently distributed. Note that

Pa,p0(θ) = p0, Pa,p0(sl|θ) does not depend on a and p0, and Pa,p0(N
t = 0t|θ) does not

depend on p0.

Given Pa,p0 , if
∑

θ Pa,p0(sl|θ)Pa,p0(N t = 0t|θ)Pa,p0(θ) > 0, the distribution of θ

conditional on {sl, N t = 0t}, is given by

Pa,p0(θ|sl, N t = 0t) =
Pa,p0(sl|θ)Pa,p0(N t = 0t|θ)Pa,p0(θ)∑
θ Pa,p0(sl|θ)Pa,p0(N t = 0t|θ)Pa,p0(θ)

(D.1)

In the asymmetric information game, Pa,p0(θ|sl, N t = 0t) is the conditional probability

that type sl assigns on the risky project’s quality being θ, after he observes the effort

history and and that no breakthrough has occurred up to time t. We now show the

following two statements (in italic).

(i) For a given effort path a, the informed player’s posterior does not depend on

whether he observes sl before the event {N t = 0t} or afterward.
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Dividing both the numerator and denominator of the right-hand side of equation

(D.1) by
∑

θ̃ Pa,p0(sl|θ̃)Pa,p0(θ̃), we have

Pa,p0(θ|sl, N t = 0t) =
Pa,p0(N

t = 0t|θ)[Pa,p0(sl|θ)Pa,p0(θ)/
∑

θ̃ Pa,p0(sl|θ̃)Pa,p0(θ̃)]∑
θ Pa,p0(N

t = 0t|θ)[Pa,p0(sl|θ)Pa,p0(θ)/
∑

θ̃ Pa,p0(sl|θ̃)Pa,p0(θ̃)]

=
Pa,p0(N

t = 0t|θ)Pa,p0(θ|sl)∑
θ Pa,p0(N

t = 0t|θ)Pa,p0(θ|sl)
The second equality is by Bayes’ rule. This equality can be interpreted as follows:

after observing the signal sl, a player (or an outsider) with prior p0 updates his or

her prior to Pa,p0(θ|sl) (which is independent of a); then the player observes a path

of effort up to time t, an experimentation result history up to time t, {N t = 0t}, and

he or she updates belief according to Bayes’ rule, using Pa,p0(θ|sl) as the new “prior.”

This is how the informed player in the asymmetric information game updates his

belief.

Similarly, dividing both the numerator and denominator of the right-hand side of

equation (D.1) by
∑

θ̃ Pa,p0(N
t = 0t|θ̃)Pa,p0(θ̃), we have

Pa,p0(θ|sl, N t = 0t) =
Pa,p0(sl|θ)[Pa,p0(N t = 0t|θ)Pa,p0(θ)/

∑
θ̃ Pa,p0(N

t = 0t|θ̃)Pa,p0(θ̃)]∑
θ Pa,p0(sl|θ)[Pa,p0(N t = 0t|θ)Pa,p0(θ)/

∑
θ̃ Pa,p0(N

t = 0t|θ̃)Pa,p0(θ̃)]

=
Pa,p0(sl|θ)Pa,p0(θ|N t = 0t)∑
θ Pa,p0(sl|θ)Pa,p0(θ|N t = 0t)

.(D.2)

This right-hand side of equation (D.2) can be interpreted as the posterior belief of a

player (or an outsider) in the following counterfactual world: after observing a path

of effort up to time t, an experimentation result history up to time t, {N t = 0t}, the

player (or the outsider) who starts with a prior belief p0 updates his or her belief to

Pa,p0(θ|N t = 0t); then the player observes the noisy signal sl, and he or she updates

belief according to Bayes’ rule, using Pa,p0(θ|N t = 0t) as the new “prior.”

(ii) In the asymmetric information game, any two public histories that lead to the

same posterior of type s− must also lead to the same posterior of type s+. This is

because on the right-hand side of equation (D.2), Pa,p0(sl|θ) is independent of a and

p0, if the left-hand side when sl replaced by s− (which represents type s−’s posterior)

is equal to some q−, then there is a unique value of Pa,p0(θ|N t = 0t) satisfying equation

(D.2), denoted as p, and hence a unique value of the left-hand side of equation (D.2)

when sl replaced by s+ (which represents type s+’s posterior), denoted as q+. That

is, one variable, be it q− or p, is sufficient to represent the posteriors of the two types

of the informed player. This paper uses p, that is, Pa,p0(θ|N t = 0t), and call it the

“background belief.”
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E. DYNAMICS OF U ’S BELIEF ABOUT THE RISKY PROJECT

This section proves Lemma 1, which follows from Lemma 9 and Lemma 10.

Lemma 9 There exists Õ ∈ (1,∞), such that, if O > Õ, then λU (p,µ̂̂µ̂µ(p))
dp

|p=p∗−2 > 0;

if O ∈ [OS, Õ), then λU (p,µ̂̂µ̂µ(p))
dp

|p=p∗−2 < 0.

Proof: Let qqq∗+2 : [1,∞)→ [0, 1] be defined by qqq∗+2 (O) = 1
1+( 1

q∗2
−1) 1

O

, for O ∈ [1,∞),

where qqq∗+2 (O) refers to type s+’s posterior belief about the risky project, when type

s−’s posterior is q∗2 and the odd ratio is O. Let µ̂̂µ̂µ∗ (O) denote the initial value of µ̂̂µ̂µ

at p∗−2 , implied by the initial value condition (5.10), when the odd ratio is O. (The

notations qqq∗+2 and µ̂̂µ̂µ∗ are only used in this proof.)

Using equations (B.3) (the definition of function D), (B.8), and (B.13), we have,

dλU (p, µ̂̂µ̂µ (p)) /dp|p=p∗−2 < 0 if and only if at p = p∗−2 ,

λ
(
1− qqq∗+2 (O)

) [wSq (qqq∗+2 (O)
)
qqq∗+2 (O)−

(
wS
(
qqq∗+2 (O)

)
− s
)]

wS
(
qqq∗+2 (O)

)
− s

+q∗2λ−
(λ− q∗2λ) q∗2λ

λU (p, µ̂̂µ̂µ)− q∗2λ
> 0.(E.1)

Using again the initial value condition (5.10) and the value matching condition (5.12),

we have, at p = p∗−2 , λU (p, µ̂̂µ̂µ) = z(qqq∗+2 (O)) ≡ s − (s−q∗2h)(wS(qqq∗+2 (O))−s)
wS(qqq∗+2 (O))−s+qqq∗+2 (O)λh−q∗2λh

. Define

the following functions:

D̂1 (q) ≡ λ (1− q)
(
wSq (q) q −

(
wS (q)− s

))
wS (q)− s

,(E.2)

D̂2 (q) ≡ q∗2λ−
(λ− q∗2λ) q∗2λ

z(q)− q∗2λ
.(E.3)

Then the left-hand side of inequality (E.1) equals to

D̂ (O) ≡ D̂1

(
qqq∗+2 (O)

)
+ D̂2

(
qqq∗+2 (O)

)
.(E.4)

We will show in the following two claims that D̂ is strictly decreasing in O, D̂ > 0

at O = OS, and that D̂ < 0 as O → ∞. By continuity of D̂, there is a unique

Õ ∈ (OS,∞), such that D̂ (O) > 0 for O ∈ [OS, Õ), and D̂ (O) < 0 for O > Õ. We

are left to prove these claims. Recall that OS is the odds ratio such that qqq∗+2

(
OS
)

= qS,

that is, when type s−’s belief is at q∗2, type s+’s is at qS.

Claim 7 D̂ (O) strictly decreases in O.
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Claim 8 D̂
(
OS
)
> 0 and limO→∞ D̂ (O) < 0.

Proof of Claim 7: If we show that D̂1 (q) and D̂2 (q) strictly decreases in q, then,

since qqq∗+2 (O) strictly increases in O, we have that D̂ (O) strictly decreases in O.

(i) D̂1 (q) strictly decreases in q.

Replacing wSq in the expression of D̂1 by equation (B.11), we have

D̂1 (q) = λ

(
q
((

r
2λ

+ 1
)
λh− s

)
− r

2λ
s

wS (q)− s
−
( r

2λ
+ 1
))

.

Taking derivative with respect to q and rearranging terms, we have

dD̂1 (q)

dq
= λ

((
r

2λ
+ 1
)
λh− s

) (
wS (q)− s− qwSq (q)

)
+ wSq (q) r

2λ
s

(wS (q)− s)2

= λ

((
r

2λ
+ 1
)
λh− s

) (
wS (q)− s− (q − q∗2)wSq (q)

)
(wS (q)− s)2

< 0,

where the second inequality follows from
((

r
2λ

+ 1
)
λh− s

)
q∗2 = r

2λ
s, and the third

from the convexity of wS and that wS(q∗2) = s.

(ii) D̂2 (q) strictly decreases in q.

D̂2 (q) being strictly decreasing in q is equivalent with the function z being strictly

decreasing in q, which is equivalent with
qλh−q∗2λh
wS(q)−s being strictly decreasing in q. The

derivative of
qλh−q∗2λh
wS(q)−s with respect to q,

wS(q)−s−(q−q∗2)wSq (q)

(wS(q)−s)2 λh, is indeed strictly neg-

ative, because the numerator is strictly decreasing in q (as −wSqq < 0 for q ∈ [qS, 1])

and hence is smaller than the value of the numerator at q = q∗1: Q.E.D.

Proof of Claim 8: For brevity, we use q to indicate qqq∗+2 (O) in the proof of this

claim, whenever no confusion arises. As O → ∞, we have qqq∗+2 (O) → 1, and

limO→∞ µ̂̂µ̂µ
∗ (O) ∈ (0, 1) by the initial value condition. Therefore, as O → ∞, we

have D̂1 → 0, D̂2 → −
(

limO→∞
1

µ̂̂µ̂µ∗(O)
− 1
)
λq∗2 < 0. Therefore, D̂(O) < 0 if O is

large enough.

If O = OS, then µ̂̂µ̂µ∗ (O) = 1 by the initial value condition. Define

D̂3(q) ≡ (q − q∗2)wSq (q)−
(
wS (q)− s

)
, which is strictly increasing in q over [qS, 1]

from the proof of the previous Claim. Using D̂ (q) = D̂1 (q)− λ
O−1

, We have,

1

λ
D̂ (q) = (1− q) D̂3

wS (q)− s
+

qwSq (q)

wS (q)− s
1− q
q

q∗2 −
1

O − 1
.(E.5)
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If we show that

qwSq (q)

wS (q)− s
1− q
q

q∗2 −
1

O − 1
>

1

O

[
1

O − 1
−

qwSq (q)

wS (q)− s
1− q
q

q∗2

]
,(E.6)

then we have
qwSq (q)

wS(q)−s
1−q
q
q∗2 − 1

O−1
> 0. This inequality, together with D̂3 > 0 and

equation (E.5), implies D̂ > 0. We are left to show inequality (E.6). First, by the

definition of qqq∗+2 , we have 1−q
q
q∗2 = 1

O
(1− q∗2). Then,

qwSq (q)

wS (q)− s
1− q
q

q∗2 −
1

O − 1
=

(
(q − q∗2)wSq (q)

wS (q)− s
+

qwSq (q)

wS (q)− s
q∗2
q

)
1

O
(1− q∗2)− 1

O − 1

=

(
(q − q∗2)wSq (q)

wS (q)− s
+

qwSq (q)

wS (q)− s
1− q
q

q∗2

)
1

O
− 1

O − 1

>

[
1

O − 1
−

qwSq (q)

wS (q)− s
1− q
q

q∗2

]
1

O
.

The last inequality uses
(q−q∗2)wSq (q)

wS(q)−s > 1, and 1
O
− 1

O−1
= 1

O(O−1)
. Q.E.D.

Q.E.D.

Lemma 10 For any p ∈ (p∗−2 , pgr) such that dλU (p,µ̂̂µ̂µ)h
dp

= 0, we have d2λU (p,µ̂̂µ̂µ)h
dp2

> 0.

Proof: Suppose there exists some p′ ∈ (p∗−2 , pgr) such that dλU (p′,µ̂̂µ̂µ)h
dp

= 0.

Since µ̂̂µ̂µλUµ (p, µ̂̂µ̂µ) = λU (p, µ̂̂µ̂µ)− λI− (p), and B (p, µ̂̂µ̂µ) = s+ s− λU (p, µ̂̂µ̂µ)− wS (qqq−), we

have, at p = p′,
d(µ̂̂µ̂µλUµ (p,µ̂̂µ̂µ))

dp
= −λdqqq

−(p)
dp

, and dB(p,µ̂̂µ̂µ)
dp

= −wSq (qqq− (p)) dqqq−(p)
dp

. Using these

two equations, and taking derivative on both sides of equality (B.9) with respect to

p at p = p′, and applying dλU (p′,µ̂̂µ̂µ)h
dp

= 0, we have, at p = p′,

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[
− λ

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− wS

(
qqq−
)
−B (p, µ̂̂µ̂µ)

))
+
λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

λqqq−
(
1− qqq−

)
wSq
(
qqq−
) ]
.

If p′ ∈ [p∗−2 , p∗−1 ], then wS (qqq−(p′)) = s and hence wSq (qqq−(p′)) = 0. Apply inequality

(B.14) and the definition of function D, we have d2λU (p,µ̂̂µ̂µ)
dp2

|p=p′ > 0.
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If p′ ∈ (p∗−1 , pgr], (which is possible only if (p∗−1 , pgr] is nonempty,) then by the fact

that aS (qqq−(p′)) ∈ (0, 1), we have

λqqq−
(
1− qqq−

)
wSq
(
qqq−
)

= r
(
λqqq−h− s

)
+ λqqq−

(
λh− wS

(
qqq−
))
.

Using this equation to replace wS and wSq , we have

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0) =

dqqq− (p) /dp

λp (1− p)

[
−
(
λU (p, µ̂̂µ̂µ)

λqqq−
− 1

)
λrs+ λλU (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

+
λU (p, µ̂̂µ̂µ)

(
λqqq− − λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

(
r
(
λqqq−h− s

)
+ λqqq−

(
λh− wS

(
qqq−
))) ]

.

After some algebra, the terms on the second line of the previous equation can be

reduced to(
λqqq− − λU (p, µ̂̂µ̂µ)

)
(1− qqq−)

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− wS

(
qqq−
)))

+

(
λqqq− − λU (p, µ̂̂µ̂µ)

)2

λqqq− (1− qqq−)
rs,

which can be further reduced to

−λλU (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ) +

(
λqqq− − λU (p, µ̂̂µ̂µ)

)2

λqqq− (1− qqq−)
rs,

if we use the fact that the right-hand side of equation (B.9) equals to 0 at p = p′

(that is, when dλU/dp = 0). Therefore, at p = p′, we have,

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0) =

dqqq− (p) /dp

λp (1− p)

[
−λ− λ

U (p, µ̂̂µ̂µ)

1− qqq−

(
λU (p, µ̂̂µ̂µ)

λqqq−
− 1

)
rs

]
< 0,

implying that d2λU (p,µ̂̂µ̂µ)
dp2

|p=p′ > 0. Q.E.D.

F. EQUILIBRIUM UNIQUENESS

This section proves Proposition 3.

Proof: We will prove the proposition in two steps.

Step 1. There exists some Ō ∈ (1,∞) such that if the odds ratio O > Ō, and

if the initial prior belief p0 is higher than p∗−2 , then in any continuation equilibrium,

separation much occur once the background belief reaches p∗−2 , and that type s+’s effort

is 1 before separation.

Note that due to the one-to-one relationship between the background belief p and

type s−’s posterior belief q−, any MPE with state variables (p, µ) can be equivalently
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expressed as an MPE with state variables (q−, µ), and vice versa. For convenience,

we use (q−, µ) as the state variables in this proof.

Assume that type s−’s prior belief q−0 is higher than the cooperative cutoff q∗2.

Fix an odds ratio level O and consider an MPE of the game corresponding to the

odds ratio O. Let q̃−O be the highest background belief at which, separation occurs

at all reputation levels (that is, there exists no path of play, on or off the equilibrium

path, along which mimicking type s+ from belief q−0 to q̃− is not worse than switching

to the symmetric MPE when his type is public, for type s−). If separation does not

occur over when type s+’s posterior belief is higher than q∗2, we simply set q̃−O as the

corresponding posterior belief of type s−’s when type s+’s posterior belief is exactly

q∗2 (because after this, no experimentation occurs and without loss the equilibrium

phase can be taken as separation). Let qqqO : [0, 1] → [0, 1] be the function that maps

type s−’s posterior belief to type s+’s corresponding posterior belief.

We now show that there exists some Ō ∈ (1,∞) such that if O > Ō, then when

type s−’s posterior belief reaches q̃−O , type s+’s posterior belief will be higher than qs:

qqqO(q̃−O) > qs, meaning that after separation, if I is believed to be type s+, players will

still exert effort 1 for some time. Suppose by contradiction that there exists a sequence

(On) that converges to infinity and that qqqOn(q̃−On) ≤ qs for all n. For simplicity, denote

q̃−On as q̃−n , and qqqOn(·) as qqqn(·). Take some ∆ ∈ (0, 1− qs), and let n be so large that

there exists q̂−n such that q̂−n is close to 0 and qqqn(q̂−n ) ≥ qs + ∆. By assumption, we

have q̂−n > q̃−n . By the definition of q̃−n , there is a continuation equilibrium in which

type s− is willing to mimic type s+ until his belief reaches q̃−n . For n sufficiently large,

over [q̃−n , q̂
−
n ], type s− is willing to mimic type s+ only if type s+’s effort is high for

a short period of time; but then, by D1, type s+ by sticking to effort 1 for a short

period at the beginning (starting from q̂−n to q̂−n −η), can prove that he indeed is type

s+, because type s− would never have benefited from such a deviation, whatever the

reputation he is going to get (that is, whatever the continuation equilibrium is after

the deviation). This deviation is indeed profitable for type s+ if the odds ratio is high,

because the benefit — both players exert effort 1 over [q̃−n , q̂
−
n − η], outweighs the cost

— U might exert low effort over [q̂−n − η, q̂−n ]. A contradiction.

Let O > Ō. Obviously, we must have q̃−O ≥ q∗2; otherwise type s− would strictly

prefer to mimic type s+ until his belief reaches q∗2. We now show that q̃−O = q∗2.

Suppose by contradiction that q̃−O < q∗2. Then there must exist some reputation level

(which induces a continuation equilibrium) such that type s+’s effort is lower than 1

over (q̃−O , q̃
−
O + ε) for some ε small; otherwise, type s− would not have been willing to
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pool. Let α denote U ’s average effort over (q̃−O , q̃
−
O + ε). Now consider the deviation of

exerting effort 1 over (q̃−O , q̃
−
O + ε). Since separation would occur once type s−’s belief

reaches q̃−O , whether such a deviation is profitable or not depends only on the payoff

that is collected during (q̃−O , q̃
−
O + ε). We now show that if the equilibrium satisfies D1

then type s+ strictly benefits from the deviation. First, for the equilibrium to satisfy

D1, U ’s average effort during (q̃−O , q̃
−
O + ε) induced by the deviation cannot be strictly

lower than α. Suppose this is not true, then there must exist some ε̂ ∈ (0, ε) such

that in this continuation equilibrium, U ’s average effort is strictly lower than 1 over

(q̃−O , q̃
−
O + ε̂), and that if U ’s effort over (q̃−O , q̃

−
O + ε̂) is replaced by 1 then her average

effort over (q̃−O , q̃
−
O + ε) would be α. Then, when type s−’s belief reaches q̃−O + ε̂, U

should have believed that I is of type s+, as type s− would never have deviated had

type s− expected that U would play the continuation equilibrium; that is, U ’s effort

over (q̃−O , q̃
−
O + ε̂) should be 1, meaning that her average effort over (q̃−O , q̃

−
O + ε) should

be at least α (whatever continuation equilibrium strategy she is willing to play), a

contradiction. Second, since U ’s average effort during (q̃−O , q̃
−
O + ε) is (weakly) higher

than α, type s+ strictly benefits from deviating to effort 1 over (q̃−O , q̃
−
O + ε).

Using the same argument, one can show that for an MPE to satisfy D1, we must

have type s+’s effort to be 1 over for q− ≥ q∗2, if O is higher than Ō.

Step 2. If the odds ratio O is higher than Ō and if the initial prior belief p0 is higher

than p∗−2 , then the distribution of the equilibrium paths of any MPE that satisfies D1

and SMPE coincides with the MPE with gradual revelation.

In Step 1, we have shown that under the above conditions, type s+’s equilibrium

effort (on and off path) must be 1 if the background belief is in [p∗−2 , 1]. Take an

odds ratio O > Ō and an MPE of the game with the corresponding odds ratio O.

We now show that the equilibrium structure must be pooling and followed by semi-

separation, that is, pooling at high background beliefs and semi-separation at lower

background beliefs. Suppose by contradiction that there is an interval [p̂1, p̂2] in [p∗−2 , 1]

during which the equilibrium involves pooling, and there exists some p̃ > p̂2 at which

the equilibrium involves semi-separation (That is, either at p̃ type s− reveals with

positive probability or around p̃ there is gradual revelation). Let p̂1 be the infimum

of background beliefs at which pooling occurs. During pooling, when the background

belief p is in some right neighborhood of p̂1, we must have WU(p, µ)−s ≥ s−λU(p, µ),

so that U is willing to exert some effort; otherwise, type s− would strictly prefer not

to mimic type s+ at some p close to p̂1, which contradicts with the assumption that

separation does not occur before p̂1. The fact that U is willing to exert effort at any
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p close to p̂1, together with Point 3 of Lemma 5, implies that U will exert effort 1

during pooling. But then type s− would strictly prefer to mimic type s+ right before

a pooling phase (that is, when p is sufficiently close and larger than the upper bound

background belief of a pooling phase). That is, semi-separation cannot occur at (or

around) any background belief higher than the upper bound background belief of a

pooling phase. A contradiction.

The rest of the proof of Step 2 follows from the proof of Lemma 3. Q.E.D.
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