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Abstract

We study a model of policy experimentation in organizations. Members
have a common objective but differ in their prior beliefs about a risky policy.
Current members decide whether to experiment with the policy. Agents in the
wider population possess resources of use to the organization and can enter
and leave the organization freely, taking their resources with them. We show
that for a wide range of parameters there is too much experimentation in equi-
librium relative to the social optimum. The potential change in membership
and control due to experimentation lowers the incentives to experiment. At the
same time, self-selection into the organization plays a countervailing role: when
experimentation is unsuccessful, only the staunch optimists most supportive of
experimentation choose to remain. For some parameters this force dominates,
yielding equilibria with overexperimentation. We apply the model to decision-
making in cooperatives, civil rights organizations and for-profit firms.

Keywords: experimentation, dynamics, median voter, endogenous population

PRELIMINARY AND INCOMPLETE.

1 Introduction

Organizations frequently face uncertainty about the quality of the policies they

can pursue and must experiment with a policy to find out its quality. Organizations
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are diverse: the members of an organization oftentimes disagree about the merits of

its policies. Membership of organizations is fluid: some members leave, disillusioned

with the policies pursued, while others join, lured by the promise of greater benefits

afforded by the organization’s management of its considerable resources. As mem-

bership of organizations changes, so do the policies they pursue. This paper aims

to understand the dynamics of experimentation in the environments that have these

features – that is, in the environments where the membership of an organization is

in flux, the beliefs of the members are diverse, and the decision-making within the

organization is responsive to the composition of its membership.

Consider the following example to which our model applies. An individual has

a choice of contributing to a charity by herself or joining a non-profit organization.

The non-profit organization can pursue a policy known to be effective in alleviating

poverty, such as cash transfers, or a less-known policy, such as microfinance loans,

that would yield greater benefits if successful. Assessing untried policies is hard,

so the individuals within and outside the organization disagree about the degree to

which the risky poverty alleviation policy is promising. The members of the non-profit

organization vote on which policy to pursue.

In the model an organization is choosing between a safe policy and a risky

one at each point in time. The safe policy yields a flow payoff known by everyone,

while the risky policy yields a flow payoff that the agent is uncertain about. There is a

continuum of agents with resources to invest. At each point in time each agent decides

whether to invest her resources with the organization or to invest them outside. If

they invest with the organization, they obtain a flow payoff depending on the policy

of the organization. Investing the resources outside yields a guaranteed flow payoff.

All agents want to maximize their returns but hold heterogeneous prior beliefs

about the quality of the risky policy. As long as agents invest with an organization,

they remain voting members of the organization and vote on the policy the organi-

zation pursues. We assume that the median voter of the organization (that is, the

voter with the median belief) chooses the organization’s policy. Whenever the risky

policy is used, the results are publicly observed by all agents.

Our main result is that if success is perfectly informative about the quality of

the technology, then there are parameters under which there is overexperimentation
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in equilibrium. In particular, under some parameters there is a unique equilibrium in

which the organization experiments forever. Two forces affect the amount of exper-

imentation in our model. On the one hand, the median member of an organization

is reluctant to experiment today if she anticipates losing control of the organization

tomorrow. On the other hand, as time passes and no successes are observed, only

the most optimistic members remain in the organization, and these are precisely the

members who are mostly likely to want to experiment. The first force makes un-

derexperimentation more likely, while the second force pushes the organization to

overexperiment. One contribution our paper makes is showing that the second force

can dominate.

Furthermore, we shed light on the conditions under which experimenting forever

is an equilibrium. We provide a simple condition on the fundamentals such that if

this condition is satisfied, then under any distribution of the agents’ beliefs with an

increasing density there is a unique equilibrium, and the organization experiments

forever in this equilibrium. This implies that, in particular, if there is an equilibrium

in which the organization experiments forever under the uniform distribution of the

agents’ priors, then there is an equilibrium in which the organization experiments

forever under any distribution of the agents’ priors with an increasing density. In this

manner, greater optimism (in the sense of the monotone likelihood ratio property)

increases the likelihood of overexperimentation.

We next consider more general experimentation technologies under which suc-

cess is only imperfectly informative about the quality of the technology. In this case,

we are able to provide a delay differential equation characterizing the evolution of the

continuation value of an agent with a fixed belief. We have several conjectures (that

we have not proven yet) about the results that obtain in this case. In particular, we

conjecture that for some parameters there is an equilibrium in which an organization

stops experimenting with a strictly positive probability if and only if a success is

observed. A consequence of this would be that, conditional on the technology being

bad, the organization experiments forever, but, conditional on the technology being

good, the organization stops experimenting with a strictly positive probability.

The rest of the paper proceeds as follows. Section 2 discusses the applications

of the model. Section 3 reviews the related literature. Section 4 introduces the basic

model. Section 5 analyzes the set of equilibria. Section 6 deals with the case in which
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success is only imperfectly informative about the quality of the technology.

2 Applications

Our model has a variety of applications. The applications include non-profit

organizations, cooperatives, civil rights organizations, and publicly traded firms.

One prominent application of our model, the non-profit organizations, has been

discussed in the introduction. Our next application is a cooperative. Here agents are

individual producers who own factors of production. In case of a dairy cooperative,

for example, each member owns a cow. The agent can manufacture and sell his own

dairy products independently or he can join the cooperative. In the second case, his

milk will be processed at the cooperative’s plants, which benefit from economies of

scale. The cooperative can choose from a range of dairy production policies, some of

which are riskier than others. For instance, the cooperative can limit itself to selling

mainstream products or it can instead develop a line of premium cheeses that may or

may not not become popular. Dairy farmers have different beliefs about the market

viability of the latter strategy. Should this strategy be used, only the more optimistic

farmers will choose to join the cooperative. The members of the cooperative decide

whether to keep experimenting with the risky policy by voting.

Another application of our model is a civil rights organization as a vehicle

for political activism. A citizen desiring to change the government’s policy on an

LGBT rights issue can act independently by, for instance, writing to her elected

representatives, or she can join a civil rights organization that has access to strategies

not available to a citizen acting alone, such as lobbying or demonstrations. While all

members of the organization want the government to change the policy, their beliefs as

to the best means of achieving this goal differ. Some support safer strategies, such as

lobbying, while others prefer riskier ones, such as demonstrations. If some candidates

for leadership positions in the organization advocate using the risky strategies while

others support safe ones, the members of the organization can influence the strategy

the organization chooses by voting in the organization’s leadership elections.

In a publicly traded firm, agents are the individuals who invest in the firm.1

1Because, by making public offerings or buying back shares, firms typically also control how many
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Having bought the firm’s shares, they gain voting rights which afford them a measure

of control over the firm’s decisions. The shareholders influence the policy of the firm

by voting in the elections of the board of directors and voting on major corporate

decisions such as mergers. All shareholders have an interest in maximizing the profits

of the firm. However, their beliefs as to the best means of achieving this may differ.

For example, in the case of a technology company, some shareholders may believe

that the firm should focus on selling desktop computers, while others may think it

will do better by expanding into the mobile market.

3 Related Literature

The paper is related to two broad strands of literature: the literature on strate-

gic experimentation with multiple agents (Keller, Rady, and Cripps 2005, Keller and

Rady 2010, Keller and Rady 2015, Strulovici 2010) and the literature on the dy-

namics of decision-making in clubs (Acemoglu, Egorov, and Sonin 2008, Bai and

Lagunoff 2011, Acemoglu, Egorov, and Sonin 2012, Acemoglu, Egorov, and Sonin

2015, Gieczewski 2017).

Keller, Rady and Cripps (2005) develop a model with multiple agents each

controlling a two-armed bandit. In contrast, the present paper considers multiple

agents with heterogeneous beliefs experimenting with the same bandit and being

free to enter and exit an organization. In Keller, Rady and Cripps the amount of

experimentation in equilibrium is too low due to free-riding, whereas in the present

paper there are parameters under which there is overexperimentation in equilibrium.

In Strulovici (2010) a community of agents decides by voting at each point in

time whether to continue experimenting with a risky technology or to switch to a

safe technology. Agents’ payoffs from the risky technology are heterogeneous: under

complete information some agents would prefer it to the safe technology, while others

would not. The agents learn about their payoff from the risky technology by observing

their payoffs while the experimentation continues. Differently from Strulovici, the

agents can become shareholders, this example has features not captured by our model. We discuss
it here because it is an example of considerable economic importance and the channels producing
overexperimentation in our model should still apply there.
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present paper considers multiple agents who have the same payoffs but heterogeneous

beliefs and are free to enter and exit an organization.

Strulovici finds that there is too little experimentation in equilibrium because

agents fear being trapped into using the risky technology that turns out to be bad

for them. The same incentive to underexperiment as in Strulovici is present in our

model under the natural assumption that the return to investing outside the organi-

zation is strictly lower than the return to investing with the organization provided the

organization uses the safe technology. This is because then, even though the agent

who has become pessimistic about the risky technology can always exit the organi-

zation and invest outside, she would strictly prefer to remain in the organization and

have the organization pursue the safe policy. Consider an agent who would prefer

to experiment today but not tomorrow if she was always in control of the organi-

zation. Suppose that this agent is in control today and anticipates that the agent

who will gain control tomorrow should the experimentation continue will experiment.

Then she may choose not to experiment today if the benefits from investing in the

organization which pursues the safe policy rather than outside of it are great enough.

In contrast to Strulovici’s results, in the present paper under some parameters

there is a unique equilibrium exhibiting overexperimentation. The reason for the

difference lies in the ability of the agents in our model to freely enter and exit the

organization and the agents’ heterogeneous prior beliefs about the risky technology.

Because the agents can freely exit the organization, they cannot become trapped in

an organization pursuing the policies they disagree with, unlike in Strulovici, though,

as explained above, the incentive to underexperiment due to the fear of the loss of

control is still present in our model. Moreover, because agents differ in their beliefs

about the risky technology, only the most optimistic agents stay in the organization.

Since these are precisely the agents most likely to want to continue to experiment,

this produces incentives for the organization to overexperiment. We show that there

are parameters under which the incentives to overexperiment dominate the incentives

to underexperiment in our model.

The literature on the dynamics of decision-making in clubs considers the dynam-

ics of policy-making in a setting where there is no uncertainty about the consequences

of policies. Instead, different agents prefer different policies. The present paper shares

with this strand of literature (Acemoglu, Egorov, and Sonin 2008, Bai and Lagunoff
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2011, Acemoglu, Egorov, and Sonin 2012, Acemoglu, Egorov, and Sonin 2015) the

feature that the policy chosen by the decision-maker in control of the organization’s

policy today affects the identities of the future decision makers. Most closely related

is Gieczewski (2017), which, like this paper, studies a setting in which agents can

choose to join an organization or stay out and are only able to influence the policy

if they do join the organization. The present paper differs from the aforementioned

papers in considering agents whose preferences are the same but who differ in their

prior beliefs about the risky policy and in studying a setting in which the organization

can experiment with a policy, causing new information to arrive as long as the risky

policy is in place.

4 The Baseline Model

Time t ∈ [0,+∞] is continuous. There is an organization that has access to a

risky policy and a safe policy. The risky policy is good with probability ρ and bad

with probability 1− ρ. We use the notation θ = G,B for each respective scenario.

The world is populated by a continuum of agents, represented by a continuous

density f defined over [0, 1]. The position of an agent in [0, 1] is given by her beliefs:

an agent x ∈ [0, 1] has a prior belief that the risky policy is good with probability x.

All agents discount the future at rate γ. Each agent has one unit of capital.

At every instant, each agent chooses whether to be a member of the organiza-

tion. We use Xt ⊆ [0, 1] to denote the subset of the population that belongs to the

organization at time t.2 We write αt(x) = 1 if x ∈ Xt and αt(x) = 0 otherwise. If

an agent is not a member at time t, she invests her capital independently and ob-

tains a guaranteed flow payoff s. If she is a member, her capital is invested with the

organization and generates payoffs depending on the organization’s policy.

Whenever the organization uses the safe policy (σt = 0) all members receive a

guaranteed flow payoff r. When the risky policy is used (σt = 1) its payoffs depend on

the state of the world. If the risky policy is good, it succeeds according to a Poisson

process with rate b. If the risky policy is bad, it never succeeds. Each time the risky

2This notation rules out mixed membership strategies, but the restriction is without loss of
generality.
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policy succeeds, all members receive a lump-sum unit payoff. At all other times, the

members receive zero while the risky policy is used.

It follows that the expected utility of an agent with a prior belief x is given by

Ux(σ, α) = xE

[∫ ∞
0

e−γt (bσtαt(x) + r(1− σt)αt(x) + s(1− αt(x))) dt|θ = G

]
+

+(1− x)E

[∫ ∞
0

e−γt (r(1− σt)αt(x) + s(1− αt(x))) dt|θ = B

]

We assume that 0 < s < r < b. This implies that the organization’s safe policy

is always preferable to investing independently. Moreover, the risky policy would be

the best choice were it known to be good, but the bad risky policy is the worst of all

the options.

When the risky policy is used, its successes are observed by everyone, and agents

update their beliefs based on this information. Let kt denote the number of successes

observed by time t, let q(t) denote the amount of time the organization has used the

risky policy up to time t, and let zx(k, τ) be the posterior of an agent with prior x

after seeing k successes during a length of time τ spent experimenting. It then follows

from Bayes’ rule that

zx(k, τ) =
x

x+ (1− x)L(k, τ)

where L(k, τ) = 1k=0e
bτ .3 Since L(k, τ) serves as a sufficient statistic for the informa-

tion observed so far, we hereafter define zx(k, τ) = zx(L(k, τ)) and, suppressing the

dependence of L(k, t) on k and t, we take L to be a state variable in our model.

Recall that, at each time t, a subset of the population Xt belongs to the or-

ganization. We assume that the median voter of this set, m(Xt), chooses whether

the organization should continue to experiment at that instant.4 Since there is a

continuum of agents, an agent obtains no value from her ability to vote and behaves

as a policy-taker with respect to her membership decision. That is, she joins the

organization when she prefers the expected flow payoff it offers to that of investing

independently.

3Note that, in particular, zx(0, 0) = x.
4For m(Xt) to be well-defined, we require Xt to be Lebesgue-measurable. It can be shown that

in any equilibrium Xt is an interval.
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Because we are working in continuous time, membership and policy decisions are

made simultaneously. This necessitates imposing a restriction on the set of equilibria

we consider. We are interested in equilibria that are limits of the equilibria of a game

in which membership and policy decisions are made at times t ∈ {0, ε, 2ε, . . .} with

ε > 0 small. In this discrete-time game, at each time t in {0, ε, 2ε, . . .}, first the

incumbent median chooses a policy σt for time [t, t + ε), and then all agents choose

whether to be members. The agents who choose to be members at time t—and hence

accrue the flow payoffs generated by policy σt—are the incumbent members at time

t+ε. The median of this set of members, m(Xt+ε), then chooses σt+ε. The small delay

between joining the organization and voting on the policy rules out equilibria involving

self-fulfilling prophecies. These are the equilibria in which agents join the organization

despite disliking its policy, because they expect other like-minded members to join at

the same time and immediately change the policy.

The above requirements are incorporated into the following notions of strategy

profile and equilibrium:

Definition 1. An strategy profile is given by a collection of membership functions

α(x) : [0, 1]× R+ × {0, 1} → {0, 1} and a policy function σ : R+ × {0, 1} → [0, 1].

Given a strategy profile and a right-continuous path for the underlying stochastic

process (L̃τ )τ , the path of play is given by a policy, information and pivotal voter

path (pt, Lt,mt), which satisfies:5

(a) Lt = L̃q(t), where q(t) =
∫ t

0
pt is the amount of time that the organization has

experimented for.

(b) Whenever σ(L, 1 − pt0) = 1 − pt0 for all l in a neighborhood of Lt0 , and L̃τ is

left-continuous at τ = q(t0), pt is left-continuous at t0.

(c) Whenever σ(L, pt0) = pt0 for all l in a neighborhood of Lt0 , pt is right-continuous

at t0.

(d) mt = m(Lt, pt), where m(L, p) is the median agent in the set of members

X(L, p).

An equilibrium is a strategy profile such that:

5We have pt = 1 when the risky policy is being used and pt = 0 when the safe policy is used.
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(i) α(x, L, 1) = 1 if zx(L)b > s, α(x, L, 1) = 0 if zx(L)b < s and α(x, L, 0) = 1 if

r > s.

(ii) If Vm(L,p)(L, p
′) > Vm(L,p)(L, 1− p′), then σ(L, p) = p′.

(iii) If Vm(L,p)(L, 1) = Vm(L,p)(L, 0) but Vm(L,p)(L, p
′, ε)− Vm(L,p)(L, 1− p′, ε) > 0 for

all ε > 0 small enough, then σ(L, p) = p′.6

We have α(x, L, p) = 1 if agent x chooses to be a member of the organiza-

tion given information L and policy p, and α(x, L, p) = 0 otherwise. σ(L, p) is the

probability that the pivotal decision-maker chooses to employ the risky policy, given

information L and existing policy p.

Parts (b) and (c) of the definition say that the policy chosen along the path of

play can only change when the pivotal decision-maker given the existing policy wants

to change it. Part (i) of the definition of equilibrium says that agents are policy-

takers with respect to their membership decisions. Part (ii) says that the pivotal

agent chooses her preferred policy based on her expected utility, assuming that the

equilibrium strategies are played in the continuation. Part (iii) is a tie-breaking rule

which enforces optimal behavior even when the agent’s policy choice only affects the

path of play for an infinitesimal amount of time. Finally, note that our definition

is a special case of Markov Perfect Equilibrium, as we only allow the strategies to

condition on the information about the risky policy revealed so far and on the existing

policy (which determines the identity of the current median voter).

5 Equilibria in the Baseline Model

In this section we characterize the equilibria of the model described above. The

presentation of the results is structured as follows. We first explain who the members

of the organization are going to be in equilibrium depending on what has happened

so far in the game. We use these observations to provide insight into the structure of

the equilibria. We then state our first main result, which shows that the organization

may experiment forever and provides a simple sufficient condition for this to happen

6Vx(L, p, ε) is x’s continuation utility starting from some time t0 with information Lt0 = L, when
p is played during [t, t + ε) irrespective of the equilibrium strategies and the equilibrium strategies
are played thereafter.
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(Propositions 1 and 2). Finally, in Proposition 4 we characterize the equilibria in

cases when the sufficient condition for obtaining experimentation forever fails.

We start by making several useful observations about the composition of the

set of members at different histories of the game. First note that, because the bad

risky policy never succeeds, the posterior belief of every agent with a positive prior

jumps to 1 if a success is observed. Because b > r, s, if a success is ever observed,

the risky policy is always used thereafter, and all agents enter the organization and

remain members forever.

Second, recall that, whenever the risky policy is being used, the set of members

is the set of agents for whom zx(L)b ≥ s. It is clear that, for any L ≥ 1 (i.e., if

no successes have been observed), zx(L) is increasing in x. That is, agents who are

more optimistic at the outset also have higher posteriors after observing additional

information. Hence the set of members Xt is an interval of the form [yt, 1].

Third, since r > s, whenever the safe policy is used all agents choose to join

the organization, and the population median, m([0, 1]). becomes the pivotal decision-

maker. Observe that the population median is more pessimistic than the median of

any interval of the form [y, 1] with y > 0. In particular, she is more pessimistic than

m(Xt), the median voter of the organization. Thus, if m(Xt) preferred to switch to

the safe policy, so does m([0, 1]). Because no further learning happens when the safe

policy is used, a switch to the safe policy is permanent.

The above observations imply that an equilibrium path must have the following

structure. The risky policy is used until some time t∗ ∈ [0,∞]. If it succeeds by then,

it is used forever. Otherwise, the organization switches to the safe policy at time

t∗.7 While no successes are observed, agents become more pessimistic over time and

the organization becomes smaller. As soon as a success occurs or the organization

switches to the safe policy, all agents join and remain members of the organization

forever, and no further learning occurs.

This implies that an equilibrium can be described by a set t0 < t1 < t2 < . . . of

stopping times, in the following sense. For any t ∈ (tn−1, tn], if the risky policy was

used in the period [0, t] and no successes were observed, the organization continues

using it until time tn. If the risky policy has not succeeded by tn, the organization

7If t∗ = +∞, the risky policy is used forever.
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switches to the safe policy at tn.8

Proposition 1 states our first main result. The result provides a simple condition

on the parameters sufficient for overexperimentation to arise in equilibrium. More

specifically, if this condition is satisfied, then the organization uses the risky policy

forever regardless of its results.

Proposition 1. Suppose that f is non-decreasing. Let V (x) denote the continuation

utility of an agent with posterior belief x at time t provided that she expects experi-

mentation to continue for all s ≥ t.

If V
(

2s
b+s

)
≥ r

γ
, then there is a unique equilibrium. In this equilibrium, if the

risky policy is used at t = 0, the organization experiments forever. If V
(

2s
b+s

)
< r

γ
,

there is no equilibrium in which the organization experiments forever.

Moreover, the value function satisfies

γV

(
2s

b+ s

)
=

2bs

b+ s
+

(
1

2

) γ
b s(b− s)

b+ s

b

γ + b
.

The sufficient condition for obtaining experimentation forever provided in the

Proposition is not difficult to satisfy. It is is more likely to hold when b is high relative

to r and s, that is, when the returns from good risky technology are high, and when

γ is low, that is, when the agents are sufficiently patient. For example, if r = 3 and

s = 2, when b ≥ 6 it holds regardless of γ, when 10
3
< b < 6 it holds for low enough

γ, and when b ≤ 10
3

it cannot hold.

Proposition 1 implies that over-experimentation is a possible outcome in our

model. Since agents with different priors prefer different levels of experimentation,

the notion of over-experimentation is not straightforward in our setting. Consider an

alternative model in which an agent with a fixed prior x controls the policy at all

times. It can be shown that, whenever 0 < x < 1, the agent would experiment until

some finite time t∗ such that her posterior belief at time t∗ equals r
b

1
1+ b−r

γ

. Thus an

equilibrium path on which unsuccessful experimentation continues forever constitutes

over-experimentation from the point of view of all agents except those with prior belief

equal to 1.

8t0 is the only stopping time on the equilibrium path.
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The level of experimentation in equilibrium is determined by the interaction

of two opposing forces, in addition to the usual incentives present in the canonical

single-agent bandit problem. When the pivotal agent m(Xt) decides whether to stop

experimenting at time t, she takes into account the difference in the expected flow

payoffs generated by the safe policy and the risky one, as well as the option value of

experimenting further. However, because the identity of the median voter changes

over time, m(Xt) knows that, if she chooses to continue experimenting, the organi-

zation will stop at a time chosen by some other agent, which m(Xt) likely considers

suboptimal. This force encourages m(Xt) to stop experimentation while the deci-

sion is still in her hands, leading to under-experimentation. It is similar to the force

behind the under-experimentation result in Strulovici (2010) in that, in both cases,

agents prefer a sub-optimal amount of experimentation because they expect a loss

of control over future decisions if they allow experimentation to continue. It is also

closely related to the concerns about slippery slopes faced by agents in the clubs

literature (see, for example, Bai and Lagunoff (2011) and Acemoglu et. al. (2015)).

The second force stems from the endogeneity of the median voter’s position in

the distribution. As long as experimentation continues and no successes are observed,

all agents become more pessimistic about the risky policy, and the marginal members

with lower priors quit when they perceive their flow payoff from the risky policy to be

lower than that of the outside option. As a result, the set of members at time t is an

interval from yt to 1, with yt increasing in t. This implies that mt is also increasing in

t. Thus the more pessimistic an observer with a fixed prior is about the risky policy,

the more extreme the median voter is. This effect is so strong that, as time passes,

the posterior belief of the median after observing no successes converges not to zero

but rather to 2s
b+s

. It is for this reason that the median voter may choose to continue

experimenting when no successes have been observed for an arbitrarily long time.

The above discussion helps us explain why we require f to be non-decreasing in

Proposition 1. After many failures, only an agent with a prior belief very close to 1

would choose to continue experimenting. The requirement that f be non-decreasing

guarantees that there are enough optimists in the right tail of the distribution to

ensure that the median is extreme enough, and hence optimistic enough, to do this.

We next show that Proposition 1 can be generalized. Indeed, although the

validity of the exact parameter conditions imposed by Proposition 1 hinge on f being
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non-decreasing, analogous conditions can be provided more generally as a function of

how quickly f(x) decreases near x = 1.

Proposition 2. Given α > 0, let fα(x) denote a density with support [0, 1] such that

fα(x) = (α + 1)(1− x)α for x ∈ [0, 1].

Let f be a density with support [0, 1] that dominates fα in the MLRP sense, that

is, f(x)
fα(x)

is non-decreasing for x ∈ [0, 1). Let λ = 1

2
1

α+1
.

If V
(

s
λb+(1−λ)s

)
≥ r

γ
, then there is a unique equilibrium. In this equilibrium, if

the risky policy is used at t = 0, the organization experiments forever.

Moreover, the value function satisfies

γV

(
s

λb+ (1− λ)s

)
=

bs

λb+ (1− λ)s
+ λ

γ+b
b

s(b− s)
λb+ (1− λ)s

b

γ + b
.

Proposition 3. Let f be a density with support [0, 1].

If V
(
s
b

)
≥ r

γ
, then there is a unique equilibrium. In this equilibrium, if the risky

policy is used at t = 0, the organization experiments forever.

Moreover,

γV
(s
b

)
= s+

s(b− s)
γ + b

.

The intuition for the result in Propositions 2 and 3 is as follows. Observe that, at

any time, the pivotal decision-maker is the median of a set where the most pessimistic

member has posterior s
b

and the most optimistic has posterior 1. The higher α is,

the more quickly fα(x) goes to zero as x→ 1, meaning that there are fewer optimists

in the right tail of the prior distribution. As a result, the distribution of posteriors

is also more right-skewed, so median voter’s posterior is closer to s
b
—the marginal

voter’s posterior—than it is when f is uniform or increasing.

If there does not exist an equilibrium in which experimentation continues for-

ever, the equilibrium analysis is more complicated. In this case there are multiple

equilibria featuring different levels of experimentation on the equilibrium path, which

are supported by different behavior off the path.

To characterize the set of equilibria, it is useful to define the stopping function

τ : [0,+∞) → [0,+∞] as follows. For each t ≥ 0, τ(t) ≥ t is such that mt is
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indifferent about switching to the safe policy at time t if she expects a continuation

where experimentation will stop at time τ(t). If there is no such t, then τ(t) = +∞.9

Proposition 4 characterizes the equilibria in this setting.

Proposition 4. Any pure strategy equilibrium σ in which the organization does not

experiment forever is given by a sequence of stopping times t0(σ) < t1(σ) < t2(σ) < . . .

such that tn(σ) = τ(tn−1(σ)) for all n > 0 and t0(σ) ≤ τ(0).

In particular, there can be at most one pure strategy equilibrium given a value

of t0.

Moreover, if τ is increasing, then (t, τ(t), τ(τ(t)), . . .) constitutes an equilibrium

for all t ∈ [0, τ(0)].

Proposition 4 says that, if experimenting forever is not compatible with equilib-

rium, then, provided that the stopping function τ is increasing, experimentation can

continue on the equilibrium path for any length of time t between 0 and τ(0). For

each possible stopping time t, there is a unique sequence of off-path future stopping

times that makes stopping at t optimal for mt. In particular, the time tn+1(σ) is

chosen to leave mtn(σ) indifferent about continuing to experiment at t = tn(σ).

The condition that τ be increasing rules out situations in which, despite mtn

being indifferent between experimenting until tn+1 and stopping at tn for all n, the

given sequence of stopping times is incompatible with equilibrium because there is

some t ∈ (tn, tn+1) for which mt would rather stop at t than experiment until tn+1. If

τ is nonmonotonic, then the set of equilibria all equilibria must still be of the form

specified in Proposition 4 but it may be that, for some times t ∈ (0, τ(0)), there

does not exist an equilibrium in which experimentation continues for time t on the

equilibrium path.

Lastly, it can be shown that the initial median voter’s optimal stopping time

in the hypothetical single-agent bandit problem where she controls the policy at all

times falls between 0 and τ(0). Consequently, from the point of view of the initial

median voter, both over and under-experimentation are possible depending on which

equilibrium is played.

9It can be shown that τ(t) is unique.
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6 Other Learning Processes

The baseline model presented above has two salient features. First, when an

organization pursues the risky policy for a short period of time, there is a low prob-

ability of observing a success, which increases agents’ posterior beliefs substantially,

and a high probability of observing no success, which lowers their posteriors slightly.

In other words, the baseline model is a model of good news. Second, because the

risky policy can only succeed when it is good, good news are perfectly informative.

These assumptions greatly simplify the analysis, allowing us to provide closed-form

solutions and detailed characterizations of the equilibria. When the assumptions are

relaxed, more limited results can be proven. In this section, we present these results,

generalizing the model to allow for bad news and imperfectly informative news.

6.1 A Model of Bad News

In this section we consider the same model as in Section 4, except that now

the risky policy generates different flow payoffs. In particular, if the risky policy is

good, then it generates a guaranteed flow payoff b. If it is bad, then it generates a

guaranteed flow payoff b at all times except when it experiences a failure. When using

the bad risky policy, the organization experiences failures following a Poisson process

with rate b. A failure discontinuously lowers the payoffs of all members by 1. Thus,

as in the baseline model, the expected flow payoff of using the risky policy is b when

the policy is good and 0 when it is bad. The learning process, however, is different

from the one in the baseline model.

Before characterizing the equilibrium in a model of bad news, we make a gener-

icity assumption on the parameters. Given an equilibrium, we let pt(mt) denote the

probability that the median member of the organization at time t assigns at time t

to the event that the risky technology is good provided that that the organization

has been experimenting from time 0 to time t and no failures have been observed.

We let Vt′(x) denote the value function of an agent with prior x given a continuation

equilibrium path on which the organization experiments until t′ and then switches to

the safe technology.

Assumption 1. The parameters are such that, for all t′ > t, d
dt
Vt′(pt(mt)) 6= 0
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whenever Vt′(pt(mt)) = r
γ

.

Assumption 1 states that the parameters of the problem—b, r, γ and f—are

such that agents’ value functions are well-behaved: that is, for each t′, the function

t 7→ Vt′(pt(mt)) does not have its derivative equal zero at any point where it crosses

the threshold r
γ
. (In particular, this implies that Vt′(pt(mt)) can only equal r

γ
for a

finite number of times t.)

Proposition 5 characterizes the equilibrium in our model that features both bad

news and endogenous membership.

Proposition 5. Under Assumption 1, there is a unique equilibrium. The equilibrium

can be described by a finite, possibly empty set of stopping intervals I0 = [t0, t1],

I1 = [t2, t3], . . . , In such that t0 < t1 < t2 < . . ., as follows: conditional on the risky

policy having been used during [0, t] with no failures, the median mt switches to the

safe policy at time t if and only if t ∈ Ik for some k.

Moreover, if f is non-decreasing and V b
(

2s
b+s

)
≥ r

γ
, the organization experiments

forever unless a failure is observed.

Proposition 5 shows that the dynamics of organizations under bad news differ

substantially from the dynamics observed under good news. In a model of bad news,

so long as no failures are observed, all agents become more optimistic over time about

the risky technology, so the organization expands over time instead of shrinking, as it

did in the case of good news. This gradual expansion either continues forever unless a

failure occurs, in which case the organization switches to the safe technology and all

agents previously outside the organization become members. Interestingly, the switch

to the safe technology must happen upon observing a failure of the risky technology

but may happen even if no failures are observed.

To understand the intuition for the results we obtain in the model of bad news,

it is instructive to consider an analogous single-agent bandit problem. In a bandit

problem with good news, the agent uses the risky policy forever after observing a

success, and becomes more and more pessimistic over time while experimenting should

no successes be observed. This implies that the optimal strategy is to experiment up

to some time t∗ and quit if no successes have been observed by t∗. In contrast, in

a model of bad news, the agent switches to the safe policy forever upon observing

a failure and becomes more optimistic over time if she pursues the risky policy and
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observes no failures. Hence, if she decides to use the risky policy at all, she uses it

forever unless it fails.

In our model of bad news, when an agent mt is pivotal, she is more likely to

choose to experiment if she expects experimentation to continue in the future. Indeed,

if she prefers not to experiment at all in the single-agent bandit model, she would

also switch to the safe policy here. Conversely, if she prefers to experiment in a world

where she has full control over the policy, she would prefer to experiment forever. Any

expected limitations to future experimentation discourage her from experimenting

now, because they reduce the option value of learning about the policy.

This idea underlies the structure of the equilibrium described in Proposition

5. For t ≥ T and T large enough, if the risky policy has been used in [0, t] and no

failures have been observed, most agents—including the median member, mt, who

will approach the population median—will be very optimistic and hence will continue

to experiment forever. We can then proceed backwards and ask if there is any time

t < T for which mt would prefer to quit under the expectation that, if she instead

experiments, experimentation will continue forever until a failure occurs. If there is

some such t, call the highest such time t2n+1. Now the medians mt for t < t2n+1 face

a very different problem: they know that, even if they choose to experiment, mt2n+1

will switch to the safe policy at time t2n+1. Hence, the option value of experimenting

is discontinuously lower for mt2n+1−ε than it is for mt2n+1 . As a result, these medians

choose not to experiment for t close to t2n+1: indeed, due to their proximity to mt2n+1 ,

they would only be slightly willing to experiment even with the maximum option value

available. In turn, each mt that chooses not to experiment eliminates the option value

of experimentation for mt′ for t′ < t. The highest t < t2n+1 for which mt chooses to

experiment, if there is any such t, will be such that mt is willing to experiment in the

complete absence of option value, i.e., if pt(mt)b ≥ r. If there is some such t, denote

it t2n. We can proceed in the same manner to characterize all the intervals Ik.

Conversely, using V b(x) to denote the value function of an agent with prior

x provided that the organization experiments forever in a model of bad news, if

V b(pt(mt)) >
r
γ

for all t then the organization must experiment forever. The last part

of Proposition 5 follows from the fact that, if f is non-decreasing, then pt(mt) ≥ 2s
b+s

for all t, as was the case in Proposition 1.
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Several important conclusions follow from the analysis above. First, as in the

previous model, experimentation can continue forever (although, in this case, it is not

as surprising as this result can arise even in the single-agent version of the problem).

Second, over-experimentation is never possible from the point of view of any pivotal

agent. Indeed, if mt did not want to experiment in a single-agent bandit problem,

then she could stop at time t. If she did want to experiment, she would want to

experiment forever. Therefore, whatever level of experimentation the organization

allows would at most be equal to her bliss point.

Third, under-experimentation (from the point of view of pivotal agents) is possi-

ble, and often obtains when experimentation does not continue forever. Indeed, if the

equilibrium described in Proposition 5 has two intervals, I0 = [t0, t1] and I1 = [t2, t3],

then all agents mt for t between t1 and t2 would rather experiment forever than exper-

iment until time t2. The same logic applies whenever the equilibrium features three

or more intervals.

Fourth, although under-experimentation was also possible in the previous model,

the mechanism is different in this case. Here agents do not stop experimenting lest

experimentation continue for too long—they stop experimenting because experimen-

tation will not continue for long enough.

6.2 A Model of Imperfectly Informative (Good) News

In the previous models, agents’ posterior beliefs only move in one direction,

except for when a perfectly informative event occurs, after which no more interesting

decisions are made. The reader might wonder whether the results are sensitive to this

feature of our assumptions. To address this, we consider a model with imperfectly

informative news, which allows for rich dynamics even after observing successes or

failures. For brevity, we consider the case of good news, but similar results can be

obtained for imperfectly informative bad news.

Again, the model is the same as in Section 4 except for the payoffs generated

by the risky policy. If the risky policy is good, it generates successes according to a

Poisson process with rate b. If it is bad, it generates successes according to a Poisson

process with rate c. We now assume that b > r > s > c > 0.
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Because we now need to study continuations of a game where varying numbers

of successes have occurred at different times, our description of equilibrium will make

explicit use of our notation for information gathered up to time t, L(k, t). As before,

the effect of past information on the agents’ beliefs can be aggregated into a one-

dimensional sufficient statistic. Suppose that the organization has used the risky

policy for a length of time t and that k successes have occurred during that time. We

define

L(k, t) =
(c
b

)k
e(b−c)t.

Then, letting zx(k, t) denote the posterior of an agent with prior x at time t after

observing the organization use the risky policy during [0, t] and achieve k successes,10

it is still the case that

zx(k, t) =
x

x+ (1− x)L(k, t)
.

Henceforth, we suppress the dependence of L(k, t) on k and t and use L to denote our

sufficient statistic. In addition, we denote l = lnL, which will sometimes be easier to

work with, and zx(l) = zx(l(k, t)).

We also restrict our attention to equilibrium strategies that condition only on

L. A (pure strategy) equilibrium can then be characterized by a stopping set L ⊆
(0,+∞) such that, whenever L ∈ L, the pivotal agent m(L) switches to the safe

policy, and experimentation continues for values of L outside of L.

We let V i
x(l) denote the value function of an agent with prior x given that

the state is l = lnL in a model of imperfectly informative news provided that on

the equilibrium path experimentation continues forever. We also let V i(x) = V i
x(0)

denote the ex-ante value function of an agent with prior x in the same model and

under the same equilibrium. The next Proposition shows that, as in the previous

variants of the model, for certain parameter values, experimentation can continue

forever regardless of how badly the risky policy performs.

Proposition 6. If f is non-decreasing and V i
(

2(s−c)
(b−c)+(s−c)

)
≥ r

γ
, there is a unique

equilibrium in which the organization experiments forever. If V i
(

2(s−c)
(b−c)+(s−c)

)
< r

γ
,

there is no equilibrium in which the organization experiments forever.

Moreover, V i
(

2(s−c)
(b−c)+(s−c)

)
≥ 1

γ
(b−c)s+(s−c)b
(b−c)+(s−c) , so there exist parameter values such

10The agent’s posterior only depends on k and t, and not on the timing of the successes.
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that V i
(

2(s−c)
(b−c)+(s−c)

)
≥ r

γ
.

It is more difficult to give an exact expression for the value function V i in this

case owing to the complicated behavior of L over time. For the same reason, it is not

feasible to fully characterize the set of equilibria. Nevertheless, the following result

illustrates the novel outcomes that can arise in this case.

Proposition 7. There are values of b, r, s, c and f for which there exists an equilib-

rium such that, if l = l∗, then the organization stops experimenting with probability

ε > 0, and, if l 6= l∗, then the organization continues experimenting with probability

one.

The intuition behind the equilibrium is as follows. Suppose that the density of

prior beliefs f is such that m(l) increases in l quickly to the right of a certain value

l∗, but slowly to its left—for instance, because f(x) is high for x < m(l∗) and low

for x > m(l∗)—and that, as a result, l 7→ zm(l)(l) is decreasing in l for l < l∗ but

increasing in l for l > l∗. It may then be that zm(l)(l) has a global minimum at l = l∗,

i.e., the median voter is most pessimistic when l = l∗. If the parameters are chosen

appropriately, this median voter will be indifferent about stopping experimentation,

and hence willing to do so with some probability ε > 0, while other agents prefer to

continue experimenting when they are the pivotal decisionmaker.

The striking feature of this equilibrium is that stopping only happens for an

intermediate value of l. In particular, if l∗ < l(0, 0) = 0, the only way experimentation

will stop is if it succeeds enough times for l to decrease all the way to l∗. As a result,

we obtain the counterintuitive result that experimentation may be more likely to

continue forever precisely when the risky policy is bad:

Corollary 1. The parameters in Proposition 7 can be chosen so that, in addition to

the equilibrium being as described there, the probability that the organization never

stops experimenting is higher when the state of the world is bad than when it is good.
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Appendix

Lemma 1. Suppose that the initial distribution of priors is uniform. The posterior

belief of the median member of the organization at time t provided that experimenta-

tion has continued from time 0 to time t and no successes have been observed is

pt(mt) =
2s+ (b− s)e−bt

b+ s+ (b− s)e−bt

Proof of lemma 1.

The posterior belief of a marginal member of the organization is given by pt(yt) =
yte−bt

yte−bt+1−yt . Using the fact that pt(yt) = s
b
, we set yte−bt

yte−bt+1−yt = s
b
. Solving for yt, we

obtain

yt =
s
b

s
b

+
(
1− s

b

)
e−bt

=
s

s+ (b− s)e−bt

Substituting the above formula for yt into mt = 1+yt
2

, we obtain

mt =

s
s+(b−s)e−bt + 1

2
=

1

2

2s+ (b− s)e−bt

s+ (b− s)e−bt

Substituting the above formula for mt into pt(mt) = mte−bt

mte−bt+1−mt , we obtain

pt(mt) =

2s+(b−s)e−bt
s+(b−s)e−bt e

−bt

2s+(b−s)e−bt
s+(b−s)e−bt e

−bt + 2− 2s+(b−s)e−bt
s+(b−s)e−bt

=

(2s+ (b− s)e−bt)e−bt

(2s+ (b− s)e−bt)e−bt + 2(s+ (b− s)e−bt)− 2s− (b− s)e−bt
=

(2s+ (b− s)e−bt)e−bt

(2s+ (b− s)e−bt)e−bt + (b− s)e−bt
=

2s+ (b− s)e−bt

2s+ (b− s)e−bt + b− s
=

2s+ (b− s)e−bt

b+ s+ (b− s)e−bt

�

We now provide a formula for V (x).
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Lemma 2.

V (x) = xb
1

γ
+ (1− x)e−γt(x) s

γ
− x(b− s)e

−(γ+b)t(x)

γ + b

Proof of lemma 2.

Let t(x) denote the time it will take for an agent’s posterior belief to go from

x to s
b
, at which time she would leave the organization. Let Pt = x(1− e−bt) denote

the probability that an agent with prior belief x assigns to having a success by time

t. Then

V (x) = x

∫ t(x)

0

be−γτdτ +

∫ ∞
t(x)

(Pτb+ (1− Pτ )s) e−γτdτ,

The first term is the payoff from time 0 to time t(x), when the agent stays in the

organization. The second term is the payoff after time t(x), when the agent leaves the

organization and obtaining the flow payoff s thereafter, unless the risky technology

has had a success (in which case the agent returns to the organization and receives a

guaranteed expected flow payoff b).

We have

V (x) = x

∫ t(x)

0

be−γτdτ +

∫ ∞
t(x)

se−γτdτ +

∫ ∞
t(x)

Pτ (b− s)e−γτdτ

= xb
1− e−γt(x)

γ
+ e−γt(x) s

γ
+ x(b− s)

∫ ∞
t(x)

(
e−γτ − e−(γ+b)τ

)
dτ

= xb
1− e−γt(x)

γ
+ e−γt(x) s

γ
+ x(b− s)

(
e−γt(x)

γ
− e−(γ+b)t(x)

γ + b

)
= xb

1

γ
+ (1− x)e−γt(x) s

γ
− x(b− s)e

−(γ+b)t(x)

γ + b

where the second equality follows from the fact that
∫ t

0
e−γτdτ = 1−e−γt

γ
,
∫∞
t
e−γτdτ =

e−γt

γ
and Pt = x(1−e−bt), and the third equality follows from the fact that

∫∞
t
e−γτdτ =

e−γt

γ
and

∫∞
t
e−(γ+b)τdτ = e−(γ+b)t

γ+b
. �

Lemma 3. Let ty(x) denote he time it takes for an agent’s posterior belief to go from

x to y. Then

ty(x) = −
ln
(

y
1−y

1−x
x

)
b

t(x) = −
ln
(
s(1−x)
(b−s)x

)
b
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If x = 2s
b+s

, then e−bt(x) = 1
2
.

Proof of lemma 3.

We solve pt(x) = xe−bt

xe−bt+1−x = y for t. Then we obtain e−bty(x) = y
1−y

1−x
x

or,

equivalently, ty(x) = − ln( y
1−y

1−x
x )

b
.

Recall that t(x) is the time it takes for an agent’s posterior belief to go from x

to s
b
. Substituting y = s

b
in, we obtain t(x) = −

ln( s(1−x)(b−s)x )
b

. Substituting x = 2s
b+s

into

e−bt(x) = s(1−x)
(b−s)x and simplifying, we obtain e−bt = 1

2
. �

Lemma 4. x 7→ V (x) is increasing.

Proof of lemma 4.

By lemma 3, we have

t(x) = −
ln
(
s(1−x)
(b−s)x

)
b

Thus

t′(x) = −1

b

(b− s)x
s(1− x)

s

b− s

(
− 1

x2

)
=

1

b

1

x(1− x)
> 0

Then we have

γV ′(x) = b− e−γt(x)s− γ

γ + b
(b− s)e−(γ+b)t(x)

+t′(x)e−γt(x)s+ t′(x)
γ

γ + b
(b− s)(γ + b)e−(γ+b)t(x)

≥ b− s− γ

γ + b
(b− s) =

(b− s)b
γ + b

> 0

where the first inequality follows because e−γt(x) ∈ [0, 1], e−(γ+b)t(x) ∈ [0, 1] and t′(x) >

0. �

Lemma 5. Suppose that the initial distribution of priors is uniform. Then, when-

ever V
(

2s
b+s

)
≥ r

γ
is satisfied, there exists an equilibrium in which the organization

experiments forever.

Proof of lemma 5.

Recall that the continuation utility of an agent with belief x conditional on

experimentation continuing forever is V (x). Observe that the payoff to using the

safe technology forever is r
γ
. We then require that V (pt(mt)) ≥ r

γ
for all t. That is,
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we need to check that, whenever V
(

2s
b+s

)
≥ r

γ
, for all t the median agent mt prefers

to continue experimenting at t (which leads to experimentation forever) instead of

stopping.

Because the fact that the initial distribution of priors is uniform implies that t 7→
pt(mt) is decreasing and lemma 4 implies that x 7→ V (x) is increasing, in order to have

V (pt(mt)) ≥ r
γ

for all t, it is sufficient to have limt→∞ V (pt(mt)) ≥ r
γ
. Because lemma

1 implies that pt(mt) = 2s+(b−s)e−bt
b+s+(b−s)e−bt , we have limt→∞ pt(mt) = limt→∞

2s+(b−s)e−bt
b+s+(b−s)e−bt =

2s
b+s

. Then limt→∞ V (pt(mt)) ≥ r
γ

is equivalent to V
(

2s
b+s

)
≥ r

γ
. �

Lemma 6. There exist parameters such that V
(

2s
b+s

)
≥ r

γ
.

Proof of lemma 6.

Lemma 3 implies that if x = 2s
b+s

, then e−bt(x) = 1
2
. Observe that we have

(1
2
)
γ
b = (e−bt(x))

γ
b = e−γt(x), which implies that e−γt(x) =

(
1
2

) γ
b .

Substituting in e−bt(x) = 1
2

and e−γt(x) =
(

1
2

) γ
b into the formula for V (x) from

lemma 2, we obtain

V (x) = xb
1

γ
+ (1− x)

(
1

2

) γ
b s

γ
− x(b− s)

(
1

2

) γ
b
(

1

2

)
1

γ + b

= xb
1

γ
+

(
1

2

) γ
b
[
(1− x)

s

γ
− x(b− s)

(
1

2

)
1

γ + b

]

Then we have

V

(
2s

b+ s

)
=

2bs

b+ s

1

γ
+

(
1

2

) γ
b
[
s(b− s)
b+ s

1

γ
− s(b− s)

b+ s

1

γ + b

]
=

2bs

b+ s

1

γ
+

(
1

2

) γ
b s(b− s)

b+ s

[
1

γ
− 1

γ + b

]

Multiplying both sides by γ, we obtain

γV

(
2s

b+ s

)
=

2bs

b+ s
+

(
1

2

) γ
b s(b− s)

b+ s

[
1− γ

γ + b

]
=

2bs

b+ s
+

(
1

2

) γ
b s(b− s)

b+ s

b

γ + b
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It is easy to show that there exist parameters such that 2bs
b+s

+
(

1
2

) γ
b s(b−s)

b+s
b

γ+b
≥ r

is satisfied. For example, suppose that γ ≈ ∞. Then we need that 2bs
b+s
≥ r. For this,

it is sufficient to have s > r
2

and b ≥ sr
2s−r . �

Lemma 7. Let WT (x) denote the value function of an agent with belief x in an

equilibrium in which the organization stops the experimentation after time T passes.

For all interior beliefs x, the following is true: if V (x) > r
γ

, then WT (x) > r
γ

for all

T .

Proof of lemma 7.

We will use a discrete-time approximation. We let ∆ > 0 denote the length of

a time period. We use W∆
T (x) to denote the value function of an agent with belief x

in an equilibrium in which the organization stops the experimentation after T time

periods pass provided that the length of time period is ∆. Note that W∆
0 (x) = r

γ
.

We can write W∆
T recursively as follows:

W∆
T (x) = x

(
1− e−b∆

)
+ e−γ∆

(
x
(
1− e−b∆

) b
γ

+
(
1− x

(
1− e−b∆

))
W∆
T−1(xT−1)

)
where xT−1 is the belief of an agent who had the prior x when T periods were left

until the experimentation stopped (and xT−1 is the belief this agent has when T − 1

periods are left until the organization stops experimenting).

Similarly, we can write V ∆ recursively as follows:

V ∆(x) = x
(
1− e−b∆

)
+ e−γ∆

(
x
(
1− e−b∆

) b
γ

+
(
1− x

(
1− e−b∆

))
V ∆(xT−1)

)

Then, by induction on the number of periods left until the organization stops

experimenting, we have

V ∆(x) = (1−Q)Y +QV ∆(x0) W∆
T (x) = (1−Q)Y +QW∆

0 (x0)

for some Q ∈ (0, 1) and Y > 0.

Observe that

V ∆(x) = (1−Q)Y +QV ∆(x0) ≤ (1−Q)Y +QV ∆(x)
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where the inequality follows from the fact that V ∆(x) ≥ V ∆(x0) (which holds because

x > x0 and V ∆(·) is increasing by lemma 4).

This implies that Y ≥ V ∆(x).

Because V ∆(x) > r
γ
, it follows that that

Y >
r

γ
(1)

Then

W∆
T (x) = (1−Q)Y +QW∆

0 (x0) > (1−Q)
r

γ
+Q

r

γ
=
r

γ

where the inequality follows from the fact that Y > r
γ

by (1) and the fact that

W∆
0 (x0) = r

γ
.

Thus we have established that for all ∆ > 0, whenever V ∆(x) > r
γ
, we have that

W∆
T (x) > r

γ
. Because lim∆→0 V

∆(x) = V (x) and lim∆→0W
∆
T (x) = WT (x), it follows

that whenever V (x) > r
γ
, we have that WT (x) > r

γ
. �

Lemma 8. For L =
(
c
b

)k
e(b−c)t, let m(L) and m̃(L) denote the median voters when

the state variable is L under the uniform density and a non-decreasing density f

respectively. Suppose that y(L)→ 1 as L→∞. Then 1−m̃(L)
1−m(L)

→ 1 as L→∞.

Proof of lemma 8.

Given a state variable L and its corresponding marginal member y(L), let f0L =

f(y(L)) and f1 = f(1). Consider m̃(L). Given that f is increasing on [y(L), 1], we

have m(L) ≤ m̃(L) ≤ m̂(L), where m̂(L) is the median corresponding to a density f̂

such that f̂(x) = f0L for x ∈ [y(L), m̂(L)] and f̂(x) = f1 for x ∈ [m̂(L), 1].

By construction, because m̂(L) is the median, we have f0L(m̂(L) − y(L)) =

f1(1 − m̂(L)), so m̂(L) = f0Ly(L)+f1
f0L+f1

. Thus 1 − m̂(L) = f0L(1−y(L))
f0L+f1

and, because

m(L) = y(L)+1
2

so that 1−m(L) = 1−y(L)
2

, we have 1−m̂(L)
1−m(L)

= 2f0L
f0L+f1

.

Since f is increasing, using the fact that f(x)→ supy∈[0,1) f(y) as x→ 1, we find

that f(x)→ f(1) as x→ 1. Then, as t→∞, we have y(L)→ 1, f0L = f(y(L))→ f1

and 1−m̂(L)
1−m(L)

→ 1. �

Lemma 9. Consider the model of imperfectly informative news. Let m(L) and m̃(L)

27



denote the median voters when the state variable is L under the uniform density and a

non-decreasing density f respectively, and let zm(L) and zm̃(L) denote the posteriors

of these voters. Then limL→∞ zm(L) = limL→∞ zm̃(L) = 2(s−c)
(b−c)+(s−c) .

Proof of lemma 9.

Recall that m(L) = 2L(s−c)+b−s
2L(s−c)+2(b−s) , so that limL→∞m(L) = 1 and 1 − m(L) =

b−s
2L(s−c)+2(b−s) , so that (1−m(L))L = L(b−s)

2L(s−c)+2(b−s) and limL→∞(1−m(L))L = 1
2
b−s
s−c .

Note that limL→∞ m̃(L) = 1. The fact that, by lemma 8, we have limL→∞
1−m̃(L)
1−m(L)

=

1 implies that limL→∞(1− m̃(L))L = 1
2
b−s
s−c .

Then, because

lim
L→∞

zm̃(L) = lim
L→∞

m̃(L)

m̃(L) + (1− m̃(L))L
=

1

1 + 1
2
b−s
s−c

=
2(s− c)

(b− c) + (s− c)

we have limL→∞ zm̃(L) = limL→∞ zm(L) = 2(s−c)
(b−c)+(s−c) , as required. �

Proof of Proposition 1.

We first write the proof for when f is uniform, and then consider a general

non-decreasing f .

Suppose f is uniform. Lemma 5 guarantees that, whenever V
(

2s
b+s

)
≥ r

γ
is

satisfied, there exists an equilibrium in which the organization experiments forever.

We will show that this equilibrium is unique. It is sufficient to show that there does

not exist an equilibrium in which experimentation continues with probability one

until some time T <∞ and stops at time T with probability one.

Let WT (x) denote the value function of an agent with belief x in such an

equilibrium provided that the organization stops the experimentation after time T

passes. Suppose that V
(

2s
b+s

)
≥ r

γ
. Then, because V (·) is strictly increasing, we have

V (x) > r
γ

for all x > 2s
b+s

. Lemma 7 shows that for all interior beliefs x, if V (x) > r
γ
,

then WT (x) > r
γ

for all T . Then WT (x) > r
γ

for all T and for all x > 2s
b+s

. Thus an

agent with posterior belief x > 2s
b+s

strictly prefers to experiment, contradicting our

hypothesis that the organization stops the experimentation after time T passes.

Now consider a non-decreasing f .

Let mt denote the prior of the median at time t under the uniform distribution,
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and let m̃t denote the prior of the median at time t under the distribution F .

Suppose that under the uniform distribution there is an equilibrium where the

organization experiments forever, that is, that V
(

2s
b+s

)
≥ r

γ
.

We will argue that pt(m̃t) ≥ pt(mt) for all t. Because m 7→ pt(m) is strictly

increasing, it is sufficient to show that m̃t ≥ mt for all t.

Since mt = 1
2
(1 + yt) and m̃t = F−1

(
1
2
(1 + F (yt))

)
, we want to show that

F−1
(

1
2
(1 + F (yt))

)
≥ 1

2
(1 + yt) for all t. This is equivalent to 1

2
(1 + F (yt)) ≥

F
(

1
2
(1 + yt)

)
for all t. Observe that, since f is increasing, F is convex. In addi-

tion, we have F (1) = 1 and, by Jensen’s inequality, 1
2
(F (1) +F (yt)) ≥ F

(
1
2
(1 + yt)

)
.

Hence m̃t ≥ mt for all t, as desired, and pt(m̃t) ≥ pt(mt) ≥ 2s
b+s

for all t. There is then

a unique equilibrium,11 involving experimentation forever, under F by an argument

analogous to the argument above.

Now suppose that V
(

2s
b+s

)
< r

γ
. Suppose that f is uniform. Because V (·) is

continuous, we have V (x) < r
γ

for some x > 2s
b+s

such that x− 2s
b+s

is sufficiently small.

Since 2s
b+s

is the asymptotic posterior of the median, there exists a (possibly large)

time t such that, if experimentation continues without success until time t, then the

posterior of the median at time t will be x. As V (x) < r
γ
, this median strictly prefers

to switch to the safe policy.

Next, take f to be any non-decreasing density. Let mt be the median voter at

time t under a uniform density, and m̃t be the median voter at time t under f . It is

sufficient to show that 2s
b+s

is still the asymptotic posterior of the median, that is, that

limt→∞ pt(m̃t) = limt→∞ pt(mt) = 2s
b+s

. The rest follows from an argument similar to

the argument above.

Note that, because the baseline model is a special case of the model with im-

perfectly informative news with c = 0, lemma 8 implies that 1−m̃t
1−mt → 1.

Recall that pt(m) = me−bt

me−bt+1−m , and check that (1 − mt)e
bt → b−s

2s
as t → ∞.

11Observe that the part of the proof of Proposition 1 that shows that if V
(

2s
b+s

)
≥ r

γ , then there

does not exist any equilibrium that does not involve experimenting forever (in particular, the part
of the proof that uses lemma 7) does not rely on the distribution of priors being uniform.
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Then lemma 8 implies that (1− m̃t)e
bt → b−s

2s
as well, and

pt(m̃t) =
m̃te

−bt

m̃te−bt + 1− m̃t

=
m̃t

m̃t + (1− m̃t)ebt
→t→∞

1

1 + b−s
2s

=
2s

b+ s
.

Finally, the formula for V
(

2s
b+s

)
follows from Lemma 6. �

Proof of Proposition 2.

As in Proposition 1, we write the proof in two steps. First, for a given α, we

prove the result for the density fα given by fα(x) = (1−x)α

α+1
for x ∈ [0, 1]. Afterwards

we argue that the argument extends to other densities that MLRP-dominate fα.

First note that, as in Lemma 1, it is still the case that

yt =
s

s+ (b− s)e−bt

The median mt must satisfy the condition 2
∫ 1

mt
fα(x)dx =

∫ 1

yt
fα(x)dx, so 2(1−

mt)
α+1 = (1− yt)α+1. Hence 1−mt = λ(1− yt), which implies that

mt = 1− λ+ λyt = 1− λ+ λ
s

s+ (b− s)e−bt
=
s+ (1− λ)(b− s)e−bt

s+ (b− s)e−bt

Substituting the above expression into the formula for pt(x) from Lemma 1, we

obtain

pt(mt) =
mte

−bt

1−mt +mte−bt
=

s+ (1− λ)(b− s)e−bt

λ(b− s) + s+ (1− λ)(b− s)e−bt

It is clear that the above expression is decreasing in t and converges to s
λb+(1−λ)s

as t→∞. By the same argument as in Proposition 1, if V
(

s
λb+(1−λ)s

)
≥ r

γ
, then there

is an equilibrium in which experimentation continues forever, and no other strategy

profiles are compatible with equilibrium.

To calculate V
(

s
λb+(1−λ)s

)
, we use Lemmas 2 and 3. The time it takes for an

agent with belief s
λb+(1−λ)s

to reach posterior s
b

is

t s
b

(
s

λb+ (1− λ)s

)
= −

ln
(

s
b−s

λ(b−s)
s

)
b

= − lnλ

b
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Thus e−bt(
s

λb+(1−λ)s) = λ. Substituting this into the formula from Lemma 2, we

obtain

γV

(
s

λb+ (1− λ)s

)
=

bs

λb+ (1− λ)s
+

λ(b− s)s
λb+ (1− λ)s

λ
γ
b − s

λb+ (1− λ)s

(b− s)γ
γ + b

λ
γ+b
b

=
bs

λb+ (1− λ)s
+

(b− s)s
b+ (1− λ)s

b

γ + b
λ
γ+b
b

�

Proof of Proposition 4.

We first argue that τ is well-defined.

Recall the definition of WT (x) from Lemma 7. Let t be the current time, x =

pt(mt) and let t∗ be the time at which mt would choose to stop if she had complete

control over the policy. By an argument analogous to that in Lemma 7 it can be

shown that if t∗ > t (that is, Wt∗(x) > r
γ
), then WT (x) is strictly increasing in T for

T ∈ [t, t∗] and strictly decreasing in T for T > t∗. Hence WT (x) > r
γ

for all T ∈ (t, t∗].

In addition, we know that WT (x) → V (x) as t → +∞. It follows that there is a

unique τ(t) for which Wτ(t)(x) = r
γ

unless V (x) ≥ r
γ
, in which case τ(t) = +∞.

Consider a pure strategy equilibrium σ in which the organization does not exper-

iment forever on the equilibrium path. Let t0(σ) be the time at which experimentation

stops on the equilibrium path. Clearly, t0(σ) ≤ τ(0), as otherwise m0 would switch

to the safe policy at time 0. As in previous equilibria, if a success occurs or if the

organization switches to the safe policy, everyone joins the organization permanently.

Consider what happens at time t0(σ) if mt0(σ) deviates and continues exper-

imenting. In a pure strategy equilibrium, there must be a time t1(σ) > t0(σ) for

which experimentation stops in this continuation (or t1(σ) = ∞). If t1(σ) is finite,

then it must be that t1(σ) = τ(t0(σ)). To see why, suppose that t1(σ) > τ(t0(σ)).

In this case, for small ε > 0, mt0(σ)+ε would strictly prefer to stop experimenting, a

contradiction. On the other hand, if t1(σ) < τ(t0(σ)), then τ0(σ) would strictly prefer

to deviate from the equilibrium path. If t1(σ) = +∞, we have a contradiction unless

V (pt0(σ)(mt0(σ)) = r
γ
, and in this case it must still be the case that t1(σ) = τ(t0(σ)).

We now show that if τ is increasing and t ∈ [0, τ(0)], then (t, τ(t), τ(τ((t)), . . .)
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constitutes an equilibrium. Our construction already shows that mtn(σ) is indifferent

between switching to the safe policy at time tn(σ) and continuing to experiment. To

finish the proof, we must show that, for t not in the sequence of stopping times, mt

weakly prefers to continue experimenting. Let t ∈ (tn(σ), tn+1(σ)). Since t > tn(σ),

we have τ(t) ≥ τ(tn(σ)) = tn+1(σ). Hence Wtn+1(σ)(pt(mt)) ≥ r
γ
, as desired.

�

B A Model of Bad News

Lemma 10. In a model of bad news, the value function of an agent with prior x who

is in the organization and expects the organization to continue forever unless a failure

is observed is

V b(x) = (xb+ (1− x)r)
1

γ
− (1− x)r

1

γ + b

Proof of lemma 10.

Note that an agent receives an expected flow payoff of b only if the technology

is good and the organization has not switched to the safe technology upon observing

a failure. Because a good technology cannot experience a failure, as long as experi-

mentation continues, an agent with posterior belief x receives an expected flow payoff

of b with probability x.

Let Pt = x + (1− x)e−bt denote the probability that an agent with prior belief

x assigns to not having a failure by time t. Note that at each time t, the probability

that the organization has switched to the safe technology by this time is 1 − Pt =

(1− x)(1− e−bt).

Then

V b(x) =

∫ ∞
0

(xb+ (1− Pτ )r) e−γτdτ

=

∫ ∞
0

(
xb+ (1− x)(1− e−bτ )r

)
e−γτdτ

= (xb+ (1− x)r)

∫ ∞
0

e−γτdτ − (1− x)r

∫ ∞
0

e−(γ+b)τdτ

= (xb+ (1− x)r)
1

γ
− (1− x)r

1

γ + b
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where the last equality follows from the fact that
∫∞

0
e−γτdτ = 1

γ
and

∫∞
0
e−(γ+b)τdτ =

1
γ+b

. �

Proof of Proposition 5.

Claim 7.1. In a model of bad news, if the initial distribution of priors is uniform,

then p0(m0) = b+s
2b

and t 7→ pt(mt) is strictly increasing.

Proof of claim 7.1.

Observe that in a model of bad news, we have pt(yt) = yt
yt+e−bt(1−yt) . Because

pt(yt) = s
b

must be satisfied, using the formula for pt(yt) and solving for yt, we obtain

yt = s
s+(b−s)ebt .

If the density is uniform, the median is given by mt = 1+yt
2

. Substituting the

above formula for yt into mt = 1+yt
2

, we obtain mt = 1
2

2s+(b−s)ebt
s+(b−s)ebt .

Substituting the above formula for mt into pt(mt) = mt
mt+e−bt(1−mt) , we obtain

pt(mt) =

1
2

2s+(b−s)ebt
s+(b−s)ebt

1
2

2s+(b−s)ebt
s+(b−s)ebt + e−bt

(
1− 1

2
2s+(b−s)ebt
s+(b−s)ebt

)
=

2s+ (b− s)ebt

2s+ (b− s)ebt + e−bt(2(s+ (b− s)ebt)− (2s+ (b− s)ebt))

=
2s+ (b− s)ebt

2s+ (b− s)(1 + ebt)

Thus we have pt(mt) = 2s+(b−s)ebt
2s+(b−s)(1+ebt)

. Then p0(m0) = b+s
2b

.

Moreover, it can be verified that t 7→ pt(mt) is strictly increasing. In particular,

let p(e) = 2s+(b−s)e
2s+(b−s)(1+e)

. We have p′(e) ∝ (2s+(b−s)(1+e))(b−s)−(2s+(b−s)e)(b−
s) ∝ b− s > 0. Moreover, t 7→ ebt is strictly increasing. It follows that t 7→ pt(mt) is

strictly increasing. �

Suppose first that f is non-decreasing and V b
(

2s
b+s

)
≥ r

γ
. Because b+s

2b
> 2s

s+b
, the

fact that V b
(

2s
b+s

)
≥ r

γ
implies that V b

(
b+s
2b

)
> r

γ
. Because, by claim 7.1, p0(m0) = b+s

2b

and t 7→ pt(mt) is strictly increasing and lemma 10 implies that V b is increasing, this

implies that V b(pt(mt)) >
r
γ

for all t.

Then, using the fact that that f is non-decreasing, we can use an argument

similar to the one used in the proof of Proposition 1 to show that there exists an
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equilibrium where the organization experiments forever unless a failure is observed.

Moreover, an argument similar to the one used in the proof of Proposition 1 can

be used to show that this equilibrium is unique. In particular, letting m̃t denote the

median under a non-decreasing f and letting mt denote the median under the uniform

distribution, because m 7→ pt(m) is strictly increasing, it is sufficient to show that

m̃t ≥ mt for all t, and f being non-decreasing ensures that m̃t ≥ mt for all t by the

same argument as in the proof of Proposition 1.

We now show that there exists T such that for all t ≥ T , if no failures have

been observed during [0, t], then V b(pt(mt)) ≥ r
γ
. First note that, because in a

model of bad news agents do not leave the organization, limt→∞ yt < 1. Moreover,

limt→∞ e
−bt = 0. This implies that limt→∞ pt(mt) = limt→∞

yt
yt+e−bt(1−yt) = 1. Then,

provided that no failures have been observed during [0, t], we have limt→∞ pt(mt) =

limt→∞
yt

yt+e−bt(1−yt) = 1, limt→∞ V
b(pt(mt)) = V b(1) because V b is continuous, and

V b(1) > r
γ
.

Next, observe that two cases are possible: either V b(pt(mt)) ≥ r
γ

for all t ≤ T ,

or there exists t ≤ T such that V b(pt(mt)) <
r
γ
. If V b(pt(mt)) ≥ r

γ
for all t ≤ T , then

the organization experiments forever, so suppose that there exists t ≤ T such that

V b(pt(mt)) <
r
γ
.

Claim 7.2. Suppose that on the equilibrium path, the organization continues experi-

menting for time t+ unless a failure occurs and then switches to the safe policy. Then

the value function of an agent with prior x in this equilibrium is given by

(xb+ (1− x)r)
1− e−γt+

γ
− (1− x)r

1− e−(γ+b)t+

γ + b
+ e−γt+

r

γ

Proof of claim 7.2.

Because the median switches to the safe policy after a time period of length t+,
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the value function of an agent with prior x in this equilibrium is given by∫ t+

0

(xb+ (1− Pτ )r) e−γτdτ +

∫ ∞
t+

re−γτdτ

=

∫ t+

0

(
xb+ (1− x)(1− e−bt)r

)
e−γτdτ +

∫ ∞
t+

re−γτdτ

= (xb+ (1− x)r)

∫ t+

0

e−γτdτ − (1− x)r

∫ t+

0

e−(γ+b)τdτ +

∫ ∞
t+

re−γτdτ

= (xb+ (1− x)r)
1− e−γt+

γ
− (1− x)r

1− e−(γ+b)t+

γ + b
+ e−γt+

r

γ

where the last equality follows from the fact that
∫ t+

0
e−γτdτ = 1−e−γt+

γ
,
∫ t+

0
e−(γ+b)τdτ =

1−e−(γ+b)t+

γ+b
and

∫∞
t+
re−γτdτ = e−γt+ r

γ
. �

Claim 7.3. Suppose that in some equilibrium σ the median mt0 stops experimenting.

If for all t ∈ [t, t0) we have pt(mt)b < r, then for all t ∈ [t, t0), mt stops experimenting.

Proof of claim 7.3.

Suppose for the sake of contradiction that this is not the case. Then there exists

a non-empty subset B ⊆ [t, t0) such that for all t ∈ B, mt continues experimenting.

Let t1 = sup{t : t ∈ B}.

Then for all ε > 0 sufficiently small there exist t and t2 such that mt continues

experimenting, mt2 stops experimenting and t2 − t ∈ (0, ε]. In particular, if t1 =

max{t : t ∈ B}, then take t = t1 and t2 = t1 + ε for some ε < t0 − t1. If t1 6= max{t :

t ∈ B}, then, because mt0 stops experimenting, we have t1 < t0. Moreover, in this

case, we have t1 6∈ B and, by definition of the supremum, for all ε > 0 there exists

t ∈ B such that t1 − t ∈ (0, ε). Then take t2 = t1 and we are done.

Thus for all ε′ > 0 sufficiently small there exist t and t2 such that mt continues

experimenting, mt2 stops experimenting and t2 − t = ε for some ε < ε′.

By claim 7.2, the payoff tomt from continuing experimentation is Vt = (pt(mt)b+

(1− pt(mt))r)
1−e−γε

γ
− (1− pt(mt))r

1−e−(γ+b)ε

γ+b
+ e−γε r

γ
.

The payoff to stopping experimentation is r
γ
. Then if Vt <

r
γ
, the median strictly
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prefers to stop experimenting. This is equivalent to(
pt(mt)b+ (1− pt(mt))r

)
1− e−γε

γ
− (1− pt(mt))r

1− e−(γ+b)ε

γ + b
<

1− e−γε

γ
r

Equivalently, pt(mt)(b − r)1−e−γε
γ

< (1 − pt(mt))r
1−e−(γ+b)ε

γ+b
. Rearranging, we

obtain
pt(mt)

1− pt(mt)

b− r
r

γ + b

γ
<

1− e−(γ+b)ε

1− e−γε

By L’Hospital’s rule, when we take the limit as ε→ 0, we obtain
pt(mt)(b−r)
(1−pt(mt))r

γ+b
γ
<

γ+b
γ

. Equivalently,
pt(mt)(b−r)
(1−pt(mt))r

< 1, or pt(mt)b < r. By the hypothesis, we have

pt(mt)b < r for all t ∈ [t, t0). Then, because t ∈ [t, t0) the inequality pt(mt)b < r is

satisfied. Then mt strictly prefers to stop experimenting, which is a contradiction. �

Claim 7.4. If for all t ∈ [t, t0) we have pt(mt)b > r, then in any equilibrium, for all

t ∈ [t, t0), mt continues experimenting.

Proof of claim 7.4.

Suppose for the sake of contradiction that this is not the case. Then there exists

a non-empty subset T ′ ⊆ [t, t0) such that for all t ∈ T ′, mt stops experimenting. Fix

t ∈ T ′. Let t+ denote the length of the time period after which the equilibrium

prescribes a switch to the safe policy.

Note that, because the median switches to the safe policy after a time period of

length t+, the payoff to mt from continuing experimentation is

Vt =

∫ t+

0

(pt(mt)b+ (1− Pτ )r)e−γτdτ +

∫ ∞
t+

re−γτdτ

≥
∫ t+

0

pt(mt)be
−γτdτ +

∫ ∞
t+

re−γτdτ = pt(mt)b
1− e−γt+

γ
+ r

e−γt+

γ

The payoff to stopping experimentation is r
γ
. Then if 1−e−γt+

γ
pt(mt)b+ e−γt+

γ
r >

r
γ
, the median mt strictly prefers to continue experimenting. The above inequality

is equivalent to pt(mt)b > r, which is satisfied. Then mt strictly prefers to continue

experimenting, which is a contradiction. �

Let t2n+1 = sup
{
t : V b(pt(mt)) ≤ r

γ

}
denote the largest time for which the
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median stops experimenting.

Let T 1 = {t : pt(mt)b ≤ r} and T 2 = {t : pt(mt)b > r}. Our genericity

assumption (Assumption 1) implies that T 1 and T 2 are finite collections of intervals.

Enumerate the intervals such that T 1 = ∪ni=0[ti, ti].

Suppose first that pt(mt)b ≤ r for all t < t2n+1. In this case, by claim 7.3, for

all t ≤ t2n+1, mt stops experimentation. Then we set n = 0, t0 = 0 and I0 = [t0, t1].

Suppose next that there exists t < t2n+1 such that pt(mt)b > r. Set t2n =

sup{t < t2n+1 : pt(mt)b > r}. Note that, because F admits a continuous density,

t 7→ pt(mt) is continuous, which implies that we must have pt2n(mt2n)b− r = 0. Then

claim 7.3 implies that for all t ∈ [t2n, t2n+1], mt stops experimentation.

Let us conjecture a continuation equilibrium path on which, starting at t, the

organization experiments until t2n. We let Vt2n(x) denote the value function of an

agent with prior x given this continuation equilibrium path. We then let t2n−1 =

sup
{
t < t2n : Vt2n(pt(mt)) ≤ r

γ

}
.

Note that, because, by construction, for t ∈ (t2n−1, t2n) we have Vt2n(pt(mt)) >
r
γ
, the median mt continues experimentation for all t ∈ (t2n−1, t2n).

Since F admits a continuous density, t 7→ Vt2n(x) is continuous, which implies

that we must have t2n−1 = max
{
t < t2n : Vt2n(pt(mt)) ≤ r

γ

}
. Note that it is then

consistent with equilibrium for the median mt2n to stop experimenting.

Now note that, if Vt2n(pt2n−1(mt2n−1)) = r
γ
, then pt2n−1(mt2n−1)b < r. By con-

tinuity, there exists an interval [ti, ti] in T 1 such that t2n−1 ∈ [ti, ti] (and ti satisfies

ti = min{t < t2n−1 : pt(mt)b ≤ r}).

Set t2n−2 = ti. Because pt(mt)b ≤ r for all t ∈ [t2n−2, t2n−1], claim 7.4 implies

that, for all t ∈ [t2n−2, t2n−1], mt stops experimenting.

We then proceed inductively in the above manner, finding the largest t strictly

less than t2n−2 such that Vt2n−2(pt(mt)) ≤ r
γ
. Because T 1 is finite collection of intervals,

the induction terminates in a finite number of steps.

The equilibrium is generically unique for the following reason. Under Assump-

tion 1, each t2k+1 satisfies not only Vt2k+2
(pt2k+1

(mt2k+1
)) = r

γ
but also d

dt
Vt2k+2

(pt(mt))|t2k+1
>

0, i.e., Vt2k+2
(pt(mt)) <

r
γ

for all t < t2k+1 close enough to t2k+1. Thus, even if we
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allow mt2k+1
to continue experimenting, all agents in (t2k+1 − ε, t2k+1) must stop as

they strictly prefer to do so. Likewise, each t2k satisfies not only pt2k(mt2k)b− r = 0

but also d
dt
pt(mt)|t2k < 0, i.e., pt(mt)b−r > 0 for all t < t2k close enough to t2k. Thus,

even if we allow mt2k to stop experimenting, all agents in (t2k − ε, t2k) must stop as

they strictly prefer to do so. �

C Imperfectly Informative Experimentation Tech-

nology

Lemma 11. An agent with belief xt at time t is in the organization at time t if and

only if L(k, t) ≤ x(b−s)
(1−x)(s−c) .

Proof of lemma 11.

Because agents make their membership decisions based on the expected flow

payoffs, an agent with belief xt at time t is in the organization at time t if and only

if xtb + (1 − xt)c ≥ s, that is, if xt ≥ s−c
b−c . Since xt = x

x+(1−x)L(k,t)
, this is equivalent

to L(k, t) ≤ x(b−s)
(1−x)(s−c) . �

Lemma 12. x 7→ V i
x is strictly increasing.

Proof of lemma 12.

Consider agents with priors x′ > x and suppose that there exists an equilibrium

in which an agent with prior x plays some strategy σx. Suppose that the agent with

prior x′ copies the strategy of the agent with prior x. Let V ix
x′ denote the payoff to the

agent with prior x′ from copying the strategy of the agent with prior x. When x and

x′ are outside the organization, their flow payoffs are equal to s and do not depend

on their priors. When x′ is in the organization, at a continuation where lt = l, x′’s

expected flow payoff is zx′(l)b + (1 − zx′(l))c. Because x′ > x, we have zx′(l) > zx(l)

and thus zx′(l)b+ (1− zx′(l))c > zx(l)b+ (1− zx(l))c, so the flow payoff of x′ is higher

than the flow payoff of x when x and x′ are inside the organization. Thus V ix
x′ > V i

x .

Because V i
x′ ≥ V ix

x′ , we then have V i
x′ ≥ V ix

x′ > V i
x , which implies that V i

x′ > V i
x ,

as required. �

Corollary 2. V i
x(l) = V i

zx(l)(0), which is increasing in zx(l).
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Proof of Proposition 6.

Let zm(L) denote the posterior of the median given L. Let p(L, x) denote the

posterior belief of an agent with prior x when the state variable is L.

Claim 7.5. For a uniform distribution of priors, limL→∞ zm(L) = 2(s−c)
(b−c)+(s−c) and

L 7→ zm(L) is decreasing.

Proof of claim 7.5.

Observe that p(L, y(L)) is the posterior belief of the marginal member of the or-

ganization when the state variable is L. Because marginal agents make their member-

ship decisions based on flow payoffs, y(L) satisfies p(L, y(L))b+(1−p(L, y(L)))c = s.

Equivalently, p(L, y(L)) = s−c
b−c . Because p(L, y(L)) = y(L)

y(L)+(1−y(L))L
, this is equivalent

to y(L)
y(L)+(1−y(L))L

= s−c
b−c . Solving for y(L), we obtain y(L) = s−c

s−c+(b−s) 1
L

.

Because y(L) = s−c
s−c+(b−s) 1

L

and, for a uniform distribution, we have m(L) =
1+y(L)

2
, substituting the formula for y(L) into the formula for m(L) for a uniform

distribution, we obtain m(L) = 1
2

2L(s−c)+b−s
L(s−c)+b−s .

Because zm(L) = 1

1+( 1
m(L)

−1)L
, substituting the above formula for m(L) into

the formula for zm(L), we obtain zm(L) = 2L(s−c)+b−s
L(2(s−c)+b−s)+b−s . Then limL→∞ zm(L) =

limL→∞
2L(s−c)+b−s

L(2(s−c)+b−s)+b−s = 2(s−c)
(b−c)+(s−c) .

By lemma 18, if the distribution of priors is power law, i.e., f(x) = (1 − x)αc,

then zm(L) is decreasing in L. In particular, this applies to the uniform distribution

if we take α = 0, c = 1. �

The rest of the proof is then similar to the proof for the baseline model (the

proof of Proposition 1). In particular, because, by lemma 12, x 7→ V i(x) is strictly

increasing and, by claim 7.5, L 7→ zm(L) is decreasing for a uniform distribution of

priors, L 7→ V i(zm(L)) is decreasing for a uniform distribution. Thus to ensure that

V i(zm(L)) ≥ r
γ

for all L, it is enough to ensure that limL→∞ V
i(zm(L)) ≥ r

γ
. Because,

by claim 7.5, limL→∞ zm(L) = 2(s−c)
(b−c)+(s−c) and L 7→ V i(zm(L)) is continuous (because

x 7→ V i(x) is continuous and L 7→ zm(L) is continuous for a uniform distribution), it

is enough to ensure that V i
(

2(s−c)
(b−c)+(s−c)

)
≥ r

γ
.

Next, given that we have shown that V i
(

2(s−c)
(b−c)+(s−c)

)
≥ r

γ
implies that V i(zm(L)) ≥

r
γ

for all L for a uniform distribution of priors, by an argument similar to the one in
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the proof of Proposition 1 the hypothesis that f is non-decreasing ensures that that

we have V i(zm(L)) ≥ r
γ

for all L under f .

To show that if V
(

2(s−c)
(b−c)+(s−c)

)
< r

γ
, there is no equilibrium in which the orga-

nization experiments forever, we can use the result in lemma 9 that limL→∞ zm(L) =

limL→∞ zm̃(L) = 2(s−c)
(b−c)+(s−c) and an argument similar to the one used in the proof of

Proposition 1.

Finally, we show that there exist parameter values such that V i
(

2(s−c)
(b−c)+(s−c)

)
≥ r

γ

is satisfied. Note that, because an agent can always leave the organization, her payoff

in an equilibrium in which the organization experiments forever on the equilibrium

path is bounded below by her payoff from staying in the organization forever. If she

stays in the organization forever, she gets a payoff of b forever if the risky technology

is good and a payoff of c forever if the risky technology is good. Then V i(x) ≥
x b
γ

+ (1− x) c
γ
, which implies that V i

(
2(s−c)

(b−c)+(s−c)

)
≥ 1

γ
(b−c)s+(s−c)b
(b−c)+(s−c) , as required.

Then to show that there exist parameter values such that V i
(

2(s−c)
b−c+s−c

)
≥ r

γ
it

is sufficient to check that there exist parameter values such that (b−c)s+(s−c)b
(b−c)+(s−c) ≥ r. In

general, for any values of b, s and c satisfying b > s > c > 0, there is r∗(b, s, c) such

that the condition holds if r ≤ r∗(b, s, c), and moreover r∗(b, s, c) ∈ (s, b). �

Proof of Proposition 7.

For convenience, we multiply the all value functions in this proof by γ.

Let V ε
x,G(l) denote the value function of an agent with prior belief x given that the

state is lnL(k, t) = l, the technology is good and the behavior on the equilibrium path

is as described in the Proposition. Let V ε
x,B(l) denote the analogous value function

given that the technology is bad. Finally, let V ε
x (l) denote the value function of an

agent with prior belief x given that the state is l and the behavior on the equilibrium

path is as described in the Proposition.

The value function of the median is then given by

V ε
m(l)(l) = zm(l)V

ε
m(l),G(l) + (1− zm(l))V

ε
m(l),G(l)

By Proposition 6, there exist parameters such that there exists an equilibrium

in which the organization experiments forever. Note that V 0
x (l) denotes the value
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function of an agent with prior x when the state is l in the equilibrium in which the

organization experiments forever.

We claim that we can choose the density f such that there is a unique global

minimum of V 0
m(l)(l), which we will call l∗. Because, by Corollary 2, V 0

m(l) = V 0
zm(l)(0)

and x 7→ Vx(0) is strictly increasing, it is enough to show that there exists a density

such that the minimum of the posterior of the median zm(l) over l is a singleton. This

follows from Lemma 19.12

Note that V 0
m(l)(l) does not depend on r. Thus we can choose r such that

V 0
m(l∗)(l

∗) = r. Then, because l∗ is the unique minimizer of l 7→ V 0
m(l)(l), we have

V 0
m(l)(l) > r for all l 6= l∗.

We then aim to show that, if we change the equilibrium to require that ex-

perimentation stop at l = l∗ with an appropriately chosen probability ε > 0, the

constraints V ε
m(l∗)(l

∗) = r and V ε
m(l)(l) ≥ r for all l 6= l∗ still hold.

It is useful to note at this point that value functions can be written recursively,

in the following sense:

Claim 7.6. For any strategy profile σ, and any two values l, l′ ∈ R, let

Tx,l′(l) =

∫ +∞

0

γe−γtP (∃s ∈ [0, t] : ls = l′|l0 = l)dt

V̂x,l′(l) =

∫ +∞

0

γe−γtE(ux(h
t)1∃s∈[0,t]:ls(ht)=l′|l0 = l)dt

Ṽx,l′(l) =
V̂x,l′(l)

1− Tx,l′(l)
,

where ux(h
t) is agent x’s flow payoff at time t and history ht. Then

Vx(l) = (1− Tx,l′(l))Ṽx,l′(l) + Tx,l′(l)Vx(l
′).

Intuitively, Tx,l′(l) is the weighted discounted probability that (ls)s has hit the

value l′ by time t; V̂x,l′(l) is the expected utility of agent x starting with l0 = l, but

setting the continuation value to zero whenever lt hits l′; and Ṽx,l′(l) is a normalization.

12Technically we also need the condition V 0
m(l∗)(l

∗) < liml→+∞ V 0
m(l)(l), but this is also satisfied

by the example in Lemma 19.
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Next, note that, for any 0 ≤ ε ≤ 1,

V ε
x (l) = (1− Tx,l∗(l))Ṽx,l∗(l) + Tx,l∗(l)V

ε
x (l∗),

where Tx,l∗(l) is independent of ε, since changing ε has no impact on the policy path

except when l = l∗.

Let W ε
x = liml↘l∗ V

ε
x (l). W ε

x is the expected continuation value of agent x when

l = l∗ and the median member, m(l∗), has just decided not to stop experimenting.

This is closely related to V ε
x (l∗), which is the expected continuation value taken before

m(l∗) has decided whether to stop experimenting or not. Specifically

V ε
x (l∗) = εr + (1− ε)W ε

x = εr + (1− ε)
(

(1− Tx,l∗(l∗+))W̃ ε
x + Tx,l∗(l

∗+)V ε
x (l∗)

)
V ε
x (l∗) =

εr + (1− ε)(1− Tx,l∗(l∗+))W̃ ε
x

1− (1− ε)(1− Tx,l∗(l∗+))

= V 0
x (l∗) + ε

r − V 0
x (l∗)

1− (1− ε)(1− Tx,l∗(l∗+))
.

Hence

V ε
x (l) = (1− Tx,l∗(l))Ṽx,l∗(l) + Tx,l∗(l)

(
V 0
x (l∗) + ε

r − V 0
x (l∗)

1− (1− ε)(1− Tx,l∗(l∗+))

)
= Tx,l∗(l)ε

r − V 0
x (l∗)

1− (1− ε)(1− Tx,l∗(l∗+))
+ V 0

x (l).

At the same time, by Lemma 12 and Corollary 2 we have that, for some δ > 0

small enough and all l ∈ (l∗ − δ, l∗ + δ),

V 0
m(l)(l) = V 0

zm(l)(l)
(0) = V 0

zm(l∗)(l∗)
(0) + (zm(l)(l)− zm(l∗)(l

∗))
∂

∂x
V 0
x̃ (0) ≥

≥ V 0
zm(l∗)(l∗)

(0) +K|l − l∗| = r +K|l − l∗|

for some K > 0, as a result of the facts that ∂
∂x
V 0
x,G(0) > 0 and that l 7→ zm(l)(l) has

a kink at l∗. On the other hand, for l /∈ (l∗ − δ, l∗ + δ), we have

V 0
m(l)(l) = V 0

zm(l)(l)
(0) ≥ V 0

zm(l∗)(l∗)
(0) +K ′ = r +K ′

due to the fact that zm(l)(l)− zm(l∗)(l
∗) is bounded away from zero in this case.
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Let ε1 be small enough that
Tx,l∗ (l)

Tx,l∗ (l∗+)
ε1 lim supl→l∗

∣∣∣∣V 0
m(l)

(l∗)−V 0
m(l∗)(l

∗)

l−l∗

∣∣∣∣ < K. Let

ε2 be small enough that K ′ ≥ Tx,l∗ (l)

Tx,l∗ (l∗+)
ε2 max(b− r, r− c). Take ε = min(ε1, ε2). Then

V ε
m(l)(l) ≥ r for all l, as desired.

(For these arguments to be valid, we need to verify that Tx,l∗(l
∗+) > 0 and that

lim supl→l∗

∣∣∣∣V 0
m(l)

(l∗)−V 0
m(l∗)(l

∗)

l−l∗

∣∣∣∣ is finite. The former follows from the fact that, taking

t = ln(b)−ln(c)+l∗−l
b−c , we have P (lt = l∗|l0 = l) = P (k(t) = 1) > 0. The latter follows

from the fact that ∂
∂x
V 0
x (l∗) and m′ are bounded.)

�

Proof of Corollary 1.

Take the example constructed in Proposition 7, and assume that l(0) = l0 > l∗.13

Let PG(l0) be the probability that the organization stops experimenting for some finite

t ≥ 0 when the state of the world is good, and PB(l0) the corresponding probability

when the state of the world is bad.

We will show that PG(l0) > PB(l0) for l0 large enough. In fact, we prove a

stronger result: we show that there is C > 0 such that PG(l0) ≥ C > 0 for all l0 > l∗,

but liml0→+∞ PB(l0) = 0.

To do this, we define two auxiliary objects. Let QG(l0) be the probability that

lt ∈
(
l∗ − ln( b

c
), l∗
]

for some t when the state of the world is good, and QB(l0) be the

corresponding probability when the state is bad. In words, Qθ(l0) is the probability

that lt ever crosses over to the left of l∗.

It can be shown that QG(l0) = 1 for all l0 > l∗, but liml0→+∞QB(l0) = 0. This

follows from the fact that, when θ = G, (lt)t is a type of random walk with negative

drift and hence, in fact, lt → −∞ as t → +∞ with probability one, while when

θ = G, (lt)t has positive drift and converges to +∞.

From there it follows that PB(l0) ≤ QB(l0) → 0 as l0 → +∞. On the other

13Technically, our definition of l(t) forces l(0) = 0, but we can relax this assumption by considering
a continuation of the game starting at some t0 > 0, where, by assumption, k(t0) is such that
l(k(t0), t0) = l0. This example can be fit into our original framework by redefining the density of
prior beliefs f̃ to be the density of the posteriors held by agents when l = l0 and f is as in Proposition
7. With this relabeling, l(0) would equal zero and l∗ would shift to some negative value, but it is
easier to think in terms of shifting l(0) and leaving f unchanged.
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hand, PG(l0) ≥ QG(l0) minl∈(l∗−ln( b
c
),l∗] PG(l) > 0. �

Let V (µ, L) denote the value function of an agent with prior µ for a given value

of L. Then

V (µ, L) = µV (µ, L,G) + (1− µ)V (µ, L,B)

where V (µ, L, θ) is the expected utility of an agent with prior µ given L and condi-

tional on the true state being θ.

Lemma 13. V (µ, L,G) and V (µ, L,B) satisfy the following equations for L ∈ R≥0\L:

L(b−c)∂V (µ, L,G)

∂L
= γ

(
1
L≤ µ(b−s)

(1−µ)(s−c)
(s− b)− s

)
+(γ+b)V (µ, L,G)−bV

(
µ, L

c

b
,G
)

L(b−c)∂V (µ, L,B)

∂L
= γ

(
1
L≤ µ(b−s)

(1−µ)(s−c)
(s− c)− s

)
+(γ+c)V (µ, L,B)−cV

(
µ, L

c

b
, B
)

V (µ, L, θ) = r
γ

for L ∈ L and θ ∈ {B,G}. Moreover, the boundary conditions

V (µ, 0, G) = b
γ

and V (µ, 0, B) = c
γ

are satisfied.

Proof of lemma 13.

Because, by lemma 11, an agent with belief µ at time t is in the organization at

time t if and only if L ≤ µ(b−s)
(1−µ)(s−c) , and, provided that the risky technology is good,

an agent’s flow payoff during the time period of length ε is

1
L≤ µ(b−s)

(1−µ)(s−c)
b+1

L≥ µ(b−s)
(1−µ)(s−c)

s = 1
L≤ µ(b−s)

(1−µ)(s−c)
b+s−1

L≤ µ(b−s)
(1−µ)(s−c)

s = 1
L≤ µ(b−s)

(1−µ)(s−c)
(b−s)+s

Similarly, provided that the risky technology is bad, an agent’s flow payoff during

the time period of length ε is 1
L≤ µ(b−s)

(1−µ)(s−c)
(b− s) + s.

Provided that the risky technology is good, with probability approximately

equal to e−bε, a success arrives within the time period of length ε, which changes the

state from L to L c
b
e(b−c)ε. With probability approximately equal to e−bε, a success

does not arrive within this time period, which changes the state from L to Le(b−c)ε.
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Then we have

V (µ, L,G) ≈(1− e−γε)
(
1
L≤ µ(b−s)

(1−µ)(s−c)
(b− s) + s

)
+

+ e−γε
[
e−bεV

(
µ, Le(b−c)ε, G

)
+
(
1− e−bε

)
V
(
µ, L

c

b
e(b−c)ε, G

)]
Subtracting V

(
µ, Le(b−c)ε, G

)
from both sides, we obtain

V (µ, L,G)− V
(
µ, Le(b−c)ε, G

)
≈

(
1− e−γε

)(
1
L≤ µ(b−s)

(1−µ)(s−c)
(b− s) + s

)
+

+
(
e−(γ+b)ε − 1

)
V
(
µ, Le(b−c)ε, G

)
+e−γε

(
1− e−bε

)
V
(
µ, L

c

b
e(b−c)ε, G

)
Dividing both sides by ε and taking the limit as ε→ 0, we find that this simplifies

to the desired equation for V (µ, L,G). The proof for V (µ, L,B) is similar.

We have V (µ, L, θ) = r
γ

for L ∈ L and θ ∈ {B,G} because, whenever L ∈ L,

the organization switches to the safe technology and uses it forever, which yields a

payoff of
∫∞

0
e−γτrdτ = r

γ
.

The boundary conditions V (µ, 0, G) = b
γ

and V (µ, 0, B) = c
γ

are satisfied be-

cause if L = 0, then all agents put probability one on the event that the technology

is good. This results in the organization experimenting forever, which yields a payoff

of
∫∞

0
e−γτbdτ = b

γ
if the technology is good and a payoff of

∫∞
0
e−γτcdτ = c

γ
if the

technology is bad. �

We perform a convenient change of variables, letting l = lnL so that L = el.

Given the change of variables, we let L = {l = ln(L) : L ∈ L} denote the set of

the values of l for which the organization stops experimentation. For convenience,

we rewrite the equations in lemma 13 with l = lnL as our state variable. We let

W (µ, l, G) and W (µ, l, B) denote the resulting value functions.

Lemma 14. W (µ, l, G) and W (µ, l, B) satisfy the following equations for l ∈ R \ L:

(b−c)∂W (µ, l, G)

∂l
= γ

(
1
l≤ln

µ(b−s)
(1−µ)(s−c)

(s− b)− s
)

+(γ+b)W (µ, l, G)−bW
(
µ, l + ln

c

b
,G
)

(b−c)∂W (µ, l, B)

∂l
= γ

(
1
l≤ln

µ(b−s)
(1−µ)(s−c)

(s− c)− s
)

+(γ+b)W (µ, l, B)−cW
(
µ, l + ln

c

b
, B
)
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W (µ, l, θ) = r
γ

for l ∈ L and θ ∈ {B,G}. Moreover, the boundary conditions

liml→−∞W (µ, l, G) = b
γ

and liml→−∞W (µ, l, B) = c
γ

are satisfied.

Proof of lemma 14.

Note that ln
(
L c
b

)
= ln

(
eleln c

b

)
= ln

(
el+ln c

b

)
= l + ln c

b
and that

∂W (µ, l, G)

∂l
=
∂V (µ, L,G)

∂L

∂L

∂l
=
∂V (µ, L,G)

∂L

∂

∂l

(
el
)

=

∂V (µ, L,G)

∂L
el =

∂V (µ, L,G)

∂L
L

which implies that ∂V (µ,L,G)
∂L

= 1
L
∂W (µ,l,G)

∂l
. Note also that V (µ, L,G) = W (µ, l, G).

Substituting the formulas for ∂V (µ,L,G)
∂L

and V (µ, L,G) into the equations from

lemma 13, we obtain the desired equation for W (µ, l, G) in the statement of lemma

14. The proof for W (µ, l, B) is similar. �

We make several definitions that we find convenient to use in the proofs below.

We let d = ln µ(b−s)
(1−µ)(s−c) denote the threshold value of l such that an agent is in

the organization if and only if l is below this threshold. We let a = − ln c
b

denote

the amount by which l decreases after the technology experiences a success. We let

W0(l) = W (µ, l, G) denote the value function of an agent with prior µ given that

l ≤ d and that the technology is good. Finally, we let Wn(l) = W (µ, l, G) denote the

value function an agent with prior µ given that l ∈ (d + (n − 1)a, d + na] for n ≥ 1

and given that the technology is good.

Lemma 15.

W0(l) = Deω0l + C0

for ω0 satisfying (b− c)ω0 = γ + b− be−ω0a, C0 = b and some constant D.

Proof of lemma 15.

Note that if W0(l) = Deω0l + C0, then W ′
0(l) = Dω0e

ω0l.

Suppose that l ≤ d. Then the equation from lemma 14 can be written as

(b− c)W ′
0(l) = (γ + b)W0(l)− bW0(l − a)− γb
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Substituting in the conjectured formula for W0(l), we obtain

(b− c)ω0De
ω0l = (γ + b)

(
Deω0l + C0

)
− b
(
Deω0(l−a) + C0

)
− γb

In order for the constant terms to cancel out, we need 0 = (γ+ b)C0− bC0−γb,
which is equivalent to C0 = b.

Then the equation simplifies to

(b− c)ω0D0e
ω0l = (γ + b)Deω0l − bDeω0(l−a)

Canceling Deω0l from both sides, we obtain

(b− c)ω0 = γ + b− be−ω0a

which pins down ω0. �

Lemma 16. If W0(l) = Deω0l + b for ω0 satisfying (b − c)ω0 = γ + b − be−ω0a and

some constant D, then

W1(l) = Deω0l + a0e
ω1l + C1

for ω1 = γ+b
b−c , C1 = b2+γs

γ+b
and some constant a0.

Proof of lemma 16.

Note that if W1(l) = D1e
ω0l + a0e

ω1l + C1 for some constant D1, then W ′
1(l) =

ω0D1e
ω0l + ω1a0e

ω1l.

Suppose that l ∈ (d, d + a], so that l − a ∈ (d − a, d]. Then the equation from

lemma 14 can be written as

(b− c)W ′
1(l) = (γ + b)W1(l)− bW0(l − a)− γs

Substituting in the formulas for W1(l) and W ′
1(l), this is equivalent to

(b−c)
(
ω0D1e

ω0l + ω1a0e
ω1l
)

= (γ+b)
(
D1e

ω0l + a0e
ω1l + C1

)
−b
(
Deω0(l−a) + C0

)
−γs

In order for the constant terms to cancel out, we need 0 = (γ+ b)C1− bC0−γs.
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That is, we need C1 = b2+γs
γ+b

.

Then the equation simplifies to

(b− c)
(
ω0D1e

ω0l + ω1a0e
ω1l
)

= (γ + b)
(
D1e

ω0l + a0e
ω1l
)
− bD0e

ω0(l−a)

To match the coefficients, we need that (b − c)ω0D1e
ω0l = (γ + b)D1e

ω0l −
bDeω0(l−a). This equation holds for all l if D1 = D, and there can only be one value

of D1 that works for all l, so D1 = D.

Then the equation simplifies to

(b− c)ω1a0e
ω1l = (γ + b)a0e

ω1l

which implies that ω1 = γ+b
b−c . �

Lemma 17.

Wn(l) = Pn(l)eω1l +Dne
ω0l + Cn

where Pn is a polynomial of degree n − 1, ω0 satisfies (b − c)ω0 = γ + b − beω0a for

a = − ln c
b
, ω1 = γ+b

b−c and Dn = D for some constant D > 0 for all n ≥ 1.

Moreover, Cn = b− (b− s)
(

1−
(

b
γ+b

)n)
for n ≥ 1 and (Pn)n satisfies

P ′n(l) = − b

(b− c)eω1a
Pn−1(l − a)

for all n ≥ 1.

Proof of lemma 17.

We will prove the lemma by induction.

Lemma 16 shows that the statement is true for n = 1. Suppose as an inductive

hypothesis that the statement is true for n = k, and consider Wk+1.

We have

W ′
k+1(l) = P ′k+1(l)eω1l + Pk+1(l)ω1e

ω1l +Dk+1ω0e
ω0l
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and we want to show that

(b− c)W ′
k+1(l) = (γ + b)Wk+1(l)− bWk(l − a)− γs

Substituting in the formulas for W ′
k+1(l), Wk+1(l) and Wk(l − a), we want to

show that

(b− c)
(
P ′k+1(l)eω1l + Pk+1(l)ω1e

ω1l +Dk+1ω0e
ω0l
)

=

(γ + b)(Pk+1(l)eω1l +Dk+1e
ω0l + Ck+1)− b(Pk(l − a)eω1(l−a) +Deω0(l−a) + Ck)− γs

For the constants to cancel out, it must be that 0 = (γ + b)Ck+1 − bCk − γs.
That is, we need Ck+1 = bCk+γs

γ+b
. This pins down Cn for all n ≥ 1 given that C0 = b,

and we can check manually that Cn = b− (b− s)
(

1−
(

b
γ+b

)n)
works.

The equation then simplifies to

(b− c)
(
P ′k+1(l)eω1l + Pk+1(l)ω1e

ω1l +Dk+1ω0e
ω0l
)

=

= (γ + b)(Pk+1(l)eω1l +Dk+1e
ω0l)− b(Pk(l − a)eω1(l−a) +Deω0(l−a))

As in lemma 16, for the terms multiplied by eω0l to cancel out, we need that

Dk+1 = D. The equation then simplifies to

(b− c)
(
P ′k+1(l)eω1l + Pk+1(l)ω1e

ω1l
)

= (γ + b)Pk+1(l)eω1l − bPk(l − a)eω1(l−a)

Since ω1 = γ+b
b−c , we have that (b − c)Pk+1(l)ω1e

ω1l = (γ + b)Pk+1(l)eω1l. Then

the equation simplifies to

(b− c)P ′k+1(l)eω1l = −bPk(l − a)eω1(l−a)

�

Lemma 18. If the distribution of priors is power law, then zm(L) is decreasing in L.

Moreover, if L0m
′(L0) < m(L0)(1 −m(L0)), then L 7→ z(L) is strictly decreasing at

L = L0, and if L0m
′(L0) > m(L0)(1 −m(L0)), then L 7→ z(L) is strictly increasing

at L = L0.
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Proof of lemma 18.

The density of the power law distribution is given by f(x) = (1− x)αc where c

is a constant ensuring that the density integrates to 1. In particular, if the support of

the distribution is [0, 1], then we have F (z) =
∫ z

0
(1− x)αcdx = c

α+1
(1− (1− z)α+1).

Because F (1) = 1, we must have c = α + 1. Then F (z) = 1 − (1 − z)α+1 and the

CDF of the distribution with support on [y, 1] is given by (1−y)α+1−(1−z)α+1

(1−y)α+1 .

Let m(L) and y(L) denote the median and the marginal members of the or-

ganization respectively. The above argument implies that the median must satisfy
(1−y(L))α+1−(1−m(L))α+1

(1−y(L))α+1 = 1
2
. Equivalently, we must have (1 − m(L))α+1 = 1

2
(1 −

y(L))α+1. Then the median must satisfy 1 − m(L) = (1 − y(L))2−
1

α+1 , or m(L) =

1− κ+ κy(L) for κ = 2−
1

α+1 .

Note that zm(L) = 1

1+( 1
m(L)

−1)L
. Then z′(L) ∝ − ∂

∂L

(
1 +

(
1

m(L)
− 1
)
L
)

and

∂
∂L

(
1 +

(
1

m(L)
− 1
)
L
)

= ∂
∂L

((
1

m(L)
− 1
)
L
)

= 1
m(L)
− 1− L

(m(L))2
m′(L).

This implies that if L0m
′(L0) < m(L0)(1 −m(L0)), then L 7→ z(L) is strictly

decreasing at L = L0, and if L0m
′(L0) > m(L0)(1−m(L0)), then L 7→ z(L) is strictly

increasing at L = L0.

After some algebra, using the fact that y(L) = s−c
s−c+(b−c) 1

L

, we get that this is

equivalent to 0 < (1− κ)(1− ζ), where ζ = s−c
b−c . Since κ and ζ are between 0 and 1,

this always holds. �

Lemma 19. There exist distributions for which zm(L) is increasing for some values

of L.

Proof of lemma 19.

We will show that there exist distributions for which Lm′(L) = m(L)(1−m(L))

in some interval. Because, by lemma 18, if L0m
′(L0) < m(L0)(1 − m(L0)), then

L 7→ z(L) is strictly decreasing at L = L0, this would imply that L 7→ z(L) is strictly

decreasing in some interval.

Let m̃(l) = m(el). Then Lm′(L) = m(L)(1 − m(L)) is equivalent to m̃′(l) =

m̃(l)− m̃2(l). The general solution to this equation is m̃(l) = el

el+C
, or m(L) = L

L+C
.

We rewrite m(L) in terms of y(L) as follows. The formula for y(L) implies that

L =
y(L) b−s

s−c
1−y(L)

. Substituting this intom(L) < L
L+C

, we obtainm(L) < y(L)(b−s)
y(L)(b−s−C(s−c))+C(s−c) .
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Equivalently, we have m(L) < (λ+β)y(L)
λy(L)+β

for some λ > 0 and β > 0 satisfying

λ+ β = b− s (in particular, we have β = C(s− c), λ = b− s− C(s− c)).

For L 7→ zm(L) to be increasing, we need that m(L) < (λ+β)y(L)
λy(L)+β

.

Consider a distribution with a density f(x) = a1 for x ∈ [0, b1] and f(x) = a2

for x ∈ [b1, 1]. We must then have a1b1 + a2(1− b1) = 1.

Denote b− c = b, s− c = s, y(L) = y, m(L) = m, zm(L)(L) = z.

Let L1 be such that m(L1) = b1 and L2 be such that y(L2) = b1. Clearly

0 < L1 < L2. For L > L2, m(L) and zm(L) are the same as in the uniform case; in

particular, zm(L) = 2Ls+b−s
L(s+b)+b−s , which is decreasing in L.

In general y = Ls
Ls+b−s .

For L ∈ (L1, L2), we must have a1(b1 − y) + a2(m − b1) = a2(1 − m), i.e.,

m = 1+b1
2
− a1b1

2a2
+ a1

2a2
y. Equivalently m =

(
1− 1

2a2

)
+ a1

2a2
y =

(
1− 1

2a2

)
+ a1

2a2
Ls

Ls+b−s .

Then

1

z
− 1 =

L(1−m)

m
= L

L1−a1
2a2

s+ 1
2a2

(b− s)(
1− 1

2a2
+ a1

2a2

)
Ls+

(
1− 1

2a2

)
(b− s)

For L < L1, we have a1(m− y) = a1(b1 −m) + a2(1− b1), i.e., 2a1m = a1b1 + a2(1−
b1) + a1y = 1 + a1y, so m = 1

2a1
+ 1

2
y, and

1

z
− 1 =

L(1−m)

m
= L

L
(

1
2
− 1

2a1

)
s+

(
1− 1

2a1

)
(b− s)(

1
2a1

+ 1
2

)
Ls+ 1

2a1
(b− s)

.

Now take a2 = 1
2

and any a1 > 1 (note that choosing both pins down b1 = 1
2a1−1

).

Then we can verify that L 7→ 1
z
− 1 is increasing in (0, L1) and decreasing in (L1, L2).

In other words, L 7→ zm(L)(L) is decreasing in (0, L1) and (L2,+∞) but increasing in

(L1, L2), so L1 is a local minimizer for zm(L).

Moreover, we can verify that under some extra conditions L1 is a global mini-
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mizer: limL→∞
1

zm(L)
−1 = b−s

2s
, while 1

zm(L1)
(L1)
−1 = L1(1−a1)s+b−s

a1s
. Since m(L1) = b1,

1

zm(L1)(L1)
− 1 =

L1

m(L1)
− L1 =

L1

b1

− L1 =
L1(1− a1)s+ b− s

a1s

L1 =
b− s

s
(
a1
b1
− 1
)

1

zm(L1)(L1)
− 1 =

L1

b1

− L1 =
b− s
s

1
b1
− 1

a1
b1
− 1

=
b− s
s

1− b1

a1 − b1

=
b− s
s

2a1 − 2

2a2
1 − a1 − 1

=
b− s
s

1

a1 + 1
2

so L1 is a global minimizer if we take a1 ∈ (1, 3
2
).

�
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