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Abstract

Consumer surplus in a market is affected by how the market is segmented. We study

the maximum consumer surplus across all possible segmentations of a given market served

by a multi product monopolist. We characterize markets for which the maximum consumer

surplus equals a first best benchmark (i.e., maximum total surplus minus minimum profit).

The first best benchmark is achievable whenever the seller does not find it profitable to

screen types by offering multiple bundles, highlighting a novel impact of screening. We

also characterize markets for which consumer surplus can be increased compared to the

unsegmented market, and show that these markets are generic. We construct a simple

segmentation that improves consumer surplus in these markets.

1 Introduction

Advances in information technologies have enhanced firms’ ability to personalize their offers

based on consumer data. A central regulatory question regarding consumer privacy is to what

extent, if at all, a firm’s ability to collect consumer data should be limited. As a 2012 report

by the Federal Trade Commission puts it, “The Commission recognizes the need for flexibility

to permit [...] uses of data that benefit consumers. At the same time, [...] there must be some

reasonable limit on the collection of consumer data.”1 We study consumer surplus when a firm

uses data to segment a market and make segment-specific offers.
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1“Protecting Consumer Privacy in an Era of Rapid Change, Recommendations for Businesses and Policymak-

ers”, FTC report, March 2012.
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A large and growing literature (Pigou, 1920, Varian, 1985, Bergemann et al., 2015) studies

the welfare impacts of market segmentation. This literature typically assumes that the seller

conducts third degree price discrimination, that is, sells a single product in each market (or

market segment). In reality, however, sellers may offer multiple quality or quantity levels of

a product or bundles of heterogeneous products. This paper investigates consumer-optimal

segmentations in such environments. We show that optimal consumer surplus depends crucially

on whether or not the seller finds it profitable to screen types by offering multiple bundles. In

this sense, we uncover a novel connection between second and third degree price discrimination.

Consider a multi product seller, for example an online retailer such as Amazon. The seller

may be able to observe certain characteristics of its buyers, perhaps noisily, such as age, sex,

or location. Based on the available information, the seller may be able to segment the market

and offer each market segment a potentially different menu of products and bundles of products.

For instance, the seller may offer bundle discounts to consumers in certain locations, or offer

products exclusively to different age groups. The resulting producer and consumer surplus

depend on how the market is segmented (the “segmentation”), which in turn depends on the

information available to the seller.

We study the maximum consumer surplus across all possible segmentations of a given market.

The maximum consumer surplus lies between two bounds. First, it is bounded from below by

the consumer surplus in the unsegmented market.2 If the maximum consumer surplus is strictly

higher than this lower bound, we say that improving consumer surplus is possible. Second, the

maximum consumer surplus is bounded from above by “first best” consumer surplus, which is

the total surplus from allocating products efficiently minus the seller’s profit in the unsegmented

market.3 If the maximum consumer surplus equals first best consumer surplus, we say that

first best consumer surplus is achievable. We investigate the possibility of improving consumer

surplus and the achievability of first best consumer surplus.

To illustrate, consider the following example, based on Bergemann et al. (2015), in which the

seller produces a single product at zero cost and consumers have unit demand. A third of the

2This is because one possible segmentation of a market is to leave it unsegmented.

3The maximum consumer surplus is at most the total surplus from allocating products efficiently minus the

minimum profit across all segmentations. Profit is minimized when the market is unsegmented. This is because

if the market is segmented, the seller can still offer the menu offered in the unsegmented market to all market

segments in the segmented market.
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consumers have valuation (willingness to pay) 1 for the product, and two thirds have valuation

2. In the unsegmented market, the seller optimally sells the product at price 2 (hence only

consumers with valuation 2 buy the product), profit is 4/3, and consumer surplus is 0. Because

it is efficient to allocate the product to all consumers, the surplus of the efficient allocation is

5/3. The first best consumer surplus is therefore 5/3−4/3 = 1/3. There exists a segmentation in

which the consumer surplus is 1/3 and therefore is equal to first best. This segmentation assigns

half of the consumers with valuation 2 and all the consumers with valuation 1 to one market

segment, and the rest of the consumers with valuation 2 to another market segment. In the first

market segment the seller optimally sells the product at price 1, which gives a consumer with

valuation 2 a surplus of 2− 1 = 1. In the second market segment, the seller optimally sells the

product at price 2. Overall, a third of all consumers (half of the consumers with valuation 2) get

a surplus of 1, so the consumer surplus is 1/3. Thus, first best consumer surplus is achievable,

and improving consumer surplus is possible. Bergemann et al. (2015) show that in fact for

any market with a single product and unit demand consumers, first best consumer surplus is

achievable.4

In the above example the seller sets a price for the product in each market. In our setting, the

seller can produce multiple products (at zero cost), and can offer a menu of bundle-price pairs

(a bundle may include a single product) in each market. There are multiple types of consumers,

where each type specifies a valuation for every bundle. Consumers’ valuations may be non-linear,

and as a result the seller may find it profitable to screen consumers in a given market by offering

multiple bundles, each targeted at a different subset of consumers. The possible profitability of

screening consumers in a market is a key distinguishing feature of our setting compared to most

of the related literature on third degree price discrimination.5

The maximum consumer surplus can in principle be identified using a concavification ap-

proach from Aumann et al. (1995) and Kamenica and Gentzkow (2011). In particular, consider

the concavified consumer surplus function, which is the smallest concave function that, for each

market, is at least as large as the consumer surplus for that market.6 For a given market, the

4Notice that if first best consumer surplus is strictly higher than consumer surplus in the unsegmented market,

then the achievability of first best consumer surplus implies possibility of improving consumer surplus.

5For instance, in the example discussed before, it is not profitable to screen types by offering randomized

allocations, as shown by Myerson (1981) and Riley and Zeckhauser (1983).

6If there are multiple menus that maximizer profit, ties are broken to maximize consumer surplus.
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maximum consumer surplus is equal to the value of the concavified consumer surplus function

for that market.

In our setting, however, the concavification approach is of limited use. First, to apply con-

cavification one must identify optimal (profit-maximizing) mechanisms for each market in order

to identify consumer surplus in that market. However, no general characterization of optimal

mechanisms is known in settings with multiple products.7 Second, even if consumer surplus can

be identified for all markets, it is not clear how its concavification can be compared to the upper

and lower bounds on the maximum consumer surplus.8 We obtain sharp characterizations of the

achievability of first best consumer surplus and the possibility of improving consumer surplus by

developing new techniques that do not rely on either a characterization of optimal mechanisms

or concavification.

First best consumer surplus. One of our of key findings relates the achievability of first

best consumer surplus to the profitability of screening. For a given market, we say that screening

is profitable if the optimal menu for that market includes at least two bundles.9 We provide

three results which, roughly speaking, show that profitability of screening interferes with the

achievability of first best consumer surplus. Our first result states that if screening is profitable

for a market, then first best consumer surplus is unachievable for that market. If screening is

profitable for a market, then the optimal mechanism for that market has an inefficient allocation.

Our result shows that it is impossible to restore efficiency via segmentation without appropriating

some of the gains to the seller.

Our other two results characterize when first best consumer surplus is achievable for either

every market or no market with a given set of types. These two results relate the achievability

of first best consumer surplus for a market to the profitability of screening in other markets

7More precisely, no characterization is known when valuations are non-linear in quantity. An alternative

modeling approach would be to assume that valuations are linear but costs are non-linear, as in Mussa and

Rosen (1978). In such a setting, ironing can be used to identify optimal mechanisms. Nevertheless, the difficulty

with concavification persists since it requires identification of consumer surplus for all markets. A closed form

expression for consumer surplus for all markets cannot be obtained since ironing needs to be performed differently

for different markets. We provide a detailed analysis in Subsection 7.2.

8Thus, the problem remains difficult even with a single product. Bergemann et al. (2015) develop method-

ologies to address achievability of first best consumer surplus for a single product.

9More precisely, we say that screening is profitable if any menu that offers only one bundle is not optimal.
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with the same set of types. Our second result characterizes when first best consumer surplus

is achievable for all markets. It shows that the following three statements are equivalent for a

given a set of consumer types: (1) first best consumer surplus is achievable for all markets with

this set of types; (2) screening is not profitable for any market with this set of types; and (3) for

any pair of types, and for any bundle of products, the ratio of the valuations of that bundle to

the grand bundle of all products is larger for the type with the higher valuation for the grand

bundle. The second and third statements characterize the achievability of first best consumer

surplus in different ways. The second statement has a more clear economic interpretation but

may be difficult to determine (since it relies on identifying optimal mechanisms), whereas the

third statement is a direct condition on primitives, i.e., the set of types.

Our third result characterizes when first best consumer surplus is unachievable for any mar-

ket. It states that the following three statements are equivalent for a given a set of consumer

types: (1) first best consumer surplus is unachievable for any market with this set of types; (2)

for any market with this set of types, there is at most one price at which selling only the grand

bundle is optimal; and (3) for every pair of types, there exists a bundle of products such that

the ratio of valuations of that bundle to the grand bundle of all products is smaller for the type

with the higher valuation for the grand bundle.

Improving Consumer Surplus. We next turn to the possibility of improving consumer sur-

plus. We first show that there are markets for which improving consumer surplus is impossible.

In such markets, consumer surplus in any segmentation that is not equal to the unsegmented

market is in fact strictly lower than the consumer surplus in the unsegmented market. How-

ever, we show that such markets are not generic by constructing a segmentation that improves

consumer surplus for generic markets.

The segmentation consists of only two market segments. The first segment contains two

consumer types, the lowest consumer type, and another type to be identified shortly. The

second segment contains the remaining types. The first segment is small enough so that the

second segment is almost identical to the unsegmented market. As a result, generically, the

optimal mechanism for the unsegmented market is also optimal for the second segment. Thus,

all the types in the second segment remain unaffected by this segmentation. We show that the

segmentation improves consumer surplus by identifying a type that benefits from joining the

lowest type in the first market segment. This type is one that purchases the grand bundle of
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products in the unsegmented market.

Related Work. Our work connects the literature on second and third degree price discrimi-

nation.

The literature that studies third degree price discrimination and its effects and producer and

consumer surplus is broad. Pigou (1920) provides examples where a segmentation may decrease

total and hence consumer surplus. Followup work provides conditions for a segmentation to

increase or decrease total surplus or consumer surplus (Robinson, 1969; Schmalensee, 1981;

Varian, 1985; Aguirre et al., 2010; Cowan, 2016). Our work differs from this literature in two

significant ways. First, with third degree price discrimination, the seller offers a single product

to all consumers in a market, whereas the seller in our setting may screen consumers in each

market by offering a menu of multiple bundles. Second, with the exceptions we now discuss, the

literature assumes that the segmentation is exogenously fixed.

A growing part of the literature on third degree price discrimination studies surplus across all

possible segmentations of a given market for a single product. Bergemann et al. (2015) identify

the set of all producer and consumer surplus pairs that can result from some segmentation of a

given market. Glode et al. (2018) study optimal disclosure by an informed agent in a bilateral

trade setting, and show that the optimal disclosure policy leads to socially efficient trade, even

though information is revealed only partially. Ichihashi (2018) and Hidir and Vellodi (2018)

consider maximum consumer surplus when a multi product seller offers a single product to each

market. Ichihashi (2018) considers a finite number of products and compares two regimes, one in

which the seller may offer the same product at different prices to different segments, and another

one in which the seller fixes the price in advance. Hidir and Vellodi (2018) characterize optimal

segmentation with a continuum of products. Braghieri (2017) studies market segmentation with

a continuum of firms each producing a single differentiated product. In contrast, the seller in

our setting may offer multiple products in a market in order to screen consumers.10 The only

instance of this we are aware of is Bergemann et al. (2015)’s parametric example with two types

and non-linear valuations.

Our work is also related to Roesler and Szentes (2017) and Condorelli and Szentes (2018)

10We reiterate that we use the term screening to mean that there are at least two bundles in the seller’s menu.

A mechanism that offers a single product at a high price and therefore excludes certain consumers is not a

screening mechanism.
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who consider a consumer who learns about her own preferences. Roesler and Szentes (2017)

assume that the distribution of the consumer’s valuations is fixed, but the consumer can choose

to learn a noisy signal about her valuations. They show that the optimal learning structure for

the buyer achieves efficient trade. Condorelli and Szentes (2018) study a bilateral trade setting

in which the consumer can choose any distribution for her valuations at no cost prior to trade.

They show that trade is ex post efficient.

The literature on multi product bundling goes back to Stigler (1963) and Adams and Yellen

(1976), who study bundling as an instrument to engage in second degree price discrimination.

Theoretical findings on welfare effects of bundling are inconclusive.11 The main hurdles are

the difficulty with identifying optimal mechanisms and their complexity. Thanassoulis (2004)

and Daskalakis et al. (2017) show that optimal mechanisms may offer randomized bundles.

Vincent and Manelli (2007) and Hart and Nisan (2013) show that the optimal menu may offer

infinitely many bundles. Daskalakis et al. (2014) and Chen et al. (2015) show that the problem of

finding optimal mechanisms is computationally intractable. A more recent literature empirically

estimates the welfare effects of bundling (Ho et al., 2012; Crawford and Yurukoglu, 2012).

Parts of our analysis combines results from the literature on information design and multi

dimensional screening. Haghpanah and Hartline (2018) identify conditions under which selling

only the grand bundle of products is optimal. Under these conditions we can use a segmentation

from Bergemann et al. (2015) to achieve first best consumer surplus. To identify markets for

which first best consumer surplus is unachievable, however, we develop a novel approach that

does not rely on a characterization of optimal mechanisms. We use concavification Aumann

et al. (1995); Kamenica and Gentzkow (2011) to study the possibility of improving consumer

surplus for two types. As discussed before, the concavification approach is of limited use beyond

the two type case since it requires a characterization of optimal mechanisms. We develop new

techniques to show that surplus can generically be improved upon.

All proofs not given in the text are in the appendix.

11Adams and Yellen (1976) show that bundling may be inefficient as it leads to oversupply or undersupply

of certain goods. Salinger (1995) argues that bundling may result in lower or higher prices and therefore may

increase or decrease consumer surplus.
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Figure 1: Type 1 has valuations (v, 1) and type 2 has valuations (1, 2) for one and two units. Case (a)

corresponds to v ≤ 0.5, and case (b) corresponds to v ≥ 0.5.

2 An Example

In this section we discuss a parametric example to highlight our results. We directly compare

maximum consumer surplus with its lower and upper bounds by calculating their closed form

expressions. Even though the calculations are straightforward, they are not easily extendable

beyond this example. A reader who is only interested in our general treatment can skip ahead

to the next section.

Consider an extension of the example discussed in the introduction. The seller produces

a single product at zero cost and each consumer demands at most two units of the product.

There are two types of consumers. A type 1 consumer has valuation v ∈ (0, 1) for one unit and

valuation 1 for two units. A type 2 consumer has valuation 1 for one unit and valuation 2 for

two units. The two types are illustrated in Figure 1, in which case (a) corresponds to v ≤ 0.5

and case (b) corresponds to v ≥ 0.5. A market q consists of a fraction 1− q of type 1 consumers

and a fraction q of type 2 consumers.

To identify maximum consumer surplus, it is useful to first identify optimal mechanisms.

Consider the following three mechanisms and their revenue in a market q. Mechanism N1 offers

two units of the product (as a bundle) at price 1, and has revenue 1. Mechanism N2 offers two

units (as a bundle) at price 2, and has revenue 2q. Mechanism S screens; it offers one unit at

price v and two units at price v + 1, and has revenue v + q.12 It can be shown that for any

market q, one of the aforementioned three mechanisms is optimal, as illustrated in Figure 2.13 If

v ≤ 0.5, then mechanisms N1 is optimal for markets in [0, 0.5] and mechanism N2 is optimal for

12Type 1 purchases one unit. Type 2 is indifferent (has utility 1− v for either choice) and purchases two units

since we break ties to maximize revenue. Th revenue is (1− q)v + q(1 + v) = v + q.

13We discuss how to identify optimal mechanisms with two types in Section 4. With more than two types, it

is not known how to characterize optimal mechanisms, except in special cases.
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Figure 2: Optimal mechanisms for the two cases (a) v ≤ 0.5 and (b) v ≥ 0.5.

CS

q
10 0.5

q

(a)

CS

q
10 1− v v

q
(1− v)q

(b)

Figure 3: (a) Consumer surplus CS(q) for two the cases (a) v ≤ 0.5 and (b) v ≥ 0.5.

markets in [0.5, 1]. If v ≥ 0.5, then mechanism N1 is optimal for markets in [0, 1−v], mechanism

S is optimal for markets in [1− v, v], and mechanism N2 is optimal for markets in [v, 1].

Next, we compute the (average) consumer surplus in each market q generated by the optimal

mechanism for that market.14 Type 1 does not receive any information rents in any optimal

mechanism. Thus, consumer surplus CS(q) in a market q is q times the utility of type 2 in the

optimal mechanism. The utility of type 2 is 1 in mechanism N1, 1 − v in mechanism S, and 0

in mechanism N2. Consumer surplus CS(q) is illustrated in Figure 3.

A segmentation of market q is a distribution µ over markets [0, 1] such that Eq′∼µ[q′] = q.

The maximum consumer surplus is MCS(q) = maxµEq′∼µ[CS(q′)], i.e., the maximum consumer

surplus across all segmentations µ. The maximum consumer surplus is obtained by concavifying

CS. That is, MCS(q) = CS(q), where CS is the lowest concave function that is point-wise at

least as high as CS.

The maximum consumer surplus MCS(q) is at least CS(q) and at most first best consumer

surplus FBCS(q), which is the surplus from efficient allocation (i.e., two units for each type)

minus the revenue in market q.15 If the two bounds are equal, i.e., CS(q) = FBCS(q), then

CS(q) = MCS(q) = FBCS(q). This is the case for a market q for which mechanism N1 is

optimal and for market q = 1.16 We refer to such markets as trivial, because there is no scope

14If there is more than one optimal mechanism we choose the one with higher consumer surplus.

15The surplus from efficient allocation is 1− q + 2q = 1 + q.

16If mechanism N1 is optimal, then CS(q) = q and FBCS(q) = 1 + q − 1 = q. For market q = 1, CS(q) =
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Figure 4: The relationship between CS, MCS, and FBCS: (a) v ∈ (0, 0.5], (b) v ∈ (0.5,
√

5−1
2 ), and (c)

v ∈ [
√

5−1
2 , 1).

for market segmentation to increase consumer surplus.

We are now ready to address the possibility of improving consumer surplus and the achievabil-

ity of first best consumer surplus for all markets q ∈ [0, 1]. The relationship between consumer

surplus, CS, maximum consumer surplus, MCS, and first best consumer surplus, FBCS, is

illustrated in Figure 4, and depends on the value of v. If v ∈ (0, 0.5] as in Figure 4 (a), then

improving consumer surplus is possible and first best consumer surplus is achievable for all

non-trivial markets.17 If v ∈ (0.5,
√

5−1
2
' 0.61) as in Figure 4 (b), then improving consumer

surplus is possible and first best consumer surplus is unachievable for all non-trivial markets.18

If v ∈ [
√

5−1
2
, 1) as in Figure 4 (c), then improving consumer surplus is possible for all non-

trivial markets except q = v, and first best consumer surplus is unachievable for all non-trivial

markets.19

Let us summarize. First best consumer surplus is achievable for either every non-trivial

market (if v ≤ 0.5) or no non-trivial market (if v > 0.5). Further, first best consumer surplus is

achievable if and only if either mechanism N1 or N2 is optimal for every market, that is, the seller

does not find it profitable to screen. We show that both these results extend to any two types

0 = FBCS(q) = 1 + q − 2q.

17Markets in [0, 0.5] ∪ {1} are trivial. For a market q ∈ (0.5, 1), CS(q) = 0, MCS(q) = 1− q and FBCS(q) =

1 + q − 2q = 1− q.
18Markets in [0, 1 − v] ∪ {1} are trivial. The point (v, CS(v)) is below the line that connects the points

(1− v, CS(1− v)) to (1, 0), that is, (1− v)v < (1−v)2

v , since v <
√

5−1
2 . As a result, CS(q) < MCS(q) for all non-

trivial q. To see that MCS(q) < FBCS(q) for all non-trivial q, it is sufficient to verify that MCS(v) < FBCS(v),

which holds because MCS(v) = (1−v)2

v < FBCS(v) = 1 + v − 2v = 1− v.

19Markets in [0, 1− v] ∪ {1} are trivial. CS(v) = MCS(v) because (1− v)v ≥ (1−v)2

v . To see that MCS(q) <

FBCS(q), it is sufficient to verify that MCS(v) < FBCS(v), which holds because MCS(v) = (1 − v)v <

FBCS(v) = 1 + v − 2v = 1− v.
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(even with multi unit demand), although the proofs require developing new techniques. With

more than two types, we characterize when consumer surplus is achievable for every non-trivial

market, no non-trivial market, or some but not every non-trivial market. Further, improving

consumer surplus is possible for a generic set of non-trivial markets. We show that this statement

extends to any number of types (even with multi unit demand).

Notice that an equivalent interpretation of our example is of a seller who can produce a

product at two quality levels (e.g., a smartphone with low or high memory) for which consumers

have unit demand. Our model captures settings with multi unit demand, configurable products,

and bundling with non-identical products by allowing for a finite set of alternatives, where each

alternative represents a subset of products.

3 Model

There is a continuum of consumers with a finite set T of types 1 to n.20 There is a finite set

A of alternatives 0 to k ≥ 1, where alternative 0 is the outside option. An alternative can

correspond to a product or a bundle of products. For example, if there are two products that

can be bundled, then there are four alternatives: the outside option, product 1, product 2, and

a bundle that includes both products.21 The cost of production is zero. The valuation of a type

i ∈ T for an alternative a ∈ A is via ≥ 0, with vi0 = 0.22 We assume that some alternative ā ∈ A

is all types’ most preferred alternative, that is, viā > via for all types i and alternatives a 6= ā.23

In a bundling application, it is natural to think of ā as the grand bundle of all products. We do

not assume that alternatives are otherwise ranked. We assume that a higher type has a higher

20An equivalent interpretation is of a single consumers with unknown taste.

21Compare this with the case where each of the two products is a different configuration or quality level of a

single good (e.g., a smartphone) for which the consumer has unit demand. In this case, the products cannot be

bundled, and the alternatives are 0, product 1, and product 2. Notice further that our setting also allows for

consumers with multi unit demands (with finite demands). For example, if there are two products and consumers

need at most two units of product 1 and at most one unit of product 2, then there are six alternatives, where

each alternative is a bundle that includes at most two units of product 1 and one unit of product 2.

22Assume without loss of generality that there are no redundant alternatives. That is, for each pair of alter-

natives a, a′, there exists a type i such that via 6= via′ .

23Our results hold with a weaker assumption that viā ≥ via. We maintain the stronger assumption to simplify

the analysis.
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valuation for any alternative, that is, v1
a < v2

a < . . . < vna for any alternative a 6= 0.24

An allocation x ∈ X = ∆(A) is a distribution over alternatives, where xa denotes the

probability of alternative a. The (expected) utility of a type i from an allocation x and a

payment p is vi · x− p = (
∑

a v
i
axa)− p. We say that an allocation x is empty if x0 = 1, and is

non-empty otherwise. Note that the efficient allocation x for each type satisfies xā = 1.

A mechanism consists of an allocation function x : T → X and a payment function p : T → R.

Mechanism M = (x, p) is incentive compatible (IC) if for all types i and j,

vi · x(i)− p(i) ≥ vi · x(j)− p(j). (1)

That is, type i does not benefit from “mimicking” type j. Mechanism M is individually rational

(IR) if for all types i,

vi · x(i)− p(i) ≥ 0. (2)

A market f ∈ ∆(T ) is a distribution over types, where fi denotes the fraction of consumers

with type i. The expected utility of consumers in a market f and mechanism M = (x, p) is

EU(f,M) = Ei∼f [v
i · x(i)− p(i)]. A mechanism (x, p) is optimal for market f if it is IC and IR

and maximizes revenue

Ei∼f [p(i)]

across all IC and IR mechanisms.25 For a market f , let ER(f) be the maximum expected

revenue,M(f) be the set of optimal mechanisms, and CS(f) be the maximum consumer surplus

(expected utility) across all optimal mechanisms,

CS (f) = max
M∈M(f)

EU(f,M).

A segmentation of a market f is a distribution µ ∈ ∆(∆(T )) over markets that average to f ,

that is, Ef ′∼µ[f ′] = f . We refer to a market f ′ in the support of the segmentation µ as a market

segment (or simply a segment). Let SEG(f) denote the set of segmentations of f . Abusing

notation, let CS(µ) be the consumer surplus in the segmentation µ,

CS (µ) = Ef∼µ[CS(f)].

24Importantly, we do not require single-crossing. Single-crossing pis down binding incentive constraints, and

simplifies the characterization of optimal mechanisms.

25A optimal mechanism exists. IR implies that the revenue of any mechanism is at most Ei∼f [viā], and the set

of IC and IR mechanisms is closed.
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When discussing segmentations of a given market f , we refer to f as the unsegmented market.

We often represent a mechanism indirectly by a menu of allocation-price pairs, where each

type chooses a pair that maximizes its utility. If a type is indifferent between two allocation-price

pairs, it chooses the one with a higher price (e.g., a type i chooses alternative a at price via over

alternative 0 at price zero). If, further, the prices are identical, then the tie breaking can be

arbitrary since it does not affect neither consumer surplus nor revenue. Assume without loss of

generality that for each allocation-price pair, there exists a type that chooses that pair. Unless

stated otherwise, every menu includes the outside option at price zero.

We distinguish between screening and non-screening mechanisms. A mechanism (x, p) is a

non-screening mechanism if it can be represented by a menu with a single allocation-price pair.

Of particular interest are non-screening mechanisms {N i}i∈T , where N i offers the most preferred

alternative ā at price viā. Indeed, N i is optimal among all non-screening mechanisms for some

i.26 A mechanism is a screening mechanism if it can be represented by a menu with at least two

allocation-price pairs. In such a mechanism, there exist two types with different and non-empty

allocations. We say that non-screening is optimal if N i is optimal for some i. Otherwise, that

is if N i is not optimal for any i, we say that screening is optimal. In this case, any optimal

mechanism is a screening mechanism.

3.1 Bounds On The Maximum Consumer Surplus

For a given market f , we denote by MCS(f) = maxµ∈SEG(f) CS(µ) the maximum consumer

surplus across all segmentations of f , and refer to the segmentation that achieves the maximum

as the consumer-optimal segmentation. The maximum consumer surplus is bounded between

two values. First, MCS(f) is at least CS(f), since the distribution µ over markets that puts

probability 1 on market f is a segmentation of f . Second, the maximum consumer surplus is

at most the expected surplus of an efficient allocation, Ei∼f [v
i
ā], minus the maximum expected

revenue in market f , ER(f). The reason is that in any segmentation, the sum of the expected

revenue and the consumer surplus is at most Ei∼f [v
i
ā]. In addition, the expected revenue in any

26Consider any non-screening mechanism M that offers a single allocation x for price p. The mechanism that

offers ā at price p obtains at least as much revenue. Further, a price p such that vi−1
ā < p < viā, cannot be

optimal, since then offering ā at price viā obtains a strictly higher revenue. Thus, it is optimal to offer ā at price

viā for some i.
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segmentation is at least ER(f), since the seller can choose a mechanism inM(f) for all markets

segments. Thus, consumer surplus is at most Ei∼f [v
i
ā]−ER(f). The following lemma formalizes

the discussion.

Lemma 1 For every market f , CS(f) ≤MCS(f) ≤ Ei∼f [v
i
ā]− ER(f).

We study when either of the above two bounds is tight. We use the following terminology to

refer to the tightness of each bound.

Definition 1 A segmentation µ of f improves consumer surplus if CS(f) < CS(µ), and

achieves first best consumer surplus if CS(µ) = Ei∼f [v
i
ā]− ER(f).

When there exists a segmentation of f that achieves first best consumer surplus, we say

that first best consumer surplus is achievable for f ; when there exists a segmentation of f that

improves consumer surplus, we say that improving consumer surplus is possible for f . Notice

that if the two bounds are not identical for a market, then improving consumer surplus is possible

if first best consumer surplus is achievable.

The two bounds can be identical, however. This is the case when a market has an optimal

mechanism with an efficient allocation. Indeed, consider a market f for which mechanism N i(f)

is optimal, where i(f) is the lowest type in the support of f . The utility of each type i in

the support of f is viā − v
i(f)
ā . Since CS(f) is the maximum expected utility across all optimal

mechanisms, we have CS(f) ≥ Ei∼f [v
i
ā − v

i(f)
ā ]. As a result,

CS(f) + ER(f) ≥ Ei∼f [v
i
ā − v

i(f)
ā ] + Ei∼f [v

i(f)
ā ] = Ei∼f [v

i
ā].

Given Lemma 1, we must have CS(f) = Ei∼f [v
i
ā]−EF (f). That is, the lower bound of Lemma 1,

CS(f), is identical to its upper bound, Ei∼f [v
i
ā]−ER(f). We refer to such a market f as trivial.

More precisely, we have the following definition.

Definition 2 A market f is trivial if it has an optimal mechanism N i(f), and is non-trivial

otherwise.

For a trivial f , first best consumer surplus is achievable with a segmentation that assigns

probability one to f , and improving consumer surplus is impossible. The rest of the paper

investigates the possibility of improving consumer surplus and the achievability of first best

consumer surplus for non-trivial markets.
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3.2 Preliminary Observations

We start with three useful observations.

The first observation specifies two conditions, which are together necessary and sufficient for

a segmentation to achieve first best consumer surplus. First, total surplus must be maximized.

That is, for every segment, a mechanism with an efficient allocation must be optimal. In other

words, every segment must be trivial (Definition 2). Second, the seller should not benefit from

the segmentation. The seller benefits from the segmentation if an optimal mechanism for the

unsegmented market is no longer optimal for a segment.27 Thus, every optimal mechanism for

the unsegmented market must also be optimal for every segment. We have the following lemma.

Lemma 2 For any segmentation µ of a market f , the following are equivalent:

1. µ achieves first best consumer surplus.

2. for some optimal mechanism M of f and every segment f ′ of µ, f ′ is trivial and has an

optimal mechanism M .

3. for every optimal mechanism M of f and every segment f ′ of µ, f ′ is trivial and has an

optimal mechanism M .

The second observation uses Lemma 2 to obtain sufficient conditions for achieving first best

consumer surplus. We describe a class of segmentations used by Bergemann et al. (2015), starting

with the following definition.

Definition 3 A market f is an equal-revenue market if for every type i in the support of f , the

mechanism N i is optimal.

Consider a market f for which the mechanism N i is optimal for some i, and a segmentation

µ of f . Assume that every segment f ′ is an equal-revenue market and includes i in its support.

Notice that f ′ is trivial since any equal-revenue market is trivial. Additionally, by definition,

N i is optimal for f ′. Thus, µ achieves first best consumer surplus by Lemma 2. We have the

following corollary.

27This is because the seller can offer in this segment an optimal mechanism for this segment, and in all other

segments an optimal mechanism for the unsegmented market.
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Corollary 1 Consider a market f for which N i is optimal for some i. A segmentation µ of f

achieves first best consumer surplus if for every segment f ′ of µ, f ′ is an equal-revenue market

and includes i in its support.

The third observation, from Kamenica and Gentzkow (2011), is that the maximum consumer

surplus can be obtained from the concavification of the function CS. Formally, consider the set

S = {(f, CS(f)) | f ∈ ∆(T )} of all markets and their consumer surplus, and let CH(S) be

its convex hull. Define CS(f) = sup(f,cs)∈CH(S) cs. The function CS is the point-wise smallest

concave function that is at least as large as CS. We refer to CS as the concavification of CS.

Note that a pair (f, cs) is in CH(S) if and only if there exists a segmentation µ of f such

that CS(µ) = cs. Thus, the maximum consumer surplus for f is equal to the largest cs such

that (f, cs) ∈ CH(S), and therefore MCS(f) = CS(f). This discussion is summarized by the

following lemma.

Lemma 3 (Kamenica and Gentzkow, 2011) For every market f , MCS(f) = CS(f). Thus,

improving consumer surplus is possible for a market f if and only if CS(f) > CS(f).

In spite of its power, the above lemma is of limited use in our setting when there are more

than two types. The reason is that with more than two types, CS(f) cannot be specified in

closed form for all markets f due to known issues with identifying optimal mechanisms. We apply

the lemma in our analysis of two types, and develop a new approach to study the possibility of

improving consumer surplus when there are more than two types.

4 Two Types

We begin by considering markets with only two types, 1 and 2, and any number of alternatives

k ≥ 1. We refer to a market by the probability q ∈ [0, 1] of type 2. We first provide necessary

and sufficient conditions for the achievability of first best consumer surplus. We then provide

examples of markets for which improving consumer surplus is impossible. Nonetheless, we show

that improving consumer surplus is possible for generic markets. Our results in the subsequent

sections generalize these results to more than two types.

With two types, optimal mechanisms can be characterized in closed form. We defer the

characterization to the appendix (Appendix B.1), and invoke only the properties that are needed

for the analysis.
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4.1 First Best Consumer Surplus

The following lemma shows that the set of markets [0, 1] (where q ∈ [0, 1] is the probability

of type 2) can be qualitatively divided into at most three regions. The first region consists

of markets for which mechanism N1 (which sells ā at price v1
ā) is optimal. These are markets

in which the probability of type 1 is high. The second region consists of markets for which

mechanism N2 (which sells ā at price v2
ā) is optimal. These are markets in which the probability

of type 2 is high. In between, there may be markets for which neither N1 nor N2 is optimal.

For such markets, screening is optimal, that is, xa(1) = 1, xā(2) = 1 where a 6= 0, ā, in a revenue

maximizing mechanism (x, p). If there exist a single alternative a 6= 0, ā, then a single mechanism

is optimal for all markets in [q1, q2]. But more generally, optimal mechanisms may vary across

[q1, q2]. For a mechanism M , let F(M) denote the (possibly empty) set of markets for which M

is optimal.

Lemma 4 There exists thresholds q1 and q2, 0 < q1 ≤ q2 < 1, such that F(N1) = [0, q1],F(N2) =

[q2, 1], and F(M) ⊆ [q1, q2] for any mechanism M 6= N1, N2.

Given the above lemma, we can distinguish two cases. Either q1 = q2, in which case either

N1 or N2 is optimal for any market, or q1 < q2, in which case neither N1 nor N2 is optimal

for all markets in the interval (q1, q2). See Figure 5. Haghpanah and Hartline (2018) provide

a characterization of when q1 = q2 or q1 < q2, generalizable to any number of types, which we

discuss later.

We now relate the above two cases to the possibility of achieving first best consumer surplus.

If q1 = q2 then first best consumer surplus is achievable for all markets, and if q1 < q2 then first

best consumer surplus is unachievable for any non-trivial market. The set of non-trivial markets

is (q1, 1).28 Recall from Section 3 that first best consumer surplus is achievable for all trivial

markets. We thus obtain a characterization of the achievability of first best consumer surplus

for all markets over two types.

Proposition 1 Assume that there are two types. For any non-trivial market q, first best con-

sumer surplus is achievable if and only if q1 = q2.

28If q ∈ [0, q1], then mechanism N1 is optimal. If q = 1, then mechanism N2 that has an efficient allocation

for all types in the support of q (type 2) is optimal.
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Figure 5: (a) q1 = q2. For any market, either N1 or N2 is optimal. (b) q1 < q2. Neither N1 nor N2 is optimal

for any market in the interval (q1, q2).

The proof outline is as follows. Suppose q1 = q2. Then the market q1 = q2 is an equal-revenue

market. Consider a market in [0, q1], for which mechanism N1 is optimal, and its segmentation

into segments 0 and q1. Since both segments are equal-revenue markets and include type 1 in

their support, Corollary 1 implies that the segmentation achieves first best consumer surplus. A

similar argument applies for any market in [q1, 1]. Now suppose q1 < q2 and consider any market

q ∈ (q1, 1) for which first best consumer surplus is achievable. By Lemma 2, two conditions must

hold. First, every segment must be trivial, that is, it must be in [0, q1] or equal to 1. Second,

any optimal mechanism for q must be also optimal for every segment. However, there exists no

mechanism that is both optimal for market 1 and also any market in [0, q1]. Thus, either all

segments are equal to 1, or they are all in [0, q1]. In either case, market q must be trivial.

Proof of Proposition 1. Assume first that q1 = q2. We show that for any market q, the

exists a segmentation that achieves first best consumer surplus. The segmentation is identical

to that of Bergemann et al. (2015). First consider q ∈ [0, q1], which implies that the mechanism

N1 is optimal for q. Consider a segmentation of q into two segments q′ = 0 and q′′ = q1 = q2.29

Notice that both q′ and q′′ are equal-revenue markets (Definition 3) and include type 1 in

their support. Thus the segmentation achieves first best consumer surplus by Corollary 1.

Now consider q ∈ [q2, 1], which implies that the mechanism N2 is optimal for q. Consider a

segmentation of q into two segments q′ = 1 and q′′ = q1 = q2.30 Notice that both q′ and q′′ are

equal-revenue markets and include type 2 in their support. Thus the segmentation achieves first

best consumer surplus by Corollary 1.

29Segmentation µ assigns probability α to segment q′′ and probability 1−α to segment q′, where α = q
q2

. Since

q = (1− α) · 0 + α · q2, µ is a segmentation of q.

30Segmentation µ assigns probability α to segment q′, and probability 1 − α to segment q′′, where α = q−q2
1−q2 .

Since q = α · 1 + (1− α) · q2, µ is a segmentation of q.

18



Now assume q1 < q2, and consider some segmentation µ of a market q that achieves first best

consumer surplus. We show that q must be trivial. By Lemma 2, two conditions must hold. First,

every segment must be trivial, that is, it must be in [0, q1]∪{1}. Second, any optimal mechanism

for q must be also optimal for every segment. But there exists no mechanism that is optimal

for market 1 and also for some market in [0, q1]. To see this, note that by Lemma 4, the only

optimal mechanism for market 1 is mechanism N1. However, since q1 < q2 and F(N1) = [q2, 1],

N1 is not optimal for any market in [0, q1]. Therefore, either every segment must be equal to 1,

in which case q = 1, or every segment must be in [0, q1], in which case q ∈ [0, q1]. Therefore, q

is trivial.

The two cases q1 = q2 or q1 < q2 can be characterized given the valuations of the two types.

The two thresholds q1 and q2 are equal if and only if for any alternative a, type 2 has a higher

ratio of valuations of alternative a to ā, that is, r1
a ≤ r2

a where ria = via/v
i
ā. Indeed, if r1

a ≤ r2
a for

all a, then the thresholds q1 = q2 are equal to the market q at which mechanisms N1 and N2

have the same revenue, v1
ā = qv2

ā. If r1
a > r2

a for some a, then q1 < q2. We provide a closed-form

characterization in Appendix B.1.

4.2 Improving Consumer Surplus

We now turn to the possibility of improving consumer surplus for two types. We combine the

concavification approach (Lemma 3) with a characterization of optimal mechanisms to show

that while there are markets for which improving consumer surplus is impossible, such markets

are not generic.

By Lemma 3, for every market q, the maximum consumer surplus is MCS(q) = CS(q),

where CS is the concavification of CS. Improving consumer surplus is possible if and only if

CS(q) > CS(q). As a result, we need to identify CS. The lemma below shows that CS consists

of at most k + 1 linear pieces with decreasing slopes (k is the number of alternatives). Further,

each linear piece is a ray to the origin. See Figure 6 (a).

Lemma 5 For some m ≤ k, there exist thresholds τ0(= 0) < . . . < τm+1(= 1), and slopes

α0(= v2
ā − v1

ā) > . . . > αm(= 0), such that if q ∈ (τj, τj+1] then CS(q) = qαj.

The reasoning behind the structure of CS is as follows. In any optimal mechanism, type

1 gets zero utility, whereas type 2 may get a positive utility (information rents) based on the
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ā
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q

CS(q)

βCS(τj) + (1− β)CS(τj+1)

Figure 6: (a) The function CS consists of m linear pieces, each a ray to the origin, of decreasing slopes. (b) If

q = βτj + (1− β)τj+1, then CS(q) < βCS(τj) + (1− β)CS(τj+1) ≤ CS(q).

allocation of type 1. Thus, CS(q) is equal to the probability q of type 2 times the utility u(2)

of type 2 in the optimal mechanism. As q increases, optimal mechanisms stay the same within

an interval specified by thresholds τ , and changes at a threshold. Therefore, within an interval,

CS(q) = qu(2) for a fixed u(2). As q crosses a threshold τ , the allocation of type 1 changes in a

way that it decreases the information rents of type 2. Notice that such an ordering of information

rents holds even though there is no a priori ranking on alternatives. For q ∈ [0, τ1], mechanism

N1 is optimal and thus u(2) = v2
ā − v1

ā (i.e., τ1 is q1 from Proposition 1). For q ∈ [τm, 1],

mechanism N2 is revenue maximizing and thus u(2) = 0 (i.e., τm is q2 from Proposition 1 ).

Given Lemma 5, improving consumer surplus is possible for any market q ∈ (τj, τj+1) where

j ≥ 1 (markets in [τ0, τ1] are trivial). This can be seen in Figure 6 (b). If q ∈ (τj, τj+1), we have

q = βτj + (1 − β)τj+1 for some β, 0 < β < 1. Since the slopes of the linear pieces are strictly

decreasing, CS(q) is strictly less than

βCS(τj) + (1− β)CS(τj+1) ≤ βCS(τj) + (1− β)CS(τj+1) ≤ CS(q),

where the first inequality followed from CS ≤ CS, and the second inequality followed from

concavity of CS. Thus, CS(q) < CS(q), that is, improving consumer surplus is possible for q.

We thus have the following proposition.

Proposition 2 Assume that there are two types. Improving consumer surplus is possible for a

market q if q ∈ (τj, τj+1) for some j ≥ 1. Improving consumer surplus is impossible for at most

the k − 1 non-trivial markets τ2, . . . , τm.
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Figure 7: (a) CS(q) is strictly lower than its concavification for all non-trivial markets. Therefore improving

consumer surplus is possible for every non-trivial market. (b) CS is equal to its concavification at τ2. Therefore

improving consumer surplus is impossible for market q = τ2.

For a threshold market q = τj, improving consumer surplus may or may not be possible.

To see this, it is enough to consider a market with k = 2 (i.e., two alternatives other than

the outside option). By Lemma 5, CS consists of at most three linear pieces, identified by

thresholds τ1 and τ2. Market q = τ2 is non-trivial. There are two possibilities. In Figure 7 (a),

improving consumer surplus is possible for market q = τ2. In Figure 7 (b), improving consumer

surplus is impossible for market q = τ2. See Section 2 for examples with two alternatives, and

Appendix B.4 for extensions to any number of alternatives.

Notice two features in Figure 7. First, in Figure 7 (b), the consumer-optimal segmentation

of any non-trivial market has a segment in which allocation is inefficient. In particular, the

consumer-optimal segmentation of a market in (τ1, τ2) has segments τ1 and τ2, and the consumer-

optimal segmentation of a market in (τ2, 1) has segments τ2 and 1. In market τ2, the allocation

of any optimal mechanism is inefficient. Notice that this is not simply a consequence of the

unachievability of first best consumer surplus. In Figure 7 (a), even though first best consumer

surplus is unachievable for any non-trivial market, the consumer-optimal segmentation of any

non-trivial market has two segments τ1 and 1. Both τ1 and 1 are markets in which an optimal

mechanism has efficient allocation. Second, in Figure 7, any segmentation of market τ2 that does

not assign probability one to segment τ2 has a strictly lower consumer surplus than CS(τ2).

5 More Than Two Types: First Best Consumer Surplus

In this section we generalize Proposition 1 to any number of types (and any number of alter-

natives k ≥ 1). We start by the following proposition, which states that if first best consumer
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surplus is possible for a given market, then selling only alternative ā must be optimal for that

market. In other words, if screening is optimal for a market, then achieving first best consumer

surplus is impossible.

Proposition 3 If first best consumer surplus is possible for f , then there exists a type i such

that the mechanism N i is optimal for f .

The proof outline is as follows. Consider a market f , with an optimal mechanism M , for

which improving consumer surplus is possible. We show that mechanism N j must also be optimal

for f , where j is the lowest type that is not excluded in M . Indeed, consider any segment f ′. By

Lemma 2, M must be optimal for f ′. Consider the lowest type i in the support of f ′. We must

have i ≤ j, as otherwise every type in the support of f ′ gets strictly positive utility in M , which

is a contradiction to the optimality of M for market f ′. Now by Lemma 2, both mechanisms M

and N i must be optimal for f ′, where i ≤ j. The following lemma shows that in this case, N j

must also be optimal for f ′. If N j is optimal for every segment f ′, it is also optimal for f .

Lemma 6 Consider a market f and an optimal mechanism M = (x, p), and let j be the lowest

type that gets a non-empty allocation, i.e., {j} = arg minj′ x0(j′) < 1. Suppose that for some

i ≤ j, N i is also optimal for f . Then, N j is also optimal for f .

Proof. Assume without loss of generality that f has full support on types 1 to n.31 Assume for

contradiction that mechanisms M and N i are optimal for f but mechanism N j is not optimal.

We show that mechanism M can be improved upon. In particular, consider a mechanism M ′

as follows. Types below i get an empty allocation (as they do in M). Types i to j − 1 get

alternative ā with probability ε (and the outside option with probability 1 − ε) and pay εviā.

Types j to n have the same allocation as in M , but their payment is decreased by ε(vjā − viā)

relative to their payment in M . See Figure 8.

Mechanism M ′ has a higher revenue than M for ε > 0. Compared to M , M ′ generates an

additional revenue of εviā from all types i′ ≥ i, and loses a revenue of εvjā from all types i′ ≥ j.

The difference in revenue is εviā Pr[i′ ≥ i] − εvjā Pr[i′ ≥ j], which is ε times the difference in the

revenue of mechanism N i compared to the revenue of mechanism N j. This difference is strictly

31Consider the support {i1, . . . , i`} of f . Relabel the types such that type 1 refers to i1, type 2 refers to i2,

and so on.

22



1 2 i− 1 i j − 1 j n

M

M ′

Types

outside option

outside option

outside option

x′ā = ε;
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Figure 8: Construction of the mechanism M ′ from the mechanism M in the proof of Lemma 6.

positive by the assumption that N i is optimal but N j is not. It remains to show that M ′ is IR

and IC for small enough ε > 0.

IR holds for types 1 to i− 1, because they are excluded in M ′. A type i′ = i, . . . , j − 1 has

utility εvi
′
ā − εviā ≥ 0, and a type i′ ≥ j has a higher utility in M ′ than in M . Thus, IR holds for

any ε > 0.

For IC, observe that M ′ coincides with M in the limit as ε goes to zero. Thus, if an IC

constraint is slack (holds with a strict inequality) in M , then it is satisfied in M ′ for small

enough ε. Now, in mechanism M a type i′ strictly prefers not to mimic another type i′′ in two

cases: (1) if i′ > j and i′′ < j; (2) if i′ < j and i′′ ≥ j. In case (1), type i′ has a strictly positive

utility in M . This is because type j must get utility of zero in M (otherwise M is not optimal

as prices can increase), and type i′ can mimic type j and get j’s allocation and price but has

a strictly higher valuation for any alternative a 6= 0 by assumption. Thus i′ strictly prefers not

mimic type i′′ (and get utility zero) in M . In case (2), type i′ gets a strictly negative utility from

mimicking i′′ since vi · x(i′′) − p(i′′) < vj · x(i′′) − p(i′′) ≤ 0, where the last inequality followed

since the utility of type j is zero.

We next verify the remaining IC constraints in mechanism M ′. Consider a type i′ < j.

As discussed in case (2) above, such a type i′ does not benefit from mimicking types i′′ ≥ j.

Type i′ prefers the allocation of types 1, . . . , i− 1 (the outside option) to the allocation of types

i, . . . , j − 1 if and only if ε(vi
′
ā − viā) ≤ 0, i.e., i′ ≤ i. Thus truthtelling maximizes the utility of

a type i′ < j. For a type i′ ≥ j, note that mimicking a type j, . . . , n is not beneficial since M

is IC and all such types get the same additional payment in M ′. From case (1) above, a type

i′ > j does not benefit from mimicking types 1, . . . , j − 1. Finally, the utility of type j in M ′ is

at least ε(vjā − viā) > 0, which is the utility it would get by mimicking types i, . . . , j − 1, and is

no lower than the utility of zero it would get by mimicking types 1, ..., i− 1.

A subtlety in the proof of Lemma 6 is that if ε is large, then mechanism M ′ may not be IC.
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Figure 9: Mechanism M offers a at price 2 and ā at price 4. Types in the dark shaded region choose ā, types

in the light shaded region choose a, and other types are excluded. In mechanism M ′, type i′ benefits from

mimicking i and getting utility 4ε if ε is large.

This is because for large ε, a type i′ > j may prefer to mimic i, . . . , j−1 and get utility ε(vi
′
ā −viā)

instead of getting a utility of ε(vjā − viā) in addition to its utility in M . For instance, consider

three types i, j, i′ and two alternatives a, ā with valuations (via, v
i
ā) = (1, 2), (vja, v

j
ā) = (2, 3), and

(vi
′
a , v

i′
ā ) = (3, 5). Consider a mechanism M represented by a menu that offers alternative a at

price 2 and alternative ā at price 4. Type i′ gets ā, pays 4, and gets utility 1, as illustrated in

Figure 9. In mechanism M ′, type i′ gets ā and pays 4− ε, and type i gets ā with probability ε

and pays 2ε. Utility of type i′ is 1 + ε, and its utility from mimicking type i is 3ε. If ε > 1/2,

then mechanism M ′ is not IC.

Before completing the proof of Proposition 3, we observe that the set of markets for which

a given mechanism is optimal is convex. Convexity implies that if a mechanism is optimal for

every segment of a segmentation, then it must also be optimal for the unsegmented market. To

see this, consider a segmentation µ of market f such that M is optimal for every segment f ′ of

µ. If M is not optimal for f , then a mechanism M ′ must give higher revenue than M in at least

one segment f ′ of µ, contradicting the assumption that M is optimal for f ′. Therefore, M must

be optimal for f . We therefore have the following result (recall that F(M) is the set of markets

for which M is optimal).

Lemma 7 For every mechanism M , the set F(M) is convex.

We now prove Proposition 3.

Proof of Proposition 3. Consider a market f and a segmentation µ of f that achieves first

best consumer surplus. By Lemma 2, there exists a mechanism M that is optimal for market f

and also all segments f ′ of µ. Let j the the lowest type that gets a non-empty allocation in M ,

and notice that i(f ′) ≤ j for any segment f ′, where i(f ′) is the lowest type in the support of
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market f ′. Indeed, if the inequality were reversed, all types in the support of f ′ would obtain a

strictly positive utility, so M would not be optimal for f ′.

By Lemma 2, N i(f ′) and M are both optimal for f ′. Lemma 6 implies that N j must also

be optimal for f ′. Since N j is optimal for every segment f ′, Lemma 7 shows that it is also be

optimal for f . Thus we have shown that if first best consumer surplus is possible for a market

f , then there exists a non-discriminating mechanism, N j, that is optimal for f .

5.1 Achievability Of First Best Consumer Surplus, Non-Screening,

And Increasing Ratios

Proposition 3 implies the following result. First best consumer surplus is achievable for all

markets over a given set of types, if and only if non-screening is optimal for all markets over

the set of types. Notice that the second statement is equivalent to saying that the sets F(N i)

collectively cover the set of all possible markets, ∪iF(N i) = ∆(T ).

Theorem 1 For any set of types T , the following are equivalent:

1. For every market, first best consumer surplus is achievable.

2. For every market, N i is optimal for some i.

Proof. (1) → (2): Immediate from Proposition 3.

(2) → (1): We apply a segmentation that uses Corollary 1, and is identical to that of

Bergemann et al. (2015). When offering only ā is optimal for all markets, we can think of the

problem as one with a single alternative ā. We defer the details to Appendix C.2.

Theorem 1 characterizes the achievability of first best consumer surplus in terms of whether

non-screening is optimal for all markets. Whether non-screening is optimal for a given market is

in general difficult to ascertain. Nevertheless, Haghpanah and Hartline (2018) provide a simple

characterization of the type spaces for which non-screening is optimal for all markets. For the

characterization, let ria = via/v
i
ā be the ratio of type i’s valuation of alternatives a and ā.

Proposition 4 (Haghpanah and Hartline, 2018) For any set of types T , the following are

equivalent:

1. For every market, N i is optimal for some i.
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∀ non-trivial f ,

maximum consumer surplus

= first best consumer surplus
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Figure 10: The equivalence from Corollary 2. (1) First best consumer surplus is achievable (2) for every

market, a non-screening mechanism is optimal. (3) The ratio of valuations increases in the valuation for the most

preferred alternative.

2. The ratio ria is non-decreasing in i for all a.

From Theorem 1 and Proposition 4 we have the following corollary. The corollary is illus-

trated in Figure 10.

Corollary 2 For any set of types T , the following are equivalent:

1. For every market, first best consumer surplus is achievable.

2. For every market, N i is optimal for some i.

3. The ratio ria is non-decreasing in i for all a.

Corollary 2 relates achievability of first best consumer surplus to the optimality of non-

screening and to the ratio of valuations for different types.32 Let us relate the corollary to

our two type analysis (Section 4). Recall that with two types, the set of markets for which

mechanism N1 is optimal is [0, q1], and the set of markets for which mechanism N2 is optimal is

[q2, 1], where q1 ≤ q2. For either N1 or N2 to be optimal for every market, we must have q1 = q2.

Thus, with two types, Corollary 2 states that first best consumer surplus is achievable for every

market if and only if q1 = q2, generalizing Proposition 1. However, Proposition 1 shows that if

q1 < q2, then first best consumer surplus is unachievable for all non-trivial markets. Corollary 2

32The corollary partially generalizes Theorem 1 of Bergemann et al. (2015), which shows that first best con-

sumer surplus is achievable for all markets if there is only one alternative other than the outside option k = 1.

In this case, then the third property of Corollary 2 holds for any type space since riā = 1 and ri0 = 0 for all types

i. Thus, first best consumer surplus is achievable for all markets. Corollary 2 therefore generalizes Theorem 1

of Bergemann et al. (2015) regarding the achievability first best consumer surplus, although it does not address

what other consumer-producer surplus pairs are achievable, which is the main focus of Bergemann et al. (2015).
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does not make such a statement. The next subsection provides necessary and sufficient condition

for first best consumer surplus to be unachievable for all (non-trivial) markets.

5.2 Unachievability Of First Best Consumer Surplus, Screening, And

Decreasing Ratios

Corollary 2 characterizes when first best consumer surplus is achievable for all markets. We

now characterize when first best consumer surplus is unachievable for all (non-trivial) markets.

By Corollary 2, for first best consumer surplus to be achievable for all markets, a non-screening

mechanism must be optimal for all markets. Therefore, one might guess that for first best

consumer surplus to be unachievable for all markets, screening must be optimal for all markets.

However, it is impossible for screening to be optimal for all markets. If a market consists of

a single type, then selling the most preferred alternative to at a price equal to that type’s

willingness is optimal. Similarly, if a markets consists almost of a single type, then a non-

screening mechanism is optimal for that market. To see the right condition, one can interpret

the second statement of Corollary 2 as stating that the sets of markets for which non-screening

is optimal collectively cover all markets. In contrast, we show below that first best consumer

surplus is unachievable if the sets of markets for which non-screening is optimal do not intersect

at all. This is illustrated in Figure 11.

To be precise, the theorem below states that, for a given set of types, the following three

statements are equivalent: (1) first best consumer surplus is unachievable for all non-trivial

markets; (2) for every market, N i is optimal for at most one i. This statements is equivalent to

the following statement. For every i 6= j, the set of markets for which mechanism N i is optimal

does not intersect with the set of markets for which mechanism N j is optimal. That is, the set

of markets for which screening is optimal separates the sets of markets for which N i is optimal

for some i; (3) for every pair of types, there exists an alternative a such that the lower type has

a strictly higher ratio of valuations va/vā than does the higher type.

Theorem 2 For any set of types T , the following are equivalent:

1. For every non-trivial market, first best consumer surplus is unachievable.

2. For every market, N i is optimal for at most one i.

3. For every pair of types i < j, there exists an alternative a such that ria > rja.
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∀ non-trivial f ,

maximum consumer surplus

< first best consumer surplus
F(N1) F(N2)
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Figure 11: The equivalence from Theorem 2. (1) First best consumer surplus is unachievable (2) the sets of

markets for which two different mechanisms N i and N j are optimal do not intersect. (3) The ratio of valuations

decreases in the valuation for the most preferred alternative.

The proof uses the following lemma. The lemma states that if pair of types i < j such that

ria > rja for some a, then there exists no market for which both mechanisms N i and N j are

optimal. Recall from our two type analysis (Section 4) that if ria > rja, then N i and N j cannot

both be optimal for any market with support {i, j}. The lemma generalizes this statement to all

markets, regardless of the support. In contrast to our two type analysis, the proof of the lemma

does rely on identifying optimal mechanisms. Instead, assuming both N i and N j are optimal,

the lemma constructs a mechanism that outperforms both.

Lemma 8 Consider a pair of types i < j such that ria > rja for some a. For any market f ,

mechanisms N i and N j cannot both be optimal.

Proof. Assume for contradiction that ria > rja for some i < j and a, and N i and N j are both

optimal for a market f . Let qi be the probability of types i and higher, and qj the probability

of types j and higher. For N i and N j to be both optimal, we must have viāqi = vjāqj, that is

qi =
vjāqj
viā

. Thus we can write

viaqi = via(
vjāqj
viā

) = (
vjāv

i
a

viā
)qj > vjaqj. (3)

where the inequality followed from the assumption that ria > rja (i.e., via/v
i
ā > vja/v

j
ā).

Construct a mechanism M that improves upon N j as follows. Type i, . . . , j−1 get alternative

a with probability ε and pay εvia. Types j, . . . , n get alternative ā and pay vjā − ε(vja − via). This

is illustrated in Figure 12.

Let us compare the revenue of M with the revenue of N j. Types i, . . . , j − 1 pay εvia more

in M than in N j. Types j and higher pay ε(vja − via) less in M than in N j. The difference in
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xa = ε;

p = εvia

xā = 1; p = vjā
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Figure 12: Construction of the mechanism M in the proof of Lemma 8.

expected revenue is

εvia(qi − qj)− ε(vja − via)qj = ε(viaqi − vjaqj) > 0,

where the inequality followed from inequality 3. So to complete the proof, we show that M is

IC and IR, which contradicts the assumption that N j is optimal.

Mechanism M is IR. Types lower than i are excluded. A type i′ from i to j − 1 has utility

ε(vi
′
a − via) ≥ 0. Types j and higher has a higher utility in M than in N j.

For IC, observe similarly to the proof of Lemma 6 that if an incentive constraint is slack in

N j, then it is satisfied in M for small enough ε > 0. In particular, (1) a type i′ > j does not

benefit from mimicking a type i′′ < j, (2) a type i′ < j does not benefit from mimicking a type

i′′ ≥ j.

We now verify the remaining incentive constraints. A type i′ < j prefers the allocation of

types i, . . . , j−1 to the outside option if and only if ε(vi
′
a −via) ≥ 0, i.e., i′ ≥ i. Thus the incentive

constraints are satisfied for types i′ < j. For types i′ ≥ j, note that mimicking any type j, . . . , n

is not beneficial since all such types have the same allocation and payment. Finally, the utility

of type j in M is ε(vja− via), which is the utility it would receive by mimicking types i, . . . , j− 1,

and is strictly more that the utility it would receive by mimicking types 1, . . . , i− 1.

Similar to the proof of Lemma 6, it is crucial in the proof of Lemma 8 to choose an ε that

is small. For instance, if ε = 1, then the mechanism M may not be incentive compatible. Such

a mechanism assigns alternative a with payment via to types i, . . . , j − 1, and alternative ā with

payment vjā − (vja − via) to types j, . . . , n. The payment for alternative ā is set such that type j

is indifferent between its own allocation and the allocation of types i, . . . , j − 1. A type i′ > j

may benefit from deviating to i, . . . , j − 1.

We are now ready to complete the proof of Theorem 2. To develop a partial intuition, assume

that the second statement of Theorem 2 holds, namely, N i is optimal for at most one i for every

market. If this is the case, then there exists no equal-revenue market (Definition 3) other than
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markets that assign probability one to a single type. As a result, Corollary 1 cannot be applied

since it concerns only segmentations wherein all segments are equal-revenue markets. We prove

further that no segmentation achieves first best consumer surplus.

Proof of Theorem 2. (1) → (3): Assume for contradiction that for some i < j, ria ≤ rja for

all a. By Corollary 2, first best consumer surplus is achievable for every market with support

{i, j}. By Lemma 4, some markets with support {i, j} are non-trivial.33

(3)→ (2): Directly from Lemma 8.

(2) → (1): Assume that some segmentation µ of a non-trivial market f achieves first best

consumer surplus. From Proposition 3, N i must be optimal for some i. By Lemma 2, N i

is optimal for every segment f ′ of µ. The lowest type i(f) in the support of f ′ must satisfy

i(f ′) ≤ i, as otherwise, all types in the support of f ′ get strictly positive utility in an optimal

mechanism N i. Further, at least one segment f ′ must satisfy i(f ′) < i. Otherwise, if i(f ′) = i

for all segments f ′, then i(f) = i. Since N i is optimal for f , f is trivial which is a contradiction.

Now consider a segment f ′ such that i(f ′) < i. By Lemma 2, for market f ′, N i(f ′) is optimal.

That is, for i(f ′) 6= i, N i and N i(f ′) are both optimal for some market f ′.

Corollary 2 and Theorem 2 collectively generalize our two type analysis (Proposition 1).

Corollary 2 states that first best consumer surplus is achievable for all non-trivial markets if and

only if q1 = q2 (Figure 5). On the other hand, Theorem 2 states that first best consumer surplus

is unachievable for any non-trivial market if and only if q1 < q2.

With two types, Corollary 2 and Theorem 2 collectively cover all possible cases. In particular,

with two types, the second statement of Corollary 2 is the logical complement of the second

statement of Theorem 2, and similarly for the third statement. That is, either non-screening is

optimal for all markets, or the sets of markets for which non-screening is optimal do not intersect

at all (as shown in Figure 5). With more than two types, this is no longer the case. It is possible

that screening is optimal for some market, and yet, two sets of markets over which non-screening

is optimal intersect, as illustrated in Figure 13. The next subsection addresses the remaining

cases.

33In particular, consider thresholds q1 and q2 from Lemma 4. Any market in which the probability q of j is

q2 < q < 1 is non-trivial.
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∃ but not ∀ non-trivial f ,

maximum consumer surplus

= first best consumer surplus
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Figure 13: The equivalence from Corollary 3. (1) First best consumer surplus is achievable for some but not

all non-trivial markets (2) screening is optimal for some markets, but the screening region does not separate

non-screening regions (3) The ratio of valuations decreases in the valuation for the most preferred alternative for

some but not all pairs of types.

5.3 The Remaining Cases

The following is an immediate corollary of Corollary 2 and Theorem 2. The first statement

in Corollary 3 is true if and only the first statements of both Corollary 2 and Theorem 2 are

false, and similarly for the second and the third statements. In particular, the following are

equivalent: (1) first best consumer surplus is achievable for some but not all non-trivial markets;

(2) screening is optimal for some market, but the sets of markets for which mechanism N i is

optimal intersects that of N j for some i 6= j; (3) for some, but not all, pairs i < j, ria ≤ rja holds

for all alternatives a. See Figure 13.

Corollary 3 For any set of types T , the following are equivalent:

1. For some but not all non-trivial markets, first best consumer surplus is achievable.

2. There exists a market for which N i is not optimal for any i, and there exists a market for

which N i and N j are both optimal for some i 6= j.

3. There exist a pair of types i < j such that ria ≤ rja for all a, and there exists a pair of types

i′ < j′ such that ri
′
a > rj

′
a for some a.

In Appendix C.3, we discuss with an example the markets for which first best consumer

surplus is achievable when conditions (2) and (3) from Corollary 3 hold.

31



6 More Than Two Types: Improving Consumer Surplus

Recall from Subsection 4.2 that with two types, there may be markets for which no segmentation

can improve consumer surplus. We now construct a simple parametric segmentation for any

number of types and alternatives. We show that, parameterized appropriately, the segmentation

improves consumer surplus for a generic market f (for a notion of genericity to be formalized

shortly). Without loss of generality, we assume that f has full support.

The segmentation of f consists of only two segments. The first segment contains only type 1

and some other type i (that gets alternative ā with probability one in some optimal mechanism

for f). The second segment contains the remaining types. If the probability of the first segment

is small enough, then the second segment is almost identical to market f , and thus generically an

optimal mechanism for f is also optimal for the second segment. As a result, types in the second

segment remain unaffected by this segmentation. To show that the segmentation improves

consumer surplus, we show that the utility of type i is strictly higher in the first segment than

in f (the utility of type 1 is 0 in f and in the first segment).

We now formalize the above discussion. We first define a parametric segmentation and later

identify the appropriate parameters. Recall from our discussion in Section 4 that for every pair

of types i < j, there exists τ < 1 such that the mechanism N i is optimal for a market in which

the probability of type i is τ and the probability of type j is 1 − τ . Let f i,j refer to such a

market.

Definition 4 For a market f , type i 6= 1, and ε ≥ 0, let µ̃i,ε(f) be a segmentation of f with two

segments f ′, f ′′ and probabilities ε, 1− ε, respectively, where f ′ = f 1,i and f ′′ = f−εf ′
1−ε .

Note that f ′′ is defined such that µ̃i,ε(f) is indeed a segmentation of f , that is, εf ′+(1−ε)f ′′ =

f . For f ′′ to be a market (a distribution over types), ε must be small enough such that f−εf ′ ≥ 0.

For the remainder of the discussion we assume that this is indeed the case.

We show later that if type i is a type that gets alternative ā in an optimal mechanism of f ,

then µ̃i,ε(f) improves consumer surplus. The next lemma shows that such a type exists.

Lemma 9 In any optimal mechanism (x, p) for a market f , there exists a type i that gets

alternative ā with probability one, xā(i) = 1.

Proof. Assume for contradiction that xā(j) 6= 1 for all j in an optimal mechanism (x, p).

Consider offering alternative ā for a high price q and decreasing q until some type i is indifferent
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Figure 14: Mechanism M is represented by a menu that offers alternative a for a lower price than alternative

ā. Type 3 is the highest type but does not get alternative ā.

between its allocation in (x, p) and paying q for ā. Notice that since i has a higher valuation

for ā than x(i), q must be strictly higher than p(i). Since the payment of other types are

unaffected, the alternative mechanism obtains higher expected revenue than (x, p), contradicting

the assumption that (x, p) is optimal for f .

Note that the type that gets alternative ā need not be the highest type n. See Figure 14.

We now define our notion of genericity. A set of markets is generic if its complement is a

subset of a finite union of hyperplanes. A set of markets H ⊆ ∆(T ) is a hyperplane if there exists

a1, . . . , an, where ai 6= 0 for at least one i ∈ {1, . . . , n}, such that H = {f ∈ ∆(T ) |
∑

i aifi =

0}.34 Let FTr ⊆ ∆(T ) be the set of trivial markets (Definition 2). We have the following

definition.

Definition 5 A set of markets F ⊆ ∆(T ) is generic if there exists a finite set of hyperplanes

{H`}` such that ∆(T ) \ F ⊆ ∪`H`. A set of markets F ⊆ ∆(T ) is generic among non-trivial

markets if F ∪ FTr is generic.

The main result of this section states that the segmentation defined in Definition 4, pa-

rameterized appropriately, generically improves consumer surplus for non-trivial markets. To

be precise, let FIm ⊆ ∆(T ) be the set of markets f for which µ̃i,ε(f) of Definition 4 strictly

improves consumer surplus for some i, ε. The proposition below shows that the set of markets

for which consumer surplus can be improved with the segmentation in Definition 4 is generic

among non-trivial markets.35 Type i is any type that receives ā with probability one in f .

34The standard definition of a hyperplane is that
∑

i aifi = b for some b. The definition with b = 0 suffices for

our purposes.

35The set FIM itself is not generic. The reason is that improving consumer surplus is impossible for the set of

non-trivial markets, which is a generic set. In Figure 7, FIM = (τ1, τ2) ∪ (τ2, 1), which is not generic. However,

FIM is generic among non-trivial markets, (τ1, 1).
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Theorem 3 For any given set of types, the set of markets FIm for which improving consumer

surplus is possible is generic among non-trivial markets.

The proof of Theorem 3 consists of three steps. First, we show that for any non-trivial

market f , in any optimal mechanism M , any type that gets alternative ā with probability one

pays strictly more than v1
ā. Second, we show that if f has a unique optimal mechanism, the

segmentation in Definition 4 strictly improves consumer surplus. Third, we show that the set of

markets with a unique optimal mechanism is generic.

We start with the first step. Consider any optimal mechanism M for market f . By Lemma 9,

there exists a type i that gets alternative ā with probability one. The lemma below shows that

the payment of i is strictly higher than v1
ā. Therefore, type i has a strictly higher utility in

mechanism N1, the optimal mechanism in segment f ′ of segmentation µ̃i,ε(f) (Definition 4)

than it does in mechanism M .

Lemma 10 Consider any optimal mechanism (x, p) for a non-trivial market f . For any type i,

if xā(i) = 1, then p(i) > v1
ā.

Proof. Consider an optimal mechanism (x, p) of a non-trivial market f , and assume for contra-

diction that xā(i) = 1 and p(i) ≤ v1
ā for some type i. For a type j to not benefit from mimicking

type i, it must be that

vj · x(j)− p(j) ≥ vj · x(i)− p(i) ≥ vjā − v1
ā.

Thus, p(j) ≤ vj · x(j) − (vjā − v1
ā). Since vj · x(j) ≤ vjā, we must have p(j) ≤ v1

ā for all j. Thus

the mechanism N1, in which all types pay v1
ā, must also be optimal. Since N1 is optimal and

has an efficient allocation, f is trivial, which is a contradiction.

For the remainder of the proof, it is useful to consider the set of implementable payment

functions. Say that a mechanism (x, p) is IR0 if it is IR and the individual rationality constraint

for type 1 holds with equality, v1 · x(1) − p(1) = 0. Any optimal mechanism must be IR0.

Consider the set P = {p : T → R | ∃x, s.t. (x, p) is IC & IR0} of implementable payment

functions. The set P is convex with finitely many extreme points. To see this, note that the set

of IC and IR0 mechanisms is a bounded convex polytope. It is the intersection of a finite number

of halfspaces specified by the IC constraints (1), IR constraints (2) (plus v1 · x(1) − p(1) = 0),

and the constraints that xa(i) ≥ 0 and
∑

a xa(i) ≤ 1, defined over the finite set of variables x
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and p. The set P is a projection of the set of IC and IR0 mechanisms (x, p). Formally, we have

the following lemma.

Lemma 11 There exists a finite set EP ⊆ R|T | such that P is the convex hull of EP .

We say that a market f has a unique optimal payment function if p = p′ for any two optimal

mechanisms (x, p) and (x′, p′) of f . We next show that if a non-trivial market f has a unique

optimal payment function, then the segmentation µ̃i,ε(f) with any type i that receives ā with

probability one in f and small enough ε > 0 strictly improves consumer surplus. The key

observation is that if a market f has a unique optimal payment function, then any optimal

mechanism for f is also optimal for all markets that are close enough to f , and in particular

segment f ′′ of µ̃i,ε(f). Therefore, all the types in segment f ′′ are unaffected by the segmentation.

Since type i prefers mechanism N1 to the optimal mechanism for f , the segmentation strictly

improves consumer surplus.

Lemma 12 It a non-trivial market f has a unique optimal payment function, then f ∈ FIm.

Proof. Consider a non-trivial market f with a unique optimal payment function p, and its

optimal mechanism M = (x, p) such that CS(f) = EU(f,M). By Lemma 9, there exists a type

i that receives alternative ā with probability one in M .

Consider the segmentation µ̃i,ε(f) two with segments f ′ and f ′′. For small enough ε > 0, the

mechanism M is optimal for f ′′. To see this, note that since the set EP is finite (Lemma 11) and p

is the unique optimal payment function, there exists δ > 0 such that Ei∼f [p(i)] ≥ Ei∼f [p
′(i)] + δ

for all p′ ∈ EP . Thus, by continuity of the expected revenue in f , for small enough ε, Ei∼f ′′ [p(i)] ≥

Ei∼f ′′ [p
′(i)] for all p′ ∈ EP . Since all payment functions are convex combinations of the payment

functions in EP (Lemma 11), we must have Ei∼f ′′ [p(i)] ≥ Ei∼f ′′ [p
′(i)] for all payment functions

p′ ∈ P , that is, the mechanism M is optimal for f ′′. Since CS(f ′′) is the maximum consumer

surplus across all optimal mechanisms of f ′′, CS(f ′′) ≥ EU(f ′′,M).

We now complete the proof by showing that µ̃i,ε(f) improves consumer surplus. By con-

struction, the mechanism N1 is optimal for f ′. Type 1 has the same utility in M and N1 (which

is zero), and type i has strictly higher utility in N1 than in M by Lemma 10 and the fact that

i receives alternative ā with probability one in M . Thus, CS(f ′) ≥ EU(f ′, N i) > EU(f ′,M).
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Now write the consumer surplus of the segmentation,

CS(µ̃i,ε(f)) = εCS(f ′) + (1− ε)CS(f ′′) > εEU(f ′,M) + (1− ε)CS(f ′′)

≥ εEU(f ′,M) + (1− ε)EU(f ′′,M)

= EU(f,M) = CS(f).

Thus the segmentation µ̃i,ε(f) has higher consumer surplus than the market f .

The last step in the proof of Theorem 3, is to show that the set of markets that admit a

unique optimal payment function is generic.

Lemma 13 The set of markets that admit a unique optimal payment function is generic.

Proof. Consider a market f for which more than one payment function in P maximizes revenue.

Since EP is the set of extreme points of P , there must exist p, p′ ∈ EP , p 6= p′ that are optimal for

f . Thus such a market is contained in a hyperplane Hp,p′ defined by the equation
∑

i fi(p(i)−

p′(i)) = 0. Since EP is finite, the set of markets f with more than one optimal payment function

is contained in a finite union of hyperplanes, one for each pair of payment functions in EP ,

i.e., ∪p,p′∈EPHp,p′ . Thus, by Definition 5, the set of markets with a unique revenue maximizing

payment function is generic.

We now complete the proof of Theorem 3.

Proof of Theorem 3. Consider the set of markets f that admit a unique optimal payment

function, which is generic by Lemma 13. If f is non-trivial, then by Lemma 12, f ∈ FIm. As

a result, the set of markets that admit a unique optimal mechanism, which is a generic set, is

contained in FTr ∪FIm. Since a superset of a generic set is generic, the set FTr ∪FIm is generic.

7 Concluding Remarks

We studied the maximum consumer surplus across all possible segmentations of a given market.

A key feature of our model is that the seller may find it profitable to screen consumers in

a market by offering multiple bundle-price pairs. With two consumer types, we provided a

complete characterization of consumer-optimal segmentations as well as a characterization of

when improving consumer surplus is possible and first best consumer surplus is achievable.

With more than two types, we provided a characterization of when first best consumer surplus
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is achievable for all markets or no market with a given set of types. We also showed that there

are markets for which improving consumer surplus is impossible, but we constructed a simple

segmentation that improves consumer surplus for generic markets.

We wrap up by first discussing the consequences of relaxing the assumption that the sets of

types and alternatives are finite, and then briefly discussing how our results extend to a setting

with non-linear costs.

7.1 Infinitely Many Types Or Alternatives

The results of Section 5 regarding the achievability of first best consumer surplus extend straight-

forwardly when the set of types T and the set of alternatives A are compact but not necessarily

finite. In particular, Proposition 3 and Lemma 8, which are the key steps in the proofs of

Corollary 2 and Theorem 2, continue to hold with compact T and A.

The result in Section 6 regarding the possibility of improving consumer surplus for generic

markets, Theorem 3, may no longer hold if either T or A is infinite. Recall from Subsection 4.2

that consumer surplus consists of at most k−1 linear pieces, where k is the number of alternatives

(Figure 6). Thus the number of linear pieces, and the number of markets for which improving

consumer surplus is impossible, grows with the number of alternatives. If the set A is countable,

the the set markets for which improving consumer surplus is impossible is also countable.36 If

A is uncountable, then the set of markets for which improving consumer surplus is impossible

may be uncountable, as the following example shows.

Consider the following extension of the example in Section 2. There are two types, 1 and 2,

and a continuum of alternatives A ⊆ R. The valuations are v1
a = 2a−a2, and v2

a = 2a. Consumer

surplus CS and the maximum consumer surplus MCS (the concavification of CS) are illustrated

in Figure 15 (a) and (b), for A = [0, 1] and A = [0, 0.5].37 If A = [0, 1], then improving consumer

surplus is impossible for a generic set of non-trivial markets, namely [0, 0.5].38 If A = [0, 0.5],

36Therefore, the set of markets for which improving consumer surplus is possible is generic if the definition of

genericity (Definition 5) is adjusted to account for a countable (instead of finite) union of hyperplanes.

37In the optimal mechanism for market q, type 1 gets an alternative a that maximizes v1
a − qv2

a. If A = [0, 1],

then type 1 gets an alternative a = 1 − q, and consumer surplus is CS(q) = q(1 − q)2. If A = [0, 0.5], then

type 1 gets an alternative a = 0.5 if q ≤ 0.5 and a = 1 − q if q ≥ 0.5. Therefore, CS(q) = q/4 if q ≤ 0.5 and

CS(q) = q(1− q)2 if q ≥ 0.5.)

38Bergemann et al. (2015) develop a related example.
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Figure 15: (a)A = [0, 1] and CS(q) = q(1−q)2. (b)A = [0, .5], and CS(q) = q/4 if q ≤ 0.5 and CS(q) = q(1−q)2

if q ≥ 0.5.

improving consumer surplus is possible for all non-trivial markets (markets in [0, 0.5] are trivial).

The reason for the failure of Theorem 3 is that Lemma 11 no longer holds when T or A

are not finite. In particular, the set of IC and IR mechanisms can no longer be written as a

polytope defined by finitely many variables and over finitely many constraints. As a result, the

set of implementable payments functions no longer has finitely many extreme points. Vincent

and Manelli (2007) provide an analysis of the set of feasible mechanisms with infinitely many

types.

7.2 A Mussa-Rosen Setting with Non-linear Costs

Our analysis examined the interplay between screening and market segmentation. Since screen-

ing is not profitable if valuations and costs are linear (Riley and Zeckhauser, 1983), we focused

on a model with non-linear valuations and zero costs. In this section we briefly discuss the

alternative model with linear valuations and non-linear costs, as in Mussa and Rosen (1978).

As we will argue, the technical difficulties that we had to overcome persist, and our conclusions

continue to hold, in such a setting.

Consider the following setting with a finite number of types T = {1, . . . , n} and a set of

alternatives A ⊆ [0, 1]. The valuation of type i ∈ T for alternative a is via, where vi ∈ R is

increasing in i. Thus the valuation of type i is linear in a. The cost of producing alternative a

is C(a).

One difference between the two models is the application. Our general setting (Section 3)

can capture a bundling application with multi unit demands and heterogeneous products since
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we do not require all alternatives to be ranked. In contrast, the setting above (as in Mussa and

Rosen, 1978 and Maskin and Riley, 1984) assumes that alternatives are ranked and allows for

multi unit demands but not selling heterogeneous products.

Another point is the tractability of the models. Can the main technical difficulties through-

out this paper be avoided in a setting with linear valuations and non-linear costs? The answer is

negative. First, recall the problem with concavification. Concavification requires an identifica-

tion of consumer surplus for all markets, which remains a difficult task. With linear valuations,

optimal mechanisms can be identified via ironing for a given market. Nevertheless, for different

markets, ironing needs to be performed over different regions of the type space.39 Thus, ironing

does not easily lend itself to a closed-form characterization of consumer surplus for all markets.

We discuss this issue in more detail below. Second, even if concavified consumer surplus is

identified in closed form, it remains unclear how it can be compared to the two bounds unless

there are two types, in which case a geometric comparison can be made.

To be more precise, consider a market f ∈ ∆(T ) in the setting with linear valuations discussed

above. Let F i =
∑

j>i f
j and φi = vi − (vi+1−vi)F i

f i
. Using standard tools (e.g., Myerson, 1981),

the problem of maximizing profit becomes to choose x1, . . . , xn to maximize

Ei∼f [x
iφi − C(xi)],

subject to monotonicity of x, that is, xi is non-decreasing in i. If the cost function c is convex and

φi is non-decreasing in i, then monotonicity of x is satisfied at the solution to the unconstrained

problem and xi solves φi = C ′(xi). If φ is not non-decreasing, then optimal mechanisms can

be obtained via ironing. Nevertheless, ironing needs to be applied to different regions of the

type space for different markets, complicating the task of obtaining a closed form expression for

consumer surplus.

Despite these technical issues, the main insights of this paper can be obtained with linear

valuations and non-linear costs. This can be seen with the example below that obtains two

conclusions analogous to those of the example in Section 2. Namely, first best consumer surplus

is achievable for a non-trivial market if and only if non-screening is optimal for all markets, and

improving consumer surplus is possible for all non-trivial markets except for possibly one such

market. Even though we expect these conclusions to extend beyond this example, we do not

pursue such extensions formally in this paper.

39In other words, different incentive constraints bind in different markets.
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Figure 16: The relationship between CS, MCS, and FBCS. (a) α ∈ ( 1
3 ,

1
2 ]. (b) α ∈ ( 1

2 ,
√

5−1
2 ). (c) α ∈

[
√

5−1
2 , 2

3 ).

The example is parameterized by some α, where 1/3 < α < 2/3. There are two types, 1 and

2, and three alternatives A = {0, 1−α, 1}. The valuations are linear, v1
a = 2a and v2

a = 3a. The

costs are C(0) = 0, C(1− α) = 2− 3α, and C(1) = 1.40 A market q consists of a fraction 1− q

of type 1, and a fraction q of type 2. The relationship between consumer surplus CS, maximum

consumer surplus MCS, and first best consumer surplus FBCS is illustrated in Figure 16.41

Notice the analogy to Figure 4.
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A Proofs of Section 3

A.1 Proof of Lemma 1

Proof of Lemma 1. We argued in the text that CS(f) ≤MCS(f). To see that MCS(f) ≤

Ei∼f [v
i
ā] − ER(f), consider any market f ′ and its optimal mechanism M ′ = (x′, p′) such that

CS(f ′) = EU(f ′,M ′). We have

CS(f ′) + ER(f ′) = Ei∼f ′ [v
i · x′(i)− p′(i)] + Ei∼f ′ [p

′(i)] = Ei∼f ′ [v
i · x′(i)] ≤ Ei∼f ′ [v

i
ā]. (4)

Now consider a market f and a segmentation µ of f . From (4) we have

CS(µ) + Ef ′∼µ[ER(f ′)] = Ef ′∼µ[CS(f ′) + ER(f ′)] ≤ Ef ′∼µ[Ei∼f ′ [v
i
ā]] = Ei∼f [v

i
ā], (5)

where the equality followed since Ef ′∼µ[f ′] = f . Now consider any optimal mechanism (x, p) of

f . We have

Ef ′∼µ[ER(f ′)] ≥ Ef ′∼µ[
∑
i

f ′ip(i)] =
∑

fip(i) = ER(f). (6)

Combining (5) and (6), we conclude that

CS(µ) ≤ Ei∼f [v
i
ā]− ER(f).

A.2 Proof of Lemma 2

Proof of Lemma 2. Consider any market f ′ and its optimal mechanism M ′ = (x′, p′) such

that CS(f ′) = EU(f ′,M ′). We have

CS(f ′) + ER(f ′) = Ei∼f ′ [v
i · x′(i)− p′(i)] + Ei∼f ′ [p

′(i)] = Ei∼f ′ [v
i · x′(i)] ≤ Ei∼f ′ [v

i
ā]. (7)

Now consider a market f and a segmentation µ of f . From (7) we have

CS(µ) + Ef ′∼µ[ER(f ′)] = Ef ′∼µ[CS(f ′) + ER(f ′)] ≤ Ef ′∼µ[Ei∼f ′ [v
i
ā]] = Ei∼f [v

i
ā], (8)

where the equality followed since Ef ′∼µ[f ′] = f . Now consider any optimal mechanism (x, p) of

f . We have

Ef ′∼µ[ER(f ′)] ≥ Ef ′∼µ[
∑
i

f ′ip(i)] =
∑

fip(i) = ER(f). (9)
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Combining (8) and (9), we conclude that

CS(µ) ≤ Ei∼f [v
i
ā]− ER(f),

with equality if and only if both (8) and (9) hold with equality. For (8) to hold with equality,

it is necessary and sufficient that xā(i) = 1 for all i in the support of every segment of µ. That

is, every segment of µ is trivial (Definition 2). For (9) to hold with equality, it is necessary and

sufficient that the mechanism (x, p) is optimal for every segment of µ.

B Proofs of Section 4

B.1 Optimal Mechanisms For Two Types

The following lemma provides a characterization of optimal mechanisms for two types. A mech-

anism is optimal if and only if the following conditions hold. First, the allocation of type 1 is a

distribution over alternatives that maximize v1
a − qv2

a, and the allocation of type 2 is alternative

ā. Second, the payments are calculated via the binding IR constraint of type 1 and the binding

IC constraint of type 2.

Lemma 14 With two types, a mechanism (x, p) is optimal if and only if

1. x(1) ∈ ∆(arg maxa v
1
a − qv2

a), xā(2) = 1.

2. p(1) = v1 · x(1), p(2) = p(1) + v2 · (x(2)− x(1)).

Proof. Consider any IC and IR mechanism (x′, p′). The IR constraint for type 1 is

v1 · x′(1)− p′(1) ≥ 0, (10)

Similarly, the IC constraint for type 2 is

v2 · x′(2)− p′(2) ≥ v2 · x′(1)− p′(1), (11)

Substituting (10) and (11), the expected revenue is

(1− q)p′(1) + qp′(2) = p′(1) + q(p′(2)− p′(1))

≤ v1 · x′(1) + qv2 · (x′(2)− x′(1))]

= x′(1) · (v1 − qv2) + qx′(2) · v2 (12)
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Thus, maximum revenue across all mechanisms is at most the maximum of (12) across all x′(1)

and x′(2), which is obtained by setting x(1) ∈ ∆(arg maxa v
1
a−qv2

a) and xā(2) = 1. Furthermore,

note that the expected revenue of mechanism (x, p) equals x(1) · (v1 − qv2) + qx(2) · v2 if the

two constraints (10) and (11) hold with equality, which is obtained by setting p(1) = v1 · x(1)

and p(2) = p(1) + v2 · (x(2) − x(1)). Thus, if mechanism (x, p) is IC and IR, it is optimal.

Furthermore, if such a mechanism is IC and IR, then all optimal mechanisms must satisfy the

conditions specified by the lemma.

To verify that the mechanism (x, p) is IC and IR, note that (10) and (11) imply that the IR

constraint for type 2 is satisfied. The only remaining constraint is the incentive constraint for

type 1. The utility of type 1 for deviating to type 2 is

v1 · x(2)− p(2) = v1 · x(2)− p(1)− v2 · (x(2)− x(1))

= v1 · x(2)− v1 · x(1)− v2 · (x(2)− x(1))

= (v2 − v1) · x(1)− (v2 − v1) · x(2)

=
∑
a

xa(1)
(
(v2
a − v1

a)− (v2 − v1) · x(2)
)

(13)

where the last equality followed since
∑

a xa(1) = 1. Now consider any alternative a such

that xa(1) > 0. By definition, it must be that a ∈ arg maxa v
1
a − qv2

a. Thus, in particular,

v1
a − qv2

a ≥ v1
ā − qv2

ā. Since q ≤ 1, we have v2
ā − v2

a ≥ v1
ā − v1

a. Therefore, for any a where

xa(1) > 0,

(v2
a − v1

a)− (v2 − v1) · x(2) ≤ 0.

Now note that for any a, either xa(1) = 0, or xa(1) > 0 in which case the above inequality holds.

In either case, we have

xa(1)
(
(v2
a − v1

a)− (v2 − v1) · x(2)
)
≤ 0.

Summing over all a, and given (13), we have

v1 · x(2)− p(2) =
∑
a

xa(1)
(
(v2
a − v1

a)− (v2 − v1) · x(2)
)
≤ 0.

Thus, the incentive constraint for type 1 is satisfied.

The following lemma reveals the structural properties of arg maxa v
1
a − qv2

a, which identifies

the allocation of type 1 by Lemma 14. The problem is one of maximizing over functions v1
a− qv2

a
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Figure 17: An example with k = 4, m = 3, τ1 = a, and τ2 = a′.

that are linear in q. Thus, the set of markets [0, 1] can be divided into intervals, each assigned a

unique alternative, such that the alternative is the unique maximizer of v1
a − qv2

a in the interior

of the interval, and is an optimizer of v1
a − qv2

a at the endpoints of the interval. Additionally,

maxa v
1
a − qv2

a is convex in q. See Figure 17.

Lemma 15 For some m ≤ k, there exist thresholds τ0 < . . . < τm+1, τ0 = 0, τm+1 = 1

and an injective function g : {0, . . . ,m} → A, g(0) = ā, g(m) = 0, such that for all j ≤ m,

g(j) ∈ arg maxa v
1
a−qv2

a if and only if q = [τj, τj+1]. Additionally, v2
g(j)−v1

g(j) is strictly decreasing

in j.

Proof. Consider the problem of maximizing v1
a − qv2

a. For each q, the problem is to maximize

over k linear functions. The graph is drawn in Figure 17. Note the properties of the solution.

First, the set of markets [0, 1] can be divided into intervals with thresholds τ0 < . . . < τm+1,

with each τj assigned a unique alternative g(j), such that for all j ≤ m, g(j) ∈ arg maxa v
1
a− qv2

a

if and only if q = [τj, τj+1]. Since v1
ā > v1

a for all a 6= ā, g(0) = ā. Similarly, since v1
a − v2

a < 0

for all a 6= 0, g(m) = 0. Additionally, consider j such that gi−1 = a and gj = a′. We must have

v1
a−qv2

a > v1
a′−qv2

a′ for all q < τj and v1
a−qv2

a < v1
a′−qv2

a′ for all q > τj. Thus, v2
a−v1

a > v2
a′−v1

a′ .

B.2 Proof of Lemma 4

Proof of Lemma 4. By Lemma 14, the mechanism N1 is optimal if and only if ā ∈

arg maxa v
1
a− qv2

a. By Lemma 15, the set of such markets is [0, q1] for q1 = τ1 > 0. Furthermore,
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N1 is the unique optimal mechanism for [0, q1).

Similarly, by Lemma 14, the mechanism N2 is optimal if and only if 0 ∈ arg maxa v
1
a − qv2

a.

By Lemma 15, the set of such markets is [q2, 1] for q2 = τm < 1. Furthermore, N2 is the unique

optimal mechanism for (q2, 1].

Finally, consider a mechanism M that is optimal for (q1, q2). Since neither N1 nor N2 is

optimal for any market (q1, q2), M 6= N1, N2, and thus M cannot be optimal for [0, q1) or (q2, 1].

B.3 Proof of Lemma 5

Proof of Lemma 5. By Lemma 14 and Lemma 15, there exists thresholds 0 < τ1 < . . . < τm+1,

τ0 = 0, τm+1 = 1, and a function g such that a mechanism (x, p) is optimal for a market q if

and only if the IR constrain for type 1 and the IC constraint for type 2 bind, xā(2) = 1, and

xa(1) > 0 only if q ∈ [τj, τj+1] and a = g(j).

Define αj = v2
g(j) − v1

g(j). The consumer surplus in a market q ∈ (τj, τj+1) is CS(q) = qαj =

q(v2
g(j) − v1

g(j)). Consider a threshold market q = τj, and two alternatives a = g(j − 1) and

a = g(j). Recall from Lemma 15 that v2
g(j−1)− v1(g(j − 1)) > v2

g(j)− v1(g(j)). Thus, xg(j−1) = 1

maximizes consumer surplus across all optimal mechanisms for a threshold market τj. Therefore,

CS(q) = qαj for all q ∈ (τj, τj+1] and αj is decreasing in j.

B.4 Impossibility Of Improving Consumer Surplus for K − 1 Non-

trivial Markets

We provide an example with K alternatives such that improving consumer surplus is impossible

for K − 1 non-trivial markets.

There are two types 1 and 2, and alternatives are 0 to K. For a ≥ 1, the valuations are

v1
a = 2v(a) − v(a)2, and v2

a = 2v(a), where v(a) = 1
2

+ a
2K

. By Lemma 14, in an optimal

mechanism type 1 gets an alternative that maximizes 2v(a) − v(a)2 − 2qv(a). For alternatives

0 < a < a′, we have

2v(a)− v(a)2 − 2qv(a) ≥ 2v(a′)− v(a′)2 − 2qv(a′)
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if and only if

q ≥ 1− v(a) + v(a′)

2
.

As a result, alternative a > 1 maximizes 2v(a)−v(a)2−2qv(a) if and only if q ∈ [1
2
− 2a+1

4K
, 1

2
− 2a−1

4K
],

and alternative a = 1 maximizes 2v(a)− v(a)2 − 2qv(a) if and only if q ∈ [1
2
− 3

4K
, 3

4
− 1

4K
]. The

consumer surplus at a threshold market q = 1
2
− 2a+1

4K
is CS(q) = qv(a)2 = q(1− q− 1

2K
)2. Thus,

consumer surplus at all threshold markets is convex.

C Proofs of Section 5

C.1 Proof of Lemma 7

Proof of Lemma 7. Consider two markets f ′, f ′′ for which a mechanism (x′, p′) is optimal.

Let f = αf ′ + (1− α)f ′′. For any mechanism (x, p), we have

Ei∼f [p(i)] = αEi∼f ′ [p(i)] + (1− α)Ei∼f ′′ [p(i)] ≤ αEi∼f ′ [p
′(i)] + (1− α)Ei∼f ′′ [p

′(i)] = Ei∼f [p
′(i)].

That is, for market f , the revenue of any mechanism (x, p) is at most the revenue of (x′, p′).

Thus, (x′, p′) is optimal for f .

C.2 Proof of Theorem 1

We start with the following lemma from Bergemann et al. (2015).

Lemma 16 For any market f and i ∈ arg maxj v
j
ā(
∑

i′≥j fi′), there exists a segmentation µ of

f such that every segment f ′ of µ includes i in its support and for all i′ in the support of f ′,

i′ ∈ arg maxj v
j
ā(
∑

i′≥j fi′).

We now complete the proof of Theorem 1.

Proof of Theorem 1. To complete the proof, we show that (2) implies (1). Consider a market

f . By assumption, the mechanism N i is optimal for some i. In particular, N i is optimal for any

i ∈ arg maxj v
j
ā(
∑

i′≥j fi′). By Lemma 16, there exists a segmentation µ such that every segment

f ′ of µ includes i in its support and for all i′ in the support of f ′, i′ ∈ arg maxj v
j
ā(
∑

i′≥j fi′).

Since N j is optimal for f ′ for some j, N i′ is optimal for all i′ in the support of f ′. That is, f ′ is

an equal-revenue market. Thus, by Corollary 1, µ achieves first best consumer surplus.
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Figure 18: The set of non-trivial markets for which first best consumer surplus is achievable is shaded.

C.3 Corollary 3: An Example

Corollary 3 identifies conditions under which first best consumer surplus is achievable for some,

but not all, non-trivial markets. In this section we identify with an example the set of markets

for which first best consumer surplus is achievable.

Consider an example with 3 types and its set of optimal mechanisms as shown in Figure 18.

The set of non-trivial markets for which first best consumer surplus is achievable is shaded in

Figure 18. Markets in F(N1) are trivial. First best consumer surplus is unachievable for any

market for which screening is optimal by Proposition 3. Thus, if first best consumer surplus is

achievable for a non-trivial market, then the market must be in F(N2) ∪ F(N3). Suppose that

a segmentation µ of a market f in F(N2) achieves first best consumer surplus. By Lemma 2,

two conditions must hold for every segment f ′ of µ. First. f ′ must be in F(N2). Second, N i(f ′)

must be optimal for f ′. The set of such markets f ′ is shown in green in Figure 18. Market f

must be in the convex hull of such market, which is shaded in Figure 18. Similarly, if first best

consumer surplus is achievable for a market f ∈ F(N3), then f must be in the convex hull of

the set of markets that are shown in red in Figure 18.

D Proofs of Section 6

D.1 Proof of Lemma 11

Proof of Lemma 11. As argued in the text, the set of IC and IR0 mechanisms is convex. The

set is also bounded, since 0 ≤ xa ≤ 1, p(i) ≤ viā, and p(i) ≥ 0 (if p(i) < 0, then the incentive

constraint of type 1 implies that v1 · x(1) − p(1) > 0, violating IR0). Thus there exist a finite
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set EM such that the set of IC and IR0 mechanisms is equal to the convex hull of EM . Let

EP = {p | ∃x, (x, p) ∈ EM}.

If p ∈ P , then there exists x such that (x, p) is IC and IR0, implying that (x, p) is in the

convex hull of EM , which in turn implies that p is in the convex hull of EP . Conversely, if p is

in the convex hull of EP , then there exists a distribution ν over IC and IR0 mechanisms (x′, p′)

such that p = Eν [p
′]. Define x = Eν [x

′]. The mechanism (x, p) is IC and IR0, and thus p ∈ P .
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