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Abstract

I introduce a model of belief updating, Coarse Bayesian Updating, where a bound-

edly rational agent, upon receipt of new information, applies a set of subjective criteria

to select among competing theories of the world. The agent is characterized by a prior,

a partition of the space of all probability distributions, and a representative distribu-

tion for each cell of the partition. When new information arrives, the agent computes

the Bayesian posterior, determines which cell of the partition it belongs to, and adopts

the representative of that cell as his posterior belief. The model includes Bayesian up-

dating as a special case and accommodates many documented violations of Bayesian

updating, including both under- and over-reaction to information. I provide behavioral

characterizations of this procedure and analyze how it relates to other models and ev-

idence on non-Bayesian updating. I also characterize what it means for an agent to be

more sophisticated, and how Coarse Bayesians value information. The model employs

standard primitives and, therefore, can be applied in most economic environments.
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1 Introduction

Bayesian updating occupies a central role in economic theory. A wide body of evidence,

however, suggests that individual behavior cannot be reconciled with Bayesian updating in

a variety of settings. While observed violations of Bayes’ rule are rich and varied, a number

of patterns typically emerge. For example, individuals often display conservatism bias : they

under-react to new evidence, possibly ignoring it altogether. In other cases, individuals over-

react to new information: they falsely extrapolate or, more generally, discern patterns in data

that are not actually present. Combinations of these forces can lead to misattribution, where

individuals under-weight one explanation for the evidence while over-weighting another. In

this paper, I introduce and analyze a generalization of standard Bayesian updating—Coarse

Bayesian Updating—accommodating these (and other) behavioral tendencies.

In my model, an agent considers only some subset of feasible probability distributions

over a state space, one of which is his prior. The feasible distributions can be interpreted as

competing theories of the world. When new evidence arrives (in the form of a noisy signal s),

the agent applies a set of subjective criteria for selecting among the competing theories. In

particular, the agent is characterized by a partition of the set of all probability distributions,

along with a representative distribution for each cell of the partition. After observing s,

the agent determines which cell contains the correct Bayesian posterior and adopts the

representative of that cell as his new belief. Thus, the representative distributions form the

set of competing theories, and the partition captures his criteria, or standard of proof, for

selecting among them. See Figure 1 below.

I provide two characterization of Coarse Bayesian behavior. The first is a direct charac-

terization, taking signal-contingent beliefs as primitive; I refer to the mapping from signals

to beliefs as an updating rule. Three axioms are required: Homogeneity, Convexity, and Con-

firmation. Homogeneity states that beliefs are invariant to scalar transformations of signals.

Convexity states that if two signals result in the same belief, then so do convex combinations

(randomizations) of those signals. A natural interpretation of Convexity is that the agent

understands his own updating rule: if he is unsure as to whether he has observed s or t, but

recognizes that s and t would yield the same belief µ̂ according to his updating rule, then

he should adopt µ̂. This also implies that the cells in the Coarse Bayesian representation

are convex. Finally, Confirmation states that if the Bayesian posterior for some signal t

coincides with some feasible belief, then the updating rule associates that belief to signal t.

In other words, if the evidence directly confirms a given theory, then that theory should be

taken as the new belief.

The second characterization takes as primitive a family of signal-contingent choices from
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Figure 1: Coarse Bayesian Updating. In this example, the agent entertains three distribu-
tions (solid dots). The point µe is the prior. After observing a signal s, the agent computes
the Bayesian posterior µ̂, determines which cell of the partition contains µ̂, and then adopts
the representative of that cell (in this case, µ′) as his new belief.

menus of risky actions. In contrast to the first characterization, this also requires the indi-

vidual to be an expected utility maximizer. My approach is analogous to that of Anscombe

and Aumann (1963), with additional axioms translating the Convexity and Confirmation

axioms of the first characterization into revealed-preference statements in the second. Both

characterizations establish uniqueness of the agent’s partition and feasible beliefs. In con-

trast to Savage (1972) and Anscombe and Aumann (1963), the behavioral characterization

establishes not only a subjective prior over the state space, but also subjective criteria (the

partition) for updating beliefs. The behavioral setting can also be used to characterize no-

tions of sophistication: a “more sophisticated” agent (ie, one with a finer partition) is more

responsive to changes in signals, while a “more Bayesian” agent (ie, one with a larger set of

competing theories) behaves like a standard Bayesian for a wider range of signals.

In section 3, I discuss some of the main features of Coarse Bayesian updating, as well

as some closely related studies of non-Bayesian updating. I show that Coarse Bayesian up-

dating can be equivalently expressed as a theory of signal distortion, and that it typically

implies path dependence (sensitivity to the order in which signals are generated). I also

compare and contrast Coarse Bayesianism to an alternative updating model—Maximum-

Likelihood updating—where an agent holds second-order beliefs over a state space and ap-

plies a maximum-likelihood selection criterion after observing signals. I show that standard

Bayesian updating is a special case of both Coarse Bayesian and Maximum-Likelihood up-

dating, but that (in general) neither model subsumes the other.

Finally, section 5 analyzes how Coarse Bayesians value information (Blackwell experi-

ments) when faced with menus of risky actions. I show that a Coarse Bayesian’s ranking of

information structures typically exhibits violations of the Blackwell (1951, 1953) information

ordering, and that a Coarse Bayesian adheres to the Blackwell ordering if and only if the

menu and his partition satisfy a particular co-measurability condition. The Blackwell order-

ing can also characterize a notion of sophistication: the agent has a finer partition if and only
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if his value of information is more responsive to a particular class of coarse Blackwell gar-

blings. In fact, the connection runs deeper: both the partition and the set of feasible beliefs

can be identified from the agent’s ranking of information structures—even if one restricts

attention to pairs of experiments that are Blackwell comparable.

1.1 Related Literature

To be written.

2 Model

I consider a single agent who updates beliefs after observing noisy signals. Let Ω denote a

finite set of N states and ∆ the set of probability distributions over Ω. A distribution µ ∈ ∆

assigns probability µω to states ω ∈ Ω.

Following Jakobsen (2016), a signal is a profile s = (sω)ω∈Ω ∈ [0, 1]Ω such that sω 6= 0

for at least one state ω. Let S denote the set of all signals. Intuitively, a signal represents a

message that can be generated, and the entries of sω are the likelihoods of the message being

generated in different states of the world. As explained in section 5, general information

structures (Blackwell experiments) can be represented as collections of signals. I reserve e

to denote the uninformative signal; that is, e ∈ S and eω = 1 for all ω ∈ Ω.

For two profiles x = (xω)ω∈Ω and y = (yω)ω∈Ω of real numbers, let xy := (xωyω)ω∈Ω

denote the profile formed by multiplying x and y component-wise. The dot product of x and

y is given by x · y :=
∑

ω∈Ω xωyω. The notation x ≈ y indicates that x = λy for some λ > 0.

Clearly, if µ, µ′ ∈ ∆ and µ ≈ µ′, then µ = µ′.

If µ ∈ ∆ and s ∈ S such that µs 6= 0, then B(µ|s) denotes the Bayesian posterior of µ

for signal s; that is, the unique µ′ ∈ ∆ such that µ′ ≈ sµ.

Finally, an updating rule is a function µ : S → ∆ assigning probability distributions

µs ∈ ∆ to signals s ∈ S. For each s ∈ S, µs is the agent’s posterior belief conditional on

observing signal s. I assume µe, the prior, has full support. Updating rules will often be

written as profiles: µ = (µs)s∈S.

2.1 Coarse Bayesian Representations

The primary goal of this paper is to introduce and analyze a model of (typically) non-

Bayesian updating, Coarse Bayesian updating. Coarse Bayesian updating rules are charac-

terized by the following three axioms on µ.
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Homogeneity. If s ≈ t, then µs = µt.

Homogeneity requires that the agent’s analysis of a signal only depends on the likelihood

ratios sω/sω′ . This is a key feature of standard Bayesian updating: B(µe|s) coincides with

B(µe|λs), provided λ > 0 and λs ∈ S.

Convexity. If µs = µt and λ ∈ [0, 1], then µλs+(1−λ)t = µs.

Convexity asserts that if signals s and t result in the same (potentially non-Bayesian)

posterior µ̂, then so does r := λs + (1 − λ)t. An interpretation of Convexity is that it

describes the behavior of an agent who understands his own updating rule. To see this, note

that r represents a garbled signal: observing r indicates that either s was generated (with

probability λ) or t was generated (with probability 1−λ). Therefore, an agent who recognizes

that both s and t yield µ̂—in other words, an agent who understands his own updating

procedure—ought to conclude that r also yields posterior µ̂. In this sense, Convexity is a

“sure-thing” principle for updating, requiring the agent to be cognizant of his own behavior.

Confirmation. If tµe ≈ µs, then µt = µs.

Confirmation requires that if the Bayesian posterior at t coincides with some feasible

belief µs, then the updating rule satisfies Bayes’ rule at signal t: µt = µs. In other words, if

signal t exactly confirms a feasible belief, then that belief is the posterior at t.

Proposition 1. An updating rule µ is homogeneous, convex, and confirmatory if and only

if there is a partition P of ∆Ω and a profile (µP )P∈P of distributions µP ∈ ∆ such that

(i) each cell P ∈ P is convex,

(ii) for all P ∈ P, µP ∈ P , and

(iii) for all s ∈ S, B(µe|s) ∈ P implies µs = µP .

The pair 〈P , (µP )P∈P〉 is a Coarse Bayesian Representation of µ. If 〈Q, (µQ)Q∈Q〉 is

another Coarse Bayesian Representation of µ, then P = Q and (µP )P∈P = (µQ)Q∈Q.

In a Coarse Bayesian representation, the agent is characterized by a partition, P , of ∆

as well as a representative distribution µP ∈ P for each cell P of the partition. Each cell

is convex, and one of the distributions is the prior: µP = µe. When a signal s arrives, the

agent selects the unique µP such that the Bayesian posterior B(µe|s) belongs to cell P . The

updating rule µ (in particular, the set S) is sufficiently rich to uniquely identify both P and

µP for all P ∈ P .
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There are (at least) two interpretations of Coarse Bayesian behavior. In each interpre-

tation, the agent entertains only some restricted set of distributions as possible theories of

the world, and the updating rule is essentially a minimal deviation from standard Bayesian

updating subject to this restriction. The interpretations, however, differ in terms of whether

the agent understands signals and Bayesian updating. In the first interpretation, the agent

fully understands the informational content of signals: he computes the Bayesian posterior,

but applies his own “standard of proof” for selecting among the competing theories. If the

Bayesian posterior exactly coincides with one of the candidate distributions, then he adopts

that distribution as his posterior. Hence, the standard of proof—encapsulated by P—is a

subjective characteristic of the individual. In the second interpretation, the agent does not

fully grasp the informational content of signals. Rather, he only infers that his posterior

belief ought to belong to some particular region (the cell containing the Bayesian posterior).

Therefore, P represents the agent’s ability to process signals. Effectively, each cell represents

some combination of properties that a distribution may have, and the agent correctly pro-

cesses information only to the extent that it allows him to determine which properties must

be satisfied. For each feasible combination of properties, he has in mind a representative

theory of the world, which he adopts if he determines that those properties are satisfied.

The proof of Proposition 1 is quite simple, so I only provide the following sketch. Necessity

of the axioms is clear. For sufficiency, observe that Homogeneity and Convexity imply the

existence of a partition of S (into convex cones) such that µs = µt if and only if s and t belong

to the same cell of the partition. Since the cells are convex cones, each cell corresponds to

a convex set P of points in ∆ (in particular, signal s is associated with the unique µ′ ∈ ∆

such that µ′ ≈ sµe). The Confirmation property ensures that if B(µe|s) ∈ P , then µs ∈ P .

3 Models and Evidence

Coarse Bayesian updating is related to a number of other models and concepts of non-

Bayesian updating, and accommodates a variety of experimental findings. In this section, I

examine these relationships.

3.1 Signal Distortions

In addition to the two main interpretations offered in the previous section, Coarse Bayesian

updating can also be interpreted as a model of signal distortion. Formally, a signal dis-

tortion is a map d : S → S such that d(e) = e. The interpretation is that when signal

s is generated, the agent behaves as if d(s) had been generated instead. Hence, a signal
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distortion captures errors or biases in the agent’s perception of information.

Definition 1. An updating rule µ has a Signal Distortion Representation if there exists

a signal distortion d such that µs = B(µe|d(s)) for all s ∈ S.

In a signal distortion representation, an agent who observes signal s misperceives the

signal as d(s), and then applies standard Bayesian updating to the distorted signal. Thus, in

such representations, the prior µe and the distortion function d are the essential behavioral

parameters. Naturally, some restrictions on d are required.

Definition 2. A signal distortion d is:

(i) Convex if d(s) ≈ d(t) implies d(λs+ (1− λ)t) ≈ d(s) for all λ ∈ [0, 1], and

(ii) Idempotent if d(d(s)) = d(s) for all s.

Convexity requires mixtures of signals to result in the same distortion if the constituent

signals have a common distortion (up to scalar transformation). The interpretation is similar

to that of convexity for updating rules: if the agent is uncertain of which signal was generated

(s or t), but if s and t result in the same distortion, then the mixed signal must also yield

that distortion.

Idempotency requires distorted signals to be stable: the distortion of d(s) is d(s). Thus,

idempotent distortions effectively categorize signals and assign the same distortion to signals

in the same category.

Proposition 2. An updating rule has a Coarse Bayesian Representation if and only if it

has a convex, idempotent Signal Distortion Representation. If d and d′ are Signal Distortion

Representations for a given updating rule, then d(s) ≈ d′(s) for all s ∈ S.

Proposition 2 establishes an equivalence between Coarse Bayesian and Signal Distortion

Representations. Therefore, any updating rule µ satisfying Homogeneity, Convexity, and

Confirmation has a signal distortion representation, and the distortion d is unique up to

scalar transformation.

There is an important distinction, however, between Coarse Bayesian and Signal Distor-

tion Representations. Suppose the agent observes a sequence of signals (rather than a single

s) and applies his updating rule upon each realization (where the posterior resulting from

the previous realization becomes the prior for the next round of updating). In this case, the

distortion d would have to change upon each realization in order to coincide with the Coarse
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Bayesian procedure (effectively, d would have to be scaled by a signal that compensates for

the new prior), and an appropriate transformation may not exist if the new prior lacks full

support. Thus, although there is a clear connection between the two concepts for a single

round of updating, there is a sense in which the Coarse Bayesian representation is more

readily adaptable to dynamic settings.

3.2 Maximum Likelihood

Since Coarse Bayesians effectively select among competing models using subjective criteria,

it is natural to wonder if Coarse Bayesian updating results from subjective second-order

beliefs (that is, priors over priors). In this section, I consider a particular class of such

updating rules.

Definition 3. A homogeneous, convex updating rule µ has a Maximum-Likelihood Rep-

resentation if there exists a probability distribution Γ over ∆ (with density γ) such that

µs ∈ argmax
µ̂∈∆

γ(µ̂)µ̂ · s

for all s ∈ S. The function L : ∆ × S → R given by L(µ̂|s) = γ(µ̂)µ̂ · s is the likelihood

function.

In a Maximum Likelihood (ML) representation, the agent has a second-order prior Γ

that he updates (using Bayes’ rule) upon arrival of signal s. Then, he selects the prior with

the highest posterior probability. As is easily verified, this rule selects among beliefs µ̂ that

maximize the likelihood function. Notice that L is homogeneous (of degree 0) and convex in

s; the restriction to homogeneous convex updating rules, therefore, only takes effect when

there are ties (multiple candidate beliefs that maximize L).

Maximum-Likelihood (and, more generally, Coarse Bayesian) updating is reminiscent of

the Hypothesis-Testing model of Ortoleva (2012). In the Hypothesis-Testing model, the

agent applies Bayesian updating only for signals that have sufficiently high prior probability;

for “unexpected” signals, the agent applies a Maximum-Likelihood procedure. Behavior in

the Hypothesis-Testing model can be well-approximated by Coarse Bayesian behavior by

choosing a partition where each cell is a singleton unless the cell is near the extremes of the

probability simplex. This way, the agent applies Bayesian updating for signals that do not

take the Bayesian posterior too far away from the prior. At more “extreme” signals, the

agent may respond in a non-Bayesian fashion, as in the Hypothesis-Testing model.
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Example 1. Not every Maximum-Likelihood rule can be expressed as a Coarse Bayesian

rule. Suppose |Ω| = 2 and consider the distribution γ such that γ(µ1) = 3/4 and γ(µ2) = 1/4,

where µ1 = (1/3, 2/3) and µ2 = (3/4, 1/4). Observe that L(µ1|e) = γ(µ1)µ1 · e = γ(µ1) >

γ(µ2) = γ(µ2)µ2 · e = L(µ2|e); thus, µe = µ1. It is easy to verify that B(µe|s) = µ2

if and only if s1/s2 = 6. Therefore, to be consistent with a Coarse Bayesian updating

rule, we must have L(µ2|s) ≥ L(µ1|s) whenever s1/s2 = 6. Take s = (1, 1/6). Then

L(µ2|s) = 19/96 < 19/72 = L(µ1|s), so that the Maximum-Likelihood rule selects µ1 at s.

This means the rule is not confirmatory, and therefore is inconsistent with Coarse Bayesian

updating.

Example 2. Not every Coarse Bayesian rule can be expressed as a Maximum-Likelihood

rule. Suppose |Ω| = 3 and consider a Coarse Bayesian representation where P has two cells,

P and P ′, with µP = µe and µP
′

= µ′ 6= µe. The boundary between P and P ′ corresponds

to a hyperplane, H, in S. We will choose H (hence, P) in such a way that no distribution

γ on ∆ (with support {µe, µ′}) can generate the same updating behavior as 〈P , (µP )P∈P〉
under the Maximum-Likelihood procedure.

Observe that if γ generates the same updating behavior, then L(µe|s) = L(µ′|s) for all

s ∈ H. In particular, [γ(µe)µe−γ(µ′)µ′] ·s = 0 for all s ∈ H. Thus, the line {λ[µe+µ′]−µ′ :
λ ≥ 0} is orthogonal to the hyperplane H. Since µe 6= µ′, we may assume H strictly separates

µe and µ′. Thus, we may perturb the hyperplane H to ensure it is not orthogonal to the

line. Consequently, the resulting Coarse Bayesian Representation cannot be represented by

any Maximum-Likelihood rule.

Note that the argument in the example above requires |Ω| ≥ 3; if there are only two

states, then Coarse Bayesian behavior is a special case of Maximum-Likelihood updating.

Even with |Ω| ≥ 3, however, the two theories do overlap: standard Bayesian updating is a

special case of both Coarse Bayesian updating and Maximum-Likelihood updating. It is easy

to see how Coarse Bayesian updating accommodates standard Bayesian updating (choose P
so that each cell is a singleton). The next example shows how to express Bayesian updating

as Maximum-Likelihood.

Example 3. To express standard Bayesian updating as a Maximum-Likelihood rule, take

γ(µ̂) ∝
∥∥∥∥ µ̂√

µe

∥∥∥∥−1

where
√
µe := (

√
µeω)ω∈Ω and ‖·‖ denotes the standard norm on RN . Notice that B(µe|s) = µ′
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if and only if s ≈ µ′/µe := (µ′ω/µ
e
ω)ω∈Ω. Thus, it will suffice to verify that L(·|s) is maximized

at µ′ for such signals s. This is done as follows:

L(µ̂|s) =
µ̂

‖µ̂/
√
µe‖
· s

=
µ̂/
√
µe

‖µ̂/
√
µe‖
· s
√
µe

=

∥∥∥∥ µ̂/
√
µe

‖µ̂/
√
µe‖

∥∥∥∥ ‖s√µe‖ cos θ

= ‖s
√
µe‖ cos θ

where θ is the angle (in radians) between µ̂/
√
µe and s

√
µe. Thus, L(·|s) is maximized by

choosing µ̂ such that µ̂/
√
µe ≈ s

√
µe (because then θ = 0), implying µ̂ ≈ sµe ≈ µ′

µe
µe = µ′.

3.3 Path Dependence

Suppose a Coarse Bayesian agent observes a sequence of signals ~s = (s1, . . . , sn) and updates

beliefs sequentially: first, given prior µe and signal s1, he applies the Coarse Bayesian pro-

cedure to arrive at some belief µP . This belief acts as his prior when processing s2, and so

on. Does his final belief, denoted µ~s, depend on the order of the signal realizations?

For a standard Bayesian, the order does not matter: as long as the product s1s2 . . . sn :=

(s1
ωs

2
ω . . . s

n
ω)ω∈Ω is a well-defined signal (that is, at least one entry is nonzero), then the final

belief is simply B(µe|s1s2 . . . sn).1 Therefore, µ~s = µπ(~s) for all permutations π(~s) of ~s; this

is referred to as path-independence. If there exists an ~s and a permutation π(~s) such that

µ~s 6= µπ(~s), then the agent exhibits path-dependence.2

Example 4. Not every (non-Bayesian) Coarse Bayesian Representation exhibits path de-

pendence. For example, if P consists of a single cell (namely, {∆}), then µs = µe for all

s ∈ S. Less trivially, suppose N = 2 (so that ∆ may be represented by the interval [0, 1])

and consider P = {[0, 1), {1}} with µ[0,1) = 1/2 and µ{1} = 1. It is straightforward to verify

that this representation induces path-independent updating.

Although there are cases where Coarse Bayesians do not exhibit path dependence, there

are many scenarios in which they do. The next proposition highlights a simple class of

Coarse Bayesian Representations that exhibit path dependence.

1See Cripps (2018) for a general analysis of updating rules that are invariant to how an agent partitions
histories of signals.

2Path-dependence is a key feature of Rabin and Schrag (1999); Coarse Bayesians (with appropriately
specified partitions) can exhibit similar behavior precisely because of path dependence.
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Proposition 3. Suppose each µP (P ∈ P) has full support. Then the agent exhibits path-

dependence.

4 A Behavioral Characterization

Let A denote the set of all nonempty, compact subsets of X := RN . Each A ∈ A is a menu,

and elements x ∈ A are (risky) actions the agent may take. If the agent chooses action

x ∈ A, then he attains payoff xω in state ω.

I take as primitive a collection c = (cs)s∈S of signal-contingent choice correspondences.

For each A ∈ A and s ∈ S, cs(A) ⊆ A is the (nonempty) set of actions chosen by the

agent after observing signal s. Formally, c is a function from S ×A to P(X), the set of all

nonempty subsets of X.

Axiom 1 (Rationality). If x, y ∈ A ∩B, x ∈ cs(A), and y ∈ cs(B), then x ∈ cs(B).

Axiom 1 states that each cs satisfies the Weak Axiom of Revealed Preference. On the

domain A, this is necessary and sufficient for the existence of a rationalizing preference

relation %s.

Some additional notation is required for the next axiom. If A,B ∈ P(RN) and α ∈ [0, 1],

let αA+ (1− α)B := {αx+ (1− αy) : x ∈ A, y ∈ B}.

Axiom 2 (Independence). cs(αA+ (1− α)B) = αcs(A) + (1− α)cs(B).

Axiom 2 ensures that the derived relation %s satisfies the standard (von Neumann-

Morgenstern) Independence axiom. Next, endow P(RN) (and A) with the Hausdorff metric.

Axiom 3 (Continuity). Each cs is closed-valued and upper hemicontinuous.

Axiom 3 is needed to establish that %s has closed contour sets and, hence, satisfies

Archimedean continuity. Thus, Axioms 1–3 ensure the existence of a linear utility function

representing %s and, hence, rationalizing cs.

For actions x, y ∈ X, write x ≥ y to indicate that xω ≥ yω for all ω ∈ Ω, and x > y to

indicate xω > yω for all ω ∈ Ω. Combined with Axioms 1–3, the next axiom ensures that

each %s can be represented by expected utility (with prior µs), where µe has full support.

Thus, the agent’s behavior can be summarized by an updating rule µ = (µs)s∈S.

Axiom 4 (Monotonicity). Let A,B ∈ A.

(i) If x > y for all x ∈ A and y ∈ B, then cs(A ∪B) ⊆ B for all s ∈ S.
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(ii) If x ≥ y 6= x for all x ∈ A and y ∈ B, then ce(A ∪B) ⊆ B.

The final two axioms apply to a special class of menus. If A ∈ A and x ∈ A, a supporting

half-space for (x,A) is a closed half-space H such that x ∈ ∂H ⊇ A. A menu A ∈ A is generic

if each x ∈ A has at most one supporting hyperplane for (x,A). Intuitively, generic menus

have full dimension in RN and have smooth boundaries. The term “generic” is appropriate

because any menu can be arbitrarily well-approximated by such menus. Let A∗ denote the

set of all generic menus.

Axiom 5 (Convexity). If A ∈ A∗ and cs(A) = ct(A), then cαs+βt(A) = cs(A).

Note that Axiom 5 only applies for α, β ≥ 0 such that αs + βt ∈ S. Intuitively, Axiom

5 ensures that the updating rule µ is homogeneous and convex because in generic menus A,

cs(A) = ct(A) if and only if µs = µt.

Finally, for any nonempty A ⊆ X and s ∈ S, let sA := {sx : x ∈ A}. Effectively, sA

perturbs the payoffs of actions in A by scaling down the payoff in state ω by a factor sω.

Axiom 6 (Confirmation). If A ∈ A∗ and sct(A) ⊆ ce(sA), then cs(A) = ct(A).

Axiom 6 asserts that cs(A) = ct(A) (hence, µs = µt) if, after observing signal t, an

optimal action from A remains optimal in sA under e if its payoffs are scaled by s. Roughly

speaking, Bayesian updating requires an equivalence between scaling payoffs and scaling state

likelihoods: choices from A after Bayesian updating of signal s should be proportional (by

factor s) to those chosen under the prior µe from sA. Thus, Axiom 6 essentially states that

if behavior at t is consistent with Bayesian updating of signal s, then µs = µt. Consequently,

the updating rule µ is confirmatory.

Theorem 1. The family c satisfies Axioms 1–6 if and only if there is an updating rule µ

with a Coarse Bayesian Representation 〈P , (µP )P∈P〉 such that, for all s ∈ S and A ∈ A,

cs(A) = argmax
x∈A

x · µs.

If µ′ and 〈P ′, (µP ′)P ′∈P ′〉 also represent c, then µ′ = µ, P ′ = P, and (µP
′
)P ′∈P ′ = (µP )P∈P .

This theorem provides a complete characterization of Coarse Bayesian behavior in the

context of expected utility maximization. By analyzing the agent’s signal-contingent choices

from menus A, one can uniquely determine his prior as well as 〈P , (µP )P∈P〉.
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4.1 Sophistication

The concept of Coarse Bayesian updating gives rise to two natural notions of sophistication:

finer partitions, or richer sets of “theories” (feasible beliefs). In this section, I characterize

when one agent (represented by the family
•

c) is more sophisticated than another (represented

by the family c).

The analysis in this section works best under the assumption of a common prior: µ =
•

µ. This assumption can be expressed behaviorally as: ce(A) =
•

ce(A) for all A ∈ A∗ (in

fact, existence of a single A ∈ A∗ such that ce(A) =
•

ce(A) is sufficient to guarantee µ =
•

µ). Throughout, I assume c and
•

c have Coarse Bayesian Representations 〈P , (µP )P∈P〉
and 〈Q, ( •

µQ)Q∈Q〉, respectively. The objective is to perform comparative statics on these

parameters in terms of c and
•

c without having to fully identify them.

Proposition 4. Suppose µe =
•

µe. The following are equivalent:

(i) Q refines P (that is, each cell of P is a union of cells of Q).

(ii) For all A ∈ A,
•

cs(A) =
•

ct(A) implies cs(A) = ct(A).

Proposition 4 establishes that a Coarse Bayesian has a finer partition if his choices are

“more responsive” changes to the signal (there are fewer scenarios where two signals result

in the same choices). Since each cell of the partition is associated with a unique theory of

the world, there is a sense in which the more sophisticated agent entertains more theories.

However, Proposition 4 does not guarantee that µ(S) ⊆ •

µ(S), where µ(S) := {µs : s ∈ S}
(ie, if P ∈ P ∩Q, it is not necessarily the case that

•

µP = µP ).

Proposition 5. Suppose µe =
•

µe. The following are equivalent:

(i) µ(S) ⊆ •

µ(S).

(ii) For all A ∈ A, sct(A) ⊆ ce(sA) implies s
•

ct(A) ⊆ •

ce(sA).

Proposition 5 establishes that the agent entertains more theories (µ(S) ⊆ •

µ(S)) if and

only if he is “more Bayesian”: there is a larger set of signals s such that µs = B(µe|s). Note

that this does not guarantee that Q refines P . By combining Propositions 4 and 5, a more

sophisticated agent (in the sense of holding a finer partition as well as entertaining more

theories) is one who is both more responsive to changes in signals and more Bayesian in his

processing of signals.

13



5 Valuing Information

In this section, I examine how a Coarse Bayesian agent values information (Blackwell exper-

iments). I employ the framework of actions and menus from section 4.

An experiment is a matrix σ with entries in [0, 1] and |Ω| rows where each row is

a probability distribution and each column has at least one nonzero entry. Thus, each

column is a signal s ∈ S, and each row represents a probability distribution over signals.

The requirement that each row constitutes a probability distribution can be re-expressed as∑
s∈σ s = e, where the notation s ∈ σ indicates that s is a column of σ. Let E denote the

set of all experiments. For experiments σ, σ′, the relation σ w σ′ indicates that σ is more

informative than σ′ in the sense of Blackwell (1951, 1953). This is a partial order on E .

Given a menu A ∈ A, the agent’s value of information is the function V A : E → R
given by

V A(σ) :=
∑
ω∈Ω

µeω
∑
s∈σ

xsω subject to xs ∈ argmax
x∈A

x · µs

for all σ ∈ E . This is the ex-ante expected utility for an agent who correctly anticipates his

future behavior; in particular, he is cognizant of his own updating procedure. Alternatively,

if one assumes that the prior µe is (objectively) the correct distribution over states, then

V A(σ) represents the actual average utility experienced by the agent, regardless of whether

he correctly anticipates his own behavior.

5.1 The Blackwell Ordering

The function V A satisfies the Blackwell ordering if σ w σ′ implies V A(σ) ≥ V A(σ′).

As is well-known, a standard Bayesian agent’s value of information satisfies the Blackwell

ordering in all menus A. The objective of this section is to characterize if and when a

Coarse Bayesian satisfies the Blackwell ordering. Throughout, I consider Coarse Bayesian

representations 〈P , (µP )P∈P〉 that are nontrivial: P contains at least two cells.

Proposition 6. Suppose P is nontrivial. If each V A (A ∈ A) satisfies the Blackwell order-

ing, then the agent is Bayesian: µs = B(µe|s) for all s ∈ S.

This result establishes that, conditional on being Coarse Bayesian, the agent is actually

Bayesian if his value of information adheres to the Blackwell ordering in all menus. In

particular, a Coarse Bayesian who is not Bayesian must exhibit violations of the Blackwell

ordering in some menus. The next definition provides a condition characterizing exactly

when a Coarse Bayesian satisfies the Blackwell ordering.

14



Definition 4. Let A ∈ A and P := {clP : P ∈ P}.

(i) The support of x ∈ A is the set ∆A(x) := {µ̂ ∈ ∆ : x · µ̂ ≥ y · µ̂ ∀y ∈ A}. Let

∆A := {∆A(x) : x ∈ A}.

(ii) A set ∆̃ ∈ ∆A is P-measurable if it is a union of members of P .

(iii) A set P ∈ P is ∆A-measurable if it is a union of members of ∆A.

(iv) A and P are co-measurable if the union of all P -measurable and ∆A-measurable sets

is ∆.

Intuitively, the support of x ∈ A is the set of beliefs µ̂ for which x maximizes expected

utility in A. The concept of co-measurability can be understood by considering two extreme

cases. In on case, each support set ∆̃ can be expressed as a union of members of P . Thus,

the (Coarse Bayesian) agent chooses x from A at a signal s if and only if a standard Bayesian

would also choose x at s. At the other extreme, each P ∈ P can be expressed as a union

of members of ∆A. In this case, one can remove appropriate elements x from the menu

in order to make the Coarse Bayesian’s choices at all signals s coincide with those of the

standard Bayesian from the original menu. The general definition allows these two cases

to intermingle: some support sets can be expressed as unions of members of P , while some

members of P can be expressed as unions of support sets. The fact that co-measurability

ensures that the Coarse Bayesian’s behavior can be expressed as that of a standard Bayesian

suggests that the Coarse Bayesian must adhere to the Blackwell ordering in such cases.

Proposition 7. Suppose P is nontrivial and A ∈ A. The following are equivalent:

(i) A and P are co-measurable.

(ii) V A satisfies the Blackwell ordering.

An immediate consequence of this result is that P can be deduce by examining when (for

which menus) the agent satisfies the Blackwell ordering. The next section establishes even

stronger identification results.

5.2 Sophistication and Identification

This section explores identification issues (and the characterization of finer partitions) from

the perspective of the value of information. I consider two (nontrivial) Coarse Bayesians,

〈P , (µP )P∈P〉 and 〈Q, ( •

µQ)Q∈Q〉. As in section 4.1, I restrict attention to agents with a
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common prior: µe =
•

µe. Let V A and
•

V A associate the value of information in menu A for

the two agents.

By Proposition 7, it follows that P = Q (up to closures of cells) if and only if V A and
•

V A

satisfy the Blackwell ordering on the same subset of nontrivial menus A. While somewhat

illuminating, this characterization is not testable. Fortunately, a different condition on the

functions V A and
•

V A can be used to identify (and compare) the partitions.

An experiment σ′ is a garbling of σ if there is a stochastic matrix M such that σ′ = σM .

It is a coarse garbling if each entry of M belongs to the set {0, 1} (each row of M is a

degenerate probability distribution). As is well-known, σ w σ′ if and only if σ′ is a garbling

of σ.

Proposition 8. Suppose µe =
•

µe. The following are equivalent:

(i) Q refines P.

(ii) If σ′ is a coarse garbling of σ and
•

V A(σ) =
•

V A(σ′), then V A(σ) = V A(σ′).

This proposition states that the agent has a finer partition if and only if his value of

information is more responsive to coarse garblings: if V A(σ) 6= V A(σ′), then
•

V A(σ) 6=
•

V A(σ′).

This is analogous to the previous characterization (utilizing choices c and
•

c) in terms of

responsiveness to signals.

In general, indifference to a coarse garbling of σ (in sufficiently rich menus such as generic

menus) indicates that there are signals s, t ∈ σ such that the agent’s choice from A coincides

at s, t, and s+ t, forcing µs and µt to belong to the same cell P ∈ P . Thus, non-indifference

indicates that the signals belong to different cells. Greater responsiveness to coarse garblings,

then, indicates that fewer signals are absorbed in this fashion, forcing Q to be finer than P .

The final result shows that a Coarse Bayesian’s value of information (hence, his prefer-

ences for information) fully reveal 〈P , (µP )P∈P〉. In fact, the identification can be achieved

even if one restricts attention to pairs of experiments that are Blackwell comparable:

Proposition 9. The following are equivalent:

(i) P = Q and (µP )P∈P = (
•

µQ)Q∈Q.

(ii) V A =
•

V A for all A ∈ A.

(iii) For all A ∈ A and σ w σ′, V A(σ) ≥ V A(σ′)⇔
•

V A(σ) ≥
•

V A(σ′).
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6 Conclusion

In this paper, I have introduced a new model of non-Bayesian updating, Coarse Bayesian

Updating, and characterized it both directly (taking signal-contingent beliefs as given) and

behaviorally (taking signal-contingent choices as primitive). The agent is summarized by

a partition of the set of all probability distributions over a state space, together with a

representative belief for each cell of the partition. This allows several interpretations of

the procedure, and the rich domain of noisy signals enables unique identification of these

parameters. There is also a rich connection between the parameters and the agent’s value

of information. Coarse Bayesian updating is related to several other theories and concepts

of non-Bayesian updating, and accommodates a number of experimental findings.

An advantage of my framework is that it employs standard primitives that frequently

appear in applications. The use of noisy signals (relative to the state space), for example,

allows one to directly import Coarse Bayesian updating into familiar settings in economics

and game theory. Exploring the implications of Coarse Bayesian updating in such settings

may be a fruitful avenue for future research.
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A Proof of Theorem 1

I prove that if c satisfies Axioms 1–6, then c has the desired representation (the converse is

straightforward). For each s ∈ S, define the binary relation %s on X by:

x %s y ⇔ ∃A ∈ A such that x, y ∈ A and x ∈ cs(y).

Lemma 1. For each s ∈ S, %s is complete, transitive, and satisfies cs(A) = {x ∈ A : x %s

y ∀y ∈ A} for all A ∈ A.

Proof. First, %s is complete because cs({x, y}) 6= ∅ for all x, y ∈ X. For transitivity, suppose

x %s y %s z. Then there exists A ∈ A such that x, y ∈ A and x ∈ cs(A), and there exists

A′ ∈ A such that y, z ∈ A′ and y ∈ cs(A′). Let B = A ∪ A′, and observe that B ∈ A. Since

cs(B) 6= ∅, there exists w ∈ cs(B). If w ∈ A, then WARP (Axiom 1) implies x ∈ cs(B). If

w ∈ A′, then WARP implies y ∈ cs(B); applying WARP again yields x ∈ cs(B). Thus, in

all cases, x ∈ cs(B), so that x %s z.

We now prove that cs = c%s , where c%s(A) := {x ∈ A : x %s y ∀y ∈ A}. Let A ∈ A. To

see that cs(A) ⊆ c%s(A), suppose x ∈ cs(A). Then x %s y for all y ∈ A, so that x ∈ c%s(A).

For the converse inclusion, suppose x ∈ c%s(A). Let y ∈ cs(A) 6= ∅. Since y ∈ A and

x ∈ c%s(A), we have x %s y. Hence, there exists A′ ∈ A such that x, y ∈ A′ and x ∈ cs(A′).
Since x ∈ cs(A′) and y ∈ cs(A), WARP implies x ∈ cs(A), as desired.

Lemma 2. For each s ∈ S, the relation %s is continuous: for all x ∈ X, the sets U(x) :=

{y ∈ X : y %s x} and L(x) := {y ∈ X : x %s y} are closed.

Proof. By Axiom 3, cs is closed-valued and upper hemicontinuous; therefore, cs has the

closed-graph property: if An → A, xn → x, and xn ∈ cs(An) for all n, then x ∈ cs(A).

To see that upper contour sets are closed, fix x and suppose yn → y where yn ∈ U(x)

for all n. Then there exist An ∈ A such that, for all n, x, yn ∈ An and yn ∈ cs(An). By

WARP (Axiom 1), we have yn ∈ cs({x, yn}) for all n. Clearly, {x, yn} → {x, y}. Thus, by

the closed-graph property of cs, we have y ∈ cs({x, y}) and, hence, y %s x.

For the lower contour sets, fix x and suppose yn → y where yn ∈ L(x) for all n. Then

there exist An ∈ A such that, for all n, x, yn ∈ An and x ∈ cs(An). By WARP, x ∈ cs({x, yn})
for all n. Clearly, {x, yn} → {x, y}. Letting xn = x for all n, we have xn → x. Thus, by the

closed-graph property, x ∈ cs({x, y}), so that x %s y.

Lemma 3. For each s ∈ S, there exists a unique µs ∈ ∆Ω such that x %s y if and only if,

for all x, y ∈ X, x · µs ≥ y · µs. The prior µe has full support.
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Proof. Let s ∈ S. By Lemma 1, %s is complete and transitive. By Lemma 2 and a standard

argument, %s satisfies Archimedean continuity: if x �s y �s z, then there exists α, β ∈ (0, 1)

such that αx + (1 − α)z �s y �s βx + (1 − β)z. Finally, Axiom 2 implies that %s satisfies

the Independence axiom: if x �s y and α ∈ (0, 1), then αx+ (1− α)z �s αy + (1− α)z for

all z ∈ X. Thus, by the Mixture Space Theorem, %s has a representation U s : X → R such

that U s(αx+ (1− α)y) = αU s(x) + (1− α)U s(y) for all x, y ∈ X and α ∈ [0, 1] (that is, U s

is linear).

By part (i) of Axiom 4, each U s ranks constant actions x, y the same way: for all s, t ∈ S,

U s(x) ≥ U s(y) if and only if U t(x) ≥ U t(y). Thus, each U s is of the form U s(x) = as · x,

where as ∈ RN\{0} and as ≥ 0. By part (ii) of Axiom 4, we have ae > 0. The result follows

by taking µs := 1
as·ea

s.

By Lemma 3, c is represented by an updating rule µ = (µs)s∈S. Observe that if A ∈ A∗

and A is strongly convex, then cs(A) is a singleton for all s ∈ S, and cs(A) = ct(A) implies

µs = µt (the unique supporting hyperplane for x ∈ cs(A) = ct(A) has normal given by µs).

Thus, by Axiom 5, the updating rule µ is homogeneous and convex.

Pick any t ∈ S and let s ∈ S such that sµe ≈ µt (that is, µt = B(µe|s)). Such an s exists

because µe has full support. We want to show that µs = µt (so that the updating rule µ is

confirmatory). Let x ∈ ct(A), where A ∈ A∗ is strongly convex. Then x · µt ≥ y · µt for all

y ∈ A. Since sµe ≈ t, it follows that

x · (sµe) ≥ y · (sµe) ∀y ∈ A

⇒ (sx) · µe ≥ (sy) · µe ∀y ∈ A

⇒ (sx) · µe ≥ x′ · µe ∀x′ ∈ sA

and therefore sx ∈ ce(sA). Thus, sct(A) ⊆ ce(sA), so that cs(A) = ct(A) by Axiom 6. As

noted above, µs = µt then follows from the fact that A is generic and strongly convex. To

conclude the proof, apply Proposition 1 to get that µ has a Coarse Bayesian Representation.

B Proofs for Section 3

To be written.

C Proofs for Section 5

To be written.
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